
Preprint
RAL-P-2020-003

A null-space approach for
symmetric saddle point
systems with a non zero
(2,2) block

J Scott, M Tuma

July 2020
Submitted for publication in SIAM Journal on Scientific Computing

Enquiries concerning this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446677
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online at:
https://epubs.stfc.ac.uk

ISSN 1361-4762

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports or
in any communication about their tests or investigations.

mailto:libraryral@stfc.ac.uk
https://epubs.stfc.ac.uk/

A NULL-SPACE APPROACH FOR SYMMETRIC SADDLE POINT SYSTEMS WITH A

NON ZERO (2,2) BLOCK

JENNIFER SCOTT∗ AND MIROSLAV TŮMA†

Abstract. Null-space methods have long been used to solve large-scale symmetric saddle point systems of equations in

which the k × k (2, 2) block is zero. This paper focuses on the case where the (2, 2) block is non zero. A novel null-space

approach is proposed to transform the saddle point system into another symmetric saddle point system of the same order

but with a zero (2, 2) block of order at most 2k. Success of any null-space approach is dependent on the construction of a

suitable null-space basis. The not uncommon case of the off-diagonal block being a wide matrix that has far fewer rows than

columns and that may be dense is considered. A number of approaches are explored with the aim of balancing stability of

the transformed system with sparsity. Linear least squares problems that contain a small number of dense rows arising from

practical applications are used to illustrate our ideas and to explore their potential for solving large-scale systems.

Key words. sparse matrices, dense rows, null-space method, linear least squares problems, saddle point systems.

1. Introduction. Our interest lies in solving symmetric saddle point systems of equations of the

form

A
(
u

v

)
=

(
H BT

B −C

)(
u

v

)
=

(
f

g

)
, (1.1)

in which H ∈ Rn×n is large, sparse and symmetric positive semidefinite, B ∈ Rk×n (n > k) has full rank

and C ∈ Rk×k is symmetric positive semidefinite. Our focus is on k � n (the saddle point matrix may then

be referred to as a “bordered” matrix) and the “wide” matrix B may contain one or more dense rows. Such

systems arise frequently in a range of scientific applications, including the finite element approximation of

PDEs in which a constraint is enforced on a subset of unknowns via a global scalar Lagrange multiplier,

numerical continuation methods for large nonlinear systems of equations, electronic circuit simulation,

constrained optimization, and linear least squares problems (see also the excellent paper of Benzi, Golub

and Liesen [6], which describes a wide range of real life problems that are dependent on the solution of

saddle-point systems). Large-scale least squares problems are of particular interest to us and were one of

the motivations behind our proposed null-space approach.

There has been considerable work over many years and in different research areas into null-space

methods for saddle point problems. The basic idea is to characterize the null space of the constraint (off-

diagonal) blocks and use that characterization to reduce the system to two smaller linear systems of order

(n− k)× (n− k) and k× k that have nice properties and are thus straightforward to solve. Consequently,

applications of null-space methods are usually geared towards problems for which n − k is small. An

attractive feature of null-space methods that widens their applicability is that the (1, 1) block H need not

be invertible. However, a key problem is the need to construct a null-space basis N (B) for the matrix

B. In general, this is challenging, particularly if it is desirable for the matrix Z, whose columns form a

basis for N (B), to have additional properties, such as bandedness, sparsity or orthogonality. Moreover,

the classical null-space method is restricted to the case that the (2, 2) block is zero (C = 0).

The first objective of this paper is to present a null-space approach for symmetric saddle point systems

in which the (2, 2) block is non zero. The new approach will preserve symmetry and result in a transformed

saddle point system of order n + k with a zero (2, 2) of size k + r, where r ≤ k is the rank of B.

The second objective is to propose a number of techniques for constructing null-space bases for B when

k is small, exploring balancing sparsity in the transformed problem with stability through the use of

threshold pivoting. Numerical examples taken from practical applications will be used to demonstrate the

effectiveness of the approaches and illustrate their potential strengths and limitations.

∗ STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK and School of

Mathematical, Physical and Computational Sciences, University of Reading, Reading RG6 6AQ, UK. Correspondence to:

jennifer.scott@stfc.ac.uk. Partially supported by EPSRC grant EP/M025179/1.
† Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Czech Republic,

(mirektuma@karlin.mff.cuni.cz.) Supported by the project 18-12719S of the Grant Agency of the Czech Republic.

1

We end this section by introducing notation that we will use throughout this paper. Let x ∈ Rn be

a vector. We denote the ith entry of x by (x)i and (x)j:l denotes entries j to l of x (1 ≤ j < l ≤ n). x⊥

denotes the (n − 1)-dimensional space of all vectors w ∈ Rn such that xTw = 0. ei denotes the ith unit

vector. Let B ∈ Rk×n be a matrix. The (i, j)th entry of B is given by (B)i,j . (B):,l denotes column l of B

and (B):,1:l denotes a matrix comprising columns 1 to l of B. (B)1:l,1:l denotes the leading submatrix of

B of order l. The rows of B are bT1 , . . . , b
T
n . N (B) and R(B) denote the null space and range space of B,

respectively. Z is used to denote a null-space basis matrix (that is, its columns form a null-space basis).

P (with or without a subscript and/or superscript) is used for a permutation matrix. Ik denotes the k× k
identity matrix and 0n,k denotes the n× k null matrix.

2. Null-space approach for solving saddle point problems.

2.1. Null-space approach for C = 0. Saddle point systems with C = 0 frequently arise in practical

applications and, in this case, a null-space method is one possible approach for solving (1.1) (see, for

example, [6, Section 6]). Such methods are important in the field of numerical optimization [62], (where

they are known as reduced Hessian methods). Here the underlying problem can be expressed as

minimize f(u)

subject to B u = g, (2.1)

with u ∈ Rn and B ∈ Rk×n (k < n). We assume that the constraint matrix B has full row rank.

Computing u as a minimizer of the positive definite quadratic form that corresponds to this optimization

problem leads to computing a particular solution û for the equilibrium equation (2.1), i.e., û satisfies

Bû = g,

solving the saddle point system (
H BT

B 0

)(
ū

v

)
=

(
f −Hû

g

)
, (2.2)

and then setting u = ū+û. The null-space method for solving (2.2) assumes we have a matrix Z ∈ Rn×(n−k)

whose columns form a basis for N (B) i.e., BZ = 0. The second equation in (2.2) is equivalent to finding

a vector z ∈ Rn−k such that ū = Zz. Substituting this into the first equation gives

HZz +BT v = f −Hû
⇐⇒ ZTHZz = ZT (f −Hû) (2.3)

Therefore, by solving the reduced system (2.3), it is possible to straightforwardly recover u = û + Zz;

finally, v can be obtained by solving the symmetric positive definite system

BBT v = B(f −Hu).

Thus solving the saddle point problem is reduced to that of solving two smaller systems of size k × k and

(n − k) × (n − k) that have nice properties. In particular, if H is symmetric and positive definite, then

ZTHZ stays symmetric and positive definite and efficient solvers can be used to solve (2.3). The algorithm

to solve (2.2) is summarized as Algorithm 1.

A recent study of null-space factorizations for saddle point systems with C = 0 has been given by Rees

and Scott [54] and the advantages and disadvantages of null-space methods are summarized in [46]. They

can be very efficient for solving a series of problems with the same block B but different H because the

null-space basis Z needs to be computed only once. A further key advantage is that H−1 is not required.

In fact, the method is applicable if H is singular, provided R(H) ∩ N (B) = {0}. Furthermore, the Schur

complement is not needed. The null-space approach can also be useful when additional rows (dense or

sparse) are added to the system matrix a posteriori [27]. Another motivation is when the constraints (2.1)

2

Algorithm 1 Dual variable method for solving (2.2)

1: Construct Z ∈ Rn×(n−k) such that its columns form a basis for the null-space of B ∈ Rk×n

2: Find û ∈ Rn such that Bû = g.

