The role of polyconvexity in dynamical problems of thermomechanics

Thanos Tzavaras Computer, Electrical and Mathematical Science & Engineering

Cleopatra Christoforou (U. Cyprus) Myrto Galanopoulou (KAUST) Sophia Demoulini (Cambridge) David Stuart (Cambridge)

Outline

1 the system of polyconvex thermoelasticity

2 Relative entropy and its Applications

Variational Approximation

4 lattice models and continuum limits

System of Thermoelasticity

$$egin{aligned} F_t &=
abla v \ v_t &= \operatorname{div} S \ \partial_t ig(rac{1}{2} |v|^2 + e ig) &= \operatorname{div} ig(v \cdot S ig) + \operatorname{div} Q + r \ \partial_t \eta - \operatorname{div} rac{Q}{ heta} &\geq rac{r}{ heta} \end{aligned}$$

motion y(t,x) velocity $v=rac{\partial y}{\partial t}$

deformation gradient $F = \nabla y$

involutive constraint $\operatorname{curl} F = 0$

theory of thermoviscoelasticity : free energy $\psi = \psi(F, \theta)$

$$S = \frac{\partial \psi}{\partial F}(F, \theta),$$

$$\eta = -\frac{\partial \psi}{\partial \theta}(F, \theta),$$

$$e = \psi + \theta \eta.$$

total stress $S_{tot} = S + \mu \nabla v$ heat flux $Q = \kappa \nabla \theta$ $\mu = \mu(F, \theta) > 0$ $\kappa = \kappa(F, \theta) > 0$

Coleman - Noll '63, Coleman - Mizel '64

system of thermoviscoelasticity in Lagrangean coordinates

$$F_t = \nabla v$$

$$v_t = \operatorname{div}(S + \mu \nabla v)$$

$$\partial_t (\frac{1}{2}|v|^2 + e) = \operatorname{div}(v \cdot S + v \cdot \mu \nabla v) + \operatorname{div}(\kappa \nabla \theta) + r$$

$$\partial_t \eta - \operatorname{div} \frac{\kappa \nabla \theta}{\theta} = \frac{1}{\theta^2} \kappa |\nabla \theta|^2 + \frac{1}{\theta} \mu |\nabla v|^2 + \frac{r}{\theta} \ \geq \ \frac{r}{\theta}$$

◆ロト ◆個ト ◆量ト ◆量ト ■ 釣りで

• Material frame indifference

$$\psi(QF,\theta) = \psi(F,\theta) \quad \forall \ Q \in \mathcal{O}^3$$

• REALIZIBILITY OF MECHANICAL MOTIONS

to avoid interpenetration of matter impose (at least) positivity of the Jacobian

$$\det F > 0$$

$$W(F) o \infty$$
 as $\det F o 0$

It is too restrictive to take W(F) convex

The problem of stabilization

The local state (F, η) is a state of thermal equilibrium under a given force-temperature pair (S, θ) if

- the Cauchy stress $T = \frac{1}{\det F} F S^T$ is symmetric
- the inequality holds

$$\lambda(F^*, \eta^*) > \lambda(F, \eta)$$
 $\forall (F^*, \eta^*) \neq (F, \eta) \text{ with } F^* = GF$

with G symmetric positive definite

where

$$\lambda(F, \eta) = e(F, \eta) - S \cdot F - \eta \theta$$

 $\lambda = {\sf internal}$ energy - potential energy of contact forces - thermal potential energy.

