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System of Thermoelasticity

Ft = VV
Vt ZdIVS
Oe(3Iv* + &) =div(v- ) +divQ +r

- Q r

o —div—> -

TNy =g
motion y(t, x)
velocit v = Oy
Y - ot
deformation gradient F=Vy

involutive constraint  curl F =0 Q Q= 4(Q)
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theory of thermoviscoelasticity :  free energy v = ¢(F,0)

_ W

§= SF(F.0).
9

n=—90(F.0),

e=9y+6n.

total stress S;ot = S+ Vv heat flux Q = kV0O
w=pu(F,0)>0 k=r(F,0)>0

Coleman - Noll '63, Coleman - Mizel '64

system of thermoviscoelasticity in Lagrangean coordinates

Ft = VV

ve =div(S + uVv)
Oe(Av]P+e) =div(v-S+v-uVv)+div(kVO) +r
kVE

1 r r
VU _ 2 2, + 2 S r
0 025|V€| +9u|Vv| +0 Z 3

61577 —div
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@ MATERIAL FRAME INDIFFERENCE
Y(QF,0) =¢(F,0) YQe O3

@ REALIZIBILITY OF MECHANICAL MOTIONS

to avoid interpenetration of matter impose (at least) positivity of the
Jacobian

det F >0
W)
W(F) = o0 as detF —0
It is too restrictive to take W(F) convex
S
QF
=
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The problem of stabilization

The local state (F,n) is a state of thermal equilibrium under a given
force-temperature pair (S, 0) if

@ the Cauchy stress T = dei,_.FST is symmetric

@ the inequality holds

AF*,n") > MF,n) YV (F*,n*) # (F,n) with F* = GF
with G symmetric positive definite

where
A(F,n)=e(F,n)—S-F—nb
A = internal energy - potential energy of contact forces - thermal potential energy.

Recall polar decomposition: if detF # 0 then F = QU, Q rotation, U > 0
symmetric

Coleman-Noll '59 - following Gibbs 1875
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Coleman-Noll '59 show that the free energy 1) = e — 07 for a thermoelastic theory

determined by

v =(F,0)
when (F,6) is a state of thermal equilibrium has to satisfy
Y(F*,0") —(F,0) — Z—Zﬁ(F,G) (F*—F)— g—qg(F*,Q*)(Q* —-0)>0

Y (F*,0%) # (F,0) with F* = GF, with G > 0 symmetric

This implies
Yoo <0
but does not imply
YrF >0
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Notions from Elastostatics

min I[y]:/QW(Vy)dx

yeEWL

®(F) is a null-Lagrangean iff

/¢(Vy+V¢>) dx = / O(Vy)dx Vye W™, e C®
Q Q

oP B o
— 304 (m(Vy)) =0 in D

<— ®(F)=A:F+B:cof F+cdetF

If ®(Vy) is null-Lagrangean then it is weakly continuous in W1P.
J. Ball 77, J. Ericksen 62

W(F) is polyconvex

W(F) = g(F,cof F,det F) = go ®(F)  with g(Z) convex
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Transport Identities 9

0
T —detF = — Ix ((cofF),av,)

0 0
E(Cof Flky = @(eykeaﬁwﬁ'ﬁw)

connected to null-Lagrangians ®(F) = (F, cof F,det F)

oP o
Oa (6Ea(Vy)) in D

Transport identities

8tFia = aa Vi
oA

A _ o _
9, (F) = 0, <8F’_a v,> A=1,..,19

These identities describe the transport and stretching of the elementary volume
and areas and have offered a lot of understanding in the dynamics of isothermal

elasticity

T. Qin 98, Demoulini-Stuart-T '01, '12, Dafermos '06,-Lattanzio-T. '06
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The Polyconvex Thermoelasticity System

W(F,0) = g(P(F),0) polyconvexity hypothesis

Bev = O (sA(q>(F),e) m(F))

00 (VI + &(8(F).0)) = 0 (v SA(®(F).0) 52—(F)) + 1

curlF =0

where SA = (%A £.(&,0)
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augmented system

DA
A_ :
0eeh = 0, <8F,-a(F) v,)

o = 0,(5(E.0) o2 (F))

A
d: (3lvI* +&(€.0)) = aa<Vi SA(€.6) g?__) (F)) +r

-
system in (v,(F,Z, W),H) variables.
—_——

4
Using the null-Lagrangian property 0, ( (Vy)) = 0 one can derive the
entropy production identity for smooth solut|ons of the augmented system

81.“77(5, 0) =7
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Properties of the extension

(a) The augmented system is symmetrizable under the hypothesis
g§§(§79)>07 g99(€a9)<0

(b) The adiabatic, polyconvex, thermoelastsicity (APT) system may be viewed
as a constrained evolution:

