
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2003; 10:445–465 (DOI: 10.1002/nla.323)

E�ects of problem decomposition (partitioning) on the rate
of convergence of parallel numerical algorithms

Jane K. Cullum1;∗, Keith Johnson2 and Miroslav T�uma3;4

1Los Alamos National Laboratory; Los Alamos; New Mexico 87545; U.S.A.
2The Boeing Company; P. O. Box 3707; MS 67-LX; Seattle; WA 98124; U.S.A.

3Institute of Computer Science; Academy of Sciences of Czech Republic; Pod vod�arenskou v�e�z�� 2;
182 07 Prague 8; Czech Republic

4TU Liberec; H�alkova 6; Liberec; Czech Republic

SUMMARY

We focus on the interplay between the choice of partition (problem decomposition) and the corre-
sponding rate of convergence of parallel numerical algorithms. Using a speci�c algorithm, for which
the numerics depend upon the partition, we demonstrate that the rate of convergence can depend strongly
on the choice of the partition. This dependence is shown to be a function of the algorithm and of the
choice of problem. Information gleaned from tests using various 2-way partitions leads to new partitions
for which some degree of convergence robustness is exhibited. The incorporation of a known correc-
tion for approximate Schur complements into the original algorithm yields a modi�ed parallel algorithm
which numerical experiments indicate achieves robust convergence behaviour with respect to the choice
of partition. We conclude that tests of a parallel algorithm which vary the method of partitioning can
provide constructive information regarding the robustness of the algorithm and guidance for modifying
the algorithm or the choice of partitioning algorithm to make the overall computations more robust.
Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: parallel algorithms; graph partitioning; problem decomposition; rate of convergence

1. INTRODUCTION

Many important applications require large complex simulations which can be executed only
in parallel. Studies of the behaviour of the parallel numerical algorithms in such simula-
tions typically select a method for problem decomposition, exercise the numerical algorithm

∗ Correspondence to: Jane Cullum, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.

Contracts=grant sponsor: U.S. Department of Energy; contract=grant number: W-7405-ENG-36.
Contracts=grant sponsor: U.S. DOE O�ce of Science, ASCR, MICS, AMS Program; contract=grant number: KC-
07-01-01.
Contract=grant sponsor: GA Czech Republic; contract=grant number: 201=02=0595=GA.
Contract=grant sponsor: GA AS Czech Republic; contract=grant number: A1030103.

Published online 7 May 2003 Received 14 August 2001
Copyright ? 2003 John Wiley & Sons, Ltd. Revised 30 April 2002

446 J. K. CULLUM, K. JOHNSON AND M. T �UMA

over various sets of processors, and use the resulting data to answer questions about parallel
e�ciencies and scalability. Subsequently, the algorithm may be modi�ed to improve these
measures of performance.
We demonstrate that if the numerics of a parallel algorithm depend on the choice of the

partition, then such studies should also examine the sensitivity of the rate of convergence of
the algorithm to the choice of problem decomposition. Ideally, the convergence behaviour is
invariant with respect to the choice of partition. However, for parallel algorithms for which the
numerics depend on the partition, achieving uniform rates of convergence may not be feasible.
In such a case, the objective may become robust behaviour, the selection of a suitable method
for problem decomposition for which good convergence is achieved with limited variations
in performance across the number of processors speci�ed. Numerical studies which vary the
partition can provide constructive information regarding the robustness of an algorithm and
can be used to provide guidance for modifying the algorithm or the partitioning method to
make the overall computations more robust.
To make the discussion concrete, we focus on one such algorithm, ParAINV [1–3]. In

Section 2 we review ParAINV, which when given a system of linear equations, constructs an
approximate inverse preconditioner and then applies a Krylov iterative method to the resulting
preconditioned system. We also describe brie�y two families of test matrices, Two-Material
and Kershaw [4], which we use in our tests.
In Section 3, using partitions generated by the Metis package [5, 6] with modi�ed matrix

adjacency graphs as input to Metis, we explore the e�ects of the choice of Metis-generated
partitions on the rate of convergence of ParAINV. For a Two-Material problem, we observe
a uniform rate of convergence with respect to the choice of partition method, but for the
Kershaw problem, the rate of convergence is irregular with respect to both the choice of the
partition method and the speci�ed number of processors.
In Section 4, for the Kershaw problem, we introduce new Metis-generated partitions which

are obtained by using particular weighted dual graphs of the Kershaw grid as inputs to Metis.
Numerical tests indicate that using particular members of this set of partitions, it is possible
to achieve some degree of robust convergence.
In practice, we would like to have numerical algorithms which are not sensitive to the

choice of partition method. In Section 5 we consider a direct modi�cation of the ParAINV
algorithm, and repeat the set of tests which were de�ned in Sections 3 and 4. In these tests
this corrected ParAINV algorithm exhibits robustness with respect to the choice of partition,
at the expense of slightly more arithmetic operations and storage. On easy problems we also
observe somewhat higher iteration counts to convergence. In Section 6, we summarize the
results and indicate some future directions for this work.
References [7–10] provide examples of other types of parallel computations where using

a minimum edge cut partition requires signi�cantly more time to execute than computations
which use a partition which has a larger number of cut edges but for which the partition
subdomains have better aspect ratios. Relationships between these references and the work in
this paper are discussed in Section 4.
For some parallel algorithms, for example, domain decomposition [11], the dependence of

the numerics of the algorithm on the partition is a consequence of the design of the algorithm.
In other cases, approximations introduced in the transcription of a theoretically global parallel
algorithm into a practical parallel numerical implementation may yield an implementation with
such dependencies. Whether or not such dependencies signi�cantly a�ect the convergence

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

EFFECTS OF PROBLEM DECOMPOSITION 447

behaviour of a given numerical algorithm can be, as we will demonstrate, a function not only
of the algorithm but also of the particular problem being solved.