Recall polar decomposition: if $detF \neq 0$ then F = QU, Q rotation, U > 0 symmetric

Coleman-Noll '59 - following Gibbs 1875

Coleman-NoII '59 show that the free energy $\psi=e-\theta\eta$ for a thermoelastic theory determined by

$$\psi = \psi(F, \theta)$$

when (F, θ) is a state of thermal equilibrium has to satisfy

$$\psi(F^*, \theta^*) - \psi(F, \theta) - \frac{\partial \psi}{\partial F}(F, \theta) \cdot (F^* - F) - \frac{\partial \psi}{\partial \theta}(F^*, \theta^*)(\theta^* - \theta) > 0$$

 $\forall \ (F^*, \theta^*) \neq (F, \theta) \text{ with } F^* = GF, \text{ with } G > 0 \text{ symmetric}$

This implies

$$\psi_{\theta\theta} < 0$$

but does not imply

$$\psi_{FF} > 0$$

Notions from Elastostatics

$$\min_{y \in W^{1,\infty}} I[y] = \int_{\Omega} W(\nabla y) \, dx$$

 $\Phi(F)$ is a null-Lagrangean iff

$$\int_{\Omega} \Phi(\nabla y + \nabla \phi) \, dx = \int_{\Omega} \Phi(\nabla y) dx \quad \forall \ y \in W^{1,p}, \ \phi \in C_c^{\infty}$$

$$\iff \partial_{\alpha} \left(\frac{\partial \Phi}{\partial F_{i\alpha}} (\nabla y) \right) = 0 \quad \text{in } \mathcal{D}'$$

$$\iff \Phi(F) = A : F + B : \text{cof } F + c \text{ det } F$$

If $\Phi(\nabla y)$ is null-Lagrangean then it is weakly continuous in $W^{1,p}$.

J. Ball 77, J. Ericksen 62

W(F) is polyconvex

$$W(F) = g(F, \operatorname{cof} F, \operatorname{det} F) = g \circ \Phi(F)$$
 with $g(\Xi)$ convex

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 めぬぐ

Transport Identities

$$\frac{\partial}{\partial t} \det F = \frac{\partial}{\partial x^{\alpha}} ((\cos F)_{i\alpha} v_i)$$
$$\frac{\partial}{\partial t} (\cos F)_{k\gamma} = \frac{\partial}{\partial x^{\alpha}} (\epsilon_{ijk} \epsilon_{\alpha\beta\gamma} F_{j\beta} v_i)$$

connected to null-Lagrangians $\Phi(F) = (F, \operatorname{cof} F, \operatorname{det} F)$

$$\partial_{\alpha} \left(\frac{\partial \Phi}{\partial F_{i\alpha}} (\nabla y) \right) = 0 \quad \text{ in } \mathcal{D}'$$

Transport identities

$$\partial_t F_{i\alpha} = \partial_\alpha v_i$$

$$\partial_t \Phi^A(F) = \partial_\alpha \left(\frac{\partial \Phi^A}{\partial F_{i\alpha}} v_i \right) \quad A = 1, ..., 19$$

These identities describe the transport and stretching of the elementary volume and areas and have offered a lot of understanding in the dynamics of isothermal elasticity

T. Qin 98, Demoulini-Stuart-T '01, '12, Dafermos '06, Lattanzio-T. '06, O

Thanos Tzavaras (KAUST)

The Polyconvex Thermoelasticity System

$$\psi(F,\theta) = g(\Phi(F),\theta)$$
 polyconvexity hypothesis

$$\partial_t \Phi(F)^A = \partial_\alpha \left(\frac{\partial \Phi^A}{\partial F_{i\alpha}}(F) v_i \right)$$

$$\partial_t v = \partial_\alpha \left(S^A(\Phi(F), \theta) \frac{\partial \Phi^A}{\partial F_{i\alpha}}(F) \right)$$

$$\partial_t \left(\frac{1}{2} |v|^2 + \bar{e}(\Phi(F), \theta) \right) = \partial_\alpha \left(v_i S^A(\Phi(F), \theta) \frac{\partial \Phi^A}{\partial F_{i\alpha}}(F) \right) + r$$

$$\operatorname{curl} F = 0$$

where
$$S^A = \frac{\partial g}{\partial \xi^A}(\xi, \theta)$$

augmented system

$$\partial_{t}\xi^{A} = \partial_{\alpha} \left(\frac{\partial \Phi^{A}}{\partial F_{i\alpha}}(F) v_{i} \right)$$

$$\partial_{t}v = \partial_{\alpha} \left(S^{A}(\xi, \theta) \frac{\partial \Phi^{A}}{\partial F_{i\alpha}}(F) \right)$$

$$\partial_{t} \left(\frac{1}{2} |v|^{2} + \bar{e}(\xi, \theta) \right) = \partial_{\alpha} \left(v_{i} S^{A}(\xi, \theta) \frac{\partial \Phi^{A}}{\partial F_{i\alpha}}(F) \right) + r$$

system in $\left(v, \underbrace{(F, Z, w)}_{\xi}, \theta\right)^T$ variables.

