
ON SIGNED INCOMPLETE CHOLESKY FACTORIZATION

PRECONDITIONERS FOR SADDLE-POINT SYSTEMS

JENNIFER SCOTT∗ AND MIROSLAV TŮMA†

Abstract. Limited-memory incomplete Cholesky factorizations can provide robust precondi-
tioners for sparse symmetric positive-definite linear systems. In this paper, the focus is on extending
the approach to sparse symmetric indefinite systems in saddle-point form. A limited-memory signed
incomplete Cholesky factorization of the form LDLT is proposed, where the diagonal matrix D has
entries ±1. The main advantage of this approach is its simplicity as it avoids the use of numerical
pivoting. Instead, a global shift strategy involving two shifts (one for the (1, 1) block and one for the
(2, 2) block of the saddle-point matrix) is used to prevent breakdown and to improve performance.
The matrix is optionally prescaled and preordered using a standard sparse matrix ordering scheme
that is then post-processed to give a constrained ordering that reduces the likelihood of breakdown
and need for shifts. The use of intermediate memory (memory used in the construction of the incom-
plete factorization but subsequently discarded) is shown to significantly improve the performance of
the resulting preconditioner. Some new theoretical results are presented and for problems arising
from a range of practical applications, numerical results are given to illustrate the effectiveness of the
signed incomplete Cholesky factorization as a preconditioner. Comparisons are made with a recent
incomplete LDLT code that employs pivoting.

Key words. sparse matrices, sparse linear systems, positive-definite symmetric systems, itera-
tive solvers, preconditioning, incomplete Cholesky factorization.

AMS subject classifications. 65F05, 65F50

1. Introduction. We are interested in solving linear systems Kx = b where the
sparse symmetric matrix K is of the form

K =

(

A BT

B −C

)

. (1.1)

Here A is n× n symmetric positive definite, B is rectangular m× n and of full rank
(m ≤ n), and C is m×m symmetric positive semi-definite. Matrices of the form (1.1)
are often called saddle-point matrices or, in the special case C = 0, KKT matrices,
in reference to the Karush-Kuhn-Tucker first-order necessary optimality conditions
for the solution of general nonlinear programming problems. Saddle-point problems
arise frequently in many applications in science and engineering, including in equality
and inequality constrained nonlinear programming, interior point algorithms in both
linear and nonlinear optimization, sparse optimal control, mixed finite-element dis-
cretizations of partial differential equations in fields such as fluid and solid mechanics,
and circuit analysis.

Typically, K is large. In some cases it may be possible as well as desirable to
use a direct solver; indeed, a number of sparse direct solvers (including the packages
MA57 [17] and HSL MA86 [32] from the HSL mathematical software library [35]) have
been designed with such systems in mind. However, the memory demands of direct
solvers can mean that, for very large K, it is necessary to use an iterative method,
usually a Krylov subspace-based method (see, for example, [64]). Moreover, in some

∗Computational Science and Engineering Department, Rutherford Appleton Laboratory, Harwell
Oxford, Oxfordshire, OX11 0QX, UK. jennifer.scott@stfc.ac.uk. Supported by EPSRC grant
EP/I013067/1.

†Institute of Computer Science, Academy of Sciences of the Czech Republic. tuma@cs.cas.cz.

Partially supported by the Grant Agency of the Czech Republic Project No. 13-06684 S. Travel
support from the Academy of Sciences of the Czech Republic is also acknowledged.

1

applications it may not be necessary to solve the system with high accuracy or the
linear solve may be part of a nonlinear iteration and here an iterative method may
then be the method of choice. Unfortunately, Krylov methods tend to converge very
slowly when applied to saddle-point systems and a good preconditioner is needed to
accelerate convergence. Over the last 20 years or so, a vast amount of work has been
devoted to the development of effective preconditioners for saddle-point problems.
A quick search of the literature reveals numerous publications incorporating a wide
range of application areas; an excellent survey of the work done up to 2005, together
with a comprehensive reference list, is given in Section 10 of [4] (see also [5] for a later
and more concise overview).

As discussed in [4, 5], much effort has focused on the development of block di-
agonal and block triangular preconditioners as well as on constraint preconditioners.
Comparatively little work appears to have concentrated on the development of reliable
incomplete factorization techniques for saddle-point systems. Following work done on
generating good orderings and scalings for direct solvers for indefinite systems [20, 55],
Hagemann and Schenk [30] proposed using a maximum weighted matching algorithm
to preprocess the matrix. The objective is to permute large entries on to the sub-
diagonal that can then be used to form stable 2 × 2 pivots, allowing the incomplete
factorization to avoid the use of dynamic pivoting (which can add a computational
overhead as well as significantly complicating the software development). If a pivot
is found to be too small, breakdown is prevented by adding a small perturbation. In
[30], some good results are reported (sparse factors and lower iteration counts) for
tests on saddle-point problems.

Li and Saad [38] developed pivoting strategies for sparse symmetric matrices to
improve the robustness of their Crout variant of ILU preconditioner [39]. They found
that incorporating Bunch-Kaufman pivoting [10] can be efficiently and effectively
integrated within an incomplete factorization for sparse symmetric indefinite matrices
and reported some encouraging results for general indefinite problems as well as for
some KKT problems. Using the work of Li and Saad, Greif, He and Liu [29] have
recently made available an incomplete factorization package called SYM-ILDL that is
designed for general symmetric indefinite matrices. This package optionally starts by
scaling the matrix to be equilibrated in the maximum norm, and then preorders using
the Reverse Cuthill-McKee algorithm or approximate minimum degree. As in Li and
Saad, there is an option to use Bunch-Kaufman pivoting during the factorization to
maintain stability and avoid breakdown. The user controls the maximum allowed fill
within each column and also the dropping of small entries. Currently, no published
results are available for this new code but initial findings appear consistent with those
reported by Li and Saad [28] (see also Section 6 below).

For saddle-point systems, an alternative approach is based on the observation
that K can be factored into the form

K =

(

A BT

B −C

)

=

(

L11 0
L21 L22

)(

I 0
0 −I

)(

LT
11 LT

21

0 LT
22

)

, (1.2)

where

A = L11L
T
11

is the Cholesky factorization of A,

L21 = BL−T
11

2

and

S = C + L21L
T
21 = L22L

T
22

is the Cholesky factorization of the (negative) Schur complement [49, 69]. Note that
this factorization always exists, without pivoting (although numerical stability is not
guaranteed). Bridson [9] refers to (1.2) as a signed Cholesky factorization. If we set

L =

(

L11 0
L21 L22

)

,

then P = LLT can be used as a (split) preconditioner. Since the preconditioned
matrix L−1KL−T has two distinct eigenvalues ±1, a symmetric Krylov subspace
method such as MINRES or SYMMLQ [47] would converge in at most two iterations.
In practice, the exact factor L is replaced by an incomplete one. This can be achieved
by first computing an incomplete Cholesky (IC) factorization

A ≈ L̃11L̃
T
11,

which can be done using one of the many available approaches (see, for example, [59]
for an historical overview and a list of references to work done since the 1950s). The
second step is to compute a sparse approximation L̃21 to L21 by solving the lower
triangular system

L̃11L̃
T
21 = BT (1.3)

and then possibly applying some dropping criteria to preserve sparsity in L̃21. Finally,
an IC factorization of the approximate Schur complement

C + L̃21L̃
T
21 ≈ L̃22L̃

T
22 (1.4)

is computed. The resulting incomplete factor

L̃ =

(

L̃11 0

L̃21 L̃22

)

and its transpose can then be used to define a positive-definite factorized precondi-
tioner P̃ = L̃L̃T . Some very limited numerical results using the SYMMLQ and Uzawa
[23] algorithms are given in [49]; a more comprehensive study of how this approach
performs in practice (and, in particular, how to obtain a good sparse approximation
L̃21 to L21) appears to be currently lacking. This is something we plan to report
on in the future, using our incomplete Cholesky factorization code HSL MI28 [58] to
compute each of the two IC factorizations.

In this paper, we take a different approach to obtain an incomplete factorization.
Our idea is to compute a signed IC factorization. The signed complete Cholesky
factorization approach has been used for saddle-point systems by, for example, Brid-
son [9] (and see also [56]). A signed IC approach is attractive for us as it allows us
to use a modified version of our existing IC factorization code and, at the same time,
permits the exploitation of more general orderings that are not restricted to ordering
the (1, 1) block of the matrix separately from the (2, 2) block. Allowing the use of
more general permutations appears to be a preferable strategy when factorizing KKT
systems, as discussed and demonstrated, for example, by Fourer and Mehrotra in

3

their paper [24] on solving the indefinite linear systems that arise in an interior-point
method. Note that the signed factorization avoids the need to compute an explicit
sparse approximation of L̃21 as this block is part of the global Cholesky-like factor.
Importantly, we also avoid the need for pivoting and the use of 2× 2 pivots (but see
the comments on the stability of this approach below). Performing threshold partial
pivoting at each step of the factorization process not only complicates the implemen-
tation but can add a significant time overhead. See also the related motivation for
static pivoting introduced for LU factorizations in [40].

