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Abstract In this paper, we consider level-based preconditionindckvis one of the
basic approaches to incomplete factorization precomditgp of iterative methods.
It is well-known that while structure-based preconditicnean be very useful, ex-
cessive memory demands can limit their usefulness. Hereresept an improved
strategy that considers the individual entries of the systeatrix and restricts small
entries to contributing to fewer levels of fill than the lasgentries. Using symmet-
ric positive-definite problems arising from a wide range i&qtical applications, we
show that the use of variable levels of fill can yield incont@l€holesky factoriza-
tion preconditioners that are more efficient than thoseltiagufrom the standard
level-based approach. The concept of level-based pretomidg, which is based on
the structural properties of the system matrix, is thendsfiemed to the numerical in-
complete decomposition. In particular, the structure efittcomplete factorization
determined in the symbolic factorization phase is exfjicised in the numerical fac-
torization phase. Further numerical results demonsthateotur level-based approach
can lead to much sparser but efficient incomplete factaomatreconditioners.
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1 Introduction

Incomplete Cholesky factorizations are an important toothie solution of large
sparse symmetric linear systems of equatidrs= b. Preconditioners based on an
incomplete factorization oA (that is, a factorization in which some of the fill entries
and possibly some of the entriesifre ignored) fall into three main classes:

() Threshold-basetC (1) methods in which the locations of permissible fill entries
are determined in conjunction with the numerical factdi@aof A; entries of
the computed factors that exceed a prescribed threghaté dropped. Success
of this approach depends on being able to choose a suitadiie this is highly
problem dependent.

(i) Memory-basedC(m) methods in which the amount of memory available for the
incomplete factorization is prescribed and only the larrgagries in each column
are retained.

(iii) Structure-basediC(¢) methods in which an initial symbolic factorization phase
determines the location of permissible fill entries usintydhe sparsity pattern
of A. Each potential fill entry is assigned a level and an entrynly permitted
in the factor if its level is at most. This kind of fixed fill strategy allows the
memory requirements to be determined before the secone piasperforms an
incomplete numerical factorization.

Many refinements, variants and hybrids of the above appesdthve been proposed
and used to solve problems from a wide range of applicatieasarin Section 2,
we provide a brief historical overview and highlight somethad important develop-
ments in the field over the past 50 years. We are interestddlictisre-based incom-
plete factorization preconditioners that have both ptattie memory requirements
and depend on the entries Af We propose a general class of methods based on
computing an incompleteDL" factorizationlC(¢, T,m), where the factoL is unit
lower triangular and is diagonal/ > 0 is the target number of levels of filt, is

a drop tolerance aneh controls the maximum number of entries allowed in the fac-
tor. In Section 3, we introduce a modification to the standewdl-based approach.
Rather than allowing all the non-zero entriesfofo contribute to/ levels of fill, we
restrict small entries to contributing to fewer levels atidva the largest entries to
contribute to more thah levels. We explain how this variable level approach can be
implemented using a minor change to an existing algorithradnputing a symbolic
incomplete factorization. Then, in Section 4, we considangferring the structure of
the symbolic incomplete factorization to the numericatdaization, allowing extra
entries outside the symbolic pattern if sufficient memoraailable and the entries
are large enough. Numerical results that illustrate thecéiffeness of our proposed
level-based strategy for practical applications are preskin Section 5 and, finally,
some concluding remarks are made in Section 6.

2 Background

Sparsity structure was the main ingredient of the first algietpreconditioners that
were developed in the late 1950s. At that time, the spartitgtsire essentially ex-
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pressed the stencils for discretized partial differemiplations on structured grids. In
particular, the EBM-2 method of Buleev [12] interpolatedines of the function at a
grid point using a combination of the function values at hbiguring grid points. The
solution process was accelerated by additional pararagtizderived from smooth-
ness assumptions. The resulting system expressed whatlwewathe precondi-
tioned system of equations, in which the preconditioner eieectly combined with
the system matrix. The method was generalized to stendilthfee dimensional
problems in [13]. An independent derivation and its intetation as an incomplete
factorization (that is, a factorization in which some of fileentries are ignored) for
a matrix from a simple 5-point stencil was given by Varga [&2&e also [3,34]). Note
that [42] is also well-known for introducing the concept efular splittings. Further
early developments included additional corrections tedttb heavily parametrized
procedures and included more complicated stencils. Latedifications of the in-
terpolation that implicitly expressed incomplete decosifions were proposed to
change in individual steps of the iterative procedure [AL].overview of the early
procedures and the motivations behind them may be foundif2[3.

Further developments for incomplete factorizations ideldi their classification
by the order (first or second order) of the polynomial defirtimg interpolation on
the grid points, extensions to larger stencils, and theldpweent of early matrix for-
mulations and existence criteria for breakdown-free fazations. The key relation
that has been gradually better understood is that betwepaikinultiplications, local
interpolation and extrapolation on a grid, and the comloinak elimination process
(that is, the elimination process based on a graph strycture

The real breakthrough in the practical use of preconditignising an incom-
plete factorization came with two important papers. Rirdteijerink and van der
Vorst [31] recognised the importance of preconditioningtfee conjugate gradient
method. This paper also implied an understanding of thei@rtmle of the separate
computation of the incomplete factorization as well as geizing the possibility of
prescribing the sparsity structure of the preconditioneallowing additional diago-
nals. Discussing the sparsity structure in the form of died®was very natural since
simple matrix stencils typically restrict nonzeros to a fdimgonals [21,32]. The
other key paper that helped to popularize incomplete fattions was that of Ker-
shaw [29]. Kershaw introduced the idea of locally replag@ivgts by a small positive
number to prevent breakdown of the factorization, and tdstthe way to incomplete
factorizations in which dropping is based solely on the sizéhe computed entries
[1,2] (see also the detailed experimental results in [35]).

