
Parallel matrix computations

(Gentle intro into a part of HPC)

Miroslav Tůma

Faculty of Mathematics and Physics
Charles University

mirektuma@karlin.mff.cuni.cz

Praha, February 12, 2024

1 / 459

Outline

1 Foreword

2 Computers, computing, communication

3 Parallel computing

4 Parallel processing and us - parallel programming

5 Parallel computer architectures: hardware and classification

6 Combining pieces together: computational models
Uniprocessor model
Vector and SIMD model
Multiprocessor model

7 Parallelizing problems

8 Sparse data decomposition: graph partitioning

9 Parallel and parallelized algebraic preconditioning

2 / 459

Introductory notes

Created as a material supporting online lectures of NMNV532.
Assuming basic knowledge of principles of numerical mathematics:

▸ matrix-matrix and matrix-vector multiplication, factorizations,

▸ algebraic iterative (Krylov space) and

▸ direct (dense) solvers (elimination/factorization/solve)

3 / 459

Outline

1 Foreword

2 Computers, computing, communication

3 Parallel computing

4 Parallel processing and us - parallel programming

5 Parallel computer architectures: hardware and classification

6 Combining pieces together: computational models
Uniprocessor model
Vector and SIMD model
Multiprocessor model

7 Parallelizing problems

8 Sparse data decomposition: graph partitioning

9 Parallel and parallelized algebraic preconditioning

4 / 459

Basic terminology related to this text

Tools used to compute (process data, perform computations)

Computer: device able to perform (process) automatically sequences
of arithmetic or logical instructions.
Computation (data processing). Controlled by program or code.
Modern computers consist of one or more of data/program/code
processing units called also processors. If only one processor: CPU
(central processing unit).
Chip: physical unit on which one or more processors reside.
Processors typically structured: contain one, but rather more units
called cores.
Computer architecture: more detailed specification of the
considered computer system.

5 / 459

Basic terminology related to this text II

Tools used to compute (process data, perform computations) II

Clock or clock generator: signal used to coordinate actions of
processors and digital circuits.

Clock rate / frequency: frequency on which the computer clock is
running. Another way to describe processor/processors speed: cycle
time.

Data and programs are stored in memory.

Memory is typically structured and hierarchically organized

6 / 459

Basic terminology related to this text III

Splitting computation into smaller pieces

Computation typically decomposed into smaller items tasks,
subtasks, instructions, stages.
Approximate size of tasks: granularity. We distinguish large grain,
medium grain or small grain size of tasks.
The tasks assigned to computational units: processes or threads.
Threads; programmed instructions, bundled with data, to be managed
by a scheduler.
Mapping between the processes/threads and the computational
environment is called scheduling.
In order to achieve a correct data flow: processes need to be
synchronized.

7 / 459

Basic terminology related to this text IV

Communication

Any computation process needs to communicate. At least internally.
Communication: internal (as communication with memory) or
external (as I/O (input/output).
Communication based on an embedded communication network
(links) (hardware) and programs (software).
Communication characteristics:

▸ Bandwidth: rate at which a link (links) can transmit data.
▸ Bisection bandwidth (capacity across the narrowest bisector):

measure of connection quality.
▸ Latency describes a delay (amount of time) from input to the desired

outcome/output. There are more different types of latencies:
(processor-memory, network, internet, router, storage etc.) and we will
mention some of them separately.

The most important characteristics of communication (from our point of
view): latency and bandwidth.

8 / 459

Basic terminology related to this text V

Measuring computational performance

flop (number of floating-point operations),
flops (number of floating point operations per second; also plural of
flop)
communication latencies
Everything together: performance

All important parameters should be involved in timing models
Our timing models are extremely simplified.

9 / 459

Outline

1 Foreword

2 Computers, computing, communication

3 Parallel computing

4 Parallel processing and us - parallel programming

5 Parallel computer architectures: hardware and classification

6 Combining pieces together: computational models
Uniprocessor model
Vector and SIMD model
Multiprocessor model

7 Parallelizing problems

8 Sparse data decomposition: graph partitioning

9 Parallel and parallelized algebraic preconditioning

10 / 459

Parallel computing

What is parallel computing and parallel computer

Parallel computer: a set of processing, cooperating and
communicating elements
Potential parallelism: property of an application and of an algorithm
to solve the computational problems.
Parallel computing: ability of concurrent (simultaneous)
computation/ data processing on more computational units. These
units can be represented by more CPUs. Also other centralized or
detached computational resources can perform the computational
tasks simultaneously.
Traditional serial or sequential computation is based on data
processing on a single machine (computer/chip etc.) using either a
single Central Processing Unit (CPU) or a single computational
element. Now extinct. Still called here uniprocessor.

11 / 459

Parallel computing

Why parallel processing is of of interest: three questions?

Q 1: Why single processors are not enough?

Consider the computational power measured by the number of
transistors on a chip (this was often used approximate method to
measure the computational power).
1971: chip 4004 : 2.3k transistors
1978: chip 8086 : 31k transistors (2 micron technology)
1982: chip 80286: 110k transistors (HMOS technology)
1985: chip 80386: 280k transistors (0.8 micron CMOS)
1989: chip 80486: 1.2M transistors
1993: Pentium: 3.1M transistors (0.8 micron biCMOS)
1995: Pentium Pro: 5.5M (0.6 micron)
1997: Pentium II: 7.5M transistors
1999: Pentium III: 24M transistors
2000: Pentium 4: 42M transistors
2002: Itanium: 220M transistors
2003: Itanium 2: 410M transistors

12 / 459

Parallel computing

Why parallel processing is of of interest: three questions?

Performance improvement of single processors since 2002 only 20%
per year,
It has been approximately 50% per year between 1986 and 2002.
Earlier chips: performance improvement strongly correlated to the
number of transistors and to the clock frequency.
Since 2003: difficulties to increase transistor density on a single
computational unit on a chip. The clock frequency increase has
started to stagnate.
Since around 2003 (as AMD 64 Athlon X2, Intel Core Duo): more
“independent” computational units (cores)
Explanations are technologically oriented.
This trend goes on.
2023: Apple A17: 19G transistors (3nm technology)
2023: Apple M2 Ultra: 134G transistors (5nm technology)
2023: AMD Instinct: 146G transistors (5nm technology)

13 / 459

Parallel computing

Q1 - answer: sequential processing has inherent physical limitations.
What are these physical limitations?

1. Finite signal speed
Consider the cycle time (time per computer clock tick) and the clock
rate (frequency of clock ticks). Then, e.g., the frequency

100 MHz corresponds to 10 ns (1)

The frequency of 2 GHz then correspond to 0.5 ns. The finite signal
speed (speed of light of 3.108 ms−1), implies:

With the cycle time 1 ns (frequency 1 GHz) signal can pass at most
cca 30 cm per the cycle time.

With the cycle time 1 ps (frequency 1 Tflops) signal can reach at
most the radius < c/rate ≈ 0.3 mm

14 / 459

Parallel computing

1. Finite signal speed

An example of wiring in computers shows that the speed can be
critical:

▸ Early and very mildly parallel computer Cray 2 (1981) had about 10
km of interconnecting wires.

▸ “Small” physical size of processors does not decrease the role of
insufficient signal speed in practice at high frequencies:

15 / 459

Parallel computing

1. Finite signal speed
Historical demonstration of increased clock rates:

▸ 1941: Z3 (Konrad Zuse) 5 - 10 Hz
▸ 1958: First integrated circuit: flip-flow with two transistors (built by

Jack Kilby, Texas Instruments)
▸ 1969: CDC 7600: 36.4 MHz (27.5 ns cycle time) (considered as the

fastest computer until 1975)
▸ 1976: Cray-1: 80 MHz (12.5 ns cycle time) (but throughput faster

more than 4 times than for CDC 7600)
▸ 1981: IBM PC: 4.77 MHz
▸ 2011: AMD FX-8150 (Bulldozer) chips: cca 8.81 GHz (cca 0.12 ns)
▸ 2022: Intel Core i9-13900K (not much less ©)

16 / 459

Parallel computing

2. Limits in memory density
Consider 1 TB of memory. This means that on a chip of circular
shape and area of πr2, where r = 0.3 mm (from above).
This circular area is of an approximate size 3.5
Ångström2 ≡ 3.5 × 0.01 nm2 for one bit of information. And remind
that

▸ A typical protein is about 5 nm in diameter,
▸ a molecule of glucose is just about 0.1 nm in diameter [?].

We are close to absolute limits of affordable density to store
information.

17 / 459

Parallel computing

3. Technology and lithography limits
Production limits arising from the possibilities of the electron-beam
lithography.
Early lithography resolution has been for Intel 4004 chips 10 µm.
Later Intel processors as: Xeon Phi (22nm lithography resolution),
SPARC M7 (20 nm), contemporary GPUs (28nm), More new chips
around 2020: 5nm lithography (Apple A14 Bionic, Apple M1, etc.),
getting even more below (see above)
Changing technology: SSI (1964), MSI (1968), LSI (1971), VLSI
(1980), ULSI, WSI, SoC, 3D-IC etc. But the pace of advancements
slows down.
In any case, size of atoms and quantum effects as quantum
tunelling seem to ultimately limit this progress.

18 / 459

Parallel computing

Why parallel processing is of of interest: three questions?
4. Power and heat dissipation

Transistor speed increases: new features need more transistors
The corresponding power increases.

PCPU = Pdyn + Pshort circuits + Pleakage

logic gates, toggle gate current, leak – among differently doped parts
Global overall guess

PCPU : switching-const × area-const × frequency × voltage2

Power (heat dissipation) density has been growing exponentially
because of increasing clock frequency and doubling of transistor count.
Consequently, processors with a clock rate significantly beyond the
approximately 3.3 GHz are difficult and costly to be cooled using
contemporary cooling techniques.

19 / 459

Parallel computing

5. Some early related predictions:
Prediction: if scaling continues at present pace, by 2005, high speed
processors would have power density of nuclear reactor, by 2010, a
rocket nozzle, and by 2015, surface of sun. (Patrick Gelsinger, 2001)

▸ Cooling is needed.
▸ Hot integrated circuits become unreliable.

Dennard (MOSFET) scaling: - scaling law roughly stating that chip
power requirements are proportional to area of the chip (R.
Dennard, 1974)
Since cca 2005 this rule seems to be not valid anymore. Strong
motivation to develop multicore processors.
We start to get dark silicon – part of circuitry of an integrated circuit
that cannot be powered at the nominal operating voltage given a
thermal dissipation constraint. Successful research topic now.

20 / 459

Parallel computing

Q2: is it technologically possible to build the new and still more powerful
parallel computational systems?

earlier: some optimistic predictions, but possibly even now

might seem that processor technologies are getting better steadily
and very fast,

might seem that computers based on these technologies are
getting much faster.

The power of processors expressed via number of transistors on
(chips / microprocessors / integrated circuits) is expressed via an
empirical observation and prediction called Moore’s law:

21 / 459

Parallel computing

Q2: is it technologically possible to build the new and still more powerful
parallel computational systems?

Observation
Moore’s law: The number of transistors per square inch on integrated
circuits doubles approximately from one to two years since the integrated
circuit was invented (1965, Gordon E. Moore, co-founder of Intel
recalibrated to two years in 1975)

The law is sometimes restated that chip performance doubles every
18 months (David House, Intel executive, 1975) which combines the
effect of more transistors on chip and having the transistors faster
Dennard’s scaling −− > power per Joule increases in this way; many
more "laws".

Corollary
Number of cores will double every 18 months (A. Agrawal, MIT, 2009)

22 / 459

Parallel computing

Q2: Sketch of subsequent development

2005: Pentium D:230M+ transistors
2007: AMD K2 quad core - 2M L3: 463M transistors
2007: IBM POWER6: 789M transistors
2008: Intel Core i7 quad: 731M transistors
2008: AMD K10 quad core - 6M L3: 758M transistors
2009: AMD Six core Opteron 2400: 904M transistors
2010: Intel Six-Core Core i7 (Gulftown): 1170M transistors
2011: Six-Core Core i7/8-Core Xeon E5 (Sandy Bridge-E/EP): 2270M transistors
2012: Intel 8-Core Itanium Poulson: 3100M transistors
2013: Microsoft/AMD Xbox One Main SoC: 5000M transistors
2015: Sparc M7 (64-bit, SIMD, caches), Oracle, 10G transistors
2019: AWS Graviton2 (64-bit, 64-cores, SIMD, caches), Amazon, 30G transistors
2023: Apple A17: 19G transistors (3nm technology)
2023: Apple M2 Ultra: 134G transistors (5nm technology)
2023: AMD Instinct: 146G transistors (5nm technology)

The Moore’s law even after 2003. But Far beyond uniprocessor status.
23 / 459

Parallel computing

Q2: Graphic processing units

1997: Nvidia NV3: 3.5M transistors

1999: AMD Rage 128: 8M transistors

2000: Nvidia NV11: 20M transistors

2000: Nvidia NV20: 57M transistors

2001: AMD R200: 60M transistors

2002: AMD R300: 107M transistors

2004: Nvidia NV40: 222M transistors

etc.

2012: Nvidia GK110 Kepler: 7080M transistors

2013: AMD RV1090 or RV1170 Hawai: 6300M transistors

2015: Nvidia GM200 Maxwell: 8100M transistors

2018: TU106 Turing, Nvidia, 10.8G transistors

2019: Navi10, AMD, 10.3G transistors

FPGA (field-programmable gate array) up to 20G transistors in 2014

24 / 459

Parallel computing

Q2: is it technologically possible to build the new and still more powerful
parallel computational systems?

Despite enormous technological progress there are more predictions
that the Moore’s law will cease to be valid around 2025.
Technological point of view is more positive: Using more processing
units can actually result in high gains. It comes with some economy
of scaling. Using more processing units (processors, cores) can
overcome the problems summarized above, can be efficient for
problem solving and can be rather cost efficient.

25 / 459

Parallel computing

Q2: partial answers

Observation
Grosch’s law: To do a calculation 10 times as cheaply you must do it 100
times as fast (H. Grosch, 1965; H.A. Grosch. High speed arithmetic: The
digital computer as a research tool. (1953); H.A. Grosch. Grosch’s law
revisited. (1975)). Another formulation: The power of computer
systems increases as the square of their cost.

Consequently, computers should obey the square law:

Observation
When the price doubles, you should get at least four times as much speed
(similar observation by Seymour Cray, 1963).

26 / 459

Parallel computing

Why parallel processing is of of interest: three questions?

Q3: Are the parallel systems really needed?

Computation of climate models (systems of differential equations
simulating interactions of atmosphere, oceans, ice, land surface: far
more accurate models needed; global 3D models needed
Computation of re-entry corridor to get back to the terrestrial
atmosphere: supersonic flow, Boltzmann equations
Protein folding: misfolded proteins: Parkinson and Alzheimer
Energy research: combustion, solar cells, batteries, wind turbines ⇒
large ODE systems
Crash-tests: the need to solve large systems of nonlinear equations
Computation of turbulent flows: large systems of PDEs in 3D.
Big data analysis: LHC, medical imaging etc.
Summarizing: 3D space/ time eats up the increase in power of
today’s computers

27 / 459

Outline

1 Foreword

2 Computers, computing, communication

3 Parallel computing

4 Parallel processing and us - parallel programming

5 Parallel computer architectures: hardware and classification

6 Combining pieces together: computational models
Uniprocessor model
Vector and SIMD model
Multiprocessor model

7 Parallelizing problems

8 Sparse data decomposition: graph partitioning

9 Parallel and parallelized algebraic preconditioning

28 / 459

Parallel computing

Why we cannot write codes that automatically parallelize? Could
we rely on high-quality software technologies to convert the programs
for parallel computations?
Why this is of interest for mathematicians?

An answer to such questions: parallel programming (coding).

There is a very limited success in converting programs in serial
languages like C and C++ into parallel programs

▸ For example, multiplication of two square matrices can be viewed as a
sequence of linear combinations or a sequence of dot products.
Sometimes is better the first, sometimes the second.

▸ Dot products may be very time consuming on some particular
parallel computer architectures

▸ In processing sparse data structures efficiently automatic techniques
cannot be often used at all

▸ Codes have to be often tightly coupled with particular applications in
mind

29 / 459

Parallel computing

Parallelization may not be obtained by parallelizing individual
steps. Instead, new algorithms should be devised.

▸ This is a strictly mathematical step and it is very difficult to
automatize.

Often very different techniques needed for moderate number of
cores on one side and large number of cores on the other side.

▸ Parallelism can be very different, as task-driven or even data-driven
as we will see later.

Automatizing processes may help, but often not sufficiently enough.
Still new hardware/software concepts being developed.

30 / 459

Outline

1 Foreword

2 Computers, computing, communication

3 Parallel computing

4 Parallel processing and us - parallel programming

5 Parallel computer architectures: hardware and classification

6 Combining pieces together: computational models
Uniprocessor model
Vector and SIMD model
Multiprocessor model

7 Parallelizing problems

8 Sparse data decomposition: graph partitioning

9 Parallel and parallelized algebraic preconditioning

31 / 459

Parallel computer architectures

1. Levels of parallelism - historical examples - a very brief sketch

Long time ago recognized that:
▸ Parallelism saves power (electricity+power+cooling → less than 50

percent of operating costs (apc.com, 2003)),
▸ improves chip yield,
▸ and simplifies verification.

Nowadays: more motivations
Let us mention some historical milestones

32 / 459

Parallel computer architectures

1. Levels of parallelism - historical examples - a very brief sketch
1 running jobs in parallel for reliability

IBM AN/FSQ-31 (1958) – some of them were purely duplex machine
(time for operations 2.5µ s – 63.5 µ s; history of the word byte)

2 running parts of jobs on independent specialized units
UNIVAC LARC (1960) – first I/O processor, world most powerful
computer 1960-1961; interleaved access to memory banks

3 running different jobs in parallel for speed
Burroughs D-825 (1962) – more modules, job scheduler; multiple
computer systems

4 running parts of programs in parallel
Bendix G-21 (1963), CDC 6600 (1964) – nonsymmetric
multiprocessor; silicon-based transistors; first RISC; predecessor of I/O
multithreading, 10 parallel functional units

33 / 459

Parallel computer architectures

1. Levels of parallelism - historical examples - a very brief sketch
5 development of multitasking with fast switching: threads:

’light-weight’ tasks sharing most of resources, typically inside a
process, managed by the operating system scheduler.

6 running matrix-intensive stuff separately
development of complex IBM 704x/709x (1963); facilities STAR 100,
ASC TI (1965); 20MFLOPs ALU

7 parallelizing instructions
IBM 709 (1957), IBM 7094 (1963)

▸ data synchronizer units DSU → channels – enable simultaneously
read/write/compute

▸ overlap computational instructions / loads and stores
▸ IBR (instruction backup registers)
▸ instruction pipeline by splitting instructions in segments (will be

explained later)

34 / 459

Parallel computer architectures

1. Levels of parallelism - historical examples - a very brief sketch
8 parallelizing arithmetics: less and less clocks per instruction

▸ Static scheduling VLIW that can describe a rather complex instructions
and data. Nowadays: threads
☀ Multiflow Trace (1984), then in IA64 architecture (Intel)
☀ sophisticated software optimization, simpler decoding and instruction

scheduling
☀ difficult to predict dynamic events like missing data in local memories

▸ Superscalar in RISC (CDC6000): operations scheduled at run-time
Check dependencies Schedule operations

9 bit-level parallelism

35 / 459

Parallel computer architectures

2. Processing features in contemporary parallel computations
1 FPU and ALU work in parallel

▸ Cray-1 (1976) had ALU (arithmetic-logical unit) rather weak

▸ Strengthening ALU and simplifying processors pushed in 1980’s
development of successful RISC workstations.

▸ The idea behind RISC: it is better to have less and much more
optimized instructions.

▸ Technological progress has brought efficient CISCs back ©

36 / 459

Parallel computer architectures

2. Processing features in contemporary parallel computations
2 Pipeline for instructions

▸ Partition an instruction into several segments – called a pipeline
▸ pipelining instructions: an efficient form of parallelism within a single

processor
▸ Consequently, more instructions can be processed concurrently

processing different segments of different instructions in parallel.
An example: of standardized RISC instruction pipeline:

▸ Instruction fetch (fetches the instruction from memory)
▸ Instruction decode and register fetch (decode the fetched instruction)
▸ Fetch operands
▸ Execute operations
▸ Register write back.

This implies a possible overlap

1 2 3 4 5

37 / 459

Parallel computer architectures

2. Processing features in contemporary parallel computations

2 Pipeline for instructions - continued
▸ First use of pipelining: ILLIAC II (1962) project, IBM Stretch project,

IBM 7094 (1969). Conceived even earlier: in the Z1 (1938) and the Z3
(1941) computers by Konrad Zuse.

▸ Contemporary processors can have from a few up to small tens of
stages (superpipelined processors).

▸ Compiler task is to prepare instructions such that they can be
efficiently pipelined. Pipeline delay due to waiting for data is called
that the pipeline stalls. This is what must be avoided.

▸ Instruction pipelines everywhere.

38 / 459

Parallel computer architectures

2. Processing features in contemporary parallel computations
3 Pipeline for data

▸ Pipelining data:
▸ Instead of segmenting instructions we can partition operations

An example: adding two floating-point numbers.
▸ check exponents
▸ possibly swap operands
▸ possibly shift one of mantissas by the number of bits determined by

differences in exponents
▸ compute the new mantissa
▸ normalize the result

1 2 3 4 5

▸ Pipelining operations we get to the concept of program vectorization

39 / 459

Parallel computer architectures

2. Processing features in contemporary parallel computations
4 Overlapping operations

▸ Generalization of instruction pipelining is the concept of
overlapping operations.

▸ Processors may have tools to find possible dependencies among
different evaluations and overlap instructions even when they
possibly have different number of stages with differing
amounts of time to perform the operations.

Two specific cases:
▸ Superscalar processors are designed to schedule instructions at

runtime, typically without a compiler support. That means that
the scheduling is dynamic. See above, parallelizing arithmetic

▸ In contrast to this, the VLIW processors (very long instruction
word with explicit descriptions what to do) mentioned also above
schedule the instructions by the compiler preprocessing at compile
time.

40 / 459

Parallel computer architectures

2. Processing features in contemporary parallel computations
5 Multiple functional units

▸ advantages (parallelism) versus disadvantages (difficult to exploit)
▸ Standard on chips, in cores

6 Processor arrays
▸ ILLIAC IV (1972) with 64 elementary processors
▸ concept of graphic cards

7 Multicore and manycore processing
▸ multicore processors with tens of cores
▸ manycore processors with hundreds of cores
▸ specific control needed: simultaneous multithreading (SMT)

(hyperthreading) – more threads and schedule executable instructions
from different threads and that can be even from different processes in
the same cycle. It is a thread analogy of superscalar processing.

▸ Considering a chip with more cores as a bundle of logical processors.

41 / 459

Parallel computer architectures

3. Summarizing recent history of parallel computing in a few slogans

Seventies of the 20th century were characterized by data pipelining
and vector computations in general,

eighties can be considered as a revival of computer architectures with
reduced instruction sets and strong integer arithmetic,

nineties started with practical use of multiprocessors and several very
successful massive parallel systems and

later we saw a widespread use of hybrid and massively parallel
computational tools.

42 / 459

Parallel computer architectures

4. Computer memory issues
1 Memory hierarchy: general view

▸ speed × respond time × cost
▸ registers (very high-speed memory accessible by computational units)
▸ cache (locally accessible high-speed memory)
▸ main memory - gigabytes, access speed around units of GB/s
▸ disc storage - terabytes, access speed around hundreds of MBytes/s
▸ memory available via network etc.

43 / 459

Parallel computer architectures

4. Computer memory issues
2 Memory components/functionality

▸ Physical address: actual address where data is stored
▸ logical (virtual) address: address generated by CPU(s). Logical

addresses can span much larger space called virtual memory.
▸ Memory management units does the translations between physical and

logical addresses using relocation register.
▸ Paging is a scheme to manage exchanges of memory needed by

computations caused by different logical and physical memory. It is a
way to split data into chunks that can be easily indexed and exchanged.

▸ Segmentation is another way of logical address allocation alternative
to paging. Segments are protected areas of variable sizes that are used
to partition the address space according to its contents.

▸ Swap space: this is a space that substitutes for physical memory.
Enable to use much larger logical space. Swap in × swap out.

44 / 459

Parallel computer architectures

4. Computer memory issues
2 Memory components/functionality

▸ Memory thrashing: denotes a problem when the computation spends
a lot of time to solve problem with data exchanges between physical
and logical space. This may strongly slow down computations by this
data manipulation overhead.

▸ Page fault represents the situation when data page is not available for
a computation and should be retrieved from other (lower) levels of
memory hierarchy.

45 / 459

Parallel computer architectures

4. Computer memory issues
3 Very fast memory: cache: low-latency high-bandwidth storage.

From the hardware point of view: main memory typically composed
from DRAM (dynamic random access memory) chips, cache uses
SRAM (static random access memory): fast access, but smaller
capacity per area.
Sketch of a typical cache hierarchy:

▸ Level 0 (L0): micro operations cache
▸ Level 1 (L1) Instruction cache (kBytes)
▸ Level 1 (L1) Data cache (kBytes)
▸ Level 2 (L2) Instruction and data cache (MBytes)
▸ Level 3 (L3) Shared cache
▸ Level 4 (L4) Shared cache

46 / 459

Parallel computer architectures

4. Computer memory issues: cache terminology
Cache hit: processor has found data ©
Cache miss: not the previous case, measured by miss-ratio
Cache blocks, lines express the cache structure
Cache write policy

▸ Write-through; data are (pseudo)simultaneously updated both in
cache and memory.

▸ Write-back (write-deferred); data are update only in cache. Later in
memory.

▸ cache thrashing: degradation of performance due to insufficient
caches

▸ cache sharing: sharing data for computational units in the same cache
lines

47 / 459

Parallel computer architectures

4. Computer memory issues: cache terminology
Cache mapping: similarly as mapping between pages and memory,
cache must have some mapping policy

▸ Directly mapped caches map memory blocks only to specific cache
locations.

▸ Fully associative caches can map the memory blocks to any cache
position. Asssociative memory used to store content and addresses of
the memory word.

▸ Compromise solution between directly-mapped and fully associative
caches are set associative caches. It is an enhanced form of direct
mapping.

48 / 459

Parallel computer architectures

4. Other computer memory issues
4 Why memory management?

▸ minimize fragmentation, keep track of allocated and deallocated data
chunks, keep data integrity

▸ Difficult for multiprocessors.
5 Interleaving memory using memory banks

▸ A way to decrease memory latency
▸ The interleaving is based on the concept of memory banks of equal

size that enable to store logically contiguous chunks of memory as
incontiguous vectors in different parts of memory using a regular
mapping pattern.

▸ Mention example of Cray-2

49 / 459

Parallel computer architectures

5. Taxonomy of architectures by Flynn
Simple macro classification of parallel computers proposed by Flynn. It
considers main features of computers represented by data and control
flows. Used acronyms represent by S the word single, by I the word
instruction, by M the word multiple and by D the word data.

