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Abstract

Incomplete factorizations have long been popular general-purpose algebraic pre-
conditioners for solving large sparse linear systems of equations. Guaranteeing
the factorization is breakdown free while computing a high quality preconditioner
is challenging. A resurgence of interest in using low precision arithmetic makes
the search for robustness more important and more challenging. In this paper,
we focus on ill-conditioned symmetric positive definite problems and explore a
number of approaches for preventing and handling breakdowns: prescaling of the
system matrix, a look-ahead strategy to anticipate breakdown as early as pos-
sible, the use of global shifts, and a modification of an idea developed in the
field of numerical optimization for the complete Cholesky factorization of dense
matrices. Our numerical simulations target highly ill-conditioned sparse linear
systems with the goal of computing the factors in half precision arithmetic and
then achieving double precision accuracy using mixed precision refinement. We
also consider the often overlooked issue of growth in the sizes of entries in the
factors that can occur when using any precision and can render the computed
factors ineffective as preconditioners.

Keywords: half precision arithmetic, preconditioning, incomplete factorizations,
iterative methods for linear systems
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1 Introduction

Our interest is in solving large-scale symmetric positive definite (SPD) linear systems
of equations Ax = b. Incomplete Cholesky (IC) factorizations of the form A ≈ LLT ,
where the factor L is a sparse lower triangular matrix, have long been important
and well-used algebraic preconditioners for use with iterative solvers. While they are
general purpose and, when compared to sparse direct solvers, require modest computa-
tional resources, they do have drawbacks. Their effectiveness can be highly application
dependent and, although significant effort has gone into developing a strong theoreti-
cal background, most results are limited to model problems. To be useful in practice,
their computation and application must be efficient and robust.

Traditionally, matrix factorizations have most often been computed using dou-
ble precision floating-point arithmetic, which nowadays corresponds to a 64-bit
floating-point number format. However, half precision arithmetic is being increasingly
supported by modern hardware and because it can offer speed benefits while using
less energy and memory, there has been significant interest in recent years in its use in
numerical linear algebra; see the comprehensive review [1] and references therein. For
linear systems, one strategy that has received attention is GMRES-IR [2]. The idea
is to compute the matrix factors in low precision arithmetic and then employ them
as preconditioners for GMRES within mixed precision iterative refinement (see also
[1, 3, 4]). For SPD systems, GMRES can potentially be replaced by the CG (conju-
gate gradient) method [5]. Using low precision incomplete factors may enable much
larger problems to be solved (normally at the cost of more iterations to achieve the
requested accuracy). In an initial study [6], we explored this approach, focusing on
the safe avoidance of overflows that can occur when computing matrix factors using
low precision arithmetic.

When using any precision, breakdown can occur during an incomplete Cholesky
factorization of a general SPD matrix, that is, a pivot (diagonal entry of a Schur com-
plement) may be zero or negative where an exact Cholesky factorization would have
only positive pivots, or a computation within the factorization may overflow. A review
is given in the Lapack Working Note [7]. Breakdown is more likely when using low
precision arithmetic. This is partly because the initial matrix A must be “squeezed”
into half precision, which may mean the resulting matrix is not (sufficiently) positive
definite for the factorization to be successful [8]. But, in addition, overflows outside
the narrow range of possible numerical values are an ever-present danger. Our interest
lies in exploring strategies to prevent breakdown during sparse matrix factorizations.
Importantly, these must be robust, inexpensive and not cause serious degradation to
the preconditioner quality.

Building on our earlier work on breakdowns within half precision sparse matrix
incomplete factorizations [6], this paper makes the following contributions. Firstly, we
consider and compare the performance in half precision arithmetic of a number of
strategies to limit the likelihood of breakdown: (a) prescaling the matrix before it is
squeezed, (b) look-ahead that checks the diagonal entries of the partially factorized
matrix at each major step of the factorization, (c) the use of global shifts, and (d) an
approach based on locally modifying the factorization. The latter was originally used
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to modify approximate (dense) Hessian matrices in the field of numerical optimiza-
tion. Here we seek to apply it to sparse problems, in combination with low precision
arithmetic, as a strategy that avoids the restarting needed with the use of global
shifts. Secondly, we demonstrate that, even if double precision is used throughout the
computation and breakdown does not occur, it is essential to take action to prevent
growth in the factor entries because otherwise, the factors can be ineffective as precon-
ditioners. Finally, we concentrate our numerical experiments on highly ill-conditioned
linear systems and the challenge of recovering double accuracy in the computed solu-
tion using a preconditioner computed in low precision arithmetic. We develop Fortran
software that enables us to illustrate the potential for exploiting half precision within
robust approaches for tackling large-scale sparse systems.

The rest of the paper is organised as follows. Section 2 looks at the different stages
at which breakdown can occur within an incomplete factorization. In Section 3, we
present a number of ways to prevent and handle breakdown. Numerical results for
a range of highly ill-conditioned linear systems coming from practical applications
are presented in Section 4. Finally, in Section 5, our findings and conclusions are
summarised.

Terminology. We use high precision (denoted by fp64) to refer to IEEE double
precision (64-bit) and low precision (denoted by fp16) for the 1985 IEEE standard 754
half precision (16-bit). Note that bfloat16 is another form of half precision arithmetic.
It has 8 bits in the significand and (as in fp32) 8 bits in the exponent. We do not use
it in this paper because our software is written in Fortran and, as far as we are aware,
there are currently no Fortran compilers that support the use of bfloat16. Table 1
summarises the parameters for the precisions used in this paper.

Table 1 Parameters for fp16, fp32, and fp64 arithmetic: the number of bits in the significand
(including the implicit most significant bit) and exponent, unit roundoff u, smallest positive
(subnormal) number xs

min , smallest normalized positive number xmin, and largest finite
number xmax, all given to three significant figures.