The hierarchy of sparsity structures that can be prescfifreidcomplete factor-
izations of general matrices was introduced by Watts in 148]. Since that time,
the notatiodC(¢) for an incomplete Cholesky factorization (or, for geneyaitems,
ILU (¢)) based on the concept of levels of fill that we discuss in 8a@&j has become
commonplace. It was soon realised that althol@fi) can be a significant improve-
ment ovedC(0) (that is, an appropriate iterative method preconditiorsdgiC(1)
generally requires fewer iterations to achieve the regeatcuracy thaifiC(0)),
the fill-in resulting from increasing can be prohibitive in terms of both storage re-
guirements and time to compute and then apply the precondit{see, for example,
[17]). Moreover, the amount of fill-in is difficult to predicit is easy to explain this
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increase in density witld since, while entries of the error matx— LLT (wherelL

is the exact Cholesky factor) are zero inside the presciipagsity pattern, outside
they can be very large, and the pattern@f¢) (even for large’) may not adequately
represent the pattern &f The error can be particularly large for matrices in which
the entries do not decay significantly with distance fromdfregonal. D’Azevedo,
Forsyth, Tang [15] started to solve the problem by combitivegapproach by levels
with dropping by values. Other early global tools to coridr@pping by values were
introduced by Munksgaard [33], who tried to get the fill-imeei close to that of the
exact decomposition by dynamic changes in the drop toleranc

Around the same time, an important strategy based on contpiriopping en-
tries by value with keeping a prescribed number of the ldrgesies was proposed
[20]. A columnwise algorithm based on a similar concept wassented by Jones
and Plassmann [28]. They retain thelargest entries in the strictly lower triangular
part of thel —th column ofL, wheren, is the number of entries in the-th column of
the strictly lower triangular part o&k. Another approach that has predictable storage
requirements and depends on the matrix entries is the deshbld LU T (p, T) fac-
torization of Saad [39]. A drop toleraneés used to drop all entries in the computed
factors that are smaller thay, wherert; is the product off times thel,-norm of the
[—th row of A. Additionally, only thep largest entries in each column bfand row
of U are retained. For general unsymmetric matri¢es, T (p, 7) has proved very
popular but note that it ignores symmetryAnand, if A is symmetric, the sparsity
patterns oL andU T will normally be different.

The algorithm of Lin and Moré [30] for symmetric matricesnai to exploit the
best features of the Jones and Plassmann factorizatiomahdtT (p, 1) factoriza-
tion of Saad. This approach retains ther p largest entries in the lower triangular
part of thel —th column ofL (p is a chosen memory parameter) and uses only mem-
ory as the criterion for dropping entries (thus having theaadage of not requiring
a drop tolerance). The reported results of Lin and Moré dogé-scale trust region
subproblems indicate that allowing additional memory advstantially improve per-
formance on difficult problems.

Recently, a new strategy was developed by Bollhofer andl $&9]. Here the
dropping is relative to the estimated norms of the rows aahans of the factors of
the inverse matrix. They have shown both theoretically (bstyrbation arguments)
and experimentally that preconditioners based on thisegfyaare very reliable. Ex-
tended dropping of this kind that mutually balances direat mverse factors has
been introduced in the last few years by Bru, Marin, Mas, Eimeha [10]; see also
their comparison of recent incomplete factorization sche1].

These later approaches do not take into account the steucfuhe levels. One
reason for this is that, as already observed, the structane fith in quickly as ¢
increases and, importantly, until relatively recently &iswmnot clear how this struc-
ture could be computed efficiently, especially for largeh significant advancement
came with the work of Hysom and Pothen [25] (see also [24]gyTdescribe the rela-
tionship between level-based factorizations and lendtfis paths and propose a fast
method of efficiently computing the sparsity pattern®f¢) (andILU (¢)) factoriza-
tions, opening the way to the further development of stmechased preconditioners.



The importance of structure in incomplete factorizatioaganditioners 5

Among recent results, the usefulness of level-based pdithmmers in parallel
computing environments was emphasised in [24]. Their efficy in the context of
a Newton-Krylov method was shown in [6, 36]. Efficiency of tkdevel-based pre-
conditioners is illustrated in [22].

The main goal of this paper is to show that sparsity strugilags an important
role in incomplete factorization preconditioners. White tprogress that has been
achieved in the field of incomplete factorization precoiodiérs is substantial, we
strongly believe that constructing such preconditiongrsdmsidering only the size of
the entries, possibly complemented by limits on the ovenalinory or on the number
of additional entries, has important limitations. We arespaded that to increase
robustness we need to use other available tools. In paticwe need to exploit
the sparsity structure of the factors. As mentioned abdwework of Hysom and
Pothen offers relatively cheap tools for computing levasdd factorizations. These
are sufficiently general to allow changes to the generategiyaof the level-based
approach. We propose one possible generalization. Thetteuof levels that we
obtain represents a symbolic incomplete factorization.