MISDSISD SIMD MIMD

Simple

processor

processor
Vector Array

processor
Shared memory Distributed memory

Cache coherent Non cache coherent

Processor/memory organization

50 / 459

Parallel computer architectures

5. Taxonomy of architectures by Flynn
2 SISD: single instruction single data stream

▸ traditional (von Neumann) single CPU processor (computer)
▸ extinct type of architectures (but useful as a model)
▸ here we sometimes call it uniprocessor in order to emphasize SISD

character (that does not exist in practice)

Data

Instructions

CPU

51 / 459

Parallel computer architectures

5. Taxonomy of architectures by Flynn
3 MISD: multiple instruction single data stream

▸ mostly experimental architectures – difficult to have the whole
architecture based on this principle and having it efficient

▸ example: single data: angle, computing sin(angle) + cos(angle).
▸ some MISD architectures useful as computers that compute and detect

and mask errors for the single data stream

Data

Instructions

CPU1

CPU2

52 / 459

Parallel computer architectures

5. Taxonomy of architectures by Flynn
4 SIMD as a prevailing principle

▸ vectorization
▸ matrix processors
▸ supercomputers

Data

Instructions

CPU1

CPU2

53 / 459

Parallel computer architectures

5. Taxonomy of architectures by Flynn
5 MIMD: multiple instruction – multiple data streams

▸ the most general case
▸ any interconnection for sending data and instructions, in general
▸ Cosmic Cube built at Caltech in 80’s, Cray X-MP/2
▸ iPSC 860 by Intel
▸ problem of cache coherence

☀ consistency of shared data that can be distributed over more local
caches

54 / 459

Parallel computer architectures

5. Taxonomy of architectures by Flynn

MISDSISD SIMD MIMD

Simple

processor

processor
Vector Array

processor
Shared memory Distributed memory

Cache coherent Non cache coherent

Processor/memory organization

55 / 459

Parallel computer architectures

5. Taxonomy of architectures by Flynn
4 (continued) Other possible classification of MIMDs:

▸ By memory access (local/global caches, shared memory caches, cache
only memory, distributed (shared) memory),

▸ by topology and interconnection (master/slave, crossbar, pipe, ring,
array, torus, tree, hypercube, ...).

56 / 459

Parallel computer architectures

5. Taxonomy of architectures by Flynn
Multicomputers - MIMD computers with distributed memory: clusters,
grid systems

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Interconnection

Multiprocessor systems - MIMD computers with shared memory
CPU CPU CPU CPU

Interconnection

Memory

57 / 459

Parallel computer architectures

6. Interconnection network and routing
Interconnection network (IN, interconnection, interconnect)
physically connects different components of a parallel computer but it
can describe an outer network as well.
Its topology describes the actual way how the modules (nodes,
memories etc.) are connected to each other. The topology can be
static or dynamic.
Routing describes the way how the modules exchange information.
The routing can be described as a union of two components.

▸ Routing algorithms determine paths of messages between their sources
and sinks.

▸ Switches are devices that connect components of the interconnect
together. They manage the data flow across the interconnect.
Switching strategy determines possible cutting of the messages
transferred by an interconnection network into pieces.

58 / 459

Parallel computer architectures

6. Interconnection network and routing

A. Static (and possibly also dynamic) interconnections
The main issues and concerns

pure connectivity: how many links are used to connect nodes,
minimum, maximum, weakest points

connectivity for communication: lengths of interconnecting paths.

cost, static and dynamic complexity of interconnection

extensibility: important mainly for reconfigurable architectures (as
home-made clusters)

All these items have implications for bandwidth and latency

59 / 459

Parallel computer architectures

6. Interconnection network and routing

A. Static interconnections
Standard model for static interconnection networks is a graph, often
undirected since the interconnecting lines can be typically used in both
directions. Its few characteristics:

Diameter is a maximum distance between any pair of graph nodes.
Distance of two nodes in a graph is the length of the shortest path
between them.

Bisection (band)width: minimum number of edges that should be
removed to partition the graph into two parts of equal node counts

Degree of a node is the number of adjacent vertices.

Node/edge connectivity is the number of nodes/edges that have to
be removed to increase the number of components of the originally
connected graph.

60 / 459

Parallel computer architectures

6. Interconnection network and routing

A. Static interconnections
One could prefer, for example:

small diameter of the static interconnection,
large bisection bandwidth,
large connectivity or
small average node degree.

61 / 459

Parallel computer architectures

6. Interconnection network and routing

A. Static interconnections: examples
a complete graph, linear graph, binary tree, fat tree as in CM-5,
cycle, 2-dimensional mesh, 2-dimensional torus. An important
case: a d-dimensional hypercube with 2d nodes.

connection max deg diameter edge connect bisect width
completely connected p − 1 1 p − 1 p2/4

star p − 1 2 1 1

binary tree p = 2d − 1 3 2 log2((p + 1)/2) 1 1

d-dimensional mesh 2d d(
√
dp − 1) d p

d−1
d

linear array 2 p − 1 1 1

d-hypercube p = 2d log2 p log2 p log2 p p/2

62 / 459

Parallel computer architectures

6. Interconnection network and routing

B. Dynamic interconnections
1 Bus

▸ Set of communicating lines that connect modules.
▸ Unidirectional, bi-directional, separate address and data lines
▸ Efficient bus should contain at least two communication paths, one for

instructions and the other one for computational data.

Bus (data, instructions)

P1 P2 P3 P4 P5 P6

M1 M2 M3 M4 M5 M6

63 / 459

Parallel computer architectures

6. Interconnection network and routing

B. Dynamic interconnections
1 Bus

▸ Bounded bandwidth: limited number of nodes connected in practice.

▸ Constant time for an item of communication among limited number
of nodes

▸ Consequently, scalable in cost but not scalable in performance.

64 / 459

Parallel computer architectures

6. Interconnection network and routing

B. Dynamic interconnections
2 Dynamic networks with switches (crossbar networks)

▸ Interconnection network that completely interconnects processing
elements with other modules using a set of switches.

▸ For simplicity, assume p (P1-Pp) processing elements and m (M1-Mm)
memory banks.

P1

P2

P3

P4

M1 M2 M3 M4

65 / 459

Parallel computer architectures

6. Interconnection network and routing

B. Dynamic interconnections
2 Dynamic networks with switches (crossbar networks)

▸ We need pm switches. Then min(p,m) lines can work in parallel.

▸ Useful for small-scale parallel computers.

▸ Assuming m ≥ p (a reasonable practical assumption), the complexity of
the interconnection grows at least as Ω(p2).

▸ Consequently dynamic networks with switches are not much scalable
in cost.

66 / 459

Parallel computer architectures

6. Interconnection network and routing

B. Dynamic interconnections
3 Multistage interconnection networks

▸ Several stages of switches interconnected by communication lines

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

67 / 459

Parallel computer architectures

6. Interconnection network and routing

B. Dynamic interconnections
3 Multistage interconnection networks

▸ Using a limited number k of serially connected blocks of switches called
stages can be a reasonable compromise.

▸ Considering k stages with w nodes each and n links between two
neighboring stages, then, in a regular multistage interconnection the
node degree is equal to

g = n/w. (2)

Connection can be expressed by a permutation

π ∶ {1, . . . , n}→ {1, . . . , n}. (3)

▸ More scalable in cost than crossbar and more scalable than bus in
performance

68 / 459

Parallel computer architectures

6. Interconnection network and routing

B. Dynamic interconnections
3 More on multistage interconnection networks

▸ Basic interconnections
☀ perfect shuffle (cyclic shift left)
☀ 000→ 000, 001→ 010 etc.
☀ baseline
☀ rotate last i + 1 bits right
☀ butterfly
☀ interchange bits at positions 0 and i

▸ Easy to code interconnections by binary inputs.
▸ omega network (our figure)

☀ N processing elements, log2(N) stages, N/2 processing elements per
stage

☀ perfect shuffle (cyclic shift)
▸ blocking versus non-blocking connections (more technical issue).

69 / 459

Parallel computer architectures

6. Interconnection network and routing

B. Dynamic interconnections
4 Fat tree interconnections

▸ Fat tree network with the topology of full binary tree.

▸ The number of actual connections between nodes at different
(neighboring) levels increases in order to support “long distance”
communications via the root of the network.

▸ Problems with mapping unstructured problems to a computer
architecture with such interconnect

▸ CM5 computer

70 / 459

Parallel computer architectures

6. Interconnection network and routing

C. Routing and switching
Routing + switching: determine communication between sources
and sinks (destinations), splitting messages and the manner of
sending the messages from one node to another.

avoiding deadlocks: strategies to resolve interconnect conflicts

deterministic and adaptive algorithms for routing

Always better message aggregation, communication granularity,
communication regularity needed

71 / 459

Parallel computer architectures

6. Interconnection network and routing

C. Routing and switching
Timing models for routing and switching

▸ bandwidth of a connection mentioned above is a maximum
frequency at which data can be communicated in bytes per second

▸ Its inverse is called the byte transfer time
▸ The transport latency (for m bytes)

T (m) = Tstartup + Tdelays_on_the_route + Tfinish + tB m. (4)

▸ : simplified:
T (m) = Ttransport_latency + tB m. (5)

72 / 459

Parallel computer architectures

6. Interconnection network and routing
Routing and switching

1 Routing with circuit switching
▸ Setting up and reserving a dedicated communicating path

(channel, circuit). This path is guaranteed for the whole
transmission in advance.

▸ Bandwidth fixed. Circuit switching can be also classified as
connection-oriented.

▸ The path is set up by sending small control probe messages.
▸ No packets (typically), no buffers, (dedicated) circuit kept all the

time. The communication time model for the dedicated
communication that uses l independent communication links and sends
a message of the size m can be given by

Tcircuit(m, l) = Toverhead + tcontrol_message l + tB m. (6)

▸ Useful for long messages, not communicated often.

73 / 459

Parallel computer architectures

5. Interconnection network and routing
Routing and switching

2 Store-and-forward routing/switching (with packets)
▸ Message split into packets – can be transmitted over different paths.
▸ Most general way of sending using more links.
▸ Intermediate node store received packets before passing them on.
▸ The packets carry in its header the control information used to

determine the path for the packet. In contrast to the routing with
circuit switching, the transfer time increases with the number of
switches to be passed.

▸ Errors can be checked on the way.
▸ The time for sending a message with the store-and-forward routing

(transport latency) is approximately for the message size m, l
independent communication links and the byte transfer time tB .

Tstore−and−forward ≈ Toverhead + l tB m. (7)

▸ Needs to add the packetize time
74 / 459

Parallel computer architectures

6. Interconnection network and routing
Routing and switching

3 Packet routing
▸ Uses pipelines

General difference between the store-and-forward routing and packet
routing schematically shown here.

Store-and-forward routing (top figure) and packet routing that uses
pipelining of the packets (bottom figure).

75 / 459

Parallel computer architectures

6. Interconnection network and routing
Routing and switching

4 Cut-through routing with packets: example of optimized routing
▸ Optimized packet routing: only one way for a packet

▸ Extends the idea of pipelining

▸ First a tracer establishes the connection

▸ Message is broken into fixed size units called flow control digits
(flits) with much less control information than packets. This implies
that the flits can be rather small.

▸ Typically in tightly coupled parallel computers with reliable interconnect
that enables to make the error control information very compact.

▸ In general, it is possible to face a deadlock, for example, when sending
messages in a circle and if some line is temporarily occupied.

76 / 459

Parallel computer architectures

6. Interconnection network and routing

Delivery schemes: relations sender(s)/receiver(s)

Unicast: message to a specific node.

Broadcast: one sender and multiple receiveres: one-to-all association

Multicast: one-to-many-of-many, many-to-many-of-many

Anycast: ©©

77 / 459

Parallel computer architectures

6. Interconnection network and routing

More details on communication

Blocking operations:
Returns control to the calling process only after all resources
(buffers, memory, links) are ready for next operations.
Non-blocking operations: returns the control to the calling process
after the operation has started and not necessarily finished.
Strategies to avoid deadlocks needed.
Synchronous communication: both sending and receiving process
start the operation once the communication is set. (Often for
shared-memory/SIMD systems.)
Asynchronous communication: No such rule for the asynchronous
communication. A specific way by message passing can be both
synchronous or asynchronous depending on the algorithms and
possibilities of the communicator.

78 / 459

7. Measuring computation and communication

Time models
A model for sequential time to compute n sequential operations

Tseq = n ∗ (Tseq_latency + Tflop), (8)

Simple parallel model

Tpar = Tpar_latency +max
1≤i≤p
((Tflop)i (9)

Remind: three main timing aspects that should be taken into account
on a rough level.

▸ Bandwidth that limits the speed of communication

▸ Latencies of various kinds

▸ Time to perform numerical operations with data

79 / 459

7. Measuring computation and communication

Time models: Speedup S

The power of parallel processing with respect to purely sequential
processing is often measured by the speedup.

Tseq/Tpar (10)

Variations may consider related latencies.
Multiprocessors with p processors typically have

0 < S ≤ p, (11)

Pipelining:
S = n ∗ p/(n + p) ∼ p, (12)

More detailed:

S = n ∗ p ∗ Tseq/(Tvec_latency + (n + p) ∗ Tvec_op). (13)

80 / 459

7. Measuring computation and communication

Time models: Speedup S
Graphical demonstration of data pipelining speedup for p = 5 processing
the vector

a = (a1 a2 . . . an)

is

time segment1 segment2 segment3 segment4 segment5
1 a1
2 a2 a1
3 a3 a2 a1
4 a4 a3 a2 a1
5 a5 a4 a3 a2 a1

.

81 / 459

7. Measuring computation and communication

Time models: Speedup S

Sp = T1/Tpar, (14)

Efficiency:
S/p (15)

0 < E ≤ 1, (16)

82 / 459

7. Measuring computation and communication

Time models: Amdahl’s law

Amdahl’s law expresses a natural surprise over the fact that if a
process performs part of the work quickly and part of the work slowly
→ overall (speedup, efficiency) strongly limited by the slow part.

▸ f : fraction of the slow (sequential) part
▸ (1 − f): the rest (parallelized, vectorized)
▸ t: overall time

S = f ∗ t + (1 − f)t
f ∗ t + (1 − f) ∗ (t/p)

≤ 1

f
(17)

f

1−f

sequential

parallel

Overall: significant simplification (missing dependency on the
problem size, actual search space etc.)

83 / 459

7. Measuring computation and communication

Scalability
Program (code) is scalable if larger efficiency comes with larger
amount of parallelism

linear, sublinear, superlinear efficiency.

Specialized definitions of scalability in specific cases

84 / 459

7. Measuring computation and communication

Scalability
Consider solution time varying with the number of processors for a
problem with a fixed total size. The code is (approximately)
strongly scalable if the speedup is (approximately) equal to p
(number of processing elements). That is, the code is strongly
scalable, if Tpar = Tseq/p. Strong scalability is often difficult to achieve
for large p because of the communication.
Consider solution time varying with the number of processors for a
problem having a fixed size per processor. The code is
(approximately) weakly scalable if the code run time stays constant
when the workload is increased proportionally to the number of
processors. In contrast to the strong scalability, the weak scalability is
often easier to be achieved.

85 / 459

Outline

1 Foreword

2 Computers, computing, communication

3 Parallel computing

4 Parallel processing and us - parallel programming

5 Parallel computer architectures: hardware and classification

6 Combining pieces together: computational models
Uniprocessor model
Vector and SIMD model
Multiprocessor model

7 Parallelizing problems

8 Sparse data decomposition: graph partitioning

9 Parallel and parallelized algebraic preconditioning

86 / 459

8. Combining pieces together: computational models

Algorithms → architecture_aware_implementations → Computers

Algorithm

Idealized computer

Computer

Implementation, Code

87 / 459

8. Combining pieces together: computational models

Idealized uniprocessor.
▸ latencies processor-memory
▸ possible superscalar processing, concurrent data movement
▸ threads to be quickly switched
▸ instruction pipelining (tacitly assumed)

Idealized processor with data pipeline (vector processor; idealized
SIMD computational model)

▸ Also data pipelining
▸ Sparse data from the point of view of access and pipelining
▸ their storage schemes
▸ more threads for possible concurrency

Idealized computers with more processors (MIMD)
▸ many more concepts, the highest dependence on architecture
▸ problemgranularity
▸ problem partitioning
▸ load balancing
▸ multicore, manycore

88 / 459

Uniprocessor model

Uniprocessor model

89 / 459

Uniprocessor model

von Neumann architecture

CPU

Memory

I/O

There is no pure uniprocessor nowadays. Even a simple Pentium III
has on-chip and in its firmware:

▸ instruction level parallelism (up to 3 instructions)
▸ pipeline (at least 11 stages for each instruction)
▸ fine-grained data parallelism (SIMD type) like MMX (64bit) and

SSE (128bit)
▸ more threads at system level for more cores

What can be influenced by us?
90 / 459

Uniprocessor model

What can be influenced by us?: ways to hide latencies

Mostly these are: data related items

Restructuring the code so that
▸ caches can be used efficiently
▸ dynamic-out-of-order scheduling is enabled (may need tiny

register/cache workspace)
▸ strong multithreading with more threads that can be fast

switched is possible
▸ prefetching is easy - (this is preparing data to be understood that

they will be used soon)

91 / 459

Uniprocessor model

Outside our control (typically)
: the rest ©

Low-level control of data pipelines that is an ability to issue more
(data processing) instructions at the same time that need

▸ Detecting true data dependencies: dependencies in processing order
▸ Detecting resource dependencies: competition of data for

computational resources
▸ Reordering instructions. Note that most microprocessors enable

out-of-original-order scheduling
▸ Solving branch dependencies that can be performed by various ways

☀ speculative scheduling across based on the assumption that typically
every 5th-6th instruction is a branch

☀ compile time scheduling. This is a problem that can be solved by
VLIW since the instructions are more complex. Other thread scheduling
is often accessed by users.

☀ superscalar scheduling

But, all of these should be enabled.
92 / 459

Uniprocessor model

The following example indicates how the above-mentioned features
can be enabled.

Example
Consider a uniprocessor:

clock frequency 2GHz,
main memory: DRAM with latency 0.1µs,
two FMA (floating-point multiply-add) units enabling 4-way
superscalar processing (4 instructions in a cycle, e.g., two adds and
two multiplies),
two (double precision) words (each of 8 bytes) are obtained in a fetch,
that is within the latency time.
this means: 2 data fetches for 4 operations.

93 / 459

Uniprocessor model

Case 1: No effort to minimize memory latency

The clock cycle time: = 1/frequency ≡ 1/(2.109)s = 0.5 ns

Since the processor can theoretically process 2 × 109 × 4 instructions
per second then the maximum processor rate is 8 GFLOPs.
The memory is much slower: every memory request needs 0.1 µs
wait time memory latency.

Example: a dot product of two vectors (of infinite length).
One multiplication with two numbers and adding the result to the
partial product (two operations) need then 1 fetch: 2 operations for
a fetch (0.1µs) of two numbers.
That is 2 operations / 0.1µs→ 2 × 107 operations per second.
This leads to the rate of 20 MFLOPs – much smaller than the
potential of the processor.

94 / 459

Uniprocessor model

Case 2: Hiding latency using cache

Example: A ∗B = C, hiding latency by cache. Assume cache of size
64kB with latency of 0.5 ns.

The memory size needed to store one number is 8 bytes. The cache
can store three matrices A,B and C of dimension 50:
3 × 502 × 8 = 7500 × 8 = 60000 bytes.
A matrix fetch of A and B: 5000 words, 8 bytes each. Due to the
cache that can store the matrices, this needs 5000/2 × 0.1 = 250 µs.
For the transfer considered only latency and not the bandwidth.
Once the matrices are in cache, operations can be performed.
Asymptotically, 2n3 operations are needed. If the computer
performs 4 operations per cycle, we need
2 × 503 × 0.5 ns (clock cycle) × 0.25 = 125000/4 ns ≈ 31 µs

This gives 281µs

Resulting rate is 2 ∗ 503/0.000281 ≈ 890 MFLOPs. Close to this if
added moving C back to memory.

95 / 459

Uniprocessor model

Case 3: Hiding latency using multithreading

Algorithm (Matrix-vector multiplication: Standard dot
products of rows of A ∈ Rm×n with b ∈ Rn.)

Input: Matrix A.
Output: Row products.
1: for i = 1, . . . ,m do ▷ Loop by rows
2: ri = A(i, ∶) ∗ b
3: end for

96 / 459

Uniprocessor model

Case 3: Hiding latency using multithreading

A multithreaded version of the previous multiplication (symbolically
written).

Algorithm (Matrix-vector multiplication: Multithreaded dot
products of rows of A ∈ Rm×n with b ∈ Rn.)

Input: Matrix A.
Output: Row products.
1: for i = 1, . . . ,m do ▷ Loop by rows
2: ri = new_thread(dot_product, double,A(i, ∶), b)
3: end for

97 / 459

Uniprocessor model

Case 3: Hiding latency using multithreading: general notes

In situations like above, more threads than cores/processors is useful
as a way to hide slow communication/memory.
But note that threads consume some amount of memory. And they
may share the same cache. The optimal number of threads is
strongly architecture-dependent.

98 / 459

Uniprocessor model

Case 3: Hiding latency using multithreading (continued)

Various modifications of multithreading on contemporary computers

More ways to support more threads processed by one chip
▸ Fine-grain multithreading (switch between threads on every cycle)
▸ Coarse-grain/block multithreading (switching among the threads can

be based on I/O demands or long/latency operations)
▸ Simultaneous multithreading (more instructions + more threads; parts

of different threads share, for example, a superscalar unit)
▸ Combination of the techniques above; combined scheduling for more

supescalar units.

Predecesssor of using therads massively: VLIW as in Tera MTA (2002)

99 / 459

Uniprocessor model

Case 4: Hiding latency using prefetch

Boosting performance by advancing fetches from slower parts of
memory hierarchy

▸ Prefetch of instructions
▸ Prefetch of data

Data for the prefetch need to be prepared/enabled. Possible use of
prefetch processor.

Next slides summarize our goals

100 / 459

Uniprocessor model

Case 5: Data preparation: improving memory bandwidth and
latency: locality and regularity

spatial locality: data are spatially local if the data items stored close
(at logically close positions) to the executed items are highly probable
to be executed soon. In this case, the use of prefetch with high
chance to improve execution.

▸ Examples: vectors, matrices

101 / 459

Uniprocessor model

Spatial locality and matrix layout
Memory layout should be such that physical access of memory is
compatible with the logical access (sometimes forced by the
programming language).
In particular: column major versus row major

Algorithm (Summing columns of A ∈ Rm×n.)

Input: Matrix A.
Output: Resulting vector sum of the sums.
1: for i = 1, . . . ,m do ▷ Loop by rows
2: sumi = 0
3: for j = 1, . . . , n do ▷ Getting row sum
4: sumi = sumi +Aij

5: end for
6: end for

Here: columnwise A is bad, rowwise A is good
102 / 459

Uniprocessor model

Case 5: Data preparation: improving memory bandwidth and
latency: locality and regularity

temporal locality: Data are temporally local if the data items
recently executed have a high chance to be executed soon again. Such
data can be "hanged" in registers or cache for a long time.

▸ example: linear combination of a set of vectors bi, i ∈ S. The
coefficients λi should have a high temporal locality being reused a
couple of times within a short time

∑
i∈S

λibi

λ1 λ2 λ3 λ4

103 / 459

Uniprocessor model

Case 5: Data preparation: improving memory bandwidth and
latency: locality and regularity

regularity of processed data: this means that the code is often faster
and easier to be processed by the computer software when composed
from similar, and possibly standardized blocks
Improving regularity/bandwidth sometimes possible by tiling:

▸ fragmentation of blocks
▸ picking up blocks from a sparse structure

104 / 459

Uniprocessor model

Catching more rabbits at the same time

Coding to achieve localities and regularity
Standardization

▸ increase readability of codes and simplify software maintenance,
▸ improvements in code robustness,
▸ better portability, modularity and clarity,
▸ increase in effective memory bandwidth,
▸ creating a basis for machine specific implementations etc.

Overall: BLAS1 set of subroutines / library (1970’s) (AXPY (αx + y),
dot_product (xT y), vector_norm, plane rotations, etc.)
Other BLAS for keeping localities and regularity
Further BLAS-like development: see below

105 / 459

Vector and SIMD model

Vector and SIMD model

106 / 459

Vector processor and SIMD models

Vectorization: one of the most simple methods to introduce
parallelism into computations. Data pipelining is behind.
Vector based machines (and not only): instructions also pipelined
(computer instructions are divided into several stages, see above)
Provided standard support in architectures as

▸ vector registers for instructions
▸ vector registers for data

Contemporary computers: hardware that supports vectorization on
chips (with caches, multiple pipelines etc.) Often developed to
support multimedia applications.

107 / 459

Vector processor and SIMD models

Some historical notes

CDC series and and Cray computers: one of the most successful
chapters in the development of parallel computers.

A lot of early progress connected to Seymour Cray (1925 – 1996;
father of supercomputing, chief constructor of latest model of CDC
computers with some earliest parallel features, constructor of the first
CRAYs: commercially successful vector computers (supercomputers)
(Cray-1 (1976); Cray X-MP (1983); Cray C-90 (1991) etc.)

In 70’s memory-memory vector processors and vector-register
processors existed side by side. The latter prevail nowadays.

108 / 459

Vector processor and SIMD models

Some vector processing principles and characteristics
Vector pipelines on chips as in superscalar-based processing units ×
vector processing
Vector supercomputers with typically different (multiplied) vector
functional units / vector processing units for different operations.
Load/store units may be also efficiently vectorized.
Architecture includes also scalar units. Small efficiency of the scalar
arithmetic → RISC workstations with efficient FPU+ALU.

V1

V2

S1

*

+

109 / 459

Vector processor and SIMD models

Some vector processing principles and characteristics

How can be characterized processing on a vector (supercomputer)
architectures.

Some early indicators
▸ R∞: computer speed (for example, in Mflops) on a vector of

infinite length,
▸ n1/2: vector length needed to reach half of the speed R∞,
▸ nv denotes the vector length needed to get faster processing

than in the scalar mode.
Some other terminology below

110 / 459

Vector processor and SIMD models

Chaining

Chaining represents a way of computation developed for early Crays
(Cray-1 (1976), predecessor project STAR) and used since then.
Based on storing intermediate results of vector pipelines,
combining them possibly with scalar data and using them directly
without communication with main memory: supervector performance.
The process controlled by the main instruction pipeline. Closely
related overlapping introduced for vector operations by Cray-1.

V1

V2

S1

*

+

111 / 459

Vector processor and SIMD models

Stripmining
Long vectors should be split to parts of sizes less or equal to the
maximum vector length allowed by vector registers and possibly other
hardware components. Consequently, dependence of computer speedup
on vector length is a saw-like curve as depicted called stripmining

S

length

Splitting long vectors for Cyber-205 (late 70’s; memory-memory vector
processor) scheduled by an efficient microcode software. Since Cray X-MP
this is done by hardware.

112 / 459

Vector processor and SIMD models

Stride

Processing vectors with a non-unit distance among entries in memory.

If this distance is regular, it is called stride and vector processor does
not need to be always efficient in processing vectors with strides > 1.

BLAS routines can deal with various strides (but there is a price for it).

An example: a column in the following matrix stored by rows can be
obtained by getting its entries with the stride 5

113 / 459

Vector processor and SIMD models

Vectorization examples

Vector norm

Algorithm (Computing (squared) norm xTx for x ∈ Rn.)

Input: Vector x.
Output: Resulting squared norm.
1: for i = 1, . . . , n do
2: xi = xi ∗ xi
3: end for

. xi−1 xi xi+1 xi+2

. xi−1 xi xi+1 xi+2

No dependence among the vector components.
Automatic vectorization.

114 / 459

Vector processor and SIMD models

Vectorization examples

Algorithm (Product with forward shift x1∶n−1 = xT
1∶n−1x2∶n.)

Input: Vector x.
Output: x1∶n−1 = xT1∶n−1x2∶n.
1: for i = 1, . . . , n − 1 step 1 do
2: xi = xi ∗ xi+1
3: end for

. xi−1 xi xi+1 xi+2

. xi−1 xi xi+1 xi+2

The loop vectorizes as well.

115 / 459

Vector processor and SIMD models

Vectorization examples

Algorithm (Product with backward shift.)

Input: Vector x.
Output: See below
1: for i = 2, . . . , n step 1 do
2: xi = xi ∗ xi−1
3: end for

. xi−1 xi xi+1 xi+2

. xi−1 xi xi+1 xi+2

The loop does not vectorize: xi =
i

∏
j=1

xj . (different than above).

116 / 459

Vector processor and SIMD models

Vectorization examples

Product of all vector components (continued)

Algorithm (Reversing order of processing.)

Input: Vector x.
Output: See below
1: for i = n, . . . ,2 step −1 do
2: xi = xi ∗ xi−1
3: end for

But: the loop may produce a different result.
Consequently, we should be careful.