Signif. Exp. u xsmin xmin xmax

fp16 11 5 4.88× 10−4 5.96× 10−8 6.10× 10−5 6.55× 104

fp32 24 8 5.96× 10−8 1.40× 10−45 1.18× 10−38 3.40× 1038

fp64 53 11 1.11× 10−16 4.94× 10−324 2.22× 10−308 1.80× 10308

2 Possible breakdowns within IC factorizations

A myriad of approaches for computing incomplete factorizations of sparse matrices
have been developed, modified and refined over many years. Some combine the fac-
torization with an initial step that discards small entries in A (sparsification). For
details of possible variants, we recommend [9, 10], while a comprehensive discussion
of early strategies can be found in [11]; see also [12] for a short history and the recent
monograph [13] for a broad overview and skeleton algorithms. We note that significant
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progress in the field of preconditioning has been achieved by looking for incomplete
factorizations that are breakdown-free because of the properties of the matrix A, for
example, for M and H-matrices. A seminal paper on this is [14]; see also the summary
in [15].

Algorithm 1 outlines a basic (right-looking) incomplete Cholesky (IC) factorization
of a sparse SPD matrix A = {aij}1. It assumes a target sparsity pattern S{L} for the
incomplete factor L = {lij} is provided, where

S{L} = {(i, j) | lij ̸= 0, 1 ≤ j ≤ i ≤ n}.

The simplest case S{L} = S{A} is called an IC(0) factorization. Modifications to
Algorithm 1 can be made to incorporate threshold dropping strategies and to deter-
mine S{L} as the method proceeds. At each major step k, outer product updates are
applied to the part of the matrix that has yet to be factored (Lines 7–11).

Algorithm 1 Basic right-looking sparse IC factorization

Input: Sparse SPD matrix A and a target sparsity pattern S{L}
Output: Incomplete Cholesky factorization A ≈ LLT

1: lij = aij for all (i, j) ∈ S{L}
2: for k = 1 : n do ▷ Start of k-th major step

3: lkk ← (lkk)
1/2 ▷ Diagonal entry is the pivot

4: for i ∈ {i > k | (i, k) ∈ S{L}} do
5: lik ← lik/lkk ▷ Scale pivot column k of the incomplete factor by the pivot

6: end for ▷ Column k of L has been computed

7: for j ∈ {j > k | (j, k) ∈ S{L}} do
8: for i ∈ {i ≥ k | (i, k) ∈ S{L}} do
9: lij ← lij − likljk ▷ Update operation on column j > k

10: end for

11: end for

12: end for

Unfortunately, unlike a complete Cholesky factorization, there is no guarantee in
general that an IC algorithm will not break down or exhibit large growth in the size
of the factor entries (even when using double precision arithmetic). This is illustrated

1The Algorithm can be modified to compute a square-root free LDLT factorization in which L has unit
diagonal entries and D has positive entries.
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by the following well-conditioned SPD matrix in which δ > 0 is small

A =


3 −2 0 2 0
−2 3 −2 c 0
0 −2 3 −2 0
2 c −2 8 + 2δ 2
0 0 0 2 8

 .

Choosing δ ≪ 1 and c = 1 results in no growth in the entries of the IC(0) factor and
no breakdown. However, if c = 0 and entries (2,4) and (4,2) are removed from S{A}
then the IC(0) factor becomes

d1
−2/d1 d2

0 −2/d2 d3
2/d1 0 −2/d3 d4
0 0 0 2/d4 d5

 ,

with d21 = 3, d22 = 5/3, d23 = 3/5, d24 = 2δ, and d25 = 8−2/δ. In this case, if δ ≪ 1 then
there is large growth in the (5,4) entry and the factorization breaks down because the
(5,5) entry is negative (for any working precision).

There are three places in Algorithm 1 where breakdown can occur. Following [6],
we refer to these as B1, B2, and B3 breakdowns.

• B1: The diagonal entry lkk may be unacceptably small or negative.
• B2: The column scaling lik ← lik/lkk may overflow.
• B3: The update operation lij ← lij − likljk may overflow.

To develop robust IC factorization implementations, breakdowns must either be
avoided or they must be detected and handled by restarting the computation with
revised data. We seek to avoid breakdowns but, as we cannot guarantee there will be
no breakdowns, we still need to monitor for them. A recent study involving multi-
precision iterative refinement used the functions offered by MATLAB to check the
computed factors for Inf and/or NaN entries and took action if such entries were
found [16]. This is not a practical procedure for general use. One possible strategy is
to use IEEE-754 floating-point exception handling. This allows overflows to occur, the
execution continues until a status flag is checked and, at this point, if overflow has
been detected, restarting is initiated; see, for example, [17]. This is straightforward
but requires the user to employ the correct compiler flags, which may be challenging,
for instance, when a solver is interfaced from other languages. Furthermore, it is likely
that non-IEEE arithmetics will gain traction in the future [18]. An alternative and
potentially more flexible strategy is to incorporate explicit tests for breakdown into
the factorization algorithm. In this case, for an implementation to be robust, the tests
employed must only use operations that cannot themselves overflow.

An operation is said to be safe in the precision being used if it cannot overflow.
To safely detect B1 breakdown it is sufficient to check at Line 3 of Algorithm 1 that
lkk ≥ τu, where the threshold parameter satisfies τu > 1/xmax. This ensures (lkk)

−1 <
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xmax. Typical values are τu = 10−5 for half precision factorizations and τu = 10−20

for double precision [6]; these are used in our reported experiments (Section 4). B2
breakdown can happen at Line 5. Let lkmax denote the entry below the diagonal in
column k of largest absolute value, that is,

lkmax = max
i>k
{|lik| : (i, k) ∈ S{L}}. (2.1)

If lkmax ≤ xmax and 1 ≤ lkk ≤ xmax or lkk ≥ lkmax/xmax then it is safe to compute
lkmax/lkk (and thus safe to scale column k). B3 breakdown can occur at Line 9. We
give an algorithm for safely detecting B3 breakdown in [6]. Given scalars a, b, c such
that |a|, |b|, |c| ≤ xmax, the algorithm returns v = a− bc or a flag to indicate v cannot
be computed safely. It does this in two stages: it first checks whether w = bc can be
computed safely and then whether v = a− w can be computed safely.