Furthermore, we believe that it can be necessary to comhadécomposition
by levels with a dropping strategy based on the magnitudestoies. Our approach
starts with the level-based structure obtained by the syimimeomplete factoriza-
tion. We then use two additional parameters: a memory migiti;n and a drop tol-
erancer. The memory multiplier determines the maximum memory afldvior the
preconditioner in terms of the incomplete factor size cotaegiy the symbolic fac-
torization. Any additional memory is predistributed to thdividual columns of the
final factor. The drop tolerance is then used to decide whetheentry should be
dropped or kept in the factor. The implementation keepskteaparately of the en-
tries inside the structure returned by the symbolic faztdidon and those outside it.
Entries that are removed either from the symbolic structurérom the additional
space available ifn> 1 provides further space for the incomplete factor. Theildeta
are explained in Section 4. By using a combination of thegeagzhes, our aim is
to obtain an incomplete factorization that retains somaefflobal characteristics of
the full factorization. and provides a good preconditioner

3 Variable levels of fill in an IC(¢) preconditioner

In this section, we briefly recall the concept of levels ofifillan incomplete matrix
factorization and summarise the approach of Hysom and Rq¢#td for efficiently
performing a symboli¢C(¢) factorization. We then propose a simple generalization
that encourages the dropping of small entries from the indeta factorization by
preassigning small entries an initial level greater than 0 and we explain how our
modification can be incorporated into the symbolic facttian. We use the notation

L = {lij} to denote the complete factor AfandL = {ﬂj} to denote an incomplete
factor.
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3.1 The incomplete fill path theorem and symb@i¢¢) factorization

It is convenient to use some basic concepts and notation §i@ph theory. The
pattern of a sparse symmetric matAx= {a;j } of ordern can be represented by an
undirected grap¥ = (V, E) with verticesv = {1,...,n} and edge&. An edge{i, j}
is present irk if and only if a;; # 0 andi # j. Verticesi andj in V areneighbours
(or areadjacentto each other) if edgéi, j} € E. Theadjacency sefor i is the set of
its neighbours, that is,

adjli)={j|j<ii,jeV}
where we use the notatidn— | to denote that and j are neighbours. Aath of
lengthk in ¢ is an ordered set of distinct verticeg, vy, . .., Vk, Vk+1), With Vi < Vi1
(1 <i<Kk). Apathin¥ connecting verticesandj is afill path if the index of each
of the intermediate vertices is less tham(i, ).

An important result that characterizes the fill in the cortgfactor ofA is thefill
paththeorem of Rose, Tarjan and Lueker [37,38]. This stateslthat non zero if
and only if there is a fill path connectingndj in 4.

Two rules appear in the literature for assigning levels tefitries, referred to as
the sumrule [15] and themaxrule [21]. Following the work of Hysom and Pothen
[25], we use the more common sum rule, which states thatesndfithe factor that
correspond to nonzero entries Afare assigned the level 0 while each potential fill
entry is assigned a level

level(i, j) = lggrrgq&gﬁyj}{level(ul) +level(l, j)+1}.

That is, a level is assigned that is one more than the sum deteds of the two
causative entries. Afill entry is permitted in the incomeligtctor providedievel(i, j) <
L.

Theincomplete fill pattheorem of Hysom and Pothen [25] states that, if the sum
rule is usedjevel(i, j) = ¢ if and only if there exists a shortest fill path of length
¢+ 1 joiningi and j in 4. Hysom and Pothen use this result to develop the scheme
outlined in Algorithm 1 for computing the sparsity patteffracsingle column of the
incomplete factok.. The procedure uses a breadth first search that finds a stpaties
between vertek and vertices reachable frokvia a traversal of at mogt+ 1 edges.

A key feature is that the structure of each columf ofin be computed independently
(and hence in parallel). Note that since the number of entnie@ach column of is
not known initially, Algorithm 1 may first be used with line Id@nitted and then
repeated after allocating the adjacencyauiajf(k) for columnk of L to have sizenz,.

3.2 Preassigning levels: Strategy |

It is convenient to defindev(i, j) to be the number of levels of fill to which each
nonzero entry;j of Amay contribute. In a standat@(¢) algorithmiilev(i, j) is set to

¢ for each nonzera;j. To try and ensure that small entries contribute to feweglkev
of fill in the incomplete factorization than larger entriéise approach we propose
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Algorithm 1 SymboliclC(¢) factorization: computes the sparsity pattern of column
k of L. The row indices of the entries in colurkrare returned iradj/(k) andnz is
the number of such entriglengthis an array of size.

1 Input: ¢, ¢ andk.

2 Initialise: initialise the queue to hold onl;
3 flagk as visited;

4 setlength(k) = 0 andnz, = 0.

5 do

6 if (the queue is emptygxit

7 takei from the queue

8 forall (unvisitedj € adj(i))

9 flag j as visited

10 if (j < kandlength(i) <) then
11 addj to the queue

12 setlength(j) =length(i) +1
13 else if(j > i) then

14 nZ =nz+1

15 addj to adj (k)

16 end if

17 end forall

18 end do

preassignslev(i, j) for each entry ofA individually to have an integer value that
depends offa;j|.

