
FACTORIZED APPROXIMATE INVERSES WITH ADAPTIVE

DROPPING∗

JIŘÍ KOPAL† , MIROSLAV ROZLOŽNÍK ‡ , AND MIROSLAV TŮMA §

Abstract. This paper presents a new approach to construct factorized approximate inverses for a
symmetric and positive definite matrix A. The proposed strategy is based on adaptive dropping that
reflects the quality of preserving the relation UZ = I between the direct factor U and the inverse
factor Z satisfying A = UTU and A−1 = ZZT . An important part of the approach is column
pivoting used to minimize the growth of the condition number of leading principal submatrices of
U that occurs explicitly in the dropping criterion. Numerical experiments demonstrate that the
resulting approximate inverse factorization is robust as a preconditioner for solving large and sparse
systems of linear equations.

Key words. Approximate inverses, incomplete factorization, Gram–Schmidt orthogonalization,
preconditioned iterative methods

1. Introduction. An important source of linear systems with positive definite
matrices is represented by structured problems from discretizations of partial differ-
ential equations that arise in numerous applications in science and engineering and
that often lead to problems with sparse matrices. But, there exist also an increasing
number of applications that provide highly unstructured systems of linear equations.
Let us denote the system of linear equations by

Ax = b, A ∈ R
n×n, x ∈ R

n, b ∈ R
n, (1.1)

where A is the system matrix, x is the vector of unknowns and b is the right-hand-side
vector. Furthermore, let us assume that A is symmetric and positive definite. In order
to solve such systems, direct methods have been often the methods of choice. A basic
representative of these methods is the Cholesky factorization A = UTU , where U is
upper triangular. Iterative Krylov subspace methods are considered as an important
alternative to direct methods for the solution of large systems of linear equations. In
the symmetric and positive definite case, a natural choice of the iterative method is
the conjugate gradient (CG) method. In order to increase the robustness of the CG
method, the system (1.1) is usually transformed by preconditioning.

Although it is generally accepted that solving linear systems requires application-
based preconditioners, the need for generally reliable incomplete factorizations is still
strong. The most important method of this class is the incomplete Cholesky factor-
ization, that is the factorization A ≈ ÛT Û , where Û is upper triangular. A crucial
problem is that the incomplete Cholesky factorization can break down. Namely, a
computed diagonal entry at some factorization step can be nonpositive. Widespread
use of generally unstructured matrices has led to an increased interest in developing

∗This work was supported by the project 13-06684S of the Grant Agency of the Czech Republic
and by the ERC project MORE LL1202 financed by the MŠMT of the Czech Republic.

†Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou
věž́ı 2, 182 07 Prague 8, Czech Republic and Technical University of Liberec, Institute of Novel
Technologies and Applied Informatics, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
(jiri@cs.cas.cz),

‡Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou
věž́ı 2, 182 07 Prague 8, Czech Republic, (miro@cs.cas.cz),

§Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, 186 75 Praha
8 and Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou
věž́ı 2, 182 07 Prague 8, Czech Republic, (mirektuma@karlin.mff.cuni.cz).

1

2 J. KOPAL, M. ROZLOŽNÍK AND M. TŮMA

breakdown-avoiding techniques. On the other hand, an algorithmic modification to
get a breakdown-free incomplete factorization leads to additional inaccuracies. For-
mally we can see the incomplete Cholesky factorization as computing a factorization
of the perturbed matrix

A+∆Ê = ÛT Û , (1.2)

where the matrix Ê is called the factorization error. Theoretical analysis of incom-
plete factorizations that takes into account the actually decomposed matrix A + Ê
has been considered only rarely. In addition, the bounds for the factorization error
are often rough and typically need additional assumptions, see the paper by Kaporin
[20]. An important step to make the dropping more global is the inverse-based drop-
ping by Bollhöfer and Saad [7, 8, 9]. See also the multilevel approach in [10] showing
the power of combining pivoting and the inverse-based dropping for solving nonsym-
metric systems. Another attempt to get more reliable dropping in the incomplete
factorization is to evaluate simultaneously with the direct incomplete factor Û also
the approximate inverse factor Ẑ , see [11], [12].

The inverse factorization is a counterpart of the Cholesky factorization and it
computes A−1 = ZZT with Z upper triangular. Its algorithm can be seen as the
Gram–Schmidt orthogonalization of standard unit vectors with respect to a non-
standard inner product induced by the positive definite matrix A. In this way we get
both two factors Z and U satisfying the identities

ZU = UZ = I. (1.3)

Similarly to the Cholesky factorization of A, the inverse factorization can be computed
approximatively. In such case we talk about the approximate inverse factorization
A−1 ≈ ẐẐT . We will consider the approximate factorizations ẐÛ ≈ I and Û Ẑ ≈ I
and introduce the left residual ∆F̂ and the right residual ∆Ĝ defined by the relations
ẐÛ = I+∆F̂ and Û Ẑ = I+∆Ĝ, respectively. The history of the inverse factorizations
goes back to papers by Morris [26], Purcell [27], Fox, Huskey and Wilkinson [18] as well
as to the papers on the approximate inverse factorizations FSAI [21] and AINV [3],
[2]. The combined use of the incomplete Cholesky factorization and the approximate
inverse decompositions is also not new. In particular, it influenced dropping strategies
for the incomplete factorizations that are rather sophisticated, see, e.g., [7], [25].