Before describing our approach in more detail, we briefly mention similar concepts
for obtaining an unreduced Cholesky-like factorization, that is, the factorization algo-
rithm is applied to the whole matrix K, not preceded by the null-space or range-space
transformations of the matrix blocks used in segregated approaches [4]. If the full rank
condition for the B block in (1.1) is replaced by positive definiteness of the C block
we get a class of symmetric quasi-definite (SQD) matrices. Vanderbei [65] shows that
SQD matrices are strongly factorisable, i.e., a signed Cholesky factorization exists
for such matrices under any symmetric permutation; this is a stronger result than
we have for our saddle-point matrix K. Further, a stability analysis related to the
factorization of SQD matrices is given by Gill et al [25] (see also [26]), which shows
the importance of the effective condition number of K for the stability of the factor-
ization. In particular, the effective condition number is small if the maximum of the
norms ||BTA−1B|| and ||BTC−1B|| is small with respect to the norm of K. Also note
that the analysis of a symmetric indefinite factorization based on the related gener-
alized QR factorization in [50] points out that conditioning of the principal leading
submatrices may be determined by other factors such as the number of sign changes
in the diagonal of the signed factorization. In practice, neither the SQD condition
nor the full rank condition for the block B needs to be satisfied. Instead, the exis-
tence of a signed Cholesky factorization can be forced by “regularization”, that is, by
modifying the diagonal entries. Saunders and Tomlin [54] used fixed regularization
parameters (diagonal shifts) for the blocks A and −C to ensure stability a priori. Af-
ter regularization of both blocks, the signed Cholesky factorization always exists and
they used this approach to successfully solve test problems from the Netlib collection
(http://www.netlib.org/lp/data/) via the barrier method using a sparse direct
Cholesky solver. Dynamic regularization by perturbing diagonal entries in the signed
Cholesky factorization that results in a SQD matrix was proposed by Altman and
Gondzio [2]. This strategy seems to introduce less perturbation to the logarithmic
barrier method used to solve optimization problems: see also numerical comparisons
and notes on signed Cholesky and indefinite factorizations in [1, 6, 8]. While Alt-
man and Gondzio use a complete signed Cholesky factorization within the HOPDM
optimization code [27], the diagonal entry modification in case of a wrong sign (the
modification should enforce positive definiteness of A and negative definiteness of −C)
or an entry of small magnitude is based on that originally proposed by Kershaw [37].
Another regularization strategy combined with reorderings restricted to blocks (pri-
ority minimum degree) of the saddle-point problem was proposed by Vanderbei and
Shanno [67] and implemented in the optimization code LOQO [66]. They shift the
diagonal of the block corresponding to the primal variables by adding a multiple of
a unit matrix. Moreover, in order to get a strong (complete) factorization of the
regularized matrix, they allow both increases and decreases to the shifts in a manner
that is similar to the strategy proposed by Manteuffel [42] and as implemented, for
example, by Lin and Moré [41], see also [58]. Thus the signed Cholesky factoriza-

4

tion has attracted attention because of its simplicity and because of the systems to
be solved, often obtained in sequence, may need regularization. More sophisticated
and expensive dynamic reorderings that combine symbolical and numerical phases
may be then considered as an overkill. Note that the complete signed Cholesky im-
plementation was also popular in solving indefinite systems within shift-and-invert
based eigensolvers, especially in engineering communities. An example is the imple-
mentation of SKYPACK [43] for the block Lanczos eigenvalue software BLZPACK
(http://crd-legacy.lbl.gov/~osni/#Software), where part of the motivation to
use a signed Cholesky factorization comes from the choice of skyline data structure
for the sparse matrices.

Let us summarize the reasons leading us to develop a state-of-the-art approach
to solve a large class of indefinite systems. Firstly, as already mentioned, we are
interested in preconditioned iterative methods in order to be able to solve very large
problems. Secondly, we want to exploit orderings that are as general as possible since
general orderings are often claimed to lead to the most efficient solvers. Furthermore,
an important number of real-world problems need to be regularized and algebraic
modifications seem to be very natural. Our previous project [58, 59] considered a
large spectrum of different application areas leading to linear systems with symmetric
positive-definite system matrices and found that regularization by flexible strategies
based on the Manteuffel shifts [42] is preferable to ad-hoc modifications. We are
keen to use such a strategy in a signed IC code. Lastly, but not least, we want
preconditioners based on incomplete factorizations that are not only time and memory
efficient but also robust.

The rest of the paper is organised as follows. In Section 2, we briefly recall the
signed Cholesky factorization approach using the description given by Bridson. Then
in Section 3, we summarize our limited memory IC factorization for positive-definite
problems. This is extended to a signed IC factorization in Section 4. In Section 5,
some theoretical results for the signed IC approach are given. Numerical results,
including comparisons with SYM-ILDL, are presented in Section 6 and concluding
remarks are made in Section 7.

2. Constrained ordering and signed IC factorizations. In this section,
we consider the case of a complete factorization of the matrix (1.1). The aim of a
constrained ordering is to find a permutation Q such that QKQT can be factorized
stably without the need for numerical pivoting and without modifying the entries in
K, while still limiting the number of entries in the factor. This problem has been
examined for special classes of matrices by a number of authors. Of practical interest
is the class of F matrices, where each column of B has exactly two entries which sum
to zero and C = 0. These arise in, for example, Stokes flow problems. Tůma [62] and
De Niet and Wubs [16] present methods for these problems while Bridson [9] proposed
a constrained ordering for more general saddle-point problems.

We use the terminology of Bridson and divide the nodes of the adjacency graph of
the matrix K into two disjoint sets: those that correspond to the diagonal entries of A
are known as A-nodes and the remaining nodes as C-nodes. The ordering constraint
proposed in [9] is extremely simple: a C-node can only be ordered after all its A-node
neighbours in the graph of K have been ordered. Bridson has the following result,
which is included here for completeness.

Theorem 2.1. Let A be positive definite, C be positive semi-definite and B be of
full row rank. Then if a C-node is ordered only after all its A-node neighbours, the

5

signed Cholesky factorization

PKPT = LDLT

exists, where P is a permutation matrix corresponding to the ordering of the nodes, L
is a lower triangular matrix with positive diagonal entries and D is a diagonal matrix
with entries ±1.
Proof: First observe that the inverse of a saddle-point matrix satisfying the above
conditions can be expressed as

(

A BT

B −C

)

−1

=

(

A−1 −A−1BTS−1BA−1 A−1BTS−1

S−1BA−1 −S−1

)

, (2.1)

where the negative Schur complement S given by

S = C +BA−1BT

is positive definite.
We now proceed by induction. The first node to be eliminated must be an A-

node with pivot d1 = a11 > 0. Assume i − 1 steps of the factorization have been
performed. Partitioning the first i − 1 nodes into A-nodes and C-nodes, the i-th
principal submatrix of (a permutation of) K is

(

Ki−1 kTi,:
ki,: kii

)

=

Ai−1 BT
i−1 uT

Bi−1 −Ci−1 vT

u v kii

 , (2.2)

where ki,: denotes the first i − 1 entries in row i. Since Ai−1 is a principal subma-
trix of the positive-definite matrix A, it must also be positive definite. The ordering
constraint implies that all the non zeros in the rows of B corresponding to already
ordered C-nodes must appear in Bi−1 (otherwise there would be a C-node ordered
before i with an A-node neighbour ordered at i or later). Since B is assumed to have
full row rank, Bi−1 also has full row rank: Bi−1 is a subset of the rows of B with
possibly some fully zero columns deleted. Thus Ki−1 satisfies the same conditions as
K.

Case 1: node i is an A-node. It follows from the ordering constraint that i
can have no previously ordered C-node neighbours and so v = 0 in equation (2.2).
Using the form of the inverse in equation (2.1), the pivot is

dii = kii − (u 0)

(

Ai−1 BT
i−1

Bi−1 −Ci−1

)

−1 (
uT

0

)

= kii − u(A−1
i−1 −A−1

i−1B
T
i−1S

−1
i−1Bi−1A

−1
i−1)u

T

= (kii − uA−1
i−1u

T) + uA−1
i−1B

T
i−1S

−1
i−1Bi−1A

−1
i−1u

T . (2.3)

Note that
(

Ai−1 uT

u kii

)

6

is a principal submatrix of the positive-definite matrix A and hence is positive defi-
nite. It follows that its final pivot kii − uA−1

i−1u
T is positive. Furthermore, since the

negative Schur complement Si−1 is positive definite, the second term in (2.3) is also
positive. Therefore, dii > 0.