Note that although we are focusing on SPD problems and IC factorizations, B1, B2
and B3 breakdowns are also possible during complete or incomplete factorizations of
nonsymmetric sparse matrices. Indeed, for non SPD problems, B2 breakdowns (that
is, overflow of one or more entries when the pivot column is divided by the pivot) in
particular may be more likely to occur (although remains uncommon if the matrix is
well-scaled). To demonstrate how B2 breakdown can happen, consider the following
nonsymmetric matrix, which has some large off-diagonal entries

A =


3 −2 0 2 2
−2 3 −2 0 0
0 −2 3 −1 −1
2 0 −2 2.01 2.01

1000 1000 1000 1000 100

 .

The LU factorization of A is given by

A = LU =


1
−2/3 1
0 −1.2 1

2/3 0.8 −2/3 1
1000/3 1000 5000 −400000 1



3 −2 2 0 2
5/3 −2 4/3 4/3

0.6 0.6 0.6
0.01 0.01

−900

 .

When using fp16 arithmetic, B2 breakdown occurs when performing the 4th elimina-
tion step because the (5, 4) entry overflows (-4000 is divided by 0.01).

3 Preventing and handling breakdown in IC
factorizations

While the use of safe tests allows action to be taken before breakdown occurs or the
use of IEEE exception handling can capture breakdown, our objective is to reduce the
likelihood of breakdown. This will limit the overheads involved in handling breakdowns
and the effects on the quality of the computed factorizations through modifications
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to the data. Breakdown is much more likely to happen when using low precision
arithmetic because of the greater likelihood of overflows occurring.

3.1 Avoiding breakdown by prescaling

For both direct and iterative methods for solving systems of equations it is often ben-
eficial to prescale the matrix, that is, to determine diagonal matrices Sr and Sl (with

Sr = Sl in the symmetric case) such that the scaled matrix Â = S−1
r AS−1

l is “nicer”
than the original A. By nicer, we mean that, compared with solving Ax = b, it is easier
to solve the system Ây = S−1

r b and then set x = S−1
l y. When working in fp16 arith-

metic, scaling is essential because of the narrow range of the arithmetic (recall Table 1).
Numbers of absolute value outside the interval [xs

min, xmax] = [5.96×10−8, 6.55×104]
cannot be represented in fp16 arithmetic and they underflow or overflow when con-
verted to fp16 arithmetic. Moreover, to avoid the performance penalty of handling
subnormal numbers, in practice numbers with small absolute values are often flushed
to zero (that is, replaced by zero). Before factorizing Â in fp16 arithmetic, a scaling
is chosen so that when converting (squeezing) the scaled matrix into fp16, overflow is
avoided. In this initial squeezing of the matrix, we flush to zero all entries in the scaled
matrix of absolute value less than 10−5. For incomplete factorizations, numbers that
underflow or are flushed to zero are not necessarily a concern because the factoriza-
tion is approximate. However, the resulting sparsification may mean that the scaled
and squeezed matrix is close to being indefinite.

No single approach to constructing a scaling is universally the best and sparse
solvers frequently include a number of options to allow users to experiment to deter-
mine the most effective for their applications (or to supply their own scaling). Our
experience with IC factorizations of SPD matrices is that it is normally sufficient to
use simple l2-norm scaling (that is, using fp64 arithmetic, we compute Sr = Sl = D1/2,
where dii is the 2-norm of row i of A), resulting in the absolute values of the entries

of the scaled matrix Â being at most 1. This is used in the current study (but see
[19], where equilibration scaling is used and [5] where scaling by the square root of the
diagonal is used).

3.2 Preventing breakdown by incorporating look-ahead

Recall that the computation of the diagonal entries of the factor in a (complete or
incomplete) Cholesky factorization are based on

ljj = ajj −
∑
i<j

l2ij .

Initially, ljj = ajj and at each stage of the factorization a positive (or zero) term is
subtracted from it so that ljj either decreases or remains the same on each major step
k. Thus, to detect potential B1 breakdown as early as possible, look-ahead can be
used whereby, for each k the remaining diagonal entries ljj (j > k) are updated (using
safe operations) and tested. For the right-looking Algorithm 1, it is straightforward
to incorporate testing but, for some IC variants, it may be necessary to hold a copy
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of the diagonal entries of the factor. Look-ahead is employed in some well-known
fp64 arithmetic implementations of IC factorizations e.g., [20, 21]. Algorithm 2 is a
modified version of Algorithm 1 that includes checks for breakdown. The safe test for
B3 breakdown can be modified so that, ahead of the loop at Line 13, a check is made
that the entry of maximum magnitude in column k (that is, lkmax from (2.1)) is less
than (xmax)

1/2. If it is not, flag = 3 is returned. Otherwise, the multiplication of lik
and ljk is safe and, at Line 17, only the subtraction needs to be checked. If in place
of the safe tests, IEEE exception handling is used then the IEEE overflow flag should
be tested at the end of each major loop (that is, between Lines 21 and 22).

Algorithm 2 Right-looking IC factorization with safe checks for breakdown

Input: SPD matrix A, a target sparsity pattern S{L}, parameter τu > 0
Output: Either flag = 0 and A ≈ LTL or flag > 0 (breakdown detected)

1: lij = aij for all (i, j) ∈ S{L}
2: flag = 0

3: if l11 < τu then flag = 1 and return ▷ B1 breakdown

4: for k = 1 : n do ▷ Start of k-th major step

5: lkk ← (lkk)
1/2

6: if lkk ≥ 1 or lkk ≥ lmax/xmax then ▷ lmax is largest off-diagonal entry (2.1)

7: for i ∈ {i > k | (i, k) ∈ S{L}} do
8: lik ← lik/lkk ▷ Perform safe scaling

9: end for ▷ Column k of L has been computed

10: else

11: flag = 2 and return ▷ B2 breakdown

12: end if

13: for j ∈ {j > k | (j, k) ∈ S{L}} do ▷ Update columns j > k of L

14: for i ∈ {i ≥ j | (i, j) ∈ S{L}} do
15: Test entry (i, j) can be updated safely ▷ Use Algorithm 2.2 of [6]

16: if not safe to update then flag = 3 and return ▷ B3 breakdown

17: lij ← lij − likljk ▷ Perform safe update operation

18: end for

19: if lii < τu then flag = 1 and return ▷ B1 breakdown

20: end for

21: end for
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To see the usefulness of look-ahead, consider the following matrix

A =


3 −2 0 1 2
−2 3 −2 0 0
0 −2 3 0 −2
1 0 0 5 0
2 0 −2 0 8

 .