If we use the computed approximate factorized inverse as a preconditioner of some
Krylov space method then the transformed system is

ẐTAẐy = ẐT b, x = Ẑy. (1.4)

The quality of the approximation is then determined by the loss of orthogonality
between the column vectors of Ẑ defined as ∆Ĥ = ẐTAẐ − I. This quantity is an
analogue of the expression Û−TAÛ−1 − I introduced by Chow and Saad [13] as a
measure of stability. It is clear that a small right residual ∆Ĝ together with a small
factorization error ∆Ê imply a small loss of orthogonality ∆Ĥ . Indeed, we have

ẐTAẐ − I = ẐT (ÛT Û −∆Ê)Ẑ − I = (I +∆Ĝ)T (I +∆Ĝ)− I − ẐT∆ÊẐ. (1.5)

In this paper we introduce a new algorithmic strategy for dropping nonzero en-
tries in the approximate inverse factorization that uses Gram–Schmidt process with

ADAPTIVE INCOMPLETE FACTORIZATIONS 3

respect to a nonstandard inner product [3]. This work represents a continuation and
refinement of the research published in [23]. Assumptions given there are supported
by the theoretical results presented here. We also show that the new approximate
inverse preconditioner efficiently solves large problems and it is rather robust when
compared with the standard non-adaptive preconditioners. The paper is organized as
follows. In Section 2 we recall the approximate inverse factorization based on Gram–
Schmidt process with column pivoting. In Section 3 we analyze its behavior in finite
precision arithmetic and give bounds for the right residual Ū Z̄ − I of the computed
factors Z̄ and Ū . The new dropping strategy is introduced in Section 4. In Section 5
we present results of some numerical experiments. Concluding remarks are given in
Section 6.

2. Gram–Schmidt process with column pivoting. In the following we con-
sider the Gram–Schmidt process for orthogonalization of the standard unit vectors
e1, . . . , en with respect to the inner product 〈·, ·〉A induced by the matrix A. We
assume that the unit vectors are permuted so that they represent column vectors of
the permutation matrix P . In this case, the Gram–Schmidt process applied to the
columns of P leads to the factors Z and U satisfying

ZU = P, (2.1)

where the columns of Z are A-orthonormal with ZTAZ = I and U is the upper
triangular Cholesky factor of the matrix PTAP = UTU . It is clear that Z is the
inverse factor satisying A−1 = ZZT . The Gram–Schmidt process is summarized in
Algorithm 1, where Z = [z1, z2, . . . , zn] are the resulting A-orthonormal vectors and
U = [αj,k] contains the orthogonalization coefficients. Here we consider the modified
version of the Gram–Schmidt process [19] that is equivalent to the SAINV algorithm
[2] as explained in [28].

Algorithm 1 Modified version of the Gram–Schmidt process with column permuta-
tion and with respect to the inner product 〈·, ·〉A
for k := 1 → n do

z
(0)
k := Pek
for j := 1 → k − 1 do

αj,k := 〈z
(j−1)
k , zj〉A

z
(j)
k := z

(j−1)
k − αj,kzj

end for

αk,k := ‖z
(k−1)
k ‖A

zk := z
(k−1)
k /αk,k

end for

Algorithm 1 computes for each k a column zk of the factor Z using the vector
Pek that is A-orthogonalized against previously computed vectors z1, . . . , zk−1. This
organization of the computation is known as a left-looking approach. The permu-
tation matrix P is a priori unknown and has to be computed on-the-fly. Therefore,
the left-looking Algorithm 1 requires additional precomputation of orthogonalization
coefficients using the classical version of the Gram–Schmidt process [19]. Indeed, for

each k and j = k, . . . , n we update the A-norms of the vectors z
(k−1)
j as follows

4 J. KOPAL, M. ROZLOŽNÍK AND M. TŮMA

‖z
(k−1)
j ‖2A = ‖z

(k−2)
j ‖2A − 〈z

(0)
j , zk−1〉

2
A. (2.2)

The new k-th column vector Pek ≡ ei is chosen such that

‖z
(k−1)
i ‖A = max

k≤j≤n
‖z

(k−1)
j ‖A. (2.3)

The permutation P is then obtained implicitly by the application of column pivoting
with the criterion (2.3). It is clear that the orthogonalization coefficients αj,k stored
in the factor U satisfy the inequalities

α1,1 ≥ α2,2 ≥ . . . ≥ αn,n > 0, (2.4)

αk,k > |αk,j |, k = 1, . . . , n, j = k + 1, . . . , n. (2.5)

In addition, (2.2) together with (2.4) and (2.5) also implies

α2
k,k ≥

j
∑

i=k

α2
i,j , j = k + 1, . . . , n. (2.6)

3. Gram–Schmidt process in finite precision arithmetic. Consider the
computation of factors Z and U by Algorithm 1 in finite precision arithmetic. Due
to rounding errors, we will distinguish between the exact quantities and the actually
computed quantities. The quantities computed in finite precision arithmetic will be
denoted by bars, e.g., Z̄, Ū . The bounds for the norms of ∆F̄ = Z̄Ū − I, ∆H̄ =
Z̄TAZ̄ − I and ∆Ē = ŪT Ū −A for the main versions of the Gram–Schmidt process
with respect to the A-inner product have been given in [28]. They do not depend
on any specific order of the entries in Ū . In the following we will consider Algorithm
1 with column pivoting (2.3). For simplicity of our presentation, we assume that
A has been already symmetrically reordered so that Algorithm 1 in finite precision
arithmetic computes the factor Ū = [ᾱj,k] such that its entries ᾱj,k satisfy inequalities
analogous to (2.4), (2.5) and (2.6) for the exact arithmetic entries αj,k. The principal
leading submatrices of Z̄, Ū . . . will be denoted by an additional subscript as Z̄k,
Ūk, . . . for k = 1, . . . , n − 1. Entries of the matrices, e.g., for the matrix Ūk, we
denote using [Ūk]j,i ≡ eTj Ūkei. We will use standard notation to denote matrices