We begin by computing the absolute values of the smallestagédst nonzero
entries ofA, which we denote bynsmalland mbig, respectively. We then take the
logarithm of each nonzete;; | and distribute these between thgr p= [log(mbig) —
log(msmall] + 1 groups that uniformly span the set of logarithm matrix eslu
{log|a;j|}. In practice, we have observed that a number of the grouplse&ampty so
that the entries oA are distributed betweeamgrp < mgrpnon-empty groups, which
we refer to asslots We index the slots as 1 tagrp, with the entries of smallest
absolute value in slot 1 and those of largest absolute valubd slot with index
ngrp. How the initial levels are preassigned then depends onhghét< ngrp or
£>ngrp.

When{ < ngrpwe uniformly decrease the number of slotd tand set

[kij /a if mod (kij,q) =0
ilev(i,j) = (3.1)
min(l, [kij /q] + 1) otherwise

whereq = [ngrp//] andk;; (1 < kij < ngrp) is the index of the slot log; | belongs

to. Thus the smallest entries may contribute to a singld i@l and the largest to
¢ levels. For¢ > ngrp, we set

ilev(i, j) :g_(ngrp_kll)a (3.2)

with kij is as before. In this case, the largest entries again coigrtb/ levels of fill
while smaller entries contribute to fewer levels.



8 Jennifer Scott, Miroslav Tima

Since we want to ensure very small entriesAafio not contribute to fill entries
in the sparsity pattern df, for all entries that are smaller in absolute value than the
square root of machine precision multiplied by the entryasfjést absolute value
belonging to the slot with index 1, we s&v(i, j) = —(n+1). This has the effect of
removing these small entries frofnduring the symbolic factorization.

We will refer to the strategy we have described for preassgthe levels as
Strategy |. Having preassigned the levels, we can compute the spaaitgrn of
each column of using a simple modification to Algorithm 1. In addition to irting
ilev(i, j) for each nonzera;; of A, the only modifications we need to make are replace
line 8 by the line

8new forall (unvisitedj € adj(i) with ilev(i, j) # —(n+1))
and to replace line 10 by the line
10hew if (j <kandlengthi) <ilev(i, j)) then

Line 8,ew ensures very small entries that have been assigned an lienghof n+ 1
are skipped over while line }@yresults in entries witilev < ¢ potentially contribut-
ing to fewer levels of fill than they would in the original Hys@and Pothen algorithm.
We will refer to this variant of Algorithm 1 using either Stegy | or Strategy |l (see
below) as thenodified HP algorithm

3.3 Strategy Il

Numerical results for Strategy | show that setting initeléls so that small entries
contribute to fewer thadlevels of fill can be advantageous (see Section 5). However,
the gains are often small. To try and improve the effectigsred the preconditioner
further, we have experimented with allowing the largestieato contribute to more
than ¢ levels of fill. Recall that we distributed the set of loganithmatrix values
{log|aj|} betweenmgrp= [log(mbig) — log(msmal)] + 1 > ngrp groups. Letm;

be the group thdbg|a;j| belongs to. limy; > ngrp, we set

ilev(i, j) = min(myj, v «?) (3.3)

for somev > 1. Thus, the largest entries may contribute up to a maximum:of
levels of fill and rather than being the maximum number oflewéfill allowed, £ be-
comes theargetnumber of levels of fill, with small entries restricted to tdiouting
to fewer thar¥ levels of fill while the largest entries may contribute to mdevels.
We will refer to this approach &Strategy Il. Note thatm; plays a similar role tdy;

in Strategy I, but the two indices are generally differentsithey correspond to the
distribution of logarithm matrix values into different nimers of groups.

4 ThelC(¢, 1, m) preconditioner

For general matrices that are not diagonally dominant,iteecf an entry oL is not
necessarily related to its level of fill. We therefore wantrategy that offers greater
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flexibility during the numerical factorization. Our basipmoach will be to allow
entries outside the pattern predicted by the symbolic fazztion to be included pro-
vided there is sufficient space available in the precomiéti@nd, optionally, all en-
tries must be greater in absolute value than a chosen toleraive will also drop

computed entries within the predicted pattern if they acesimall.

The (modified) HP algorithm is first used to compute the numizkof entries in
the sparsity pattern of th€(¢) incomplete factoi.. Based on the storage available
for the preconditionelP, a memory multipliemis then chosen. Ifn > 0, the number
of entries inP will be at mostm= nzl; choosingm < 0 indicates there is no restriction
on the number of entries iR, which will be controlled only by the drop tolerance
1. In the following subsections, we consider the possiblead®form, with and
without a drop tolerance.

4.1 Special casen=1,7=0.0

In the special case in which no entries are dropped becaubkeiokize § = 0) and
the number of entries iR is equal tanzl, the sparsity pattern ¢f is determined using
the (modified) HP algorithm, the entries of the original mat are copied into the
data structure foP and then a right-looking algorithm is used to compute theent
of P. The resulting preconditioner is a classit@l(¢) preconditioner if all entries of
A are allowed to contribute tblevels of fill.