Using the null-Lagrangian property $\partial_{\alpha}\left(\frac{\partial\Phi}{\partial F_{i\alpha}}(\nabla y)\right)=0$ one can derive the entropy production identity for smooth solutions of the augmented system

$$\partial_t \bar{\eta}(\xi,\theta) = \frac{r}{\theta}$$

Properties of the extension

(a) The augmented system is symmetrizable under the hypothesis

$$g_{\xi\xi}(\xi,\theta)>0\,,\quad g_{\theta\theta}(\xi,\theta)<0$$

(b) The adiabatic, polyconvex, thermoelastsicity (APT) system may be viewed as a constrained evolution:

$$\xi(\cdot,0) = \Phi(F(\cdot,0)) \implies \xi(\cdot,t) = \Phi(F(\cdot,t)) \ \forall t$$

(c) Recall and compare to the property

$$F(\cdot,0) = \nabla y(\cdot,0) \implies F(\cdot,t) = \nabla y(\cdot,t) \ \forall t$$

Symmetrization of Hyperbolic Systems

$$\begin{cases} \partial_t A(u) + \partial_\alpha F_\alpha(u) = 0 & (\star) \\ \partial_t \eta(u) + \partial_\alpha q_\alpha(u) = 0 & \\ G \cdot \nabla A = \nabla \eta & \iff \nabla G^T \nabla A = \nabla A^T \nabla G \\ G \cdot \nabla F_\alpha = \nabla q_\alpha & \iff \nabla G^T \nabla F_\alpha = \nabla F_\alpha^T \nabla G \end{cases}$$

$$\underbrace{\nabla G^T \nabla A}_{symmetric} \partial_t u + \nabla G^T \nabla F_\alpha \partial_\alpha u = 0$$

System (*) is symmetrizable if

$$\nabla G^T \nabla A = \nabla^2 \eta - G \cdot \nabla^2 A > 0$$

equivalently, if we express

$$H \circ A(u) = \eta(u)$$
 $H(v)$ is convex

←□ → ←□ → ←□ → ←□ → ○○○

hyperbolic parabolic systems

$$\partial_t A(u) + \partial_\alpha F_\alpha(u) = \varepsilon \partial_\alpha (B(u)\partial_\alpha u)$$

$$\partial_t \eta(u) + \partial_\alpha q(u) = \varepsilon \partial_\alpha (G(u) \cdot B(u)\partial_x u) - \varepsilon \nabla G(u)\partial_\alpha u \cdot B(u)\partial_\alpha u$$

MAIN ASSUMPTION

$$\nabla G^T \nabla A = \nabla^2 \eta - G \cdot \nabla^2 A > 0$$

Relative entropy

$$\eta(u) - \eta(\bar{u}) - G(\bar{u}) \cdot (A(u) - A(\bar{u})) = H(A(u)|A(\bar{u}))$$

Compare two solutions u and \bar{u} of the hyperbolic-parabolic system

$$\begin{split} \partial_{t} \Big[H \big(A(u) | A(\bar{u}) \big) \Big] &+ \partial_{\alpha} \Big(q_{\alpha} (u | \bar{u}) + \varepsilon J_{\alpha} \Big) \\ &+ \varepsilon \sum_{\alpha} \partial_{\alpha} (u - \bar{u}) \cdot \nabla G(u)^{T} B(u) \partial_{\alpha} (u - \bar{u}) \\ &= - \Big(\partial_{\alpha} G(\bar{u}) \Big) \cdot \Big[F_{\alpha} (u) - F_{\alpha} (\bar{u}) - \nabla F_{\alpha} (\bar{u}) \big(\nabla A(\bar{u}) \big)^{-1} (A(u) - A(\bar{u})) \Big] \\ &+ \varepsilon \sum_{i} Q_{i} \end{split}$$

where

$$Q_i \sim (\partial_{\alpha} u - \partial_{\alpha} \bar{u}) \cdot (u - \bar{u})$$
$$Q_j \sim |u - \bar{u}|^2$$

Convergence of zero-viscosity limit when \bar{u} is smooth.