with the absolute values of their entries, e.g., |Z̄k|, |Ūk|, . . . We assume the standard
IEEE 754 model of floating-point computations [19]. The term O(u) represents a low
degree polynomial in the problem dimension k multiplied by the unit roundoff u. For
simplicity, we do not evaluate the terms proportional to higher powers of u and skip
also some technical details.

Let us focus on the right residual of computed factors defined as

∆Ḡ = Ū Z̄ − I. (3.1)

Theorem 3.1 bounds the right residual (3.1) for the factors Z̄ and Ū computed by
Algorithm 1 in finite precision arithmetic.

Theorem 3.1. Let A be a symmetric and positive definite matrix. Let Z̄k and
Ūk be computed by Algorithm 1 in finite precision arithmetic and denote by D̄k the
diagonal matrix defined as D̄k ≡ diag(Ūk). Then the entries of the right residuals
∆Ḡk = ŪkZ̄k − Ik are bounded by

|∆Ḡk| ≤ O(u)γk|Ūk||Z̄k||Ūk|D̄
−1
k , (3.2)

ADAPTIVE INCOMPLETE FACTORIZATIONS 5

where γk represents the growth factor given recursively as

γk−1|D̄
−1
k−1Ūk−1||D̄

−1
k−1ūk| ≤ γk|D̄

−1
k−1ūk|, γ1 = 1. (3.3)

Proof. The proof uses the bordering scheme with the partitioned factors

Ūk =

(

Ūk−1 ūk

0 ᾱk,k

)

, Z̄k =

(

Z̄k−1 w̄k

0 β̄k,k

)

. (3.4)

The diagonal entries β̄k,k in the factor Z̄k satisfy

β̄k,k =
1

ᾱk,k

+∆β̄k,k, |∆β̄k,k| ≤
u

ᾱk,k

and for each k = 1, . . . , n we then get

|β̄k,kᾱk,k − 1| =

∣

∣

∣

∣

ᾱk,k(1 + ∆βk,k)

ᾱk,k

− 1

∣

∣

∣

∣

≤ u. (3.5)

The last column vector in Z̄k computed using the already computed column vectors
of Z̄k−1 and the coefficients in the last column vector of Ūk satisfy

w̄k = −Z̄k−1ūkβ̄k,k +∆wk, |∆wk| ≤ O(u)|Z̄k−1||ūk|β̄k,k. (3.6)

The proof is by induction on k. Assume that (3.2) is true for matrices of the order
k − 1. Considering (3.4) for k = 2, . . . , n we get

ŪkZ̄k − Ik =

(

Ūk−1Z̄k−1 − Ik−1 Ūk−1w̄k + ūkβ̄k,k

0 ᾱk,kβ̄k,k − 1

)

. (3.7)

Taking into account (2.5), we have

[|D̄−1
k−1Ūk−1|]j,i ≤ 1, j = 1, . . . , k − 1, i = 1, . . . , k − 1 (3.8)

and

[|D̄−1
k−1ūk|]j < 1, j = 1, . . . , k − 1, (3.9)

then after some manipulations with the off-diagonal block of (3.7), using (3.6) as well
as the definition of the growth factor γk given in (3.3) we obtain

Ūk−1w̄k + ūkβ̄k,k = Ūk−1(−Z̄k−1ūkβ̄k,k +∆wk) + ūkβ̄k,k

= (Ik−1 − Ūk−1Z̄k−1)ūkβ̄k,k + Ūk−1∆wk

≤ |Ik−1 − Ūk−1Z̄k−1||ūk|β̄k,k +O(u)|Ūk−1||Z̄k−1||ūk|β̄k,k

≤ O(u)γk−1

(

|Ūk−1||Z̄k−1D̄k||D̄
−1
k Ūk−1|D̄

−1
k−1|ūk|+ |Ūk−1||Z̄k−1||ūk|

)

β̄k,k

≤ O(u)γk|Ūk−1|(|Z̄k−1D̄k−1||D̄
−1
k−1ūk|+ |Z̄k−1||ūk|)β̄k,k

= O(u)γk|Ūk−1|(|Z̄k−1||ūk|+ |Z̄k−1||ūk|)β̄k,k

= O(u)γk|Ūk−1||Z̄k−1||ūk|β̄k,k. (3.10)

From the inequalities (3.10) and (3.5) we get then the statement of our Theorem.

6 J. KOPAL, M. ROZLOŽNÍK AND M. TŮMA

A slightly different bound on the right residual (3.2) is given in the following
corollary.

