
BIT manuscript No.
(will be inserted by the editor)

The importance of structure in incomplete factorization
preconditioners

Jennifer Scott · Miroslav Tůma
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Abstract In this paper, we consider level-based preconditioning, which is one of the
basic approaches to incomplete factorization preconditioning of iterative methods.
It is well-known that while structure-based preconditioners can be very useful, ex-
cessive memory demands can limit their usefulness. Here we present an improved
strategy that considers the individual entries of the system matrix and restricts small
entries to contributing to fewer levels of fill than the largest entries. Using symmet-
ric positive-definite problems arising from a wide range of practical applications, we
show that the use of variable levels of fill can yield incomplete Cholesky factoriza-
tion preconditioners that are more efficient than those resulting from the standard
level-based approach. The concept of level-based preconditioning, which is based on
the structural properties of the system matrix, is then transferred to the numerical in-
complete decomposition. In particular, the structure of the incomplete factorization
determined in the symbolic factorization phase is explicitly used in the numerical fac-
torization phase. Further numerical results demonstrate that our level-based approach
can lead to much sparser but efficient incomplete factorization preconditioners.
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1 Introduction

Incomplete Cholesky factorizations are an important tool in the solution of large
sparse symmetric linear systems of equationsAx = b. Preconditioners based on an
incomplete factorization ofA (that is, a factorization in which some of the fill entries
and possibly some of the entries ofA are ignored) fall into three main classes:

(i) Threshold-basedIC(τ) methods in which the locations of permissible fill entries
are determined in conjunction with the numerical factorization of A; entries of
the computed factors that exceed a prescribed thresholdτ are dropped. Success
of this approach depends on being able to choose a suitableτ and this is highly
problem dependent.

(ii) Memory-basedIC(m) methods in which the amount of memory available for the
incomplete factorization is prescribed and only the largest entries in each column
are retained.

(iii) Structure-basedIC(ℓ) methods in which an initial symbolic factorization phase
determines the location of permissible fill entries using only the sparsity pattern
of A. Each potential fill entry is assigned a level and an entry is only permitted
in the factor if its level is at mostℓ. This kind of fixed fill strategy allows the
memory requirements to be determined before the second phase that performs an
incomplete numerical factorization.

Many refinements, variants and hybrids of the above approaches have been proposed
and used to solve problems from a wide range of application areas. In Section 2,
we provide a brief historical overview and highlight some ofthe important develop-
ments in the field over the past 50 years. We are interested in structure-based incom-
plete factorization preconditioners that have both predictable memory requirements
and depend on the entries ofA. We propose a general class of methods based on
computing an incompleteLDLT factorizationIC(ℓ,τ,m), where the factorL is unit
lower triangular andD is diagonal,ℓ ≥ 0 is the target number of levels of fill,τ is
a drop tolerance andm controls the maximum number of entries allowed in the fac-
tor. In Section 3, we introduce a modification to the standardlevel-based approach.
Rather than allowing all the non-zero entries ofA to contribute toℓ levels of fill, we
restrict small entries to contributing to fewer levels and allow the largest entries to
contribute to more thanℓ levels. We explain how this variable level approach can be
implemented using a minor change to an existing algorithm for computing a symbolic
incomplete factorization. Then, in Section 4, we consider transferring the structure of
the symbolic incomplete factorization to the numerical factorization, allowing extra
entries outside the symbolic pattern if sufficient memory isavailable and the entries
are large enough. Numerical results that illustrate the effectiveness of our proposed
level-based strategy for practical applications are presented in Section 5 and, finally,
some concluding remarks are made in Section 6.

2 Background

Sparsity structure was the main ingredient of the first algebraic preconditioners that
were developed in the late 1950s. At that time, the sparsity structure essentially ex-
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pressed the stencils for discretized partial differentialequations on structured grids. In
particular, the EBM-2 method of Buleev [12] interpolated values of the function at a
grid point using a combination of the function values at neighbouring grid points. The
solution process was accelerated by additional parametrization derived from smooth-
ness assumptions. The resulting system expressed what we call now the precondi-
tioned system of equations, in which the preconditioner wasdirectly combined with
the system matrix. The method was generalized to stencils for three dimensional
problems in [13]. An independent derivation and its interpretation as an incomplete
factorization (that is, a factorization in which some of thefill entries are ignored) for
a matrix from a simple 5-point stencil was given by Varga [42](see also [3,34]). Note
that [42] is also well-known for introducing the concept of regular splittings. Further
early developments included additional corrections that led to heavily parametrized
procedures and included more complicated stencils. Later,modifications of the in-
terpolation that implicitly expressed incomplete decompositions were proposed to
change in individual steps of the iterative procedure [41].An overview of the early
procedures and the motivations behind them may be found in [26,27].

Further developments for incomplete factorizations included their classification
by the order (first or second order) of the polynomial definingthe interpolation on
the grid points, extensions to larger stencils, and the development of early matrix for-
mulations and existence criteria for breakdown-free factorizations. The key relation
that has been gradually better understood is that between stencil multiplications, local
interpolation and extrapolation on a grid, and the combinatorial elimination process
(that is, the elimination process based on a graph structure).