117 / 459

Vector processor and SIMD models

Vectorization examples

Vector processing of sparse (indirectly addressed) vectors (continued)

Sparse vectors can be parts (as rows or columns) of sparse matrices.
Enormous influence on sparse algorithms and implementations.

118 / 459

Vector processor and SIMD models

Vectorization examples

Vector processing of sparse (indirectly addressed) vectors (continued)

Splitting the process into three parts
▸ scattering dense vectors (indirectly addressed - this is how the

sparse vectors are stored) into sparse ones

▸ computation with dense vectors

▸ gathering the result

119 / 459

Vector processor and SIMD models

Vectorization examples

Vector processing of sparse (indirectly addressed) vectors

x1 x3 x5 x8

scatter

x1 x3 x5 x8

gather back

A breakthrough enabling this: hardware/software support of
vectorizing sparse (indirectly addressed) data: vectorized gather and
scatter

▸ Cray X-MP/4, Cray X-MP/4, commodity stuff like AVX-512, ARM,
InfiniBand; otherwise: prefetch should cover this

Still slower than directly addressed vectors.

120 / 459

Vector processor and SIMD models

Vectorization examples

Algorithm (Scatter x ∈ Rk into y ∈ Rn using selected indices
mask(1 ∶ k), k < n.)

Input: Vector x ∈ Rk.
Output: See below
1: for i = 1, . . . , k do
2: y(mask(i)) = x(i)
3: end for

Algorithm (Gather a vector y ∈ Rn into a vector x ∈ Rk, k < n.)

Input: Vector y ∈ Rn.
Output: See below
1: for k selected indices mask(1 ∶ k) from i = 1, . . . , n do
2: x(i) = y(mask(i))
3: end for 121 / 459

Vector processor and SIMD models

More complex examples of vectorization

Typically unknown length of the data pipeline, possible chaining.
Also, formulas hidden inside a function f

But, if the shift is known ... (nowadays NOT REALISTIC)

E.g., in lagged Fibonacci sequence to get random sequences as

xn = xn−a + xn−b mod m, 0 < a < b.

Vector lengths (pipeline lengths) then at most min(a, b).

Algorithm

Constrained vectorization: shift in the constrains
1. for i = 1, . . . , n step 1 do
2. xi = f(xi−k)
3. end i

122 / 459

Vector processor and SIMD models

More complex examples of vectorization

Algorithm
Similar loop (with an additional vector y): easily vectorized

1. for i = 1, . . . , n step 1 do
2. yi = f(xi−k)
3. end i

123 / 459

Vector processor and SIMD models

More complex examples of vectorization

Wheel method
Another early (outdated) approach.
ns stages (segments) of a pipeline: have to be known.
Often not realistic (chaining, simply not known)

Algorithm
Wheel method for the operation: sum = ∑j aj , j = 1, . . . , n

1. for i = 1, . . . , ns do
2. for k = 1, . . . , n/ns do
3. xi = ∑k ai+ns∗k
4. end k
5. end i
6. sum = ∑ns

i=1 xi

124 / 459

Vector processor and SIMD models

More complex examples of vectorization

Loop unrolling

Consider the following AXPY operation that may correspond to a loop
inside a computational code.

Algorithm

(S,D)AXPY operation.
1. for i = 1, . . . , n do
2. y(i) = y(i) + α ∗ x(i)
3. end i

Loop unrolling algorithm
Nowadays often automatic

125 / 459

Vector processor and SIMD models

Loop unrolling (continued)

Algorithm

4-fold loop unrolling with an integer increment of indices incx
2. for i = 1, . . . , n step 5 do
3. y(i) = αx(i)
4. y(i + incx) = αx(i + incx)
5. y(i + 2 ∗ incx) = αx(i + 2 ∗ incx)
6. y(i + 3 ∗ incx) = αx(i + 3 ∗ incx)
7. y(i + 4 ∗ incx) = αx(i + 4 ∗ incx)
8. end i

126 / 459

Vector processor and SIMD models

Loop unrolling (continued)

Some other examples

Algorithm

A computational segment with two nested loops
1. for i = 1, . . . , n do
2. for j = 1, . . . , n do
3. a(j, i) = αb(j, i) + β c(j)
4. end j
5. end i

Vectorization depends on the way the matrices are stored

127 / 459

Vector processor and SIMD models

Loop unrolling (continued)

Algorithm

A computational segment with 2-fold unrolling of the outer loop
1. for i = 1, . . . , n step 3 do
2. for j = 1, . . . , n do
3. a(j, i) = αb(j, i) + β c(j)
4. a(j, i + 1) = αb(j, i + 1) + β c(j)
5. a(j, i + 2) = αb(j, i + 2) + β c(j)
6. end j
7. end i

128 / 459

Vector processor and SIMD models

Loop fusion

Algorithm

A computational segment with two loops that can be fused.
1. for i = 1, . . . , n do
2. y(i) = y(i) + αx(i)
3. end i
4. for j = 1, . . . , n do
5. u(j) = u(j) + β x(j)
6. end j

Typically during optimization by the compiler. But loops may include
more complex objects.

129 / 459

Vector processor and SIMD models

Loop fusion (continued)

The two loops in this program segment can be fused together as follows.

Algorithm

A computational segment with two loops that were fused.
1. for i = 1, . . . , n do
2. y(i) = y(i) + αx(i)
3. u(i) = u(i) + β x(i)
4. end i

Clearly, the loop fusion reduces the number of memory accesses due to
reuse of the values x(i), i = 1, . . . , n.

130 / 459

Vector processor and SIMD models

Associative transformations
Exploiting associativity in the dot product of two vectors.

Algorithm (Dot product s of two vectors.)

Input: Vectors x and y.
Output: Dot product of the input vectors.
1: s = 0
2: for i = 1, . . . , n do
3: s = s + x(i) y(i)
4: end for

Should be rewritten as follows (if not done automatically).

131 / 459

Vector processor and SIMD models

More complex examples of vectorization

Algorithm

Transformed dot product s of two vectors.
1. s1 = 0
2. s2 = 0
3. for i = 1, . . . , n step 2 do
4. s1 = s1 + x(i) y(i)
5. s2 = s2 + x(i + 1) y(i + 1)
6. end i
7. s = s1 + s2

Similar schemes discussed later
Logarithmic (complexity - number of steps) curse

132 / 459

Vector processor and SIMD models

Vector processor model and linear algebra codes

The idea of temporal locality can be formally characterized by the
ratio q defined as follows. (data reused in closely after should be kept
inside cache)

q = flops counts

number of memory accesses
(18)

The effort to increase the fraction q: driving force to continue in
development of BLAS outside BLAS1. Let us first show q for some
typical representative operations. Here we consider α ∈ R,
x, y, z ∈ Rn, A,B,C,D ∈ Rn×n

operation operation count amount of communication q = op/comms

z = αx + y 2 ∗ n 3 ∗ n + 1 ≈ 2/3
z = αAx + y 2 ∗ n2 + n n2 + 3 ∗ n + 1 ≈ 2
D = αAB +C 2 ∗ n3 + n2 4 ∗ n2 + 1 ≈ n/2

133 / 459

Vector processor and SIMD models

Vector processor model and linear algebra codes

BLAS2 (1988): better use of vector machines. It includes
operations as the matrix-vector product z = αAx + y, rank-1 updates
and rank-2 updates of matrices, triangular solves and many other
operations.
BLAS3 (1990): better use of computer architectures with caches
It covers, e.g., GEMM (D = AB +C).
As with BLAS1, stress put to machine-specific efficient
implementations. All BLAS subroutines: standardized as procedures in
high-level languages and as calls to machine-dependent libraries on
different architectures.
Possible BLAS cons: sometimes time-consuming interface for
simple operations.

134 / 459

Vector processor and SIMD models

Standardization at a higher level: LAPACK

The set of subroutines called LAPACK covers many solving such problems
related to dense and/or banded matrices as

Solving systems of linear equations
Solving eigenvalue problems
Solving least-squares solutions of overdetermined systems
The actual solvers are based, for example, on the associated
factorizations like LU, Cholesky, QR, SVD, Schur factorization
completed by many additional routines used, e.g., to estimation of
condition numbers, reorderings by pivoting. The whole package is
based on earlier LINPACK (1979) and EISPACK (1976) projects that
provided also computational core of the early Matlab.
A schematic example of using smaller blocks that fit the computer
cache in LU and QR factorizations follows.

135 / 459

Vector processor and SIMD models

Standardization at a higher level: LAPACK

Blocks in LU decomposition
LU decomposition → Block LU decomposition:

⎛
⎜
⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎟
⎠
=
⎛
⎜
⎝

L11

L21 L22

L31 L32 L33

⎞
⎟
⎠

⎛
⎜
⎝

U11 U12 U13

U22 U23

U33

⎞
⎟
⎠

LU solve step: substitutions with diagonal blocks, multiplications by
off-diagonal blocks

136 / 459

Vector processor and SIMD models

Standardization at a higher level: LAPACK

LAPACK: blocks in QR decomposition

A = Q(R
0
)

Householder’s method is based on the reflection matrices of the form

P = I − αuuT with αuTu = 2 (19)

In the k-th step we get

QT
kA = (

Rk Sk

Ak
) , Qk = Qk−1 (

I

I − αkũkũ
T
k

) = Qk−1(I − αkuku
T
k).

(20)
BLAS3 QR factorization is based on a matrix representation of the
product of the transforms. Consider k of them.

k

∏
j=1
(I − αjuju

T
j) = I − Y TY T (21)

137 / 459

Vector processor and SIMD models

Standardization at a higher level: LAPACK

Blocks in QR decomposition (continued)

Y = (u1, . . . , uk) ∈ Rn×k, T ∈ Rk×k upper triangular. (22)

Then for u = uk+1

(I − Y TY T)(I − αuuT) = I − αuuT − Y TY T + αY TY TuuT

= I − (Y u)(TY
T − αTY TuuT

αuT
)

= I − (Y u)(T −αTY Tu
α

)(Y
T

uT
)

= I − (Y,u)(T h
α
)(Y,u)T

Even more compact WY form (instead of Y TY T form) possible.
138 / 459

Vector processor and SIMD models

BLAS3 in practice: Matrix-matrix multiplications and cache
Assume a fast memory (cache) of the size M ≥ n
Three example cases

Case 1: M can store a row of a square matrix.

M ≈ n. (23)

⇓

Standard dot product of Ai∗ and B∗j in the innermost loop.

139 / 459

Vector processor and SIMD models

BLAS3 in practice: Matrix-matrix multiplications and cache

Case 1: M can store a row of a square matrix (continued).

Algorithm

Standard dense matrix-matrix multiplication
Input: Matrices A,B,C ∈ Rn×n

Output: Product C = C +AB.
1. for i = 1, . . . , n do
2. for j = 1, . . . , n do
3. for k = 1, . . . , n do
4. Cij = Cij +AikBkj

5. end k
6. end j
7. end i

140 / 459

Vector processor and SIMD models

BLAS3 in practice: Matrix-matrix multiplications and cache

Case 1: M can store a row of a square matrix (continued).

Assume that M stores a row of A

Communication: n2 for A (input just once), 2n2 for C (load and
store), n3 for B (B is read for each row of A)

operations: 2n3 (we count both additions and multiplications)

summary: q = ops/refs = 2n3/(n3 + 3n2) ≈ 2

Consequently, the algorithm is as slow as BLAS2.

141 / 459

Vector processor and SIMD models

Case 2: M ≈ n + 2n2/N for some N .
M is slightly larger than n but still not large enough
B and C into N split into column blocks of size n/N .

C = [C(1), . . . ,C(N)],B = [B(1), . . . ,B(N)].

Example for 3 × 3 block matrices.

⎛
⎜
⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎟
⎠

⎛
⎜
⎝

B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎟
⎠
=
⎛
⎜
⎝

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞
⎟
⎠

⎛
⎜
⎝

C11

C21

C31

⎞
⎟
⎠
=
⎛
⎜
⎝

a11
a21
a31

⎞
⎟
⎠
B11 +

⎛
⎜
⎝

a12
a22
a32

⎞
⎟
⎠
B21 +

⎛
⎜
⎝

a13
a23
a33

⎞
⎟
⎠
B31.

The whole A, one block of B (by rows), one block of C (by outer
products)

142 / 459

Vector processor and SIMD models

Case 2: M ≈ n + 2n2/N for some N (continued).

Algorithm

Dense matrix-matrix multiplication C = C +AB with N column blocks of
size n/N in C and B.
Input: Matrices A,B,C ∈ Rn×n with blocks

C = [C(1), . . . ,C(N)], B = [B(1), . . . ,B(N)]

Output: Product C = C +AB.
1. for j = 1, . . . ,N do
2. for k = 1, . . . , n do
3. C(j) = C(j) +A∗kB(j)(k,∗)
4. end k
5. end j

143 / 459

Vector processor and SIMD models

Case 2: M ≈ n + 2n2/N for some N (continued).

k

k

144 / 459

Vector processor and SIMD models

Case 2: M ≈ n + 2n2/N for some N (continued).

assuming M ≈ n2/N +n2/N +n = 2n2/N +n (block of C, block of B,
column of A)

That is M ≈ 2n2/N .

communication: read+write C: 2n2, read B sequentially by blocks:
n2, read A N-times: Nn2

q = 2n3/(3 +N)n2 ≈MNn/(3 +N)n2 ≈M/n

145 / 459

Vector processor and SIMD models

Case 3: M ≈ 3(n/N)2 for some N .
Let us consider row and column blocks A(ij),B(ij),C(ij) at a grid
n/N × n/N and the matrix-matrix multiplication based on the following
algorithm.

Algorithm

Dense matrix-matrix multiplication C = C +AB
Input: Matrices A,B,C ∈ Rn×n with the two-dimensional grid of blocks
Output: Product C = C +AB.

1. for i = 1, . . . ,N do
2. for j = 1, . . . ,N do
3. for k = 1, . . . ,N do
4. C(ij) = C(ij) +A(ik)B(kj)
5. end k
6. end j
7. end i

146 / 459

Vector processor and SIMD models

Case 3: M ≈ 3(n/N)2 for some N (continued).
Assuming M ≈ 3(n/N)2

This gives n/N ≈M/3.
Communication: 2n2 for C, Nn2 for A and B

q = 2n3/(n2(2 + 2N)) ≈ n/(1 +N) ≈
√
M/3

much better

147 / 459

Multiprocessor model

Multiprocessor model

148 / 459

Multiprocessor model

The most general computational model.

As in previous models, there are general concepts one should take into
account when porting computations to this model.

Here, more extensively, only parallel matrix computations considered.

Parallel computations need new algorithms.

Algorithms must be very often new and not only straightforward
parallelizations of serial algorithms.

149 / 459

Multiprocessor model

REPETITION

Multiprocessor computational having under one operating
(control) system a possibility of independent concurrent
computations.
Many possible and very different architectures.
Uniprocessor: interested mainly in latency, bandwidth for the
processor-memory relation, locality, regularity.
Vector model: in addition good and bad (data)
pipelining/vectorization, connection to BLAS, LAPACK, cache and
matrix-matrix operations.
Multiprocessor: In addition: more stress to regularity of
computations, communication (processor-processor (core-core, etc.),
but also granularity, decomposition, load balancing, programming
patterns.

150 / 459

Multiprocessor model

Hardware considerations

shared / partially shared or fully distributed.
memory access often non-uniform (NUMA)
uniform access to memory sometimes supported by techniques like
COMA (cache-only memory architectures)
many cache-specific items related to multiprocessors to be solved
remote access latencies (if data for a processor are updated in a
cache of another processor and not yet in the main memory).
general regularity principles plus problem division regularity
codes on multiprocessors: difficult to prefetch

151 / 459

Multiprocessor model

Algorithmic considerations

algorithmic/programming patterns

programming tools

algorithm/code features
▸ granularity
▸ decomposition
▸ load balancing

152 / 459

Multiprocessor model

Multiprocessor programming patterns

Parallel programs:
▸ Collection of tasks executed by processes or threads on multiple

computational units.
▸ Must be compatible with the decomposition schemes
▸ We will mention first programming patterns
▸ The some tools to implement them will be commented on

153 / 459

Multiprocessor model

Multiprocessor programming patterns (continued)

1. SPMD/SIMD
▸ Fixed number of threads/ processes to process different data as

their acronyms state.

Code

154 / 459

Multiprocessor model

Multiprocessor programming patterns (continued)

1. SPMD/SIMD
▸ SIMD Based (often) on data pipelining: performing operations

synchronously.
☀ GPU processing may cover more SIMD streams

▸ SPMD (single program, multiple data streams)
☀ typically connected with asynchronous work, on different

CPUs
☀ the independent tasks in a single program/code,
☀ possibly some synchronization points.
☀ processes or threads have equal rights.

155 / 459

Multiprocessor model

Multiprocessor programming patterns

Parallel programs:
▸ Collection of tasks executed by processes or threads on multiple

computational units.
▸ Must be compatible with the decomposition schemes

2. Fork-join constructs:

Fork Join

156 / 459

Multiprocessor model

2. Fork-join

Process or thread creates a set of child processes or threads that
work in parallel. This is so-called fork.
The parent process then waits until all the child subtasks are done
using the join statement.
The parent process can either wait, perform different tasks or perform
one of the subtasks as well.
Another name: spawn-exit.
In programming languages: this can be easily coded, for example,
as parbegin/parend or cobegin/coend.

157 / 459

Multiprocessor model

Multiprocessor programming patterns (continued)

3. Master-slave

▸ One master that controls the execution of other processes / threads.
▸ Master can take tasks from a pool (set of block rows, matrices, etc.)

Master

Slave1 Slave2 Slave3

158 / 459

Multiprocessor model

Multiprocessor programming patterns (continued)

4. MPMD
General MPMD style uses multiple programs as well multiple data
streams.

▸ Balancing the code with available general communication patterns
needed.

▸ An example is a structured client/server model. where a specific
non-parallelizable tasks (as, possibly parts of input and output can be)
are processed at a designated master processing unit. In contrast to
the master/slave model where the master controls, here the clients
communicate with the server in a more general way.

▸ General MPMD pattern processors may have different roles and may be
interconnected by various ways.

159 / 459

Multiprocessor model

Multiprocessor programming tools

To follow the multiprogramming patterns we have much less.
Moreover, we depend on available hardware and concepts the keep
evolving. Most common tools (from the point of view of an
application, not wishing to be devoured by short-life concepts.
MPI: Standard and very flexible library. Specific instructions from this
library should be embedded in application codes. Very extensive set of
instructions, but for basic use, not many of them are needed.

▸ An easy treatment on more distributed computer architectures
▸ an example: MPSD (related to MISD mentioned above) treatment.

OpenMP: Application programming interface (API) on the side of
compiler. Able to create internally a set of (safe) threads. No external
libraries needed, dependence on compiler, parallel sections of code
easily defined. But, a notion of shared-memory programming behind.
Using threads that are a specific low-level tool on shared-memory
computers, their control is often a part of the operating system

160 / 459

Multiprocessor model

Granularity:

Relates to average sizes of code chunks that
processed/communicated concurrently.
also: ratio: amount of computation / amount of communication (time
for computation / time for communication)

▸ coarse (example: submatrices)

▸ medium (example: rows, columns)

▸ fine (example: individual values)
Decisions on granularity always close to choice of algorithms
Classification is problem dependent.

161 / 459

Multiprocessor model

Problem decomposition

Problem decomposition is the way to divide problem processing
among individual computational units (how to achieve intended
granularity).

▸ task-based

▸ data-based

Load balancing denotes then specifically the strategies and/or
techniques to minimize Tpar on multiprocessors by approximate
equalizing workload/worktime tasks for individual computational
units and possibly also minimizing the synchronization overheads.

▸ static problem decomposition and load balancing
▸ dynamic problem decomposition and load balancing

The consequent assignment of the divided parts to computational
units via processes or threads is called mapping.

162 / 459

Multiprocessor model

Problem decomposition: task-based

1. Recursive/hierarchical decomposition:
▸ Dividing the problem into a set of independent subproblems

▸ The same strategy applied to the subproblems recursively.

▸ The full solution assembled from the partial solutions of the
subproblems.

▸ This type of decomposition is typically connected to algorithms
that use the divide and conquer strategy.

▸ An example: the sorting algorithm quicksort.

163 / 459

Multiprocessor model

Problem decomposition: task-based (continued)

1. Recursive/hierarchical decomposition:

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

3 1 7 2 5 8 6 4 3

1 2 3 7 5 8 6 4 3

164 / 459

Multiprocessor model

Problem decomposition: task-based (continued)

1. Recursive/hierarchical decomposition:
Regular hierarchical decomposition uses a mapping of the subtasks to a
binary tree with 8 processing units is depicted below.

0

0

0

1 20

2

3 4

4

4

5 6

6

7

165 / 459

Multiprocessor model

Problem decomposition: task-based (continued)

2. Exploratory decomposition

Splits the search space using results of previous steps.
Performed hand-in-hand with execution.
An example: 15-puzzle problem. The goal is to find a path from the
initial configuration of a 4 × 4 grid into the final configuration by
moves of a tile into an empty position.

166 / 459

Multiprocessor model

Problem decomposition: task-based (continued)

3. Speculative decomposition:

specific variation of exploratory decomposition that not only uses
results of the previous steps but also speculates on their results.
Used when program flow depends on results of branch instructions.

167 / 459

Multiprocessor model

Problem decomposition: data-based

Available data sets are shared, decomposed and balanced among the
computational units.
We distinguish separately static data decomposition and dynamic
data decomposition.
As for the load balancing, standard strategy in the former case is to
use static load balancing while in the latter case the load should be
balanced dynamically.
Needed to distinguish input decomposition, intermediate
decomposition and output decomposition.

168 / 459

Multiprocessor model

Problem decomposition: data-based (continued)

A. Static data decomposition (continued)

1D arrays, 1D block data distribution
Each process owns block of 1 ≤ b⌈n/p⌉ entries.
Picture for n = 8, p = 2, b = 2 depicted

P P P P

1 2 3 4 5 6 7 8

1 2 3 4

169 / 459

Multiprocessor model

Problem decomposition: data-based (continued)

A. Static data decomposition (continued)

1D arrays, 1D cyclic data distribution
For the same 1D array an entry vi, i = 1, . . . , n of the array is assigned to
the process P(i−1) modp+1. Here p = 2, n = 8.

1 2 3 4 5 6 7 8

P P P P P P P P1 1 1 1 2222

170 / 459

Multiprocessor model

Problem decomposition: data-based (continued)

A. Static data decomposition (continued)

1D arrays, 1D block cyclic data distribution
This is a combination of the block and cyclic distribution as shown in the
figure.

P P P P

1 2 3 4 5 6 7 8

1 2 1 2

171 / 459

Multiprocessor model

Problem decomposition: data-based (continued)

A. Static data decomposition (continued)
2D arrays, 1D block data distribution

—- By rows, columns, block rows, block columns.

2D arrays, 2D block data distribution

—- blocks of size n/√p × n/√p, both by rows and columns

1D partitioning

2D partitioning

172 / 459

Multiprocessor model

Problem decomposition: data-based (continued)

A. Static data decomposition (continued)

2D arrays, 1D cyclic data distribution

—- The same, but cyclically. Row cyclic distribution is at the figure
below.

2D arrays, 2D block cyclic array (2D) distribution.
0

0

1

1

2

2

3

3

173 / 459

Multiprocessor model

Problem decomposition: data-based (continued)

A. Static data decomposition (continued)

Other static data decompositions
▸ Randomized block decompositions

▸ Various types of hybrid decompositions.
▸ Specifically, for sparse matrices: traditionally called graph /

hypergraph partitioning will be mentioned later.

The schemes can be modified by weights that take into account
specific architectural considerations

In any case, decomposition should be balanced with the algorithm.

174 / 459

Multiprocessor model

Problem decomposition: data-based

B. Dynamic data decomposition

Usually closely connected to programming models.
In centralized (master/slave) schemes, one special process
(computational unit) manages a pool of available tasks. Slave
processors/processes then choose and perform tasks taken from the
pool. Can be modified/improved by various scheduling strategies:

▸ self-scheduling (choosing tasks by independent demands),
▸ controlled-scheduling (master involved in providing tasks) or
▸ chunk-scheduling where the slaves take a block of tasks to

process.
Fully distributed dynamic scheduling within non-centralized
processing schemes

▸ Nontrivial synchronization

175 / 459

Multiprocessor model

Linear algebra standardization and multiprocessor model

Multiprocessing model influenced development of basic linear algebra
subroutines in two basic directions.

Standardization of communication
Development of LA libraries on the top of the communication
paradigms.

BLACS
Covers low level of concurrent programming, creates standardized
interface on the top of message passing layers like MPI (message
passing interface) or PVM (parallel virtual machine).
PBLAS Parallel BLAS called PBLAS represents an implementation
of BLAS2 and BLAS3 for distributed memory architectural model.

176 / 459

Multiprocessor model

Linear algebra standardization and multiprocessor model

ScaLAPACK
The standardized library of high-performance linear algebra for
message passing architectures. Its basic linear subroutines heavily rely
on PBLAS. The following figure shows schematically the dependencies
among linear algebra high-performance software that target distributed
memory architectures.

ScaLAPACK

PBLAS

BLACS

MPI, PVM

BLAS

LAPACK

177 / 459

Multiprocessor model

Linear algebra standardization and multiprocessor model

Next development came with the advent of more involved multiprocessors
Multi-core processors: computing component with a small number of
independent processing units ("cores").
Manycore processors: specialized multi-core processors designed to
get a high degree of parallel processing. They typically contain a large
number of simpler, independent processor cores (e.g. 10s, 100s, or
1,000s). Various tricks to achieve low level of cache coherency.

Forcing the concepts like

Massive fork-join parallelism
Nesting the fork and join can be efficiently implemented
divide-and-conquer strategies.
Use of tiling based on reordering matrix data into smaller regions of
contiguous memory.
Tile algorithms allow fine granularity parallelism and asynchronous
dynamic scheduling.

178 / 459

Multiprocessor model

Linear algebra standardization and multiprocessor model

PLASMA
A high level linear algebra library for parallel processing that takes into
account multicore computer architectures and forms a counterpart of
the (part of) high level libraries LAPACK and ScaLAPACK is called
PLASMA. Apart from new algorithms, as “communication avoiding”
QR factorization, the approach considers concepts of tile layout of
the processed matrices and dataflow scheduling using the fork-join
concept.
MAGMA
Going to manycore processors has significantly increased heterogenity
of computer architectures. Hybrid linear algebra algorithms:
MAGMA. Among its important algebraical features: varying
granularity based on a strong task scheduler with a possibility to
schedule statically or dynamically.

179 / 459

Outline

1 Foreword

2 Computers, computing, communication

3 Parallel computing

4 Parallel processing and us - parallel programming

5 Parallel computer architectures: hardware and classification

6 Combining pieces together: computational models
Uniprocessor model
Vector and SIMD model
Multiprocessor model

7 Parallelizing problems

8 Sparse data decomposition: graph partitioning

9 Parallel and parallelized algebraic preconditioning

180 / 459

Straightforward fine grain parallelism

1. Pointwise Jacobi iterations in 2D grids
Poisson equation in two dimensions A ∈ Rn×n with Dirichlet boundary
conditions and its standard (two-dimensional) five-point discretization
on a uniform

√
n ×
√
n grid.