It is easy to check that A is SPD with condition number κ2(A) ≈ 2×106. If the IC(0)
factorization is computed in exact arithmetic then the entry (5, 5) of L is zero (B1
breakdown). The look-ahead strategy reveals this at the third step, thus reducing the
work performed before breakdown is detected.

A consequence of look-ahead is that, through the early detection of B1 breakdowns
and taking action to prevent such breakdowns, B3 breakdowns are indirectly pre-
vented. In our numerical experiments on problems coming from real applications, all
breakdowns when using fp16 arithmetic were of type B1 when look-ahead was incor-
porated. However, B2 and B3 breakdowns remain possible. Consider the following
well-conditioned SPD matrix and its complete Cholesky factor (three decimal places):

A =


3 −2 0 2 0
−2 3 −2 0 0
0 −2 3 −2 0
2 0 −2 8.00007 550
0 0 0 550 60000

 , L =


1.732
−1.155 1.291

0 −1.549 0.775
1.155 1.033 −0.516 2.309
0 0 0 95.254 30.414

 .

Observe that the (4, 2) entry has filled in. The IC(0) factorization does not allow fill-in
and, after four steps, the first four columns of the IC(0) factor of A are given by

L1:5,1:4 =


1.732
−1.155 1.291

0 −1.549 0.777
1.155 0 −2.582 0.008
0 0 0 65738

 .

In fp16 arithmetic, the (5, 4) entry overflows (B3 breakdown). This happens even with
look-ahead because the first three entries in row 5 of A are zero and so the (5, 4) entry
is not updated until after column 4 has been computed. In this example, the (4, 4)
entry before its square root is taken is greater than τu (it is equal to 7× 10−5) and so
there is no B1 breakdown in column 4.

3.3 Global shifting to handle breakdown

Once potential breakdown has been detected (either through the B1-B3 tests or using
IEEE exception handling) and the factorization halted, a common approach is to

modify all the diagonal entries by selecting α > 0, replacing the scaled matrix Â by
Â + αI and restarting the factorization. In exact arithmetic, there is always an α∗
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such that for all α ≥ α∗ the IC factorization of Â + αI exists [22]. In practice, α∗ is
unlikely to be known a priori and it may be necessary to restart the factorization a
number of times with ever larger shifts. If α was to reach xmax in the working precision
u then there would have been large growth in the factor entries and it would be
necessary to restart using higher precision. However, this would be unlikely to result
in a useful preconditioner and α growing in this way was not observed in any of our
tests (including highly ill-conditioned examples). Algorithm 3 summarizes the global
shifting strategy for a SPD matrix held in precision u and for which an IC factorization
in precision ul ≥ u is wanted. After each unsuccessful factorization attempt, the shift
is doubled [20]. Here Al = fll(Â) denotes converting the matrix Â from precision u to

precision ul. In practice, it is unnecessary to explicitly hold Al. Instead, entries of Â
are cast to precision ul on the fly as needed.

Based on our experience with a range of problems, in our reported tests, the initial
shift is taken to be αS = 10−3. The precise choice of the shift is not critical but it
should not be unnecessarily large as this may result in the computed factors providing
poor quality preconditioners. Note that more sophisticated strategies for changing the
shift, which also allow the possibility for a shift to be decreased, are possible [21].
These have been developed for fp64 arithmetic. Our initial experiments suggest it is
less clear that there are significant benefits of doing this when using fp16 arithmetic so
in our experiments we only report results for using the simple shift doubling strategy.

Algorithm 3 Shifted incomplete IC factorization in precision ul

Input: SPD matrix A in precision u, diagonal scaling matrix S, a target sparsity
pattern S{L}, and initial shift αS > 0
Output: Shift α ≥ 0 and incomplete Cholesky factorization S−1AS−1 + αI ≈ LLT

in precision ul.

1: Â = S−1AS−1 ▷ Symmetrically scale A

2: Al = fll(Â) ▷ Convert to precision ul

3: α0 = 0

4: for k = 0, 1, 2, . . . do

5: Al + αkI ≈ LLT in precision ul ▷ We use Algorithm 4

6: If successful then set α = αk and return

7: αk+1 = max(2αk, αS)

8: end for

3.4 Local modifications to prevent breakdown

The next strategy is based on seeking to guarantee that the factorization exists
by bounding the off-diagonal entries in L. So-called modified Cholesky factorization
schemes have been widely used in nonlinear optimization to compute Newton-like
directions. Given a symmetric (and possibly indefinite) A, a modified Cholesky algo-
rithm factorizes A + AE , where AE is termed the correction matrix. The objectives
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are to compute the correction at minimal additional cost and to ensure A + AE is
SPD and well-conditioned and close to A. A stable approach for dense matrices was
originally proposed by Gill and Murray [23] and was subsequently refined and used
by Gill, Murray and Wright (GMW) [24] and others [25–29].