Corollary 3.1. The right residual of the computed factors Z̄ and Ū in Algo-
rithm 1 with the column pivoting (2.3) satisfy

‖∆Ḡk‖ ≤ O(u)γk‖Ūk‖‖Z̄kD̄k‖‖D̄
−1
k ‖ ≤

O(u)γkκ(Ūk)κ(D̄k)

1−O(u)γkκ(Ūk)κ(D̄k)
. (3.11)

Proof. The bound (3.2) can be rewritten as follows

|∆Ḡk| ≤ O(u)γk|Ūk||Z̄kD̄k||D̄
−1
k Ūk|D̄

−1
k . (3.12)

Taking into account (3.8) and using appropriate bounds for the norms of the matrices
|Ūk|, |Z̄kD̄k| and |D̄−1

k Ūk| we get (3.11).
The bound (3.11) can be significantly improved for M -matrices even without

pivoting as we show in Theorem 3.2 below. Note that a nonsingular real square
matrix A with non-positive off-diagonal entries is called an M -matrix if all the entries
of its inverse are non-negative, see, e.g., [6], [17].

Theorem 3.2. Let A be a symmetric and positive definite M -matrix. Let Z̄k

and Ūk be computed by Algorithm 1 in finite precision arithmetic, where we set the
coefficients ᾱj,k equal to zero whenever its computed counterpart eventually becomes
positive. Then the right residuals ∆Ḡk are bounded by

|∆Ḡk| ≤ O(u)γk|Ūk||Z̄k|. (3.13)

Proof. Assume Ak is an M -matrix. Then its Cholesky factorization has the
form Ak = UT

k Uk such that striu(Uk) ≤ 0 and Dk ≡ diag(Uk) > 0 [17]. It is
easy to see that z1 ≥ 0. Due to ZkDk = Ik − Zk striu(Uk) = Ik + Zk |striu(Uk)|

we have z
(j)
k ≥ z

(j−i)
k ≥ 0, j = 1, . . . , k − 1, k = 2, . . . , n and thus Z = |Z|. In

[28] it has been shown that upper triangular factor Ūk computed in finite precision
arithmetic by the modified Gram–Schmidt orthogonalization process with respect
inner product induced by the matrix Ak satisfies the relation Ak + ∆Ēk = ŪT

k Ūk

where ‖∆Ēk‖ ≤ O(u)κ(Ak)‖Ak‖. Since the off-diagonal entries of Ūk are non-positive
then Ak + ∆Ēk is an M -matrix. In addition, if O(u)κ2(A) < 1 then Ak + ∆Ēk is
symmetric positive definite matrix and the modified Gram–Schmidt process runs to
completion without breakdown. This implies Z̄k = |Z̄k| and |Ūk| = −Ūk + 2D̄k. For
the term |Z̄k||Ūk|D̄

−1
k it follows

|Z̄k||Ūk|D̄
−1
k = Z̄k(−Ūk + 2D̄k)D̄

−1
k = −∆F̄kD̄

−1
k + 2Z̄k − D̄−1

k . (3.14)

It has been shown in [28] that the matrices Z̄k and Ūk computed by the modified
Gram–Schmidt process with respect to inner product induced by the matrix A satisfy
the recurrence Z̄kŪk = Ik +∆F̄k with |∆F̄k| ≤ O(u)|Z̄k||Ūk|. Therefore

|Z̄k||Ūk|D̄
−1
k ≤ O(u)|Z̄k||Ūk|D̄

−1
k + |2Z̄k − D̄−1

k |. (3.15)

leading to the bound |Z̄k||Ūk|D̄
−1
k ≤ (2 +O(u))|Z̄k|. Using it in (3.2) we get

|∆Ḡk| ≤ O(u)γk|Ūk||Z̄k|. (3.16)

In the following we will introduce a dropping strategy that is based on the mon-
itoring of the right residuals and keeping their sizes on the level given by bounds
similar to (3.11) and (3.13).

ADAPTIVE INCOMPLETE FACTORIZATIONS 7

4. Approximate inverse factorization with adaptive dropping. In this
Section we propose a specific Gram–Schmidt process with dropping that attempts
to compute approximate factors with uniformly bounded right residuals. The ap-
proximate quantities will be denoted by tildes, e.g., Z̃, Ũ , . . ., and Z̃k, Ũk, . . . for their
principal submatrices of dimension k = 1, . . . , n. The crucial idea of our approach is
to drop the entries in the factor Z̃ on a level related to the size of the right residual

∆G̃ = Ũ Z̃ − I. (4.1)

In particular, we will require that the norm of each column of the right residual
(4.1) is uniformly bounded by a drop tolerance τ . This bound can be written as

‖∆G̃kek‖ ≤ τ , (4.2)

where ∆G̃k = ŨkZ̃k − Ik. Note that due to the interlacing property of the singular
values [29] the norms of the right residuals ∆G̃k satisfy

‖∆G̃k‖ ≤ ‖∆G̃k+1‖, k = 1, . . . , n− 1. (4.3)

Clearly, if we want to satisfy the bound (4.2) for all columns, the dropping must be
adaptive.

The critical step in Algorithm 1 is the computation of potentially dense vectors

z̃
(k−1)
k for k = 1, . . . , n. Given the initial vector z̃

(0)
k = P̃ ek, let us consider z̃

(k−1)
k

computed by the recurrences

z̃
(j)
k = z̃

(j−1)
k − α̃j,kz̃j, α̃j,k = 〈z̃

(j−1)
k , z̃j〉A, j = 1, . . . , k − 1, (4.4)

where ˜̃zk = z̃
(k−1)
k /‖z̃

(k−1)
k ‖A is generally dense. In order to keep the factor Z̃ sparse,

some of its entries should be dropped. Let sk ∈ {0, 1}n be a vector that specifies

the chosen dropping and assume that some entries of z̃
(k−1)
k have been dropped. The

resulting sparse vector is given as z̃
(k−1)
k ◦ sk and it is normalized to get the new

column of Z̃ in the form

z̃k ≡
z̃
(k−1)
k ◦ sk

‖z̃
(k−1)
k ◦ sk‖A

. (4.5)