−∆u = f in Ω

u = 0 at δΩ
(24)

Initial distribution to a 2D
√
n ×
√
n grid of processors

A =
⎛
⎜⎜⎜
⎝

B −I
−I B −I

.
−I B

⎞
⎟⎟⎟
⎠
, B =

⎛
⎜⎜⎜
⎝

4 −1
−1 4 −1

.
−1 4

⎞
⎟⎟⎟
⎠

(25)

181 / 459

Straightforward fine grain parallelism

1. Pointwise Jacobi iterations in 2D grids (continued)
The Jacobi iterations that use vectors b, x of compatible dimensions
are given by

x+ = (I −D−1A)x +D−1b,D =
⎛
⎜⎜⎜
⎝

4
4

. . .
4

⎞
⎟⎟⎟
⎠

(26)

x+ij = xij + (bij + xi−1,j + xi,j−1 + xi+1,j + xi,j+1 − 4 ∗ xij)/4

182 / 459

Straightforward fine grain parallelism

1. Pointwise Jacobi iterations in 2D grids

i

j

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Processors – gridpoints

183 / 459

Straightforward fine grain parallelism

2. Pointwise Gauss-Seidel iterations in 2D grids

x+ = (I − (D −L)−1A)x + (D −L)−1b

x+ij = xij + (bij + x+i−1,j + x+i,j−1 + xi+1,j + xi,j+1 − 4 ∗ xij)/4

i

j

1

2

2

3

3

3

4

4

4

4

5

5

5

5

5

6

6

6

6

7

7

7

8

8

9

Amount of parallelism limited

184 / 459

Parallelizing program branches

3. Parallelizing branches
Branches appear very frequently in all application codes. They often
prohibit efficient parallelization.
Case 1: Both branches executed if evaluated cheaply

Algorithm
Both branches are executed if both f and g can be evaluated cheaply

1. for i = 1, . . . , n step 1 do
2. if e(ai) > 0 then
3. ci = f(ai)
4. else
5. ci = g(ai)
6. end if
7. the code continues using ci
8. end i

185 / 459

Parallelizing program branches

3. Parallelizing branches
Case 2: At least one of the code branches expensive: "gather/scatter"

Algorithm
0. inda=1, indb=1
1. for i = 1, . . . , n step 1 do
2. if e(ai) > 0 then
3. ja(inda) = i
4. inda = inda + 1
5. else
6. jb(indb) = i
7. indb = indb + 1
8. end if
9. end i
10. perform operations as they are indirectly addressed in ja, jb

186 / 459

Parallel operations with dense vectors and matrices

An attempt to mix and measure computation and communication
Basic models of parallel computation with vectors and matrices
discussed.
Different variations of data decomposition considered.
Computation and communication operations and asymptotic
behavior of their combination discussed.
An assumption on communication needed.
Description combines both the explicit notation of timings as well as
standard Θ(.) and O(.) notation. notation.

187 / 459

Parallel operations with dense vectors and matrices
(continued)

Measuring communication and computation

Parallel time Tpar is proportional to the number of parallel steps
Process time or work time denote by Tpr we will define by

Tpr = Θ(p Tpar). (27)

We say that an algorithm is cost-optimal if the process time is
proportional to the sequential time, that is, if

Tpr = Θ(Tseq). (28)

188 / 459

Parallel operations with dense vectors and matrices
(continued)

Measuring communication and computation: an assumption

Tentative communication costs for some basic communication
operations needed. Of course, they can be very different for different
computer interconnects and different routing and switching.
For evaluations related to realistic coupling of computation and
communication we need to use an assumption on the architectural
details.
Here we assume that the architecture embeds a hypercube
commmunication interconnect with the hypercube having p = 2d
nodes.

189 / 459

Parallel operations with dense vectors and matrices
(continued)

Measuring communication and computation: one-to-all broadcast

Hypercube interconnect results in the following parallel time

Tpar =min((Tclatency +mTword) log2 p,2(Tclatency log2 p +mTword)),
(29)

where Tclatency denotes the communication latency.
Simplified

Tpar = (Tclatency +mTword) log2 p. (30)

The complexity assumes log2 p simple point-point message transfers.
This can be again influenced by switching and routing.
Similar formulas for mesh or balanced binary tree interconnect.

190 / 459

Parallel operations with dense vectors and matrices
(continued)

Measuring communication and computation: all-reduce

Similarly as in the previous case (one-to-all broadcast), the parallel time we
use here is

Tpar = Tclatency log2 p +mTword log2 p. (31)

191 / 459

Parallel operations with dense vectors and matrices
(continued)

Measuring: all-to-all broadcast and all-to-all reduction

We assume the parallel time in the form

Tpar = Tclatency log2 p +mTword(p − 1). (32)

The following term also in complexity for ring or mesh inteconnect.

mTword(p − 1) (33)

An idea how to see this: the term O(m(p− 1)) can be considered as a
lower bound for all multiprocessors that can communicate using only
one its link at a time since each of the processors should receive
m(p − 1) amount of data.

192 / 459

Parallel operations with dense vectors and matrices
(continued)

Measuring: personalized reduction operations scatter and gather

Tpar = Tclatency log2 p +mTword(p − 1). (34)

193 / 459

Parallel operations with dense vectors and matrices
(continued)

The time Tword to transfer a word is an indicator of the available
bandwidth.
Used to count, e.g., number of transferred numbers that can be
composed from more individual storage units called words.
Note that reduction operations contain also some arithmetic
operations (addition, maximum, etc.), overall a negligeable amount.
Time Tflop needed for this is typically dominated by the (much
faster) actual communication.
Note that the formulas discussed below approach reality only if the
computational tools are able efficiently balance (typically slow)
communication timings with (fast) flops.

194 / 459

Parallel operations with dense vectors and matrices
(continued)

AXPY operation

Consider the AXPY operation for x, y ∈ Rn, α ∈ R in the following
notation.

y = αx + y (35)

Assume the computation uses p processors
1D block decomposition
Each processor owns a block of n/p numbers from both x and y.

Sequential time ∶ Tseq = 2n Tflop

Parallel time ∶ Tpar = 2(n/p) Tflop

Consequently, the speedup is

S = Tseq/Tpar = p

Not very computationally intensive operation.
195 / 459

Parallel operations with dense vectors and matrices
(continued)

Dot product

Consider a dot product α = xT y for x, y ∈ Rn.
As above, p processors, 1D decomposition

Seq time ∶ Tseq = (2n − 1) Tflop ≈ 2n Tflop

Par time ∶ Tpar ≈ 2n/p Tflop + Treduce ≡ 2n/p Tflop + (Tclatency + 1 × Tword) log2 p

The speedup is

S = Tseq/Tpar ≈
2nTflop

2n/p Tflop + (Tclatency + Tword) log2 p

=
pTflop

Tflop + (Tclatency + Tword)p log2 p/(2n)

= p

1 + p log2 p/(2n) × (Tclatency + Tword)/Tflop
< p

Remind: typically Tclatency >> Tword holds.
196 / 459

Parallel operations with dense vectors and matrices
(continued)

Dense matrix-vector multiplication

The sequential multiplication with Tseq = Θ(n2):

Algorithm

A simple scheme for dense matrix-vector multiplication y = Ax,
x, y ∈ Rn,A ∈ Rn×n.

1. for i = 1, . . . , n do
2. Set yi = 0
3. for j = 1, . . . , n do
4. yi = yi + aijxj
5. end j
6. end i

The parallel time and process time differ due to a chosen decomposition.
We will discuss parallel computation using rowwise 1D and 2D
decompositions and their block versions.

197 / 459

Parallel operations with dense vectors and matrices
(continued)

4
Rowwise 1D partitioning: dense matvec

Distribution: One row is owned by one processor (n = p), each processor:
one vector component. Similarly for the output vector. Schematically:

P0

P1

P2

P3

P4

P5

x0

x1

x2

x3

x4

x5

y0

y1

y2

y3

y4

y5

Algorithm

Parallel dense matrix-vector multiplication y = Ax, rowwise 1D partitioning
1. Broadcast vector x (all-to-all communication)
2. do local row-column vector multiplication in parallel (keep the

result distributed) 198 / 459

Parallel operations with dense vectors and matrices
(continued)

Rowwise 1D partitioning: dense matvec (continued)

Broadcast all − to − all time ∶ Tclatency log2 n + Tword(n − 1)
∶ (all − to − all communication, message size ∶ m = 1)

Multiplication time ∶ (2n − 1) Tflop

∶ (local dot product between a row of A and x)
Parallel time ∶ Tpar = (2n − 1)Tflop + Tclatency log2 n + Tword(n − 1)
Process time ∶ Tpr = Θ(n2)

Consequently, the matrix-vector multiplication is cost optimal.

199 / 459

Parallel operations with dense vectors and matrices
(continued)

Block rowwise 1D partitioning: dense matvec y = Ax
Distribution: Less processors than rows. Each processor owns a block of
n/p rows and a block component of x (vector with n/p components). Each
processor then provides one vector block of y with n/p components.

Algorithm

Parallel dense matrix-vector multiplication (block rowwise 1D partitioning)
1. Broadcast vector x

(all-to-all communication among p processors; messages of size n/p
broadcasted)

2. do local block-row-column vector multiplication in parallel (keep
the result distributed)

200 / 459

Parallel operations with dense vectors and matrices
(continued)

Block rowwise 1D partitioning: dense matvec y = Ax (continued)

Sequential time ∶ Tseq = Θ(n2)
Comm time ∶ Tclatency log2 p + (n/p)Tword (p − 1)

Multiplication ∶ Tflop (2n − 1)n/p
∶ (local dot products between a row block and block part of x)

Parallel time ∶ Tpar = Tflop n(2n − 1)/p + Tclatency log2 p + Tword (n/p)(p − 1)
Process time ∶ Tpr = Tflop n(2n − 1) + Tclatency p log2 p + Tword n(p − 1)

Consequently, this parallel matrix-vector multiplication is cost optimal for p = O(n).

201 / 459

Parallel operations with dense vectors and matrices
(continued)

2D partitioning: dense matvec

Distribution: Assume p = n2 processors in a 2D mesh n × n. Assume that
the vector x is in the last processor column, or aligned along the diagonal.
Schematically we have

x0

x1

x2

x3

x4

x5

x0

x1

x2

x3

x4

x5

P0 P1 P2 P5

P6

P25

... ...

...

...

...

202 / 459

Parallel operations with dense vectors and matrices
(continued)

2D partitioning: dense matvec (continued)

Algorithm

Parallel dense matrix-vector multiplication (block 2D partitioning)
1. Initial alignment of processors (standard initial phase)

(one-to-one communication – it can be done within the initial data
distribution)

2. Vector distribution along processor columns - n parallel one-to-all
broadcasts

3. Local scalar-multiplication
4. Assembling the result at one processor of each row - n parallel

one-to-all reductions

The alignment means that the vector components are communicated to
some processors that could redistribute them along the columns. The
processors that own the diagonal blocks often play this role.

203 / 459

Parallel operations with dense vectors and matrices
(continued)

2D partitioning: dense matvec (continued)

Sequential time ∶ Tseq = Θ(n2)
Alignment time ∶ Θ(log2 n)

∶ (one − to − one communication along a column)
∶ sending data to “columns seeds′′)

Distribution in cols ∶ (Tclatency + Tword) log2 n (one − to − all communication)
Multiplication ∶ Tflop

Assembly along rows ∶ (Tclatency + Tword) log2 n

Parallel time ∶ Tpar = Θ(log2 n)
Process time ∶ Tpr = Θ(p log2 n) ≡ Θ(n

2 log2 n)

The algorithm is apparently not cost optimal which means that the
processors are not used efficiently. On the other hand, the parallel run is
fast.

204 / 459

Parallel operations with dense vectors and matrices
(continued)

Block 2D partitioning: dense matvec

Distribution: Assume p < n2 processors arranged in a 2D mesh
√
p ×√p.

The blocks owned by the individual processors are square with dimensions
n/√p.

Algorithm

Parallel dense matrix-vector multiplication (block 2D partitioning)
1. Initial alignment.
2. Vector distribution along processor columns -

√
p parallel one-to-all

broadcasts
3. Local block multiplications
4. Assembling the result at one of processors in each row -

√
p parallel

one-to-all reductions
205 / 459

Parallel operations with dense vectors and matrices
(continued)

Block 2D partitioning: dense matvec (continued)

Sequential time ∶ Tseq = Θ(n2)
Alignment time ∶ (Tclatency + Tword n/√p) log2

√
p

∶ (one − to − one with n/√p; can be actually smaller)
Distribution in columns ∶ (Tclatency + Tword n/√p) log2

√
p

Multiplication ∶ n/√p (2n/√p − 1)Tflop = Θ(n2/p)
Assembly along rows ∶ (Tclatency + Tword n/√p) log2

√
p

∶ (reduction in a row)
Parallel time ∶ Tpar ≈ 2Tflop n

2/p + Tclatency log2 p + Tword (n/
√
p) log2 p

Process time ∶ Tpr = Θ(n2) +Θ(p log2 p) +Θ(n
√
p log2 p)

The maximum number of processors that can be used cost optimally can
be derived as follows:

206 / 459

Parallel operations with dense vectors and matrices
(continued)

Block 2D partitioning: dense matvec (continued)
Consider the expression for the process time. We must have

√
p log2 p = O(n) which implies

p log22 p = O(n2)
log2(p log22 p) = O(log2(n2))

log2 p + 2 log2 log2 p ≈ log2 p = O(log2 n)

Substituting log2 p = O(log2 n) into p log22 p = O(n2) we have the cost
optimality if

p = O(n2/ log2 n)
In this case

Tpr = Θ(n2) + Tclatency O(n2/ log2 n) + Tword O(n2).
This is the asymptotic upper bound on the number of processors to be cost
optimal.

207 / 459

Parallel operations with dense vectors and matrices
(continued)

Block 2D partitioning: simple dense matrix-matrix multiplication

Distribution: Assume p < n2 processors in a 2D mesh
√
p ×√p. Blocks

owned by individual processors are square with dimensions n/√p. Consider
the dense matrix-matrix multiplication from Algorithm 6.13:

Algorithm

Dense matrix-matrix multiplication
1. for i = 1, . . . ,√p do
2. for j = 1, . . . ,√p do
3. Cij = 0
4. for k = 1, . . . ,√p do
5. Cij = Cij +AikBkj

6. end k
7. end j
8. end i

208 / 459

Parallel operations with dense vectors and matrices
(continued)

Block 2D partitioning: simple dense matmat (continued)

P0 P1 P2 P5

P6

P25

... ...

...

...

...

209 / 459

Parallel operations with dense vectors and matrices
(continued)

Block 2D partitioning: simple dense matmat (continued)

Sequential time ∶ Tseq = Θ(n3)
Two broadcast steps ∶ 2(Tclatency log2

√
p + Tword(n2/p)(√p − 1))

∶ all − to − all
∶ (√p concurrent broadcasts among groups of

√
p processes)

Multiplication ∶ Blocks of dimension n/√p,
√
p − times ∶

∶ Hence ∶√p × (n/√p)2(2 (n/√p) − 1) Tflop = Θ(n3/p) Tflop

∶ The factor
√
p is here for the number of matmats

Parallel time ∶ Tpar ≈ 2Tflop n
3/p + Tclatency log2 p + 2Tword n2/√p

Process time ∶ Tpr = Θ(n3) + Tclatencyp log2 p + 2Tword n
2√p

Cost optimality is achieved for p = O(n2).

210 / 459

Parallel operations with dense vectors and matrices
(continued)

Cannon algorithm: local memory efficient dense matmat

Replaces the traditional scheme of coarse interleaving of
communication and computation from Algorithm 7.8 by a finer
scheme.
Uses 2D distribution with p processors, p = k2 for some k =√p > 1.
Remind that standard form of updates is given by

Cij =
√
p

∑
k=1

AikBkj (36)

211 / 459

Parallel operations with dense vectors and matrices
(continued)

Cannon algorithm: local memory efficient dense matmat

The summation and communication in the Cannon algorithm are
interleaved using the following rule that combines the summation and
cyclic block shifts

Cij =
√
p

∑
k=1

Ai,i+j+k−1mod
√
pBi+j+k−1mod

√
p,j . (37)

That is, for example:

C23 = A25B53 +A26B63 + . . . ≡ A21B13 +A22B23 . . .

How the computation and communication can be mixed? So that at
the position of Cij we have the correct terms.

212 / 459

Parallel operations with dense vectors and matrices
(continued)

Cannon algorithm: local memory efficient dense matmat (continued)

Initial alignment:
▸ Blocks in i-th row in matrix A are cyclically shifted left by i − 1

positions.
▸ Blocks in j-th column in matrix B are cyclically shifted up by j − 1

positions.
Then the computation is in-place multiplying the blocks actually
available at the positions of the processors. Communication based on
cyclic shifts of data. Blocks in A are after each multiply-add cyclically
shifted by one position left in its row and blocks in B by one position
up in its column as demonstrated below.
Example: 4× 4, p = 16 = 4× 4 processors, block matrices having square
blocks.
The 16 processors correspond to 2D partitioning of the input matrices
and the resulting matrix product C is partitioned in the same way.

213 / 459

Parallel operations with dense vectors and matrices
(continued)

Cannon algorithm: local memory efficient dense matmat (continued)

Original matrices

⎛

⎜
⎜
⎜

⎝

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞

⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜

⎝

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

⎞

⎟
⎟
⎟

⎠

214 / 459

Parallel operations with dense vectors and matrices
(continued)

Cannon algorithm: local memory efficient dense matmat (continued)

Step 1: initial alignment

⎛

⎜
⎜
⎜

⎝

A11 A12 A13 A14

A22 A23 A24 A21

A33 A34 A31 A32

A44 A41 A42 A43

⎞

⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜

⎝

B11 B22 B33 B44

B21 B32 B43 B14

B31 B42 B13 B24

B41 B12 B23 B34

⎞

⎟
⎟
⎟

⎠

215 / 459

Parallel operations with dense vectors and matrices
(continued)

Cannon algorithm: local memory efficient dense matmat (continued)

Step 2: after first multiplication and communication

⎛

⎜
⎜
⎜

⎝

A12 A13 A14 A11

A23 A24 A21 A22

A34 A31 A32 A33

A41 A42 A43 A44

⎞

⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜

⎝

B21 B32 B43 B14

B31 B42 B13 B24

B41 B12 B23 B34

B11 B22 B33 B44

⎞

⎟
⎟
⎟

⎠

216 / 459

Parallel operations with dense vectors and matrices
(continued)

Cannon algorithm: local memory efficient dense matmat (continued)

Step 3: after the second numerical operation (multiplication and
adding to the partially formed block of C) and communication

⎛

⎜
⎜
⎜

⎝

A13 A14 A11 A12

A24 A21 A22 A23

A31 A32 A33 A34

A42 A43 A44 A41

⎞

⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜

⎝

B31 B42 B13 B24

B41 B12 B23 B34

B11 B22 B33 B44

B21 B32 B43 B14

⎞

⎟
⎟
⎟

⎠

217 / 459

Parallel operations with dense vectors and matrices
(continued)

Cannon algorithm: local memory efficient dense matmat (continued)

To see the computation more closely, consider, for example, computation of
the entry C23. This entry is in the standard algorithm given by

C23 = A21B13 +A22B23 +A23B33 +A24B43. (38)

Observing the position (2,3) in the depicted step we can see that after the
first step we have at this position the product of the residing blocks, that is

A24B43 (39)

After the second step we add to the partial product at this position the
product

A21B13 (40)

and so on.
218 / 459

Parallel operations with dense vectors and matrices
(continued)

Cannon algorithm: local memory efficient dense matmat (continued)

Sequential time ∶ Tseq = Θ(n3)
Comm (shift of a pos) ∶ 2(Tclatency + n2/pTword)

∶ (two matrix blocks with n2/p numbers)
Comm (all shifts) ∶ 2(Tclatency + n2/pTword)

√
p

Comm (initial align) ∶ the same order at most − neglected

∶ (only a few longer shifts)

Parallel time ∶ Tpar = Tflop Θ(n n
√
p

n
√
p
) + 2Tclatency

√
p + 2Tword n2/√p

∶ Tpar = Tflop Θ(n3/p) + 2Tclatency
√
p + 2Tword n2/√p

Process time ∶ Tpr = Θ(n3) +Θ(p√p) +Θ(n2√p)

219 / 459

Parallel operations with dense vectors and matrices
(continued)

Cannon algorithm: local memory efficient dense matmat (continued)

Parallel time and cost-optimality conditions are asymptotically the
same as above
Cannon algorithm can be generalized for multiplying rectangular
matrices. There are similar approaches along this line.
Cannon algorithm is a memory-efficient version of the matrix-matrix
multiplication in the sense that it uses constant and predictable
memory size for each processor.

220 / 459

Parallel operations with dense vectors and matrices
(continued)

Scalable universal matrix multiply - SUMMA

Generally less efficient than the Cannon algorithm.

Much easier to generalize for non-uniform splittings and unstructured
processor grids.

Called SUMMA (Scalable Universal Matrix Multiply) but the
same algorithmic principles have been proposed a couple of times
independently. This is the scheme used inside the ScaLapack library

221 / 459

Parallel operations with dense vectors and matrices
(continued)

SUMMA algorithm: local memory efficient dense matmat (continued)

Assume that we have to form the matrix product C = AB such that
the all the involved matrices are distributed over a two-dimensional
grid of processors

pr × pc.

The block entry Cij within the grid of processors can be formally
written in the standard way as

Cij = (Ai1 . . . Ai,pc)
⎛
⎜
⎝

B1j

⋮
Bpr,j

⎞
⎟
⎠
= ÃiB̃j (41)

where the blocks multiplied together have compatible dimensions.

222 / 459

Parallel operations with dense vectors and matrices
(continued)

Scalable universal matrix multiply - SUMMA (continued)

The whole Ãi is assigned to the i-the row of processors and B̃j is
assigned to the j-th column of processors in the processor grid.
Assume now that the introduced block row Ãi and block column B̃j

are split into k blocks as follows

Ãi = (Ã1
i , . . . , Ã

k
i)
⎛
⎜⎜
⎝

B̃1
j

⋮
B̃k

j

⎞
⎟⎟
⎠

(42)

Then we can equivalently write as a sum of outer products.

Cij =
k

∑
l=1

Ãl
iB̃

l
j (43)

i, j denote row and column indices of the processor grid, k can be the
column dimension of A (equal to the row dimension of B) or another
blocking using a smaller k can be used. 223 / 459

Parallel operations with dense vectors and matrices
(continued)

Scalable universal matrix multiply - SUMMA (continued)

The communication within the algorithm is based on broadcasts
within the processor rows and processor columns instead of the circular
shifts used in the Cannon algorithm. And these broadcasts can be
efficiently implemented depending on the computational architecture.
The number of processors pr and pc can be generally different.
Moreover, the mapping of blocks to processing units using pr × pc grid
of processors can be rather general.
In the following example we use, for simplicity, uniform block size N
(the same for rows and columns).

224 / 459

Parallel operations with dense vectors and matrices
(continued)

Scalable universal matrix multiply - SUMMA (continued)

Algorithm

SUMMA parallel matrix-matrix multiplication
1. Set all Cij = 0
2. for l = 1, . . . , k do
3. for i = 1, . . . , pr do in parallel
4. One-to-all broadcast of Ãl

i to row block owners pi1, . . . , pipc as Atemp

5. end i
6. for j = 1, . . . , pc do in parallel
7. One-to-all broadcast of B̃l

j to column block owners p1j , . . . , pprj as Btemp

8. end j
9. Once data received, perform parallel add-multiply Cij = Cij +AtempBtemp

10. end l

225 / 459

Parallel operations with dense vectors and matrices
(continued)

Scalable universal matrix multiply - SUMMA (continued)

SUMMA: sends more data than the Cannon algorithm; more flexible.
If we assume that pr ≡ pc ≡

√
p as well as that we multiply square

matrices of dimensions n then the parallel time is

Tpar ≈ 2n3/p Tflop+2Tclatency
√
p log2 p+2Tword n2/√p log2 p (44)

since each of the two (row and column) communication steps sends√
p-times blocks of the size n√

p ×
n√
p (along rows and columns).

This gives overall the message size

√
p (n
√
p
)2 = n2

√
p
.

The latency corresponds to 2
√
p communication steps. More ways to

make the implementation more specific efficient.
226 / 459

Parallel operations with dense vectors and matrices
(continued)

Gaussian elimination: kij, 1D decomposition

Consider p = n and 1D decomposition of the matrix A ∈ Rn×n by rows. The
kij scheme of the factorization/elimination is depicted below.

active part

(k,k)

(i,k)

(k,j)

(i,j)

a(k,j)=a(k,j)/a(k,k)

a(i,j)=aa(i,j)−a(i,k)*a(k,j)

227 / 459

Parallel operations with dense vectors and matrices
(continued)

Gaussian elimination: kij, 1D decomposition

Consider the approach where we interleave
Operations on rows (row updates) and
communication of the processed row (part of U) to all the other
processors

Schematically depicted as

1

10

0

0

0

0

0

0

0

0

0

0

0

0

1

10

0

0

0

0

0

0

0

0

0

0

0

0

1

1

10

0

0

0

0

0

0

0

0

0

0

0

0

1

228 / 459

Parallel operations with dense vectors and matrices
(continued)

Gaussian elimination: kij, 1D decomposition

Consider the process costs.

Seq time ∶ Tseq = Tflop((2/3)n3 +O(n2)) ≡ Θ(n3)

Comm rows ∶
n−1
∑
k=1
(Tclatency + Tword(n − k)) log2 n

∶ (one − to − all), row has n − k entries

∶ log2 n is an upper bound for the number of comm steps

Elimination ∶ ≈ 3
n

∑
k=1
(n − k) Tflop = 3n(n − 1)/2 Tflop

∶ (scaling, and multiply − add) = 3 operations for each entry

Parallel time ∶ Tpar ≈ 3n(n − 1)/2 Tflop + Tclatency n log2 n + Tword(n(n − 1)/2) log2 n
Process time ∶ Tpr ≈ Θ(n3) +Θ(n2 log2 n) +Θ(n

3 log2 n)

Not cost-optimal: the process time is Θ(n3 logn).
229 / 459

Parallel operations with dense vectors and matrices
(continued)

Pipelined Gaussian elimination: kij, 1D decomposition

The pipelined Gaussian elimination computes and communicates
asynchronously. Consider again p = n and 1D decomposition based on
assigning a row to a processor. Each processor repeatedly performs the
following set of three operations on matrix rows.

Algorithm

Pipelined Gaussian elimination
1. if a processor has data used by other processors, it sends the data

them
2. if a processor can has all data for a computation, it computes
3. otherwise the processor waits

The following figures demonstrate the process.

230 / 459

Parallel operations with dense vectors and matrices
(continued)

Pipelined Gaussian elimination: kij, 1D decomposition

1 1 1

1 1 1

1

1

1

. . .
231 / 459

Parallel operations with dense vectors and matrices
(continued)

Pipelined Gaussian elimination: kij, 1D decomposition (continued)

Sequential time ∶ Tseq = Tflop((2/3)n3 +O(n2)) ≡ Θ(n3)
Total number of steps ∶ Θ(n)

∶ each processor either computes or communicates data

∶ with previous Θ(n) rows
∶ Each of these operations has O(n) cost
∶ − − communication of O(n) entries;
∶ − − division O(n) entries by a scalar;

∶ − − elimination step on O(n) entries
Parallel time ∶ Tpar = Θ(n2)
Process time ∶ Tpar = Θ(n3)

232 / 459

Parallel operations with dense vectors and matrices
(continued)

Pipelined Gaussian elimination: kij, 1D decomposition (continued)

The multipliers of the asymptotic complexity are not the same as in
the sequential case. Some processors will stay in any case idle. In
practice, a partial solution is to use 1D cyclic decomposition.
Also 2D distribution possible. This is more scalable. For example, for
block 2-D partitioning we get the process time

Tpr = Θ(n3/p) (45)

for p processors but we will not discuss this here.
A partial pivoting can be embedded into the standard parallel
elimination based on 1D partitioning explained above at the expense
of O(n) search in each row. In case of the pipelined approach,
pivoting is strongly restricted. Weaker variants of pivoting may lead
to strong degradation of the numerical quality of the algorithm.

233 / 459

Parallel operations with dense vectors and matrices
(continued)

Solving triangular systems

First the sequential algorithm

Algorithm

Sequential back-substitution for Ux = y, U = (uij) is unit upper triangular.
1. do k=n,1,-1
2. xi = yi
3. do i = k − 1,1,−1
4. yi = yi − xkuik
5. end do
6. end do

Sequential complexity of the backward substitution is

Tseq = (n2/2 +O(n))Tflop.