2. ParAINV: APPROXIMATE INVERSE PRECONDITIONER

In our discussion and in our numerical tests we focus on a particular parallel algorithm
(ParAINV) for computing approximate inverse preconditioners of real symmetric matrices [1].
The version of ParAINV which we use is based on the stabilized version of the uni-processor,
approximate inverse preconditioner algorithm, SAINV [2].
Given a system of linear equations,

Ax=b (1)

the ParAINV algorithm directly constructs the factors of an approximate inverse preconditioner
P̃−1 for a permuted matrix Ã obtained from A, and then applies an iterative method to solve
the corresponding preconditioned problem,

P̃−1Ãx̃= P̃−1b̃ (2)

Each application of the preconditioner consists of two matrix–vector multiplications. This is
in contrast to an approximate inverse which is based upon an approximate factorization of Ã
which would require two triangular solves. Throughout this paper we assume that A is real,
symmetric and positive de�nite.
If K denotes the number of processors to be used, the ParAINV algorithm proceeds as

follows. Graph partitioning is used to divide the variables x into K disjoint subsets. Each
subset is assigned to one of the K processors. Boundary variables, vi and vj, corresponding
to non-zero entries aij �=0 in A with i and j in di�erent partition subsets, are identi�ed and
become input to a vertex separator algorithm which attempts to determine a smaller set of
separator(interface) nodes. This separator algorithm is based on the Dulmage–Mendelsohn
canonical decomposition [12]. See also References [13, 14]. The resulting separator vertices
are extracted from the K subsets and assigned to the master processor. The corresponding
permuted matrix has the following form:

Ã≡

A1 B1
A2 B2

...
AK BK

BT1 BT2 : : : BTK As

(3)

The subscript s denotes the portion of the matrix which corresponds to the separator nodes.
Since A is real symmetric and positive de�nite, the Aj and As are real symmetric and

positive de�nite. The Schur complement matrix,

S ≡As −
K∑
j=1
BTj A

−1
j Bj (4)

corresponding to the block diagonal matrix AD, which is de�ned by the Aj; 16j6K , is also
symmetric and positive de�nite.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

448 J. K. CULLUM, K. JOHNSON AND M. T �UMA

Theoretically, Ã−1 has the block factorization,

Ã−1≡

L−T1 E1
L−T2 E2

...
L−TK EK

0 : : : 0 L−TS

L−11 0
L−12 0

...
L−1K 0

ET1 ET2 : : : ETK L−1S

where

Aj = LjLTj

S = LSLTS

Ej = −L−Tj L−1j BjL
−T
S

(5)

In practice, it is not feasible to compute exact factorizations of the matrices Aj; 16j6K , and
of S, and S is not even computable. It is feasible, however, to construct factored approximate
inverses for the Aj; 16j6K , and for an associated approximate Schur complement matrix, Ssa.
These can be used to compute a corresponding factored approximate inverse preconditioner
for Ã [3, 1].
In ParAINV, after Ã in Equation (3) is obtained, the uniprocessor approximate inverse

algorithm (SAINV) [2] is applied in parallel to the matrices Aj; 16j6K , to compute corre-
sponding factored approximate inverses, ZjD−1

j ZTj . By construction, each Dj is diagonal and
positive de�nite, and each Zj is upper triangular.
The computed approximate inverses are combined to form an approximate Schur comple-

ment matrix,

Ssa ≡As −
K∑
j=1
BTj ZjD

−1
j ZTj Bj (6)

SAINV is applied to Ssa to obtain a corresponding approximate inverse ZsaD−1
sa Z

T
sa. Since the

SAINV implementation maintains positive entries in Dsa, the computed approximate inverse
for Ssa is always positive de�nite. Therefore, the diagonal matrices Dj; 16j6K , and Dsa can
be absorbed into the respective Zj; Zsa matrices. The resulting Z̃j; 16j6K , and Z̃ sa factors
are combined to obtain the upper triangular factor Z̃ of an approximate inverse for Ã.

Z̃ ≡

Z̃1 Ê1
Z̃2 Ê2

...
Z̃K ÊK

0 0 : : : 0 Z̃sa

where

Êj ≡−Z̃jZ̃Tj BjZ̃ sa (7)

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

EFFECTS OF PROBLEM DECOMPOSITION 449

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. LEFT: enlargement of section of typical grid for a Two-Material problem:
RIGHT: typical grid for a Kershaw problem.

The corresponding positive de�nite approximate inverse preconditioner, P̃−1 for Ã, is de-
�ned as

P̃−1≡ Z̃ Z̃T (8)

The corresponding system of equations, Equation (2), is solved by applying an iterative
method. For additional details on ParAINV and on the SAINV algorithm see References [1, 2].

2.1. Test matrices

In the tests presented in this paper, we used representative matrices belonging to two families
of di�usion problems, Two-Material and Kershaw [4]. Each member of each family is real
symmetric and positive de�nite. Both families use Support Operator discretizations [15, 16].
In two-dimensions the underlying grid consists of quadrilaterals de�ned on a unit square.
The grid in a Two-Material problem is obtained by applying small random perturbations to

an orthogonal grid. The grid in a two-dimensional Kershaw problem is a Kershaw grid [17],
obtained by applying a particular skewing function to one direction of an orthogonal grid
[4]. See Figure 1. In a Two-Material problem, the di�usion coe�cients incur discontinuities
across the logical vertical centreline of the perturbed orthogonal grid. For additional details,
see Reference [4].

3. EFFECTS OF CHOICE OF PARTITION

The application of any parallel algorithm requires the decomposition of the given problem
across the speci�ed number of processors. Our focus is on the interplay between the partition-
ing (problem decomposition) and the rate of convergence of parallel numerical algorithms.
In this section, using the ParAINV algorithm, we illustrate how the rate of convergence

of a parallel numerical algorithm can depend strongly on the problem decomposition. Our
emphasis in these experiments is on this partitioning phenomenon and what to do about it.
The illustrated phenomenon is not speci�c to the algorithm used in these tests.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

450 J. K. CULLUM, K. JOHNSON AND M. T �UMA

Ideally, the rate of convergence of a parallel numerical algorithm is not a function of the
particular method for problem decomposition which is used to place the problem across the
parallel nodes or of the number of nodes used. Also, ideally, the problem decomposition
takes into account the relevant but typically numerous, not well-de�ned, and often in con�ict,
partitioning objectives, such as minimize the complexity of the communication, acknowledge
the hierarchical nature of memory and communication, balance the computational load, and
address potential di�culties with geometric, algorithmic, or solution features.
In practice, existing popular partitioning packages, (e.g. Chaco [18], Metis [5, 6]) accept

a single abstract undirected graph G≡ (V; E) as input and use surrogate measures of one
or more of the actual partitioning objectives combined with a variety of graph partition-
ing heuristics to construct a partition. V denotes the set of graph vertices, V ={v1 : : : vm},
and E denotes the set of edges, {(vi; vj)}, in the graph G. The most popular surrogate is
the number of edges which are cut by the partition. An edge (vi; vj) is cut by the parti-
tion if vi and vj belong to di�erent subsets of the partition. The number of edges cut by
a partition is often used as an estimate of the communication costs corresponding to that
partition.
It is well-known that there is a need for new graph and hypergraph abstractions and par-

titioning algorithms with the capability of incorporating problem and computer constraints
[19, 20]. Reference [21] provides an interesting commentary regarding inadequacies and de�-
ciencies of existing partitioning algorithms. Reference [22] is a related paper which discusses
some of the issues connected with partitioning for load balancing. Reference [23] provides
a survey of partitioning algorithms used in the VLSI community. Many good partitioning
heuristics have come from the VLSI community.
By construction, for any partition, the matrices Aj; 16j6K; As, and S in Equations (3)

and (4) are symmetric and positive de�nite. However, unless A is a M -matrix, there is no
guarantee that the corresponding approximate Schur complement matrix, Ssa, is positive def-
inite. The ParAINV algorithm is implemented to force the computed approximate inverse
preconditioner, P̃−1, to be positive de�nite. However, if Ssa is not positive de�nite, then P̃−1

may not be a very good preconditioner for Ã. Whether or not Ssa is positive de�nite, is a
function of the choice of partition.