Case 2: node i is a C-node. In this case, we join the i-th row and column to
the other C-nodes in the partition (2.2). This i × i matrix also satisfies the rank
condition and thus its inverse is of the form (2.1). The i-th pivot is the reciprocal
of the (i, i) entry of the i × i principal submatrix, which in this case comes from the
diagonal of the negative definite matrix −Si−1. Thus dii < 0.

As both cases give non zero pivots, by induction the ordering constraint ensures
the LDLT factorization exists. Moreover, the pivots associated with the A-nodes are
guaranteed to be positive and those associated with C-nodes are guaranteed to be
negative. By rescaling, L ← L|D|1/2 and D ← sign(D) = diag(±1), the diagonal
matrix is fully determined in advance by the structure of the problem, independent
of the numerical values. This gives a signed Cholesky factorization of K. �

The signed Cholesky factorization allows Bridson to modify a Cholesky factoriza-
tion code to perform the factorization of the indefinite matrix K without numerical
pivoting. A stability analysis is missing but Bridson reports that numerical experi-
ments indicate, for well-scaled problems, the constrained ordering is generally suffi-
cient to avoid numerical pivoting; this was supported by additional experiments given
by Scott [56]. The hope is that, if an initial ordering is chosen to reduce fill in L, the
additional fill that results from modifying the ordering to a constrained ordering will
be modest. If the constrained ordering is close to the initial ordering, the potential
benefits include a fast factorization and, importantly, the analyse phase of the direct
solver can accurately predict the size of the factors and other data structures required
during the numerical factorization.

For a direct solver, choosing a fill-reducing ordering is essential (both for the
memory needed and for the flop count). Bridson proposed two approaches to com-
puting a constrained ordering. The first modifies the minimum degree algorithm (or
one of its variants) to incorporate the constraint within it. An alternative approach
is to post-process a given fill-reducing ordering to satisfy the constraint. If a C-node
is the next node in the supplied ordering, it is only included in the modified ordering
once all its A-node neighbours have been ordered (that is, a C-node is postponed
until after all its A-node neighbours). For many large problems, orderings based on
nested dissection are frequently recommended in preference to those based on min-
imum degree. The advantages of the post-processing approach are that it can be
applied to any fill-reducing ordering and it is very cheap and straightforward to im-
plement. Hogg and Scott [34, 56] considered this approach and compared using it to
compute a signed Cholesky factorization (with no pivoting for stability) with using
a fill-reducing ordering with a solver designed to factorize indefinite matrices with
threshold pivoting incorporated for stability. Their reported results showed that the
constrained ordering leads to significantly denser factors and higher flop counts so
that it is unlikely to be competitive in practice for a direct solver.

The situation in the incomplete case is potentially somewhat different since, while
it is known that the ordering used can be important (see, for example, the numerical
results reported in [58] and the references therein), the choice of ordering is generally
less crucial than in the complete factorization. This is because, in the incomplete

7

case, the number of entries in the factor is determined not by the ordering but by
user-defined parameters that may include the amount of fill allowed in each column
and drop tolerances. Thus our aim is to combine using a constrained ordering with
a (modified) IC factorization code to compute a signed IC factorization that we can
use with an iterative solver.

We remark that Rehman et al [63] propose an a priori ordering of the nodes in
their development of incomplete factorization preconditioners for the (unsymmetric)
saddle-point systems that arise from the finite-element discretization of incompress-
ible Navier-Stokes equations. They employ a level-based band- or profile-reduction
ordering, which they post-process level-by-level so that, at each level, the A-nodes
precede the C-nodes.

3. A limited-memory IC factorization. We now summarize the limited-
memory IC factorization algorithm that is implemented within the HSL package
HSL MI28. We assume here that A is a symmetric and positive-definite matrix for
which an IC factorization is required. For such A, HSL MI28 computes an IC fac-
torization (QL)(QL)T , where Q is a permutation matrix, chosen to preserve sparsity.
The matrix A is optionally scaled and, if necessary, following the approach of Man-
teuffel [42], shifted to avoid breakdown of the factorization. Thus the incomplete
factorization of Ā = S̄QTAQS̄+αI is computed, where S̄ = {s̄i} is a diagonal scaling
matrix and α is a positive shift. The user supplies the lower triangular part of A in
compressed sparse column format and the computed L is returned to the user in the
same format; a separate entry performs the preconditioning operation y = Pz, where
P = (L̄L̄T)−1, L̄ = QS̄−1L, is the incomplete factorization preconditioner.

The algorithm implemented by HSL MI28 is a limited memory approach by Tis-
menetsky and Kaporin. The basic scheme is based on a matrix factorization of the
form

Ā = (L +R)(L+R)T − E, (3.1)

where L is a lower triangular matrix with positive diagonal entries that is used for
preconditioning, R is a strictly lower triangular matrix with small entries that is used
to stabilize the factorization process but is subsequently discarded, and E has the
structure

E = RRT . (3.2)

The Tismenetsky incomplete factorization does not compute the full update and thus
a positive semidefinite modification is implicitly added to A. The matrix R repre-
sents intermediate memory, that is, memory that is used in the construction of the
preconditioner but is not part of the preconditioner.

Following the ideas of Kaporin [36], HSL MA28 uses drop tolerances to limit the
memory required in the computation of the incomplete factorization. The user con-
trols the dropping of small entries from L and R and the maximum number of entries
within each column of L and R (and thus the amount of memory for L and the in-
termediate work and memory used in computing the incomplete factorization). The
parameters lsize and rsize must be set by the user to the maximum number of fill
entries in each column of L and the number of entries in R, respectively. Further
details are given in [58, 59].

We present a summary outline of our left-looking incomplete factorization as Al-
gorithm 3.1. It shows the basic steps but, for simplicity, omits details of our sparse

8

implementation. Here A:,j , L:,j and R:,j denote the j−th columns of the lower trian-
gular parts of A, L and R, respectively, and nj is the number of entries in column j
of A. The scalar small is used to determine whether a diagonal entry is sufficiently
large; if at any stage a diagonal entry is less than small, the factorization is considered
to have broken down and in this case, the shift α is increased and the factorization
restarted. droptol1 > droptol2 ≥ 0 are chosen drop tolerances. The user may choose
to supply a positive initial shift αin.

Algorithm 3.1. Outline of the HSL MI28 incomplete Cholesky algorithm for
positive-definite A
Input: Symmetric positive definite A ∈ Rn×n;

lsize, rsize, droptol1, droptol2, initial shift αin

Output: Incomplete Cholesky factor L, final shift αout

Compute a sparsity-preserving ordering Q for A and permute: A← QTAQ

Compute a diagonal scaling S̄ and scale: A← S̄AS̄

Set breakdown = false and α = αin, α0 = 0

Loop over shifts
do

Set A← A+ (α− α0)I and d(1 : n) = (a11, a22, ..., ann)
for j = 1 : n do

Apply LLT , RLT and LRT updates from columns 1 : j − 1 to A:,j and
d(j + 1 : n)
if min(d(j + 1 : n) < small then

Set breakdown = true, α0 = α and increase α
exit (Restart factorization with larger shift)

end if

Sort entries of A:,j by magnitude
Keep nj + lsize entries of largest magnitude in L:,j,

provided each is at least droptol1
Keep the rsize entries that are next largest in magnitude in R:,j,

provided each is at least droptol2
end do

if breakdown = false then

Set αout = α− α0 and return (Breakdown-free factorization complete)
end if

end do

The factorization proceeds column-by-column. At each stage j ≥ 2, updates from
the previously computed columns 1 to j− 1 of L and R are applied to column j of A.
The update operations are as follows:

for k < j and Lj,k 6= 0 do

Aj:n,j ⇐ Aj:n,j − Lj:n,k ∗ Lj,k ! LLT updates
Aj:n,j ⇐ Aj:n,j −Rj:n,k ∗ Lj,k ! RLT updates

end

for k < j and Rj,k 6= 0 do

Aj:n,j ⇐ Aj:n,j − Lj:n,k ∗Rj,k ! LRT updates

9

end

The diagonal entries of columns j +1 to n are also updated. This allows us to detect
a potential breakdown as soon as possible. Once a breakdown is detected, the shift α
is increased (the strategy for doing this is explained in [58]) and then the factorization
of the shifted matrix A+ (α− α0)I is restarted, where α0 is the previous shift.