3: Solve ZTHZz = ZT (f −Hû).

4: Set x = û+ Zz.

5: Find y ∈ Rk such that BT y = f −Hu.

need be satisfied accurately. Algorithms for the so-called Linear Equality Problem (LEP) are extremely

important [20, 25, 62]. As already observed, a potential difficulty with the null-space method is the need

to construct a null-space basis Z and, even when Z can be computed efficiently, some columns of Z many

contain a large number of entries so that ZTHZ may not be sparse.

The null-space method can be generalised to unsymmetric saddle point systems in which H and/or C

are unsymmetric and the (1, 2) and (2, 1) blocks are BT1 and B2 with B1 6= B2. In this case, û is required

such that B2û = g and matrices Z1 and Z2 ∈ Rn×(n−k) whose columns form a basis for the null-spaces

N (B1) and N (B2), respectively.

2.2. Symmetry-preserving null-space approach for C 6= 0. As Golub et al. observe [6, Section

6], the null-space method cannot be applied to solve saddle point systems with C 6= 0. In a recent paper,

Howell [37] proposes what he terms a one-sided application of the null-space method to solve non-singular

generalised saddle point systems of the form

A
(
u

v

)
=

(
H BT1
B2 −C

)(
u

v

)
=

(
f

g

)
, (2.4)

in which H and C 6= 0 are possibly unsymmetric and either B1 ∈ Rk×n and/or B2 ∈ Rk×n is dense.

Howell introduces an auxillary variable w that is used to replace the (n + k)× (n + k) system (2.4) by a

larger (n+ 2k)× (n+ 2k) system

Â

uv
w

 =

 H BT1 0n,k
B2 −C 0k,k
0k,n 0k,k Ik

uv
w

 =

 f

g

0k,1

 . (2.5)

Interchanging the second and third equations leads to another unsymmetric saddle point system(
Ĥ B̂T1
B̂2 0k,k

)(
û

w

)
=

(
f̂

g

)
, (2.6)

with

û =

(
u

w

)
, f̂ =

(
f

0k,1

)
, Ĥ =

(
H BT1

0n,k 0k,k

)
, B̂T1 =

(
0n,k
Ik

)
, B̂2 =

(
B2 −C

)
.

Because the coefficient matrix in (2.6) is non singular with a zero (2, 2) block, the null-space method can

be applied. Howell provides further details and presents results for a number of practical applications that

have a small number of dense rows and columns. However, a major problem with this approach is that it

fails to preserve symmetry. If B1 = B2 and H and C are symmetric, the symmetry of the original problem

is lost because of the swapping of the second and third equations in (2.5); it leads to the need to solve an

n× n unsymmetric system of the form

ẐT ĤẐv̂ = ĝ,

where Ẑ is a null-space basis for B̂. Howell does not comment on this aspect and the use of MATLAB

backslash for solving linear systems within his numerical experiments obscures the fact that a symmetric

problem has been traded for an unsymmetric one.

3

Our aim is to develop a null-space approach for (1.1) with C 6= 0 that retains symmetry, has a

dimension only n+k and has favourable numerical properties. The following theorem presents the necessary

transformation. Note that full row rank of B is not assumed.

Theorem 2.1. Consider the symmetric saddle point problem (1.1) of order n + k with rank(B) =

r ≤ k, C positive definite and H positive definite on the null space of B. Its solution can be obtained

by solving a transformed saddle point problem of order n + k with a symmetric positive definite principal

leading submatrix of order n− r.
Proof. Since H is positive definite on the null space of B, invertibility of the system matrix follows

(for example, Theorem 3.1 in [6]). Let E =
(
Z Y

)
∈ Rn×n with Z ∈ Rn×(n−r) having full column rank

and such that

BE =
(
0k,n−r BY

)
, (2.7)

where BY = BY ∈ Rk×r is of full column rank. Set E to be the (n+ k)× (n+ k) matrix

E =

[
E 0n,k

0k,n Ik

]
.

This matrix is symmetric and non singular and thus so is the transformed saddle point matrix

Ã = ETAE . (2.8)

Rewriting this transformation as

Ã =

(
ET 0k,n
0n,k Ik

)(
H BT

B −C

)(
E 0n,k

0k,n Ik

)
=

(
ETHE (BE)T

BE −C

)
=

(
Ĥ B̂T

B̂ −Ĉ

)
,

where Ĥ = (ETHE)1:n−r,1:n−r = ZTHZ is the positive definite leading principal submatrix of ETHE of

order n− r, and

B̂ =

(
(ETHE)n−r+1:n,1:n−r

0k,n−r

)
, Ĉ =

(
−(ETHE)n−r+1:n,n−r+1:n −BTY

−BY C

)
.

The transformed system then becomes

Ã
(
ũ

ṽ

)
=

(
Ĥ B̂T

B̂ −Ĉ

)(
ũ

ṽ

)
=

(
f̃

g̃

)
= ET

(
f

g

)
, (2.9)

where ũ ∈ Rn−r and ṽ ∈ Rr+k and

f̃ = (ET f)1:n−r g̃ =

(
(ET f)n−r+1:n

g

)
.

To solve (2.9), consider a conformal partitioning of the vectors u and f . Once ũ and ṽ have been computed,

the solution of the original problem (1.1) is given by

u =

[
Eũ

(Eṽ)1:r

]
, v = (ṽ)r+1:2k.

4

Remark 2.1. The claim in Theorem 2.1 that the transformed saddle point matrix Ã given by (2.8)

is symmetric and non singular cannot be strengthened to it being quasi definite, even when B has full row

rank. The problem is that the submatrix (ETHE)n−r+1:n,n−r+1:n is, in general, only symmetric.

A sparse symmetric indefinite solver can be used to solve the transformed system (2.9). Alternatively,

a sparse direct solver can be used to compute a Cholesky factorization of the positive definite (1, 1) block

i.e., Ĥ = L1L
T
1 . This leads to the following block factorization(

Ĥ B̂T

B̂ −Ĉ

)
=

(
L1

L2 LS

)(
I

−DS

)(
LT1 LT2

LTS

)
, (2.10)

where

L2 =

[
L̃2

01:k,1:n−r

]
∈ R(r+k)×(n−r) with L2L

T
1 = B̂,

and

S = Ĉ + L2L
T
2 =

[
−Y THY + L̃2L̃T2 −BTY

−BY C

]
= LSDSL

T
S ,

where LS is unit lower triangular and DS is block diagonal with 1× 1 and 2× 2 blocks.

2.3. Null-space approach for sparse-dense least squares problems. Consider the linear least-

squares (LS) problem

min
x
‖Ax− b‖2,

where the system matrix A ∈ Rm×n (m ≥ n) and the right-hand side vector b ∈ Rm are given. The

solution x satisfies the n× n normal equations

Cx = AT b, C = ATA,

where, provided A has full column rank, the normal matrix C is symmetric and positive definite. Our

interest lies in the case where A is large and mainly sparse and includes a relatively small number of rows

that regarded as dense. These rows may be fully dense or have significantly more entries compared to the

other rows of A or may contain far fewer entries than n but nevertheless lead to large amounts of fill in

C. The presence of such rows has long been recognised as a fundamental difficulty in the solution of large

LS problems; see, for example, [56] for a discussion and references to past work on this problem.

Assuming the rows of A that are to be treated as dense have been permuted to the end and assuming

a conformal partitioning of the vector b (and omitting the row permutation matrix for simplicity), we have

A =

(
As
Ad

)
, As ∈ Rms×n, Ad ∈ Rmd×n, b =

(
bs
bd

)
, bs ∈ Rms , bd ∈ Rmd ,

where ms denotes the number of sparse rows of A, and md is the number of dense rows, with m = ms+md,

ms ≥ n > md ≥ 1 and md � ms. The normal equations become

Cx = (Cs +ATdAd)x = c, c = ATs bs +ATd bd, (2.11)

where Cs = ATs As is the reduced normal matrix. The solution of (2.11) can be obtained from the equivalent

(n+md)× (n+md) system (
Cs ATd
Ad −I

)(
x

Adx

)
=

(
c

0

)
. (2.12)

5

This is of the form (1.1) with k = md, H = Cs, B = Ad and C = I. Provided As has full column

rank, Cs is symmetric positive definite. However, in practice the sparse row block As may contain one

or more null columns, and Cs is then singular with a corresponding number of null rows and columns.