3.1. Metis algorithms; matrices used

All of the experiments described in this paper utilized version 4.0 of the Metis partitioning
software package [5, 6]. Five of the partitioning algorithms available in Metis version 4.0
were exercised. Each of these �ve algorithms is based on multi-level (ML) graph partitioning
[24–28]. In each of them, matching algorithms are applied to recursively coarsen the input
graph, and a graph partitioning algorithm is applied to the coarsest graph generated. Metis
allows the imposition of integer weights on either or both of the vertices and the edges of
the input graph. The resulting partition on the coarsest level is expanded and re�ned at each
successively higher level to obtain a partition of the original graph.
Each of these algorithms is based on either recursive bisection (RB) or K-way (KWay)

partitioning. In each of the tests presented, the matching algorithms used sorted, heavy edge
matching. These Metis algorithms are listed by acronym and by full name in Table I and are
assigned corresponding numbers. For example, the multi-level recursive bisection algorithm,
MLRB, is also referred to as Algorithm 1.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

EFFECTS OF PROBLEM DECOMPOSITION 451

Table I. Metis algorithms used.

Alg Acronym Full name

1 MLRB MultiLevel Recursive Bisection
2 MLKWay MultiLevel K-Way
3 MLVKWay MultiLevel Total Volume K-Way
4 mcMLRB MultiConstraint, MultiLevel Recursive Bisection
5 mcMLKWay MultiConstraint, MultiLevel K-Way

The use of V in the acronym for Algorithm 3 denotes the use of the following estimate of
the total communication volume as the partitioning objectives

∑
vi∈interface

wiNadj[vi] (9)

In Equation (9), Nadj[vi] denotes the number of processors, other than the one to which vi is
assigned, which require vi. Each wi denotes a weight which the user can specify for each vi.
The partitioning objective in Algorithms 1; 2; 4; 5 is to minimize the sum of the weights

over the edges which are cut by the partition,

∑
(vi ; vj)=cut edge

wij (10)

The use of mc in the acronyms for Algorithms 4 and 5 in Table I denotes the fact that
these algorithms require multiple weights on the vertices. In addition, Algorithm 5 explicitly
allows vertex weight imbalances in the resulting subsets of the partition. In the tests presented,
we set the Metis imbalance parameter to 1.03. The algorithmic options used, ordered from
Algorithm 1 to 5, were (3110; 3110; 3130; 3210; 3210). With the exception of Algorithm 3,
these were the speci�ed Metis default options. Algorithms 1 and 2 correspond, respectively,
to pmetis and kmetis in earlier versions of the Metis software. For additional details on these
algorithms and the corresponding options see [26–28].
Two representative test matrices, 2M-SO-2D-100 and K2-SO-2D-100 from the Two-Material

and Kershaw di�usion families, were used in the experiments presented in this paper. In each
of these acronyms, SO denotes support operator discretization, 2D indicates that the matrix
comes from a two-dimensional problem, and 100 denotes the number of subdivisions in the
grid along each axis.
In each test the iterative method used was preconditioned conjugate gradients (PCG) [29],

preconditioned with P̃−1 de�ned as in Equation (8). The maximum number of iterations
allowed was 999. Convergence was said to have occurred at iteration J , if J was the smallest
integer j for which the normalized residual norm satis�ed

‖r̃j‖=‖r̃0‖610−8 (11)

r̃j ≡−Ãx̃j + b̃ with x̃j the jth iterate. The starting guess in each test, x̃0, was the zero vector
so that r̃0≡ b̃.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

452 J. K. CULLUM, K. JOHNSON AND M. T �UMA

0 2 4 6 8 10 12 14 16 18
200

300

400

500

600

700

800

900

1000

1100
No. Itns ParAINV(Orig) vs Alg 2 Matrix Graph Partitions: K2−SO−2D−100 and 2M−SO−2D−100

 Partitions: 2−Way(1−6): 4−Way(7−12): 8−Way(13−18):

 M
in

im
um

(N
o.

 It
er

at
io

ns
 to

 C
on

ve
rg

en
ce

, 9
99

)

Figure 2. ParAINV(Orig): Matrices K2-SO-2D-100 and 2M-SO-2D-100: Number of iterations versus
choice of matrix graph partition generated using Metis with Algorithm 2. Counts for K2-SO-2D-100:

2-Way(o): 4-Way(+): 8-Way(.): for 2M-SO-2D-100: K-Way(*).

3.2. Matrix graph partitions

Metis requires the user to provide an abstract graph formulation of the given problem as
input to the Metis software. In the original implementation of ParAINV that input graph is
the adjacency graph of the matrix A in Equation (1). This graph consists of a vertex for each
component of x and an edge for each non-zero entry in A.
The experiments described in this section utilized variants of the adjacency graph of the

matrix A as input to Metis. We refer to any one of these variants as a matrix graph for A.
For a matrix graph, the graph edge weights, when used, were set equal to the integer parts
of the following weights

wij ≡ max{1; 1000: ∗ |aij|} (12)

on the edges (vi; vj).
Figures 2 and 3 summarize the results of applying ParAINV to problems 2M-SO-2D-100

and K2-SO-2D-100 using eighteen 2-way, 4-way, and 8-way Metis-generated partitions. These
partitions were obtained using Metis Algorithm 2 with corresponding matrix graphs de�ned
with various combination of vertex and edge weights. The symbol ∗ corresponds to 2M-
SO-2D-100 for any K=2; 4; 8. The symbols o;+; . correspond respectively to K=2; 4; 8 for
K2-SO-2D-100.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

EFFECTS OF PROBLEM DECOMPOSITION 453

0 2 4 6 8 10 12 14 16 18
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1
 Log10(ResidualNorm) ParAINV(Orig) vs Metis Alg2 Matrix Graph Partitions: K2 and 2M

Partitions: 2−Way(1−6): 4−Way(7−12): 8−Way(13−18):

 L
og

10
(F

in
al

 N
or

m
al

iz
ed

 R
es

id
ua

l N
or

m
)

Figure 3. ParAINV(Orig): Matrices K2-SO-2D-100 and 2M-SO-2D-100: Log10(Final normalized resid-
ual norm) versus choice of matrix graph partitions generated using Metis algorithm 2. In the Figure,

K2-SO-2D-100: 2-Way(o): 4-Way(+): 8-Way(.): 2M-SO-2D-100: K-Way(*).