Note that the widely-used ICFS code of Lin and Moré [41] implements a special
case in which ordering is not incorporated, droptol1 = droptol2 = 0 and rsize = 0
(so that there is no dropping of entries by size, no intermediate memory is used and
only LLT updates are applied).

4. Signed incomplete Cholesky factorization. We now discuss how to mod-
ify Algorithm 3.1 for saddle-point systems while avoiding the need to incorporate
pivoting. Our signed IC factorization is listed as Algorithm 4.1 (again, the sparse
implementation details are omitted). Here Nj is the number of entries in column j of
K. This algorithm is implemented within a new package HSL MI30.

Algorithm 4.1. Outline of the HSL MI30 signed incomplete Cholesky algorithm
for saddle-point K
Input: Symmetric saddle-point matrix K ∈ RN×N with N = n+m;

lsize, rsize, droptol1, droptol2, initial shifts αin(1 : 2)
Output: Incomplete signed Cholesky factor L, diagonal D with n positive and m
negative entries,
final shifts αout(1 : 2)

Compute a sparsity-preserving ordering Q for K
Post-process the ordering Q̂← Q (see Section 2)
Permute the matrix: K ← Q̂TKQ̂

Compute a diagonal scaling S̄ and scale: K ← S̄KS̄

Set breakdown = false and α(1 : 2) = αin(1 : 2), α0(1 : 2) = 0

Loop over shifts
do

Set K ← K +G where G is diagonal with

Gii =

{

α(1)− α0(1) if i is an A node
α0(2)− α(2) if i is a C node

Set d(1 : N) = (k11, k22, ..., kNN)
for j = 1 : N do

Apply LLT , RLT and LRT updates from columns 1 : j − 1 to K:,j and
d(j + 1 : N)
if min(d(i) : i is an A node) < small then

Set breakdown = true, α0(1 : 2) = α(1 : 2) and increase α(1)
exit (Restart factorization with larger α(1))

else if max(d(i) : i is a C node) > −small then
Set breakdown = true, α0(1 : 2) = α(1 : 2) and increase α(2)
exit (Restart factorization with larger α(2))

end if

Sort entries of K:,j by magnitude

10

Keep Nj + lsize entries of largest magnitude in L:,j,
provided each is at least droptol1

Keep the rsize entries that are next largest in magnitude in R:,j,
provided each is at least droptol2

end do

if breakdown = false then

Set αout(1 : 2) = α(1 : 2)− α0(1 : 2) and return

(Breakdown-free factorization complete)
end if

end do

In addition to the step that post-processes the computed ordering so that a C-
node is never ordered before its A-node neighbours, the key difference between the
two algorithms is that, for the saddle-point case, we employ two shifts, α(1 : 2). Both
are non-negative. The first, α(1), is increased each time the incomplete factorization
breaks down on anA-node while the second, α(2) is increased each time the incomplete
factorization breaks down on a C-node. For simplicity of notation, assuming the
natural ordering is used (so that Q = I), the incomplete factorization of the scaled
and shifted matrix

K̄ = S̄

(

A BT

B −C

)

S̄ +

(

α(1)I 0
−α(2)I

)

is computed. We note that, recently, Chen et al [12] used a perturbation of the (2, 2)
block in a zero-level fill incomplete factorization; they refer to this as a stabilized
incomplete factorization. In their study, they use a fixed shift α(2) = −4 (with
α(1) = 0). Furthermore, in their paper on incomplete factorization preconditioners
for Navier-Stokes solvers, Rehman et al [63] comment that convergence can sometimes
be improved by perturbing the (2, 2) block.

It is clear that the changes that must be made to the Cholesky code are minimal;
it is essentially only necessary to distinguish between A and C-nodes. We observe
that we did experiment with using a single shift (so that α(1) = α(2)) but found that
this gave us significantly poorer results.

Note that this algorithm differs from that described in Section 1 since, even with
the natural ordering, we do not compute an incomplete factorization of A on its own
and then solve (1.3) before computing an incomplete factorization of the approximate
Schur complement (1.4). Rather, we work with the columns of length N = n+m of
the matrix

(

A
B

)

.

This has the advantage that the sparsity of the (2,1) block of the incomplete factor
is dealt with as the factorization of the (1,1) block proceeds. Furthermore, it is not
necessary to limit the factorization exclusively to the A-nodes before proceeding to
the C-nodes; we only require that a C-node is ordered after all its A-node neighbours.
This gives greater flexibility in the ordering of the factorization.

Finally, we remark that Orban [46] has recently proposed a limited-memory in-
complete LDLT factorization for the important class of SQD matrices. His algorithm
is a generalization of that of Lin and Moré [41]. It can be regarded as a special case
of Algorithm 4.1 with droptol1 = droptol2 = 0, rsize = 0 and α(1) = α(2) and, as it

11

is for SQD matrices, there is no requirement to post-process the sparsity-preserving
ordering.

5. Theoretical results. This section presents some results that may lead to a
better theoretical understanding of limited memory incomplete factorizations. Our
results closely follow those in [45, 46]. However, unlike the SQD case that was recently
considered by Orban [46], for our saddle-point systems, we cannot assume that the
matrices have non zero diagonal entries and so we are not able to exploit the results
summarized, for example, in [7].

Early analysis of incomplete factorizations was built on theory for special matrices,
such as M - and H-matrices, that correspond naturally to the early stages of solving
linear systems by preconditioned iterative methods. For example, the proof of the
breakdown-free property of incomplete factorizations for M -matrices is an important
component of the seminal paper of Meijerink and van der Vorst [44] (see also [42, 68]).

Definition 5.1. A non singular real square matrix A with non positive off
diagonal entries is called an M -matrix if all the entries of its inverse are non negative.
A non singular real square matrix A is called an H-matrix if its comparison matrix
M(A) = {M(A)ij} defined as

M(A)ij =

{

|aij | (i = j)
−|aij | (i 6= j)

is an M -matrix. Note that H-matrices are very close to strictly diagonally domi-
nant matrices [7] (they are so-called generalized diagonally dominant matrices). The
following basic result can be found in [7].

Lemma 5.2. The Schur complement of an M -matrix (respectively, an H-matrix)
is an M -matrix (respectively, an H-matrix). Furthermore, for real square matrices,
if A is an H-matrix and element-wise B satisfies M(B) ≥ M(A), then B is also
an H-matrix. We start by considering a single step of three possible factorization
approaches: the complete factorization (which we denote as CO), the limited memory
approach of Lin and Moré and Orban (LM) [41, 46], and our proposed incomplete
symmetric Tismenetsky approach (TI). Assuming d1 = a11 is non zero, we can write
one step of the factorization of a symmetric matrix A in the form

A =

(

d1 wT

w F

)

≡

d1 lT rT

l FLL FLR

r FRL FRR

 . (5.1)

For a CO factorization, we have the Schur complement

SCO = F − d−1
1

(

l
r

)

(

lT rT
)

. (5.2)

The LM factorization keeps only part of the pivot column (part l in (5.1), assuming
the rows that correspond to the retained entries are ordered first). Further, Lin
and Moré update only FLL and, importantly, the diagonal entries of FRR. The TI
approach updates FLL, FRL and FLR and possibly also the diagonal entries of FRR.
The following result is closely related to results in [41, 45, 46].

Lemma 5.3. Let A be a symmetric H-matrix with d1 = a11 non zero. Denote the
Schur complements for the CO, LM and TI factorizations after one step with pivot d1
by SCO, SLM and STI , respectively. Further, let the Schur complement of M(A) be

12

SM(A). Then, element-wise, SM(A) is not larger than any of M(SCO), M(STI) and
M(SLM).
Proof: From (5.1), the comparison matrix of A is

M(A) =

|d1| −|l|T −|l|T

−|l| M(FLL) M(FLR)
−|r| M(FRL) M(FRR)

 .

After one step of the CO factorization, the Schur complement of M(A) is equal to

SM(A) =

(

M(FLL)− |d
−1
1 ||l||l|

T M(FLR)− |d
−1
1 ||l||r|

T

M(FRL)− |d
−1
1 ||r||l|

T M(FRR)− |d
−1
1 ||r||r|

T

)

(5.3)

and from (5.2), the comparison matrix of the Schur complement of A is

M(SCO) = M

(

F − d−1
1

(

l
r

)

(

lT rT
)

)

.

Setting s = {si} =

(

l
r

)

(

lT rT
)

, the entries of M(SCO) can be expressed as

M(SCO)ij =

{

|fii − d−1
1 s2i | i = j

−|fij − d−1
1 sisj | i 6= j.

