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Abstract In this paper we study the numerical properties of several orthogonalization

schemes where the inner product is induced by a nontrivial symmetric and positive def-

inite matrix. We analyze the effect of its conditioning on the factorization and the loss

of orthogonality between vectors computed in finite precision arithmetic. We consider

the implementation based on the backward stable eigendecomposition, modified and

classical Gram-Schmidt algorithms, Gram-Schmidt process with reorthogonalization as

well as the implementation motivated by the AINV approximate inverse preconditioner.
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1 Introduction

Let A be a given m × m symmetric positive definite matrix and Z(0) be an m × n

matrix of full column rank n, m ≥ n. We want to compute matrices Z and U such

that Z(0) = ZU , where Z is a m× n matrix satisfying ZT AZ = I and U is an upper

triangular n × n matrix with positive diagonal entries. It is clear that the matrix U

can be seen as the Cholesky factor of the matrix (Z(0))T AZ(0) = UT U with the norm

and minimum singular value bounded as

σ
1/2
m (A)σn(Z(0)) ≤ σn(A1/2Z(0)) = σn(U) ≤ ‖U‖ = ‖A1/2Z(0)‖ ≤ ‖A‖1/2‖Z(0)‖

(1)

and the condition number κ(U) satisfying κ(U) = κ(A1/2Z(0)) ≤ κ1/2(A)κ(Z(0)). It

is also easy to see that U = ZT AZU = ZT AZ(0). Due to the orthogonality relation

(A1/2Z)T (A1/2Z) = I we have for the extremal singular values of Z

‖A‖−1/2 = σm(A−1/2) ≤ σn(Z) ≤ ‖Z‖ ≤ ‖A−1/2‖ = ‖A−1‖1/2. (2)

Indeed, it follows from (2) that κ(Z) ≤ κ1/2(A). Since Z = Z(0)U−1 the product ZZT

can be written as ZZT = Z(0)
[
(Z(0))T AZ(0)

]−1
(Z(0))T . Then AZZT represents the

oblique projector onto R(AZ(0)) and orthogonal to R(Z(0)). Similarly, ZZT A is the

oblique projector onto R(Z(0)) and orthogonal to R(AZ(0)).

For m = n and Z(0) square nonsingular we have ZZT = A−1 and AZZT =

ZZT A = I. If the matrix Z(0) is in addition upper triangular then the matrix Z is

also upper triangular and it represents an inverse factor in the triangular factorization

A−1 = ZZT . In the particular case with Z(0) = I the matrix U is a Cholesky factor of

A and Z = U−1. This fact is heavily used in many applications. One of the important

preconditioning classes involves computing such an approximate inverse factorization

[4]. Another well-known examples are the symmetric definite generalized eigenvalue

problem which can be using such factors transformed into the standard eigenproblem

in well-conditioned case [32], [23], [13], nonsymmetric eigenvalue problem [26], and the

generalized least squares problems [7] including the weighted least squares problem

[22], [16] as a particular case. Sparse implementations of generalized orthogonaliza-

tion schemes are efficiently used in linear scaling electronic theory [8], information

retrieval [33] or solving complex systems from quantum chemistry or systems arising

from Helmholtz’s equation [24].

Given the matrices A and Z(0), there are numerous ways how to compute the

factors Z and U . If we have the spectral decomposition A = V ΛV T , the factor U

can be obtained from the standard QR decomposition Λ1/2V T Z(0) = QU and the

factor Z can be then recovered as Z = V Λ−1/2Q. Similarly, if we have the Cholesky

decomposition A = LLT , then U is the upper triangular factor from LT Z(0) = QU

and Z can be then computed as Z = L−T Q. Significantly less attention has been

paid to the QR decomposition using the A-invariant reflections - only the case of

weighted QR factorization has been thoroughly analyzed in [14]. One of the most

frequently used and probably the most straightforward approach is the Gram-Schmidt

orthogonalization, which consecutively A-orthogonalizes the columns of Z(0) against

previously computed vectors from factor Z using the orthogonalization coefficients that

form then the triangular factor U . In the classical Gram-Schmidt algorithm (CGS), the

A-orthogonal vectors are computed via matrix-vector updates which are relatively easy

to parallelize. The rearrangement of this scheme has led to the modified Gram-Schmidt
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algorithm (MGS) with better numerical properties. However, introducing sequential

orthogonalization of the current vector destroys desirable parallel properties of the

algorithm. We will discuss also yet another variant of sequential orthogonalization,

which is motivated originally by the AINV preconditioner [4] and which uses oblique

projections. We will refer to this scheme as the AINV orthogonalization (AINV) here.

For the particular case Z(0) = I the situation is even more developed due to progress

of recent preconditioning techniques. The early papers on inverse factorization have

various motivations and do not study numerical properties of algorithms [25,10,19,20,

18,29,30]. Although the main motivation for the development of approximate inverse

techniques came from parallel processing, concerns on their robustness and accuracy

immediately became an important aspect. While the initial schemes like the basic

AINV algorithm [4] were based on oblique projections or the CGS orthogonalization,

recent development has lead to their stabilization both in terms of the orthogonalization

scheme (MGS in the SAINV algorithm [3]) and in terms of appropriate computation

of diagonal entries in U (one-sided versus stabilized versions of AINV [3,5,21]).

While for the case of standard inner product there exist complete rounding error

analysis for all main schemes [17], [6], [11], [12], [31] numerical properties of orthog-

onalization schemes with non-standard inner product are much less understood. The

main motivation of this paper is to review several orthogonalization approaches and

to give bounds for corresponding quantities computed in finite precision arithmetic.

Given some approximations Z̄ and Ū to Z and U , respectively, we will be especially

interested at the magnitude of quantities as the factorization error Z(0)−Z̄Ū , the error

in computing the Cholesky factor (Z(0))T AZ(0) − ŪT Ū and the most important loss

of orthogonality between computed vectors measured by Z̄T AZ̄ − I. Eventually we

will look at the error in the approximation of the inverse A−1− Z̄Z̄T and/or the right

or left residual AZ̄Z̄T − I or Z̄Z̄T A − I. We will formulate them mainly in terms of

quantities proportional to the roundoff unit u, in terms of the condition number κ(A)

which represents an upper bound for the relative error in computing the A-inner prod-

uct as well as the condition number of the matrix A1/2Z(0) which plays an important

role in the factorization (Z(0))T AZ(0) ≈ ŪT Ū . We believe that these results are an

initial step towards understanding the behavior of practical strategies in approximate

inverse preconditioning which are based on sparse approximation to the factors Z and

U using some inexact orthogonalization scheme. For a survey of such preconditioning

techniques we refer to [2]. The organization of the paper is as follows. Section 2 is

devoted to the ideal implementation based on the eigenvalue decomposition of A. Sec-

tion 3 recalls the modified Gram-Schmidt algorithm with the inner product induced

by the matrix A. In Section 4 we consider two orthogonalization schemes with this

inner product, namely the classical Gram-Schmidt and AINV orthogonalizations and

show that they behave in a similar way. Finally, in Section 5 we focus on the roundoff

analysis of the Gram-Schmidt algorithm with reorthogonalization and show that it is

numerically similar to the ideal implementation discussed in Section 2.

Throughout the paper X = [x1, . . . , xn] denotes the m×n matrix X with columns

x1, . . . , xn. The quantity σk(X) denotes its kth largest singular value and if X has a full

column rank then κ(X) = σ1(X)/σn(X) refers to the condition number of the matrix

X. The term |X| denotes the absolute value of the matrix X; ‖X‖ = σ1(X) denotes its

2-norm ; |x| is the absolute value of the vector x and ‖x‖ denotes its Euclidean norm.