Even if Cs has no null columns, it can be singular or highly ill-conditioned. Recent studies have proposed

ways of circumventing the problem of null columns in As. In [56, 57], it was shown how they can be

dealt with either by perturbing diagonal entries of Cs before applying a direct solver or by solving a

number of related sparse LS problems and combining their solutions to give the solution of the original

problem. Unfortunately, both methods incur overheads, with the former requiring the sparse direct solver

is combined with an iterative solver and the latter needing the solution of a number of LS problems. These

disadvantages led us to consider employing matrix stretching to make the rows of Ad sparser [55, 58]. This

has the advantage that, provided A is of full rank, the issue of null columns does not arise. However, the

dimensions of the stretched system can grow rapidly with md (particularly when As is very sparse) so

that, even for a small number of dense rows, the stretched LS problem can be considerably larger than

the original problem. It may also be highly ill-conditioned. Thus we remain interested in developing

alternative strategies and this was a key motivation behind the current work on null-space approaches.

The following result shows that, in the case of the full rank LS problem (2.12), the assumptions of

Theorem 2.1 are satisfied, with r ≤ md the rank of Ad.

Lemma 2.2. Consider A =

(
As
Ad

)
, As ∈ Rms×n, Ad ∈ Rmd×n. If A is of full rank, then Cs = ATs As

is positive definite on the null space of Ad.

Proof. Let v ∈ N (Ad) and consider

vTCsv = (Asv)TAsv ≥ 0.

If Asv = 0 then because Adv = 0 it follows that Av = 0. Because A is of full rank, this implies v = 0.

Hence vTCsv > 0 and Cs is positive definite on N (Ad).

Thus, provided N (Ad) can be constructed, the null-space approach offers an alternative way of solving

sparse-dense LS problems, even in the case that Cs is positive semidefinite.

3. Null-space basis construction. Solving large-scale saddle point systems (2.2) using null-space

methods leads to the problem of finding null-space bases that preserve sparsity and lead to a stable

transformed system. Before looking at null-space basis construction for wide matrices, we give a brief

overview of the historical development of techniques for constructing null-space bases of sparse matrices.

3.1. Construction of null-space bases of sparse matrices. The null-space basis Z for B ∈ Rk×n

of rank r can be sometimes obtained directly by analyzing the problem [16] but more advanced methods

are normally necessary. In structural analysis, early methods were based on factorizations of B and focused

on the sparsity of Z, with emphasis on Z having a banded or skyline sparsity pattern. Computation of Z

based on an initial LU factorization of B was proposed by Topçu [64] (see also [41, 60]). A specific strategy

of this kind, called the turnback method [41, 64], attracted interest in the late 1970s/early 1980s (see also

an early parallel implementation [11] and its recent use in practice in [21]). The turnback (backward

looking) method finds null vectors by expressing n − r chosen start columns of B as linear combinations

of a small set of previously numbered columns. The initial LU factorization serves to determine these

start columns. Linear independence of the columns of Z is guaranteed by not using the leftmost columns

in these linear combinations from any set computed for the remaining start columns. An overview and

modifications to the basic approach (such as replacing LU by a QR factorization) are described in [32]; see

also [12] for further refinements. More recently, factorization approaches for the computation of null-space

bases of sparse matrices are discussed in [30, 59].

Theoretical and algorithmic breakthroughs based on bipartite graph matchings and matroid theory

came with the 1984 thesis of Pothen [52] and subsequent papers. The contributions covered not only

new algorithmic approaches but also complexity concepts for the related problem of finding the sparsest

null-space basis of B, that is, for finding the null-space basis Z having the smallest number of non zeros

6

possible (see also [18]). It has been shown that such a basis can be constructed by a greedy algorithm

that assembles the basis using a sequential choice of the sparsest vectors belonging to N (B). While this

can provide extremely sparse Z, there are two important practical limitations. Firstly, finding the sparsest

vectors of a null-space basis for a general constraint matrix is NP-hard. Secondly, sparsity of Z may not

be enough and its numerical properties should also be considered. Consequently, sophisticated proposals

given in [19, 28, 52] were designed to compute sparse null-space bases of sparse matrices and they led to

efficient algorithms for computing so-called fundamental and triangular null-space bases.

Origins of another line of research appear in the 1969 seminal paper of Henderson and Maunder [23]

(see also [15]). Subsequently, a number of related algorithms for specific applications have been developed

independently. These exploit the graph of B and, in particular, cycles in the graph. The idea is most

transparent if B is the vertex-edge incident matrix of some underlying graph. In structural mechanics,

cycles of the graph that describes the interconnection of separate substructures of a skeletal structure can

be considered. Using the graph cycles, a set of independent null-space vectors that form columns of Z can

be computed [23, 48]. This construction was developed and discussed in the context of other approaches

in [53]. In some partial differential equation applications the cycle approach is relevant because a simple

constraint structure may be implied by discretization schemes [1, 2, 3, 4, 31]. Many publications discuss

using cycles in the graph: pointers to relevant literature can be found in [42, 43]. There are heuristic

ways of finding the cycle basis, a task that is straightforward if the underlying graph is planar [31]. More

generally, construction may be based on a spanning tree of the graph [52]. Procedures to find sparse cycle

bases in this way are given in [24] (see also [36, 61]). However, discretizations of three-dimensional grids

may not allow sparse cycle bases to be found [4]. As with the sparse factorization approaches, those based

solely on local computations of Z may suffer from ill-conditioning.

An interesting motivation is to construct Z using structure, for example, by allowing a permutation

to block angular form. Such an approach was introduced in [50]. Closely related proposals to compute Z

while explicitly exploiting substructuring, motivated in part by parallel computing, were given in [40, 51]

(see also [39]). The block form can be obtained algebraically, as in the nested dissection ordering discussed

in [61]; see also [50].

3.2. Null-space basis for wide matrices. In contrast to much of the previous work on constructing

null-space bases, our focus is on wide matrices B ∈ Rk×n with k � n. B may be sparse but, because

k is small, we may want to treat B as dense. As it can happen in practical applications, we allow for

B being rank deficient (r < k). We want the nearly-square Z ∈ Rn×n−r to be sparse and because we

are going to apply a direct solver to factorization ZTHZ, we want Z to have no dense rows. Orthogonal

transformations inevitably lead to dense Z and so, although sometimes useful in other situations (see, for

instance, [45]), are not appropriate here. Because B is wide, columns of Z can be computed independently

and such that they have a small support (they can be always expressed as linear combinations of at most

other k columns). The small support means that there is always some orthogonality but Z may still be ill

conditioned. Indeed, if B is an adjacency matrix of a domain discretized by mixed hybrid finite elements,

then the condition number of the null-space basis with small support can grow like h−2, where h is the

discretization parameter [4]. Thus we propose employing an orthogonal factorization that incorporates

pivoting for stability and, because B has only a small number of rows, this is not prohibitively expensive.

3.2.1. Banded null-space basis. This section discusses obtaining a permuted banded null-space

basis based on expressing columns as a linear combination of some of the previous columns. These bases

are similar to those from the category of triangular null-space bases [19] but QR with pivoting implies a

more general sparsity pattern for Z. Our focus is on the numerical qualities of the bases rather than the

minimality of the linear combinations.