For each value of K=2; 4; 8, the iteration counts in Figure 2 correspond to the same se-
quence of various combinations of vertex and edge weights. For each K , the �rst three tests
correspond to matrix graphs without non-trivial edge weights. The last three tests correspond
to matrix graphs with non-trivial edge weights.
In these tests, to within small variations, for problem 2M-SO-2D-100, the number of itera-

tions to convergence is independent of the choice of the partition and the number of processors
K=2; 4; 8. However, for problem K2-SO-2D-100, the rate of convergence is far from uniform.
No convergence was observed in any of the tests which used partitions which were generated
using matrix graphs without non-trivial edge weights. In tests with non-trivial edge weights,
as de�ned in Equation (12), the rate of convergence deteriorated as the number of proces-
sors K was increased, with no convergence observed for any of the corresponding 8-way
partitions.
Figure 3 indicates that if the iterations for problem K2-SO-2D-100 had been allowed to

continue, convergence would also have been achieved for runs 2, 7, and 9. These simple
tests demonstrate clearly that for some problems, the convergence behaviour of a numerical
algorithm may depend markedly on the number of processors speci�ed and on the choice of
problem decomposition.
Is this behaviour peculiar to partitions generated using Metis Algorithm 2? Figures 4 and 5

summarize the results of similar tests on K2-SO-2D-100 using 57 di�erent matrix graph

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

454 J. K. CULLUM, K. JOHNSON AND M. T �UMA

0 10 20 30 40 50

500

600

700

800

900

1000

1100
 No.Iterations: ParAINV(Orig) vs Metis Algs 1,2,3,4,5 Matrix Graph Partitions: K2−SO−2D−100

M
in

im
um

 (
N

o.
 It

ns
 to

 C
on

ve
rg

en
ce

, 9
99

)

Partitions:Order each K−way: Alg1:(1−6): Alg2:(7−12): Alg3:(13−15): Alg4:(16−17): Alg5:(18−19)

Figure 4. ParAINV(Orig): Matrix K2-SO-2D-100: Number of iterations versus choice of
matrix graph partition generated using Metis algorithms 1; 2; 3; 4; 5. In the Figure, 2-Way(o):
4-Way(+): 8-Way(.). Results within each K-way ordered by Alg1(1–6): Alg2(7–12):

Alg3:(13–15): Alg4:(16–17):Alg5:(18–19).

partitions. These partitions were generated for K-ways 2, 4, and 8, using Metis algorithms
1; 2; 3; 4 and 5 and with and without non-trivial vertex and edge weights.
Figures 4 and 5 illustrate clearly that the answer to that question is no. Convergence

within 999 iterations was achieved on eight of the nineteen 2-way partitions, on �ve of the
nineteen 4-way partitions, and on only one of the nineteen 8-way partitions. Figure 5 indicates
that convergence would have been achieved in several other tests if the iterations had been
continued beyond 999.
We can conclude from these tests that for problem K2-SO-2D-100, the naive use of Metis

partitions generated using a matrix graph of K2-SO-2D-100 as an abstraction for the problem
may lead to poor or even no convergence. To achieve convergence, it is necessary (but not
su�cient) to use non-trivial edge weights in the matrix graph input to Metis. The best way
to select these weights is an open question.

4. NEW PARTITIONS

Can suitable partitions for problem K2-SO-2D-100, in the sense of some degree of robust
convergence, be obtained by exercising Metis algorithms on a di�erent abstract graph model
of the K2-SO-2D-100 problem?

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

EFFECTS OF PROBLEM DECOMPOSITION 455

0 10 20 30 40 50 60
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1
 Log10(ResidualNorm): ParAINV(Orig) vs Metis Algs 1,2,3,4,5 Matrix Graph: K2−SO−2D−100

 L
og

10
(F

in
al

 N
or

m
al

iz
ed

 R
es

id
ua

l N
or

m

Partitions:Order each K−way: Alg1:(1−6): Alg2:(7−12): Alg3:(13−15): Alg4:(16−17): Alg5:(18−19)

Figure 5. ParAINV(Orig): Matrix K2-SO-2D-100: Log10(Final normalized residual norm)
versus choice of matrix graph partitions generated using Metis algorithms 1; 2; 3; 4; 5. In the
Figure: 2-Way(o): 4-Way(+): 8-Way(.). Results within each K-way ordered by Alg1(1–6):

Alg2(7–12): Alg3:(13–15): Alg4:(16–17): Alg5:(18–19).

Earlier preliminary work by the second author, using hand-generated 2-way partitions,
demonstrated that partitions which cut through highly distorted parts of the Kershaw grid
adversely a�ect the rate of convergence of ParAINV. Thus, the expectation is that the non-
uniform convergence observed for problem K2-SO-2D-100 is connected to the distortions in
the Kershaw grid. Therefore, we focus on an abstract graph associated with the grid. We use
the following de�nition.

De�nition 4.1
Given a grid G containing nc elements(cells), the dual grid graph of G is the graph GD≡{VD;
ED} consisting of vertices cj; j=1; nc, for each element (cell) in the grid and of edges (ci; cj)
for each interior face in the grid.