42m>1

Choosingm > 1 (orm= 1 with T > 0) allows entries outside the sparsity structure
of L to be retained. We begin by allocating arrays for the valuesraw indices of
the entries oP to be of sizelmx« nzl] and defineeroom= [(m— 1) «x nzl] to be the
extra space that is not required byThe sparsity pattern dfis determined using the
(modified) HP algorithm an@ is initially given this sparsity pattern. The entries of
the original matrixA are copied into the data structure farleavingeroomlocations
free at the start of the arrays. iz is the number of entries in coluninof L, the
space provisionally assigned to colukof P is spc = nz + [eroonyn| (that is, the
spare locations are shared equally between the columns).

The incomplete factorization is computed one column at & timing a left-
looking algorithm. The entries within each column are alsvagrted by increasing
row index. This enables the strategy proposed in the Yalesssepzackage [18,19] to
be followed. This keeps track of the columns that are requiveupdate the current
column using a simple linked list, which is updated afterheajor step of the left-
looking algorithm. As each column is computed, it is moveahiard so that its first
entry occupies the first available location in the arrayslimgfP. Any entries that are
smaller in absolute value thanare dropped as they are computed and not included
in P. Additional entries outside the sparsity pattern_ahat was computed by the
symbolic factorization are permitted provided there idisignt room to accommo-
date them and they are greater thraif there is insufficient space to include all such
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additional entries, they are sorted and the largest araded inP. Conversely, if the
number of accepted entries for coluikis less tharspy, the spare space is added to
the spacep 1 available for the next column. Note thatrif= 0, memory is the only
criteria for dropping fill entries fron®.

430<m<1

If 0 < m< 1, the number of entries in each colukief P must, in general, be less
than the corresponding numbre in thelC(¢) incomplete factokt, and we therefore
need to decide how much space to initially assign to eachuolef P. We perform

a complete symbolic Cholesky factorizatién= LLT and compute the number of
entries in each column df. We then share out thenx nzl] entries allowed foP so
that the distribution for the individual columns is apprmmstely proportional to the
column counts fot.. We denote byzp the number of entries provisionally assigned
to columnk.

The incomplete factorization again proceeds column byroaluusing a left-
looking algorithm. The computation of colunknstarts by computing the sparsity
pattern of columrk of L using the (modified) HP algorithm. A temporary array of
sizenz is allocated, initialised to zero and the entries of colutmi A then copied
into it. If nz is greater than the spasg, available for columrk, the entries in the
temporary array are sorted and only 8y entries of largest absolute value are kept.

Candidate entries with absolute value less than the drepaieter are not in-
cluded inP. If T > 0, this may mean that, when colunkris processed, the final
number of entries that are retained is less than the spaiatdedor that column. In
this case, the spare spages passed to the next column so that the space for column
k+ 1 becomesp 1 =Nz 1 + -

44m<0,7#0

We usem < 0 to indicate that there are no memory restrictions on the i and
entries are only dropped because of their size relative to this case, we perform
an incomplete factorization without distinguishing bednentries inside the pattern
predicted by the symbolitC(¢) factorization and those outside it. The storage re-
qguirements are not predictable. We initially allocate gsréor the values and row
indices of the entries d? to be of size maf2,|m|) = nzl. If these arrays are subse-
guently found to be too small, we reallocate them with lagiee (saving the already
computed columns using temporary arrays) and then contireui@complete factor-
ization. Reallocation can be needed more than once anddaihly occurs if we do
not have sufficient memory available to successfully atle¢arger arrays. The final
incomplete factorization depends only or{and not on/ or m); we denote this by
IC(1).
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4.5 Dropping strategies

The dropping strategy we use is absolute dropping so thatempal entry ofP is
dropped if its absolute value is less than the chosen tateranAn alternative ap-
proach is relative dropping (see, for example, [40]). I tase, an entry is dropped
whenever its absolute value is less tlramultiplied by some quantity that expresses
the average size of the computed entries. An appropriateetior this might be
a norm of the computed column. Our preference is to use atesdtopping in in-
complete factorizations and this is used in the numericpédarments reported on in
Section 5. Both absolute and relative dropping have patkadivantages and disad-
vantages. A drawback of relative dropping is that it can Hmificant growth in
entries of the incomplete factor. This growth, which mayutes a very unstable
preconditioner, can then be detected only numerically. él@ for absolute drop-
ping the growth can be detected by monitoring the size ofrfilMe believe that
this may be more useful for future adaptive strategies. A@oteason for offering
absolute dropping is that some problems can involve lardesarall entries that are
coupled by subtle properties of the physical model. This megypen, for example,
when solving shell problems from structural engineerireg(dor example, [5]).

5 Numerical experiments

The numerical results reported in this section were peréoron a single processor of
a 2-way quadcore Harpertown machine. All the software wasemrin Fortran; the
g95 compiler with option -O was used. The implementatiomefdonjugate gradient
algorithm offered by the HSL [23] routingI22 was employed, with starting vector
Xo = 0, the right-hand side vectércomputed so that the exact solution was 1,
and stopping criteria

IAZ— b < 10°9]|b]|2

wherexis the computed solution. In addition, for each test we ingdaslimit of 800
iterations.

We define thdteration countfor preconditoneP for a given problem to be the
number of iterations required by the iterative method ushegpreconditioneP to
achieve the requested accuracy and we definprdfmnditioner sizéo be the number
of entriesnz(P) in the lower triangular part dp.