By 〈·, ·〉 we mean the Euclidean inner product of two vectors and 〈·, ·〉A denotes the

inner product defined by the positive definite matrix A.
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For distinction with their exact arithmetic counterparts, we denote quantities com-

puted in finite precision arithmetic using an extra upper-bar. We assume the standard

model for floating-point computations, and use the notation fl(·) for the computed

result of some expression (see e.g. [17]). The unit roundoff is denoted by u. The terms

O(u), k = 1, 2, . . . are low-degree polynomials in the problem dimensions m and n

multiplied by the unit roundoff u; they are independent of the condition number κ(A)

but they do depend on details of the computer arithmetic. For simplicity we do not

evaluate the terms the terms proportional to higher powers of u and also occasionally

skip the technical details that would negatively affect the presentation of our results.

2 The implementation based on eigendecomposition

The eigendecomposition of the (symmetric positive definite) matrix A = V ΛV T can

find its use also in our orthogonalization problem. Indeed, the factor Z can be computed

as a product of two orthogonal and one diagonal matrix in the form Z = V Λ−1/2Q,

where Q is the orthogonal factor from the standard QR factorization Λ1/2V T Z(0) =

QU . The factor U is thus the triangular factor from the classical orthogonalization of

Λ1/2V T Z(0) with respect to the Euclidean inner product. Assuming that these two

main ingredients are implemented in a backward stable way this approach represents

probably the most accurate algorithm one can get for the general case of a symmetric

positive definite matrix A (if we look at the loss of orthogonality between computed

vectors). The backward stable eigendecomposition delivers the computed eigendecom-

position V̄ Λ̄V̄ T which is nearly the exact eigendecomposition of a nearby matrix

A + ∆A = (V̄ + ∆V )Λ̄(V̄ + ∆V )T , ‖∆A‖ ≤ O(u)‖A‖, (3)

where V̂ = V̄ +∆V is orthogonal and ‖∆V ‖ ≤ O(u) (see [28]). Multiplying the matrix

Z(0) with Λ̄1/2V̄ T from the left and applying a backward stable QR decomposition

(such as Householder QR [17]) to the product fl(Λ̄1/2V̄ T Z(0)) we can write for the

computed factors Q̄ and Ū the identity

Λ̄1/2V̄ T Z(0) = (Q̄ + ∆Q)Ū + ∆E1, ‖∆E1‖ ≤ O(u)‖A‖1/2‖Z(0)‖, (4)

where Q̂ = Q̄ + ∆Q is orthogonal and ‖∆Q‖ ≤ O(u). The matrix Z̄ is then computed

as the product of two nearly orthogonal and one diagonal matrix Z̄ = fl(V̄ Λ̄−1/2Q̄)

satisfying

Z̄ = V̂ Λ̄−1/2Q̂ + ∆E2, ‖∆E2‖ ≤ O(u)‖Λ̄−1‖1/2 ≤ O(u)‖Z̄‖. (5)

Considering (4) we have Z(0) = V̂ Λ̄−1/2Q̂Ū + V̂ Λ̄−1/2∆E1 + V̂ ∆V T Z(0). Using (5)

we get the factorization for computed quantities

Z(0) + ∆E3 = Z̄Ū , ‖∆E3‖ ≤ O(u)κ1/2(A)‖Z(0)‖. (6)

Note that the factor κ1/2(A)‖Z(0)‖ appears due to the fact that there exists only

a normwise bound for the matrix ∆E1 for the QR factorization in (4). As we will

see later the bound (6) that holds for general symmetric and positive definite matrix

A can be further improved for the Gram-Schmidt implementations. If A = Λ is in

addition diagonal, there is no need for the decomposition (3) and one can compute

Z̄ directly from Λ and Q̄ as Z̄ = Λ−1/2Q̄ + ∆E2 with |∆E2| ≤ O(u)|Λ−1/2||Q̄|. Due
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to (4) rewritten as Λ1/2Z(0) = Q̄Ū + ∆E1 we get Z(0) = Z̄Ū −∆E2Ū + Λ−1/2∆E1

leading to the better bound ‖∆E3‖ ≤ O(u)‖Λ−1‖1/2‖Λ1/2Z(0)‖. For a general A the

loss of orthogonality between the columns in the computed factor Z̄ can be expressed

as Z̄T AZ̄ − I = (V̂ Λ̄−1/2Q̂ + ∆E2)
T A(V̂ Λ̄−1/2Q̂ + ∆E2) − I which gives then the

following bound for its norm

‖Z̄T AZ̄ − I‖ ≤ O(u)‖A‖‖Z̄‖2 ≤ O(u)κ(A). (7)

Again, for a diagonal A we can write Z̄T AZ̄ − I = (Λ−1/2Q̄ + ∆E2)
T A(Λ−1/2Q̄ +

∆E2)−I = Q̄T Q̄−I+Q̄Λ1/2∆E2+(∆E2)
T Λ1/2Q̄+(∆E2)

T Λ∆E2. Since ‖Λ1/2∆E2‖ ≤
O(u) this identity then gives rise to the bound ‖Z̄T AZ̄− I‖ ≤ O(u). Indeed for a diag-

onal A the orthogonality of computed vectors remains on the roundoff unit level and

is not dependent on the matrix A1/2Z(0).

The error in the inverse factorization can be written as A−1− Z̄Z̄T = V̂ Λ̄−1/2(I−
Λ̄−1/2V̂ T ∆AV̂ Λ̄−1/2)−1Λ̄−1/2V̂ T − (V̂ Λ̄−1/2Q̂ + ∆E2)(V̂ Λ̄−1/2Q̂ + ∆E2)

T which

leads to the factorization for computed factors

A−1 + ∆E4 = Z̄Z̄T , ‖∆E4‖ ≤ O(u)‖A‖‖Λ̄−1‖2 ≤ O(u)κ(A)‖A−1‖. (8)

Similarly we can express AZ̄Z̄T − I = (V̂ Λ̄V̂ T −∆A)(V̂ Λ̄−1/2Q̂ + ∆E2)(V̂ Λ̄−1/2Q̂ +

∆E2)
T −I and Z̄Z̄T A−I = (V̂ Λ̄−1/2Q̂+∆E2)(V̂ Λ̄−1/2Q̂+∆E2)

T (V̂ Λ̄V̂ T −∆A)−I

and get the estimates for the right and left residuals

‖Z̄Z̄T A− I‖ = ‖AZ̄Z̄T − I‖ ≤ ‖Λ̄1/2‖‖∆E2‖+ ‖Λ̄‖‖Z̄‖‖∆E2‖+ ‖∆A‖‖Z̄‖2, (9)

ending up with ‖AZ̄Z̄T − I‖ ≤ O(u)κ(A) or ‖Z̄Z̄T A − I‖ ≤ O(u)κ(A). The bounds

(7) and (9) do not depend on the conditioning of Z(0) or A1/2Z(0). Actually these

matrices appear in the analysis only implicitly in Λ̄1/2V̄ T Z(0) in the QR decompositon

(4). Indeed the factor Z is computed as a product of two (nearly) orthogonal and one

diagonal matrix with a condition number equal to κ1/2(A). This is probably the best

approach one can get in finite precision arithmetic and in this sense the backward stable

eigendecomposition-based implementation can be considered as an optimal algorithm.

One can hardly expect that bounds on Z̄T AZ̄ − I, AZ̄Z̄T − I and Z̄Z̄T A − I will

not depend on the conditioning of the matrix A at least for general symmetric positive

definite A - of course in the case of the standard inner product A = I all these quantities

are the order of the roundoff unit u and they do not depend on κ(Z(0)).