Our GMW variant allows for sparse A and incomplete factorizations. In particular,
the incompleteness that can lead to significant growth in the factor is a feature that
implies modification of the GMW strategy is necessary. Consider the second example
in Section 3.2. It clearly shows that once a diagonal entry is small, but not smaller than
τu, it may be difficult to get a useful factorization by increasing this diagonal entry
by an initially prescribed value that is independent of other entries in its column. In
the GMW approach, at the start of major step k of the factorization algorithm, the
updated diagonal entry lkk is checked (before its square root is taken). If it is too small
compared to the off-diagonal entries in its column then it is modified; a parameter
β > 0 controls the local modification. Specifically, at step k, we set

lkk = max

{
lkk,

(
lkmax

β

)2
}
, (3.1)

where lkmax is given by (2.1). If (lkmax/β)
2 overflows (this can be safely checked) then

the diagonal entry cannot be modified in this way. We call this a B4 breakdown. If
despite the local modification potential breakdown is detected then the factorization
is terminated and restarted using a global shift. As the following result shows, the
GMW(β) strategy limits the size of the off-diagonal entries in L and, for β sufficiently
small, it prevents B3 breakdown.

Lemma 1. Let the matrix A be sparse and SPD. Assume that, using the GMW(β)
strategy, columns 1 to j−1 columns of the IC factor L have been successfully computed
in fp16 arithmetic. For i ≥ j let nz(i) denote the number of nonzero entries in Li,1:j−1.
If

|aij |+min(nz(i), nz(j))β2 ≤ xmax for all (i, j) ∈ S{L}, (3.2)

where xmax is the largest finite number represented in fp16, then B3 breakdown cannot
occur in the j-th step.

Proof. From (3.1), the offdiagonal entries in the first j − 1 columns of L satisfy

|lik|
(lkk)1/2

≤ |lik|β
lkmax

≤ β, 1 ≤ k ≤ j − 1, i > k.

For any i > j we have

lij =
1

(ljj)1/2

(
aij −

j−1∑
k=1

likljk

)
:=

l̃ij
(ljj)1/2

. (3.3)

To avoid breakdown, we require |l̃ij | ≤ xmax. From (3.2) and (3.3),

|l̃ij | ≤ |aij |+min(nz(i), nz(j))β2 ≤ xmax,
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and hence B3 breakdown does not occur.

Rules to determine the parameter β for the complete Cholesky factorization of
dense matrices (in double precision) are discussed in [23, 24] but for sparse incomplete
factorizations in fp16 arithmetic such sophisticated rules are not applicable. Provided
β is not very small, its value is not critical to the quality of the preconditioner. Given
β, Algorithm 4 incorporates the use of the GMW(β) strategy within the incomplete
factorization. Note that the local modifications are not combined with look-ahead. As
in Algorithm 2, the cost of checking for breakdowns is small. The most expensive step
is computing lmax.

Algorithm 4 Right-looking IC factorization with safe checks for breakdown and
GMW local modifications
Input: SPD matrix A, a target sparsity pattern S{L}, parameters τu > 0 and β > 0
Output: Either flag = 0 and A ≈ LTL or flag > 0 (breakdown detected)

1: lij = aij for all (i, j) ∈ S{L}
2: Set flag = 0

3: for k = 1 : n do ▷ Start of k-th major step

4: if (lmax/β)
2 does not overflow then ▷ lmax is largest off-diagonal entry (2.1)

5: Set lkk = max
{
lkk, (lmax/β)

2
}
.

6: else

7: flag = 4 and return ▷ B4 breakdown

8: end if

9: if lkk < τu then flag = 1 and return ▷ B1 breakdown

10: Follow Lines 5–22 of Algorithm 2, with Lines 18–20 (look-ahead) removed.

11: end for

3.5 Recovering double precision accuracy

Having computed an incomplete factorization in low precision, we seek to recover (close
to) double precision accuracy in the final solution (although in many applications
much less accuracy may be sufficient and may be all that is justified by the accuracy
in the data). In their work on using mixed precision for solving general linear systems,
Carson and Higham [2] introduce a variant of iterative refinement that uses GMRES
preconditioned by the low precision LU factors of the matrix to solve the correction
equation (GMRES-IR). Carson and Higham employ two precisions. This was later
extended to three precisions and then to five precisions [3, 4]; see Algorithm 5, where
we use a generic Krylov solver and the low precision incomplete factors. Here u is the
working precision. In the three-precision variant [4], up = u, up = u2 and ul ≥ u ≥ ur

and typical combinations include (ul, u, ur) = (u16, u32, u64) or (u16, u64, u64). Section
3.4 of [3] discusses meaningful combinations of the five precisions. They must satisfy
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u2 ≤ ur ≤ u ≤ ul, up ≤ ug and up < ul. The use of more than two precisions has the
potential to solve problems that are less well conditioned in less time and using less
memory.

In the SPD case, a natural choice is to select the conjugate gradient (CG) method
to be the Krylov solver. The supporting rounding error analysis for GMRES-IR relies
on the backward stability of GMRES and preconditioned CG is not guaranteed to
be backward stable [30]. Nevertheless, mixed precision results presented in [5] (using
Matlab code and relatively small test examples) suggest that in practice CG-IR can
perform as well as GMRES-IR. In our earlier paper [6], we experiment with IC-CG-
IR and compare it with IC-GMRES-IR using fp16 and fp64 arithemtic. While there is
little to choose between them when run on well-conditioned SPD problems, for highly
ill-conditioned examples, IC-CG-IR often (but not always) requires a greater number
of iterations to obtain double precision accuracy.

Algorithm 5 IC-Krylov-IR: Krylov solver iterative refinement using five precisions

Input: SPD matrix A and vector b in precision u, five precisions ur, ug, up, u and uℓ,
maximum number of outer iterations itmax > 0
Output: Computed solution of the system Ax = b in precision u