Using the triangle inequality element-wise for the diagonal and the off diagonal entries
separately, we obtain

|fii − d−1
1 s2i | ≥ |fii| − |d1|

−1s2i (5.4)

and

−|fij − d−1
1 sisj | ≥ −|fij | − |d1|

−1|si||sj | (5.5)

for i = j and i 6= j, respectively. From (5.3) it follows that SM(A) ≤ M(SCO)
element-wise. Consider now the comparison matrices M(STI) and M(SLM). The
Schur complement update in both replaces some of the off diagonal updates sisj by
zeros because of dropping. But even in this case the inequalities (5.4) and (5.5) remain
valid and the required result may be deduced. Note that the proof does not provide
a partial ordering among off diagonal entries of M(SCO), M(STI) and M(SLM). �

Results of this kind forM - orH-matrices, as well as stronger results that typically
assume non zero diagonal entries, are useful as well as popular. However, the fact that
we can get such results for a wide class of incomplete factorization methods potentially
indicates that the resulting accuracy may be poor [13]. In the other words, lower
bounds for the sequence of the Schur complements may be weak and we may obtain a
factorization for a problem that is far from the original. We also know that the size of
the modification may determine the efficiency of the preconditioned iterative method
[19, 22, 58], but see the note in [41] stating that it is not clear whether this conclusion
transfers to limited memory preconditioners. We conclude that it is still necessary to
have a good choice of incomplete factorization and its implementation. This idea will
hopefully remain a driving force for the development of new approaches.

We now consider the TI factorization of the saddle-point matrix (1.1) (without
drop tolerances).

13

Theorem 5.4. Consider the incomplete TI factorization of the symmetric saddle-
point matrix (1.1), with a pivot sequence such that a C-node is only ordered after all
its A-node neighbours. Assume that for an A-pivot, all its C-node neighbours are in
L and for a C-pivot, all its C-node neighbours are in R. Then all the entries of the
diagonal factor D are ±1 and the factorization is breakdown-free.
Proof: Assume i − 1 steps have succeeded and consider the i-th pivot kii. As in
Theorem 2.1, we consider the partitioned i-th principal submatrix

Ai−1 BT
i−1 uT

Bi−1 −Ci−1 vT

u v kii

 .

Recall that, at each step, the TI factorization is based on adding a positive semidefinite
matrix to the matrix that is being factorized (see [59]). Under the stated assumptions,
at the i-th step a positive semidefinite matrix has only been added to Ai−1; let ∆
denote this positive semidefinite matrix.

Case 1: node i is a A-node. In this case, the proof is very similar to that of
the complete factorization. As in Theorem 2.1, the ordering implies that v is equal to
zero. Further, the update of kii includes just two terms as in (2.3). The first of these
terms equal to u(Ai−1 +∆)−1uT . Again, as in (2.3), the second term updating kii is
based on the negative Schur complement Si−1 = −Ci−1−Bi−1(Ai−1+∆)−1BT

i−1 and

it is equal to −u(Ai−1+∆)−1BT
i−1S

−1
i−1Bi−1(Ai−1+∆)−1uT and thus it is also positive.

Case 2: node i is a C-node. The update of kii can be split into two steps.
First, we subtract from kii the positive value u(Ai−1 + ∆)−1uT and so kii remains
negative. Second, kii should be updated using the negative Schur complement Si−1 =
Ci−1+Bi−1(Ai−1+∆)−1BT

i−1. But Si−1 corresponds to C-nodes and, because of the
assumption that all C-node neighbours of a C-pivot are in R and the TI factorization
does not perform RRT updates, kii is not updated further and is thus positive. �

Remark 5.1. The result in Theorem 5.4 proposes a modification of the signed
factorization that safeguards the existence of the IC factorization, even for saddle-
point matrices with zero diagonal entries. Note that, in practice, when developing a
fill-in efficient implementation, we generally need to relax the theoretical conditions.
For example, the diagonal entries of the (2, 2) block could be modified by adding a
negative semidefinite (diagonal) matrix.

Remark 5.2. Theorem 5.4 does not hold for the LM factorization, even when
K is a symmetric saddle-point H-matrix. In this case, even when we have the mono-
tonicity property in the sequence of the Schur complements as described in Lemma 5.3,
there is no guarantee that the diagonal C-node entries will be non zero.

For the LM factorization, we require more stringent assumptions.
Theorem 5.5. Assume that the symmetric saddle-point matrix (1.1) is an H-

matrix and that the constraint ordering is as in Theorem 5.4. Assume further that all
the A-nodes are fully updated, that is, they correspond to the CO factorization. Then
the LM factorization that updates all the diagonal entries at each stage is breakdown-
free.
Proof: The complete factorization of the A-nodes with the diagonal updates of all
the nodes is necessary to ensure the diagonal C-node entries become nonzero. The
H-matrix property explained in Lemma 5.3 can then be applied for all the subsequent
Schur complements. �

14

While the theoretical results presented here appear promising, as already ob-
served, practical implementations almost invariably employ further relaxations and
extend solvability from (relatively weak, as we mentioned above) special matrices
to more general ones. The real challenge is thus (1) to minimize the fill-in in the
computed factors, (2) to use as much information on the problem as possible for the
computation, and (3) to restrict the memory use. The breakdown-free property can
then be forced by scaling and moving the scaled matrix closer to a related H-matrix
through the use of diagonal shifts [41].

6. Numerical experiments.

6.1. Test environment. Unless stated otherwise, the results reported on in this
paper are performed (in serial) on our test machine that has two Intel Xeon E5620
processors with 24 GB of memory. The ifort Fortran compiler (version 12.0.0) with
option -O3 is used. The implementations of the SYMMBK algorithm [11] and the
GMRES(100) algorithm (with right preconditioning) [53] offered by the HSL routines
HSL MI02 and MI24, respectively, are employed, with starting vector x0 = 0, the
right-hand side vector b computed so that the exact solution is x = 1, and stopping
criteria

‖Kx̂− b‖2 ≤ 10−8‖b‖2, (6.1)

where x̂ is the computed solution. In addition, for each test we impose a limit of 1000
iterations.

Our test problems are real indefinite matrices taken from the University of Florida
Sparse Matrix Collection [15]. The first set (Test Set 1) has zero (2, 2) block (C = 0);
they are listed in Table 6.1. The second set (Test Set 2) are interior-point optimization
matrices with C = 10−8I; they are listed in Table 6.2. Here we give the order n of the
(1, 1) block A, the order m of the (2, 2) block C and the number nz(K) of entries in
the lower triangular part of K. In addition, we use the direct solver HSL MA97 [33] to
compute the number of entries in the complete factor of K. For the HSL MA97 runs, we
use the scaling from a symmetrized version of the package MC64 [18, 20]. We remark
that this scaling has been found to work well for direct solvers when used to solve
“tough” indefinite systems [31, 34]. We also use the default ordering (which is either
approximate minimum degree or nested dissection, and this is selected automatically
following [21]), except for the problems marked ∗. For these, we found we obtain a
sparser complete factorization by using a matching-based ordering. We report fillL to
be the ratio of the number of entries in the factor to nz(K). This statistic is reported
for later comparison with the fill for the incomplete factorizations.

Following [57], in our experiments we define the efficiency of the preconditioner
P to be

efficiency = iter × nz(L), (6.2)

where iter is the iteration count for P = (LDLT)−1. The lower the value of (6.2),
the better the preconditioner. We also define the fill in the incomplete factor to be
the ratio

fillIC = (number of entries in the incomplete factor)/nz(K), (6.3)

6.2. Results for C = 0. In Table 6.3, we present results for Test Set 1. The
values of the shifts αout(1 : 2) are reported, together with fillIC, the efficiency and

15

Table 6.1

Test problems with C = 0 (Test Set 1). n and m denote the order of A and C (see 1.1), nz(K)
is the number of entries in the lower triangular part of K, fillL is the ratio of the number of entries
in the complete factor of K to nz(K). QP = quadratic programming problem, FE = finite-element,
PDE = partial differential equation. ∗ denotes matching-based ordering is used.

Identifier n m nz(K) fillL Description/Application
GHS indef/aug3dcqp 27543 8000 77829 18.3 3D PDE
GHS indef/boyd1 93261 18 652246 1.00 Convex QP
GHS indef/brainpc2∗ 13807 13800 96601 3.61 Biological model
GHS indef/cont-201∗ 40397 40198 239596 20.1 Convex QP
GHS indef/cont-300∗ 90597 90298 539396 22.1 Convex QP
GHS indef/d pretok 129160 53570 885416 17.3 Mixed FE model
GHS indef/darcy003 234128 155746 1167685 7.86 Mixed FE model
GHS indef/mario001 23130 15304 114643 6.51 FE model Stokes problem
GHS indef/ncvxqp9∗ 9004 7500 31547 11.4 Nonconvex QP
GHS indef/olenski0 61030 27233 402623 12.1 Mixed FE model
GHS indef/qpband 15000 5000 30000 1.67 Convex QP
GHS indef/sit100 7142 3120 34094 13.7 Mixed FE model
GHS indef/stokes64 8450 4096 74242 8.98 FE model Stokes problem
GHS indef/stokes128 33282 16384 295938 10.7 FE model Stokes problem
GHS indef/tuma1 13360 9607 50560 10.9 Mixed FE model
GHS indef/tuma2 7515 5477 28440 10.5 Mixed FE model
GHS indef/turon m 133814 56110 912345 15.7 Mixed FE model

Table 6.2

Interior-point test problems (Test Set 2). n and m denote the order of A and C (see 1.1),
nz(K) is the number of entries in the lower triangular part of K, fillL is the ratio of is the number
of entries in the complete factor of K to nz(K).