We begin with a simple example in which B comprises a single fully dense row (k = 1). Algorithm 2

presents a backward-looking method based on the QR decomposition of B with pivoting. In this simple

case, Q = I1. The factor R is a single column with its first entry β1 6= 0; all the diagonal entries of Z̃

depend on this pivot. The computed Y is the range space basis of (BP)T [26, 54] satisfying

7

Algorithm 2 Construct a matrix E = (Z Y) ∈ Rn×n such that Z ∈ Rn×n−1 is a null basis N (B) for a

dense matrix B ∈ R1×n.

1: Initialize Z = 0n,n−1.

2: Factorize BP = QR, where P ∈ Rn×n is a column permutation matrix such that (R)1,1 6= 0.

3: Denote the entries of R by
(
β1, . . . , βn

)
(β1 = (R)1,1).

4: for l = 1, ..., n− 1

5: Set (Z̃)l+1,l = 1, (Z̃)l,l = −βl+l/βl.
6: end for

7: Set E =
(
Z Y

)
with Z = PZ̃, Y = PỸ for Ỹ = (1/β1) e1.

BY = I1.

Note that Z may not have a narrow band because of the permutation. Figure 3.1 illustrates Algorithm 2.

A similar approach for B comprising a single dense row was recently proposed by Howell [37, Algorithm

3].

B =
(
1 2 3 10 4

)
, P =

(
e4 e2 e3 e1 e5

)
, BP =

(
10 2 3 1 4

)
,

Z̃ =


−0.2

1 −1.5 0 0

0 1 −1/3 0

0 0 1 −4

0 0 0 1

 , Ỹ =


0.1

0

0

0

0

 , E =


0 0 1 −4 0

1 −1.5 0 0 0

0 1 −1/3 0 0

−0.2 0 0 0 0.1

0 0 0 1 0

 .

Fig. 3.1. Simple example with n = 5 and r = 1 showing B ∈ R1,5, P ∈ R5,5, the permuted matrix BP , Z̃ and Ỹ

computed using Algorithm 2 and E satisfying (2.7).

A dominant part of the saddle-point matrix (2.9) is its (1, 1) block ZTHZ. Its condition number

cond(ZTHZ) is bounded by

cond(ZTHZ) ≤ cond(ZT0 HZ0) cond(ZTZ), (3.1)

where Z0 is an orthogonal null-space matrix (see Lemma 10 in [49]). Consequently, it is desirable for the

condition number cond(ZTZ) to be small. The fact that constructing the basis matrix Z so that PTZ

has a narrow band may not be sufficient to guarantee this can be deduced from the following idealized

example of B consisting of a single row vector of all ones.

Lemma 3.1. Let B ∈ R1,n be a row vector of all ones and construct Z using Algorithm 2. Then the

condition number of ZTZ is asymptotically of order n2.

Proof. P is the identity and the computed Z is bidiagonal with the diagonal entries equal to −1 and

the remaining non zeros equal to 1. ZTZ is a well-known Laplacian matrix with eigenvalues given by

2(1− jπ

n+ 1
), 1 ≤ j ≤ n.

Consequently, the largest eigenvalue goes asymptotically to 4 and the smallest one is

4 sin2 π

2 (n+ 1)
≈ π2

(n+ 1)2
.

Hence the result.

Howell [37] discusses the need to avoid division by small entries of B but his ad hoc strategy can still

result in a highly ill-conditioned null-space basis: more sophisticated strategies are required. Algorithm 3

considers general B 6= 0 with 1 ≤ k < n rows and rank r ≤ k. The basic idea is to express columns of Z as

8

linear combinations of previous columns with close indices. The numerical rank of B is computed using a

QR factorization with pivoting. The columns of B corresponding to the first r columns of R are permuted

to the front. The remaining n−r columns are marked as dependent; they correspond to the columns of Z.

They are computed independently while aiming to balance sparsity and numerical stability. As in the case

of many sparse numerical linear algebra algorithms that need to combine locality with ensuring stability,

this is achieved by using threshold column pivoting. This chooses pivot columns j that lie close to the r

starting columns (that is, j − r is small) and whose norm is at least θ times the maximum of the norms

of the remaining columns, where 0 < θ ≤ 1 is the pivoting threshold parameter.

Algorithm 3 Given a pivoting threshold 0 < θ ≤ 1, construct a basis Z ∈ Rn×(n−r) of N (B) for B ∈ Rk×n

with rank(B) = r ≤ k.

1: Initialize Z̃ = 0n,n−r.

2: Factorize B̃ = BP = Q

(
R1 R2

0k−r,r 0k−r,n−r

)
with threshold column pivoting.

P ∈ Rn×n is a permutation matrix , Q ∈ Rk×k is an orthogonal matrix,

R1 ∈ Rr×r is an upper triangular matrix of full rank.

3: for l = r + 1, ..., n

4: if (B̃):,l is zero column then

5: Set (Z̃):,l−r = el−r
6: else

7: Set Xl = (B̃):,1:l−1PL, PL ∈ R(l−1)×(l−1), PLei = el−i, i = 1, . . . , l − 1.

(That is, Xl is (B̃):,1:l−1 with its columns in reverse order.)

8: Compute r steps of the QR factorization XlPT = Q̂R̂ with threshold column pivoting,

where R̂ ∈ Rr×(l−1) is upper triangular and of rank r.

9: Set R̃ = (R̂)1:r,1:r.

10: Compute x = R̃−1Q̂T (B̃):,l.

11: Set (Z̃)l,l−r = −1.

12: for i = 1, ..., r

13: Set (Z̃)j,l−r = (x)i for j satisfying eTj (PLPT):,i 6= 0.

(Note that for each i there is always one and only one j that satisfies this.)

14: end for

15: end if

16: end for

17: Set E =
(
Z Y

)
with Z = PZ̃, Y = P

(
Ir 0r,n−r

)T
.

The matrix E computed by Algorithm 3 satisfies (2.7). Another possibility for Step 17 is to choose Y

to be orthogonal by setting

Y = P
(
R−11 0r,n−r

)T
,

so that the columns of Y are the first columns of the Q factor. Note that dense columns in Y do not

necessarily imply as much fill-in in the saddle point matrix as results from dense rows in Z.

The pivoting in Step 2 of Algorithm 3 ensures Y is reasonably well-conditioned and guarantees that any

dependent column (B̃):,l of B̃ can be expressed as a linear combination of previous columns. Because each

such column is used in the construction of just one column of Z, the columns of Z must be linearly

independent. Observe that a null column (B̃):,l implies a unit column in Z. PL and PT are local

permutations. The first locally reverses the first l − 1 columns of B̃ while the second safeguards the

numerical stability of local expressions. Note also Step 10 is well defined because P guarantees not only

that there is a submatrix of rank r in each Xl, l = r + 1, . . . , n but also that Q̂T (B̃):,l cannot have non

zeros in rows r + 1, . . . , k.

9

Figure 3.2 shows the basis matrix Z constructed using Algorithm 3 for a simple B with two rows

and six columns; θ is set to 0.1. With this choice, it is not necessary to permute column 6 of B (the one

with largest norm) to the front and hence P = I and B = B̃. The loop starting in Step 3 considers the

last n − r = 4 columns of B̃ and expresses each as a linear combination of the closest previous columns,

successively accessing the columns in reverse order; the initial permutation P guarantees this is possible

and each column provides a column of Z = Z̃. For example, B:,4 = 2B:,3 − B:,2, giving entries −1, 2,−1

in rows 2, 3 and 4 of the second column of Z.

B =

(
1 2 3 4 5 8

2 3 4 5 6 9

)
, Z̃ = Z =



−1

2 −1

−1 2 −1

−1 2 −3

−1 4

−1


, Y =



1

1


.

Fig. 3.2. Simple example with n = 6 and r = k = 2. Z and Y are constructed using Algorithm 3; E = (Z Y) satisfies

(2.7).