234 / 459

Parallel operations with dense vectors and matrices
(continued)

Solving triangular systems (continued)

Two possibilities of parallel implementation
1. Rowwise block 1-D decomposition

Rowwise block 1-D decomposition with y decomposed accordingly. Blocks
have n/p rows. Back-substitution with pipelining results in the constant
communication time since the algorithm always

either communicates one number (component of the solution)
performs n/p flops.

All computational units work asynchronously in each of the n − 1 steps.
Each of these steps is dominated then by O(n/p) cost. Then

Parallel time ∶ Tpar = Θ(n2/p)
Process time ∶ Tpr = O(n2)

Apparently, the algorithm is cost-optimal.
235 / 459

Parallel operations with dense vectors and matrices
(continued)

Solving triangular systems (continued)

2. Block 2D decomposition
This decomposition is be better but it still does not lead to the cost
optimality. If the block 2-D partitioning using the

√
p ×√p grid of

computational units,
√
p steps and the pipelined communication we get the

parallel time

Parallel time ∶ Tpar = Θ(n2/√p) ≡ Θ((n/√p) × (n/√p) ×√p)
∶ √p steps substitution costs (n/√p) × (n/√p)

Process time ∶ Tpr = O(n2√p)

236 / 459

Parallelizing linear recurrences: subvector scaling

4. Parallelizing linear recurrences

xi = b + (i − 1)a, i = 1, . . . , n, (46)

where a and b are scalars.
Sequential loop can be used

x1 = b, x2 = b + a, . . . , xi = xi−1 + a, i = 2, . . . , n, (47)

But this loop does not straightforwardly vectorize or parallelize.
Can be parallelized like this - curse of logarithmic depth

x1 = b

x2 = b + a
x3∶4 = x1∶2 + 2a
x5∶8 = x1∶4 + 4a
x9∶16 = x1∶8 + 8a

. . .
237 / 459

Parallelizing linear recurrences: scalar sums

4. Parallelizing linear recurrences
Simple case

x =
n

∑
i=1

di. (48)

Procedure depicted for n = 8.

s1 = x1 + x2 s2 = x3 + x4 s3 = x5 + x6 s4 = x7 + x8 (49)

t1 = s1 + s2 t2 = s3 + s4 (50)

x = t1 + t2 (51)

238 / 459

Parallelizing first-order linear recurrences

4. Parallelizing linear recurrences
More general case of linear recurrence

xi = di + aixi−1, i = 1, . . . , n; x0 = 0.

Distinguish two possibilities of the result
▸ Needed only the last xi
▸ Needed all intermediate xi

239 / 459

Parallelizing first-order linear recurrences

4. Parallelizing linear recurrences

xi = di + aixi−1, i = 1, . . . , n; x0 = 0.

Two subsequent expressions for xi−1 and xi

xi−1 = di−1 + ai−1xi−2, xi = di + aixi−1

combined by eliminating xi−1, getting dependency of xi on

xi−2 ≡ xi−21

We get

xi = di + ai(di−1 + ai−1xi−2) = aidi−1 + di + aiai−1xi−2 = d(1)i + a
(1)
i xi−2.

subsequent eliminations to find the dependency of xi on xi−4 ≡ xi−22
follow.
New equations relate variables with the distance 22.

A fan-in algorithm follows.
240 / 459

Parallelizing first-order linear recurrences (continued)

4. Parallelizing linear recurrences
Remind: the algorithm provides on output only xn.

Algorithm

fan-in algorithm for linear recurrences, n = 2log2 n.
Input: Initial coefficients use the notation a

(0)
i ≡ ai, d(0)i ≡ di, i = 1, . . . , n.

1. for k = 1, . . . , log2 n do
2. for i = 2k, . . . , n step 2k do
3. a

(k)
i = a(k−1)i a

(k−1)
i−2k−1

4. d
(k)
i = a(k−1)i d

(k−1)
i−2k−1 + d

(k−1)
i

5. end i
6. end k
7. xn = d(log2 n)n

Before the dependency of xn on xn−1 ≡ xn−20 is explicitly known.
After: log2 n steps, dependency of xn on x0 is

xn = d(log2 n)n . (52)241 / 459

Parallelizing first-order linear recurrences (continued)

4. Parallelizing linear recurrences

If all values x1, . . . , xn needed, more work is necessary. We should
then compute also coefficients for some other equations.

Before putting the corresponding procedure formally let us first show a
simple scheme graphically: in step k, k = 1, . . . , log2 n of this scheme
the first 2k − 1 components are computed.

242 / 459

Parallelizing first-order linear recurrences (continued)

4. Parallelizing linear recurrences
Getting all xi cascadically: Start with x0. In the step 1 we can
compute x1 since we know a

(0)
1 , d(0)1 as well as x0 (the rest xi’s are

updated). In step 2 we can compute x2 and x3 based on the known
coefficients and the known values of x0 and x1 (the rest xi’s are
updated). In the step 3 we know 22 − 1 components of x and we can
compute further 22 values and so on.

x1 = a(0)1 x1−20 + d
(0)
1

x2 = a(0)2 x2−20 + d
(0)
2 x2 = a(1)2 x2−21 + d

(1)
2

x3 = a(0)3 x3−20 + d
(0)
3 x3 = a(1)3 x3−21 + d

(1)
3

x4 = a(0)4 x4−20 + d
(0)
4 x4 = a(1)4 x4−21 + d

(1)
4 x4 = a(2)4 x4−22 + d

(2)
4

.
xn = a(0)n xn−20 + d

(0)
n xn = a(1)n xn−21 + d

(1)
n xn = a(2)n xn−22 + d

(2)
n

243 / 459

Parallelizing first-order linear recurrences (continued)

The algorithm of the so called cascadic approach is given below.

Algorithm
Cascadic algorithm for first-order linear recurrences.
Input: Initial coefficients use the notation a

(0)
i ≡ ai, d(0)i ≡ di, i = 1, . . . , n.

1. for k = 1, . . . , log2 n do
2. for i = 2k, . . . , n step 1 do
3. a

(k)
i = a(k−1)i a

(k−1)
i−2k−1

4. d
(k)
i = a(k−1)i d

(k−1)
i−2k−1 + d

(k−1)
i

5. end i
6. end k

The computation of all xi, i = 1, . . . , n can be done even more
efficiently as we will show below for a slightly different problem, for
solving systems of linear equations with a tridiagonal matrix. Namely,
like forward and back solve step.

244 / 459

Parallel prefix operation

4. Parallelizing linear recurrences
Standardization: parallel prefix operation
General associative operation ♡. The prefix operation of the length n:

y0 = x0

y1 = x0♡x1
. . .

yn = x0♡x1 . . .♡xn

All y0, y1, . . . , yn: sequentially in O(n) operations.
But also in parallel in O(log2 n) parallel steps
Assume n = 2log2 n.
Two parallel steps for all yi, one parallel step to get yn only.
The schemes are called fan-in and fan-out.

245 / 459

Parallel prefix operation

4. Parallelizing linear recurrences

The following figure demonstrates the three steps of the first pass of the
parallel prefix operation for n = 23.

0:7

0 1 2 3 4 5 6 7

0:1 2:3 4:5 6:7

0:3 4:7

246 / 459

Parallel prefix operation

4. Parallelizing linear recurrences

In binary tree

0 ∶ 7

0:3

0:1

0 1

2:3

2 3

4:7

4:5

4 5

6:7

6 7

value(node) = value(left_son) + value(right_son)

bottom-up summing
247 / 459

Parallel prefix operation

Fan-in : formal description

Algorithm
Fan-in of the parallel prefix operation

1. for k = 0, . . . , log2 n − 1 do
2. for j = 1, . . . ,2log2 n−k−1 step 2k do in parallel
3. yj×2k+1−1 = yj×2k+1−1 ♡ yj×2k+1−2k−1
4. end j
5. end k

248 / 459

Parallel prefix operation

Second pass is a top-down computation of all the remaining sums.

0:7

0 1 2 3 4 5 6 7

0:1 2:3 4:5 6:7

0:3 4:7

0:5

0:60:40:2

249 / 459

Parallel prefix operation

4. Parallelizing linear recurrences

In binary tree

0:7, 0

0:3, 0

0:1, 0

0, 0 1

2:3, 0:1

2, 0:1 3, 0:2

4:7, 0:3

4:5, 0:3

4, 0:3 5, 0:4

6:7, 0:5

6, 0:5 7, 0:6

prefix(root) = 0
prefix(left_son) = prefix(node)

prefix(right_son) = prefix(node) + value(left_son)

top-down summing
250 / 459

Parallel prefix operation

The scheme for n = 24.

0 ∶ 1 2 ∶ 3 4 ∶ 5 6 ∶ 7 8 ∶ 9 10 ∶ 11 12 ∶ 13 14 ∶ 15
0 ∶ 3 4 ∶ 7 8 ∶ 11 12 ∶ 15

0 ∶ 7 8 ∶ 15
0 ∶ 15

0 ∶ 11
0 ∶ 5 0 ∶ 9 0 ∶ 13

0 ∶ 2 0 ∶ 4 0 ∶ 6 0 ∶ 8 0 ∶ 10 0 ∶ 12 0 ∶ 14

One fan-in and one fan-out pass.
This results in O(log2 n) parallel steps.
The first pass of the prefix operation is just a fan-in
The second pass is less straightforward and corresponds to the
second step of the cyclic reduction

251 / 459

Parallel prefix operation

Once the prefix operation is standardized, it can be used to evaluate
known problems in parallel similarly to the previously mentioned linear
recursions.

Algorithm
Parallelizing linear recursion zi+1 = aizi + bi exploiting the parallel prefix
(PP) computation

1. Compute pi = a0 . . . ai using PP with ♡ ≡ .
2. for i = 1, . . . , n in parallel do
3. βi = bi/pi
4. end i
5. Compute si = β0 + . . . + βi using PP with ♡ ≡ +
6. for i = 1, . . . , n in parallel do
7. zi = sipi−1
8. end i

252 / 459

Second-order linear recurrences

4. Parallelizing linear recurrences

second-order linear recurrence

xi = ai + bi−2xi−1 + ci−2xi−2, i = 3, . . . , n; x1 = a1, x2 = a2.

This recurrence can be rewritten in the first-order form

(xi
xi+1
) = (0

ai+1
) + (0 1

ci−1 bi−1
)(xi−1

xi
) , i = 2, . . . , n − 1 (53)

initialized by

(x1
x2
) = (a1

a2
) . (54)

253 / 459

Cyclic reduction

4. Parallelizing linear recurrences
Another scheme based on the same principle: factorization and using
explicit permutation of even and odd rows and columns (exploiting
symmetry)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1 c1
a2 b2 c2

a3 b3 c3
a4 b4 c4

a5 b5 c5
a6 b6 c6

a7 b7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The odd-even permutation P is given by

P (1,2, ..., n)T = (1,3, ..., ∣2,4, ...)T (55)
254 / 459

Cyclic reduction

4. Parallelizing linear recurrences

The permuted matrix is

P TAP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1 c1
b3 a3 c3

b5 a5 c5
b7 a7

a2 c2 b2
a4 c4 b4

a6 c6 b6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

255 / 459

Cyclic reduction

4. Parallelizing linear recurrences
After one step of the fan-in of block partial factorization based on
the odd-indexed unknowns we get

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
1

1
1

l1 m1 1
l2 m2 1

l3 m3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1 c1
b3 a3 c3

b5 a5 c5
b7 a7

b̄1 c̄1
ā2 b̄2 c̄2

ā3 b̄3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(56)

Forward reduction (fan-in) / backward substitution (fan-out).
This rewriting (and its adoption for more general A) reveals
vectorizability and parallelizability.
Using blocks leads to useful approaches.
May result in worse cache treatment.

256 / 459

Recursive doubling technique for polynomials

5. Recursive doubling for polynomials
Polynomials in real of complex variable x.
Standard evaluation of polynomials is based on the efficient Horner’s
rule:

p(x) = a0 + a1x + a2x2 + a3x3 +⋯ + anxn

p(x) = a0 + x(a1 + x(a2 +⋯ + x(an−1 + anx)))

Algorithm

Horner’s polynomial evaluation p(x) ≡ p(n)(x) in x ∈ R.
1. p(0)(x) = an
2. for k = 1, . . . , n do
3. p(k)(x) = an−k + xp(k−1)(x)
4. end i

257 / 459

Recursive doubling technique for polynomials (continued)

5. Recursive doubling for polynomials

The Horner’s scheme is recursive and
non-vectorizable/non-parallelizable although some its transformations
result in less multiplications (Knuth, 1962, 1988).
A way to parallelize it by Estrin (1960):

Based on finding subexpressions of the type (α + βx) and x2
k
.

A few members of a sequence of partially evaluated polynomials:

p(3)(x) = (a0 + a1x) + (a2 + a3x)x2

p(4)(x) = (a0 + a1x) + (a2 + a3x)x2 + a4x4

p(5)(x) = (a0 + a1x) + (a2 + a3x)x2 + (a4 + a5x)x4

p(6)(x) = (a0 + a1x) + (a2 + a3x)x2 + ((a4 + a5x) + a6x2)x4

p(7)(x) = (a0 + a1x) + (a2 + a3x)x2 + ((a4 + a5x) + (a6 + a7x)x2)x4

258 / 459

Recursive doubling technique for polynomials

The computation is repeatedly divided into separate tasks that can be run
in parallel. An example: evaluation of a polynomial of degree 7.

Example
Example use of the Estrin’s method to evaluate a polynomial of degree 7

1. do (in parallel)
2. x(1) = x2

3. a
(1)
3 = a7x + a6

4. a
(1)
2 = a5x + a4

5. a
(1)
1 = a3x + a2

6. a
(1)
0 = a1x + a0

7. end do
8. do (in parallel)
9. x(2) = (x(1))2

10. a
(2)
1 = a(1)3 x(1) + a(1)2

11. a
(2)
0 = a(1)1 x(1) + a(1)0

12. end do
13. Set p(x) = a(2)1 x(2) + a(2)0

259 / 459

Polynomial evaluation, discrete and fast Fourier transform
(DFT, FFT)

6. DFT/FFT

Polynomial evaluation:

An(x) =
n−1
∑
j=0

ajx
j , (57)

where a0, . . . an−1 are generally complex coefficients.
Special case where x represents powers of the complex root of
unity: (sometimes described differently)

ωn = e2πi/n ≡ cos(2π/n) + i sin(2π/n) (58)

Assume that n = 2m for some integer m ≥ 0.
Discrete Fourier transform (DFT) is a linear transform that
evaluates the polynomial

yk = An(ωk
n) =

n−1
∑
j=0

ajω
kj
n , k = 0, . . . , n − 1.

260 / 459

DFT, FFT (continued)

6. DFT/FFT

Practical purpose of DFT: convert a finite sequence of
equally-spaced samples of a function into a sequence of samples of a
complex-valued function of frequency.

Standard computation: O(n2) operations: O(n2) different powers
needed, DFT can be expressed just as matrix-vector multiplication.

⎛
⎜⎜⎜⎜⎜⎜
⎝

y0
y1
y2
⋮

yn−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 . . . 1
1 ωn ω2

n . . . ωn−1
n

1 ω2
n ω4

n . . . ω
2(n−1)
n

⋮ ⋮ ⋮ . . . ⋮
1 ωn−1

n ω
2(n−1)
n . . . ω

(n−1)(n−1)
n

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

a0
a1
a2
⋮

an−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

≡Wna.

261 / 459

DFT, FFT (continued)

6. DFT/FFT

But DFT polynomials can be evaluated faster exploiting specific
properties of its arguments.

This is called fast Fourier transform (FFT).

It achieves O(n logn) complexity and it is based on the recurrent
strategy that we explain here.

The trick is that some powers of ωn are the same.

262 / 459

DFT, FFT (continued)

6. DFT/FFT

x axis

y axis

ω0
2 ≡ 1ω1

2 ≡ −1

x axis

y axis

ω0
4 ≡ 1ω2

4 ≡ −1

ω1
4

ω3
4

Roots of unity for n = 2 and n = 4 in the complex plane.

ω2
4 = ω1

2

263 / 459

DFT, FFT (continued)

6. DFT/FFT

Example: consider n = 2, then n = 4.

yk =
1

∑
j=0

ajω
kj
2 = (−1)

k.0a0 + (−1)k.1a1 = a0 + (−1)ka1, k = 0,1

y0 = a0 + a1, y1 = a0 − a1

yk =
3

∑
j=0

ajω
kj
4 = a0 + (−i)

ka1 + (−i)2ka2 + (−i)3ka3

⎛
⎜⎜⎜
⎝

y0
y1
y2
y3

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

a0
a1
a2
a3

⎞
⎟⎟⎟
⎠
.

y0 = (a0 + a2) + (a1 + a3), y1 = (a0 − a2) − i(a1 − a3), y2 =
(a0 + a2) − (a1 + a3), y3 = (a0 − a2) + i(a1 − a3) 264 / 459

DFT, FFT (continued)

6. DFT/FFT

Communication graphically for n = 4:

a0

a2

a0 + a2

a0 − a2

a1

a3

a1 + a3

a1 − a3

y0

y1

y2

y3

265 / 459

DFT, FFT (continued)

6. DFT/FFT

Basic idea behind FFT: split coefficients of A into the even-indexed
and the odd-indexed ones.
And do it recrsively
Example:

A[0](x) = a0 + a2x + a4x2 + . . . + an−2xn/2−1

A[1](x) = a1 + a3x + a5x2 + . . . + an−1xn/2−1

A(x) = A[0](x2) + xA[1](x2)
is expressed via (shorter) polynomials in x2.
Enough to evaluate the polynomials A[0](x2),A[1](x2) and combine
them together.

266 / 459

DFT, FFT (continued)

6. DFT/FFT

FFT algorithm assembles the value of the polynomial A(ωk
n) using the

dependency casted as

Recurrence in the FFT transform for n = 8
(a0, a1, a2, a3, a4, a5, a6, a7)

(a0, a2, a4, a6) (a1, a3, a5, a7)

(a0, a4) (a2, a6) (a1, a5) (a3, a7)

(a0) (a4) (a2) (a6) (a1) (a5) (a3) (a7)

FFT can be implemented recursively or non-recursively using an
explicit stack.

267 / 459

DFT, FFT (continued)

6. DFT/FFT

Properties of the complex roots of the unity formally

ωn
n = ω0

n = 1, ωj
nω

k
n = ω

j+k
n , ωn/2

n = −1; ωk+n/2
n = −ωk

n

ωdk
dn = ω

k
n sometimes called the cancellation lemma:

ωdk
dn = (e

2πi/dn)dk = (e2πi/n)k = ωk
n, ω2

4 = ω1
2

The following property (n > 0, even) is called the halving property
and it is crucial for our purposes

(ω0
n)2, (ω1

n)2, . . . , (ωn/2−1
n)2, (ωn/2

n)2 . . . , (ωn−1
n)2

= ω0
n/2, ω

1
n/2, . . . , ω

n/2−1
n/2 , ω

n/2
n/2, . . . , ω

n−1
n/2 cancellation

= ω0
n/2, ω

1
n/2, . . . , ω

n/2−1
n/2 , ω0

n/2, . . . , ω
n/2−1
n/2 multiplying by ω

n/2
n/2

268 / 459

DFT, FFT (continued)

6. DFT/FFT

We can see this formally

(ωk
n)2 = ω2k

n = ωk
n/2

(ωk+n/2
n)2 = ω2k+n

n = ω2k
n ωn

n = ω2k
n .1 = ω2k

n = ωk
n/2.

The polynomial evaluation problem reduces to evaluating two
polynomials at the n/2 points of the (n/2)-th complex roots of unity.

269 / 459

DFT, FFT (continued)

Recursive implementation of FFT We will skip this

Algorithm
Recursive Fast Fourier Transform (RFFT)

procedure RFFT(a) [a = (a0, a1, . . . an−1)]
1. n = length_of_a; if n == 1 return a; set ωn = e2πi/n, ω = 1
4. a[0] = (a0, a2, . . . , an−2) [even coeffs] a[1] = (a1, a3, . . . , an−1) [odd coeffs]
6. y[0] = RFFT (a[0]) [gets y

[0]
k = A[0](ωk

n/2) ≡ A
[0](ω2k

n), k = 0, . . . , n/2 − 1]
7. y[1] = RFFT (a[1]) [gets y

[1]
k = A[1](ωk

n/2) ≡ A
[1](ω2k

n), k = 0, . . . , n/2 − 1]
explanation of the following loop: compose y based on the previous level

8 for k = 0, . . . , n/2 − 1 step 1 do
9. yk = y[0]k + ωy

[1]
k , explanation: yk = A(ωk

n) = A[0](ω2k
n) + ωk

nA
[1](ω2k

n)
At this moment, ω = ωk

n and the squares ω2k
n are computed as ωk

n/2

10. yk+n/2 = y[0]k − ωy
[1]
k , explanation: −ω = ωk+n/2

n

explanation: yk+n/2 = A(ωk+n/2
n) = A[0](ω2k+n

n) + ωk+n/2
n A[1](ω2k+n

n)
= A[0](ω2k

n) + ωk+n/2
n A[1](ω2k

n) = y[0]k + ω
k+n/2
n y

[1]
k = y[0]k + ω

k+n/2
n y

[1]
k = y[0]k − ω

k
ny
[1]
k .

11. ω = ωωn

12. end
13. return y [of the length of the input]

270 / 459

DFT, FFT (continued)

6. DFT/FFT

Operation count for the FFT is given by

T (n) = 2T (n/2) +Θ(n) = Θ(n logn).

A non-recursive algorithm (with explicit stack) is possible as well.
The basic scheme can be generalized for general n and can be
efficiently implemented.
For example, the order of the coefficients in the leaves of the
computational scheme (see above) can be determined by a
bit-reversal permutation.

271 / 459

DFT, FFT (continued)

6. DFT/FFT

Inverse FFT Rewriting the DFT in the matrix form, it is easy to see that
the inverse linear transform can be computed fast as well. Namely, if we
write DFT in the form

⎛
⎜⎜⎜⎜⎜⎜
⎝

y0
y1
y2
⋮

yn−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 . . . 1
1 ωn ω2

n . . . ωn−1
n

1 ω2
n ω4

n . . . ω
2(n−1)
n

⋮ ⋮ ⋮ . . . ⋮
1 ωn−1

n ω
2(n−1)
n . . . ω

(n−1)(n−1)
n

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

a0
a1
a2
⋮

an−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

≡Wna. (59)

Then
y =Wna↔ a =W −1

n y

and we can see that
(W −1

n)jk = ω−kjn /n.
272 / 459

Extreme parallelism for solving linear algebraic systems

7. Extreme parallelism

Proposed by Csanky to get a solution x of the system of linear
equations Ax = b, regular A ∈ Rn×n and x ∈ Rn, b ∈ Rn.

▸ The scheme exploits parallelism as much as possible

▸ Does not take into account actual architectural resources,
interconnect and ways to hide latencies.

▸ Assume for simplicity n = 2l for some integer l ≥ 1.

273 / 459

Parallel operations with dense vectors and matrices
(continued)

7. Extreme parallelism

Step 1: Compute powers of A: A2,A3, . . .An−1

Compute A2: all entries computed in parallel

. .

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

274 / 459

Parallel operations with dense vectors and matrices
(continued)

7. Extreme parallelism

Compute then A4, A8; then the remaining powers
it can be done with the parallel prefix type procedure called repeated
squaring – a variation of the techniques outlined above. This results
in two steps of logarithmic complexity only.
Each matrix-matrix multiplication has Θ(log2 n) complexity (all
products rows and columns are computed in parallel) and the
logarithmic term caused by the reduction steps.
Altogether: Step 1 has Θ(log2 n) complexity.

275 / 459

Parallel operations with dense vectors and matrices
(continued)

7. Extreme parallelism

Step 2: Compute traces sk = tr(Ak) of the powers.
This is a straightforward computation with Θ(log2 n) complexity (just
the reductions).

276 / 459

Parallel operations with dense vectors and matrices
(continued)

7. Extreme parallelism

Step 3: Solve Newton identities for coeffs of the characteristic polynomial
(Fadeev-LeVerrier algorithm).

Consider the characteristic polynomial in λ in the form

det(λIn −A) = p(λ) =
n

∑
k=0

ckλ
k (60)

We know that cn = 1 and c0 = (−1)n detA. The remaining coefficients
ci can be computed by solving the following triangular system.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
s1 2
⋮ ⋱ ⋱

sm−1 ⋱ s1 m
⋮ ⋱ ⋱ ⋱ ⋱

sn−1 . . . sm−1 . . . s1 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cn−1
cn−2
⋮

cn−m
⋮
c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

s1
s2
⋮
sm
⋮
sn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠ 277 / 459

Parallel operations with dense vectors and matrices
(continued)

7. Extreme parallelism

Scaled lower triangular matrix such that its diagonal is unit can be
directly written as follows. The scaling is denoted by changing si to ŝi.

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
ŝ1 1
ŝ2 ŝ′1 1
⋮ ⋱ ⋱ ⋱

ŝn−1 ŝ1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
ŝ1 1
ŝ2 0 ⋱
⋮ ⋮ ⋱ 1

ŝn−1 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
0 1
0 ŝ′1 ⋱
⋮ ⋮ ⋱ 1
0 ŝ′n−2 0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⋯

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
0 1
0 0 ⋱
⋮ ⋮ ⋱ 1
0 0 . . . ŝ′′1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

278 / 459

Parallel operations with dense vectors and matrices
(continued)

7. Extreme parallelism

Once more, schematically.

=

Inverses of the elementary factors are obtained by changing the sign of
their off-diagonal entries.
Explicit construction of the inverse: multiply the individual inverses in
the reversed order.
This multiplication can be based on parallel prefix algorithm and we
obtain Θ(log22 n) complexity as in the Step 1.

279 / 459

Parallel operations with dense vectors and matrices
(continued)

7. Extreme parallelism

Step 4: Compute the inverse using the Cayley-Hamilton theorem and
evaluate the solution by matrix/vector

A−1 = An−1 + cn−1An−2 + . . . + c1I
−c0

The complexity of this step as well as of multiplying of the right-hand
side to get the solution is Θ(log2 n).

Unfortunately, the solver outlined above in the four steps is very unstable
and not useful in practice.

280 / 459

Parallel operations with dense vectors and matrices
(continued)

8. Alternative parallel matrix-matrix multiplications

Possible parallelism versus accuracy
Consider the following two possibilities of matrix-matrix multiplication:
standard versus a proposal by Strassen

C = AB, A,B,C ∈ R2k×2k

A = (A1,1 A1,2

A2,1 A2,2
) , B = (B1,1 B1,2

B2,1 B2,2
) , C = (C1,1 C1,2

C2,1 C2,2
)

Ai,j ,Bi,j ,Ci,j ∈ R2k−1×2k−1

281 / 459

Parallel operations with dense vectors and matrices
(continued)

8. Alternative parallel matrix-matrix multiplications

Standard computation: 8 multiplications

C1,1 = A1,1B1,1 +A1,2B2,1

C1,2 = A1,1B1,2 +A1,2B2,2

C2,1 = A2,1B1,1 +A2,2B2,1

C2,2 = A2,1B1,2 +A2,2B2,2

282 / 459

Parallel operations with dense vectors and matrices
(continued)

8. Alternative parallel matrix-matrix multiplications

Computation according to Strassen:

M1 = (A1,1 +A2,2)(B1,1 +B2,2)
M2 = (A2,1 +A2,2)B1,1, M3 = A1,1(B1,2 −B2,2)
M4 = A2,2(B2,1 −B1,1), M5 = (A1,1 +A1,2)B2,2

M6 = (A2,1 −A1,1)(B1,1 +B1,2), M7 = (A1,2 −A2,2)(B2,1 +B2,2)
C1,1 = M1 +M4 −M5 +M7, C1,2 =M3 +M5

C2,1 = M2 +M4, C2,2 =M1 −M2 +M3 +M6

Only 7 multiplications: this is what is important for the complexity

283 / 459

Parallel operations with dense vectors and matrices
(continued)

8. Alternative parallel matrix-matrix multiplications

More ways to pad the matrices by zeros to apply the Strassen’s
multiplication.
Complexity: nlog2 7 ≈ n2,807 instead of nlog2 8 = n3.
Accuracy bounds of the classical multiplication and the Strassen’s one
can be written as

▸

∣flconventional(AB) −AB∣ ≤ nϵ∣A∣∣B∣
▸

∣∣flStrassen(AB) −AB∣∣M ≤ f(n)ϵ∣∣A∣∣M ∣∣B∣∣M , f(n) ≈ O(n3.6),

respectively, where
∣∣X ∣∣M =max

i,j
∣xij ∣.