If no weights are speci�ed, the dual grid graphs for problems 2M-SO-2D-100 and K2-SO-
2D-100 are identical. (This is also true of the matrix graphs for these two problems). To
distinguish between these two problems, non-trivial edge weights must be speci�ed.
With the exception of Algorithm 3, the Metis algorithms considered attempt to minimize

the criteria in (10). We can change the partition generated by assigning di�erent, well-chosen
weights to the edges of the dual grid graph. If the weights are chosen to re�ect the distortions
in the grid, then the sorted heavy matching algorithms used to coarsen the graph may combine

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

456 J. K. CULLUM, K. JOHNSON AND M. T �UMA

with the minimization of the objective in (10) to yield good partitions. The guess is that good
partitions will correspond to splitting the dual grid graph so as to avoid separator nodes (cells)
which correspond to highly distorted elements in the Kershaw grid.
Therefore, we want edge weights which are largest on the most distorted parts of the Ker-

shaw grid. We borrow an idea from the �nite element community. References [7, 8, 30, 10]
demonstrate the adverse e�ects on the convergence of domain decomposition preconditioned
conjugate gradient computations when the problem decomposition used corresponds to geo-
metric subdomains which have poor aspect ratios.
References [8, 10] propose partitioning algorithms with the objective of minimizing the

average aspect ratio of the geometric sudomains resulting from a partition of the dual grid
graph. They present results of numerical tests to justify the use of this objective, tests where
the computational time required using their partitions is signi�cantly smaller than the time
required using a minimum edge cut partition. In their partitioning algorithms they use the
aspect ratios of the elements as weights on the vertices of the dual grid graph.
Minimizing the aspect ratio of the resulting geometric domains is computationally intensive,

requiring the repeated computation of subdomain aspect ratios as the partitioning algorithm
proceeds. The authors of [7, 8, 30, 10] have proposed various surrogates which indirectly con-
trol the aspect ratios of the subdomains and for which the amount of computation required is
decreased, but the computations required are still signi�cant.
Our approach is quite di�erent. We attempt to determine good partitions by utilizing the

Metis algorithms directly with abstract graph models which adequately re�ect the distorted
grid. We do not try to control the average of the aspect ratios of the geometric subsets
generated by the partitions. We localize the aspect ratio computations and use them to de�ne
edge weights.
Instead of assigning weights to the vertices (cells) and directly changing the partitioning

algorithm, we introduce new edge weights for the dual grid graph which provide estimates
of the local distortion of the grid. Using non-trivial edge weights is a de facto modi�cation
of the partitioning objective. See Equation (10). By de�nition, each edge (ci; cj) in the dual
grid graph corresponds to an interior face in the Kershaw grid. The aspect ratios of these two
cells can be used to de�ne an edge weight for this edge.
Reference [10] lists several formulas for de�ning aspect ratios. We use the following de�-

nition which Reference [10] indicates is robust.

AR(�)≡ [C(�)]2=16A(�) (13)

where � represents a connected domain, C(�) is the circumference of that domain, and A(�)
is the area of that domain.
The abstract graph input to Metis must be undirected, so the edge weights must be de�ned

symmetrically. Edge (ci; cj) must have the same weight as edge (cj; ci). We make the following
de�nition.

wij ≡ [max{AR(celli);AR(cellj)}]2 (14)

These weights give some measure of the local grid distortion and are used as edge weights
for the dual grid graph. For problem K2-SO-2D-100, we plot these edge weights in Figure 6.
The weights in Figure 6 are ordered linearly using the natural ordering of the cells in the
Kershaw grid. A comparison of Figure 6 with Figure 1 con�rms that the largest edge weights
correspond to the most distorted parts of the Kershaw grid.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

EFFECTS OF PROBLEM DECOMPOSITION 457

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

 Squares of Aspect Ratios of Cells

 C
el

l N
um

be
r

Figure 6. Squares of aspect ratios for cells in K2-SO-2D-100 grid versus cell number in natural ordering.

We reran the set of tests discussed in Section 3 using partitions generated from Metis with
the dual grid graph (instead of the matrix graph). The results of those tests are summarized
in Figures 7 and 8. Comparing Figure 7 to Figure 4, we observe signi�cant di�erences in
performance across the corresponding sets of tests. For 2-way(o) and 4-way(+), all of the
ParAINV tests which used partitions which were generated using the dual grid graph with
the edge weights de�ned in (14) converged. For 8-way(.), for Algorithms 1; 2, and 5, the
ParAINV tests which used partitions which were generated using the dual grid graph with
those edge weights, converged within 999 iterations or shortly thereafter. See Figure 8. These
tests exhibited a robustness with respect to convergence across the choice of partitions which
were generated using the new edge weights.
In these tests, Metis-generated partitions using Algorithm 1 with vertex weights set equal to

the degree of the vertex and edge weights de�ned by (14), exhibited a robustness with respect
to iteration counts to convergence across the 2; 4, and 8 way partitions, with corresponding
iteration counts of (501; 502; 524). Thus, if ParAINV is used on problem K2-SO-2D-100 with
partitions which are generated using the dual grid graph, Algorithm 1 with vertex weights set
equal to the vertex degree, and with edge weights as speci�ed in Equation (14), the desired
robustness across 2; 4; 8 way partitions is achieved. For 8-way partitions, there is not, however,
robustness in iteration count across partitions generated using the other Metis algorithms. In
Table II, n.c. indicates no convergence exhibited.
It is interesting to look at the 8-way partitions used in these tests. Do we observe any

correlations between good convergence behaviour and partitions which avoid cuts through the

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

458 J. K. CULLUM, K. JOHNSON AND M. T �UMA

0 10 20 30 40 50

500

600

700

800

900

1000

1100

M
in

im
um

 (
N

o.
 It

er
at

io
ns

 to
 C

on
ve

rg
en

ce
, 9

99
)

Partitions:Order each K−way: Alg1:(1−6): Alg2:(7−12): Alg3:(13−15): Alg4:(16−17): Alg5:(18−19)

 No.Iterations ParAINV(Orig) vs Metis Algs 1,2,3,4,5 Dual Grid Graph: K2−SO−2D−100

Figure 7. ParAINV(Orig): K2-SO-2D-100: Number of iterations versus choice of dual
grid graph partition generated using Metis algorithms 1; 2; 3; 4; 5. In the Figure: 2-Way(o):
4-Way(+): 8-Way(.). Within each K-way set of tests results are ordered Alg1(1–6):

Alg2(7–12): Alg3:(13–15): Alg4:(16–17): Alg5:(18–19).

highly distorted parts of the Kershaw grid? Are there correlations between bad convergence
and partitions which cut along or through highly distorted parts of the Kershaw grid?
Plate 1 corresponds to test number 44 in Figure 7 where good convergence was achieved.