3.2.2. Fundamental null-space basis. We next discuss constructing the so-called fundamental

null-space basis, which was first mentioned in an unpublished 1962 paper by Wolfe [65] (see [19]). Let

B ∈ Rk×n have full row rank and assume the columns have been permuted so that G = (B)1:k,1:k is

nonsingular. Then the fundamental null-space basis of B =
(
G N

)
is defined to be

Z =

(
−G−1N
In−k

)
.

For rank(B) = r < k, let

BP = Q

(
R1 R2

0k−r,k−r 0r,n−r

)
and P1BP2 =

(
L1

L2 Ik−r,k−r

)(
U1 U2

0r,r 0r,n−r

)
be the pivoted QR and LU factorizations of B, respectively. The fundamental null-space basis of B may

be expressed as either

Z = P

(
−R−11 R2

In−r

)
(3.2)

or

Z = P2

(
−U−11 U2

In−r

)
. (3.3)

For the LU factorization, our experience is that complete pivoting should be used for stability.

The biconjugation process of Hestenes [33] applied to a square matrix A ∈ Rn×n yields a pair of

biconjugate matrices (Ṽ , V) such that Ṽ AV is diagonal. Biconjugate factorizations were discussed in

[17] and some practical extensions were given by Benzi [5]; see also the direct projection method [7, 63].

Applying biconjugation approximately leads to so-called approximate inverse preconditioners [9]. We

define a partial biconjugation factorization applied to B ∈ Rk×n, rank(B) = r ≤ k, to be a process that

yields V ∈ Rn×n and lower trapezoidal L ∈ Rk×n satisfying

BV = L. (3.4)

We term this the right oblique conjugation. Assuming r steps of an LU factorization of B can be performed

without pivoting, Algorithm 4 computes a null-space basis matrix Z ∈ Rk×n by right oblique conjugation.

The key to this is that for r = n the computed V is equal to U−1, where U is the U factor of the

10

LDU factorization of B. We can see this as follows. V is upper triangular by construction because it is

initialized to have unit vectors and then at the Step 4 of Algorithm 4, a linear combination that involves

only previously computed vectors is subtracted from the current column of V . The uniqueness of the LDU

factorization without pivoting in the square case together with (3.4) gives the result; see [8].

Algorithm 4 Right oblique conjugation. Given B ∈ Rk×n with rank(B) = r and rows bT1 , . . . , b
T
n ,

compute V ∈ Rn×n such that BV is lower trapezoidal and the null-space basis matrix Z ∈ R(n−r)×n.

1: Initialize (v
(0)
1 , . . . , v

(0)
n) = I

2: for i = 1, . . . , r

3: for j = i+ 1, . . . , n

4: Compute v
(i)
j := v

(i−1)
j −

(
bTi v

(i−1)
j

bTi v
(i−1)
i

)
v
(i−1)
i

5: end for

6: Set V =
(
v
(0)
1 , v

(1)
2 , . . . , v

(r−1)
r , v

(r)
r+1, . . . , v

(r)
n

)
.

7: Set Z =
(
v
(r)
r+1, . . . , v

(r)
n

)
.

Some early results [10, 14] show, for example, that if B is a banded square matrix with a fully dense

band and it can be factorized without permutations then V is fully dense (and Z is empty). The following

straightforward result provides some insight into why the right oblique conjugation is of interest here.

Lemma 3.2. Apply right oblique conjugation to B ∈ Rk×n with rank(B) = r. Then there exist a

permutation P ∈ Rn×n and a block partitioning of B =

(
G N

D C

)
with G ∈ Rr×r such that

(
G N

D C

)
P

(
Y S

0 I

)
=

(
I 0

0 I

)
(3.5)

In particular,

Z = P

(
S

I

)
is a fundamental null-space basis corresponding to

(
G N

)
.

Proof. Setting P to be the permutation matrix corresponding to column pivoting within the LU

factorization and using the uniqueness of the first r steps of the LU factorization of BP we have Y = G−1.

Moreover, GS +N = 0, from which it follows that(
S

I

)
≡
(
−G−1N

I

)
is the fundamental null-space basis.

The first reason why fundamental null-space bases using right oblique conjugation are potentially

of interest is the practical implementation of Algorithm 4 and relates to the fact that the one-sided

factorization does not split the inverse of G into two factors. Pivoting needs to be incorporated to maximize

the magnitude of the quantity bTi v
(i−1)
i used in Step 4. While the rows of B can be stored in static data

structures, the columns of V eligible for pivoting (those with indices j = i+ 1, . . . , n) are updated and so

need to be stored in a (single) dynamic data structure. By contrast, if the basis is constructed using a

standard LU factorization, two sets of vectors (those that form the L and U factors) change dynamically

and so must be stored using two dynamic data structures. This storage difference may be important when

k is large (which is not the case in this paper). Note that the one-sided factorization is a useful way to

explain relations among closely related computational approaches [47]. In exact arithmetic, the diagonal

entries bTi v
(i−1)
i are inverses of the diagonal entries of the LDU factorization (see [5]). In finite precision

11

arithmetic, there are other, and possibly more stable, ways of computing the pivots that we do not discuss

here; theoretical properties of some biconjugation variants (with additional assumptions) are discussed in

[44]. In the case k � n, complete pivoting is not prohibitively expensive and may be needed for stability.

The second reason for considering right oblique conjugation is its flexibility. It was introduced as a

way to obtain the fundamental null-space basis, but it can be modified to give other null-space bases,

including banded ones. To see this, consider the inner loop of Algorithm 4. The oblique projection in Step

4 projects the vectors v
(i−1)
j along v

(i−1)
i onto the space b⊥i . The oblique projection can be rewritten using

the projector (
I − v

(i−1)
i bTi

bTi v
(i−1)
i

)
,

where the vectors v
(i−1)
i , . . . , v

(i−1)
n belong to the space b⊥1 ∩ . . . ∩ b⊥i−1 (see, for example, [7]). But

v
(i−1)
i , . . . , v

(i−1)
n can be projected along any other set of linearly independent vectors that are not equal

to the v
(i−1)
i . Algorithmically, the projection can be replaced by

v
(i)
j =

(
I − xjb

T
i

bTi xj

)
v
(i−1)
j , j = i+ 1, . . . , n,

where x2, . . . , xn are linearly independent. The real power to construct the null-space bases via oblique

projections is apparent from the following result. It shows that Algorithm 2, which obtains the null-space

basis Z by permuting the upper bidiagonal matrix Z̃, can be cast in the form of projections. We state the

result without proof because it can be verified by direct checking.

Lemma 3.3. Algorithm 2 can be rephrased in terms of the general scheme of Algorithm 4 by using in

Step 4 the oblique projections

z
(i)
j =

(
I − xjb

T
i

bTi xj

)
z
(i−1)
j , j = i+ 1, . . . , n, (3.6)

with xj = ej−1, j = 2, . . . , n.

3.2.3. Composite null-space basis for wide dense matrices. There are situations in which the

null-space basis can be constructed from partial null-space bases in several steps, instead of the single pass

of Algorithm 3. This may simplify the computation, allow it to be more parallel, or to be useful in specific

cases, for example, when B has a particular block structure. The following is a straightforward variation

of Theorem 6.4.1 of [29] (a slightly less general version was described in [37]).

Theorem 3.4. Consider the null-space basis ZF ∈ Rn×(n−r1) of the matrix F ∈ Rk1×n and the null-

space basis ZG ∈ R(n−r1)×(n−r1−r2) of the matrix G ∈ Rk2×n and GZF ∈ Rk2×(n−r1). Then the columns

of ZFZG form a basis of N (F) ∩N (G).

This result allows Algorithms 2 and 3 to be generalised by adding rows (or blocks of rows) sequentially

to B. An important application for such a construction is when a sequence of problems is generated by

successively modifying B through the addition of further constraints. A special case of a procedure of this

type was proposed by Howell [37]. To demonstrate the mechanism, we assume the rows of B are dense and

rank(B) = k. Algorithm 5 generalises Algorithm 2 to k ≥ 1. Its formulation directly uses the matrices El
that contain both null-space and range-space bases vectors. The full row rank condition for B is assumed

to simplify the exposition of the algorithm.