Application: From thermoviscoelasticity to adiabatic thermoelasticity

Thm Under Hypotheses of Gibbs thermodynamic stability, L^p growth for $e(F, \theta)$, if \bar{U} is a smooth solution of adiabatic thermoelasticity, and

$$0 < \mu = \mu(F, \theta) \le \mu_0$$
, $0 < \kappa = \kappa(F, \theta) \le k_0 \theta$

then

$$\sup_{t\in(0,T)}\int I(U^{\mu,k}(t)|\bar{U}(t))dx\to 0\qquad\text{as }\mu_0,k_0\to 0+\ .$$

Christoforou, T. 2016

entropy and relative entropy

$$H(U) = -\eta(F, \theta)$$

$$H(U) - H(\bar{U}) - G(\bar{U}) \cdot (A(U) - A(\bar{U}))$$

$$= (-\eta) - (-\bar{\eta}) - \left(\frac{\bar{\Sigma}}{\bar{\theta}}, \frac{\bar{v}}{\bar{\theta}}, -\frac{1}{\bar{\theta}}\right) \cdot \left(F - \bar{F}, v - \bar{v}, e + \frac{1}{2}v^2 - \bar{e} - \frac{1}{2}v^2\right)$$

$$= \frac{1}{\bar{\theta}} \left(\delta e - \bar{\theta}\delta \eta - \bar{\Sigma} : \delta F - \bar{v}\delta v\right)$$

$$= \frac{1}{\bar{\theta}} \left(\underbrace{\psi(F, \theta|\bar{F}, \bar{\theta}) + (\eta - \bar{\eta})(\theta - \bar{\theta})}_{\lambda(F, \theta|\bar{F}, \bar{\theta})}\right) + \frac{1}{2}(v - \bar{v})^2$$

Remarks

 $\lambda(F,\theta|\bar{F},\bar{\theta})>0$ is thermal stability condition proposed by Coleman-Noll '59

$$abla^2 H(U) - G(U) \cdot
abla^2 A(U) > 0 \quad \Leftrightarrow \quad \psi_{FF} > 0, \quad \eta_{\theta} > 0$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

The system of polyconvex thermoelasticity

Polyconvex Thermoelasticity $\psi(F, \theta) = \hat{\psi}(F, \operatorname{cof} F, \operatorname{det} F, \theta)$

Thm Under Hypotheses

$$\hat{\psi}_{\xi\xi}(\xi,\theta) > 0$$
 $\hat{\psi}_{\theta\theta}(\xi,\theta) < 0$

 L^p growth for $\hat{e}(\xi,\theta),$ if \bar{U} is a smooth solution of adiabatic polyconvex thermoelasticity, and

$$0 < \mu = \mu(F, \theta) \le \mu_0, \quad 0 < \kappa = \kappa(F, \theta) \le k_0 \theta$$

then

- convergence from thermoviscolasticity to adiabatic thermoelasticity as $\mu_0, k_0 \to 0$
- ullet or from thermoviscoelasticity to thermoelasticity as $\mu_0 o 0$, k_0 constant.
- weak-strong uniqueness for measure-valued solutions

 ${\sf Galanopoulou-Christoforou-T.~2018~,~Koumatos-Spirito~2019~isothermal~quasiconvex}$

Variational Approximation

Isothermal dynamic elasticity has the following properties:

Variational approximation connected to viewing the problem

$$\partial_{tt}y = -\frac{\delta}{\delta y} \Big(\int W(\nabla y) dx \Big)$$

discretize the evolution in time.