3 Modified Gram-Schmidt orthogonalization

Probably the most frequently used orthogonalization algorithm is the modified Gram-

Schmidt process which represents a good compromise between the efficiency and nu-

merical stability. In this section we show that in finite precision arithmetic for the

modified Gram-Schmidt orthogonalization with the nonstandard inner product the er-

ror in the factorization Z(0)− Z̄Ū is small and independent of κ(A1/2Z(0)). This is no

longer true for the loss of orthogonality Z̄T AZ̄ − I where the condition number of the

matrix A1/2Z(0) plays a dominant role. Since there is a significant difference in the

accuracy of the computed inner product fl[〈·, ·〉A] we will distinguish between the case

of a general positive definite matrix A and the case when the inner product is induced

with a positive and diagonal matrix A.
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Given the matrix Z(0) = [z
(0)
1 , . . . , z

(0)
n ] we consider the following algorithm for

computing the factor Z = [z1, . . . , zn] such that for all i = 1, . . . n and j = 1, . . . , i− 1

we define the matrices Z(j) = [z
(j)
1 , . . . , z

(j)
n ] with the recurrences

z
(j)
i = z

(j−1)
i − αjizj ≡ z

(j−1)
i − 〈z(j−1)

i , zj〉Azj . (10)

The i-th column of Z is then given as zi ≡ z
(i−1)
i /‖z(i−1)

i ‖A. The orthogonalization

coefficients αji form the upper triangular factor U together with the diagonal elements

defined as αii = ‖z(i−1)
i ‖A for all i = 1, . . . n and j = 1, . . . , i− 1.

Due to rounding errors the computed vectors z̄
(j)
i satisfy after each projection the

formula with the local errors ∆δ
(j)
i

z̄
(j)
i = z̄

(j−1)
i − ᾱjiz̄j + ∆δ

(j)
i , |∆δ

(j)
i | ≤ u|z̄(j−1)

i |+ 2u|ᾱji||z̄j |. (11)

Summarizing (11) for indices j = 1, . . . , i − 1 together with the definition of vectors

z̄i = fl[z̄
(i−1)
i /ᾱii] implying z̄

(i−1)
i = ᾱiiz̄i −∆δ

(i)
i with |∆δ

(i)
i | ≤ O(u)|ᾱii||z̄i| gives

ᾱiiz̄i = z
(0)
i −

i−1∑

j=1

ᾱjiz̄j +

i∑

j=1

∆δ
(j)
i , ‖

i∑

j=1

∆δ
(j)
i ‖ ≤ O(u)


‖z(0)

i ‖+

i∑

j=1

|ᾱji|‖z̄j‖

 .

(12)

The term u|z̄(j−1)
i | in (11) can be bounded by 2u

[
|z(0)

i |+ ∑j−1
k=1 |ᾱki||z̄k|

]
. This leads

to the bound for ‖∆δ
(j)
i ‖ ≤ O(u)

[
‖z(0)

i ‖+
∑j

k=1 |ᾱki|‖z̄k‖
]
. Introducing then the

matrix ∆E(1) which contains the local errors
∑i

j=1 ∆δ
(j)
i as its columns we obtain the

first of two main results for the Gram-Schmidt orthogonalization

Z(0) + ∆E(1) = Z̄Ū , ‖∆E(1)‖ ≤ O(u)
[
‖Z(0)‖+ ‖Z̄‖‖Ū‖

]
. (13)

In the modified Gram-Schmidt algorithm the computed coefficients are given as ᾱji =

fl[〈z̄(j−1)
i , z̄j〉A] and ᾱii = fl[‖z̄(i−1)

i ‖A]. Thus u|ᾱki| ≤ u‖z̄(k−1)
i ‖A ≤ u‖z(0)

i ‖A. Due

to ‖Z̄‖ / ‖A−1‖1/2 and ‖Ū‖ ≤ ‖Ū‖F / ‖A1/2Z(0)‖ we get a somewhat better bound

than in (6). Indeed it follows that ‖∆δ
(j)
i ‖ ≤ O(u)‖A−1‖1/2‖z(0)

i ‖A and ‖∆E(1)‖ ≤
O(u)‖A−1‖1/2‖A1/2Z(0)‖ ≤ O(u)κ1/2(A)‖Z(0)‖. In addition we have ‖∆δ

(j)
i ‖A ≤

‖A‖1/2‖∆δ
(j)
i ‖ ≤ O(u)κ1/2(A)‖z(0)

i ‖A for a general symmetric positive definite A. For

A positive and diagonal we can improve this bound using (11) and show ‖∆δ
(j)
i ‖A ≤

O(u)‖z̄(j−1)
i ‖A ≤ O(u)‖z(0)

i ‖A. This result is based on (21), see the discussion later

in the text. Note also that the derivation of (13) does not depend on the way how we

compute the coefficients ᾱki. Therefore a similar result will hold also for the classical

Gram-Schmidt (CGS) algorithm as well as for the AINV orthogonalization which will

be discussed in next section.

Considering recursively the formula (11) for j = k + 1, . . . , i − 1, rearranging the

resulting identity and taking the A-inner product with the vector z̄k we obtain

i∑

j=k+1

ᾱji〈z̄k, z̄j〉A = 〈z̄k, z̄
(k)
i 〉A +

i∑

j=k+1

〈z̄k, ∆δ
(j)
i 〉A. (14)
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The strongest property of the modified Gram-Schmidt process is that the local or-

thogonality between two consecutive computed vectors is well preserved. Indeed if

we look at the inner product of the vector z̄
(k)
i with the vector z̄k one can write

〈z̄k, z̄
(k)
i 〉A = −〈z̄k, ∆η

(k)
i 〉A + 〈z̄k, ∆δ

(k)
i 〉A, where the local error ∆η

(k)
i is given as

∆η
(k)
i =

(
fl[〈z̄(k−1)

i , z̄k〉A]− 〈z̄(k−1)
i , z̄k〉A

)
z̄k +

(
‖z̄k‖2A − 1

)
z̄
(k−1)
i . (15)

The left-hand side of (14) represents the (k, i)-component of the matrix ∆E(3)Ū , where

∆E(3) is a strictly upper triangular containing the off-diagonal elements of the matrix

Z̄T AZ̄ − I = ∆E(4) + ∆E(3) + (∆E(3))T , (16)

where ∆E(4) is diagonal. The identity (14) can be then rewritten into simple ma-

trix form ∆E(3)Ū = ∆E(2), where the matrix ∆E(2) is defined by the elements

−〈z̄k, ∆η
(k)
i 〉A + 〈z̄k,

∑i
j=k ∆δ

(j)
i 〉A . The norm of ∆E(3) from (16) can be bounded

by ‖∆E(3)‖ ≤ ‖∆E(2)‖F ‖Ū−1‖. The computed factors Z̄ and Ū satisfy (13) and (16)

and therefore we can write

ŪT Ū = (Z(0) + ∆E(1))T A(Z(0) + ∆E(1))− ŪT [∆E(4) + ∆E(3) + (∆E(3))T ]Ū .

Since the exact factorization is Z(0) = ZU and ∆E(3)Ū = ∆E(2) the matrix ŪT Ū can

be related to UT U = (Z(0))T AZ(0) as follows

ŪT Ū = UT
[
I + ZT A∆E(1)U−1 + (ZT A∆E(1)U−1)T + (∆E(1)U−1)T A(∆E(1)U−1)

+ (ŪU−1)T ∆E(4)(ŪU−1) + (ŪU−1)T ∆E(2)U−1 + ((ŪU−1)T ∆E(2)U−1)T
]
U.

This gives rise to the equation (ŪU−1)T (ŪU−1) = I + ∆E(5), where the norm of the

error matrix ∆E(5) satisfies the inequality

‖∆E(5)‖ ≤ 2‖A‖1/2‖∆E(1)‖‖U−1‖+ ‖A‖‖∆E(1)‖2‖U−1‖2

+ ‖∆E(4)‖‖∆E(5)‖+ 2‖∆E(2)‖‖U−1‖(1 + ‖∆E(5)‖2)1/2.

It is clear that if we assume that 2‖∆E(2)‖‖U−1‖ + ‖∆E(4)‖ < 1 then ‖∆E(5)‖ /
2(‖A‖1/2‖∆E(1)‖ + ‖∆E(2)‖)‖U−1‖ and ‖Ū−1‖2 ≤ (1 − ‖∆E(5)‖)−1‖U−1‖2. The

elements of the matrix ∆E(3) thus depend significantly on the magnitude of matrices

∆E(1) and ∆E(2). The definition of ∆E(2) indicates that the A-norms of local errors

‖∆δ
(j)
i ‖A and ‖∆η

(k)
i ‖A play a decisive role here. From (15) it follows that we need

to estimate the terms fl[〈z̄(k−1)
i , z̄k〉A]−〈z̄(k−1)

i , z̄k〉A〉 and ‖z̄k‖2A− 1. In addition, the

second term defines the elements of the matrix ∆E(4).