£(,0) =o(F(-,0)) = &(t)=(F(-, 1)) Vt
(c) Recall and compare to the property

F(-,0) =Vy(,0) = F(,t)=Vy(,t) Vt
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Symmetrization of Hyperbolic Systems

0tA(u) 4+ OnFa(u) =0 (*)
multiplier G(u)"
9in(u) + 9aqa(u) =0

G-VA=Vnp «— VG'VA=VATVG
G-VF,=Vq, <+ VG'VF,=VFIVG

VG'VA O u+VG'VF,d,u=0
N——

symmetric
System (x) is symmetrizable if
VG'VA=V?)—G-V?A>0
equivalently, if we express
Ho A(u) = n(u) H(v) is convex
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hyperbolic parabolic systems

OtA(u) 4 0o Fo(u) = €0q (B(u)dqu)

Oen(u) + 0aq(u) = €0a (G(u) - B(u)dxu) — eV G(u)dau - B(u)dou

MAIN ASSUMPTION

VG'VA=V?)—G-V?A>0

Relative entropy

n(u) = n(@) = G(@) - (A(u) — A(@)) = H(A(u)|A(0))
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Compare two solutions u and & of the hyperbolic-parabolic system
Oc | H(AWA@))] + D0 (Ga(u]d) + £a )
&> Oalu— @) VG(u) B(u)da(u — i)

= —(0a6(®)) - [Faw) = Ful@) = VF(@) (VA@) " (A(u) - A®))

+EZQI

where

Qi ~ (Oqu — 0n0) - (u— @)

Q ~ |u—af?
Convergence of zero-viscosity limit when & is smooth.

Thanos Tzavaras (KAUST ) Thermoelasticity Prague, Sep 2020

15 / 32



Application: From thermoviscoelasticity to adiabatic
thermoelasticity

Thm Under Hypotheses of Gibbs thermodynamic stability, L? growth for e(F,9),
if U is a smooth solution of adiabatic thermoelasticity, and

O<p=wuF,0)<p, 0<kr==r(F,0)<kb
then

sup /I(U”’k(t)|0(t))dx 50 as g ko — O+ .
te(0,T)

Christoforou, T. 2016
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entropy and relative entropy

H(U) = —n(F,0)

H(U) ~ H(D) ~ 6(D) - (A(U) - A(D)

_ ry v o1 1,2
(- 0= (55-7) (F-Fv-ve+ 12 -e- 1)
:%(ée—e_én—i:dF—vév)

— S(WFOIFD) + (- 7)) + 3(v - 0

A(F,0|F.0)

REMARKS

M(F,0|F,0) > 0 is thermal stability condition proposed by Coleman-Noll '59
2H(U) - G(U) - V2A(U) >0 < >0, 19>0
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The system of polyconvex thermoelasticity
Polyconvex Thermoelasticity 1(F,8) = 9)(F,cof F,det F, )

Thm Under Hypotheses
Dec(£,0) >0 1op(,6) <O

LP growth for é(¢,6), if U is a smooth solution of adiabatic polyconvex
thermoelasticity, and

O0<p=p(F,0)<p, 0<k==r(F,0) <k

then

@ convergence from thermoviscolasticity to adiabatic thermoelasticity as
po, ko — 0

@ or from thermoviscoelasticity to thermoelasticity as o — 0, ko constant.
@ weak-strong uniqueness for measure-valued solutions

Galanopoulou - Christoforou - T. 2018 , Koumatos-Spirito 2019 isothermal quasiconvex
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Variational Approximation

Isothermal dynamic elasticity has the following properties:

@ Variational approximation connected to viewing the problem

Duey = —%( / W(Vy)dx)

discretize the evolution in time.

@ In 1-d this approximation yields entropic weak solutions that satisfy
the entropy inequality for any convex entropy

Motivation Demoulini-Stuart- T. '99, '01, Cavalletti-Sedjro-Westdickenberg '15

Question What is the analog for the non-isothermal case ?
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Legendre transform and thermodynamic potentials

Given a free energy function 1 = ¢(F, 0) define the Legendre transform

e(F,n) = sup (977 + w(Fﬂ))

e(F,n) is computed by
e(F,n) =vy(F,0")+ 0"y  where 8*(n) is such that n = —%(F,O*)

If 199 < 0 then ey, > 0. No convexity is assumed in F.

@ The thermodynamic potential e(F,7) - internal energy - is the Legendre
dual of —¢(F,0) - Helmholtz free energy
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augmented thermoelasticity

Consider the augmented system expressed in the (v, &, n) variables

0PA
A_ :
016" = 04 <3Fia(F) v,)

0 = 0 () ()

5 A
Or (I + &(&m) = 0a (v ;A(g, )a;‘__)la(F))

Entropy identity
r

G
under the hypothesis (¢, 7)) convex in £ and in 7 which renders the system
symmetrizable.