In the special case of no pivoting, Bk ∈ Rk×k is lower triangular with non zero diagonal entries.

Although we regard the rows of B as dense, in practice they may contain many zeros, which may fill in as

Algorithm 5 proceeds. If B has a non-trivial block angular form, Algorithm 5 can take advantage of this

to reduce the work needed. Three combinatorial approaches to find null-space bases for such matrices are

given in [50]; here we build on our approach described above. Assume that the row blocks of B with full

12

Algorithm 5 Construct a null basis N (B) for B ∈ Rk×n, rank(B) = k, k ≥ 1.

1: Set J = {1, . . . , n}. Split B into τ row blocks given by

B =
(
BT1,J , . . . , B

T
τ,J

)T
such that Bi,J ∈ Rki×n, i = 1, . . . , τ ,

∑τ
i ki = n.

2: Apply Algorithm 2 to B1,J to construct E1 =
(
Z1 Y1

)
∈ Rn×n with the permutation matrix P1.

3: Remove ki column indices that correspond to Y1 in the QR factorization with the column permutation

P1 from J . Those kept in J are termed eligible.

4: for j = 2, ..., τ

5: Let (BE)j,J ∈ Rn−j+1 be the |J | columns of the block row j that correspond to eligible indices of

BE1

j−1∏
l=2

(
El

Iλl

)
, where λl =

l−1∑
i=1

nl.

6: Construct Ej =
(
Zj Yj

)
∈ R(n−λj+1)×(n−λj+1) by applying Algorithm 2 with the

permutation matrix Pj ∈ R(n−λj+1)×(n−λj+1).

7: Update J by removing the column indices that correspond to Yj in the QR factorization with the

column permutation Pj from J .

8: end for

9: Set E =
∏τ
l=2

(
El

Iλl

)
.

row rank can be ordered into the block angular form

B =


B̄1 D̄1

B̄2 D̄2

. . .
...

B̄s D̄s

 , (3.7)

where B̄i ∈ Rki×ni and D̄i ∈ Rki×nd . Furthermore, assume that the null-space basis contains all
∑s
i=1(ni−

ki) null space vectors of all B̄i extended by zeros outside their domains. Then the matrix Z of null-space

vectors is also of block angular form.

In our experiments, we use a special case of Algorithm 5 in which τ = k. That is, each row block

contains a single row. The approach is given in Algorithm 6; B is not assumed to have full row rank. It

constructs the null-space basis of B ∈ Rk×n as a product of bases corresponding to the rows of B. Let

(B̃)1:i,: be the i × n matrix with rows b̃Tj , j = 1, . . . , i. Then at Step 4, li = l − 1 if rank((B̃)1:i,:) >

rank((B̃)1:i−1,:) and li = l otherwise.

Algorithm 6 Construct a null basis Z of B ∈ Rk×n as a product of bases corresponding to rows of B.

1: Initialize Z ∈ Rn×n = I and set l = n

2: for i = 1, ..., k

3: Compute b̃Ti = bTi Z ∈ R1×l

4: Construct a null-space basis Zi ∈ Rl×li of b̃Ti .

5: Set l = li
6: Compute Z = ZZi ∈ Rn×l.
7: end for

13

To illustrate Algorithm 6, consider the 3× 6 matrix

B =

1 2 3 4 5 8

2 3 4 5 6 9

3 4 5 6 7 8

 .

The matrices Zi, i = 1, 2, 3, computed using Algorithm 6 are

Z1 =



2

−1 3/2

−1 4/3

−1 5/4

−1 8/5

−1


, Z2 =


1/2

−1 2/3

−1 3/4

−1 12/5

−1

 , Z3 =


−1

−1

−1

 .

Combined they give the 5× 3 null-space basis matrix

Z = Z1Z2Z3 =



−1

2 −1

−1 2 −1

−1 2

−1


.

4. Numerical experiments. In this section, we present numerical results to illustrate the potential

of the proposed approaches for computing null space bases for solving symmetric saddle-point problems

with non zero (2, 2) block. Having computed a null space basis, in all our experiments, we use the sparse

direct solver HSL MA97 [34, 35] from the HSL mathematical software library [38] to compute the required

solution.

4.1. Results for problem aircraft. We first report detailed findings for problem aircraft from

the SuiteSparse Matrix Collection [22] and then present results for other sparse-dense least squares

problems used in our earlier study [56]. The example aircraft has dimensions m = 7517 and n = 3754

with nnz(A) = 20, 267 (here and elsewhere, for any matrix H, nnz(H) denotes the number of non zero

entries, with the number set to those in the lower triangular part when H is symmetric). In the least

squares saddle point formulation (2.12), the row block B = Ad ∈ Rmd×n comprises the md = 17 rows that

are identified as dense; the sparse row block As has 4 null columns and thus the normal matrix Cs = ATs As
is rank deficient.

Figure 4.1 demonstrates the effect of varying the threshold parameter θ in Algorithm 3 on the sparsity

of Z and the transformed normal matrix ZTCsZ. It confirms the significant advantage of using a small θ.

The sparsity pattern of ZTCsZ for θ = 1 and 0.15 are given in Figure 4.2. We also tested the fundamental

null-space basis approaches discussed in Section 3.2.2. The standard approach based on the pivoted QR

factorization (3.2) finds a well-conditioned submatrix. In this case, for a range of values of the threshold

parameter, nnz(ZTCsZ) ≈ 7× 106, while for right conjugation (Algorithm 4), nnz(ZTCsZ) ≈ 1.4× 106.

The greater density for the fundamental null-space approach is an important disadvantage if it is used as

here in combination with a direct solver. However, we anticipate that it may be more attractive if ZTCsZ

is applied implicitly, such as in the employment of an iterative solver; we plan to investigate this further

in the future.

The effects of varying θ in Algorithm 3 on the orthogonality of the null-space basis and on the condition

number cond(ZTCsZ) (computed using the MATLAB 1-norm condition number estimator condest) are

illustrated in Figure 4.3. We see that using small θ does not adversely affect the orthogonality of the

computed Z (measured as the norm of BZ) and, except for very small θ, there is little variation in

cond(ZTCsZ). For right conjugation, cond(ZTCsZ) = 2.8 × 109 (independently of θ). The right-hand

plot in Figure 4.4 shows the ratio ||AT r||2/||r||2 for Algorithms 3 and 6, where r = b − Ax is the LS

residual). We see that both approaches achieve similar results.

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

threshold

0.5

1

1.5

2

2.5

3

3.5

n
n
z
(Z

)

104

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

threshold

104

105

106

107

n
n

z
(Z

T
C

s
Z

)

Fig. 4.1. Dependence of the number of entries in Z (left) and in the triangular part of ZTCsZ (right) on the threshold

parameter θ for the problem aircraft. Z is computed using Algorithm 3.

0 500 1000 1500 2000 2500 3000 3500

nz = 11328

0

500

1000

1500

2000

2500

3000

3500

Fig. 4.2. Pattern of ZTCsZ for θ = 1 (left) and θ = 0.15 (right) for the problem aircraft. Z is computed using

Algorithm 3.

4.2. Experiments on other matrices. Table 4.1 presents results for other test examples in which

A has a small number (md) of dense rows. In these experiments, the threshold parameter is θ = 0.25. The

emphasis here is on comparing the proposed approaches for computing a null-space basis for wide B = Ad ∈
Rmd×n. In particular, we compare Algorithm 3, the standard QR-based computation of the fundamental

null-space basis with column pivoting based on (3.2) and the right conjugation approach of Algorithm 4.

The condition number estimate cond(ZTCsZ) of the transformed matrix ZTCsZ is again computed using

condest. The reported results demonstrate that, as expected, the different approaches lead to null-space

bases with complementary properties, with no single approach being uniformly advantageous. In particular,

Table 4.1

Results for other examples with the fixed threshold parameter θ = 0.25. Here nnz and cond denote the number of

entries and the condition number estimate for ZTCsZ, respectively. ‡ indicates insufficient memory for condest; † indicates

insufficient memory to construct ZTCsZ.