The real breakthrough in the practical use of preconditioning using an incom-
plete factorization came with two important papers. Firstly, Meijerink and van der
Vorst [31] recognised the importance of preconditioning for the conjugate gradient
method. This paper also implied an understanding of the crucial role of the separate
computation of the incomplete factorization as well as recognizing the possibility of
prescribing the sparsity structure of the preconditioner by allowing additional diago-
nals. Discussing the sparsity structure in the form of diagonals was very natural since
simple matrix stencils typically restrict nonzeros to a fewdiagonals [21,32]. The
other key paper that helped to popularize incomplete factorizations was that of Ker-
shaw [29]. Kershaw introduced the idea of locally replacingpivots by a small positive
number to prevent breakdown of the factorization, and this led the way to incomplete
factorizations in which dropping is based solely on the sizeof the computed entries
[1,2] (see also the detailed experimental results in [35]).

The hierarchy of sparsity structures that can be prescribedfor incomplete factor-
izations of general matrices was introduced by Watts in 1981[43]. Since that time,
the notationIC(ℓ) for an incomplete Cholesky factorization (or, for general systems,
ILU (ℓ)) based on the concept of levels of fill that we discuss in Section 3, has become
commonplace. It was soon realised that althoughIC(1) can be a significant improve-
ment overIC(0) (that is, an appropriate iterative method preconditioned usingIC(1)
generally requires fewer iterations to achieve the requested accuracy thanIC(0)),
the fill-in resulting from increasingℓ can be prohibitive in terms of both storage re-
quirements and time to compute and then apply the preconditioner (see, for example,
[17]). Moreover, the amount of fill-in is difficult to predict. It is easy to explain this
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increase in density withℓ since, while entries of the error matrixA−LLT (whereL
is the exact Cholesky factor) are zero inside the prescribedsparsity pattern, outside
they can be very large, and the pattern ofIC(ℓ) (even for largeℓ) may not adequately
represent the pattern ofL. The error can be particularly large for matrices in which
the entries do not decay significantly with distance from thediagonal. D’Azevedo,
Forsyth, Tang [15] started to solve the problem by combiningthe approach by levels
with dropping by values. Other early global tools to correctdropping by values were
introduced by Munksgaard [33], who tried to get the fill-in curve close to that of the
exact decomposition by dynamic changes in the drop tolerance.

Around the same time, an important strategy based on combining dropping en-
tries by value with keeping a prescribed number of the largest entries was proposed
[20]. A columnwise algorithm based on a similar concept was presented by Jones
and Plassmann [28]. They retain thenl largest entries in the strictly lower triangular
part of thel−th column ofL, wherenl is the number of entries in thel−th column of
the strictly lower triangular part ofA. Another approach that has predictable storage
requirements and depends on the matrix entries is the dual thresholdILUT (p,τ) fac-
torization of Saad [39]. A drop toleranceτ is used to drop all entries in the computed
factors that are smaller thanτl , whereτl is the product ofτ times thel2-norm of the
l−th row of A. Additionally, only thep largest entries in each column ofL and row
of U are retained. For general unsymmetric matrices,ILUT (p,τ) has proved very
popular but note that it ignores symmetry inA and, if A is symmetric, the sparsity
patterns ofL andUT will normally be different.

The algorithm of Lin and Moré [30] for symmetric matrices aims to exploit the
best features of the Jones and Plassmann factorization and the ILUT (p,τ) factoriza-
tion of Saad. This approach retains thenl + p largest entries in the lower triangular
part of thel−th column ofL (p is a chosen memory parameter) and uses only mem-
ory as the criterion for dropping entries (thus having the advantage of not requiring
a drop tolerance). The reported results of Lin and Moré for large-scale trust region
subproblems indicate that allowing additional memory can substantially improve per-
formance on difficult problems.

Recently, a new strategy was developed by Bollhöfer and Saad [7–9]. Here the
dropping is relative to the estimated norms of the rows and columns of the factors of
the inverse matrix. They have shown both theoretically (by perturbation arguments)
and experimentally that preconditioners based on this strategy are very reliable. Ex-
tended dropping of this kind that mutually balances direct and inverse factors has
been introduced in the last few years by Bru, Marı́n, Mas, andTůma [10]; see also
their comparison of recent incomplete factorization schemes [11].

These later approaches do not take into account the structure of the levels. One
reason for this is that, as already observed, the structure may fill in quickly as ℓ
increases and, importantly, until relatively recently it was not clear how this struc-
ture could be computed efficiently, especially for largerℓ. A significant advancement
came with the work of Hysom and Pothen [25] (see also [24]). They describe the rela-
tionship between level-based factorizations and lengths of fill paths and propose a fast
method of efficiently computing the sparsity pattern ofIC(ℓ) (andILU (ℓ)) factoriza-
tions, opening the way to the further development of structure-based preconditioners.
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Among recent results, the usefulness of level-based preconditioners in parallel
computing environments was emphasised in [24]. Their efficiency in the context of
a Newton-Krylov method was shown in [6,36]. Efficiency of block level-based pre-
conditioners is illustrated in [22].

The main goal of this paper is to show that sparsity structureplays an important
role in incomplete factorization preconditioners. While the progress that has been
achieved in the field of incomplete factorization preconditioners is substantial, we
strongly believe that constructing such preconditioners by considering only the size of
the entries, possibly complemented by limits on the overallmemory or on the number
of additional entries, has important limitations. We are persuaded that to increase
robustness we need to use other available tools. In particular, we need to exploit
the sparsity structure of the factors. As mentioned above, the work of Hysom and
Pothen offers relatively cheap tools for computing level-based factorizations. These
are sufficiently general to allow changes to the general strategy of the level-based
approach. We propose one possible generalization. The structure of levels that we
obtain represents a symbolic incomplete factorization.