If the inner product is induced by a general symmetric positive definite matrix A,

then the error in computing fl[〈z̄(k−1)
i , z̄k〉A] can be bounded by

|fl[〈z̄(k−1)
i , z̄k〉A]− 〈z̄(k−1)

i , z̄k〉A| ≤ O(u)‖A‖‖z̄(k−1)
i ‖‖z̄k‖. (17)

Note that (17) can be rather pessimistic and it may be worth to consider the details

in computation of the 〈·, ·〉A. The result in finite precision arithmetic depends on the

fact whether we multiply the first or the second argument by A (see the discussion in

numerical experiments). Since the vector z̄k = fl[z̄
(k−1)
k /ᾱkk] with ᾱkk = fl[‖z̄(k−1)

k ‖A]
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is just the computed result from the normalization of the vector z̄
(k−1)
k with respect

to the inner product with a general A one can conclude that
∣∣∣‖z̄k‖2A − 1

∣∣∣ ≤ O(u)‖A‖‖z̄k‖2 ≤ O(u)κ(A). (18)

It follows from (15), (17) and (18) that ‖∆η
(k)
i ‖A ≤ O(u)‖A‖‖z̄k‖(‖z̄(k−1)

i ‖‖z̄k‖A +

‖z̄k‖‖z̄(k−1)
i ‖A) ≤ O(u)‖A‖1/2κ1/2(A)‖z̄k‖‖z(0)

i ‖A. Since we have already ‖∆δ
(j)
i ‖A ≤

O(u)κ1/2(A)‖z(0)
i ‖A the Frobenius norm of the matrix ∆E(2) and the 2-norm of the

matrix ∆E(4) can be then bounded by

‖∆E(2)‖F ≤ O(u)‖A‖1/2‖Z̄‖κ1/2(A)‖A1/2Z̄(0)‖, ‖∆E(4)‖ ≤ O(u)‖A‖‖Z̄‖2. (19)

For a general symmetric positive definite A assuming O(u)κ(A)κ(A1/2Z(0)) < 1 we

can conclude that the loss of orthogonality between the computed vectors Z̄ is bounded

by a quantity proportional not only to the condition number of the matrix A1/2Z(0)

but also to the condition number of the matrix A which is actually the upper bound

for the size of local errors in the computation of associated inner products

‖Z̄T AZ̄−I‖ ≤ O(u)‖A‖1/2‖Z̄‖κ1/2(A)‖A1/2Z(0)‖‖Ū−1‖ ≤ O(u)κ(A)κ(A1/2Z(0))

1−O(u)κ(A)κ(A1/2Z(0))
.

(20)

The situation is more transparent when A is diagonal (and positive definite).

Then for the difference of the computed fl[〈z̄(k−1)
i , z̄k〉A] and the exact inner prod-

uct 〈z̄(k−1)
i , z̄k〉A we have the bound

|fl[〈z̄(k−1)
i , z̄k〉A]− 〈z̄(k−1)

i , z̄k〉A| ≤ O(u)‖z̄(k−1)
i ‖A‖z̄k‖A (21)

and for the error in the normalization of the vector z̄
(k−1)
k one can write

∣∣∣‖z̄k‖2A − 1
∣∣∣ ≤ O(u). (22)

The previous two results lead to significantly better bounds for the local errors ‖∆δ
(j)
i ‖A

≤ O(u)‖z(0)
i ‖A and ‖∆η

(k)
i ‖A ≤ O(u)‖z(0)

i ‖A. In matrix notation we then have bounds

‖∆E(2)‖F ≤ O(u)‖A1/2Z(0)‖, ‖∆E(4)‖ ≤ O(u). (23)

Indeed the relative local errors are small multiples of the roundoff unit and do not de-

pend on the conditioning of the matrix A. For A diagonal we thus get the result analo-

gous to the case with standard inner product [6]. Assuming that O(u)κ(A1/2Z(0)) < 1

the loss of orthogonality between the computed vectors Z̄ is bounded by

‖Z̄T AZ̄ − I‖ ≤ O(u)‖A1/2Z(0)‖‖Ū−1‖ ≤ O(u)κ(A1/2Z(0))

1−O(u)κ(A1/2Z(0))
. (24)

For a diagonal A the matrix A1/2Z(0) is just the matrix Z(0) scaled by row. It is

well-known that the orthogonality of computed vectors in the modified Gram-Schmidt

process (with the standard inner product) is independent of the column-scaling of

the original matrix Z(0). The effect of row-scaling thus seems to be similar to the

application of weighted modified Gram-Schmidt process, i.e. the MGS algorithm with

the A-inner product applied to the columns of Z(0). This process has been extensively

studied by Gulliksson in [15], see also [14] and [16].
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4 Classical Gram-Schmidt and AINV orthogonalization

In the classical Gram-Schmidt algorithm the coefficients αji are computed as αji =

〈z(0)
i , zj〉A for j = 1, . . . i − 1. The computed coefficients ᾱji = fl[〈z(0)

i , z̄j〉A] thus

satisfy

|fl[〈z(0)
i , z̄j〉A]− 〈z(0)

i , z̄j〉A| ≤ O(u)‖A‖‖z(0)
i ‖‖z̄j‖. (25)

As we have already noted in the previous section the recurrence (11) for computed

vectors z̄i = fl[z̄
(i−1)
i /ᾱii] will have the same form together with bounds (12) and (13).

It was shown [31] that diagonal entries αii must be computed using the formula

αii = (‖z(0)
i ‖2A − ‖ZT

i−1Az
(0)
i ‖2)1/2 =

(
‖z(0)

i ‖2A −
i−1∑

k=1

α2
ki

)1/2

. (26)

The computed elements ᾱki for k = 1, . . . , i then satisfy the bound

∣∣∣∣∣∣
‖z(0)

i ‖2A −
i∑

j=1

ᾱ2
ji

∣∣∣∣∣∣
≤ O(u)‖A‖‖z(0)

i ‖2. (27)

The bound for the matrix ∆E(1) is even more straightforward since from (25) we have

‖∆E(1)‖ ≤ O(u)
[
‖Z(0)‖+ ‖Z̄‖‖Ū‖

]
≤ O(u)(‖Z(0)‖+ ‖Z̄‖‖A1/2Z(0)‖). (28)

The worst-case bounds ‖Z̄‖ / ‖A−1‖1/2 and ‖Ū‖ / ‖A1/2Z(0)‖ imply ‖∆E(1)‖ ≤
O(u)‖A−1‖1/2‖A1/2Z(0)‖ ≤ O(u)κ1/2(A)‖Z(0)‖. From (12) for each j = 1, . . . , i − 1

we have ᾱjj z̄j = z
(0)
j −∑j−1

k=1 ᾱkiz̄k +
∑j

k=1 ∆δ
(k)
j . Taking the A-inner product with

z
(0)
i and after some rearranging we get

ᾱjj〈z(0)
i , z̄j〉A = 〈z(0)

i , z
(0)
j 〉A −

j−1∑

k=1

ᾱkj〈z(0)
i , z̄k〉A + 〈z(0)

i ,

j∑

k=1

∆δ
(k)
j 〉A,

j∑

k=1

ᾱkj〈z(0)
i , z̄k〉A = 〈z(0)

i , z
(0)
j 〉A + 〈z(0)

i ,

j∑

k=1

∆δ
(k)
j 〉A,

j∑

k=1

ᾱkj ᾱki = 〈z(0)
i , z

(0)
j 〉A +

j∑

k=1

ᾱkj

(
fl[〈z(0)

i , z̄k〉A]− 〈z(0)
i , z̄k〉A

)
+ 〈z(0)

i ,

j∑

k=1

∆δ
(k)
j 〉A.