Here the operator “◦” denotes the Hadamard (entry-wise) product. Let us define the
correction vector ∆z̃k as ∆z̃k = z̃k − ¯̃zk, where ¯̃zk is the vector computed by the
recurrence (4.4) in finite precision arithmetic. We can then write

∆G̃kek = ∆ ¯̃Gkek + Ũk∆z̃k, (4.6)

where the right residual ∆ ¯̃Gkek = Ũk
¯̃zk − ek satisfies the bound (3.12) in the general

case and the bound (3.16) if A is an M -matrix. Let us consider dropping at the step
k such that

‖∆z̃k‖

‖¯̃zk‖∞
≤ τk (4.7)

for some step-dependent parameter τk satisfying the inequalities

τk ‖Ũk‖‖¯̃zk‖∞ ≤ τk ‖Ũk‖‖¯̃zk‖ / τk ‖Ũk‖‖Ũ
−1
k ‖‖ek‖ < τ .

8 J. KOPAL, M. ROZLOŽNÍK AND M. TŮMA

Then the right residual ∆G̃kek that appears in (4.6) can be up to the terms pro-
portional to the product of the unit roundoff and the growth factor bounded by the
parameter τ and thus it satisfies the required bound (4.2). Consequently, τk satisfies
the following inequality

τk ≤
τ

κ(Ũk)
. (4.8)

This new dropping technique is thus based on monitoring the condition number of
Ũk. The interlacing property for singular values [29] implies that κ(Ũ1) ≤ · · · ≤ κ(Ũn)
and due to (4.8) the sequence of drop tolerances τk is non-increasing as τk decreases
when κ(Ũk) increases. Since the proposed dropping strategy depends on the condition
numbers κ(Ũk), a natural strategy is to keep the increase in the sequence of the
condition numbers κ(Ũk) as low as possible and this can be achieved by the pivoting.
The resulting procedure is summarized in Algorithm 2.

Algorithm 2 Modified version of the Gram–Schmidt process with column permuta-
tion and with adaptive dropping

for k := 1 → n do

z̃
(0)
k := P̃ ek
for j := 1 → k − 1 do

α̃j,k := 〈z̃
(j−1)
k , z̃j〉A

z̃
(j)
k := z̃

(j−1)
k − α̃j,kz̃j

end for
˜̃αk,k := ‖z̃

(k−1)
k ‖A

˜̃zk := z̃
(k−1)
k / ˜̃αk,k

for i := 1 → n do

if |eTi ˜̃zk| > τ ‖˜̃zk‖∞/κ(Ũk) then
eTi sk := 1

else

eTi sk := 0
end if

end for

(P̃ ek)
T sk := 1

α̃k,k := ‖˜̃zk ◦ sk‖A
z̃k := (˜̃zk ◦ sk)/α̃k,k

end for

5. Numerical experiments. In this section we present results of our numer-
ical experiments. We will show that the new dropping strategy can lead to reliable
approximate inverse factorization. All codes were written in FORTRAN 95, and have
been compiled with Intel Fortran Composer XE 2013. We have used one processor
of Intel Core2 Q6700 (2.66GHz, 16GB RAM). The figures have been prepared in
MatlabTM . Table 5.1 summarizes test matrices taken from the Tim Davis collection
of sparse matrices [15] including the test one used for detailed demonstrations. The
table presents their dimensions and nonzero counts (sizes) together with their short
descriptions. Note that a significant proportion of matrices comes from structural
mechanics, where approximate inverse preconditioners represent a method of choice,
see [2].

ADAPTIVE INCOMPLETE FACTORIZATIONS 9

Table 5.1

Test problems

Matrix n nnz Application

BCSSTK19 817 6,853 stiffness matrix - part of a suspension bridge

FV1 9,604 47,434 FEM - 2D Laplace equation

FV3 9,801 48,413 FEM - 2D Laplace equation

MSC10848 10,848 1,229,776 MSC Nastran matrix

BCSSTK25 15,439 133,840 stiffness matrix - skyscraper

OLAFU 16,146 515,651 NASA matrix - accuracy problem on Y-MP

BODYY4 17,546 69,742 NASA matrix collected by Alex Pothen

BODYY5 18,589 73,935 NASA matrix collected by Alex Pothen

RAEFSKY4 19,779 674,195 buckling problem for container

MSC23052 23,052 1,142,686 MSC Nastran matrix

BCSSTK36 23,052 1,143,140 stiffness matrix - car shock absorber

VANBODY 47,072 1,191,985 stiffness matrix - GHS collection

NASASRB 54,870 2,677,324 NASA matrix - shuttle rocket booster

OILPAN 73,752 2,148,558 INPRO test matrix

S3DKQ4M2 90,449 2,455,670 FEM on cylindrical shells

AFSHELL8 504,855 17,579,155 sheet metal forming matrix

LDOOR 952,203 42,493,817 INDEED test matrix - GHS collection

100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

10
5

10
6

κ
(Ũ

k
)

τ = 0.05
τ = 0.1
τ = 0.2
τ = 0.4
τ = 0.6
τ = 0.8

100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

10
5

10
6

κ
(Ũ

k
)

τ = 0.05
τ = 0.1
τ = 0.2
τ = 0.4
τ = 0.6
τ = 0.8

no pivoting column pivoting

Fig. 5.1. Conditioning of the leading principal submatrices Ũk of the matrix BCSSTK19 without
pivoting (on the left) and with pivoting (on the right).