While we are well aware that the number of entries in the prditmner may
increase but its effectiveness decrease, in many prasttcations, the mutual rela-
tion between the iteration count and preconditioner sip&ides an important insight
into the usefulness of an incomplete factorization predanter if we assume that
the following two important conditions are fulfilled:

1. the preconditioner is sufficienttpbustwith respect to changes to the parameters
of the decomposition, such as with respect to the drop toterar number of
levels

2. the time required to compute the preconditioner grelesily with the problem
dimensiom.
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We define theefficiencyof P to be
iter x nz(P),

whereiter is the iteration count foP. Assuming the preconditionelz (= 1,...,r)
each satisfy the above conditions, we say that, for solvigiyan problemp, is the
mostefficientof ther preconditioners if

iter; x nz(R) < msln(iterq x nzPy)).
gl

We use this measure of efficiency in our numerical experisient

Unless stated otherwise, all our test problems are reatip®slefinite matrices
of order at least 1000 taken from the University of FloridaSe Matrix Collection
[14]. We took all such problems and then removed any that di&gonal matrices
and, where there was more than one problem with the sametggetiern, we chose
only one representative problem. This resulted in a testfsb47 problems of order
up to 1.5 million. In the tables of resultsdenotes the order &; nz(L) is the number
of entries in the lower triangular part bf(measured in thousandsker andeffic are
the iteration count and efficiency, respectively.

5.1 The effects of preassigning levels

In our first experiment, we look at the effects of preassigiavels of fill. Since we
want to isolate these effects from those caused by allowddgianal memory and/or
using a drop tolerance during the numerical factorizatiea,restrict our attention
to the casen= 1, T = 0.0 (see Subsection 4.1). To illustrate the potential benefits
of preassigning levels, we start by presenting results foblemcarsten3, which
arises from a finite-difference discretization of a Kohna@hequation of physical
chemistry in two dimensions (see [4]). The matrix dimend®A50500 and it has
750998 nonzeros. In Figure 5.1, the number of iterationsie@édéor CG to achieve
the requested accuracy as a function of the number of emtriee incomplete factor
IC(¢,0,1) is presented fof = 1,...,15, both with preassigning levels (using Strategy
Il with v = 2) and without preassigning levels (that is, standard eoi$¢vels). AY
increases, the number of nonzeros increases and the nufriterations decreases.
We see that, for this example, the efficiency is consistemntfyroved by preassigning
the levels.

To assess the effect of preassigning the levels on a largef ggbblems, it is
convenient to use performance profiles [16]. A performanodilp measures per-
formance of two or more preconditioners on a $etof problems. Letgp be the
efficiency of using preconditionétto solve problenk and define the efficiency per-
formance ratio to beatiox p = e p/ min{ecp : for all R}. If the number of problems
in 7 is N, the efficiency performance profile

pp(T) = (1/N){ke 7 :ratiogp < T}|

is the probability that an efficiency performance ratbioy p is within a factorr of
the best possible ratio. For instanpe(1) gives the fraction of the test problems for
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Fig. 5.1 The effect of allowing variable levels for problesarsten comparing preassigning (using Strat-
egy Il) with standard level-based preconditioning (no psagning) . Results are given fée=1,...,15.

which P is the most efficient preconditioner apg(2) gives how ofterP can get re-
sults with an efficiency that is within twice that of the bestgonditioner. The closer
pp is to 1, the greater the probability that preconditioReran solve all problems
from 7.

For a fixed value of, for each problem we computed th€(¢,0,1) precon-
ditioner with and without preassigning levels. Any probléamwhich the resulting
preconditioned CG method failed to converge with Strateagyd with Strategy Il and
without preassigning levels was removed from the test3@t). Since the costs as-
sociated with computing and applying as well as storin¢gCGyi, 0, 1) preconditioner
increase with¢, we are normally interested in small values/foHere we consider
¢ =3 and usey = 2 for Strategy Il. The set” (3) comprises 120 problems.

The efficiency performance profile f6€(3,0,1) is given in Figure 5.2. Itis clear
that overall there is an advantage in preassigning levdis.improvement is often
modest, particularly for Strategy | and, in some instanitds, better not to preas-
sign levels. Unfortunately, we are currently unable to predhen this is the case.
Looking in more detail at the results for Strategy I, we findttln many examples
the number of iterations is the same as for not preassigriredd: the improvement
in efficiency comes from having fewer entrieslinThus, as was our intention, Strat-
egy | improves the sparsity &fwithout reducing its quality as a preconditioner. The
achieved reduction i will be particularly beneficial if the preconditioner is ase
to solve more than one system. On the other hand, Strate@nlpooduce denser
preconditioners that require fewer iterations. Some ejxasnhat illustrate this are
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05} ° 4
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Fig. 5.2 Efficiency performance profile fdC(3,0,1).
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—— IC(3,0,1) with Strategy I
02f

1C(6,0,1), no preassigning

Fig. 5.3 Efficiency performance profile comparing(3,0,1) with Strategy Il withIC(6,0,1) without
preassigning levels.
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given in Table 5.1. Witlf = 3 andv = 2, Strategy Il allows the largest entries to con-
tribute up to 6 levels of fill. In Figure 5.3, we compare thigwiC(6,0,1) without
preassigning levels. We again see that preassigning levadtvantageousC(6,0,1)
produces preconditioners with more entries than Strategith £ = 3 and, in some
cases|. can be significantly denser (and more expensive to computécaapply).
Based on our findings, in the rest of the paper, we preassigisle

Table 5.1 Results forlC(3,0,1) for a subset of our test set.denotes the order ok andnzA) is the
number of entries in the lower triangular partAfnz(A) andnz(L) are in thousands.