Let the last two terms of this equation define the (i, j)-th element of the error matrix

∆E. Considering (25), (27) and the bound for the local errors developed in the previ-

ous section ‖∆δ
(k)
j ‖A ≤ O(u)‖A‖1/2

[
‖z(0)

j ‖+
∑k

s=1 |ᾱsj |‖z̄s‖
]

we obtain the matrix

identity (the analogous result for the standard inner product can be found in [12])

(Z(0))T AZ(0)+∆E = ŪT Ū , ‖∆E‖ ≤ O(u)‖A‖‖Z(0)‖(‖Z(0)‖+‖Z̄‖‖A1/2Z(0)‖) (29)

Indeed the computed factor Ū is the exact Cholesky factor of the matrix (Z(0))T AZ(0)+

∆E, where ‖∆E‖ ≤ O(u)κ1/2(A)‖A‖1/2‖Z(0)‖‖A1/2Z(0)‖. In other words, up to the

factor κ1/2(A) estimating the local errors, the classical Gram-Schmidt algorithm is a
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way how to compute a backward stable Cholesky factor of the cross-product matrix

(Z(0))T AZ(0) (see also [11], [12]). Using (29) and (13) with (28) we derive

ŪT (I − Z̄T AZ̄)Ū = −(∆E(1))T AZ(0) − (Z(0))T A∆E(1) + (∆E(1))T A∆E(1) + ∆E,

which gives rise to the bound for the loss of orthogonality that depends quadratically

on the minimal singular value of A1/2Z(0). Indeed using (28) we have

‖I − Z̄T AZ̄‖ ≤ O(u)‖A‖‖Z̄‖‖Z(0)‖‖Ū‖‖Ū−1‖2 ≤ O(u)κ(A)κ(A1/2Z(0))κ(Z(0))

1−O(u)κ(A)κ(A1/2Z(0))
,

(30)

where the size of local errors is reflected similarly as in the modified Gram-Schmidt

algorithm with the worst-case bound ‖A‖1/2‖Z̄‖ ≤ κ1/2(A). In the case of a diag-

onal A one can show due to |fl[〈z(0)
i , z̄k〉A] − 〈z(0)

i , z̄k〉A| ≤ O(u)‖z(0)
i ‖A‖z̄k‖A that

‖A1/2∆E(1)‖ ≤ O(u)‖A1/2Z(0)‖ and ‖∆E‖ ≤ ‖A1/2Z(0)‖2 which give rise to a sig-

nificantly better bound in the form

‖I − Z̄T AZ̄‖ ≤ O(u)‖A1/2Z(0)‖2‖Ū−1‖2 ≤ O(u)κ2(A1/2Z(0))

1−O(u)κ2(A1/2Z(0))κ(Z(0))
. (31)

In the following we will analyze the AINV orthogonalization scheme and show

that its numerical behavior is very similar to CGS. Indeed, the coefficients αji in

the recurrence for the vectors z
(j)
i can be also determined using oblique projection as

αji = 〈z(j−1)
i , z

(0)
j 〉A/〈zj , z

(0)
j 〉A. Where 〈zj , z

(0)
j 〉A = 〈zj ,

∑j
k=1 αkjzk〉A = αjj . The

coefficients αjj are computed with the nonstandard formula

αjj =


‖z(0)

j ‖2A −
j−1∑

k=1

α2
kj




1/2

. (32)

This algorithm is a modification of the modified Gram-Schmidt ,,towards” the clas-

sical Gram-Schmidt algorithm and in the context of A-orthogonalization it is known

and widely used as the AINV preconditioner. Its analogue for the case of the standard

inner product is not used since it is clearly not competitive with the MGS algorithm.

Indeed the recurrence (13) will remain true also for quantities computed in the AINV

orthogonalization algorithm, whereas the norm of the matrix ∆E(1) can be bounded as

‖∆E(1)‖ ≤ O(u)[‖Z(0)‖+ ‖Z̄‖‖Ū‖] ≤ O(u)‖A−1‖1/2‖A1/2Z(0)‖. The last bound can

be shown only under assumption that the orthogonality is not lost completely. Other-

wise the error in computing these oblique projections may be significantly larger than

for orthogonal projections in CGS or MGS. The computed orthogonalization coeffi-

cients ᾱji then can be expressed as ᾱji = fl[〈z̄(j−1)
i , z̄

(0)
j 〉A], where z̄

(0)
j = fl[z

(0)
j /ᾱjj ].

From (11) we can write that z̄
(j)
i = z

(0)
i −∑j−1

k=1 ᾱkiz̄k +
∑j−1

k=1 ∆δ
(k)
i . Taking the A-

inner product with the initial vector z
(0)
j we obtain successively

ᾱjj〈z̄(j−1)
i ,

z
(0)
j

ᾱjj
〉A = 〈z(0)

i , z
(0)
j 〉A −

j−1∑

k=1

ᾱki〈z̄k, z
(0)
j 〉A +

j−1∑

k=1

〈∆δ
(k)
i , z

(0)
j 〉A

ᾱjj〈z̄(j−1)
i , z̄

(0)
j 〉A = 〈z(0)

i , z
(0)
j 〉A −

j−1∑

k=1

ᾱki〈z̄k, z
(0)
j 〉A +

j−1∑

k=1

〈∆δ
(k)
i , z

(0)
j 〉A
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+ ᾱjj〈z̄(j−1)
i , z̄

(0)
j −

z
(0)
j

ᾱjj
〉A, (33)

j−1∑

k=1

ᾱkj α̂ki = 〈z(0)
i , z

(0)
j 〉A +

j−1∑

k=1

〈∆δ
(k)
i , z

(0)
j 〉A

+ ᾱjj


fl[〈z̄(j−1)

i , z̄
(0)
j 〉A]− 〈z̄(j−1)

i ,
z
(0)
j

ᾱjj
〉A


 ,

where α̂ki = 〈z(0)
i , z̄k〉A for k = 1, . . . , i− 1 are the coefficients of the upper triangular

matrix Û (the diagonal of Û will be identical to the diagonal of Ū) and where

∣∣∣∣∣∣
fl[〈z̄(j−1)

i , z̄
(0)
j ]〉A]− 〈z̄(j−1)

i ,
z
(0)
j

ᾱjj
〉A

∣∣∣∣∣∣
≤ O(u)‖A‖‖z̄(j−1)

i ‖
‖z(0)

j ‖
|ᾱjj | . (34)

Since the left-hand side of the recurrence (34) is just the (j, i)-element of the matrix

ŪT Û it can be rewritten in matrix notation into an identity with the strictly upper

triangular part of the matrix ∆F satisfying

striu(ŪT Û) = striu((Z(0))T AZ(0) + ∆F ),

‖striu(∆F )‖ ≤ O(u) κ1/2(A)‖A‖1/2‖Z(0)‖‖A1/2Z(0)‖. (35)

The diagonal elements of αii are computed with the formula (32). The computed

quantities ᾱki satisfy |‖z(0)
i ‖2A − ∑i

k=1 ᾱ2
ki| ≤ O(u)‖A‖‖z(0)

i ‖2. The diagonal entries

of the matrix ∆F thus satisfy the bound

diag(ŪT Û) = diag((Z(0))T AZ(0) + ∆F ), ‖diag(∆F )‖ ≤ O(u)‖A‖‖Z(0)‖2. (36)

From (12) for each j = 1, . . . , i− 1 we have ᾱjj z̄j = z
(0)
j −∑j−1

k=1 ᾱkiz̄k +
∑j

k=1 ∆δ
(k)
j .

Taking the A-inner product with z
(0)
i and after some rearranging we get

ᾱjj α̂ji = 〈z(0)
i , z

(0)
j 〉A −

j−1∑

k=1

ᾱkj α̂ki + 〈z(0)
i ,

j∑

k=1

∆δ
(k)
j 〉A,

j∑

k=1

ᾱkj α̂ki = 〈z(0)
i , z

(0)
j 〉A + 〈z(0)

i ,

j∑

k=1

∆δ
(k)
j 〉A.