Identifier n m nz(K) fillL
GHS indef/c-55 19121 13659 218115 21.5
GHS indef/c-59 23813 17469 260909 17.6
GHS indef/c-63 25505 18729 239469 13.7
GHS indef/c-68 36546 28264 315408 29.2
GHS indef/c-69 38432 29026 345714 10.9
GHS indef/c-70 39302 29622 363955 13.7
GHS indef/c-71 44814 31824 468096 37.1
GHS indef/c-72 47950 36114 395811 11.7
Schenk IBMNA/c-big 201877 143364 1343126 39.0

the number of iterations. We use the natural ordering (so that all A-nodes are or-
dered ahead of the C-nodes) and symmetrized MC64 scaling. The drop tolerances are
droptol1 = 10−3 and droptol2 = 10−4 (which are the default values for HSL MI30).
We ran GMRES(100) for each problem with lsize = rsize =1, 5, 10 and 20 and
selected the best result (in terms of the lowest value of the efficiency (6.2)). For prob-
lems GHS indef/cont-201 and GHS indef/cont-300, we did not achieve convergence
with these settings but did get convergence by choosing droptol1 = droptol2 = 0.0,
lsize = rsize = 20 and running SYMMBK.

In the positive-definite case, we found that using intermediate memory (rsize >
0) was beneficial [58, 59]. To assess whether it is also helpful for the signed IC
factorization, we run with the same settings (except rsize = 0) and report the results
in Table 6.4. We observe that, with rsize = 0, more problems require a non-zero
shift αout(2) and that the value of the non-zero αout(2) is greater than for rsize >
0. Furthermore, with the same lsize, the fill ratio fillIC is generally greater and

16

Table 6.3

GMRES(100) convergence results for Test Set 1. ∗ indicates SYMMBK was used.

Identifier lsize rsize αout(1) αout(2) fillIC efficiency iters
GHS indef/aug3dcqp 1 1 0.0 0.0 1.35 1.0×105 1
GHS indef/boyd1 1 1 0.0 0.0 0.82 3.8×106 7
GHS indef/brainpc2 1 1 0.0 2.56×10−1 1.28 1.6×107 132
GHS indef/cont-201∗ 20 20 0.0 1.00×10−3 7.89 3.9×108 207
GHS indef/cont-300∗ 20 20 0.0 1.00×10−3 7.87 1.6×109 390
GHS indef/d pretok 5 5 0.0 2.56×10−1 1.96 4.8×107 28
GHS indef/darcy003 20 20 0.0 0.0 5.44 2.8×108 44
GHS indef/mario001 20 20 0.0 0.0 5.37 9.9×106 16
GHS indef/ncvxqp9 10 10 0.0 4.19×103 4.01 2.5×105 2
GHS indef/olesnik0 20 20 0.0 0.0 4.43 4.8×107 27
GHS indef/qpband 1 1 0.0 0.0 1.17 3.5×104 1
GHS indef/sit100 20 20 0.0 0.0 3.61 1.7×106 14
GHS indef/stokes64 10 10 0.0 0.0 2.73 3.2×107 157
GHS indef/stokes128 10 10 0.0 0.0 2.73 4.3×108 539
GHS indef/tuma1 20 20 0.0 0.0 5.79 5.9×106 20
GHS indef/tuma2 20 20 0.0 0.0 6.55 3.4×106 18
GHS indef/turon m 20 20 0.0 1.60×10−2 4.36 2.2×108 56

Table 6.4

GMRES(100) convergence results for Test Set 1 with rsize = 0. ∗ indicates SYMMBK was
used. – denotes failure to converge within 1000 iterations.

Identifier lsize rsize αout(1) αout(2) fillIC efficiency iters
GHS indef/aug3dcqp 1 0 0.0 0.0 1.56 1.2×105 1
GHS indef/boyd1 1 0 0.0 0.0 0.82 3.8×106 7
GHS indef/brainpc2 1 0 0.0 4.10 1.43 7.2×107 519
GHS indef/cont-201∗ 20 0 0.0 1.60×10−2 7.89 1.3×109 710
GHS indef/cont-300∗ 20 0 0.0 1.60×10−2 7.87 – –
GHS indef/d pretok 5 0 0.0 0.0 2.09 5.9×107 32
GHS indef/darcy003 20 0 0.0 0.0 6.13 3.1×108 43
GHS indef/mario001 20 0 0.0 0.0 6.00 1.0×107 15
GHS indef/ncvxqp9 10 0 0.0 4.19×103 6.44 4.1×105 2
GHS indef/olesnik0 20 0 0.0 0.0 5.45 6.8×107 31
GHS indef/qpband 1 0 0.0 0.0 1.17 3.5×104 1
GHS indef/sit100 20 0 0.0 0.0 4.36 2.4×106 16
GHS indef/stokes64 10 0 0.0 1.60×10−2 2.74 5.9×107 289
GHS indef/stokes128 10 0 0.0 1.60×10−2 2.73 – –
GHS indef/tuma1 20 0 0.0 1.60×10−2 8.22 6.6×106 16
GHS indef/tuma2 20 0 0.0 1.60×10−2 7.93 3.2×106 14
GHS indef/turon m 20 0 0.0 2.56×10−1 5.22 3.5×108 73

the efficiency poorer. For a number of problems, including GHS indef/brainpc2 and
GHS indef/stokes64, the iteration count is significantly higher with rsize = 0 and
for problems GHS indef/cont-300 and GHS indef/stokes128, we fail to achieve the
requested accuracy within the limit of 1000 iterations. We conclude that, overall,
using intermediate memory improves the quality of the incomplete factorization.

It may be important to limit the amount of fill so in Table 6.5 we present results
with lsize = 5, rsize = 10. We omit the first six problems and GHS indef/qpband
because they either fail to converge with these settings (problems GHS indef/cont-
201 and GHS indef/cont-300) or the results already presented in Table 6.3 use less
memory. We see that the fill is now less than 3.0 but, for some problems (including
GHS indef/darcy003 and GHS indef/mario001), the quality of the preconditioner, in

17

Table 6.5

GMRES(100) convergence results for Test Set 1 with lsize = 5, rsize = 10.

Identifier αout(1) αout(2) fillIC efficiency iters
GHS indef/darcy003 0.0 0.0 2.69 1.1×109 349
GHS indef/mario001 0.0 0.0 2.68 2.7×107 89
GHS indef/ncvxqp9 0.0 1.05×103 3.34 3.2×105 3
GHS indef/olesnik0 0.0 0.0 2.13 6.9×107 81
GHS indef/sit100 0.0 0.0 2.12 4.0×106 55
GHS indef/stokes64 0.0 0.0 1.90 2.9×107 204
GHS indef/stokes128 0.0 0.0 1.89 4.1×108 730
GHS indef/tuma1 0.0 0.0 2.78 8.3×106 59
GHS indef/tuma2 0.0 0.0 2.91 4.4×106 50
GHS indef/turon m 0.0 0.0 2.08 2.3×108 119

terms of the efficiency as well as the iteration count, is significantly poorer.

We have also considered varying lsize and rsize while keeping lsize + rsize
constant. Results for a subset of our test problems for a range of pairs of values
(lsize, rsize) are given in Table 6.6. We see that, as lsize increases, the level of fill
increases and the iteration count reduces. However, as rsize increases, breakdown is
avoided and the efficiency can improve. Thus we conclude that reducing the mem-
ory used for the factor while increasing the intermediate memory by a corresponding
amount can be beneficial.

Table 6.6

GMRES(100) convergence results for problems from Test Set 1 with lsize + rsize = 20.