Algorithm 3 QR approach Algorithm 4

Identifier m n md nnz cond nnz cond nnz cond

deter3 21,777 7,647 15 2.6× 104 8.5× 103 2.9× 107 1.2× 103 1.3× 105 2.1× 103

deter8 10,905 3,831 15 1.3× 104 8.5× 103 7.3× 106 5.3× 102 3.8× 104 1.0× 103

lp agg 615 488 20 3.6× 104 3.3× 109 1.1× 105 1.6× 105 2.8× 104 1.3× 105

PDE1 270,595 271,792 1 2.2× 106 4.2× 102 † ‡ 1.6× 1011 ‡
sc205-2r 62,423 35,213 8 1.3× 105 8.4× 101 1.1× 107 ‡ 1.1× 107 6.8× 103

sctap1-2b 33,858 15,390 34 7.5× 106 3.5× 104 1.1× 108 ‡ 3.1× 106 4.6× 106

we see that for the chosen threshold parameter, Algorithm 3 results in the sparsest transformed matrix.

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

threshold

6

6.5

7

7.5

8

8.5

9

9.5

o
rt

h
o
g
o
n
a
lit

y
 o

f
Z

 e
x
p
re

s
s
e
d
 a

s
 |
|B

Z
||

10-11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

threshold

5.84

5.86

5.88

5.9

5.92

5.94

5.96

5.98

6

c
o
n
d
(Z

T
C

s
Z

)

108

Fig. 4.3. Dependence of orthogonality of the null-space basis (left) and on cond(ZTCsZ) (right) on the threshold

parameter θ for the problem aircraft. Z is computed using Algorithm 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

threshold

103

104

105

106

107

108

c
o
n
d
(Z

T
Z

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

threshold

10-10

10-9

10-8

10-7

E
u
c
lid

e
a
n
 n

o
rm

 o
f
th

e
 r

a
ti
o
 |
|A

T
*r

||
 /
 |
|r

||

Fig. 4.4. Dependence of the condition number of ZTZ (left) and the ratio ||AT r||2/||r||2 (right) on the threshold

parameter for the problem aircraft. Here Algorithm 3 is the solid line; the dashed line is Algorithm 4 (left) and Algorithm 6

(right).

Indeed, in this case, for each test example, Z is banded with a narrow band. However, Algorithm 3 can

lead to a large condition number (for example, problem lp agg).

5. Concluding remarks and future directions. In this paper, we have proposed a new null-space

approach for general symmetric saddle point systems. An important motivation was solving least squares

problems in which the system matrix has a small number of rows that are considered to be dense. Since

success of the null-space approach is dependent on being able to construct an appropriate null-space basis,

we have also looked at how this can be done stably for our applications of interest. In particular, our

emphasis has been on n× k matrices that are wide (k � n) and possibly dense.

The standard QR-based fundamental null-space basis computation leads to a relatively dense

transformed matrix but, as we have seen, it has the advantage that the resulting transformed matrix is

generally well conditioned. For a direct solver, the transformed matrix must be constructed explicitly and

its factors will further fill in. In this case, the QR approach is not ideal; indeed, the memory requirements

limit the size of systems that a direct solver can tackle. Null-space bases computed using right conjugation

are also well-conditioned and offer the possibility of sparser transformed matrices.

Fundamental null-space bases are potentially attractive for iterative solvers if the basis can be efficiently

applied implicitly and provided an effective preconditioner is available. In the future, we plan to develop

preconditioners for use with an iterative solver for the solution of large-scale saddle-point systems with

a non zero (2, 2) block via our proposed null-space approach. Possible lines of research are the left

inverses proposed by Nash and Sofer [49] and the factorization behind the right conjugation process.

Preconditioning of the transformed system based on a banded Z from Algorithm 3 with a small threshold

16

parameter may be more straightforward but possible ill-conditioning must be taken into account.

A further goal will be to achieve tighter satisfaction of the linear constraints, that is, using the LS

notation of Section 2.3, to ensure the residual of the constraints rd = bd − Adx is small. For Algorithm 3

applied to the test example aircraft we found ||rd||∞/||r||∞ ≈ 2.2 × 10−2, with little variation for

different values of the threshold parameter θ. Thus the constraints are not very tightly satisfied; this is a

consequence of employing a direct solver to solve the transformed saddle-point system (2.9). In the future,

we plan to explore how to use the null-space approach presented here in combination with other techniques

to reduce ||rd||∞. Two possible ideas will be explored: the standard formulation of the null space approach

[13] applied to a regularized problem and the development of selective iterative refinement.

REFERENCES

[1] R. Amit, C. A. Hall, and T. A. Porsching. An application of network theory to the solution of implicit Navier-Stokes

difference equations. J. of Computational Physics, 40(1):183–201, 1981.

[2] M. Arioli and G. Manzini. Null space algorithm and spanning trees in solving Darcy’s equation. BIT Numerical

Mathematics, 43(suppl.):839–848, 2003.

[3] M. Arioli and G. Manzini. A network programming approach in solving Darcy’s equations by mixed finite-element

methods. Electronic Transactions on Numerical Analysis, 22:41–70, 2006.

[4] M. Arioli, J. Maryška, M. Rozložńık, and M. Tůma. Dual variable methods for mixed-hybrid finite element

approximation of the potential fluid flow problem in porous media. Electronic Transactions on Numerical Analysis,

22:17–40, 2006.

[5] M. Benzi. A Direct Row-Projection Method For Sparse Linear Systems. PhD thesis, Department of Mathematics, 1993.

[6] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–137, 2005.

[7] M. Benzi and C. D. Meyer. A direct projection method for sparse linear systems. SIAM J. on Scientific Computing,

16(5):1159–1176, 1995.

[8] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for the conjugate gradient method.

SIAM J. on Scientific Computing, 17(5):1135–1149, 1996.

[9] M. Benzi and M. Tůma. A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. on

Scientific Computing, 19(3):968–994, 1998.

[10] M. Benzi and M. Tůma. Orderings for factorized sparse approximate inverse preconditioners. SIAM J. on Scientific

Computing, 21(5):1851–1868, 2000.

[11] M. Berry and R. Plemmons. Computing a banded basis of the null space on the Denelcor HEP multiprocessor.

Contemporary Mathematics, 47:7–23, 1985.

[12] M. W. Berry, M. T. Heath, I. Kaneko, M. Lawo, R. J. Plemmons, and R. C. Ward. An algorithm to compute a sparse

basis of the null space. Numerische Mathematik, 47(4):483–504, 1985.

[13] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

[14] R. Bridson and W.-P. Tang. Ordering, anisotropy, and factored sparse approximate inverses. SIAM J. on Scientific

Computing, 21(3):867–882, 1999.

[15] A. C. Cassell, J. C. de C. Henderson, and A. Kaveh. Cycle basis for flexibility analysis of structures. International J.

of Numerical Methods in Engineering, 8:521–528, 01 1974.

[16] E. Chow, T. Manteuffel, C. Tong, and B. Wallin. Algebraic elimination of slide surface constraints in implicit structural

analysis. International J. of Numerical Methods in Engineering, 57:1129–1144, 2003.

[17] M. T. Chu, R. E. Funderlic, and G. H. Golub. A rank-one reduction formula and its applications to matrix factorizations.

SIAM Review, 37:512–530, 1995.

[18] T. F. Coleman and A. Pothen. The null space problem. I. Complexity. SIAM J. on Algebraic and Discrete Methods,

7(4):527–537, 1986.

[19] T. F. Coleman and A. Pothen. The null space problem. II. Algorithms. SIAM J. on Algebraic and Discrete Methods,

8(4):544–563, 1987.