1: Compute IC factorization of A in precision uℓ

2: Initialize x1 = 0

3: for i = 1 : itmax or until convergence do

4: Compute ri = b−Axi in precision ur; store ri in precision u

5: Use a preconditioned Krylov solver to solve Adi = ri at precision ug, with

preconditioning and products with A in precision up; store di in precision u

6: Compute xi+1 = xi + di in precision u

7: end for

4 Numerical experiments

We follow a number of others working on the development of numerical linear algebra
algorithms in mixed precision in performing experiments that aim to explore the feasi-
bility of the ideas by using half precision (see, for example, [5, 8, 31, 32]). We want the
option to experiment with sparse problems that may be too large for MATLAB and
have chosen to develop our software in Fortran. We use the NAG compiler (Version
7.1, Build 7118). As far as we know, it is the only multi-platform Fortran compiler
that currently fully supports the use of fp16 arithmetic and conforms to the IEEE
standard. In addition, using the -roundhreal option, all half-precision operations are
rounded to half precision, both at compile time and runtime. Our numerical experi-
ments are performed on a Windows 11-Pro-based machine with an Intel(R) Core(TM)
i5-10505 CPU processor (3.20 GHz).
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Our test set of SPD matrices is given in Table 1. This set was used in our ear-
lier study [6]. For consistency with that study, we do not reorder the matrix A. The
problems come from a variety of application areas and are of different sizes and den-
sities. As we expect that successfully using fp16 arithmetic will be most challenging
for ill-conditioned problems, the problems were chosen because they all have a large
estimated condition number (in the range 107−1016). Many are initially poorly scaled
and some contain entries that overflow in fp16 and thus prescaling of A is essential.
The right-hand side vector b is constructed by setting the solution x to be the vector
of 1’s. In Table 1, we also report the number of entries in the “scaled and squeezed”
matrix Al (see Line 2 of Algorithm 3). The squeezing discards all entries of the scaled
matrix with absolute value less than τu = 10−5. We see that this can lead to the loss
of a significant number of entries.

Table 1 Statistics for our ill-conditioned test examples. nnz(A) denotes the number of entries
in the lower triangular part of A. normA and normb are the infinity norms of A and b. cond2 is
a computed estimate of the condition number of A in the 2-norm. nnz(Al) is the number of
entries in the lower triangular part of the matrix after scaling and squeezing.

Identifier n nnz(A) normA normb cond2 nnz(Al)

Boeing/msc01050 1050 1.51×104 2.58×107 1.90×106 4.58×1015 4.63×103

HB/bcsstk11 1473 1.79×104 1.21×1010 7.05×108 2.21×108 6.73×103

HB/bcsstk26 1922 1.61×104 1.68×1011 8.99×1010 1.66×108 6.59×103

HB/bcsstk24 3562 8.17×104 5.28×1014 4.21×1013 1.95×1011 3.89×104

HB/bcsstk16 4884 1.48×105 4.12×1010 9.22×108 4.94×109 5.24×104

Cylshell/s2rmt3m1 5489 1.13×105 9.84×105 1.73×104 2.50×108 5.09×104

Cylshell/s3rmt3m1 5489 1.13×105 1.01×105 1.73×103 2.48×1010 5.07×104

Boeing/bcsstk38 8032 1.82×105 4.50×1011 4.04×1011 5.52×1016 7.83×104

Boeing/msc10848 10848 6.20×105 4.58×1013 6.19×1011 9.97×109 3.02×105

Oberwolfach/t2dah e 11445 9.38×104 2.20×10−5 1.40×10−5 7.23×108 4.88×104

Boeing/ct20stif 52329 1.38×106 8.99×1011 8.87×1011 1.18×1012 6.30×105

DNVS/shipsec8 114919 3.38×106 7.31×1012 4.15×1011 2.40×1013 7.70×105

GHS psdef/hood 220542 5.49×106 2.23×109 1.51×108 5.35×107 2.66×106

Um/offshore 259789 2.25×106 1.44×1015 1.16×1015 4.26×109 1.17×106

Our results are for the level-based incomplete Cholesky factorization preconditioner
IC(ℓ) with ℓ = 2 and 3 [33]. The number of entries in the incomplete factor L increases
as the parameter ℓ increases. IC(0) is a very simple preconditioner in which L has the
same sparsity pattern as A. In practice, using very small ℓ may be sufficient for solving
well-conditioned problems but, as shown in [6], the resulting preconditioner is often
not powerful enough to successfully tackle ill-conditioned examples (particularly when
computed using fp16 arithmetic). We refer to the IC(ℓ) factorizations computed using
half and double precision arithmetic as fp16-IC(ℓ) and fp64-IC(ℓ), respectively. The
key difference between the two versions is that for the former, during the incomplete
factorization, we incorporate the safe checks for the scaling and update operations;
for the fp64 version, tests for B1 breakdown are performed (B2 and B3 breakdowns
were not encountered in our double precision experiments). The solves with L and LT

employ the L factor in double precision. This can be done by casting the data into
double precision and making an explicit copy of L; this negates the important benefit
that half precision offers of reducing memory requirements. Alternatively, the entries
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can be cast on the fly. This is straightforward to incorporate into a serial triangular
solve routine, and only requires a temporary double precision array of length n. This
is done in our software.

We use two precisions: uℓ = u16 for the incomplete factorization and ur = ug =
up = u = u64, where u16 and u64 denote the unit roundoffs in fp16 and fp64 arithmetic,
respectively. That is, we aim to achieve double precision accuracy in the computed
solution. The iterative refinement terminates when the normwise backward error for
the computed solution satisfies

res =
∥b−Ax∥∞

∥A∥∞∥x∥∞ + ∥b∥∞
≤ δ = 103 × u64.

The implementation of GMRES is taken from the HSL software library [34] (MI24 is

a Fortran MGS-GMRES implementation), and its convergence tolerance is set to u
1/4
64

(see [6] for an explanation of this choice); for each application of GMRES (Step 5 of
Algorithm 5) the limit on the number of iterations is 1000. Restarting is not used.
In the tables of results, NC denotes that this limit has been exceeded without the
GMRES convergence tolerance being achieved.

Our first experiment looks at the effects of incorporating look-ahead. Table 2
presents results with no look-ahead and with look-ahead. Here we only include the test
problems for which look-ahead has an effect. We make a number of observations. Incor-
porating look-ahead can improve robustness, particularly when using fp64 arithmetic.
Without look-ahead, in fp64 arithmetic there can be very large growth in the size of
some entries in the factors and this goes undetected (no B1 breakdowns occur with
τu = 10−20). With look-ahead, growth did not happen in our tests on ill-conditioned
problems. In fp16 arithmetic, look-ahead can replace B3 breakdown by B1 breakdown
(e.g., HB/bcsstk24). Even if there are no B3 breakdowns, look-ahead can lead to a
larger number of B1 breakdowns being flagged (see problem Boeing/msc01050) and
hence a larger number of restarts, a larger shift and, consequently, a higher GMRES
iteration count. Note that the iteration counts for IC(3) are not guaranteed to be
smaller than for IC(2) (although they generally are).