Problem n nzA) | No preassigning| Strategy | Strategy Il

nzl) | iter | nzL) | iter | nzL) | iter

Boeing/msc01440 1440 23 76 12 76 12 86 5
Nasa/nasa2910 2910 88 236 18 235 17 352 5
Boeing/ct20stif 52329 | 1326 | 6704 73| 6608 | 73| 16591 | 23
Wissgott/parabolic_fem | 525825 | 2099 5926 299 5175 | 289 7968 | 244
DNVS/ship_003 121728 | 1949 | 17146 113 | 15625 | 110 | 37529 57

5.2 Memory control

In this section, we illustrate the importance and usefidradsthe memory control
parametem. We first consider a simple five-point discretization of th2 [2aplace
equation on a unit square with homogeneous Dirichlet boynclanditions using a
100x 100 grid. Fomranging from 0.2 to 25, Figure 5.4 shows the dependence of the
number of iterations required for the convergencéaifl, 0,m) on mand onnz(L).
We see that, asincreases, so too doag(L) while the number of iterations steadily
decreases. Note in particular that our strategynict 1 yields IC-like precondition-
ers that have fewer entries than the initial level-baseadtgire but that nevertheless
yield convergence. However, in practice, extreme valuas ¢dither very small or
very large values) are unlikely be useful. Snmalimay require prohibitively many
iterations while largen may be infeasible from the memory point of view.

In Table 5.2, we presentresults 1@(¢,0,m) for a tougher probleriB/bcsstk17
from our test set. Witli = 1 we found it was necessary to seto be greater than 2.7
to achieve convergence white= 5 gave a complete factorization. Thus results are
given formin the range 2.7 to 5 and, for comparison, we £an0,1,2. We see that,
for fixed ¢, asmincreases so too doeg(L) and, in general, the number of iterations
decreases. Note thatdfis increased to 3, for all the values wfin the given range
nz(L) = 1596« 10° and a single iteration is required.

5.3 A comparison withC(1) and symmetri¢LUT (p, T)

Tables 5.3 and 5.4 show results of experiments for prolllkky tube1, a symmet-
ric positive-definite matrix that comes from solving thineihproblems in three-
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Fig. 5.4 The iteration count folC(1,0,m) for the simple Laplace equation asncreases (left-hand plot)
ornz(L) increases (right-hand plot).

Table 5.2 Results forlIC(£,0,m) for £ =0,1,2 and a range of values ah applied to problem
HB/bcsstk17. nZ(L) is in thousands} indicates convergence not achieved.

m (=0 (=1 =2
nzl) | iter | nzl) | iter | nzD) | iter
2.7 592 T 945 T 1271 | 11
2.75 603 T 966 | 23 1292 | 10
2.78 603 T 977 | 18 1303 | 10
2.8 614 T 988 | 33 1314 | 10
2.85 625 T 999 T 1336 | 10
2.9 636 T 1021 | 17 1358 9
3 657 T 1054 | 17 1412 8
3.1 679 T 1086 | 17 1455 8
3.15 691 T 1108 | 16 1477 7
3.2 701 T 1119 | 70 1499 7
3.25 712 T 1141 | 14 1520 6
3.3 723 T 1163 | 15 1553 4
35 767 T 1228 | 12 1596 1
4 876 T 1402 9 1596 1
4.3 942 | 71 1510 6 1596 1
4.5 985 | 26 1576 3 1596 1
5 1094 | 16 1597 1 1596 1

dimensional structural analysis. The matrix has dimengi#98 and 459277 nonze-
ros. The first of these tables presents resultd@gf, t,1) with ¢ ranging from 4 to
15 and different drop tolerancegsmaller values of did not give convergence). We
see that for fixed, using a small non-zero drop tolerance can reduce the nuofiber
entries inL without adversely effecting its performance. The secohietaresents
results forlC(1) (see Section 4.4). For this problem, to get convergence wedo
that the drop tolerance needed to be approximately®® or less; by only varying
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7, it was not possible to achieve convergence witfi ) less than %+ 10P. This con-
trasts with the level-based preconditioner results ing&ak8, where convergence was
achieved with significantly sparsér A partial explanation is based on the fact that
the finite-element discretization of thin shell problemsigles unknown displace-
ments and bending moments that strongly differ in magn#uwadel this fact makes
the uni-parametric preconditionk2 (1) difficult to tune. Note that folC(1) we tried
values of the drop toleranaegreater than one. Such values are meaningful if there is
growth in the entries during the computation. In fact, clieglsensitivity of the drop
tolerance against the number of dropped entries which teflee growth factor can

be a tool for adaptive dropping schemes.