[20] R. W. Cottle and M. N. Thapa. Linear and nonlinear optimization, volume 253 of International Series in Operations

Research & Management Science. Springer, New York, 2017.

[21] T. Dang, K. Ling, and J. Maciejowski. Banded null basis and admm for embedded MPC. IFAC-PapersOnLine,

50:13170–13175, 2017.

[22] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Transactions on Mathematical

Software, 38(1):1–28, 2011.

[23] J. C. de C. Henderson and E. A. W. Maunder. A problem in applied topology: On the selection of cycles for the

flexibility analysis of skeletal structures. J. of the Institute of Mathematics and its Applications, 5:254–269, 1969.

17

[24] N. Deo, G. M. Prabhu, and M. S. Krishnamoorthy. Algorithms for generating fundamental cycles in a graph. ACM

Transactions on Mathematical Software, 8(1):26–42, 1982.

[25] M. Fathi and H. Bevrani. Optimization in Electrical Engineering. Springer, 2019.

[26] R. Fletcher and T. Johnson. On the stability of null-space methods for KKT systems. SIAM J. on Matrix Analysis

and Applications, 18(4):938–958, 1997.

[27] A. George and M. T. Heath. Solution of sparse linear least squares problems using Givens rotations. Linear Algebra

and its Applications, 34:69–83, 1980.

[28] J. R. Gilbert and M. T. Heath. Computing a sparse basis for the null space. SIAM J. on Algebraic and Discrete

Methods, 8(3):446–459, 1987.

[29] G. H. Golub and C. F. Van Loan. Matrix Computations. 4th edition. The Johns Hopkins University Press, Baltimore

and London, 1996.

[30] C. Gotsman and S. Toledo. On the computation of null spaces of sparse rectangular matrices. SIAM J. on Matrix

Analysis and Applications, 30(2):445–463, 2008.

[31] C. A. Hall. Numerical solution of Navier-Stokes problems by the dual variable method. SIAM J. on Algebraic and

Discrete Methods, 6(2):220–236, 1985.

[32] M. T. Heath, R. J. Plemmons, and R. C. Ward. Sparse orthogonal schemes for structural optimization using the force

method. SIAM J. on Scientific and Statistical Computing, 5(3):514–532, 1984.

[33] M. R. Hestenes. Inversion of matrices by biorthogonalization and related results. Journal of the Society for Industrial

and Applied Mathematics, 6:51–90, 1958.

[34] J. D. Hogg and J. A. Scott. HSL MA97: a bit-compatible multifrontal code for sparse symmetric systems. Technical

Report RAL-TR-2011-024, Rutherford Appleton Laboratory, 2011.

[35] J. D. Hogg and J. A. Scott. New parallel sparse direct solvers for multicore archiectures. Algorithms, 6:702–725, 2013.

[36] J. D. Horton. A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. on Computing,

16(2):358–366, 1987.

[37] J. S. Howell. Prestructuring sparse matrices with dense rows and columns via null space methods. Numerical Linear

Algebra with Applications, 25:1–30, 2018. DOI:10.1002/nla.2133.

[38] HSL. A collection of Fortran codes for large-scale scientific computation, 2016. http://www.hsl.rl.ac.uk.

[39] D. James. Implicit nullspace iterative methods for constrained least squares problems. SIAM J. on Matrix Analysis

and Applications, 13(3):962–978, 1992.

[40] D. James and R. J. Plemmons. An iterative substructuring algorithm for equilibrium equations. Numerische

Mathematik, 57(6-7):625–633, 1990.

[41] L. Kaneko, M. Lawo, and G. Thierauf. On computational procedures for the force method. International J. of Numerical

Methods in Engineering, 18(10):1469–1495, 1982.

[42] A. Kaveh. Computational structural analysis and finite element methods. Springer, 2014.

[43] A. Kaveh. Graph transformations for efficient structural analysis. Acta Mechanica, 229(2):659–675, 2018.

[44] J. Kopal, M. Rozložńık, A. Smoktunowicz, and M. Tůma. Rounding error analysis of orthogonalization with a non-

standard inner product. BIT Numerical Mathematics, 52:1035–1058, 2012.

[45] S. Le Borne. Block computation and representation of a sparse nullspace basis of a rectangular matrix. Linear Algebra

and its Applications, 428(11-12):2455–2467, 2008.

[46] S. Le Borne. Preconditioned nullspace method for the two-dimensional Oseen problem. SIAM J. on Scientific

Computing, 31(4):2494–2509, 2009.

[47] Jing Li and Olof B. Widlund. FETI-DP, BDDC, and block Cholesky methods. Internat. J. Numer. Methods Engrg.,

66(2):250–271, 2006.

[48] E. A. W. Maunder. Topological and linear analysis of skeletal structures. PhD thesis, Imperial College, London, 1971.

[49] S. G. Nash and A. Sofer. Preconditioning reduced matrices. SIAM J. on Matrix Analysis and Applications, 17(1):47–68,

1996.

[50] A. Pinar, E. Chow, and A. Pothen. Combinatorial algorithms for computing column space bases that have sparse

inverses. Electronic Transactions on Numerical Analysis, 22:122–145, 2006.

[51] R. J. Plemmons and R. E. White. Substructuring methods for computing the nullspace of equilibrium matrices. SIAM

J. on Matrix Analysis and Applications, 11(1):1–22, 1990.

[52] A. Pothen. Sparse Null Bases and Marriage Theorems. PhD thesis, Cornell University, Ithaca, NY, USA, 1984.

AAI8415425.

[53] A. Pothen. Sparse null basis computations in structural optimization. Numerische Mathematik, 55(5):501–519, 1989.

[54] T. Rees and J. A. Scott. A comparative study of null-space factorizations for sparse saddle point systems. Numerical

Linear Algebra with Applications, 25:e2103, 2018. DOI: 10.1002/nla.2103.

[55] J. Scott and M. Tůma. Strengths and limitations of stretching for least-squares problems with some dense rows.

Technical Report RAL-P-2019-001, RAL, 2019.

18

[56] J. A. Scott and M. Tůma. Solving mixed sparse-dense linear least-squares problems by preconditioned iterative methods.

SIAM J. on Scientific Computing, 39(6):A2422–A2437, 2017.

[57] J. A. Scott and M. Tůma. A Schur complement approach to preconditioning sparse least-squares problems with some

dense rows. Numerical Algorithms, 79:1147–1168, 2018. DOI: 10.1007/s11075-018-0478-2.

[58] J. A. Scott and M. Tůma. Sparse stretching for solving sparse-dense linear least-squares problems. SIAM J. on Scientific

Computing, 41(3):A1604–1625, 2019.

[59] G. Shklarski and S. Toledo. Computing the null space of finite element problems. Computer Methods in Applied

Mechanics and Engineering, 198(37-40):3084–3095, 2009.

[60] E. Soyer and A. Topçu. Sparse self-stress matrices for the finite element force method. International Journal for

Numerical Methods in Engineering, 50:2175 – 2194, 03 2001.

[61] J. M. Stern and S. A. Vavasis. Nested dissection for sparse nullspace bases. SIAM J. on Matrix Analysis and Applications,

14(3):766–775, 1993.

[62] G. Strang. A framework for equilibrium equations. SIAM Review, 30(2):283–297, 1988.

[63] M. Tůma. Implicit gauss algorithm for solving the sparse unsymmetric sets of linear equations. Technical Report CSGS

1/85, Department of Mathematics, Statistics and Informatics, University of Bergamo, 1992.

[64] A Topçu. A contribution to the systematic analysis of finite element structures using the force method. PhD thesis,

University of Essen, Federal Republic of Germany, 1979.

[65] P. Wolfe. Methods of nonlinear programming. In Nonlinear Programming (NATO Summer School, Menton, 1964),

pages 97–131. North-Holland, Amsterdam, 1967.

19

	RAL-P-2020-003 cover
	RALpreprint
	RALP inner cover

	RAL-P-2020-003 preprint