Furthermore, we believe that it can be necessary to combine the decomposition
by levels with a dropping strategy based on the magnitudes ofentries. Our approach
starts with the level-based structure obtained by the symbolic incomplete factoriza-
tion. We then use two additional parameters: a memory multiplier m and a drop tol-
eranceτ. The memory multiplier determines the maximum memory allowed for the
preconditioner in terms of the incomplete factor size computed by the symbolic fac-
torization. Any additional memory is predistributed to theindividual columns of the
final factor. The drop tolerance is then used to decide whether an entry should be
dropped or kept in the factor. The implementation keeps track separately of the en-
tries inside the structure returned by the symbolic factorization and those outside it.
Entries that are removed either from the symbolic structureor from the additional
space available ifm> 1 provides further space for the incomplete factor. The details
are explained in Section 4. By using a combination of these approaches, our aim is
to obtain an incomplete factorization that retains some of the global characteristics of
the full factorization. and provides a good preconditioner.

3 Variable levels of fill in an IC(ℓ) preconditioner

In this section, we briefly recall the concept of levels of fillin an incomplete matrix
factorization and summarise the approach of Hysom and Pothen [25] for efficiently
performing a symbolicIC(ℓ) factorization. We then propose a simple generalization
that encourages the dropping of small entries from the incomplete factorization by
preassigning small entries inA an initial level greater than 0 and we explain how our
modification can be incorporated into the symbolic factorization. We use the notation
L = {l i j } to denote the complete factor ofA andL̂ = {l̂ i j} to denote an incomplete
factor.
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3.1 The incomplete fill path theorem and symbolicIC(ℓ) factorization

It is convenient to use some basic concepts and notation fromgraph theory. The
pattern of a sparse symmetric matrixA = {ai j} of ordern can be represented by an
undirected graphG = (V,E) with verticesV = {1, . . . ,n} and edgesE. An edge{i, j}
is present inE if and only if ai j 6= 0 andi 6= j. Verticesi and j in V areneighbours
(or areadjacentto each other) if edge{i, j} ∈ E. Theadjacency setfor i is the set of
its neighbours, that is,

adj(i) = { j | j ↔ i, i, j ∈V},

where we use the notationi ↔ j to denote thati and j are neighbours. Apath of
lengthk in G is an ordered set of distinct vertices(v1,v2, . . . ,vk,vk+1), with vi ↔ vi+1

(1≤ i ≤ k). A path inG connecting verticesi and j is afill path if the index of each
of the intermediate vertices is less thanmin(i, j).

An important result that characterizes the fill in the complete factor ofA is thefill
path theorem of Rose, Tarjan and Lueker [37,38]. This states thatl i j is non zero if
and only if there is a fill path connectingi and j in G .

Two rules appear in the literature for assigning levels to fill entries, referred to as
thesumrule [15] and themaxrule [21]. Following the work of Hysom and Pothen
[25], we use the more common sum rule, which states that entries of the factor that
correspond to nonzero entries ofA are assigned the level 0 while each potential fill
entry is assigned a level

level(i, j) = min
1≤l≤min{i, j}

{level(i, l)+ level(l , j)+1}.

That is, a level is assigned that is one more than the sum of thelevels of the two
causative entries. A fill entry is permitted in the incomplete factor providedlevel(i, j)≤
ℓ.

Theincomplete fill paththeorem of Hysom and Pothen [25] states that, if the sum
rule is used,level(i, j) = ℓ if and only if there exists a shortest fill path of length
ℓ+ 1 joining i and j in G . Hysom and Pothen use this result to develop the scheme
outlined in Algorithm 1 for computing the sparsity pattern of a single column of the
incomplete factor̂L. The procedure uses a breadth first search that finds a shortest path
between vertexk and vertices reachable fromk via a traversal of at mostℓ+1 edges.
A key feature is that the structure of each column ofL̂ can be computed independently
(and hence in parallel). Note that since the number of entries in each column of̂L is
not known initially, Algorithm 1 may first be used with line 15omitted and then
repeated after allocating the adjacency setadj

′
(k) for columnk of L̂ to have sizenzk.

3.2 Preassigning levels: Strategy I

It is convenient to defineilev(i, j) to be the number of levels of fill to which each
nonzero entryai j of A may contribute. In a standardIC(ℓ) algorithm,ilev(i, j) is set to
ℓ for each nonzeroai j . To try and ensure that small entries contribute to fewer levels
of fill in the incomplete factorization than larger entries,the approach we propose
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Algorithm 1 SymbolicIC(ℓ) factorization: computes the sparsity pattern of column
k of L̂. The row indices of the entries in columnk are returned inadj

′
(k) andnzk is

the number of such entries.lengthis an array of sizen.
1 Input: G , ℓ andk.
2 Initialise: initialise the queue to hold onlyk;
3 flagk as visited;
4 setlength(k) = 0 andnzk = 0.
5 do
6 if (the queue is empty)exit
7 takei from the queue
8 forall (unvisited j ∈ adj(i))
9 flag j as visited
10 if ( j < k and length(i) < ℓ) then
11 addj to the queue
12 setlength( j) = length(i)+1
13 else if ( j > i) then
14 nzk = nzk +1
15 addj to adj

′
(k)

16 end if
17 end forall
18 end do

preassignsilev(i, j) for each entry ofA individually to have an integer value that
depends on|ai j |.