The number of iterations required to achieve convergence was 524. Plate 2 corresponds to test
number 57 in Figure 4 where convergence was achieved but the convergence was very poor.
The number of iterations required to achieve convergence was 913. Plate 3 corresponds to
test number 39 in Figure 7 where convergence was not achieved. At the end of 999 iterations
the normalized residual norm was larger than 1.0. Each of these Plates 1, 2 and 3, is a plot
of the geometric locations of the variables by partition subset.
If we compare the 8-way partition in Plate 1 with the Kershaw grid in Figure 1, we observe

that the most highly distorted sections of that grid are encapsulated within two of the partitions
subsets. This good partition was generated using the dual grid graph and Algorithm 1 with
vertex weights equal to the vertex degree and the edge weights de�ned in Equation (14)
which provide excellent measures of the local distortions in the Kershaw grid.
If we compare the 8-way matrix partition in Plate 2 with the Kershaw grid in Figure 1, we

observe that much of the upper part of the highly distorted parts of the grid is encapsulated but
that the partition slices diagonally through the corresponding lower part. This poor partition
was generated using the K2-SO-2D-100 matrix graph and Algorithm 5 with degree and unit
vertex weights, the edge weights de�ned in Equation (12), and setting the Metis imbalance

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

Plate 1. Good convergence: 8-way dual grid graph partition for K2-SO-2D-100: Generated using Metis
algorithm 1 with vertex degree as vertex weights and with edge weights de�ned as in (14).

Plate 2. Poor convergence: 8-way matrix graph partition for K2-SO-2D-100: Generated
using Metis algorithm 5 with vertex degree as vertex weights and with edge weights as

de�ned in (12) and with an imbalance of 1.03.

Plate 3. No convergence: 8-way dual grid graph partition for K2-SO-2D-100: Generated using Metis
algorithm 2 with no non-trivial vertex or edge weights.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

EFFECTS OF PROBLEM DECOMPOSITION 459

0 10 20 30 40 50 60
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Partitions:Order each K−way: Alg1:(1−6): Alg2:(7−12): Alg3:(13−15): Alg4:(16−17): Alg5:(18−19)

 L

og
10

(F
in

al
 N

or
m

al
iz

ed
 R

es
id

ua
l N

or
m

)

 Log10(ResidualNorm): PAINV(Orig) vs Metis Algs: 1,2,3,4,5: Dual Grid Graph Partitions: K2

Figure 8. ParAINV(Orig): Matrix K2-SO-2D-100: Log10(Final normalized residual norm)
versus choice of dual grid graph partitions generated using Metis algorithms 1; 2; 3; 4; 5. In
the Figure: 2-Way(o): 4-Way(+): 8-Way(.). Results within each K-way are ordered by

Alg1(1–6): Alg2(7–12): Alg3:(13–15): Alg4:(16–17): Alg5:(18–19).

Table II. ParAINV(Orig): Using edge-weighted dual grid graph partitions.

Algorithm Min itns Min itns Min itns
2-way 4-way 8-way

1 501 500 524
2 504 504 927
4 518 518 n.c.
5 511 539 901

parameter to 1:03. For the matrix graph tests on K2-SO-2D-100 this was the only 8-way
partition where convergence was achieved.
If we compare the 8-way partition in Plate 3 with the Kershaw grid in Figure 1, we observe

that this partition slices diagonally through the upper and the lower most highly distorted parts
of the grid in many places. This bad partition was generated using the dual grid graph and
Algorithm 1 without non-trivial vertex or edge weights to provide information about the
distortions in the grid.
In the tests on problem 2M-SO-2D-100, to within small variations, the rate of conver-

gence was independent of the choice of the partition. This observed behaviour provides

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

460 J. K. CULLUM, K. JOHNSON AND M. T �UMA

additional evidence that the di�culties with K2-SO-2D-100 are caused by the distortions in the
grid.

5. A ROBUST ParAINV ALGORITHM

Ideally, the convergence behaviour of a parallel algorithm is robust with respect to the choice
of partition and number of processors. The incorporation of a known approximate Schur com-
plement correction [31, 32] into the ParAINV algorithm yields a modi�ed ParAINV algorithm,
ParAINV(wCorr) which in our experiments exhibits robustness with respect to both choice
of partition and number of processors.
As already noted in Section 2, if A is not a M -matrix, then the approximate Schur comple-

ment, Ssa, which is generated in the ParAINV algorithm may not be positive de�nite. If Ssa
is not positive de�nite, then undesirable approximations can be introduced in the application
of the SAINV algorithm to Ssa to force the resulting approximate inverse for Ssa to be posi-
tive de�nite. These approximations which may not be representative of the original problem,
become part of the preconditioner for Ã and can lead to slow convergence of the iterative
method in ParAINV. We can guarantee positive de�niteness of the computed approximate
Schur complement if we modify it, using the modi�cation proposed in Reference [31, 32].
For the ParAINV algorithm, Ssa and the corresponding correction, Csa can be written as

Ssa = As − BTM
Csa ≡ MTADM −MTB

(15)

where

B≡

B1
...
BK

 ; M ≡

Z̃1Z̃T1B1
...

Z̃K Z̃TKBK

 (16)

This modi�cation was added to ParAINV and the tests on problem K2-SO-2D-100 which
were described in Sections 3 and 4 were rerun using this modi�ed algorithm. Figure 9 contains
the results of those tests. In these tests we observe a robustness in iteration count across
partitions generated with and without weights, generated using either the matrix or the dual
grid graph models of the K2-SO-2D-100 problem, and across K-ways for K=2, 4 and 8. For
the tests which used partitions generated using the dual grid graph the overall variations in
iteration count are less than 10%.
In Figure 9, ∗ is used for partitions corresponding to the matrix graph for K2-SO-2D-100

and o;+; . are used for partitions corresponding to the dual grid graph for K2-SO-2D-100.
Similar tests were run for problem 2M-SO-2D-100 using 57 partitions generated from

the matrix graph for 2M-SO-2D-100, and Metis Algorithms 1; 2; 3; 4; 5, with and without
non-trivial vertex and edge weights for K-way partitions with K=2; 4; 8. Both the original
ParAINV algorithm, ParAINV(Orig), and the corrected ParAINV algorithm, ParAINV(wCorr),
were applied to problem 2M-SO-2D-100 using these partitions. The results of these tests are
summarized in Figure 10. In Figure 10 ∗ corresponds to runs which used ParAINV(wCorr),
and o+; . correspond to runs which used ParAINV(Orig). The y-axis scale in Figure 10 is
di�erent from the scale used in Figure 9 for problem K2-SO-2D-100.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

EFFECTS OF PROBLEM DECOMPOSITION 461

0 10 20 30 40 50

500

600

700

800

900

1000

1100
 No.Itns: PAINV(wCorr): Metis Algs: 1,2,3,4,5: DualGridGraph(2−Way(o):4−Way(+):8−Way(>)): MatrixGraph(*)

Ordering within each K−way: Alg1:1−6: Alg2:7−12: Alg3:13−15: Alg4:16−17: Alg5:18−19

 M
in

im
um

(N
o.