In matrix notation this leads to the bound for the strictly lower triangular part of the

matrix ∆F (i.e. the strictly upper triangular part of (∆F )T )

striu(ÛT Ū) = striu((Z(0))T AZ(0)+(∆F )T ), ‖stril(∆F )‖ ≤ O(u) κ1/2(A)‖A1/2Z(0)‖2.

The matrix ÛT and the computed upper triangular factor Ū are thus the exact

lower and upper triangular factors in the triangular decomposition of the matrix

(Z(0))T AZ(0) perturbed by the nonsymmetric matrix ∆F so that (Z(0))T AZ(0) +

∆F = ÛT Ū , where ‖∆F‖ ≤ O(u) κ(A)1/2‖A‖1/2‖Z(0)‖‖A1/2Z(0)‖. In addition Û

and Ū have the same diagonal entries, a fact which appears to be very important for

further considerations. If we introduce matrices ∆Ū = Ū−U and ∆Û = Û−U whereas

the matrix U is the exact Cholesky factor of the matrix (Z(0))T AZ(0) = UT U , they
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must then satisfy ∆F = ∆ŪT U + UT ∆Û + ∆ŪT ∆Û . Multiplying this identity by

U−T and U−1 from the left and from the right, respectively, we get by modyfing the

approach from [1], [27]

U−T ∆FU−1 = U−T ∆ŪT + ∆ÛU−1 + U−T ∆ŪT ∆ÛU−1.

The matrices ∆ŪU−1 and ∆ÛU−1 are upper triangular. Due to diag(Ū) = diag(Û)

their Frobenius norms can be bounded by a system of two inequalities

2‖∆ŪU−1‖F ≤ ‖U−T ∆FU−1‖F + ‖∆ŪU−1‖F ‖∆ÛU−1‖F ,

2‖∆ÛU−1‖F ≤ ‖U−T ∆FU−1‖F + ‖∆ŪU−1‖F ‖∆ÛU−1‖F .

Assuming ‖U−T ∆FU−1‖F ¿ 1 we obtain after some manipulation ‖∆ŪU−1‖F ≤
‖U−T ∆FU−1‖F . Due to Z(0) +∆E(1) = Z̄Ū and (Z(0))T AZ(0) = UT U we can write

(ŪU−1)T (Z̄T AZ̄ − I)(ŪU−1) = ∆ŪU−1 + (∆ŪU−1)T + (∆ŪU−1)T (∆ŪU−1)

+ZT A∆E(1)U−1 + (ZT A∆E(1)U−1)T + U−T (∆E(1))T A∆E(1)U−1.

(37)

Considering that ‖UŪ−1‖ ≤ [1− ‖U−T ∆FU−1‖]−1, ‖U−T ∆FU−1‖ ≤ ‖∆F‖‖U−1‖2
and ‖∆F‖ ≤ O(u) κ(A)1/2‖A‖1/2‖Z(0)‖‖A1/2Z(0)‖ we finally get the bound for the

loss of orthogonality between the computed vectors Z̄ having identical form as (30),

i.e.

‖Z̄T AZ̄ − I‖ ≤ O(u)κ(A)κ(A1/2Z(0))κ(Z(0))

1−O(u)κ(A)κ(A1/2Z(0))κ(Z(0))
. (38)

In the case of a diagonal A the bound can be improved by a factor of κ1/2(A) and we

can get the bound identical to (31). These results clearly indicate that the numerical

behavior of CGS and AINV is quite similar and the loss between computed vectors in

these two schemes in the worst-case is proportional to κ(A)κ(A1/2Z(0))κ(Z(0)) for a

general A and to κ2(A1/2Z(0)) for a diagonal A.

5 Classical Gram-Schmidt with reorthogonalization

We have shown that the orthogonality between computed vectors Z̄ in MGS, CGS and

AINV (besides the condition number of A bounding the local errors) depends signifi-

cantly on the condition number of the matrix A1/2Z(0), while in the implementation

based on eigendecomposition we have the bound ‖Z̄T AZ̄ − I‖ ≤ O(u)‖A‖‖Z̄‖2 ≤
O(u)κ(A). In this section we consider the classical Gram-Schmidt algorithm with re-

orthogonalization (i.e. classical Gram-Schmidt where the orthogonalization of the cur-

rent vector z
(0)
i is performed exactly twice). Provided we have already the vectors

Zi−1 = [z1, . . . , zi−1] at the i-th step we generate the vectors

z
(1)
i = z

(0)
i −

i−1∑

j=1

α
(1)
ji zj = (I − Zi−1ZT

i−1A)z
(0)
i , (39)

z
(2)
i = z

(1)
i −

i−1∑

j=1

α
(2)
ji zj = (I − Zi−1ZT

i−1A)z
(1)
i . (40)
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The new vector zi is just the result from the normalization of z(2) given as zi = z(2)/αii

with αii = ‖z(2)‖A. The new column of the triangular factor is given by elements

αji = α
(1)
ji + α

(2)
ji . It is clear that in exact arithmetic z

(2)
i = z

(1)
i , while the computed

vectors satisfy the following identities

z̄
(1)
i = z

(0)
i −

i−1∑

j=1

ᾱ
(1)
ji z̄j + ∆δ

(1)
i , ‖∆δ

(1)
i ‖ ≤ O(u)(‖z(0)

i ‖+

i−1∑

j=1

|ᾱ(1)
ji |‖z̄j‖), (41)

z̄
(2)
i = z̄

(1)
i −

i−1∑

j=1

ᾱ
(2)
ji z̄j + ∆δ

(2)
i , ‖∆δ

(2)
i ‖ ≤ O(u)(‖z̄(1)

i ‖+

i−1∑

j=1

|ᾱ(2)
ji |‖z̄j‖), (42)

with local errors that can be further bounded as ‖∆δ
(1)
i ‖A ≤ ‖A‖1/2‖∆δ

(1)
i ‖ ≤

O(u)κ1/2(A)‖z(0)
i ‖A and ‖∆δ

(1)
i ‖A ≤ O(u)κ1/2(A)‖z̄(1)

i ‖A ≤ O(u)κ1/2(A)‖z(0)
i ‖A

due to the (near-) monotonicity ‖z̄(1)
i ‖A . ‖z(0)

i ‖A. The recurrences (41)-(42) can

be rewritten as z
(0)
i + ∆δ

(1)
i + ∆δ

(2)
i =

∑i−1
j=1(ᾱ

(1)
ji + ᾱ

(2)
ji )z̄j + z̄

(2)
i . The vector z̄

(2)
i

can be written as z̄
(2)
i = ᾱiiz̄i + ∆δ

(i)
i . In matrix form this gives the identity for the

first i vectors stored as columns of Z̄i = [z̄1, . . . , z̄i]

Z
(0)
i + ∆E

(1)
i = Z̄i(Ū

(1)
i + Ū

(2)
i ), ‖A1/2∆E

(1)
i ‖ ≤ O(u)κ1/2(A)‖A1/2Z(0)‖. (43)

It is clear that the computed coefficients ᾱ
(1)
ji and ᾱ

(2)
ji satisfy |fl[〈z(0)

i , z̄j〉A]−〈z(0)
i , z̄j〉A|

≤ O(u)‖A‖‖z(0)
i ‖‖z̄j‖ and |fl[〈z̄(1)

i , z̄j〉A] − 〈z̄(1)
i , z̄j〉A| ≤ O(u)‖A‖‖z̄(1)

i ‖‖z̄j‖ leading

to reformulation of the recurrences (41)-(42) in the form

z̄
(1)
i = (I − Z̄i−1Z̄T

i−1A)z
(0)
i + ∆η

(1)
i , (44)

‖∆η
(1)
i ‖A ≤ O(u) κ1/2(A)‖A‖1/2‖Z̄i−1‖‖z(0)

i ‖A,

z̄
(2)
i = (I − Z̄i−1Z̄T

i−1A)z̄
(1)
i + ∆η

(2)
i , (45)

‖∆η
(2)
i ‖A ≤ O(u)κ1/2(A)‖A‖1/2‖Z̄i−1‖‖z̄(1)

i ‖A.