Clearly, the Strassen’s multiplication can be significantly more
inaccurate. Appropriate scaling can improve the result.

284 / 459

Highly parallel operations with Monte Carlo methods

9. High parallelism as the Monte Carlo method

Monte Carlo (MC) methods: based on repeated independent and
random sampling. Easy to parallelize.
First example: integration over a bounded interval

F = ∫
b

a
f(x)dx. (61)

The result can be “well” approximated by

F = (b − a)Ef ≈ (b − a) 1
n

n

∑
i=1

f(xi)

xi, i = 1, . . . , n: uniformly distributed random numbers from the
interval
Ef : the expectation value of the function f from the interval.
Here one-dimensional example, can be generalized.

285 / 459

Highly parallel operations with Monte Carlo (continued)

9. High parallelism as the Monte Carlo method

Second example: MC computation of π

Consider a unit square with an inscribed circle.

The ratio R of the area of the circle S (of the radius 1) with respect
to the area of the square is given by

R ≈ areacircle
areasquare

= π12

22
= π

4

The following algorithm can be thus used to compute an approximate
value of π in parallel.

286 / 459

Highly parallel operations with Monte Carlo (continued)

9. High parallelism as the Monte Carlo method

Algorithm

MC computation of π
Input: Samples count nsample. Random points in the unit square.
Output: Approximate value of π.
1. for i = 1 ∶ nsample do in parallel
2. Choose a random point in the square
3. end do
4. Count the ratio R: random points inside the circle over nsample.
5. return π ≈ 4 ×R

287 / 459

Outline

1 Foreword

2 Computers, computing, communication

3 Parallel computing

4 Parallel processing and us - parallel programming

5 Parallel computer architectures: hardware and classification

6 Combining pieces together: computational models
Uniprocessor model
Vector and SIMD model
Multiprocessor model

7 Parallelizing problems

8 Sparse data decomposition: graph partitioning

9 Parallel and parallelized algebraic preconditioning

288 / 459

Graph partitioning

Partitioning of sparse data: general comments

Standard array-based decomposition schemes mentioned above are
often efficient in case of dense matrices, vectors or regular
(structured patterns) (like sparse matrix with 1D partitioning -
sparse row blocks with similar nonzero counts owned by processors).

General sparse case" more sophisticated techniques to decompose
data are needed. Such techniques are called graph/hypergraph
partitioning.

More complex ways to partition data correspond to the need to use
more complicated algorithms like factorization.

289 / 459

Graph partitioning formulation and its goals

1

2

3

4

5

6
1

2

3

4

5

6

separating vertices by edges: edge separator

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

290 / 459

Graph partitioning: separators

Interfaces separating the detached parts are called separators. A
vertex or edge set is called separator if its removal from the graph
increases number of the graph components.
Vertex separators VS and edge separators ES distinguished.
There are simple transformation procedures between the classes of
edge and vertex. Nevertheless, straightforward transformations are
generally not advisable. There exist more involved transformations
such that the resulting separators are approximately optimal in some
sense.

1

2

3

4

5

6

291 / 459

Graph partitioning: separators

Interfaces separating the detached parts are called separators. A
vertex or edge set is called separator if its removal from the graph
increases number of the graph components.
Vertex separators VS and edge separators ES distinguished.
There are simple transformation procedures between the classes of
edge and vertex. Nevertheless, straightforward transformations are
generally not advisable. There exist more involved transformations
such that the resulting separators are approximately optimal in some
sense.

1

2

3

4

5

6

291 / 459

Graph partitioning: separators

Interfaces separating the detached parts are called separators. A
vertex or edge set is called separator if its removal from the graph
increases number of the graph components.
Vertex separators VS and edge separators ES distinguished.
There are simple transformation procedures between the classes of
edge and vertex. Nevertheless, straightforward transformations are
generally not advisable. There exist more involved transformations
such that the resulting separators are approximately optimal in some
sense.

1

2

3

4

5

6

292 / 459

Graph partitioning: separators

Interfaces separating the detached parts are called separators. A
vertex or edge set is called separator if its removal from the graph
increases number of the graph components.
Vertex separators VS and edge separators ES distinguished.
There are simple transformation procedures between the classes of
edge and vertex. Straightforward transformations are generally not
advisable. We also have: ∣VS ∣ ≤ ∣ES ∣, ∣ES ∣ ≤ ∣VS ∣ × max degree.

1

2

3

4

5

6

293 / 459

Graph partitioning formulation and its goals

From edge to vertex separator

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↓

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 4 5 6 2 3

1 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The last two rows and columns represent separator in the reordered matrix
294 / 459

Graph partitioning formulation and its goals

Graph model can be also directed. Directed edges may capture
source - destination relation.

1

2

3

4

5

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

295 / 459

Graph partitioning formulation and its goals

The goal of the graph partitioning is to separate a given matrix or its
structure (graph, hypergraph) into

▸ parts of similar sizes (e.g., roughly equal vertex/edge counts in
separated parts)

▸ having small sizes of graph interfaces that separate these parts
(measured, e.g., by vertex/edge counts)

Here we discuss only partitioning of undirected graphs that represent
structural models of symmetric matrices.

Further restriction to bisections that cut a domain into two parts.

Bisection can be applied recursively.

Generalized partitioning can use using weighted graphs and
hypergraphs

296 / 459

Graph partitioning: some theoretical results

The number of all possible partitions for ∣V ∣ = n is given by

(n
n/2) ≈ 2

n
√
2/πn (62)

Consider a graph of a planar mesh as in the following figure with
n = k × k for k = 7. There is a vertex separator of optimal size having
k =
√
n vertices that is also shown in the figure.

297 / 459

Graph partitioning: some theoretical results

In 2D (planar) case we have the following theorem.

Theorem
Let G = (V,E) be a planar graph. Then there is a vertex separator
S = (VS ,ES) which divides V into two disjoint sets V1 and V2 such that
max(∣V1∣, ∣V2∣) ≤ 2/3∣V ∣ and ∣VS ∣ = O(

√
∣V ∣).

In case of more general graphs that include under the concept of
overlap graphs like 3D finite element grids there are separators with
O(n(d−1)/d) edges for d-dimensional grids.

298 / 459

Graph partitioning: approaches

1. Level structure algorithm: based on the breadth-first search

The level structure algorithm is a very simple way to find a vertex
separator but it often does not provide good results. It can be
considered as a preprocessing step for other algorithms.

299 / 459

Graph partitioning: approaches

1. Level structure algorithm (continued)

Formally the partitioning of V if constructed.

L0 = {r}, L1 = Adj(L0) ∖L0, . . . , Lk = Adj(Lk−1) ∖Lk−1 (63)

such that

V =
k

⋃
i=0

Li,

and all the sets L0, . . . , Lk are nonempty. Size of the level set is k + 1.
Formally V is cut by its median set from L0, . . . , Lk.

V + =
j−1
⋃
i=0

Li, V − =
k

⋃
i=j+1

Li, S = Vj . (64)

300 / 459

Graph partitioning: approaches

1. Level structure algorithm (continued)

Algorithm

Level structure algorithm (one component)
1. Iterative procedure to find a suitable starting point r
2. Perform the breadth-first search from r
3. Sort vertices by their levels (distances from r)
4. Choose as separator the set Lj with distance j from r such that the

subgraphs induced by V + (vertices of smaller distance from r than j) and
V − (vertices of larger distance from r than j) are approximately
balanced.

301 / 459

Graph partitioning

1. Level structure algorithm (continued)

The Step 1 of the algorithm iteratively finds r that approximately
minimizes k. In graph terminology this procedure finds a
pseudoperipheral vertex of the graph G.

▸ Peripheral vertex: a vertex of V that has the largest distance
from some other node of V

▸ Distances measured by lengths of shortest paths.

Having found r, first three steps of the breadth-first search in
Algorithm 8.1 were demonstrated above.

302 / 459

Graph partitioning

2. Inertial algorithm: vertices as points in space

Assuming that the vertex coordinates are available.
This enables to consider graph vertices as points in 2D or
three-dimensional (3D) space
Its steps for graph partitioning in 2D are schematically given below.

303 / 459

Graph partitioning

2. Inertial algorithm (continued)

Step 1: choose a line (analogy in 3D would be a plane) and assume
the line equation in the form

a(x − x0) + b(y − y0) = 0, a2 + b2 = 1.

▸ (a, b) is the unit vector perpendicular to the line. It can be
shown like this:
☀ consider two points of the line (x1, y1) and (x2, y2)
☀ subtract their equations:

a(x1 − x2) + b(y1 − y2) = 0 = (a, b) × (x1 − x2, y1 − y2)
▸ and (−b, a) is the unit vector parallel to the line.
▸ Slope of this line is −a/b since we have (y − y0) = −a/b(x − x0).
▸ The line goes through the chosen point (x0, y0).

304 / 459

Graph partitioning

2. Inertial algorithm (continued)

Step 2: find projections of the points to this line (plane in 3D)

▸ Distances ci of the nodes (xi, yi) from their projections to the line are
given by

ci = ∣a(xi − x0) + b(yi − y0)∣,
▸ Or using directly the Pythagorean theorem:

c2i = (x − xi)2 + (y − yi)2 − d2i ,

where
di = ∣ − b(xi − x0) + a(yi − y0)∣.

305 / 459

Graph partitioning

2. Inertial algorithm (continued)

Step 3: compute distances di of the projections along the line (with
respect to the point (x0, y0) (line in 3D))

Distances di of the projections from (x0, y0) are (see previous slide):

di = ∣ − b(xi − x0) + a(yi − y0)∣.

306 / 459

Graph partitioning

2. Inertial algorithm (continued)

Step 4: Compute median of these distances and separate the nodes
into the two groups by their distances

Line choice

The line in the 2D inertial algorithm is chosen such that it minimizes
a sum of squares of the projections c2i .

Considering the points as mass units, the line considered as an axis
of rotation should minimize the moment of inertia among all
possible lines. Hence the name of the approach.

See the following figures

307 / 459

Graph partitioning

2. Inertial algorithm (continued)

Large sum: bad choice (9 edges in the edge separator).
(The separator is perpendicular to the blue line).

Smaller sum: good choice (4 edges in the edge separator)

308 / 459

Graph partitioning

2. Inertial algorithm (continued)

This type of graph partitioning is simple and flexible.

It may give better results than if the separators would be just
lines/planes parallel to coordinate directions.

A disadvantage of this approach is that it considers separations by a
hyperplane ony. Better partitioning could be obtained without this
assumption.

309 / 459

Graph partitioning

2. Inertial algorithm (continued)

Expressing the sum we get (ci could be directly used as well for the
computation instead of the quantities di)

n

∑
i=1

c2i =
n

∑
i=1
((xi − x0)2 + (yi − y0)2 − d2i)

=
n

∑
i=1
[(xi − x0)2 + (yi − y0)2 − (−b(xi − x0) + a(yi − y0))2]

= a2
n

∑
i=1
(xi − x0)2 + b2

n

∑
i=1
(yi − y0)2 + 2ab

n

∑
i=1
(xi − x0)(yi − y0)

= (a b) M (a
b
) ,

310 / 459

Graph partitioning

2. Inertial algorithm (continued)

M is defined as follows

M = (∑n
i=1(xi − x0)2 ∑n

i=1(xi − x0)(yi − y0)
∑n

i=1(xi − x0)(yi − y0) ∑n
i=1(yi − y0)2

) (65)

Finding x0, y0, a and b (with a2 + b2 = 1) such that this quadratic form is
minimized is the total least squares problem. One can show that we get
the minimum if

x0 =
1

n

n

∑
i=1

xi, y0 =
1

n

n

∑
i=1

yi (center of mass). (66)

and the vector (a
b
) is normalized eigenvector corresponding to the

minimum eigenvalue of M .
The approach provides an edge separator.

311 / 459

Graph partitioning

3. Spectral partitioning

Define the Laplacian matrix first.

Definition
The Laplacian matrix of an undirected unweighted graph G = (V,E) is L
with the entries defined as follows

Lij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

deg(i) (i, j) ∈ E i = j
−1 (i, j) ∈ E, i ≠ j
0 otherwise

312 / 459

Graph partitioning

3. Spectral partitioning (continued)

Consider the following graph

1 2

3 4

5

The Laplacian (vertex by vertex symmetric matrix) is

L =

⎛
⎜⎜⎜⎜⎜⎜
⎝

2 −1 −1
−1 2 −1
−1 3 −1 −1

−1 −1 3 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎟
⎠

313 / 459

Graph partitioning

3. Spectral partitioning

1 2

3 4

5

Also, L = ATA: A is oriented incidence (edge by vertex) matrix of G.

AT =

⎛
⎜⎜⎜⎜⎜⎜
⎝

e1 e2 e3 e4 e5 e6

1 −1 −1
2 1 −1
3 1 −1 −1
4 1 1 −1
5 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

314 / 459

Graph partitioning

3. Spectral partitioning (continued)

Formal definition of the oriented incidence matrix
The matrix is edge by vertex

Aij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 i is the first vertex of the edge j
−1 i is the second vertex of the edge j
0 otherwise

The definition does not depend on the edge orientation (setting of 1’s
and −1’s)

315 / 459

Graph partitioning

3. Spectral partitioning (continued)

Theorem
All eigenvalues of L = (lij) ∈ Rn×n are nonnegative. Moreover, L is
singular. Consequently, L is positive semidefinite.

Proof.
Gershgorin circle theorem: every eigenvalue λj lies within a disc centered in
some lii. The eigenvalues are real and radii ri of the discs are equal to
the distance of their center from zero at most because

ri = ∑
j, lij≠0,j≠i

∣lij ∣. (67)

Then all eigenvalues are at least 0. Also (1 . . . 1)T L = 0. This implies
that L is positive semidefinite.

316 / 459

Graph partitioning

3. Spectral partitioning (continued)

Theorem
Multiplicity of the zero eigenvalue of the Laplacian L ∈ Rn×n of the graph
G = (V,E) is equal the number of the connected components of G.

Proof.
L is symmetric and thus diagonalizable. Then multiplicity of zero as a root
of the characteristic polynomial is equal to the dimension of its nullspace.
Suppose that x is a normalized eigenvector corresponding to the zero
eigenvalue. That is, Lx = 0. L = ATA implies that Ax = 0 and this implies
that for adjacent vertices i and j of V must be xi = xj whenever they are
adjacent since A is the edge by vertex matrix. That is xi = xj if there is a
path between i and j that is, whenever i and j are in the same component
of G. Consider the components of G and their characteristic vectors.
Clearly, they are independent and they form the basis of the nullspace of
L.

Clearly, the Laplacian of a graph G = (V,E), ∣V ∣ = n has only one zero
eigenvalue if and only if G is connected.

317 / 459

Graph partitioning

3. Spectral partitioning (continued)

Observation
The eigenvector corresponding to the zero eigenvalue of the Laplacian
L ∈ Rn×n of the connected graph is x = (1, . . . ,1)T /

√
n.

Nonnegativity of the eigenvalues of L is also visible from the quadratic
form with the Laplacian L of G = (V,E). This form can be written
due to its relation to the graph incidence matrix as

xTLx = xTATAx = ∑
{i,j}∈E

(xi − xj)2. (68)

318 / 459

Graph partitioning

3. Spectral partitioning (continued)

Example
Consider a graph (V,E) with even ∣V ∣ chosen as V = {1, . . . , n}. Let V be
partitioned into V + and V − of the same size. Consider the vector x ∈ Rn

with xi = 1 for i ∈ V + and xi = −1 otherwise. Then the number of edges
that connect V + and V − is equal to 1/4xTL(G)x.

Proof.
We can write

xTL(G)x = ∑
(i,j)∈E

(xi − xj)2 = ∑
(i,j)∈E, i∈V +, j∈V −

(xi − xj)2 =

= 4 ∗ number of edges between V + and V − (69)

since the quadratic terms contribute by 4 if the nodes of an edge are from
different sets and 0 otherwise.

319 / 459

Graph partitioning

3. Spectral partitioning (continued)

If G has one component only, the second smallest eigenvalue of L is
nonzero. Denote it by µ.

The Courant-Fischer theorem states that

µ =min{xTLx ∣ x ∈ IRn ∧ xTx = 1 ∧ xT (1, . . . ,1)T = 0}. (70)

As we saw, this expresses the size of the edge partitioner in the
example.
Can be proved for general undirected graphs and discrete setting
xi = 1,−1, sum(xi) = d, ∣d∣ < n.
A question is how this eigenvector x(µ) for the eigenvalue µ, often
called the Fiedler vector, can be approximated.

320 / 459

Graph partitioning

3. Spectral partitioning (continued)

Consequently, the graph bisection problem for a graph with even number
of nodes can be casted as

Minimize f(x) = 1

4
xTLx

subject to x ∈ {±1}n

xT (1, . . . ,1)T = 0.

This represents a discrete optimization problem that can be solved
approximatively using the following relaxed form.

Find x ∈ Rn minimizing

xTLx (71)

such that xT (1, . . . ,1)T ≈ 0 and xTx = 1.

321 / 459

Graph partitioning

3. Spectral partitioning (continued)

In practice, Lanczos algorithm can be used and the computational scheme
is as follows (connected graph)

Algorithm

Spectral graph bisection.
1. Find µ and x(µ) of L

2. Sort the vertices by xi and split them by their median value

This spectral partitioning approach may be expensive, but it can provide
high-quality partitions. As the previous approach, it finds an edge
separator.

322 / 459

Graph partitioning

4. General multilevel partitioning

The basic principle of the general multilevel partitioning is to apply the
following three steps to where the middle one is applied recursively

▸ Coarsen the graph,
▸ Partition the graph,
▸ Interpolate separator and refine the graph.

323 / 459

Graph partitioning

4. General multilevel partitioning (continued)

Coarsening phase collapses nodes that define the matching edges
into coarse nodes. Each edge can have weight that correspond to a
number of original edges it represents.

Vertices can have weights expressing how many vertices have been
collapsed into them.

There are more ways how such weights can be exploited.

324 / 459

Graph partitioning

4. General multilevel partitioning
There are more ways to do the coarsening. A popular
matching-based coarsening is based on finding matchings of
weighted graphs.

▸ Matching of a graph G = (V,E) is a subgraph (Ṽ , Ẽ) with
Ẽ ⊆, Ṽ = V (Ẽ)

▸ Maximal matching is a matching (Ṽ , Ẽ) such that there is no
matching (V̂ , Ê) of G such that Ẽ ⊂ Ê, V̂ = V (Ê)

▸ Construction by greedy algorithms (can be increased to maximum
matchings using augmenting paths)

▸ On the outer level, there are multiple variations of the basic
approach called, for example, multilevel nested dissection or
multilevel spectral partitioning. Another coarsening possibility
can be based on recursive search of independent sets in the graph
sequence.

325 / 459

Graph partitioning

4. General multilevel partitioning (continued)

326 / 459

Graph partitioning

5. Iterative KL greedy refinement by Kernighan and Lin (1970)

One of the first approaches
▸ Based on local searches and starting with an initial (possibly

trivial) partitioning.
▸ Targets weighted graphs.

327 / 459

Graph partitioning

5. Iterative KL greedy refinement

Start with a graph G = (V,E) having edge weights w ∶ E → IR+ and
with some initial partitioning V = V + ∪ V −. Consider its cost
functional given by

COST = ∑
a∈V +, b∈V −

w(a, b).

The goal is to improve this partitioning.
The initial and any other partition can be improved if we find
X ⊂ V + and Y ⊂ V − such that the partition formed as

V = (V + ∪ Y ∖X) ∪ (V − ∪X ∖ Y) (72)

reduces the total cost of edges between V + and V −.

328 / 459

Graph partitioning

5. Iterative KL greedy refinement

Denote by E(x), I(x) the external and the internal cost equal to the
sum of weights of x ∈ V in the given parts of the partition.

V_A V_B

a b

I(a)

V_A V_B

a b

E(a)

329 / 459

Graph partitioning

5. Iterative KL greedy refinement

How a gain in the COST can be found and exploited?
Consider a simplified case with

a ∈ V + and b ∈ V −, (73)

based on exchanging this pair of vertices a and b.
Moving simultaneously a to V − and b to V + results in the updated
sets Ṽ + = V + ∖ {a} ∪ {b} and Ṽ − = V − ∖ {b} ∪ {a}.
Denote for our simple case X = {a} and Y = {b}.

330 / 459

Graph partitioning

5. Iterative KL greedy refinement (continued)

Exchanging a and b: the COST functional changes to ĈOST

ĈOST = COST +I(a)−E(a)+w(a, b)+I(b)−E(b)+w(a, b) ≡ COST −gain(a, b)
(74)

where gain(a, b) for a ∈ V + and b ∈ V − is defined by

E(a) − I(a) +E(b) − I(b) − 2w(a, b).

Note that the weight of a possible edge must be subtracted from the
gain.
The algorithm can be then formally written as follows where GAIN
denotes the sum of gains between pairs of vertices.

331 / 459

Graph partitioning

5. Iterative KL greedy refinement (continued)

Algorithm

Partitioning improvement by Kernighan and Lin
1. Compute COST of the initial partition
2. do until GAIN ≤ 0

3. forall nodes x ∈ V compute E(x), I(x)
4. unmark all nodes
5. do while there are unmarked nodes

6. find a suitable pair a, b of vertices maximizing gain(a, b)
7. mark a, b (to be excluded from further exchanges in this loop)

8. end do while
9. find GAIN maximizing the partial sum of gains computed in the loop
10. if GAIN > 0 then update the partition, COST = COST −GAIN

11. end do

332 / 459

Graph partitioning

5. Iterative KL greedy refinement (continued)

Often used to improve partitions from other algorithms. It usually
converges in a few major steps. Each of them has a complexity O(n3).
Fiduccia and Mattheyses (1982) have shown that this complexity can
be improved to O(∣E∣).

333 / 459

Graph partitioning

6. Nested dissection (framework)

Algorithm

Nested dissection: framework for partitioning algorithms
1. Find a bisection (dissection) (possible approaches explained)
2. Reorder matrix numbering nodes in the separator last
3. Perform the previous two steps recursively

334 / 459

Graph partitioning

6. Nested dissection (continued)

Separator in a simple mesh

Vertex separator

C_1 C_2

S

Nested dissection (ND) matrix after the first level of the recursion

335 / 459

Graph partitioning

6. Nested dissection (continued)

ND matrix structure

C_1

C_2

S

SC_2C_1

336 / 459

Graph partitioning

6. Nested dissection (continued)

ND algorithm after more levels of recursion

1 7 4 43 22 28 25

3 8 6 44 24 29 27

2 9 5 45 23 30 36

19 20 21 46 40 41 42

10 16 13 47 31 37 34

1712 15 48 33 38 36

11 18 14 49 32 39 35

337 / 459

Graph partitioning

6. Nested dissection

Modern nested dissections are based on various graph partitioners
that enable to partition very general graphs. In this way, the nested
dissection can be understood as an outer algorithmic framework that
may include other algorithms that guarantee that the separated

▸ components have very similar sizes and the
▸ separator is small.

Nested dissection implies Modern local reorderings that minimize
fill-in in factorization algorithms are often on a few steps of an
incomplete nested dissection.

338 / 459

Graph partitioning

7. Problems with the symmetric model

What about partitioning of nonsymmetric graph structures?
▸ Edge cuts are not proportional to the total communication volume.

▸ Latencies of messages typically more important than the volume.

▸ In many cases, minmax problem should be considered instead
(minimizing maximum communication cost).

▸ Specific nonsymmetric partitions might and can be considered
(bipartite graph model, hypergraph model).

▸ General rectangular problem can be considered.

▸ Partitioning in parallel (there are papers and codes), not only
partitioning for parallel computations.

339 / 459

Sparse linear algebraic solvers

Sparse linear algebraic solvers

Consider solving systems of linear equations

Ax = b

where A is large and A is sparse.
Two basic classes of methods for solving systems of linear algebraic
equations roughly classified as direct methods and iterative
methods.
Each of these classes has its specific advantages and disadvantages.
In the other words, both classes can be considered as complementary
approaches as follows:

▸ Iterative methods can make the solution obtained from a direct solver
more accurate by performing a few additional iterations to improve
the accuracy.

▸ Approximate direct factorizations often used as auxiliary procedures
(preconditioners) to make iterative methods more efficient.

340 / 459

Sparse linear algebraic solvers

Parallel direct and iterative methods

More different tasks inside both approaches
▸ Parallelizing matvecs

▸ Parallelizing matmats

▸ Parallelizing factorizations

▸ Avoiding factorizations by some tricks

▸ Tasks different for direct and iterative methods.

▸ Non-uniform data decomposition: graph partitioning is a useful tool.

341 / 459

Sparse linear algebraic solvers

Parallel direct methods: summary

Two steps that have been sometimes (traditionally) merged together.
The first step of a direct method is factorization of the system
matrix A.
The second step of a direct method is the solve step (forward and
back solves).
Historically, the oldest approaches to factorize sparse systems were
based on specific paradigms.
Using these paradigms unlocked by special reorderings

Ax = b (75)

is transformed into
P TAP (P Tx) = P T b. (76)

342 / 459

Sparse linear algebraic solvers

Parallel direct methods: 1. classical matrix shapes

Sometimes reorderings for parallelism and for efficiency coincide.
Reorderings: banded and envelope (profile) paradigms. Basic idea
behind them is to find a reordering of the system matrix A such that
its nonzero entries are moved as close to the matrix diagonal as
possible to get a reordered matrix P TAP .
An optimum reordering that minimizes some measure like the fill-in in
the factorization cannot be found since the corresponding
combinatorial decision problem is generally NP-complete).
Therefore, reorderings are typically based on heuristics.
The band and profile types of reorderings often lead to denser
factors then general fill-in minimizing reorderings. But stacking
nonzeros towards the diagonal may result in better cache reuse.
Examples of possible nonzero shapes as a result of the mentioned
reorderings are depicted below.

343 / 459

Sparse linear algebraic solvers

Parallel direct methods: 1. classical matrix shapes

* *
* *

*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*

*

*
*

*
*
*
*
*
*
*

*
*
* *

*
*

*

Band 6

* *
* *

*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*

*

*
*

*
*
*
*
*
*
*

*
*
* *

*
*

*

Profile 6

* *
* *

*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*

*

*
*

*
*
*
*
*
*
*

*
*
* *

*
*

*

Frontal method - dynamic band

Moving
window -

344 / 459

Sparse linear algebraic solvers

Parallel direct methods: 1. classical matrix shapes

Ways to parallelize can be based on the following principles or their
combination.

▸ decomposing the matrix by diagonals,

▸ using a related block diagonal structure,

▸ exploiting a block tridiagonal shape.

345 / 459

Sparse linear algebraic solvers

1. Parallel direct methods: general shapes

Generic scheme based (most often) on the LU or Cholesky
factorization.
Assume the system matrix sparse with a general sparsity structure
Obstacle - short row (column) vectors.
Solution: Hardware support for vector processing indirectly
addressed vectors.
Developed in the early days of computer development and it is often
called hardware gather-scatter.
Consequently, generally sparse data structures can be modestly
vectorized with a reasonable asymptotic speed. (Though not often
close to R∞.)

346 / 459

Sparse linear algebraic solvers

Parallel direct methods: 2. general matrix shapes

Efficiency can be enhanced by matrix reorderings.
All of this may still not be enough.
Parallel computation means considering: communication and
(balanced) decomposition

▸ Task-based decomposition: fan-in and fan-out approaches.