We begin by computing the absolute values of the smallest andlargest nonzero
entries ofA, which we denote bymsmallandmbig, respectively. We then take the
logarithm of each nonzero|ai j | and distribute these between themgrp= [log(mbig)−
log(msmall)]+1 groups that uniformly span the set of logarithm matrix values
{log|ai j |}. In practice, we have observed that a number of the groups canbe empty so
that the entries ofA are distributed betweenngrp≤ mgrpnon-empty groups, which
we refer to asslots. We index the slots as 1 tongrp, with the entries of smallest
absolute value in slot 1 and those of largest absolute value in the slot with index
ngrp. How the initial levels are preassigned then depends on whether ℓ < ngrp or
ℓ ≥ ngrp.

Whenℓ < ngrpwe uniformly decrease the number of slots toℓ and set

ilev(i, j) =







[ki j /q] if mod(ki j ,q) = 0

min(l , [ki j /q]+1) otherwise
(3.1)

whereq = [ngrp/ℓ] andki j (1≤ ki j ≤ ngrp) is the index of the slot log|ai j | belongs
to. Thus the smallest entries may contribute to a single level of fill and the largest to
ℓ levels. Forℓ ≥ ngrp, we set

ilev(i, j) = ℓ− (ngrp−ki j), (3.2)

with ki j is as before. In this case, the largest entries again contribute toℓ levels of fill
while smaller entries contribute to fewer levels.
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Since we want to ensure very small entries ofA do not contribute to fill entries
in the sparsity pattern of̂L, for all entries that are smaller in absolute value than the
square root of machine precision multiplied by the entry of largest absolute value
belonging to the slot with index 1, we setilev(i, j) = −(n+1). This has the effect of
removing these small entries fromA during the symbolic factorization.

We will refer to the strategy we have described for preassigning the levels as
Strategy I. Having preassigned the levels, we can compute the sparsitypattern of
each column of̂L using a simple modification to Algorithm 1. In addition to inputting
ilev(i, j) for each nonzeroai j of A, the only modifications we need to make are replace
line 8 by the line

8new forall (unvisited j ∈ adj(i) with ilev(i, j) 6= −(n+1))

and to replace line 10 by the line

10new if ( j < k and length(i) < ilev(i, j)) then

Line 8new ensures very small entries that have been assigned an initial level of n+1
are skipped over while line 10newresults in entries withilev< ℓ potentially contribut-
ing to fewer levels of fill than they would in the original Hysom and Pothen algorithm.
We will refer to this variant of Algorithm 1 using either Strategy I or Strategy II (see
below) as themodified HP algorithm.

3.3 Strategy II

Numerical results for Strategy I show that setting initial levels so that small entries
contribute to fewer thanℓ levels of fill can be advantageous (see Section 5). However,
the gains are often small. To try and improve the effectiveness of the preconditioner
further, we have experimented with allowing the largest entries to contribute to more
than ℓ levels of fill. Recall that we distributed the set of logarithm matrix values
{log|ai j |} betweenmgrp= [log(mbig)− log(msmall)] + 1 ≥ ngrp groups. Letmi j

be the group thatlog|ai j | belongs to. Ifmi j ≥ ngrp, we set

ilev(i, j) = min(mi j ,ν ∗ ℓ) (3.3)

for someν > 1. Thus, the largest entries may contribute up to a maximum ofν ∗ ℓ
levels of fill and rather than being the maximum number of levels of fill allowed,ℓ be-
comes thetargetnumber of levels of fill, with small entries restricted to contributing
to fewer thanℓ levels of fill while the largest entries may contribute to more levels.
We will refer to this approach asStrategy II . Note thatmi j plays a similar role toki j

in Strategy I, but the two indices are generally different since they correspond to the
distribution of logarithm matrix values into different numbers of groups.

4 The IC(ℓ,τ,m) preconditioner

For general matrices that are not diagonally dominant, the size of an entry ofL is not
necessarily related to its level of fill. We therefore want a strategy that offers greater
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flexibility during the numerical factorization. Our basic approach will be to allow
entries outside the pattern predicted by the symbolic factorization to be included pro-
vided there is sufficient space available in the preconditioner and, optionally, all en-
tries must be greater in absolute value than a chosen toleranceτ. We will also drop
computed entries within the predicted pattern if they are too small.

The (modified) HP algorithm is first used to compute the numbernzl of entries in
the sparsity pattern of theIC(ℓ) incomplete factor̂L. Based on the storage available
for the preconditionerP, a memory multiplierm is then chosen. Ifm> 0, the number
of entries inP will be at mostm∗nzl; choosingm≤ 0 indicates there is no restriction
on the number of entries inP, which will be controlled only by the drop tolerance
τ. In the following subsections, we consider the possible choices form, with and
without a drop tolerance.

4.1 Special case:m= 1, τ = 0.0

In the special case in which no entries are dropped because oftheir size (τ = 0) and
the number of entries inP is equal tonzl, the sparsity pattern ofP is determined using
the (modified) HP algorithm, the entries of the original matrix A are copied into the
data structure forP and then a right-looking algorithm is used to compute the entries
of P. The resulting preconditioner is a classicalIC(ℓ) preconditioner if all entries of
A are allowed to contribute toℓ levels of fill.