Table 3 presents results for IC-GMRES-IR using a fp16-IC(2) preconditioner with
look-ahead and the GMW(β) strategy for β = 0.5, 10, and 100. B3 breakdown only
occurs for GMW(100) (there is a single B3 breakdown for examples HB/bcsstk24
and Boeing/bcsstk38 and for these a global shift is used). B4 breakdown happens
only for GMW(10) applied to GHS psdef/hood (5 occurrences for this example) and
GMW(100) applied to HB/bcsstk11 (happens once); again a global shift is used to
avoid breakdown. We see that with β = 0.5, for some examples a large number
of local modifications (nmod) are made. This leads to the preconditioner being of
poorer quality compared to the IC(2) preconditioner with look-ahead. For β = 10,
local modifications are only needed for a few problems (HB/bcsstk11, HB/bcsstk24
and Um/offshore). In each case, the resulting preconditioner is not successful. For
GMW(100), local modifications are only made for Um/offshore; for all other test
examples, GMW(100) is equivalent to IC(2) with no look-ahead.
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Table 2 Results for IC-GMRES-IR (Algorithm 5) using fp16-IC(ℓ) and fp64-IC(ℓ)
preconditioners (ℓ = 2, 3) with no look-ahead and with look-ahead (Section 3.2). its is the
total number of GMRES iterations and (n1, n2) are the numbers of times B1 and B3
problems are detected (n2 is nonzero only for fp16-IC(ℓ) with no look-ahead). NC indicates

that on an inner iteration the requested GMRES accuracy of u
1/4
64 was not achieved within

the limit of 1000 iterations. ‡ indicates failure to compute useful factors because of
enormous growth in the entries.

Identifier No look-ahead With look-ahead No look-ahead With look-ahead
its (n1, n2) its (n1) its (n1, n2) its (n1)

fp16-IC(2) fp16-IC(3)

Boeing/msc01050 65 (1, 0) 84 (4) 62 (1, 0) 81 (4)
HB/bcsstk24 428 (0, 1) 428 (1) 418 (0, 1) 418 (1)
Um/offshore 2013 (0, 4) 129 (5) 40 (0, 4) 40 (4)

fp64-IC(2) fp64-IC(3)

Boeing/msc01050 24 (0, 0) 69 (4) 25 (0,0) 69 (4)
HB/bcsstk11 201 (0, 0) 174 (1) 29 (0,0) 29 (0)
Cylshell/s3rmt3m1 102 (0, 0) 102 (0) NC (0, 0) 426 (1)
Boeing/ct20stif NC (0, 0) 1940 (2) 1332 (0, 0) 1368 (1)
GHS psdef/hood ‡ (0, 0) 568 (5) ‡ (0, 0) 407 (4)
Um/offshore ‡ (0, 0) 128 (5) ‡ (0, 0) 37 (4)

Table 3 Results for IC-GMRES-IR (Algorithm 5) using a fp16-IC(2) preconditioner with
the GMW(β) strategy (Section 3.4) and with look-ahead (Section 3.2). its is the number of
GMRES iterations and (n1, nmod) are the numbers of times B1 breakdown is detected and
the number of local modifications made by the GMW strategy. ♯ and ∗ indicate B3 and B4
breakdowns, respectively. NC indicates that on an inner iteration the requested GMRES

accuracy of u
1/4
64 was not achieved within the limit of 1000 iterations.

Identifier GMW(0.5) GMW(10) GMW(100) With look-ahead
its (n1, nmod) its (n1, nmod) its (n1, nmod) its (n1)

Boeing/msc01050 96 (0, 60) 65 (1, 0) 65 (1, 0) 84 (4)
HB/bcsstk11 1092 (0, 476) NC (0, 310) 205∗ (0, 0) 205 (1)
HB/bcsstk26 786 (0, 476) 111 (1, 0) 111 (1, 0) 87 (1)

HB/bcsstk24 1018 (0, 446) NC (0, 428) 428♯ (0, 0) 428 (1)
HB/bcsstk16 41 (0, 26) 23 (0, 0) 23 (0, 0) 23 (0)
Cylshell/s2rmt3m1 787 (0, 584) 155 (0, 0) 155 (0, 0) 155 (0)
Cylshell/s3rmt3m1 2017 (1, 710) 630 (2, 0) 630 (2, 0) 630 (2)

Boeing/bcsstk38 1335 (1, 914) 313 (1, 0) 313♯ (0, 0) 313 (1)
Boeing/msc10848 684 (0, 591) 81 (0, 0) 81 (0, 0) 81 (0)
Oberwolfach/t2dah e 11 (0, 6) 7 (0, 0) 7 (0, 0) 7 (0)
Boeing/ct20stif 2139 (0, 4827) 1900 (2, 0) 1900 (2, 0) 1900 (2)
DNVS/shipsec8 2569 (1, 1) 2390 (1, 0) 2390 (1, 0) 1492 (1)
GHS psdef/hood 2459 (0, 25074) 581∗ (0, 0) 581 (5, 0) 581 (5)
Um/offshore NC (0, 3846) NC (0, 5838) 2013 (4, 2) 129 (5)

The sensitivity of the GMW(β) approach to the choice of β is reported on in
Table 4 for problem Boeing/bcsstk38. As β increases, the number of local modifications
to diagonal entries (nmod) steadily decreases and so too does the GMRES iteration
count (its). For this example, for each β ≥ 0.4, B1 breakdown was detected once and
a global shift α = 10−3 was then employed.