▸ Data-based decomposition: cache-efficient block processing,
tree parallelism

▸ Both we will demonstrate using LDLT factorization

347 / 459

Sparse linear algebraic solvers

Parallel direct methods: 2a. task-based parallelization

Need to combine computational dependency with communication
dependency

demand driven approach also called fan-in (left-looking) approach
▸ the nodes wait for data until a computational task is ready

data driven approach also called the fan-out (right-looking)
approach

▸ each computational unit sends data as soon as they are obtained

348 / 459

Sparse linear algebraic solvers

Parallel direct methods: 2a. task-based parallelization

Algorithm (Simplified sparse LDLT factorization
(left-looking))
Input: Sparse symmetric factorizable matrix A; sparsity pattern of L.
Output: Factors L = {lij} and D = diag{d1, . . . , dn} of A.
1: for j = 1 ∶ n do
2: for k ∈ {k < j ∣ ljk ≠ 0} do
3: for i ∈ {i ≥ j ∣ lik ≠ 0} do
4: aij ← aij − likljk
5: end for
6: end for
7: dj = ljj
8: for i ∈ {i > j ∣aij ≠ 0} do
9: lij ← aijd

−1
j

10: end for
11: end for

349 / 459

Sparse linear algebraic solvers

Parallel direct methods: 2a. task-based parallelization

Define column oriented subtasks
▸ cdiv(j) for 1 ≤ j ≤ n denotes dividing column j of the factorization by

the diagonal entry dj
▸ cmod(j, k) for 1 ≤ k < j ≤ n: modification of column j by column k
▸ Communication dependency is expressed by the following precedence

relations shown here for the column indices 1 ≤ k < j < i ≤ n.

cmod(j, k)Ð→ cdiv(j)Ð→ cmod(i, j).

▸ These precedence relations: graph form of communication
▸ Complete update of a column j by columns k such that k ∈ rowL{j}

split into a sum of aggregate updates. Each of them correspond to a
different processor involved in the update of the column j. An
aggregate update from a processor p ∈ procs involved in updating
column j we will denote by u[j, p] and we have

∑
k∈rowl{j}

ljkLj∶n,k = ∑
p∈procs

u[j, p].

350 / 459

Sparse linear algebraic solvers

Algorithm (Demand driven (fan-in) Cholesky factorization)

1: for each processor p do ▷ Loop of processors processed in parallel
2: mycols(p) = {j ∣map(j) = p}
3: for j = 1 ∶ n do
4: if j ∈mycols(p) or col(j) ∩mycols(p) ≠ ∅ then
5: u = 0 ▷ Initialize Lj∶n,j in a local auxiliary vector
6: for k ∈ col(j) ∩mycols(p) do
7: u = u + ljkLj∶n,k

8: if map(j) ≠ p then Send u to map(j)
9: else

10: Incorporate u in Lj∶n,j

11: while Aggregate updates u[j, q] for q ≠ p need to be received do
12: Receive aggregate and incorporate into Lj∶n,j

13: end while
14: Set dj = ljj and scale Lj∶n,j = Lj∶n,jd

−1
j

15: end if
16: end for
17: end if
18: end for
19: end for

351 / 459

Sparse linear algebraic solvers

Parallel direct methods: 2a. task-based parallelization

Algorithm (Simplified sparse LDLT factorization
(right-looking))
Input: Sparse symmetric factorizable matrix A; sparsity pattern of L.
Output: Factors L = {lij} and D = diag{d1, . . . , dn} of A.

1: for k = 1 ∶ n do
2: dk = akk
3: for i ∈ {i > k ∣aik ≠ 0} do
4: lik ← aikd

−1
k

5: end for
6: for j ∈ {j > k ∣ ljk ≠ 0} do
7: for i ∈ {i ≥ j ∣ lik ≠ 0} do
8: aij ← aij − likljk
9: end for

10: end for
11: end for 352 / 459

Sparse linear algebraic solvers

Algorithm (Data driven (fan-out) Cholesky factorization)

1: for each processor p do ▷ Loop of processors processed in parallel
2: Define mycols(p) = {j ∣map(j) = p}, procs(j) = {map(k) ∣k ∈ colL{j}}
3: for j ∈mycols(p) do
4: if j is a leaf node in T (A) then
5: Set dj = ljj and scale Lj∶n,j = Lj∶n,jd

−1
j

6: Send Lj∶n,j to all members of procs(j)
7: Set mycols(p) =mycols(j) ∖ {j}
8: end if
9: while mycols(p) ≠ ∅ do

10: Wait until any column of L, say Lk∶n,k is received
11: for j ∈ rowL{k} ∩mycols(p) do
12: Set Lj∶n,j = Lj∶n,j − ljkLj∶n,k

13: if Lj∶n,j is fully updated then
14: Set dj = ljj , scale Lj∶n,j = Lj∶n,jd

−1
j , send Lj∶n,j to procs(j)

15: Set mycols(p) =mycols(j) ∖ {j}
16: end if
17: end for
18: end while
19: end for
20: end for 353 / 459

Sparse linear algebraic solvers

Parallel direct methods: 2a. task-based parallelization

Since both of the fan-in and fan-out approaches are different and
complementary such that depending on a problem, one of them may
be more useful than the other, it is possible to combine them into a
blended fan-both implementation.
There exists another type of factorization where considering
data-based partitioning is more natural
To run the factorization in parallel, some of them need to parallelize
also substitution steps.

354 / 459

Sparse linear algebraic solvers

Parallel direct methods: 2b. data-based parallelization

Blocks in the original matrix
Blocks created throught: supernodes. The idea of a supernode is to
group together columns with the same nonzero structure, so
they can be treated as a dense matrix for storage and computation.
Supernodes influenced by specific permutations
Contemporary Cholesky/LU factorizations strongly based on the
concept of supernodes or panels that represent blocks that are
dense in the factor.
Such dense block can be efficiently found before the factorization
actually starts, or, computed on-the-fly in case of pivoting.

355 / 459

Sparse linear algebraic solvers

Parallel direct methods: 2b. data-based parallelization

A specific block-based factorization right-looking algorithm: the
multifrontal method. Combines two effects:

▸ the tree parallelism with
▸ parallel processing of the dense blocks.

356 / 459

Sparse linear algebraic solvers: multifrontal method

Parallel direct methods: 2b. data-based parallelization
Right-looking (submatrix) method

Does not form the Schur complement directly. Instead, the updates
are moved to a stack as dense matrices and used when needed.

The processing order is based on the elimination tree

We will see that in order to have the needed updates at the stack
top, postordering is needed.

Specific postorderings used to minimize the needed amount of
memory.

Now example, properties repeated once more later.

357 / 459

Sparse linear algebraic solvers: multifrontal method

Parallel direct methods: 2b. data-based parallelization

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

10

108

8

10

108

8

1

8

10

1 8 10

stack

stack

358 / 459

Sparse linear algebraic solvers: multifrontal method

Parallel direct methods: 2b. data-based parallelization

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

10

108

8
10

102

2

10

10

10

10

stack

stack

359 / 459

Sparse linear algebraic solvers: multifrontal method

Parallel direct methods: 2b. data-based parallelization

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

10

108

8

10

10

7

7

10

10

7

7

10

10

stack

stack

10

10

3

3

7

7

360 / 459

Direct methods: Multifrontal method

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

10

108

8

10

10

7

7

10

7

7

7

7

stack

stack

10

4

4

7

7

361 / 459

Sparse linear algebraic solvers: multifrontal method

Parallel direct methods: 2b. data-based parallelization

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

10

108

8

10

10

7

7

10

6

6 9

9

6

6 9

9
stack

stack

10

7

7

5

5 6

6

9

9

362 / 459

Sparse linear algebraic solvers: multifrontal method

Parallel direct methods: 2b. data-based parallelization

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

10

108

8

10

10

7

7

10

6

6 9

9

6

6 9

9

10

109

9

10

109

9

stack

10

7

7

+

stack

6

6 10

10

363 / 459

Sparse linear algebraic solvers: supernodes

Parallel direct methods: 2b. data-based parallelization

* * * *

* * * *
* * * *
* * * *

*
*

*
*

*
*
*

*
* *s+t−1

s

364 / 459

Sparse linear algebraic solvers: supernodes

Parallel direct methods: 2b. data-based parallelization
Nonsymmetric case: more ways to define supernodes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

s s′

⋱
s ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
t ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ⋱
⋱

∗ ∗ ∗ ⋱
∗ ∗ ∗ ⋱
∗ ∗ ∗ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

365 / 459

Sparse linear algebraic solvers: supernodes

Parallel direct methods: 2b. data-based parallelization
Consider a matrix-matrix multiplication as a part of an update
operation within the LU factorization
Symmetric case: BLAS3 efficiency
Nonsymmetric case:

▸ Second operand can be possibly arranged as a set of dense
columns

▸ Data access such that they are efficiently addressed.
▸ This is called supernode-panel: formally a set of matrix-vector

operation that profits from multiplying a set of dense columns.

366 / 459

Sparse linear algebraic solvers: supernodes

Parallel direct methods: 2b. data-based parallelization

Schematically: The three columns of U can be considered as a panel
that is a not fully dense block.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

s s′

⋱
s ∗ ∗

∗ ∗ ∗ ∗
t ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ⋱
⋱

∗ ∗ ∗ ⋱
∗ ∗ ∗ ⋱
∗ ∗ ∗ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

367 / 459

Sparse linear algebraic solvers: tree parallelism

Parallel direct methods: 2b. data-based parallelization

Factorizations are driven by an elimination tree

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
5

4
2 3

6 7
8

368 / 459

Sparse linear algebraic solvers

Parallel direct methods: 2b. data-based parallelization

Theoretical basis for the SPD case

Theorem

Let the Cholesky factorization of SPD A be LLT . Let T (s) and T (t) be
two disjoint subtrees of the elimination tree T (A). Then for all i ∈ T (s)
and j ∈ T (t) we have lij = 0.

Theorem implies that submatrices corresponding to disjoint subtrees
of T (A) can be processed in parallel.

369 / 459

Sparse linear algebraic solvers

Parallel direct methods: 2b. data-based parallelization

Tree parallelism

12

11

109 7

2 3 8 4 6

1 5

Figure: An example tree for task scheduling.

370 / 459

Sparse linear algebraic solvers: substitution steps

Parallel direct methods: 2b. data-based parallelization

Parallel substitution steps and DAG parallelism
Extending tree parallelism to LU factorizations of nonsymmetric A

▸ Elimination tree of A +AT .
▸ Using directed acyclic graphs of L and U : detecting subtasks to

be independently processed.

Combining node and tree parallelism gives two levels of parallelism.

371 / 459

Sparse linear algebraic solvers: substitution steps

Parallel direct methods: 2b. data-based parallelization

Substitution steps: not easy to parallelize.
One possibility: level scheduling.
The idea is to construct a directed graph model of the transposed
factor.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2

∗ 3
∗ 4

∗ ∗ 5
∗ 6

∗ ∗ 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(77)

372 / 459

Sparse linear algebraic solvers: substitution steps

Parallel direct methods: 2b. data-based parallelization

The directed graph of LT is

1

2

7

6

3

4
5

Level scheduling then determines vertex sets called levels such that the
subgraphs induced by the levels do not contain edges, that is their
induced submatrices are diagonal. The forward substitution of the solve
step then considers the symmetrically reordered system such that the
levels

are contiguously numbered
and the matrix stays lower triangular.

373 / 459

Sparse linear algebraic solvers: substitution steps

Parallel direct methods: 2b. data-based parallelization

Figure gives an example of the level scheduling approach that finds the
structure of sources K = {{1,2,3},{4,5,6},{7,8,9},{10}}.

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 5 6 7 8 9 10

1 ∗
2 ∗
3 ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗
6 ∗ ∗ ∗ ∗
6 ∗ ∗
6 ∗ ∗
6 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1

2

3

4

5

6

7

8

9

10

374 / 459

Sparse linear algebraic solvers: substitution steps

Parallel direct methods: 2b. data-based parallelization

Parallel substitution steps and DAG parallelism

Theorem

Assume that a given digraph G = (V,E) is acyclic. Then there exists its
vertex v such that adj−(v) = ∅. Such vertex will be called the source of
the graph G.

The key to parallelize the substitution steps can be then based on
repeated search for sources in a sequence of graphs that start with
G(L) and output a structure of sources of G(L).. Sets of the
structure of sources describe components of y that can be computed
in parallel.

375 / 459

Sparse linear algebraic solvers: substitution steps

Parallel direct methods: 2b. data-based parallelization

Algorithm (Find sets of components of x that can be
computed in parallel in solving Lx = b)
Input: Lower triangular matrix matrix A of dimension n. Fully dense
right-hand side vector b.
Output: Structure of sources K = {K1, . . . , ∣K∣} of indices of components
such that solution components in the sets Ki, i = 1, . . . , ∣K∣ can be
computed in parallel.

1: Set G = G(L), i = 0
2: while V (G) is not empty do
3: i = i + 1
4: Define Ki as the set of all sources of G
5: Set G = G(V ∖Ki)
6: end while

376 / 459

Sparse linear algebraic solvers: other

Parallel direct methods: 2b. data-based parallelization
Twisted factorization

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗
∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

377 / 459

Sparse linear algebraic solvers: other

Parallel direct methods: 2b. data-based parallelization

More domains
Twisted factorization: 2 domains
Generalizations to more domains possible

378 / 459

Sparse linear algebraic solvers: other

Parallel direct methods: 2b. data-based parallelization
Parallelizing of factorizations by a posteriori modifications or reorderings

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

11 −3 4 1
1 3 5

3 8 7
6 7 5 4
17 2 5

1 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Ð→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

11 −3 4 1
1 3 5
3 8 7
6 7 5 4
17 2 5
1 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Matrix in the resulting format on the right-hand side can be possibly better
vectorized. In practice, there are more very similar schemes of this kind.
The output format can have different names, like jagged diagonal format
or striped format, can be completed by an additional row permutation etc.

379 / 459

Sparse linear algebraic solvers

Parallel iterative methods: why?

Consider a 2D matrix problem connected to a k × k mesh, n = k2. In
order to move an information across the mesh at least O(k) steps are
needed since in standard iterative methods this information moves only
by a constant number of gridpoints per step.
The conjugate gradient (CG) method has one matrix-vector
multiplication per iteration.
This accounts for O(k2) time per iteration.
Then CG needs at least O(k3) = O(n3/2) time if the information have
to be spread over all the gridpoints.
3D problem using k × k × k grid.
Again, O(k) steps are needed to spread the information.
Altogether: at least O(k4) = O(n4/3) time is needed.
Consequently, with respect to the dimension the 3D case has lower
complexity than 2D.

380 / 459

Sparse linear algebraic solvers

Parallel iterative methods: why? (continued)

Direct and iterative solvers Direct solvers work for simple grid
(Poisson) problem (24): time complexity

▸ O(n3/2) in 2D,
▸ O(n2) in 3D.

Memory for a general direct solver (based on the nested dissection
model)

▸ O(n logn) in 2D,
▸ O(n4/3) in 3D.

Iterative methods: memory is always proportional to n for grid
problems.
Computational model problem complexity to solve the Poisson
problem is O(n3/2) in 2D and O(n4/3) in 3D.
But, realistic problems may be far more difficult to solve than the
model problems.
Consequently, an acceleration of iterative methods by
preconditioning is a must.

381 / 459

Sparse linear algebraic solvers

Iterative methods: summary of operations (I)

Sparse matrix-vector multiplication
data decomposition for sparse matrices are different from those for
dense matrices.
They can be based on the nonzero counts but separators from
partitioning can be taken into account as well.
Mapping from global to local indices may be based on hashing
schemes if a global array cannot be stored at individual
computational elements. Hash tables generalize the concept of a
direct addressing from a large array into a direct addressing of a small
array that can be stored locally completed by a hash function. Hash
functions can be based, for example, on remainders after divisions or
on modified remainders.

382 / 459

Sparse linear algebraic solvers

Iterative methods: summary of operations (II)

Sparse matrix - dense matrix multiplications
In case if we have more right-hand sides, operations among dense
submatrices and dense subvectors may use BLAS3.
Sparse matrix-matrix multiplications.
Data storage schemes that can exploit the sparsity should be used.
See the text on sparse matrices.
Orthogonalization in some algorithms (GMRES).
Here we may have a problem of numerical issues versus
parallelizability. An example: choice of a variant of the Gram-Schmidt
orthogonalization.

CGS × MGS. (78)

Vector operations
Vector operations in iterative methods often based on dense vectors
and can be often straightforwardly vectorized or parallelized.

383 / 459

Sparse linear algebraic solvers

Iterative methods: summary of operations (III - global reductions)
Standard HS implementation of the conjugate gradient (CG) method:

Algorithm

HS conjugate gradient method
Input: Symmetric positive definite matrix A ∈ Rn×n, right-hand side vector b ∈ Rn of the
system Ax = b, initial approximation x0 ∈ Rn to x ∈ Rn.
Output: Solution approximation xn after the algorithm has been stopped.
0. Initialization: r0 = b −Ax0, p0 = r0
1. for i = 1 ∶ nmax do
2.αi−1 =

(ri−1, ri−1)
(pi−1,Api−1)

3.xi = xi−1 + αi−1pi−1
4.ri = ri−1 − αi−1Api−1
5.evaluate the stopping criterion

6.βi =
(ri, ri)
(ri−1, ri−1)

7.pi = ri + βipi−1
8. end do

384 / 459

Sparse linear algebraic solvers

Iterative methods: summary of operations (III - global reductions)

HS CG method by Hestenes and Stiefel has two synchronization
points separated in the loop by vector operations. Parallel
computation of the scalars that corresponds to the synchronization
points can be based on reduction of the fan-in type. As above, depth
of the fan-in scheme has logarithmic complexity.
Some other variants of the conjugate gradient method may have only
one synchronization point since the two scalar products can be
computed at the same time and their computation is not separated by
additional vector operations. This can be important from the
parallelism point of view.
This may lead to worse behavior in finite precision arithmetic.

385 / 459

Sparse linear algebraic solvers

Iterative methods: summary of operations (III - global reductions)

Algorithm

ST (three-term) conjugate gradient method (Stiefel, 1955; Rutishauser, 1959
Input: Symmetric positive definite matrix A ∈ Rn×n, right-hand side vector b ∈ Rn of the
system Ax = b, initial approximation x0 ∈ Rn to x ∈ Rn.
Output: Solution approximation xn after the algorithm has been stopped.
0. Initialization: r0 = b −Ax0, p0 = r0, x−1 = x0, r−1 = r0, e−1 = 0
1. for i = 1 ∶ nmax do
2.qi−1 =

(ri−1,Ari−1)
(ri−1, ri−1)

− ei−2

3.xi = xi−1 + 1
qi−1
[ri−1 + ei−2(xi−1 − xi−2)] ≡ xi−1 + 1

qi−1
[ri−1 + ei−2∆xi−1]

4.ri = ri−1 + 1
qi−1
[−Ari−1 + ei−2(ri−1 − ri−2)] = ri−1 + 1

qi−1
[−Ari−1 + ei−2∆ri−1]

5.evaluate the stopping criterion

6.ei−1 = qi−1
(ri, ri)
(ri−1, ri−1)

7. end do

386 / 459

Sparse linear algebraic solvers

Iterative methods: changing layout of Krylov space methods

Standard layout of iterative Krylov space methods can be changed in
more ways.

▸ Moving synchronization points mentioned above.
▸ Pipelining vector operations (can be done in a straightforward way)
▸ Overlapping communication and computation.
▸ Overlapping by splitting the Cholesky factorization preconditioner on

the next slide.

387 / 459

Sparse linear algebraic solvers

Iterative methods: changing layout of Krylov space methods

Algorithm

Preconditioned HS conjugate gradient method
Input: Symmetric positive definite matrix A ∈ Rn×n, right-hand side vector b ∈ Rn of the
system Ax = b, preconditioner LLT , initial approximation x0 ∈ Rn to x ∈ Rn.
Output: Solution approximation xn after the algorithm has been stopped.
0. Initialization: r0 = b −Ax0, p−1 = 0, β−1 = 0, α−1 = 0, s = L−1r0, ρ0 = (s, s)
1. for i = 0 ∶ nmax do
2. wi = L−T s
3. pi = wi + βi−1pi−1, qi = Api
7.γ = (pi, qi), xi = xi−1 + αi−1pi−1
2.αi = ρi

γ
, ri+1 = ri − αiq1

7.s = L−1ri+1
7.ρi+1 = (s, s)
3.xi = xi−1 + αi−1pi−1, ri = ri−1 − αi−1Api−1
5.evaluate stopping criterion; if satisfied xi+1 = xi + αipi, stop
6.βi =

ρi+1
ρi

8. end do
388 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: preconditioning

A way to accelerate iterative solvers is preconditioning.
Here we mention algebraic preconditioners and discuss their parallel
aspects. There are two important tasks connected to this.

▸ Parallelizing preconditioner construction

▸ Parallelizing the solves with preconditioners.

389 / 459

Outline

1 Foreword

2 Computers, computing, communication

3 Parallel computing

4 Parallel processing and us - parallel programming

5 Parallel computer architectures: hardware and classification

6 Combining pieces together: computational models
Uniprocessor model
Vector and SIMD model
Multiprocessor model

7 Parallelizing problems

8 Sparse data decomposition: graph partitioning

9 Parallel and parallelized algebraic preconditioning

390 / 459

Approximate factorizations, splitting and preconditioning

Definition
Linear onestep stationary iterative method is a process where the
relation between the two subsequent iterates x,x+ ∈ Rn is expressed as

x+ = Sx +M−1b. (79)

S,M ∈ Rn×n; M regular. Matrix S is called the iteration matrix.

Briefly called stationary iterative methods.

Consistence of an iterative method is expressed by

x∗ = Sx∗ +M−1Ax∗,

This implies
S = I −M−1A,

where x∗ is a solution of Ax = b.
391 / 459

Approximate factorizations, splitting and preconditioning

Another expression

x+ = x −M−1Ax +M−1b ≡ (I −M−1A)x +M−1b. (80)

Or
M(x − x+) = Ax − b. (81)

Different choices of M imply different iterative methods.
Choosing M from

A =M −R ≡M − (M −A) (82)

for some R ∈ Rn is called a choice by splitting of A.
The choice M = I is sometimes called simple iteration.
Matrix M can be called a preconditioning of the simple iteration.

392 / 459

Approximate factorizations, splitting and preconditioning

Definition
Stationary iterative method for solving

Ax = b, A ∈ Rn×n, x ∈ Rn, b ∈ Rn (83)

is convergent if the sequence of its iterates converges to the problem
solution x∗ independently of the choice of the initial approximation x0.

Remind that the spectral radius of S ∈ Rn×n is given as

lim
k→∞

∥ Sk ∥1/k, (84)

Another equivalent expression:

ρ(S) =max{∣λi∣ ∣λ ∈ σ(A)}, (85)

393 / 459

Approximate factorizations, splitting and preconditioning

Theorem
Stationary iterative method (79) with iteration matrix S is convergent iff

ρ(S) < 1,

where ρ(S) is the spectral radius of S.

394 / 459

Approximate factorizations, splitting and preconditioning

Preconditioning as a general transformation

Ax = b, M regular

M−1Ax =M−1b. (86)

x+ +M−1Ax = x +M−1b. (87)

x+ = (I −M−1A)x +M−1b, (88)

395 / 459

Approximate factorizations, splitting and preconditioning

Construct M−1A or not?

Desirable properties of preconditioning

small
∥M −A ∥

small
∥ I −M−1A ∥ .

Note that these norms may be very different
Stable application of composed preconditioners as M =M1M2

Useful for the specific target computer architecture.

396 / 459

Approximate factorizations, splitting and preconditioning

Left, right or split preconditioning

M−1Ax = M−1b

AM−1y = b, x =My

M−1
1 AM−1

2 y = M−1
1 b, x =M2y, M =M1M2

Theorem
Let ϵ and ∆ are positive numbers. Then for every n ≥ 2 there are regular
matrices A ∈ Rn and X ∈ Rn such that all entries of XA − I have
magnitudes less than ϵ and all entries of AX − I have magnitudes larger
than ∆ [?].

397 / 459

Approximate factorizations, splitting and preconditioning

Let A be SPD. Then the system preconditioned from both sides

L−1MAL−TM y = L−1M b, x = LT
My (89)

where M = LMLT
M has SPD system matrix L−1MAL−TM and can be solved by

the CG method.

Theorem
Consider solving Ax = b with SPD preconditioning matrix M . Then

M−1A is self-adjoint in the dot product (., .)M = (M., .).
AM−1 is self-adjoint in the dot product (., .)M−1 = (M−1., .).

398 / 459

Approximate factorizations, splitting and preconditioning

Proof.

(M−1Ax, y)M = (Ax, y)
= (x,Ay)
= (x,MM−1Ay)
= (Mx,M−1Ay)
= (x,M−1Ay)M

(AM−1x, y)M−1 = (AM−1x,M−1y) = (M−1x,AM−1y) = (x,AM−1y)M−1

(90)

399 / 459

Approximate factorizations, splitting and preconditioning

Corollary
CG method preconditioned from the left based on the dot product (., .)M ,
CG method preconditioned from the right based on the dot product
(., .)M−1 and CG method using standard dot product and preconditioned
from both sides as above (89) provide in the exact arithmetic the same
iterates.

400 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: preconditioning

Many standard preconditioners are based on approximate
LU/Cholesky factorization and also called incomplete
factorizations. Problems in parallel computational environment.
Factorization constructions have often to be reformulated to become
more efficient. Although the construction is often rather cheap,
preconditioners may not have large and dense blocks.
But they may have more of structural parallelism (analogy of the tree
paralellism) being often more sparse.
Also the challenge of solve steps may be more suitable here (often
more possible parallel branches due to the sparsity)

401 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: preconditioning

Main directions in parallel and parallelized preconditioners
▸ Specific approximation techniques or modifications of factorizations.

▸ Specific reorderings.

▸ Finding and exploiting blocks in the system matrix.

▸ A posteriori reorderings to enhance matrix-vector multiplications or the
solve steps.

▸ Approximating directly M−1 ≈ A−1.

402 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific preconditioning techniques

1. Partial vectorization

Strategy that exploits the vectorization potential in case of structured
matrices. The fill-in limited to original diagonals and possibly few
others.
Useful mainly in special cases, e.g., for matrices from structured
(regular) grids.

*
*

*
*

**
*

*
*

*
*

*
*

**
*

*
*

*
*

*
*

**
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

*
*

*
*

**
*

*
*

403 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific preconditioning techniques

2. Forced aposteriori annihilation

Based on dropping such entries of the incomplete factors that prohibit
efficient (partial) vectorization and/or parallelization.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
∗ ∗
∗ ∗

∗
∗ ∗
∗ ∗
∗ ∗

∗
∗ ∗
∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Finding entries to be dropped may be difficult.
Slowdown of convergence often faced.

404 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific preconditioning techniques

3. Wavefront processing.
Again, originally introduced for factorization of matrices from
structured grids.
Parallel potential of this approach similar of the one of the fine grain
implementations of simple stationary iterative methods.

Can be generalized to other stencils, even to unstructured problems.
405 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

Red-black reorderings and their multilevel extensions
Discretized 2D Poisson equation (24). grid points: rows and columns of
the matrix. Natural matrix ordering gives the depicted matrix: bijection β
between the grid points (i, j) ∈ {1, . . . , nx} × {1, . . . , ny} of the nx × ny
grid and row/column indices given by

β ∶ (i, j)←→ i + nx ∗ (j − 1). (91)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(92)

Figure: Matrix of the discretized Poisson equation in 2D with natural ordering of
the grid points.

406 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

1. Red-black reordering

Red-black reordering is the reordering of the grid points /matrix rows and
columns allowing the permuted matrix to be written in the block form as

A = (

red points black points

red points D1 F
black points E D2

) (93)

D1 and D2 are diagonal matrices.