4.2 m≥ 1

Choosingm> 1 (or m= 1 with τ > 0) allows entries outside the sparsity structure
of L̂ to be retained. We begin by allocating arrays for the values and row indices of
the entries ofP to be of size[m∗ nzl] and defineeroom= [(m− 1) ∗nzl] to be the
extra space that is not required byL̂. The sparsity pattern of̂L is determined using the
(modified) HP algorithm andP is initially given this sparsity pattern. The entries of
the original matrixA are copied into the data structure forP, leavingeroomlocations
free at the start of the arrays. Ifnzk is the number of entries in columnk of L̂, the
space provisionally assigned to columnk of P is spk = nzk + [eroom/n] (that is, the
spare locations are shared equally between the columns).

The incomplete factorization is computed one column at a time using a left-
looking algorithm. The entries within each column are always sorted by increasing
row index. This enables the strategy proposed in the Yale sparse package [18,19] to
be followed. This keeps track of the columns that are required to update the current
column using a simple linked list, which is updated after each major step of the left-
looking algorithm. As each column is computed, it is moved forward so that its first
entry occupies the first available location in the arrays holdingP. Any entries that are
smaller in absolute value thanτ are dropped as they are computed and not included
in P. Additional entries outside the sparsity pattern ofL̂ that was computed by the
symbolic factorization are permitted provided there is sufficient room to accommo-
date them and they are greater thanτ. If there is insufficient space to include all such
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additional entries, they are sorted and the largest are included inP. Conversely, if the
number of accepted entries for columnk is less thanspk, the spare space is added to
the spacespk+1 available for the next column. Note that ifτ = 0, memory is the only
criteria for dropping fill entries fromP.

4.3 0< m< 1

If 0 < m< 1, the number of entries in each columnk of P must, in general, be less
than the corresponding numbernzk in theIC(ℓ) incomplete factor̂L, and we therefore
need to decide how much space to initially assign to each column of P. We perform
a complete symbolic Cholesky factorizationA = LLT and compute the number of
entries in each column ofL. We then share out the[m∗nzl] entries allowed forP so
that the distribution for the individual columns is approximately proportional to the
column counts forL. We denote bynzpk the number of entries provisionally assigned
to columnk.

The incomplete factorization again proceeds column by column, using a left-
looking algorithm. The computation of columnk starts by computing the sparsity
pattern of columnk of L̂ using the (modified) HP algorithm. A temporary array of
sizenzk is allocated, initialised to zero and the entries of columnk of A then copied
into it. If nzk is greater than the spacespk available for columnk, the entries in the
temporary array are sorted and only thespk entries of largest absolute value are kept.

Candidate entries with absolute value less than the drop toleranceτ are not in-
cluded inP. If τ > 0, this may mean that, when columnk is processed, the final
number of entries that are retained is less than the space available for that column. In
this case, the spare spacesk is passed to the next column so that the space for column
k+1 becomesspk+1 = nzpk+1 +sk.

4.4 m< 0, τ 6= 0

We usem< 0 to indicate that there are no memory restrictions on the size of P and
entries are only dropped because of their size relative toτ. In this case, we perform
an incomplete factorization without distinguishing between entries inside the pattern
predicted by the symbolicIC(ℓ) factorization and those outside it. The storage re-
quirements are not predictable. We initially allocate arrays for the values and row
indices of the entries ofP to be of size max(2, |m|) ∗ nzl. If these arrays are subse-
quently found to be too small, we reallocate them with largersize (saving the already
computed columns using temporary arrays) and then continuethe incomplete factor-
ization. Reallocation can be needed more than once and failure only occurs if we do
not have sufficient memory available to successfully allocate larger arrays. The final
incomplete factorization depends only onτ (and not onℓ or m); we denote this by
IC(τ).
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4.5 Dropping strategies

The dropping strategy we use is absolute dropping so that a potential entry ofP is
dropped if its absolute value is less than the chosen tolerance τ. An alternative ap-
proach is relative dropping (see, for example, [40]). In this case, an entry is dropped
whenever its absolute value is less thanτ multiplied by some quantity that expresses
the average size of the computed entries. An appropriate choice for this might be
a norm of the computed column. Our preference is to use absolute dropping in in-
complete factorizations and this is used in the numerical experiments reported on in
Section 5. Both absolute and relative dropping have potential advantages and disad-
vantages. A drawback of relative dropping is that it can hidesignificant growth in
entries of the incomplete factor. This growth, which may result in a very unstable
preconditioner, can then be detected only numerically. However, for absolute drop-
ping the growth can be detected by monitoring the size of fill-in. We believe that
this may be more useful for future adaptive strategies. Another reason for offering
absolute dropping is that some problems can involve large and small entries that are
coupled by subtle properties of the physical model. This mayhappen, for example,
when solving shell problems from structural engineering (see, for example, [5]).

5 Numerical experiments

The numerical results reported in this section were performed on a single processor of
a 2-way quadcore Harpertown machine. All the software was written in Fortran; the
g95 compiler with option -O was used. The implementation of the conjugate gradient
algorithm offered by the HSL [23] routineMI22 was employed, with starting vector
x0 = 0, the right-hand side vectorb computed so that the exact solution wasx = 1,
and stopping criteria

‖Ax̂−b‖2 ≤ 10−6‖b‖2

wherex̂ is the computed solution. In addition, for each test we imposed a limit of 800
iterations.