We will use an incremental approach and assume at step i− 1 that the loss of orthog-

onality between the vectors z̄1, . . . , z̄i−1 is bounded by

‖Z̄T
i−1AZ̄i−1‖ ≤ O(u)κ1/2(A)‖A‖1/2‖Z̄i−1‖ ≤ O(u)κ(A) (46)

and show that this statement will remain true also at step i. Multiplication of (44)

from the left by Z̄i−1AT leads to the identity

Z̄T
i−1Az̄

(1)
i = (I − Z̄T

i−1AZ̄i−1)Z̄
T
i−1Az

(0)
i + Z̄T

i−1A∆η
(1)
i .

Taking the norm, dividing by the A-norm of the vector z̄
(1)
i and taking into account

(44) and (46) leads to the bound for the quantity ‖Z̄T
i−1A(z̄

(1)
i /‖z̄(1)

i ‖A)‖

‖Z̄T
i−1Az̄

(1)
i ‖

‖z̄(1)
i ‖A

≤ O(u)κ1/2(A)‖A‖1/2‖Z̄i−1‖‖A1/2Z̄i−1‖
‖z(0)

i ‖A

‖z̄(1)
i ‖A

. (47)
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The factor ‖z(0)
i ‖A/‖z̄(1)

i ‖A can be estimated using the recurrence (43) for the first

i− 1 steps together with (41) which can be written after multiplication by A1/2 from

the left in the form

A1/2Z
(0)
i + A1/2[∆E

(1)
i−1, ∆δ

(1)
i − z̄

(1)
i ] = A1/2Z̄i−1[Ū

(1)
i−1 + Ū

(2)
i−1, ū

(1)
i ],

where [Ū
(1)
i−1 + Ū

(2)
i−1, ū

(1)
i ] is the (i− 1)× i matrix that contains the sums of computed

coefficients (at step i we consider only the first sweep of the algorithm). The matrix

A1/2Z
(0)
i + A1/2[∆E

(1)
i−1, ∆δ

(1)
i − z̄

(1)
i ] has rank i− 1 and the matrix A1/2Z

(0)
i has full

column rank. Therefore the distance from A1/2Z
(0)
i to the set of matrices having rank

i− 1 is less than the norm of A1/2[∆E
(1)
i−1, ∆δ

(1)
i − z̄

(1)
i ]. Indeed the minimal singular

value of A1/2Z
(0)
i can be then bounded by the Frobenius norm of the perturbation

which can be bounded further as

σi(A
1/2Z

(0)
i ) ≤

√
‖A1/2∆E

(1)
i−1‖2 + ‖∆δ

(1)
i ‖2A) + ‖z̄(1)

i ‖2A.

Using the bounds from (41) and (43) and assuming that O(u)κ1/2(A)κ(A1/2Z
(0)
i ) < 1

we can give a lower bound for the A-norm of the vector z̄
(1)
i

‖z̄(1)
i ‖A ≥ σi(A

1/2Z
(0)
i )

(
1−O(u)κ1/2(A)κ(A1/2Z

(0)
i )

)
. (48)

Due to ‖A‖1/2‖Z̄i−1‖ ≤ κ1/2(A) and (48) for the left-hand side of (47) we get

‖Z̄T
i−1Az̄

(1)
i ‖

‖z̄(1)
i ‖A

≤ O(u)κ(A)κ(A1/2Z
(0)
i )

1−O(u)κ1/2(A)κ(A1/2Z
(0)
i )

. (49)

Similarly as before we consider (45), multiply it from the left by Z̄T
i−1A and obtain the

identity

Z̄T
i−1Az̄

(2)
i = (I − Z̄T

i−1AZ̄i−1)Z̄
T
i−1Az̄

(1)
i + Z̄T

i−1A∆η
(2)
i .

which is treated similarly as in (50), i.e. using (46) and (45) we get

‖Z̄T
i−1Az̄

(2)
i ‖

‖z̄(2)
i ‖A

≤ O(u)κ1/2(A)‖A‖1/2‖Z̄i−1‖‖A1/2Z̄i−1‖‖
‖z̄(1)

i ‖A

‖z̄(2)
i ‖A

. (50)

The factor ‖z̄(1)
i ‖A/‖z̄(2)

i ‖A can be bounded from below reconsidering (45) once again

as follows

‖z̄(2)
i ‖A

‖z̄(1)
i ‖A

≥ ‖z̄(1)
i ‖A

‖z̄(1)
i ‖A

− ‖A1/2Z̄i−1‖
‖Z̄T

i−1Az̄
(1)
i ‖

‖z̄(1)
i ‖A

− ‖∆η
(2)
i ‖A

‖z̄(1)
i ‖A

which under stronger assumption O(u)κ(A)κ(A1/2Z
(0)
i ) < 1 leads to the final bound

‖z̄(1)
i ‖A/‖z̄(2)

i ‖A ≤ [1 − O(u)κ(A)κ(A1/2Z
(0)
i )]−1. Considering z̄

(2)
i = ᾱiiz̄i + ∆δ

(i)
i

with |ᾱii − ‖z̄(2)
i ‖A| ≤ O(u)‖A‖‖z̄(2)

i ‖2 we can relate the left-hand side of (50) with

the quantity ‖Z̄T
i−1Az̄i‖. Taking into account also the error from the normalization

|1− ‖z̄i‖2A| ≤ O(u)‖A‖‖z̄i‖2 we end up with the statement

‖I − Z̄T
i AZ̄i‖ ≤ O(u)κ1/2(A)‖A‖1/2‖Z̄i‖ ≤ O(u)κ(A). (51)
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Again, the bound (51) can be significantly improved for diagonal A. Assuming only

O(u)κ(A1/2Z
(0)
i ) < 1 one can show using the same approach that the orthogonal-

ity between the computed vectors Z̄i in this case does not depend on the condition

number of the matrix A1/2Z(0) and it is preserved on the roundoff unit level with

‖I − Z̄T
i AZ̄i‖ ≤ O(u). It is interesting to note that a similar result holds also for the

EIG implementation based on backward stable eigendecomposition. However, the as-

sumption O(u)κ(A1/2Z
(0)
i ) < 1 is crucial for the CGS2 algorithm, while for EIG this

result holds without any requirement on the initial vectors stored in Z(0). In practical

situations, both EIG and CGS2 behave very similarly as it is also illustrated in our

numerical examples.

6 Numerical experiments

In this section we illustrate our theoretical results. All experiments are performed us-

ing MATLAB with u = 1.1 10−16. We consider three sequences of test examples Ai

with increasing condition number κ(Ai) ≈ 10i, i = 0, . . . , 15 and show that our bounds

for the error in factorization and the loss of orthogonality are realistic. In all the fig-

ures we depict the loss of orthogonality ‖ I − Z̄T
i AiZ̄i ‖ and the 2-norm of the error

of the factorization ‖ Z
(0)
i − Z̄iŪi ‖ with respect to the condition number κ(Ai) for

the eigenvalue decomposition-based (EIG) implementation (solid lines), the modified

Gram-Schmidt (MGS) algorithm (dashed lines with bold dots), the classical Gram-

Schmidt (CGS) algorithm (dash-dotted lines), the AINV orthogonalization (dashed

lines) and the classical Gram-Schmidt algorithm with reorthogonalization (CGS2, solid

lines with bold dots). The dotted lines in figures always correspond to relevant bounds

(i.e. uκ(A), uκ(A)κ(A1/2Z(0)) and uκ(A)κ(A1/2Z(0))κ(Z(0)) for the loss of orthog-

onality and u‖Z(0)‖, u‖Z̄‖‖A1/2Z(0)‖ and uκ1/2(A)‖Z(0)‖ for the error of the fac-

torization). For all Gram-Schmidt algorithms we consider two computational variants

which differ only in the floating-point evaluation of the inner product induced by the

matrix A. The variant ,,a” assumes that in the i-th step we first compute matrix-

vector multiplication with the first argument of the inner product and then compute

the dot product with the second argument (e.g. in MGS we compute the coefficient as

fl(〈z̄(j−1)
i , fl(Az̄j)〉)). The variant ”b” assumes the reverse order of the computation (in

MGS it corresponds to fl(〈fl(Az
(j−1)
i ), z̄j〉)).