Identifier (lsize, rsize) αout(1) αout(2) fillIC efficiency iters
GHS indef/mario001 (20, 0) 0.0 0.0 6.00 1.0×107 15

(15, 5) 0.0 0.0 4.71 1.3×107 24
(10, 10) 0.0 0.0 3.84 1.5×107 35
(5, 15) 0.0 0.0 2.68 2.7×107 87

GHS indef/stokes64 (20, 0) 0.0 0.0 4.42 3.6×107 110
(15, 5) 0.0 0.0 3.57 4.1×107 154
(10, 10) 0.0 0.0 2.73 3.2×107 157
(5, 15) 0.0 0.0 1.90 2.6×107 182

GHS indef/tuma1 (20, 0) 0.0 1.60×10−2 8.22 6.7×106 16
(15, 5) 0.0 0.0 4.90 6.7×106 27
(10, 10) 0.0 0.0 3.90 7.2×106 37
(5, 15) 0.0 0.0 2.77 8.3×106 59

GHS indef/turon m (20, 0) 0.0 2.56×10−1 5.22 3.5×108 73
(15, 5) 0.0 2.56×10−1 3.78 2.3×108 67
(10, 10) 0.0 0.0 3.01 2.3×108 83
(5, 15) 0.0 0.0 2.09 2.1×108 113

In Table 6.7 we present results for different orderings. Here the lsize and rsize
values are the same as in Table 6.3. The orderings tested are the profile reduction or-
dering of Sloan [48, 60, 61] (as implemented by the HSL package MC61), Reverse Cuthill
McKee (RCM) [14] (again, implemented within MC61), and approximate minimum de-
gree (AMD) [3] (HSL MC68). With the exception of the relaxed Sloan ordering, each
ordering algorithm is applied to the sparsity pattern of K and then post-processed
to give a constrained ordering, as described in Section 2. Since waiting to order a
C-node until all its A-node neighbours have been ordered can lead to significantly
denser factors and hence the need to drop more entries from an incomplete factoriza-

18

tion, an obvious approach is to try relaxing the constraint. In particular, we could
require that only one of the A-node neighbours of the C-node must have already been
ordered. During the post processing of the initial ordering, this will clearly have the
effect of postponing fewer C-nodes and those that are postponed will be brought back
into the ordering sooner. This approach with the Sloan ordering applied to K we refer
to as a relaxed Sloan ordering. We see that, in most cases, the relaxed Sloan order-
ing leads to a much poorer quality preconditioner compared to the constrained Sloan
ordering. Our observation is that the relaxed ordering breaks down more frequently
and can lead to the use of larger shifts. In particular, break down occurs on A-nodes,
resulting in large values of αout(1). For example, for problem GHS indef/d pretok,
for the constrained Sloan ordering, αout(1) = αout(2) = 0.0 but for the relaxed Sloan
ordering, αout(1) = 524, αout(2) = 0.001 and 12 restarts were required. In general,
the constrained Sloan ordering appears to be the best constrained ordering although,
it did not lead to the required convergence for GHS indef/brainpc2 and the tough
GHS indef/cont problems (for these, the natural order, which forces all the C-nodes
after all the A-nodes, gives the best results).

Table 6.7

GMRES(100) iteration results for Test Set 1 run with different orderings (MC64 scaling). The
lowest iteration count for each problem is in bold. ∗ indicates SYMMBK was used. – denotes failure
to converge within 1000 iterations.

Identifier lsize rsize Natural Constrained Constrained Constrained Relaxed
Sloan AMD RCM Sloan

GHS indef/aug3dcqp 1 1 1 1 1 1 10
GHS indef/boyd1 1 1 7 1 10 10 10
GHS indef/brainpc2 1 1 132 – – 251 84
GHS indef/cont-201∗ 20 20 207 – 741 – –
GHS indef/cont-300∗ 20 20 390 – – – –
GHS indef/d pretok 5 5 28 93 122 96 –
GHS indef/darcy003 20 20 44 37 46 46 308
GHS indef/mario001 20 20 16 14 17 16 46
GHS indef/ncvxqp9 10 10 2 1 2 2 13
GHS indef/olesnik0 20 20 27 23 27 27 –
GHS indef/qpband 1 1 1 1 1 1 1

GHS indef/sit100 20 20 14 11 12 12 165
GHS indef/stokes64 10 10 157 70 97 97 139
GHS indef/stokes128 10 10 539 197 444 444 577
GHS indef/tuma1 20 20 20 12 13 12 11

GHS indef/tuma2 20 20 18 12 11 11 12
GHS indef/turon m 20 20 56 35 48 38 –

In Table 6.8 we present results for different scalings. The scalings tested are
symmetrized MC64, equilibration scaling using MC77 [51, 52], and l2 scaling, in which
the entries in column j ofK are normalised by the 2-norm of column j. We also report
results for no scaling. We see that some problems are well-scaled and each of the three
scalings has little effect on the iteration count (for example, GHS indef/darcey003 and
GHS indef/mario001). However, whereas we achieved convergence in all cases using
MC64 or MC77 scaling, we had a number of failures if no scaling was used and also
we had failures with the l2 scaling. While no strategy is consistently the best, in
these tests, MC64 generally gives lower iteration counts than MC77 and the difference
is sometimes large (for example, GHS indef/brainpc2 and GHS indef/stokes128).

19

Table 6.8

GMRES(100) iteration results for Test Set 1 run with different scalings (natural order). The
lowest iteration count for each problem is in bold. ∗ indicates SYMMBK was used. – denotes failure
to converge within 1000 iterations.

Identifier lsize rsize MC64 MC77 l2 None
GHS indef/aug3dcqp 1 1 1 1 – 79
GHS indef/boyd1 1 1 7 57 3 1

GHS indef/brainpc2 1 1 132 238 186 100

GHS indef/cont-201∗ 20 20 207 246 209 –
GHS indef/cont-300∗ 20 20 390 475 – –
GHS indef/d pretok 5 5 28 48 44 41
GHS indef/darcy003 20 20 44 44 42 41

GHS indef/mario001 20 20 16 16 16 16

GHS indef/ncvxqp9 10 10 2 1 1 1
GHS indef/olesnik0 20 20 27 28 27 23

GHS indef/qpband 1 1 1 1 1 1

GHS indef/sit100 20 20 14 17 15 12

GHS indef/stokes64 10 10 157 171 78 149
GHS indef/stokes128 10 10 539 980 – 568
GHS indef/tuma1 20 20 20 19 18 18

GHS indef/tuma2 20 20 18 17 17 16

GHS indef/turon m 20 20 56 52 50 50

6.3. Results for C = 10−8I. In Table 6.9, we present results for Test Set 2
(interior-point matrices). We use lsize = rsize =10 with the (constrained) Sloan
ordering, MC77 scaling and drop tolerances droptol1 = 10−3 and droptol2 = 10−4.
In these tests, we use initial shifts αin(1 : 2) = 0.01 to regularize the problem [54].
The iteration counts for the same settings but lsize = 10, rsize = 0 (no intermediate
memory) are also reported. We see that using intermediate memory generally leads
to a significant improvement in the preconditioner quality. In each case, our choice
αin(2) = 0.01 was not large enough and we had to increase the C-shift and restart;
the number of shifts used is reported.

Table 6.9

GMRES(100) convergence results for Test Set 2 with lsize = rsize = 10 and αin(1 : 2) = 0.01.
nshift denotes the number of non-zero shifts used and Tf is the incomplete factorization time. The
figures in parentheses are the iteration counts for lsize = 10, rsize = 0.

Identifier αout(1) αout(2) nshift Tf fillIC efficiency iters
GHS indef/c-55 0.01 0.64 6 0.96 2.08 5.3×107 117 (147)
GHS indef/c-59 0.01 0.64 5 1.22 2.10 6.0×107 110 (129)
GHS indef/c-63 0.01 0.64 5 1.23 2.30 4.8×107 87 (166)
GHS indef/c-68 0.01 1.28 5 0.97 2.32 2.7×107 37 (43)
GHS indef/c-69 0.01 0.32 4 1.25 2.35 5.4×107 67 (73)
GHS indef/c-70 0.01 0.32 4 1.66 2.33 6.0×107 71 (72)
GHS indef/c-71 0.01 0.02 2 1.10 2.17 7.9×107 78 (88)
GHS indef/c-72 0.01 0.32 4 0.88 2.39 6.3×107 67 (78)
Schenk IBMNA/c-big 0.01 0.64 5 5.01 2.63 3.8×108 109 (268)

For these interior-point problems, we found it was beneficial to regularize by
using non-zero initial shifts: if we set αin(1 : 2) = 0.0, in our tests the factorization
did not break down on an A-node (so that αout(1) = 0.0) but it was necessary to
significantly increase the C-shift, leading to a much poorer quality preconditioner.
This is illustrated in Table 6.10. Note that the need to use more shifts (and hence

20

to restart the factorization a greater number of times) does not necessarily lead to a
slower factorization time. For fixed lsize and rsize, the important point for the factor
time is not how many breakdowns there are but how early in the factorization the
breakdowns occur: an early breakdown will lead to little increase in the time compared
to no breakdown but a breakdown when the factorization is close to completion will
effectively double the time.