We define theiteration countfor preconditonerP for a given problem to be the
number of iterations required by the iterative method usingthe preconditionerP to
achieve the requested accuracy and we define thepreconditioner sizeto be the number
of entriesnz(P) in the lower triangular part ofP.

While we are well aware that the number of entries in the preconditioner may
increase but its effectiveness decrease, in many practicalsituations, the mutual rela-
tion between the iteration count and preconditioner size provides an important insight
into the usefulness of an incomplete factorization preconditioner if we assume that
the following two important conditions are fulfilled:

1. the preconditioner is sufficientlyrobustwith respect to changes to the parameters
of the decomposition, such as with respect to the drop tolerance or number of
levels

2. the time required to compute the preconditioner growsslowlywith the problem
dimensionn.
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We define theefficiencyof P to be

iter×nz(P),

whereiter is the iteration count forP. Assuming the preconditionersPk (q = 1, . . . , r)
each satisfy the above conditions, we say that, for solving agiven problem,Pi is the
mostefficientof ther preconditioners if

iteri ×nz(Pi) ≤ min
q 6=i

(iterq×nz(Pq)).

We use this measure of efficiency in our numerical experiments.
Unless stated otherwise, all our test problems are real positive-definite matrices

of order at least 1000 taken from the University of Florida Sparse Matrix Collection
[14]. We took all such problems and then removed any that werediagonal matrices
and, where there was more than one problem with the same sparsity pattern, we chose
only one representative problem. This resulted in a test setof 147 problems of order
up to 1.5 million. In the tables of results,n denotes the order ofA; nz(L̂) is the number
of entries in the lower triangular part ofL̂ (measured in thousands);iter andeffic are
the iteration count and efficiency, respectively.

5.1 The effects of preassigning levels

In our first experiment, we look at the effects of preassigning levels of fill. Since we
want to isolate these effects from those caused by allowing additional memory and/or
using a drop tolerance during the numerical factorization,we restrict our attention
to the casem = 1, τ = 0.0 (see Subsection 4.1). To illustrate the potential benefits
of preassigning levels, we start by presenting results for problemcarsten3, which
arises from a finite-difference discretization of a Kohn–Sham equation of physical
chemistry in two dimensions (see [4]). The matrix dimensionis 250500 and it has
750998 nonzeros. In Figure 5.1, the number of iterations needed for CG to achieve
the requested accuracy as a function of the number of entriesin the incomplete factor
IC(ℓ,0,1) is presented forℓ = 1, . . . ,15, both with preassigning levels (using Strategy
II with ν = 2) and without preassigning levels (that is, standard constant levels). Asℓ
increases, the number of nonzeros increases and the number of iterations decreases.
We see that, for this example, the efficiency is consistentlyimproved by preassigning
the levels.

To assess the effect of preassigning the levels on a large setof problems, it is
convenient to use performance profiles [16]. A performance profile measures per-
formance of two or more preconditioners on a setT of problems. Letek,P be the
efficiency of using preconditionerP to solve problemk and define the efficiency per-
formance ratio to beratiok,P = ek,P/min{ek,Pi : for all Pi}. If the number of problems
in T is N, the efficiency performance profile

ρP(τ) = (1/N)|{k∈ T : ratiok,P ≤ τ}|

is the probability that an efficiency performance ratioratiok,P is within a factorτ of
the best possible ratio. For instance,ρP(1) gives the fraction of the test problems for
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Fig. 5.1 The effect of allowing variable levels for problemcarsten comparing preassigning (using Strat-
egy II) with standard level-based preconditioning (no preassigning) . Results are given forℓ = 1, . . . ,15.

which P is the most efficient preconditioner andρP(2) gives how oftenP can get re-
sults with an efficiency that is within twice that of the best preconditioner. The closer
ρP is to 1, the greater the probability that preconditionerP can solve all problems
from T .

For a fixed value ofℓ, for each problem we computed theIC(ℓ,0,1) precon-
ditioner with and without preassigning levels. Any problemfor which the resulting
preconditioned CG method failed to converge with Strategy Iand with Strategy II and
without preassigning levels was removed from the test setT (ℓ). Since the costs as-
sociated with computing and applying as well as storing anIC(ℓ,0,1) preconditioner
increase withℓ, we are normally interested in small values ofℓ. Here we consider
ℓ = 3 and useν = 2 for Strategy II. The setT (3) comprises 120 problems.

The efficiency performance profile forIC(3,0,1) is given in Figure 5.2. It is clear
that overall there is an advantage in preassigning levels. The improvement is often
modest, particularly for Strategy I and, in some instances,it is better not to preas-
sign levels. Unfortunately, we are currently unable to predict when this is the case.
Looking in more detail at the results for Strategy I, we find that in many examples
the number of iterations is the same as for not preassigning levels: the improvement
in efficiency comes from having fewer entries inL̂. Thus, as was our intention, Strat-
egy I improves the sparsity ofL̂ without reducing its quality as a preconditioner. The
achieved reduction in̂L will be particularly beneficial if the preconditioner is used
to solve more than one system. On the other hand, Strategy II can produce denser
preconditioners that require fewer iterations. Some examples that illustrate this are
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Fig. 5.2 Efficiency performance profile forIC(3,0,1).
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Fig. 5.3 Efficiency performance profile comparingIC(3,0,1) with Strategy II withIC(6,0,1) without
preassigning levels.
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given in Table 5.1. Withℓ = 3 andν = 2, Strategy II allows the largest entries to con-
tribute up to 6 levels of fill. In Figure 5.3, we compare this with IC(6,0,1) without
preassigning levels. We again see that preassigning levelsis advantageous.IC(6,0,1)
produces preconditioners with more entries than Strategy II with ℓ = 3 and, in some
cases,̂L can be significantly denser (and more expensive to compute and to apply).
Based on our findings, in the rest of the paper, we preassign levels.