Itn
s

to
 C

on
ve

rg
en

ce
, 9

99
)

Figure 9. ParAINV(wCorr): Number of iterations for K2-SO-2D-100 versus matrix graph partitions (*)
and dual grid graph partitions 2-Way(o): 4-Way(+): 8-Way(.).

In these tests we observed uniform rate of convergence using both the original and the
corrected versions of ParAINV. See Figure 10. It is also clear from Figure 10 that using
the corrected version, ParAINV(wCorr), on 2M-SO-2D-100 required a few more iterations
regardless of which partition was used in the computations. However, a small increase in the
number of iterations on problems where ParAINV(Orig) converges well, is a small price for
achieving robust convergence on di�cult problems.
The positive de�niteness of the corrected approximate Schur complement can be established

by verifying that the corrected approximate Schur complement is a Galerkin projection, RTÃR,
of the positive de�nite matrix Ã where R has full rank. It is not an ad hoc correction. It is
the representation of Ã on a particular subspace.

Theorem 5.1
Let Ã be any real symmetric positive de�nite matrix de�ned as in Equation (3). Let f; s
denote respectively, the number of rows in the diagonal block matrix AD de�ned by the set
of matrices Aj; j=1; : : : ; K , and the number of rows in As. Let Ssa be any approximate Schur
complement matrix of the form

As − BTM

where B;M are of dimension f× s. De�ne Csa by Equation (15). The corrected approximation

Scsa ≡ Ssa + Csa

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

462 J. K. CULLUM, K. JOHNSON AND M. T �UMA

0 10 20 30 40 50
200

220

240

260

280

300

320

340

360

380

400
 NumberIterations: PAINV(Orig):2−way(o):4−way(+):8−way(>): PAINV(wCorr):k−way(*): 2M−SO−2D−100

 Ordering within each k−way: Alg1(1−6): Alg2(7−12): Alg3(13−15): Alg4(16−17): Alg5(18−19)

 M
in

im
um

(N
o.

 It
ns

 to
 C

on
ve

rg
en

ce
, 9

99
)

Figure 10. ParAINV: Number of iterations for 2M-SO-2D-100 versus matrix graph partitions
for ParAINV(wCorr): (*) and ParAINV(Orig): 2-Way(o): 4-Way(+): 8-Way(.).

is the Galerkin Projection RTÃR with

R≡
[
M
−Is

]

The error, Es, in the Galerkin projection matrix when it is considered as an approximation to
the true Schur complement matrix, S, is given by

Es ≡ RTÃR− S
= (M − A−1

D B)
TAD(M − A−1

D B) (17)

Equation (17) can be rewritten as

Es=(ADM − B)TA−1
D (ADM − B) (18)

Proof

RTÃR≡ [MT − Is]
[
AD B
BT As

] [
M
−Is

]
(19)

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

EFFECTS OF PROBLEM DECOMPOSITION 463

= As +MTADM −MTB− BTM (20)

But,

(M − A−1
D B)

TAD(M − A−1
D B)

=MTADM −MTB− BTM + BTA−1
D B (21)

Therefore, since S ≡As − BTA−1
D B,

RTÃR=S + (M − A−1
D B)

TAD(M − A−1
D B) (22)

Simple manipulations of Equation (21) yield Equation (18).

The quantity (ADM − B) is computable and if AD is well-conditioned, estimates for how
well Ssa approximates S can be obtained.

6. SUMMARY

We constructed a set of tools which allowed us to invoke the Metis Algorithms with any of
the allowable options, to generate di�erent matrix graphs and dual grid graphs for the two
families of di�usion problems, to map dual grid graph partitions into partitions of the variables
in the original problem, to plot partitions, and to run sequences of tests on the shared SGI
Origin computer which is available at Los Alamos National Laboratory. All tests were run in
shared queues. The Metis codes are written in C. Our codes, including the ParAINV code,
are written in Fortran 90.
Using these tools, a speci�c algorithm(ParAINV) for solving Equation (1), and Metis-

generated partitions which were based on the matrix graph for the problem, we illustrated
the possible interplay between the choice of the partition (problem decomposition) and the
corresponding rate of convergence of a parallel numerical algorithm when the numerics of
the algorithm depend upon the partition. We showed that this dependence can be a function
of the algorithm and of the choice of problem.
We introduced a di�erent abstract graph model for the K2-SO-2D-100 problem which is

based on the Kershaw grid and new graph edge weights which are re�ections of the distortions
in the Kershaw grid. We used this abstraction to generate partitions which, in our numerical
tests, exhibited convergence robustness across choice of such partitions. We were also able to
identify a partition method which exhibited robustness in iteration count across the number
of processors, K=2; 4; 8.
Ideally, the rate of convergence would be insensitive to the number of processors and to

the choice of partition. Therefore, in Section 5 we modi�ed ParAINV by incorporating a
known approximate Schur complement correction. In our numerical experiments this modi�ed
parallel algorithm, ParAINV(wCorr), exhibited robust convergence with respect to both the
choice of partition and the number of processors.
The use of this type of correction is, however, restricted to algorithms which involve ap-

proximate Schur complements. Moreover, using this correction requires additional computation

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

464 J. K. CULLUM, K. JOHNSON AND M. T �UMA

and storage, and when using it on the Two-Material test problem, 2M-SO-2D-100, we ex-
perienced some increases in the number of iterations required for convergence. Therefore, it
is not a straightforward alternative to constructing good partitions from well-chosen weighted
graphs, but can be an alternative in complex problems where it is di�cult to identify and
construct good partitions.
We can conclude that for algorithms where the numerics depend on the choice of the

partition, the determination of the sensitivity of the rate of convergence of the algorithm with
respect to the choice of the partition should be part of any algorithmic performance studies.
Including tests which vary the partition can provide constructive information regarding the
robustness of the algorithm and can be used to provide guidance for modifying the algorithm
or the choice of the partition method to make the overall computations more robust. For
example, problems with complicated grid structure may require special attention.
We intend to continue this research by devising extensions of grid distortion measures to

three-dimensional problems drawn from the two families of di�usion matrices, Two-Material
and Kershaw, and by exploring the e�ects of the choice of partition on the rate of convergence
of other parallel numerical algorithms, such as parallel incomplete Cholesky preconditioning
for solving Equation (1) [33].

ACKNOWLEDGEMENTS

The authors wish to thank Michael DeLong for suggesting that studying the e�ects of the choice of
partition on the rate of convergence of parallel solver algorithms could lead to interesting research
questions and results, Matthias Bollh�ofer for observing that the correction to a computed approximate
Schur complements which is proposed in References [31, 32] is applicable to our work, Michele Benzi
for communicating the suggestion of Bollh�ofer to us, Michael L. Hall for detailed explanations of the
processes used to construct the di�usion test problems, and Bruce Hendrickson for suggesting related
domain decomposition references.