The first sequence of matrices Ai with dimension n = 8 (denoted as Problem 1) is

generated as powers of the inverse Hilbert matrix A = invhilb(8) = V ΛV T (κ(A) ≈
1010) such that Ai = V Λi/10V T with κ(Ai) ≈ 10i, i = 0, . . . , 15. The matrix Z

(0)
i is

constructed as Z
(0)
i = V Λ−i/20(Li)

T , where Li is the Cholesky factor of Ai satisfying

Ai = Li(Li)
T so that κ(Z

(0)
i ) ≈ 10i and κ(A

1/2
i Z

(0)
i ) ≈ 10i/2 for i = 0, . . . , 15. It

is clear from the definition that in exact arithmetic the orthogonal factor is equal to

Zi = V Λ−i/20 and the triangular factor is identical to the transpose of the Cholesky

factor Ui = (Li)
T . Moreover we assume that the columns of Zi are ordered with respect

to increasing eigenvalue of A.

It is clear from Figure 1 that the loss of orthogonality between computed vectors in

the EIG implementation is proportional to κ(A) and the same applies to the CGS2 algo-

rithm. The behavior of CGS and AINV is very similar; they both generate vectors with

loss of orthogonality approaching the theoretical bound O(u)κ(A)κ(A1/2Z(0))κ(Z(0))
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as predicted by the theory. Note that while there is no visible difference between the

,,a” and ,,b” variants in CGS, AINV or CGS2, the situation can be completely differ-

ent for the MGS algorithm. Indeed the loss of orthogonality for the version ,,a” is very

close to EIG and CGS2, while for the version ,,b” it approaches the theoretical bound

κ(A)κ(A1/2Z(0)). We believe that this observation can be explained by our particular

construction of the matrix Z(0). While in the first case we compute Az̄j which in exact

arithmetic should be λn−j+1zj and λn−j+1 is the j-th smallest eigenvalue of A, in the

second case one multiplies z
(j−1)
i which is a combination of eigenvectors corresponding

to n − j largest eigenvalues. Due to the fact that the error in the dot product is pro-

portional to the size of arguments, one can expect for Problem 1 (and also for Problem

2) more accurate results in the ,,a” version of the MGS algorithm. Figure 2 shows the

2-norm of the error in the factorization measured by ‖ Z
(0)
i −Z̄iŪi ‖. Since the behavior

of all schemes does not differ significantly for ,,a” or ,,b” versions, we consider only

the version ,,b” here. The results confirm that the EIG implementation is significantly

worse in terms of the error and it approximately scales as O(u)κ1/2(A)‖Z(0)‖. All the

other algorithms behave similarly and correspond to the significantly better bound

O(u)(‖Z(0)‖+ ‖Z̄‖‖A1/2Z(0)‖).
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Fig. 1 Loss of orthogonality ‖Z̄T AZ̄ − I‖ for Problem 1 (versions ,,a” and ,,b”)

The definition of Problem 2 uses the Hilbert matrix of the dimension n = 8:

A = V ΛV T (κ(A) ≈ 1010). The sequence of the matrices Ai was defined through

Ai = V Λi/10V T with κ(Ai) ≈ 10i, i = 0, . . . , 15. Again, we set Z
(0)
i = V Λ−i/20(Li)

T ,

where Li stands now for the Cholesky factor of the matrix A3
i = LiL

T
i . As we see from

Figure 3 the results are qualitatively similar, but more ill-conditioned triangular factors

Ui lead to significantly weaker orthogonality of computed vectors for CGS, AINV and

MGS algorithms close to our theoretical bounds, whereas the error in the factorization

behaves similarly as in Problem 1. It is also apparent from Figure 3 that the loss

of orthogonality in the CGS2 algorithm can be significantly different from the loss of

orthogonality in EIG. This may however happen only when O(u)κ(Ai)κ(A
1/2
i Z

(0)
i ) ≈ 1,

see the second dotted line on Figure 3.

Finally we investigate the behavior of all five schemes in the case of a sequence

of diagonal matrices Ai. As above, the dimension of the problem is n = 8, with the

constant Z
(0)
i = A1/2, where A is the inverse Hilbert matrix

(
κ(Z(0)) ≈ 105

)
and A(i)
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Fig. 2 Factorization error ‖Z(0) − Z̄Ū‖ for Problem 1 (version ,,b”)
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Fig. 3 Loss of orthogonality ‖Z̄T AZ̄ − I‖ and factorization error ‖Z(0) − Z̄Ū‖ for Problem 2
(version ,,b”)

is a diagonal matrix with κ(Ai) ≈ 10i, i = 0, . . . , 15. The results are plotted on Figure

4 and clearly illustrate that all our theoretical bounds are tight. The only exception

is that the factorization error seems to be independent of ‖Z̄‖‖Ū‖, but we do not see

how to prove that ‖Z(0) − Z̄Ū‖ ≤ O(u)‖Z(0)‖ holds for a diagonal A. This would

actually complete our analysis with the conclusion that the numerical behavior of the

weighted Gram-Schmidt orthogonalization is similar to the numerical behavior of the

Gram-Schmidt orthogonalization with the standard inner product.

7 Conclusions

In this paper we have presented several theoretical results on the factorization error

and orthogonality of vectors computed by the most important schemes used for or-

thogonalization with respect to the non-standard inner product. Although they are

mathematically equivalent, their numerical behavior in finite precision arithmetic may

significantly differ. Our main results are summarized in Table 1. It follows for our anal-

ysis that while the factorization error is quite comparable for all these schemes (with

exception of the EIG implementation), the orthogonality between computed vectors can



18

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Lo
ss

 o
f o

rt
ho

go
na

lit
y 

||I
−

Z
T
A

Z
||

condition number (A)

Problem 3 (diagonal matrix)

 

 

 MGS
 CGS
 CGS2
 AINV
 EIG

 u κ(A1/2Z(0))

 u κ2(A1/2 Z(0))

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

F
ac

to
riz

at
io

n 
er

ro
r 

|| 
Z(0

)  −
 Z

U
 ||

condition number (A)

Problem 3 (diagonal matrix)

 

 

 MGS
 CGS
 CGS2
 AINV
 EIG

 u ||Z(0)||

 u ||Z|| ||A1/2 Z(0)||

Fig. 4 Loss of orthogonality ‖Z̄T AZ̄ − I‖ and factorization error ‖Z(0) − Z̄Ū‖ for Problem 3

be significantly lost and it depends linearly on the conditioning of the matrix inducing

the inner product. This is the case also for the eigenvalue-based implementation and

Gram-Schmidt with reorthogonalization. The classical Gram-Schmidt algorithm and

AINV orthogonalization behave very similarly and compute vectors with the orthog-

onality that depends besides κ(A) also on the factor κ(A1/2Z(0))κ(Z(0)) essentially

meaning the quadratic dependence on the condition number of the matrix A1/2Z(0).

Since the orthogonality in the modified Gram-Schmidt algorithm depends only linearly

on κ(A1/2Z(0)) this algorithm appears to be a good compromise between expensive

EIG or CGS2 and less accurate CGS or AINV. Indeed in the context of approximate

inverse preconditioning the stabilization of AINV has lead to the SAINV algorithm

which uses exactly the MGS orthogonalization. We have treated also the particular

case of a diagonal A which is extremely useful for the context of weighted least squares

problems. It appears then that local errors arising in the computation of non-standard

inner products do not play an important role and numerical behavior of these schemes

is similar to the behavior of the orthogonalization with the standard inner product.

The authors would like to thank for the fruitful discussion and useful comments to G.

Meurant and S. Gratton.
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