Table 5.1 Results forIC(3,0,1) for a subset of our test set.n denotes the order ofA andnz(A) is the
number of entries in the lower triangular part ofA. nz(A) andnz(L̂) are in thousands.

Problem n nz(A) No preassigning Strategy I Strategy II
nz(L̂) iter nz(L̂) iter nz(L̂) iter

Boeing/msc01440 1440 23 76 12 76 12 86 5
Nasa/nasa2910 2910 88 236 18 235 17 352 5
Boeing/ct20stif 52329 1326 6704 73 6608 73 16591 23
Wissgott/parabolic fem 525825 2099 5926 299 5175 289 7968 244
DNVS/ship 003 121728 1949 17146 113 15625 110 37529 57

5.2 Memory control

In this section, we illustrate the importance and usefulness of the memory control
parameterm. We first consider a simple five-point discretization of the 2D Laplace
equation on a unit square with homogeneous Dirichlet boundary conditions using a
100× 100 grid. Formranging from 0.2 to 25, Figure 5.4 shows the dependence of the
number of iterations required for the convergence ofIC(1,0,m) on m and onnz(L̂).
We see that, asm increases, so too doesnz(L̂) while the number of iterations steadily
decreases. Note in particular that our strategy form< 1 yields IC-like precondition-
ers that have fewer entries than the initial level-based structure but that nevertheless
yield convergence. However, in practice, extreme values ofm (either very small or
very large values) are unlikely be useful. Smallm may require prohibitively many
iterations while largem may be infeasible from the memory point of view.

In Table 5.2, we present results forIC(ℓ,0,m) for a tougher problemHB/bcsstk17
from our test set. Withℓ = 1 we found it was necessary to setm to be greater than 2.7
to achieve convergence whilem= 5 gave a complete factorization. Thus results are
given form in the range 2.7 to 5 and, for comparison, we ranℓ = 0,1,2. We see that,
for fixed ℓ, asm increases so too doesnz(L̂) and, in general, the number of iterations
decreases. Note that ifℓ is increased to 3, for all the values ofm in the given range
nz(L̂) = 1596∗103 and a single iteration is required.

5.3 A comparison withIC(τ) and symmetricILUT (p,τ)

Tables 5.3 and 5.4 show results of experiments for problemTKK/tube1, a symmet-
ric positive-definite matrix that comes from solving thin shell problems in three-
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Fig. 5.4 The iteration count forIC(1,0,m) for the simple Laplace equation asm increases (left-hand plot)
or nz(L̂) increases (right-hand plot).

Table 5.2 Results for IC(ℓ,0,m) for ℓ = 0,1,2 and a range of values ofm applied to problem
HB/bcsstk17. nz(L̂) is in thousands.† indicates convergence not achieved.

m ℓ = 0 ℓ = 1 ℓ = 2
nz(L̂) iter nz(L̂) iter nz(L̂) iter

2.7 592 † 945 † 1271 11
2.75 603 † 966 23 1292 10
2.78 603 † 977 18 1303 10
2.8 614 † 988 33 1314 10
2.85 625 † 999 † 1336 10
2.9 636 † 1021 17 1358 9
3 657 † 1054 17 1412 8

3.1 679 † 1086 17 1455 8
3.15 691 † 1108 16 1477 7
3.2 701 † 1119 70 1499 7
3.25 712 † 1141 14 1520 6
3.3 723 † 1163 15 1553 4
3.5 767 † 1228 12 1596 1
4 876 † 1402 9 1596 1

4.3 942 71 1510 6 1596 1
4.5 985 26 1576 3 1596 1
5 1094 16 1597 1 1596 1

dimensional structural analysis. The matrix has dimension21498 and 459277 nonze-
ros. The first of these tables presents results forIC(ℓ,τ,1) with ℓ ranging from 4 to
15 and different drop tolerancesτ (smaller values ofℓ did not give convergence). We
see that for fixedℓ, using a small non-zero drop tolerance can reduce the numberof
entries inL̂ without adversely effecting its performance. The second table presents
results forIC(τ) (see Section 4.4). For this problem, to get convergence we found
that the drop tolerance needed to be approximately 5∗10−5 or less; by only varying



The importance of structure in incomplete factorization preconditioners 17

τ, it was not possible to achieve convergence withnz(L̂) less than 9.6∗106. This con-
trasts with the level-based preconditioner results in Table 5.3, where convergence was
achieved with significantly sparserL̂. A partial explanation is based on the fact that
the finite-element discretization of thin shell problems couples unknown displace-
ments and bending moments that strongly differ in magnitudes and this fact makes
the uni-parametric preconditionerIC(τ) difficult to tune. Note that forIC(τ) we tried
values of the drop toleranceτ greater than one. Such values are meaningful if there is
growth in the entries during the computation. In fact, checking sensitivity of the drop
tolerance against the number of dropped entries which reflects the growth factor can
be a tool for adaptive dropping schemes.