• In 1-d this approximation yields entropic weak solutions that satisfy the entropy inequality for any convex entropy

Motivation Demoulini-Stuart- T. '99, '01, Cavalletti-Sedjro-Westdickenberg '15

Question What is the analog for the non-isothermal case ?

Legendre transform and thermodynamic potentials

Given a free energy function $\psi=\psi({\sf F},\theta)$ define the Legendre transform

$$e(F, \eta) = \sup_{\theta} \left(\theta \eta + \psi(F, \theta)\right)$$

 $e(F, \eta)$ is computed by

$$e(F,\eta) = \psi(F,\theta^*) + \theta^*\eta$$
 where $\theta^*(\eta)$ is such that $\eta = -\frac{\partial \psi}{\partial \theta}(F,\theta^*)$

If $\psi_{\theta\theta} < 0$ then $e_{\eta\eta} > 0$. No convexity is assumed in F.

• The thermodynamic potential $e(F,\eta)$ - internal energy - is the Legendre dual of $-\psi(F,\theta)$ - Helmholtz free energy

augmented thermoelasticity

Consider the augmented system expressed in the (v, ξ, η) variables

$$\partial_{t}\xi^{A} = \partial_{\alpha} \left(\frac{\partial \Phi^{A}}{\partial F_{i\alpha}}(F) v_{i} \right)$$

$$\partial_{t}v = \partial_{\alpha} \left(\frac{\partial \bar{e}}{\partial \xi^{A}}(\xi, \eta) \frac{\partial \Phi^{A}}{\partial F_{i\alpha}}(F) \right)$$

$$\partial_{t} \left(\frac{1}{2} |v|^{2} + \bar{e}(\xi, \eta) \right) = \partial_{\alpha} \left(v_{i} \frac{\partial \bar{e}}{\partial \xi^{A}}(\xi, \eta) \frac{\partial \Phi^{A}}{\partial F_{i\alpha}}(F) \right) + r$$

Entropy identity

$$\partial_t \bar{\eta} = \frac{r}{\frac{\partial \bar{e}}{\partial \eta}(\xi, \eta)}$$

under the hypothesis $\bar{e}(\xi, \eta)$ convex in ξ and in η which renders the system symmetrizable.

Consider the minimization problem: Given (v^0, ξ^0, η^0)

$$\min \int_{\mathbb{T}^3} \left(\frac{1}{2} |v - v^0|^2 + \bar{e}(\xi, \eta) \right) dx$$

over the affine subspace

$$\mathcal{C} := \Big\{ \big(v, \underbrace{F, Z, w}_{\xi} \big) : \mathbb{T}^3 \to \mathbb{R}^{22} \text{ subject to the constraints} \\ \frac{\xi - \xi^0}{h} = \partial_{\alpha} \Big(\frac{\partial \Phi^A}{\partial F_{i\alpha}} \big(F^0 \big) \, v_i \Big) \\ \frac{\eta - \eta^0}{h} = \frac{r}{\overline{\theta}(\Phi(F^0), \eta^0)} \Big\}.$$

Under convexity of $\bar{e}(\xi, \eta)$ this problem is solvable and sets-up an iteration scheme with a variational framework in the background.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - かくで

Euler-Lagrange equations

Computing the variation of the functional, the iterates satisfy

$$\begin{split} \frac{v-v^0}{h} &= \partial_{\alpha} \Big(\frac{\partial \overline{e}}{\partial \xi^A} (\xi, \eta) \frac{\partial \Phi^A}{\partial F_{i\alpha}} (F^0) \Big) \\ \frac{\xi^A - \xi^{0,A}}{h} &= \partial_{\alpha} \Big(\frac{\partial \Phi^A}{\partial F_{i\alpha}} (F^0) v_i \Big) \\ \frac{\eta - \eta^0}{h} &= \frac{r}{\overline{\theta} (\Phi(F^0), \eta^0)} \end{split}$$