Finally, results for IC-GMRES-IR using a fp64-IC(2) preconditioner are given in
Table 5. As we would expect, the number of breakdowns and the iteration counts
are often less than for the fp16-IC(2) preconditioner. If β = 0.5, the number of
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Table 4 Results for problem Boeing/bcsstk38. IC-GMRES-IR is run using a
fp16-IC(2) preconditioner computed with the GMW(β) strategy for a range of values
of β (Section 3.4). nmod and its are the numbers of local modifications made by the
GMW strategy and GMRES iterations, respectively.

β 0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9 1.0

nmod 7404 5751 3695 1891 1327 914 621 409 138 8 0
its 3542 2634 2068 2037 1642 1335 481 390 321 313 313

local modifications when using fp64 arithmetic is very similar to the number when
using fp16 and the iteration counts are also comparable. For larger β, fp64 can result
in a higher quality preconditioner but, as earlier, without look-ahead the computed
preconditioner can be ineffective.

Table 5 Results for IC-GMRES-IR (Algorithm 5) using a fp64-IC(2) preconditioner
with the GMW(β) strategy (Section 3.4) and with look-ahead (Section 3.2). its is the
number of GMRES iterations and (n1, nmod) are the numbers of times B1 breakdown
is detected and the number of local modifications made by the GMW strategy. For
GMW(0.5) and GMW(10), n1 = 0 for all examples so is omitted. NC indicates that on

an inner iteration the requested GMRES accuracy of u
1/4
64 was not achieved within the

limit of 1000 iterations. ‡ indicates failure to compute useful factors because of
enormous growth in the entries.

Identifier GMW(0.5) GMW(10) GMW(100) With look-ahead
its (nmod) its (nmod) its (n1, nmod) its (n1)

Boeing/msc01050 78 (60) 24 (0) 24 (4, 0) 24 (0)
HB/bcsstk11 1087 (476) 201 (0) 201 (0, 0) 232 (0)
HB/bcsstk26 775 (476) 79 (0) 79 (0, 0) 79 (0)
HB/bcsstk24 913 (409) 89 (0) 89 (0, 0) 89 (0)
HB/bcsstk16 41 (26) 22 (0) 22 (0, 0) 22 (0)
Cylshell/s2rmt3m1 792 (585) 146 (0) 146 (0, 0) 146 (0)
Cylshell/s3rmt3m1 2901 (710) 102 (0) 102 (0, 0) 102 (0)
Boeing/bcsstk38 1301 (943) 141 (0) 141 (0, 0) 141 (0)
Boeing/msc10848 790 (600) 68 (0) 68 (0, 0) 68 (0)
Oberwolfach/t2dah e 14 (6) 6 (0) 6 (0, 0) 6 (0)
Boeing/ct20stif 2122 (4847) 2036 (40) NC (0, 0) 1940 (2)
DNVS/shipsec8 701 (4658) 354 (0) 354 (0, 55) 354 (0)
GHS psdef/hood 2480 (25054) NC (2013) NC (0, 11998) 568 (5)
Um/offshore NC (4094) NC (6327) ‡(4, 4730) 128 (5)

All the reported results employed our explicit safe tests for breakdown. We have
also run the fp16 arithmetic experiments with the B1 to B4 breakdown tests replaced
by IEEE exception handling. As expected, because in fp16 arithmetic τu = 10−5 and
xmin = O(10−5), this led to the same number of restarts and hence the same iteration
counts. However, by only testing the exception flag at the end of each major step
of the factorization, this approach did not distinguish between the different types of
breakdown. For the experiments using fp64 arithmetic, IEEE exception handling did
not detect any problems and consequently, for some examples, this led to growth in
the factor entries (exactly as in the case of no look-ahead).
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5 Concluding remarks

Following on from our earlier study [6], in this paper we have illustrated the potential
for using half precision arithmetic to compute incomplete factorization precondition-
ers that can be used to obtain double precision accuracy in the solution of highly
ill-conditioned symmetric positive definite linear systems. In fp16 arithmetic, the dan-
ger of breakdown during the factorization of a sparse matrix is imminent and we
must employ strategies that force computational robustness. To avoid breakdown,
we have looked at global strategies plus a local modification scheme based on the
GMW approach that has been used for dense matrices within the field of optimiza-
tion. This employs a parameter β. Choosing a small β prevents breakdown during
the factorization (in both fp16 and fp64 arithmetic) and there is no need to employ
a global shift. However, the penalty is of poorer quality than that which is obtained
by employing a simple global shifting approach. Thus, our recommendations are to
always prescale the problem, to use a global shift, and to incorporate look-ahead. In
addition, when developing software using fp16, monitoring for breakdown must be
built in to ensure robustness. If this is done, then using low precision to compute an
effective preconditioner appears to be feasible.

Once a Fortran compiler that supports bfloat16 becomes available, it would be
very interesting to compare its performance to that of fp16. bfloat16 has the same
exponent size as fp32 (single precision). Consequently, converting from fp32 to bfloat16
is easy: the exponent is kept the same and the significand is rounded or truncated
from 24 bits to 8; hence overflow and underflow are not possible in the conversion.
The disadvantage of bfloat16 is its lesser precision: essentially 3 significant decimal
digits versus 4 for fp16. Another possible future direction is to explore the effects of
different preorderings of A on the number of breakdowns and the quality of the low
precision factors. Fill-reducing orderings can result in later entries in the factor being
updated by more entries from the previous columns. Intuitively, this may lead to more
breakdowns.

When using higher precision arithmetic, the potential dangers within an incom-
plete factorization algorithm can be hidden. As our experiments have demonstrated,
a standard IC factorization using fp64 arithmetic without look-ahead can lead to an
ineffective preconditioner because of growth in the size of the entries in the factors.
Without careful monitoring (which is not routinely done), this growth may be unob-
served but when subsequently applying the preconditioner, the triangular solves can
overflow, resulting in the computation aborting.

Finally, we reiterate that, although our focus has been on symmetric positive
definite systems, breakdown and/or large growth in factor entries is also an issue
for the incomplete factorization of general sparse matrices. Again, safe checks (or
the use of IEEE exception handling) need to be built into the algorithms and their
implementations to guarantee robustness.
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