Table 5.3 Results forIC(ℓ,τ ,1) for a range of values ofℓ and small drop tolerancesτ applied to problem
TKK/tube1. nz(L̂) is in thousands.† indicates convergence not achieved.

τ = 0.0 τ = 10−10 τ = 10−8 τ = 10−7

ℓ nz(L̂) iter nz(L̂) iter nz(L̂) iter nz(L̂) iter

4 1654 520 1653 501 1639 506 1608 499
5 2188 283 2186 278 2158 313 2105 287
6 2863 223 2857 224 2800 197 2711 197
7 3705 159 3691 156 3584 158 3431 159
8 4662 † 4630 † 4458 744 4222 †

9 5628 † 5574 † 5322 † 4999 †

10 7383 230 7271 231 6835 204 6346 239
11 7624 325 7480 252 7030 261 6519 236
12 10532 158 10221 154 9344 123 8527 159
13 10588 135 10270 155 9386 139 8563 123
14 10612 135 10293 151 9405 139 8580 165
15 13667 83 13018 80 11619 61 10404 59

Table 5.4 Results forIC(τ) for a range of values of the drop toleranceτ applied to problemTKK/tube1.
nz(L̂) is in thousands.† indicates convergence not achieved.

τ nz(L̂) iter τ nz(L̂) iter

100 88 † 1e-2 14262 †

60 168 † 1e-3 16140 †

55 281 † 1e-4 9001 †

50 1458 † 5e-5 9649 471
45 2077 † 2e-5 9611 87
40 2253 † 1e-5 10050 18
10 4624 † 5e-6 10741 6
1 7151 † 1e-6 12451 2

1e-1 11565 † 0 21803 1

Comparing the results forIC(ℓ,τ,1) with those forIC(τ) demonstrates that incor-
porating a level-based strategy can lead to very different results. Furthermore, finding
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a suitableτ is both highly problem dependent and strategy dependent (IC(ℓ,τ,1) and
IC(τ) used differentτ), which means that it is hard to perform a unified comparison
on the kind of large test set that was reported on using performance profiles in Sec-
tion 5.1. To illustrate further the difficulties of choosingappropriate drop tolerances,
we compare our level-based strategyIC(ℓ,τ,1) with the symmetric dual parameter
ILUT (p,τ) preconditioner [39] for two of our test problems. Figure 5.3presents re-
sults for the thin shell problem Cylshell/s1rmt3m1 (n = 5489,nz= 112505). The
figure shows the dependence of the number of iterations required for the convergence
of IC(ℓ,0.5,1) with ℓ = 1,2, ...,15 and for the symmetricILUT (p,τ) preconditioner
with parameters varying from(78,9) to (120,0). Note that it was very difficult to
find parameters for whichILUT converged and these were found by repeated exper-
imentation. Similarly, Figure 5.3 shows results for the structural mechanics problem
Nasa/nasasrb problem (n = 54870,nz= 1366097). The behaviour ofIC(ℓ,100,1) is
shown forℓ in the range 5 and 15 (for smallerℓ convergence was not achieved) and
p,τ varying from(258,119) to (1000,0). Again, finding parameters that gave con-
vergence ofILUT (p,τ) was difficult. The superior performance of the level-based
approach is clear in both examples. This confirms our belief that starting the con-
struction of an efficient preconditioner by improving a relatively stable level-based
strategy may be a reasonable strategy.
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Fig. 5.5 Comparison ofILUT (p,τ) preconditioning with variable parameters andIC(ℓ,0.5,1) for problem
Cylshell/s1rmt3m1.

6 Concluding remarks

In this paper, we have presented a new strategy for computingan incomplete Cholesky
factorization preconditioner that is derived from the level-based approach. In partic-
ular, we have proposed new strategies for setting the levelsand then exploited the
sparsity structure computed during the symbolic factorization throughout the numer-
ical factorization. The numerical experiments confirmed that the proposed approach
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Fig. 5.6 Comparison ofILUT (p,τ) preconditioning with variable parameters andIC(ℓ,0,1) for problem
Nasa/nasasrb.

is viable and can be regarded as one step in improving basic incomplete factorization
preconditioning strategies. It is generally assumed that auniversal incomplete factor-
ization preconditioning strategy for all types of problemsis not possible, but there
still seems to be scope for improving the computational paradigms that we have.
Note that the scheme is easily extended to the nonsymmetric case, that is, for ILU
preconditioners. Symbolic procedures by Hysom and Pothen were, in fact, proposed
for the general nonsymmetric case. Nevertheless, it is wellknown that the resulting
preconditioned iterative methods can behave much more erratically. Because of this,
our next target will be first to embed our ideas into a more comprehensive scheme
that will exploit blocks, pivoting, efficient nonsymmetricreorderings, possibly also a
multilevel framework. We believe that these enhancements are necessary for getting
more consistent improvements and comparisons also in the nonsymmetric case.
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tions. Matematičeskij Sbornik51, 227–238 (1960)

14. Davis, T.A.: The University of Florida Sparse Matrix Collection. Technical Report, University of
Florida (2007).http://www.cise.ufl.edu/~davis/techreports/matrices.pdf

15. D’Azevedo, E., Forsyth, P., Tang, W.: Drop tolerance preconditioning for incompressible viscous flow.
Int. J. Comput. Math.44, 301–312 (1992)
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