The importance of column pivoting is indicated in Figure 5.1 for the matrix
BCSSTK19. The plot on the left shows dependence of the condition number κ(Ũk)
on the major loop index in Algorithm 2 with suppressed pivoting P̃ = I. The plot on
the right corresponds to Algorithm 2 with adaptive dropping and column pivoting. It
is clear that the growth of κ(Uk) is much more moderate with pivoting than without
pivoting. This implies that one can safely drop more entries also in the later steps of
the factorization. Figure 5.2 showing the sparsity pattern of the factor Z̃ confirms the
fact that we can drop significantly more nonzeros with pivoting. As above, the plot
on the left corresponds to the factorization with suppressed pivoting and the plot on
the right corresponds to Algorithm 2 with column pivoting and adaptive dropping.
Similarly to [24] the actual implementation of pivoting is based on the concept of
heaps [14] and it is very fast. In the subsequent experiments with larger matrices the
condition number κ(Ũk) in the dropping criterion (4.8) was cheaply approximated

10 J. KOPAL, M. ROZLOŽNÍK AND M. TŮMA

0 200 400 600 800

0

100

200

300

400

500

600

700

800

nz = 236801
0 200 400 600 800

0

100

200

300

400

500

600

700

800

nz = 60653

no pivoting column pivoting

Fig. 5.2. Sparsity structure of the factor Z̃ of the matrix BCSSTK19 without pivoting (on the
left) and with pivoting (on the right) with τ = 0.2.

by the ratio of the largest and the smallest diagonal entry of Ũk. Let us note here
that there exists a different and important way to relax the dropping. It replaces
κ(Ũk) by an approximate norm Ũ−1

k . Namely, one could argue that the norm of Ũk

stays moderate during the decomposition and the inverse Ũ−1
k actually drives the

factorization, for details see [7, 8, 9]. Let us also note that an example in [23] (based
on more experiments) shows that the simple estimation of κ(Ũk) based on diagonal
entries is sufficient when compared with the expensive condition number computation,
but it does not need to be the case. This is the reason that we would like to explore
more sophisticated strategies for pivoting in the future.

Table 5.2 compares results for Algorithm 2 that uses column pivoting and adaptive
dropping with the tolerance τ (we refer to it as adaptive SAINV) and the standard
SAINV algorithm with absolute dropping with a drop tolerance τ and no pivoting.
(this algorithm is denoted as standard SAINV). For relations of standard SAINV to
other algebraic preconditioning strategies see, for example, [4]. For all test matrices
we have computed two sparse instances of the factor Z̃. The dropping tolerances in
corresponding standard SAINV and adaptive SAINV were experimentally chosen so
that the factors are comparable in size and thus allow a fair comparison. These two
factorizations were used for preconditioning of the conjugate gradient method (CG).
The stopping criterion used for CG is based on the backward error. The iterations
were terminated as soon as the backward error reached 10−6. The initial guess was
set to zero vector and the right-hand side vector was chosen so that the solution is
the vector of all 1’s.

Let discuss the results in Table 5.2. Despite a fast implementation of pivot-
ing based on heaps, adaptive SAINV factorization is typically slower than standard
SAINV factorization. It is not always the case; pivoting induces a different reordering
and this can strongly influence the factorization [16], [5] or [1]. On the other hand,
Table 5.2 shows that the adaptive approach is more reliable. While adaptive SAINV
was able to solve all problems, it was not the case for standard SAINV. In order to
judge on the method robustness, an important source of information is the behavior
of the preconditioned iterative method with respect to different sizes of the factor Z̃.
Figures 5.3 and 5.4 describe dependence of the iteration counts on the preconditioner
size for a chosen set of four matrices. As one could expect, the figures confirm that the

ADAPTIVE INCOMPLETE FACTORIZATIONS 11

Table 5.2

Size (nnz), iteration count (its), factorization time in seconds (tf) and time for the precondi-
tioned iterations (tit) for standard SAINV and adaptive SAINV.