Using convexity of $\bar{e}(\xi,\eta)$

$$\begin{split} \frac{\left(\frac{1}{2}|v|^2 + \bar{e}(\xi,\eta)\right) - \left(\frac{1}{2}|v^0|^2 + \bar{e}(\xi^0,\eta^0)\right)}{h} + \underbrace{J(v^0,\Phi(F^0),\eta^0|v,\xi,\eta)}_{\geq 0} \\ = \partial_{\alpha}\left(v_i\frac{\partial\bar{e}}{\partial\xi^A}(\xi,\eta)\frac{\partial\Phi^A}{\partial F_{i\alpha}}(F^0)\right) + \frac{\bar{\theta}(\xi,\eta)}{\bar{\theta}(\Phi(F^0),\eta^0)}r \end{split}$$

Under convexity $\bar{e}(\xi,\eta)$ and bounds on \bar{e} and $\frac{\partial \bar{e}}{\partial \bar{\Xi}}$, $\frac{\partial \bar{e}}{\partial \eta}$ we obtain a Young measure ν and a nonnegative concentration measure $\gamma(dxdt)$ s.t.

$$v^h \rightharpoonup v$$
 wk in L^2 , $\eta^h \rightharpoonup \eta$ wk in L^r

$$(F^h, Z^h, w^h) \rightharpoonup (F, \operatorname{cof} F, \operatorname{det} F)$$
 wk in $L^p \times L^q \times L^r$

where $F=\langle \nu,\lambda_F \rangle$, $\mathbf{v}=\langle \nu,\lambda_{\mathbf{v}} \rangle$, $\eta=\langle \nu,\lambda_{\eta} \rangle$ satisfy

Dissipative measure-valued solution

$$\partial_t \Phi^{A}(F) = \partial_\alpha \left(\frac{\partial \Phi^{A}}{\partial F_{i\alpha}}(F) v_i \right)$$
$$\partial_t v_i = \partial_\alpha \left\langle \nu, S_{i\alpha}(\lambda_F, \lambda_\theta) \right\rangle$$
$$\partial_t \left\langle \nu, \bar{\eta}(\Phi(\lambda_F), \lambda_\theta) \right\rangle \ge \left\langle \nu, \frac{r}{\lambda_\theta} \right\rangle$$

Integrated Energy inequality

$$\partial_t \int \left\langle \nu, \frac{1}{2} |\lambda_{\nu}|^2 + \bar{e}(\Phi(\lambda_F), \lambda_{\theta}) \right\rangle dx + d\gamma(x, t) \leq 0$$

Geometric transport identities and null-Lagrangeans are weakly stable.

- Thm. measure-valued weak versus strong uniqueness theorem
- Corollary Convergence of the variational scheme to smooth solutions of adiabatic thermoelasticity.

Galanopoulou - Christoforou - T. 2018

Lattice models and their continuum limits

WORK IN PROGRESS WITH S. DEMOULINI - D. STUART

Ionic lattices and deformation energy

Charges $\{q_n\}_{n\in\Lambda}$ located in equilibrium $\{\mathbf{X}(n)=\epsilon n\}_{n\in\Lambda}$

$$\Lambda = \mathbb{Z}^d$$
 or $\Lambda = \Lambda_N = \{0, \dots (N-1)\}^d$

Assume charges all +q or -q on lattice. Displaced to locations $\{\mathbf{x}(n) \in \mathbb{R}^d\}_{n \in \Lambda}$.

Short range (nearest neighbour) interactions

$$V_s = \sum_{n \in \Lambda} \epsilon^d W(\partial^\epsilon \mathbf{x}(n))$$

Long range interactions from electrostatic forces

$$V_{el} = q^{2} \left[\sum_{pos-pos} K(\mathbf{x}(n), \mathbf{x}(n')) + \sum_{neg-neg} K(\mathbf{x}(n), \mathbf{x}(n')) - 2 \sum_{pos-neg} K(\mathbf{x}(n), \mathbf{x}(n')) \right]$$