E = F T if matrix is symmetric

Coloring in the figure below.

407 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

1. Red-black reordering (continued)

1 2

3

4 5

6

7 8

9

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 −1 −1
4 −1 −1

4 −1 −1 −1 −1
4 −1 −1

4 −1 −1
−1 −1 −1 4
−1 −1 −1 4

−1 −1 −1 4
−1 −1 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure: Red-black reordering and the system matrix reordered such that the red
nodes come first.

408 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

1. Red-black reordering (continued)
Red-black reordering exists if and only if the adjacency graph of the matrix
is bipartite. Considering the factorization, one its block step based on the
pivoting diagonal block D1 provides

A = (D1 F
E D2

) = (I
ED−11 I

)(D1

D2 −ED−11 F
)(I D−11 F

I
) . (94)

Partial elimination of the rows and columns that correspond to this
step results just to scaling of the offdiagonal blocks by the diagonal
block D1

Since D2 is diagonal, this simplifies the computation of the Schur
complement

S =D2 −ED−11 F. (95)

In our case of discretized Laplace operator the matrix can be
considered as a block tridiagonal matrix and this property is
transferred into the Schur complement.

409 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

2. Red-black reordering and stability problems
Red/black reorderings may enhance factorization efficiency but also
decrease factorizability of the matrix in some incomplete
factorizations.
This is an additional adverse effect in addition to possible deterioration
of convergence of the preconditioned iterative method.
Consider a simple modified incomplete factorization MIC(0) that does
not allow fill-in.
Stencil depicted.

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −1 ⋅ ⋅
⋅ −1 4 −1 ⋅
⋅ ⋅ −1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

(96)

410 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

2. Red-black reordering and stability problems
Consider elimination of the red nodes (rows/columns) earlier than the
black nodes. This is what is done in the red-black reordering. Then,

First: black matrix entries (of internal vertices) in MIC(0) are modified
by other black nodes as follows

aii = aii−
4

∑
ji=1

1

ajiji
= 4−4×1

4
= 3, ji corresponds to a grid neighbor of i.

(97)
Each of these four black neighbors generates three fill-ins among
their other black neighbours since these nodes would form in the
complete LU a clique. The fill-in is in MIC(0) not removed but
subtracted from the diagonal entry and we have

aii = aii−
4

∑
ji=1

3× 1

ajiji
= 3−3 = 0, ji corresponds to a grid neighbor of i

(98)411 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

2. Red-black reordering and stability problems
Clearly, this incomplete factorization and MIC(0) can break down.
Consequently, hunt for more parallelism can be
counterproductive.
Summarizing: the red-black reordering combined with MIC(0) may
significantly damage the local connections by

▸ unnaturally separating points that were originally topologically close
and

▸ replacing fill-in by diagonal modification.

412 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

3. Recursive red-black reorderings
Red-black reorderings may imply a significant asymptotic decrease of
the condition number of the preconditioned matrix for some model
problems
There are more ways to do recurrent reordering that differ by the
choice of the fill-in kept in the subsequent levels.

413 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

3. Recursive red-black reorderings (continued)
Left side: the black nodes that were originally not connected, right side:
the “black” Schur complement with the fill-in.

414 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

3. Recursive red-black reorderings (continued)
One possibility is to keep only the following fill-in for the next level as
proposed by Brand (1992), see also Brand, Heinemann (1989).

415 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

3. Recursive red-black reorderings (continued)
Possible to show that the ratio of the largest and smallest eigenvalue (of
the preconditioned system) for an SPD model problem is after recurrent
applications of the MIC preconditioner asymptotically:

O(h−1/2). (99)

In the other words, this is the asymptotic dependency of the condition
number of the symmetrically preconditioned matrix

M−1/2AM−1/2. (100)

416 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

3. Recursive red-black reorderings (continued)
Similar proposals to keep well-chosen fill-in and use the rest to modify the
diagonal as a MIC scheme proposed by Ciarlet, Jr. (1992):

417 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

3. Recursive red-black reorderings (continued)
In this case the condition number of the recursively preconditioned system
is asymptotically

O(h−1/3). (101)

Experiments show that this may be true for more general problems
and less structured problems.
Note that the condition number does not necessarily imply a fast
convergence of the preconditioned iterative method.
Also there can be more powerful preconditioners than those from the
MIC class.

418 / 459

Sparse linear algebraic solvers

Multicoloring

419 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

4. Multicolorings
Why reorderings based on more colors called multicolorings should be
used instead of red-black reorderings.

▸ The red-black reordering combined with a specific incomplete
factorization of the MIC type may lead to stability problems.

▸ Multicoloring naturally generalizes the red-black concept.
▸ Does not necessarily destroy so many global connections in the

preconditioner and may not influence convergence so much.

Multicoloring implies block structure with diagonal diagonal blocks.
More colors naturally restricts potential parallelism.

420 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

5. Red-black reordering and multilevel approaches
If the graph of the matrix structure is not bipartite we can still use two
colors and look for a reordering such that only the matrix D1 is
diagonal. Such reordering can be obtained considering just the
underlying graph.
A related graph problem: to find an independent set in a (typically
undirected) graph.
The multilevel component is in recurrent repetition of the search of
independent sets in the subsequent Schur complements that,
depending on the type of approximate factorization can have the
sparsity structure known or fully general.

A = (D1 F
E C

) = (D
1/2
1

E I
)(I

C −ED−11 F
)(D

1/2
1 F

I
) . (102)

421 / 459

Sparse linear algebraic solvers

Accelerating iterative methods: specific reorderings

5. Red-black reordering and multilevel approaches (continued)
While there is not much to be saved if the principal leading blocks are
chosen as diagonal, if they are block diagonal or even more general,
storing unscaled blocks can decrease memory at the expense of a
slight increase in the algorithm (sequential) efficiency.
This is what we often do in case of these so-called multilevel
factorizations.
Multilevel approaches to compute preconditioners may not only
enhance parallelism in the construction, but they can be also more
efficient due to less cache faults despite they may influence
convergence.

422 / 459

Sparse linear algebraic solvers

Approximating directly M−1 ≈ A−1

Substitutions → matvecs
More possibilities in this class: factorized, non-factorized, provided
in the form of polynomial and so on.
The inverse of a matrix with a strongly connected adjacency matrix
is generally fully dense.
But: Standard incomplete factorizations with limited nonzero
counts represent the matrix very locally since the nonzeros in M
correspond to nonzero edges of the adjacency graph of A or to the
local fill-in. In contrast to this, nonzeros in A−1 correspond to paths in
this graph and this global information may be transferred also to M−1.

423 / 459

Sparse linear algebraic solvers

Approximate inverses

Preconditioning by minimization in the Frobenius norm

Consider A ∈ Rn×n, positive definite and possibly nonsymmetric W ∈ Rn×n

and a constraint in the form of a prescribed sparsity pattern S that has
to be satisfied by an approximate matrix inverse G ∈ Rn×n.

minimize FW (G,A) = ∥I −GA∥2W = tr [(I −GA)W (I −GA)T]
For W = I we get the least-squares approximate inverse (AI) that
decouples to solving n simple least-squares problems.

Minimize FI(G,A) = ∥I −GA∥2F =
n

∑
i=1
∥eTi − g̃Ti A∥22,

where
g̃Ti , i = 1, . . . n

are rows of the approximation G based on the prescribed sparsity
pattern S.

424 / 459

Sparse linear algebraic solvers

Preconditioning by minimization in the Frobenius norm (continued)

The positive definiteness of W implies that the functional is FW (G,A)
nonnegative and its minima satisfy

(GAWAT)ij = (WAT)ij , (i, j) ∈ S. (103)

This can be obtained through (since we know that tr(AB) = ∑i∑j aijbji)

FW (G) = tr [(I −GA)W (I −GA)T]
= tr(W) − tr(GAW) − tr(WATGT) + tr(GAWATGT)
= tr(W) −∑

i,j

gij [(AW)ji + (WAT)ij] + tr(GAWATGT)

Setting
∂FW (G)

∂gij
= 0, (i, j) ∈ S (104)

we get

− (AW)ji − (WAT)ij + (AWATGT)ji + (GAWAT)ij , (i, j) ∈ S (105)
425 / 459

Sparse linear algebraic solvers

Approximate inverses

Preconditioning by minimization in the Frobenius norm (continued)

This implies
(GAWAT)ij = (WAT)ij , (i, j) ∈ S (106)

Its special case where A is also SPD with W = A−1 is called the direct
block method (DB) and it leads to solving

Solve [GA]ij = δij , (i, j) ∈ S.

426 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

More sophisticated proposal called SPAI changes the sparsity pattern
dynamically in outer iterations.

Algorithm

SPAI approximate inverse computation
1. Choose an initial sparsity pattern and iterate the following steps
2. Compute the reduced least squares problem
3. Evaluate residual
4. Add new rows that correspond to largest residual components
5. Add new columns crossed by these rows
6. Update the decomposition

427 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

Later improvements considered, for example, on more accurate
residual evaluations (Gould, Scott, 1995)
or high-quality initial pattern predictions (Huckle, 1999, 2001;
Chow, 2000).
The approach is procedurally parallel, but it may be difficult to
distribute A such that all processors have their data even when the
prescribed pattern dynamically changes.

428 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

Another possibility inherently parallel is to use simple stationary iterative
method to evaluate individual columns ci by solving systems of the form

Aci = ei, i = 1, . . . , n

Simple but typically not very efficient.
Putting more data dependency to computations a la Gauss-Seidel.

429 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

A specific approach: computation of an approximate inverse
Cholesky factor of an SPD matrix using the Frobenius norm
paradigm.
Minimization is constrained by prescribing the sparsity pattern of the
factor.

Z̄ = arg min
GL∈S

FI(GL
T , L) = arg min

GL∈SL
∥I −GL

TL∥2F , where A = LLT .

Applying (106) to this minimization problem (A→ L) with W = I, we have

(GLLL
T)ij = (LT)ij , (i, j) ∈ SL (107)

that is when plugging in the matrix A

(GLA)ij = (LT)ij , (i, j) ∈ SL. (108)

430 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

We can see that the pattern SL is lower triangular and LT is upper
triangular. If we know diagonal entries of L, we get GL from

(GLA)ij = {
(LT)ij i = j,

0 i ≠ j. (109)

Otherwise, we can find (generally different) factor ĜL from

(ĜLA)ij = δij , (i, j) ∈ SL (110)

and set GL =DĜL such that

(DĜLAĜT
LD)ii = 1, , i = 1, . . . , n. (111)

The procedure can be extended to the nonsymmetric matrix A.

431 / 459

Sparse linear algebraic solvers

Preconditioning by direct factorization of the inverse

Standard incomplete LU factorization of A:

A ≈ LU (112)

and then these triangular factors are inverted, either exactly, or
incompletely. If the incomplete factors L and U are sparse then even
their exact inverses can be sparse. Then we can set

M−1 = U−1L−1. (113)

This strategy leads to a reasonably efficient preconditioner in some
cases.
Another possibility: construct the inverse directly A is strongly regular
has the unique factors L, D a U such that L is unit lower triangular,
U is unit upper triangular and D is diagonal. We have

A−1 =WD−1ZT ⇒ A = Z−TDW−1 (114)

432 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

This can be rewritten into

ZTAW =D. (115)

For simplicity, consider a case when A is symmetric and positive
definite. Then the columns Z and W ≡ ZT are mutually orthogonal in
the A-scalar product

⟨. , .⟩A. (116)

This represents to evaluate the factors.
The algorithm to get these factor is Gram-Schmidt
orthogonalization in this A-scalar product. This procedure is
sometimes called A-orthogonalization.
Its straightforward generalization to the nonsymmetric case (with less
theoretical guarantees) is called biconjugation.

433 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

Algorithm

Inverse factorization via A-orthogonalization
Input: Sparse SPD matrix A ∈ Rn×n.
Output: Unit upper triangular matrix Z such that A−1 = ZD−1ZT .
1. for i = 1 ∶ n do

2. zi = ei −
i−1
∑
k=1

zk
eTi Azk

zTk Azk
3. end i
4. Set Z = [z1, . . . , zn]

434 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

The order of operations of Algorithm 9.2 is depicted in the following figure.
In each step i of the algorithm for i = 1, . . . , n a column of Z as well as one
diagonal entry of D are computed. This way to compute the factors we call
backward left-looking) algorithm.

Z

435 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

The following result is easy to see

Lemma
Columns of the factor Z from Algorithm 9.2 satisfy

Dii = eTkAzk ≡ z
T
k Azk,1 ≤ k ≤ n. (117)

Diagonal entries used to divide in Algorithm 9.2 can be computed by
at least two ways. The one used here is called the stabilized
computation of the diagonal entries. The reason for this is that we
always have zTk Azk > 0 even if the columns of Z are modified, for
example, by dropping of offdiagonal entries in an incomplete
factorization since A is positive definite.
This does not need to be true for eTkAzk and the A-orthogonalization
can break down in this case.
This cannot happen for some special matrices, like M-matrices or
H-matrices. 436 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

Another scheme, the forward (right-looking) variant of the algorithm, is
given below.

Z

437 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

Side-effect of AINV: RIF

AINV can be a way to get the LDLT factorization as well. The
construction steps:

Find the decomposition ZTAZ =D, where Z is unit upper triangular
and D is diagonal.
The factor L of the decomposition A = LDLT is L = AZD−1, and it
can be easily retrieved from this inverse factorization.
The procedure to compute factors in this way is sometimes called
robust incomplete factorization (RIF).

The two following figures show data flow of the construction but we do not
go into details.

438 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

Z L

done active

done

Right-looking approach

Z L

done

done

Left-looking approach
439 / 459

Sparse linear algebraic solvers

Approximate inverses (continued)

Approximate inverses or the RIF factors may enhance parallelism
They can also help to solve systems of linear equations difficult to solve
They can be used as auxiliary procedures to approximate blocks in
block factorizations, see, e.g., Axelsson, Brinkkemper, Il’in, 1984;
Concus, Golub, Meurant, 1985.

440 / 459

Sparse linear algebraic solvers

Other approaches to get an approximation to A−1

Bordering scheme is based on the equivalence

(Z
T

−yT 1
)(A v

vT α
)(Z −y

1
) = (D

δ
)

Other techniques like getting inverse factors from the computed direct
factors Alvarado, Dag, 1992
Based on exploiting the Sherman-Morrison updating formula.

441 / 459

Sparse linear algebraic solvers

Global matrix iterations

The inverse matrix can be approximated iteratively by the so-called Schulz
iterations (Schulz, 1933) based on the scheme

Gi+1 = Gi(2I −AGi), i = 1, . . .

The approach is derived from the Newton-Raphson iteration to get p where
a given function f is zero. Consider the tangent equation for the function
f .

y = f ′(pn)x + b. (118)

The tangent passes through the point (pn, f(pn)) and this can be written

f(pn) = f ′(pn)pn + b (119)

that gives
b = f(pn) − f ′(pn)pn. (120)

442 / 459

Sparse linear algebraic solvers

Global matrix iterations (continued)

Searching for the zero point in pn+1 we have

0 = f ′(pn+1)pn+1 + f(pn) − f ′(pn)pn (121)

giving

pn+1 = pn −
f(pn)
f ′(pn)

. (122)

Considering the function of the inverse

f(x) = 1/x − a

we get

pn+1 = pn −
1/pn − a
−1/p2n

= ap2n = 2pn − ap2n. (123)

and this implies the matrix generalization of the Newton-Raphson
iterations.

443 / 459

Sparse linear algebraic solvers

Polynomial preconditioning

Consider preconditioning of the systems of equations in the following
transformation form

M−1Ax =M−1b. (124)

One possibility to choose preconditioning is to consider its inversion in the
form of polynomial s(A) in A of degree k. A natural motivation is that the
inverse matrix can be expressed using the characteristic polynomial
p(λ) = det(A − λI) of A. Cayley-Hamilton theorem implies

pn(A) ≡
n

∑
j=0

βjA
j = 0. (125)

For a regular A we have β0 = (−1)n det(A) ≠ 0 and we get after
multiplying by A−1

A−1 = − 1

β0

n

∑
j=1

βjA
j−1. (126)

444 / 459

Sparse linear algebraic solvers

Polynomial preconditioning

Preconditioning: using the truncated characteristic polynomial

M−1 = s(A) =
k

∑
j=0

cjA
k. (127)

The idea of polynomial preconditioning can be found for the first time
by Cesari in 1937 who used it to precondition the Richardson iterative
method.
Further development has been pushed by vector and parallel
computations, see Stiefel, 1958, since the solve steps are rich in
matvecs operations that profit parallel processing.
Furthermore, A and s(A) mutually commute and the evaluation can
be based on the Horner scheme, see its more parallel variants by Estrin.

445 / 459

Sparse linear algebraic solvers

Polynomial preconditioning and the conjugate gradient method

The conjugate gradient method with SPD system matrix searches in its
step k + 1 an approximation xk+1 of the solution vector in the form

xk+1 = x0 +Pk(A)r0, k = 0, (128)

Here the polynomial Pk(A) minimizes the A-norm of the solution error

∣∣xk+1 − x∗∣∣A =
√
(xk+1 − x∗)TA(xk+1 − x∗) (129)

among all polynomials of the degree k at most k for which Pk(0) = 1. A
reason why another polynomial preconditioning may be useful may be

Iteration count can be even smaller although the total arithmetic
complexity may be larger.
Polynomial preconditioning can reduce the number of dot products
that may be problematic on parallel computing architectures.
Much less memory, very straightforward and may enable
matrix-free implementation.

Similarly for polynomial preconditioning of other Krylov methods.
446 / 459

Sparse linear algebraic solvers

Preconditioning by Neumann series

Neumann series of a matrix G ∈ Rn×n is called the series
+∞
∑
j=0

Gj . (130)

We have the following theorem

Theorem
Neumann series of G ∈ Rn×n converges if and only if we have

ρ(G) ≡ {∣λ1∣, . . . , ∣λn∣} < 1.

In this case we have

(I −G)−1 =
+∞
∑
j=0

Gj . (131)

Let us note that ρ(G) < 1 is true if some multiplicative norm ∣∣∣G∣∣∣ of G is
less than 1.

447 / 459

Sparse linear algebraic solvers

Preconditioning by Neumann series (continued)

For simplicity we will distinguish two cases.
Consider splitting A with regular matrix M1.

A =M1 −R. (132)

Then
A =M1(I −M−1

1 R) =M1(I −G). (133)

If
ρ(G) = ρ(M−1

1 R) = ρ(I −M−1
1 A) < 1

then

A−1 = (I −G)−1M−1
1 =

⎛
⎝

+∞
∑
j=0

Gj⎞
⎠
M−1

1 (134)

Preconditioning that approximates A−1 we get by considering only a
finite number k + 1 of terms in this expression for the inverse of A.
In the other words, the inverse preconditioner M−1 is expressed by a
truncated Neumann series.

448 / 459

Sparse linear algebraic solvers

Preconditioning by Neumann series (continued)

M−1 = (I −M−1
1 R)−1M−1

1 =
⎛
⎝

k

∑
j=0
(M−1

1 R)j
⎞
⎠
M−1

1 . (135)

In order to satisfy the convergence condition, scaling should be
used. Consider the following splitting for ωA with a real nonzero
parameter ω as follows

ωA =M1 −R1 =M1 − (M1 − ωA) =M1(I −M−1
1 (M1 − ωA)). (136)

Then

(ωA)−1 = (M1(I − (I − ωM−1
1 A)))−1 = (I − (I − ωM−1

1 A))−1M−1
1 .

(137)
Parameter ω and regular matrix M1 can be always chosen such that
the matrix G = (I − ωM−1

1 A) has convergence radius less than one.
449 / 459

Sparse linear algebraic solvers

Preconditioning by Neumann series (continued)

Matrix (I −G)−1 can be approximated by truncated Neumann series

⎛
⎝

k

∑
j=0

Gj⎞
⎠
. (138)

Then we have

A−1 ≈ ω
⎛
⎝

k

∑
j=0

Gj⎞
⎠
M−1

1 . (139)

Consequently,

M−1A =
⎛
⎝

k

∑
j=0

Gj⎞
⎠
M−1

1 A =
⎛
⎝

k

∑
j=0

Gj⎞
⎠
(I −G) = (I −Gk+1). (140)

Another possibility

I + γ1G + γ2G2 + . . . γkGk, (141)

such that the additional degrees of freedom can be used to optimize it.
450 / 459

Sparse linear algebraic solvers

Preconditioning based on Čebyšev polynomials

This type of polynomial preconditioning has been derived considering the
following optimization task in the spectral norm.

∣∣I − s(A)A∣∣ = max
λi∈σ(A)

∣1 − λis(λi)∣. (142)

This implies a practical goal to find the polynomial s of a given degree k
minimizing the expression

max
λ∈σ(A)

∣1 − λs(λ)∣ (143)

among all polynomials of the given degree. This task may be relaxed
looking for the polynomial that minimizes the expression on some set E
that includes the matrix spectrum

max
λ∈E
∣1 − λs(λ)∣, E includes spectrum (144)

among all polynomials of the given degree. If A is symmetric and positive
definite, the set is an interval of R+.

451 / 459

Sparse linear algebraic solvers

Preconditioning based on Čebyšev polynomials (continued)

Denoting this interval as
[a, b], (145)

then the problem reduces to search of the polynomial s satisfying

s = min
p,deg(p)≤k

max
λ∈[a, b]

∣1 − λp(λ)∣. (146)

It is well-known that the solution can be expressed using scaled and
shifted Čebyšev polynomials of the first kind

T0(λ), T1(λ), (147)

452 / 459

Sparse linear algebraic solvers

Preconditioning based on Čebyšev polynomials

In case of A SPD we can construct these Čebyšev polynomials in the
following way, where δ and θ are (a + b)/2 and (b − 1)/2, respectively.

σ0 = 1, σ1 = θ/δ, σk+1 = 2θ/δσk − σk−1
T0(λ) = 1/θ, T1(λ) = (4θ − 2λ)/(2θ2 − δ2)

Tk(λ) =
2σk
δσk+1

+ 2σk(θ − λ)
σk+1δ

Tk−1(λ) −
σk−1
σk+1

Tk−2(λ)

453 / 459

Sparse linear algebraic solvers

Preconditioning based on Čebyšev polynomials

If we choose λ1 = a, λn = b then one can show (Johnson, Miccheli, Paul)
that the preconditioned matrix

s(A)A (148)

has minimum condition number among all such matrices where s(A) has
degree k at most.
Čebyšev polynomial preconditioning can be easily applied in the framework
of the conjugate gradient method applying the polynomial to residuals ri
using the relation

ri = Ti(A)r0, i = 1, . . . , n. (149)

Even if A is symmetric and indefinite one can propose a polynomial
preconditioning. Consider matrix spectrum inside the two intervals

[a, b] ∪ [c, d], −∞ < a ≤ b < 0 < c ≤ d < +∞, (150)

of the same length. That is, we have

b − a = d − c. (151)

Solution of the corresponding polynomial minimax problem express
explicitly using de Boor-Rice polynomials [?] as follows

Pm(λ) =
1

λ
(1 − Tk(Φ(λ))

Tk(Φ(0))
) , Φ(λ) = 1 + 2(λ − b)(λ − c)

ad − bc
. (152)

The degree of the polynomial preconditioning (m is always even) that
monotonically map both intervals to [−1, 1] is then

k = ⌊m/2⌋. (153)

454 / 459

Sparse linear algebraic solvers

Preconditioning based on least squares polynomials

The quality of the Čebyšev polynomials for SPD matrices strongly depends
on the chosen interval/intervals. Straightforward use of the Geršgorin
theorem does not need to be enough. There are some proposals to improve
convergence. But there also other ways to construct polynomial
preconditioners that can provide sometimes better results. One of these
proposals is based on the least-squares polynomials and has been proposed
by Johnson, Micchelli and Paul in 1983.
Consider the following scalar product of two functions p and q on the real
axis

⟨p, q⟩ = ∫
b

a
p(λ)q(λ)w(λ)dλ, (154)

where w(λ) is nonnegative weight function on (a, b). The corresponding
norm

∣∣p∣∣w = ∫
b

a
∣p(λ)∣2w(λ)dλ, (155)

we will call w-norm.
455 / 459

Sparse linear algebraic solvers

Preconditioning based on least squares polynomials (continued)

We will look for the preconditioner s(A) in the form of a polynomial on an
interval of the real axis that contains matrix eigenvalues. In particular, the
polynomial will be a solution of the problem

min
s∈Pk−1

∣∣1 − λs(λ)∣∣w. (156)

Assume A SPD. If we choose, for example, the weight function w ≡ 1
(Legendre weight function) or

w(λ) = (b − λ)α(λ − a)α, α > 0, β ≥ −1
2
, (157)

(Jacobi weight function), polynomial s(A) can be explicitly computed. If in
addition

α − 1 ≥ β ≥ −1
2
, (158)

then even s(A)A has all eigenvalues real and greater than zero.
456 / 459

Sparse linear algebraic solvers

Preconditioning based on least squares polynomials (continued)

Here we have the following least-squares polynomials sk(λ) of the degree k
at most for k = 1, 2, 3, α = 1/2. β = −1/2.

s0(λ) =
4

3

s1(λ) = 4 − 16

5
λ

s2(λ) =
2

7
(28 − 56λ + 32λ2)).

Derivation of the polynomials can be based, for example, on the relation for
kernel polynomials applied to the residual polynomial

Rk(λ) = 1 − λsk(λ) (159)

or using the three-term polynomial recurrence that could be used for some
weight functions. Both ways can be found in Stiefel, 1958. Another way is
the explicit solution of the normal equations

⟨1 − λsk(λ), λQj(λ)⟩w, j = 0, . . . , k − 1, (160)

where Qj is an arbitrary basis of the space of all polynomials of the degree
k at most. In case of matrices symmetric and indefinite one can derive the
least squares polynomial preconditioning on approximating the union of the
two intervals in which the matrix spectrum is contained to obtain a
modified weight function. Saad in [?] proposes to use the following weight
function in this case

w(λ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

w1 for λ ∈ [a, b]
w2 λ ∈ [c, d]
0 otherwise

(161)

457 / 459

Sparse linear algebraic solvers

Element-by-element preconditioning

Element is traditionaly called a submatrix Ae determined by its row and
column indices that contributes to the system matrix in the following way

A =
ne

∑
e=1

Ae. (162)

The operation extend-add is used to sum the contributions.
One of the possibilities to precondition a systems with this matrix is to
propose the preconditioning in the form of elements as well. This could
enable an efficient parallel implementation. The simplest proposal is to
choose the preconditioning as a sum of diagonal matrices.

Me =
ne

∑
e=1

diag(Ae). (163)

458 / 459

Sparse linear algebraic solvers

Element-by-element preconditioning (continued)

A somewhat more sophisticated approach proposed by Hughes, Levit,
Winget, 1983 and formulated for a matrix that is symmetrically scaled by
its diagonal (Jacobi scaling) defines the preconditioner as follows

M =
√
WΠne

e=1LeΠ
ne
e=1DeΠ

1
e=ne

LT
e

√
W, (164)

where

W = diag(A), I +
√
W
−1
(Ae − diag(Ae)

√
W
−1
= LeDeL

T
e , e = 1, . . . , ne

(165)
Another way has been proposed by Gustafsson, Linskog, 1986. They set

M =
ne

∑
e=1
(L̂e +De)(

ne

∑
e=1

De))
−1 ne

∑
e=1
(L̂T

e +De) (166)

for
Ae = (Le +De)D+e (LT

e +De), e = 1, . . . , ne, (167)

where D+e is a pseudoinverse of the matrix De.
459 / 459

	Foreword
	Computers, computing, communication
	Parallel computing
	Parallel processing and us - parallel programming
	Parallel computer architectures: hardware and classification
	Combining pieces together: computational models
	Uniprocessor model
	Vector and SIMD model
	Multiprocessor model

	Parallelizing problems
	Sparse data decomposition: graph partitioning
	Parallel and parallelized algebraic preconditioning