Matrix
Standard SAINV Adaptive SAINV

nnz τ its tf tit nnz τ its tf tit

FV1 19,110 0.08 17 0.08 0.02 18,174 0.03 18 0.12 0.02

FV3 30,848 0.06 115 0.09 0.08 33,447 0.004 104 0.11 0.08

MSC10848 45,162 0.003 76 1.22 0.33 45,030 0.09 92 1.08 0.39

BCSSTK25 86,004 0.004 15 0.34 0.03 79,927 0.006 8 0.33 0.03

OLAFU 18,551 0.4 18 0.56 0.08 54,291 0.4 18 0.89 0.08

BODYY4 47,196 0.004 36 0.17 0.06 48,375 0.009 42 0.21 0.06

BODYY5 73,552 0.002 36 0.19 0.06 74,356 0.0002 58 0.24 0.09

RAEFSKY4 124,654 0.06 7 1.19 0.05 130,072 0.06 7 1.41 0.05

MSC23052 255,457 0.002 ‡ 3.36 ‡ 149,101 0.002 289 1.59 1.56

BCSSTK36 115,452 0.02 795 1.43 4.09 123,459 0.06 286 1.06 1.41

VANBODY 231,839 0.006 5 1.97 0.06 418,134 0.006 8 3.16 0.09

NASASRB 87,594 0.1 611 1.36 5.59 190,171 0.1 489 1.97 5.06

OILPAN 106,154 0.02 406 1.88 5.14 116,780 0.4 403 2.15 5.14

S3DKQ4M2 195,223 0.02 302 3.24 5.78 313,447 0.02 285 3.61 5.24

AF SHELL8 1,085,444 0.02 194 9.91 12.5 1,059,786 0.02 164 15.1 12.2

LDOOR 2,484,854 0.02 454 28.4 77.4 2,010,227 0.4 456 39.6 89.2

new approach is less prone to instabilities. We can also see than from Table 5.2 that
although adaptive SAINV is often better than standard SAINV, it is not always the
case. This is demonstrated for the matrix OILPAN where the standard SAINV seems
to be slightly better. Also let us note that in the case of the matrix AF SHELL8 we
can see that the preconditioner is not very efficient since the number of its iterations
generally increases with the size. The computation of a very dense preconditioner
would be extremely expensive and out of scope of our computational resources.

It follows from Figures 5.1-5.4 that standard SAINV often leads to denser factors
than adaptive SAINV. This may be an effect of instabilities that sometimes lead to
large growth of entries in the factorization. Note that this is in agreement with a
previous observation that SAINV often generates much smaller factors than other
less stable variants [2]. In many cases, we were not able to generate a very large fill-in
in the adaptive SAINV within the same interval of given τ that we call here the drop
tolerance. A related question is how robust is the choice of the drop tolerance so that
we could assume that it may lead to computation of a useful preconditioner, see, for
example a recent study [22]. Note that in practice of algebraic preconditioning we are
often interested in finding a reliable value of drop tolerance, and the adaptiveness was
introduced here partially with this intention. Let us demonstrate this effect for the
matrix AF SHELL8 from Figure 5.4. Changing the drop tolerance from 0.1 to 1.0d-4
the preconditioner size for the adaptive SAINV changes from 788,062 to 2,788,921
that could be considered as a modest change. At the same time, standard SAINV for
the drop tolerance 0.1 provides preconditioner of the size 511,108 and for 0.6d-3 the
preconditioner has the size 2,820,445. This robustness with respect to the choice of
the drop tolerance can be possibly explained by a smoother growth of the condition
number demonstrated for a small problem on Figure 5.1 and by growth of entries if
pivoting is not used.

Let us look at the relation between the column pivoting on one side and the adap-

12 J. KOPAL, M. ROZLOŽNÍK AND M. TŮMA

tive dropping on the other side. It is true that pivoting does the job of avoiding small
pivots and therefore it limits the growth of entries in Z. The role of the adaptive
dropping is more subtle, and it contributes to the robustness with respect to the drop
tolerance. If we consider τ as an user input, a practical goal is to find a precondi-
tioner that works even when τ is not the best one. For the same drop tolerance τ , the
adaptive dropping typically provides a larger factor than the non-adaptive dropping
and it may represent a safer preconditioner. We show this on the example in Table
5.3 with a simple Laplacian from a two-dimensional grid 60 × 60 discretized by five
point finite differences. Here we present the iteration counts and preconditioner sizes
for both adaptive and non-adaptive SAINV with the column pivoting. We can see
that in this simple but important case the adaptiveness implies slightly denser factors
than the standard approach for the same drop tolerance since it moves the precondi-
tioner to satisfy the uniform bound (4.2) by allowing more fill-in. But, as shown in
figures, standard SAINV may suffer from instabilities and then the adaptiveness may
contribute to limit the growth of entries in the preconditioner although the influence
of pivoting of the adaptive SAINV seems to be profound. Studying other possible
effects of such uniform bounds as (4.2) also for different preconditioners and interplay
between pivoting and adaptiveness are a part of our future research plans. Note that
another experiment with adaptive dropping without the column pivoting is presented
in [23].

Table 5.3

A comparison of adaptive SAINV and non-adaptive SAINV (both algorithms use column piv-
oting) for the 2D Laplacian matrix. Drop tolerance is denoted by τ , its denotes the number of
iterations of PCG and size denotes the preconditioner size.

τ its size
adaptive non-adaptive adaptive non-adaptive
SAINV SAINV SAINV SAINV

0.250 79 87 11,589 10,680
0.225 69 87 12,880 10,715
0.203 54 84 15,754 11,208
0.164 47 57 18,176 15,441
0.133 41 47 21,603 17,698
0.108 38 43 24,417 20,765
0.087 32 40 30,565 23,269
0.071 29 34 36,178 29,266

Summarizing our findings, adaptive SAINV represents a significant enhancement
of the standard SAINV scheme since it clearly increases the predictability of the
behavior of the preconditioned conjugate gradient method. This approach can be
combined with standard preprocessing techniques.

6. Conclusions. In this paper we considered Gram–Schmidt process with col-
umn pivoting. We have analyzed its behavior in the finite precision arithmetic focusing
on the bound for the right residual of the computed factors. Based on that we have
introduced a new adaptive dropping that is monitoring the right residuals and trying
to keep their size uniformly bounded by a given drop tolerance. Numerical results
indicate that this approach leads to a robust preconditioner for the conjugate gradient
method.