As a model problem consider a fixed background positive charge distribution

$$V_{el} = \frac{1}{2} \iint (\rho_B(\mathbf{x}) - q \sum \delta(\mathbf{x} - \mathbf{x}(n))) K(\mathbf{x}, \mathbf{x}')$$
$$(\rho_B(\mathbf{x}') - q \sum \delta(\mathbf{x}' - \mathbf{x}(n))) d\mathbf{x} d\mathbf{x}'$$

- This could arise if positive ions are very heavy so dynamically frozen
- Assume $K \in C^2$, but keep Coulomb in mind:

$$K(\mathbf{x}(n),\mathbf{x}(n')) = C|\mathbf{x}(n) - \mathbf{x}(n')|^{-1}$$

Dynamics, Scaling and Continuum Limit

Euler-Lagrange equations of motion from Lagrangian

$$\mathcal{L}(\mathbf{x},\dot{\mathbf{x}}) = \sum_{n} \frac{1}{2} m_n |\dot{\mathbf{x}}(n)|^2 - V_s - V_{el}$$

$$\begin{split} m_{n}\ddot{\mathbf{x}}_{a}(n) &= \epsilon^{d-1} \sum_{j=1}^{d} \left(\sigma_{aj} (\partial_{j}^{\epsilon} \mathbf{x}(n)) - \sigma_{aj} (\partial_{j}^{\epsilon} \mathbf{x}(n - \iota_{j})) \right) \\ &- q \int \partial_{\mathbf{x}_{a}} K(\mathbf{x}(n), \mathbf{x}') \Big(\rho_{B}(\mathbf{x}') - q \sum_{j=1}^{d} \delta_{\mathbf{x}(n)}(\mathbf{x}') \Big) d\mathbf{x}' \\ |\Lambda_{N}| &= N^{d} \qquad \text{(Number of lattice sites/particles)} \\ &\epsilon &= \frac{2\pi}{N} \qquad m_{n} = \epsilon^{d} \rho_{0} \qquad q = \epsilon^{d} \rho_{el} \end{split}$$

Blanc-LeBris-Lions formalism gives expected continuum deformation energies in terms of assumed continuum deformation $\{X \to y(X)\}_{X \in [0,2\pi]^d}$

$$V_s \leadsto \int W(\frac{\partial y}{\partial X}) dX$$

$$V_{el} \leadsto \frac{1}{2} \iint (\rho_B \det \frac{\partial y}{\partial X} - \rho_{el}) K(y(X), y(X')) \times (\rho_B \det \frac{\partial y}{\partial X'} - \rho_{el}) dX dX'$$

This leads to the evolution equation

$$\rho_0 \frac{\partial^2 y_i}{\partial T^2} = \frac{\partial}{\partial X_\alpha} \left(\sigma_{i\alpha} \left(\frac{\partial y}{\partial X} \right) \right) \\ - \rho_{el} \int \partial_{1a} K(y(X), y(X')) \left(\rho_B \det \frac{\partial y}{\partial X'} - \rho_{el} \right) dX'$$

$$\sigma_{i\alpha}(F) = \frac{\partial W}{\partial F_{i\alpha}} \qquad F_{i\alpha} = \frac{\partial y_i}{\partial X_{\alpha}}$$
$$\partial_{1a}K(y,z) = \frac{\partial}{\partial y_a}K(y,z)$$

- The additional term is of form expected from Coulomb force law, and arises after some cancellations in deriving the Euler-Lagrange equations
- The additional term in the equation of motion is lower order so existence of local classical solutions not expected to be an issue.

4日 → 4日 → 4 目 → 4 目 → 9 Q (**)

method for justification

These isothermal models are equipped with relative energy identity

- one proves a measure-valued weak versus strong uniqueness theorem for the anticipated limit model
- In second step one shows that the discrete lattice model has uniform bounds in energy norm
- A soft analysis indicates that the lattice model converges to a dissipative mv solution as lattice size tends to zero.
- The mv-weak vs strong uniqueness then guarantees that so long as the limit has a smooth solution the approximate solution converges to the smooth solution.