Table 5.3 Results folC(¢, 7, 1) for a range of values afand small drop tolerancesapplied to problem
TKK/tubel. nZ(L) is in thousands} indicates convergence not achieved.

=00 T=101° T=107° T=10"
¢ | ngD) | iter | nzD) | iter | nz”D) | iter | nzL) | iter
4 1654 | 520 1653 | 501 1639 | 506 1608 | 499
5 2188 | 283 2186 | 278 2158 | 313 2105 | 287
6 2863 | 223 2857 | 224 2800 | 197 2711 | 197
7

8

3705 | 159 | 3691 | 156 | 3584 | 158 | 3431 | 159
4662 | t | 4630 | 1| 4458 | 744 | 4222 ¢
9 | 5628| f | 5574| | 5322 | 4999 | ¢
10 | 7383 | 230 | 7271 | 231 | 6835 | 204 | 6346 | 239
11| 7624 | 325 | 7480 | 252 | 7030 | 261 | 6519 | 236
12 | 10532 | 158 | 10221 | 154 | 9344 | 123 | 8527 | 159
13 | 10588 | 135 | 10270 | 155 | 9386 | 139 | 8563 | 123
14 | 10612 | 135 | 10293 | 151 | 9405 | 139 | 8580 | 165
15 | 13667 | 83 | 13018 | 80 | 11619 | 61 | 10404 | 59

Table 5.4 Results forlC(7) for a range of values of the drop tolerarcapplied to problenTKK/tubel.
nz(L) is in thousands} indicates convergence not achieved.

[t [ nzgD) Jiter | = [ nzD) | iter |

100 88| T | le2| 14262 1
60 168 | + | 1e-3| 16140|
55 281 | t | le-4| 9001 | t
50 | 1458 | t | 5e-5| 9649 | 471
45 | 2077 | t | 2e-5| 9611 87
40 | 2253| t | 1e-5| 10050 | 18
10 | 4624 | t | 5e6| 10741| 6
1 7151 | t | le-6 | 12451 | 2

le-1 | 11565 | t 0 | 21803| 1

Comparing the results fo€ (¢, T, 1) with those folC(7) demonstrates that incor-
porating a level-based strategy can lead to very diffeesilts. Furthermore, finding
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a suitabler is both highly problem dependent and strategy dependeft,(,1) and
IC(1) used differentr), which means that it is hard to perform a unified comparison
on the kind of large test set that was reported on using peeoce profiles in Sec-
tion 5.1. To illustrate further the difficulties of choosiagpropriate drop tolerances,
we compare our level-based stratd@(¢, 7,1) with the symmetric dual parameter
ILUT (p, 1) preconditioner [39] for two of our test problems. Figure pr8sents re-
sults for the thin shell problem Cylshell/sirmt3mi=£ 5489,nz= 112505). The
figure shows the dependence of the number of iterationsnesdjfar the convergence
of IC(¢,0.5,1) with ¢ =1,2,...,15 and for the symmetric.UT (p, ) preconditioner
with parameters varying froni78,9) to (120,0). Note that it was very difficult to
find parameters for whicH.UT converged and these were found by repeated exper-
imentation. Similarly, Figure 5.3 shows results for theistural mechanics problem
Nasa/nasasrb problem £ 54870,nz= 1366097). The behaviour ¢€(¢,100,1) is
shown for/ in the range 5 and 15 (for smalléiconvergence was not achieved) and
p, T varying from (258 119) to (1000 0). Again, finding parameters that gave con-
vergence of LUT (p, 7) was difficult. The superior performance of the level-based
approach is clear in both examples. This confirms our betiaf starting the con-
struction of an efficient preconditioner by improving a tefaly stable level-based
strategy may be a reasonable strategy.

450 T T T T
—— ILUT
- = = IC(,0.5.1)

400 -
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number of entries in preconditioner “10°

Fig. 5.5 Comparison ofLUT (p, T) preconditioning with variable parameters d@6d¢, 0.5, 1) for problem
Cylshell/sirmt3m1.

6 Concluding remarks

In this paper, we have presented a new strategy for compariimgcomplete Cholesky
factorization preconditioner that is derived from the levased approach. In partic-
ular, we have proposed new strategies for setting the laralsthen exploited the
sparsity structure computed during the symbolic factdierethroughout the numer-
ical factorization. The numerical experiments confirmeat the proposed approach
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Fig. 5.6 Comparison of LUT (p, T) preconditioning with variable parameters d@q¢,0,1) for problem
Nasa/nasasrb.

is viable and can be regarded as one step in improving basiaiplete factorization
preconditioning strategies. It is generally assumed thatizersal incomplete factor-
ization preconditioning strategy for all types of probleimsiot possible, but there
still seems to be scope for improving the computational gigras that we have.
Note that the scheme is easily extended to the nonsymmaeisi, ¢hat is, for ILU
preconditioners. Symbolic procedures by Hysom and Pothere vin fact, proposed
for the general nonsymmetric case. Nevertheless, it is km@ivn that the resulting
preconditioned iterative methods can behave much moréaaltg. Because of this,
our next target will be first to embed our ideas into a more aet@nsive scheme
that will exploit blocks, pivoting, efficient nonsymmetrieorderings, possibly also a
multilevel framework. We believe that these enhancemertaacessary for getting
more consistent improvements and comparisons also in th&/numetric case.
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