ADAPTIVE INCOMPLETE FACTORIZATIONS 13

10
4

10
5

10
6

10
7

10
8

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

 adaptive SAINV
 standard SAINV

10
4

10
5

10
6

10
7

0

1000

2000

3000

4000

5000

6000

 adaptive SAINV
 standard SAINV

Fig. 5.3. Preconditioner size versus iteration counts for the CG method for the matrices BC-
SSTK36 (left) and NASASRB (right)

10
5

10
6

10
7

10
8

100

150

200

250

300

350

400

450

 adaptive SAINV
 standard SAINV

10
4

10
5

10
6

10
7

280

300

320

340

360

380

400

420

440

 adaptive SAINV
 standard SAINV

Fig. 5.4. Preconditioner size versus iteration counts for the CG method for the matrices
AF SHELL8 (left) and OILPAN (right)

7. Acknowledgements. We would like to thank the anonymous reviewers for
carefully reading our manuscript and making significant constructive suggestions for
its improvement.

REFERENCES

[1] M. Benzi. Preconditioning techniques for large linear systems: a survey. J. of Computational
Physics, 182(2):418–477, 2002.

[2] M. Benzi, J. K. Cullum, and M. Tůma. Robust approximate inverse preconditioning for the
conjugate gradient method. SIAM J. on Scientific Computing, 22(4):1318–1332, 2000.

[3] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for the
conjugate gradient method. SIAM J. on Scientific Computing, 17(5):1135–1149, 1996.

[4] M. Benzi and M. Tůma. A comparative study of sparse approximate inverse preconditioners.
Applied Numerical Mathematics, 30(2-3):305–340, 1999.

[5] M. Benzi and M. Tůma. Orderings for factorized sparse approximate inverse preconditioners.
SIAM J. on Scientific Computing, 21(5):1851–1868, 2000.

[6] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic
Press, New York, 1979.

[7] M. Bollhöfer. A robust ILU with pivoting based on monitoring the growth of the inverse factors.
Linear Algebra and its Applications, 338:201–218, 2001.

14 J. KOPAL, M. ROZLOŽNÍK AND M. TŮMA

[8] M. Bollhöfer. A robust and efficient ILU that incorporates the growth of the inverse triangular
factors. SIAM J. on Scientific Computing, 25(1):86–103, 2003.

[9] M. Bollhöfer and Y. Saad. On the relations between ILUs and factored approximate inverses.
SIAM J. on Matrix Analysis and Applications, 24(1):219–237, 2002.

[10] M. Bollhöfer and Y. Saad. Multilevel preconditioners constructed from inverse-based ILUs.
SIAM J. on Scientific Computing, 27(5):1627–1650, 2006.

[11] R. Bru, J. Maŕın, J. Mas, and M. Tůma. Balanced incomplete factorization. SIAM J. on
Scientific Computing, 30(5):2302–2318, 2008.

[12] R. Bru, J. Maŕın, J. Mas, and M. Tůma. Improved balanced incomplete factorization. SIAM
J. on Matrix Analysis and Applications, 31(5):2431–2452, 2010.

[13] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices. J.
of Computational and Applied Mathematics, 86(2):387–414, 1997.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT
Press, Cambridge, MA, third edition, 2009.

[15] T. A. Davis. University of Florida Sparse Matrix Collection. available online at
http://www.cise.ufl.edu/research/sparse/matrices/, 1994.

[16] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate gradients.
BIT Numerical Mathematics, 29:635–657, 1989.

[17] M. Fiedler and V. Pták. On matrices with non-positive off-diagonal elements and positive
principal minors. Czechoslovak Mathematical Journal, 12 (87):382–400, 1962.

[18] L. Fox, H. D. Huskey, and J. H. Wilkinson. Notes on the solution of algebraic linear simultaneous
equations. Quart. J. Mech. and Appl. Math., 1:149–173, 1948.

[19] N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.

[20] I. E. Kaporin. High quality preconditioning of a general symmetric positive definite matrix based
on its UTU + UTR +RTU decomposition. Numerical Linear Algebra with Applications,
5:483–509, 1998.

[21] L. Y. Kolotilina and A. Y. Yeremin. Factorized sparse approximate inverse preconditionings. I.
Theory. SIAM J. on Matrix Analysis and Applications, 14(1):45–58, 1993.

[22] I. N. Konshin, M. A. Olshanskii, and Y. V. Vassilevski. ILU preconditioners for non-symmetric
saddle-point matrices with application to the incompressible Navier-Stokes equations.
Preprint, 2015.

[23] J. Kopal, M. Rozložńık, and M. Tůma. Approximate inverse preconditioners with adaptive
dropping. Advances in Engineering Software, 84:13–20, 2015.

[24] N. Li and Y. Saad. Crout versions of ILU factorization with pivoting for sparse symmetric
matrices. Electronic Transactions on Numerical Analysis, 20:75–85, 2005.

[25] S. MacLachlan, D. Osei-Kuffuor, and Y. Saad. Modification and compensation strategies for
threshold-based incomplete factorizations. SIAM J. on Scientific Computing, 34(1):A48–
A75, 2012.

[26] J. Morris. An escalator process for the solution of linear simultaneous equations. Philos. Mag.,
37:106–120, 1946.

[27] E. W. Purcell. The vector method of solving simultaneous linear equations. J. Math. Phys.,
32:150–153, 1953.

[28] M. Rozložńık, M. Tůma, A. Smoktunowicz, and J. Kopal. Numerical stability of orthogonal-
ization methods with a non-standard inner product. BIT, 52(4):1035–1058, 2012.

[29] R. C. Thompson. Principal submatrices. IX. Interlacing inequalities for singular values of
submatrices. Linear Algebra and Appl., 5:1–12, 1972.