REFERENCES

1. Benzi M, Mar�	n J, T�uma M. A two-level parallel preconditioner based on sparse approximate inverses. In
Iterative Methods in Scienti�c Computation IV, IMACS Series in Computational and Applied Mathematics,
Kincaid DR, Elster AC (eds). IMACS: New Brunswick, NJ, 1999; 167–178.

2. Benzi M, Cullum JK, T�uma M. Robust approximate inverse preconditioning for the conjugate gradient method.
SIAM Journal on Scienti�c Computing 2000; 22:1318–1332.

3. Benzi M, Meyer CD, T�uma M. A sparse approximate inverse preconditioner for the conjugate gradient method.
SIAM Journal on Scienti�c Computing 1996; 17:1135–1149.

4. Hall M. http:==www.lanl.gov=Augustus=[September 2000]
5. Karypis G, Kumar V. Parallel multilevel graph partitioning. In Proceedings of the 10th International Parallel
Processing Symposium. IEEE Computer Society Press: Silver Spring, MD, 1996; 314–319.

6. Karypis G, Kumar V. http:==www-users.cs.umn.edu=˜karypis=metis= [April 2002].
7. Vanderstraeten D, Farhat C, Chen PS, Keunings R, Ozone O. A retro�t based methodology for the fast generation
and optimization of large-scale grid partitions: beyond the minimum interface size criterion. Computer Methods
in Applied Mechanics and Engineering 1996; 133:25–45.

8. Diekmann R, Preis R, Schlimbach F, Walshaw C. Aspect ratio for mesh partitioning. In Proceedings Euro-Par
’98 Parallel Processing. Springer-Verlag: Berlin, 1998; 347–351.

9. Walshaw C, Cross M, Diekmann R, Schlimbach F. Multilevel mesh partitioning for optimizing domain shape.
International Journal of High Performance Computing 1999; 13:334–353.

10. Diekmann R, Preis R, Schlimbach F, Walshaw C. Shape-optimized mesh partitioning and load balancing for
parallel adaptive FEM. Parallel Computing 2000; 26:1555–1581.

11. Diekmann R, Schlimbach F, Walshaw C. Quality balancing for parallel adaptive FEM. In Proceedings Irregular
’98, Ferreira A, Rolim J, Simon H, Teng SH (eds). Springer-Verlag: Berlin, 1998; 170–181.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

EFFECTS OF PROBLEM DECOMPOSITION 465

12. Dulmage A, Mendelsohn N. Coverings of bipartite graphs. Canadian Journal of Mathematics 1958; 10:517–534.
13. Ashcraft C, Liu JWH. Applications of the Dulmage-Mendelsohn decomposition and network �ow to graph

bisection improvement. SIAM Journal on Matrix Analysis and Applications 1998; 19:325–354.
14. Pothen A, Fan C. Computing the block triangular form of a sparse matrix. ACM Transactions on Mathematical

Software. 1990; 16:303–324.
15. Shashkov MJ, Steinberg S. Support-operator �nite-di�erence algorithms for general elliptic problems. Journal

of Computational Physics 1995; 118:131–151.
16. Morel JE, Roberts RM, Shashkov MJ. A local support-operators di�usion discretization scheme for quadrilateral

r-z meshes. Journal of Computational Physics 1998; 144:17–51.
17. Kershaw DS. Di�erencing of the di�usion equation in Lagrangian hydrodynamic codes. Journal of

Computational Physics 1981; 39:375–395.
18. Hendrickson B, Leland R. The Chaco Users Guide, Version 2.0. Technical Report, SAND95-2344, Sandia

National Laboratories, 1995.
19. Pinar A, Hendrickson B. Partitioning for complex objectives. In Proceedings of 15th International Parallel and

Distributed Processing Symposium, Workshop on Solving Irregularly Structured Problems in Parallel, 2001,
CD-ROM, IEEE Computer Society, IEEE, 2001.

20. Karypis G, Aggarwal R, Kumar V, Shekhar S. Multilevel hypergraph partitioning. In Proceedings 34th
Conference on Design Automation; Anaheim; CA; June 9–13; 1997, ACM: New York, 1997; 526–529.

21. Hendrickson B. Graph Partitioning and Parallel Solvers: Has the Emperor No Clothes? In Proceedings Irregular
’98, Springer, Berlin, 1998; 218–225.

22. Hendrickson B. Load Balancing Fictions, Falsehoods and Fallacies. Applied Mathematical Modelling 2000;
25:99–108.

23. Alpert CJ, Kahng AB. Recent directions in netlist partitioning: a survey. Integration, The VLSI Journal 1995;
19:1–81.

24. Hendrickson B, Leland R. A multilevel algorithm for partitioning graphs. In Proceedings of Supercomputing
’95, 3–8 Dec. 1995, San Diego, CA, USA, ACM: New York, 1995; 626–657

25. Alpert CJ, Huang JH, Kahng AB. Multilevel circuit partitioning. In Proceedings 34th Conference on Design
Automation; Anaheim; CA; June 9–13; 1997. ACM: New York, 1997; 530–533.

26. Karypis G, Kumar V. Parallel multilevel k-way partitioning schemes for irregular graphs. SIAM Review 1998;
41:278–300.

27. Karypis G, Kumar V. Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and
Distributed Computing. 1998; 48:96–129.

28. Karypis G, Kumar V. Multilevel algorithms for multi-constraint graph partitioning. In the Proceedings of
Supercomputing ’98; Nov. 7–13; 1998, Orlando; FL. IEEE Computer Society, 1998; 801–816.

29. Saad Y. Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, MA, USA, 1996.
30. Walshaw C, Cross M, Diekmann R, Schlimbach F. Multilevel mesh partitioning for optimising aspect ratio. In

Proceedings; Vector and Parallel Processing; VECPAR’98. Third International Conference; 21–23 June 1998;
Porto; Portugal, Springer, Berlin, 1999; 285–300.

31. Haase G, Langer U, Meyer A. The Approximate Dirichlet Decomposition Method. Part I: An Algebraic
Approach, Computing 1991; 47:137–151.

32. Haase G, Langer U, Meyer A. The Approximate Dirichlet Decomposition Method. Part II: Application to 2nd-
order Elliptic BVPs, Computing 1991; 47:153–167.

33. DeLong M. Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive-
Schwarz preconditioned FGMRES. Technical Report LA-UR-97-4181, Los Alamos National Laboratory, Los
Alamos, New Mexico, September 1997.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:445–465