0] =
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Consider the minimization problem: Given (v°,£% 19)

min/ <%|v—v°|2+é(§,n)) dx
T3

over the affine subspace

C:= {(v7 F,Z,w):T? — R?? subject to the constraints
——
13

f—hfo :aa(g;iz(l_—o) Vi)
n—n r }

h O(e(F),n°)

Under convexity of &(&,n) this problem is solvable and sets-up an iteration
scheme with a variational framework in the background.
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Euler-Lagrange equations

Computing the variation of the functional, the iterates satisfy

V—V0

“h (agA(g’ )aF ( O))
5 o (Ge)
n—n° _ r

h B(e(F), )

Using convexity of &(&,n)

(3lv* +&(s,m) — (3Iv° + &€ n°
h

) + J(VO, O(F%), n°|v,&,n)
>0

= aOC(v,@(fﬂ?)m(F )) + Wr
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Under convexity &(£,n) and bounds on & and %, g—i we obtain a Young
measure v and a nonnegative concentration measure ~y(dxdt) s.t.

v~ v wkin 2, ph—n wkin L
(Fh Zh wh) — (F,cof F,det F) wkin LP x L9 x L'

where F = (v, A\r), v = (v, \y), n = (v, \y) satisfy
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Dissipative measure-valued solution
oA
A _ :
Ot (F) = 0, ( 8EQ(F)V')
al’Vi - aa <V7 5ia(>\Fa )‘9)>
_ r
(@0 ) = ()

Integrated Energy inequality

0 [ (13N + E(O(e), M) d -+ dx,1) 0
Geometric transport identities and null-Lagrangeans are weakly stable.

@ Thm. measure-valued weak versus strong uniqueness theorem

@ Corollary Convergence of the variational scheme to smooth solutions of
adiabatic thermoelasticity.

Galanopoulou - Christoforou - T. 2018
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Lattice models and their continuum limits

<Lt
f Le

6

WORK IN PROGRESS WITH S. DEMOULINI - D. STUART
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lonic lattices and deformation energy
Charges {gn}nen located in equilibrium {X(n) = en}pen
A=27Z% or A=Ay=1{0,...(N—-1)}¢

Assume charges all +q or —g on lattice.
Displaced to locations {x(n) € R7},ca.

@ Short range (nearest neighbour) interactions

Ve =Y e?W(0%(n))

nen

@ Long range interactions from electrostatic forces

Ve = qz{ Z K(x(n),x(n/))—l—z K(x(n),x(n"))

pos—pos neg—neg

~2 3 K(x(n).x(n))]

pos—neg
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As a model problem consider a fixed background positive charge
distribution

Ve = ;// pB(x) — qZ&(x—x n)))K(x,x")
(p(X') — qZé x' = x(n)))dxdx’

@ This could arise if positive ions are very heavy so dynamically frozen
e Assume K € C?, but keep Coulomb in mind:

K(x(n), x(n')) = Clx(n) — x(n)| 7"
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Dynamics, Scaling and Continuum Limit

Euler-Lagrange equations of motion from Lagrangian

. 1.
L(x,x) = Z 5m,,|x(n)|2 —Vi—Vy

masa(n) = i(aaj(a;x(n» ~ 0ui(Gfx(n ~ 1))

Jj=1
— q/@XaK(x(n),x’)(pB(x’) — qZSx(n)(x')) dx’
IAn| = N9 (Number of lattice sites/particles)

€= W mp = 6dfOO q= 6dfoel
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Blanc-LeBris-Lions formalism gives expected continuum deformation
energies in terms of assumed continuum deformation {X — y(X)}xc[o 2x]¢

Vi / W( )dX
Vo= [ / (05 det % — pa) K(y(X), ¥ (X))

(pB det — 0 pe/)dXdX/

Y
oxX'
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This leads to the evolution equation

82y,': 0 (Uia(al)>

7912 ~ ax, \""\ax
0
bt [ DK (X), (X)) (P det 5~ par) X'
ow Oyi
7elF) =5k, Fe=ax,

0
813K(y,2) = ay K(y,Z)

a
@ The additional term is of form expected from Coulomb force law, and
arises after some cancellations in deriving the Euler-Lagrange

equations

@ The additional term in the equation of motion is lower order so
existence of local classical solutions not expected to be an issue.
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method for justification

These isothermal models are equipped with relative energy identity
@ one proves a measure-valued weak versus strong uniqueness theorem
for the anticipated limit model

@ In second step one shows that the discrete lattice model has uniform
bounds in energy norm

@ A soft analysis indicates that the lattice model converges to a
dissipative mv solution as lattice size tends to zero.

@ The mv-weak vs strong uniqueness then guarantees that so long as
the limit has a smooth solution the approximate solution converges to
the smooth solution.
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