Table 6.10

GMRES(100) convergence results for Test Set 2 with lsize = rsize = 10 and αin(1 : 2) = 0.0.
– denotes failure to converge within 1000 iterations. nshift denotes the number of non-zero shifts
used and Tf is the incomplete factorization time.

Identifier αout(1) αout(2) nshift Tf fillIC efficiency iters
GHS indef/c-55 0.0 16.4 9 0.71 2.06 1.3×108 281
GHS indef/c-59 0.0 32.8 9 0.51 2.17 2.2×108 382
GHS indef/c-63 0.0 32.8 9 0.70 2.30 2.1×108 383
GHS indef/c-68 0.0 131 10 1.10 2.34 2.9×108 398
GHS indef/c-69 0.0 65.5 10 1.08 2.39 2.4×108 288
GHS indef/c-70 0.0 32.8 9 1.04 2.31 3.2×108 379
GHS indef/c-71 0.0 32.8 9 1.12 2.16 3.7×108 362
GHS indef/c-72 0.0 65.5 9 0.83 2.39 4.5×108 471
Schenk IBMNA/c-big 0.0 262 11 6.18 – – –

To illustrate the effects of using larger lsize and rsize values, in Table 6.11 we
present results for lsize = rsize = 30; timings are given in Table 6.12. If we compare
these with Table 6.9 (lsize = rsize = 10), we see that the fill increases (but is still
much less than for a complete factorization) while the value of the C-shift is reduced.
This leads to a reduction in the iteration count (by around 50 per cent for many of
the problems) and an improvement in the efficiency for most cases. However, the
timings Tf reported in Table 6.12 (which include times for restarting after a shift
change) illustrate that, when using the preconditioner to solve a single problem (or a
small number of problems), faster total times are achieved with lsize = rsize = 10.
If the preconditioner is to be used for many problems, the additional time needed
to compute the incomplete factorization with larger lsize and rsize can be offset by
savings in the GMRES times. For example, for problem GHS indef/c-55, the time for
solving 10 systems using the factorization computed with lsize = rsize = 10 is 9.96
seconds whereas with lsize = rsize = 30, the time drops by more than a third to 3.45
seconds.

6.4. Comparisons with SYM-ILDL. It is of interest to consider how the
performance of our signed incomplete factorization preconditioner compares with that
of an incomplete indefinite factorization that incorporates pivoting. The package we
use for comparison is SYM-ILDL by Greif and Liu. As discussed in Section 1, this is
based on the earlier work by Li and Saad [38] and performs an incomplete factorization
of sparse symmetric indefinite matrices with Bunch-Kaufman pivoting [10] used for
numerical stability (and to prevent breakdown). Thus, for any symmetric indefinite K
(which need not be a saddle-point matrix) it computes an incomplete factorization of
the form LDLT , whereD is block diagonal, with blocks of order 1 and 2, corresponding
to 1×1 and 2×2 pivots. The matrix is preordered using AMD or RCM and prescaled
to be equilibrated in the maximum norm. The input parameters that can be set by
the user to control the number of entries within L are fill and tol. Each column of the
computed incomplete factor L is guaranteed to have fewer than fill ·ne(K)/n entries,
where ne(K) is the number of entries in K (upper and lower triangular parts). It has

21

Table 6.11

GMRES(100) convergence results for Test Set 2 with lsize = rsize = 30 and αin(1 : 2) = 0.01.
Results are also given for the code SYM-ILDL run with fill = 12.0 and tol = 0.003. – denotes
failure to converge within 1000 iterations. nshift denotes the number of non-zero shifts used.

Identifier Signed IC SYM-ILDL
αout(1) αout(2) nshift fillIC efficiency iters fillIC efficiency iters

GHS indef/c-55 0.01 0.08 2 3.37 3.0×107 41 4.35 7.4×107 78
GHS indef/c-59 0.0025 0.01 2 3.67 3.9×107 41 4.33 1.1×108 97
GHS indef/c-63 0.01 0.02 2 3.79 4.3×107 47 4.46 6.5×107 61
GHS indef/c-68 0.01 0.01 1 4.06 1.8×107 14 4.31 8.3×107 61
GHS indef/c-69 0.0025 0.01 2 4.00 4.1×107 30 3.81 5.5×107 42
GHS indef/c-70 0.01 0.01 1 3.88 6.3×107 45 3.61 2.9×107 22
GHS indef/c-71 0.01 0.01 1 3.51 8.7×107 53 4.03 7.0×107 37
GHS indef/c-72 0.01 0.01 1 3.91 5.7×107 37 4.02 9.7×107 61
Schenk IBMNA/c-big 0.01 0.01 1 4.44 3.3×108 56 4.47 – –

default value 1.0. The parameter tol controls the aggressiveness of the dropping of
small entries. In each column k of L, entries that are less than tol · ||Lk+1:n,k||1 in
magnitude are discarded. The default setting for tol is 0.001. SYM-ILDL is a C++
code and in our tests we use the g++ compiler with option -03.

Table 6.11 includes results for SYM-ILDL for the Test Set 2 problems run with
the settings fill = 12.0 and tol = 0.003 and the AMD ordering is used. With these
choices, the level of fill is similar to that for the signed IC factorization. We see that, in
some cases (in particular, c-70), SYM-ILDL produces a higher quality preconditioner
but, for other problems (including c-63 and c-68) the preconditioner computed by our
signed IC factorization is better.

We next report timings for our signed IC code HSL MI30 and for SYM-ILDL.
These runs are performed on an Intel Core 2 Quad Q8400 2.66GHz processor; the
gfortran and g++ compilers are used for the two codes, respectively (both with option
-O3). We employ the “standalone” mode for SYM-ILDL (the alternative is to call
SYM-ILDL from within MATLAB). This requires the user to execute the compiled
program through the command line. The input matrixK is held in a file that is named
on the command line; the optional parameters that control the action must also be
entered on the command line. In addition, a flag may be set to indicate whether the
output matrices should be saved. If so, they are written in coordinate format to files in
an external folder. The matrices that are saved (using our notation of S for a scaling
matrix and Q for a permutation matrix) are K, L, D, Q, S and B = QTSKSQ.
To run an iterative solver, it is necessary for the user to write a programme to both
read the matrices L, D, Q, S and to use them as a preconditioner with an iterative
solver. We have written a Fortran code to do this. In Table 6.12 we do not include
the time taken to write out the matrices and then read them back in; instead, for
both codes, we report only the time Tf to compute the factorization, the time Tg for
GMRES and the total time T , which is just the sum of these two. For GMRES, a
simple sparse matrix-vector product is used; it is beyond the scope of this study to
implement efficient parallel routines for these products but doing so could potentially
substantially reduce Tg, altering the relative costs of the factorization and iteration
phases of the solution process. Note that the factorization time includes the time
taken for computing the ordering and scaling and, for HSL MI30, it includes the time
to restart the factorization after a shift change. We observe that the command line
interface for SYM-ILDL make it unsuitable currently for incorporation into another

22

code, such as an interior-point solver.

Table 6.12

Times (in seconds) for performing the incomplete factorization and running GMRES(100). Tf

and Tg are the times to compute the factorization and run GMRES, respectively. The total time T

is the sum of Tf and Tg. – denotes failure to converge within 1000 iterations.

Identifier Signed IC (HSL MI30) SYM-ILDL
lsize = rsize = 10 lsize = rsize = 30
Tf Tg T Tf Tg T Tf Tg T

GHS indef/c-55 0.96 0.90 1.86 3.23 0.32 3.55 1.95 0.85 2.80
GHS indef/c-59 1.22 1.10 2.32 2.22 0.42 2.64 2.49 1.39 3.88
GHS indef/c-63 1.23 0.86 2.09 2.30 0.49 2.79 1.59 0.78 2.67
GHS indef/c-68 0.97 0.43 1.41 3.19 0.20 3.39 3.26 1.09 4.35
GHS indef/c-69 1.25 0.97 2.23 3.88 0.46 4.34 1.97 0.70 2.67
GHS indef/c-70 1.66 1.10 2.76 3.14 0.77 3.91 2.10 0.34 2.44
GHS indef/c-71 1.10 1.53 2.63 4.68 1.34 6.02 4.12 0.96 5.08
GHS indef/c-72 0.88 1.30 2.18 2.45 0.99 3.44 2.76 1.43 4.19
Schenk IBMNA/c-big 5.01 16.33 21.34 14.52 8.48 23.00 82.26 - -

In Table 6.12, HSL MI30 times are given for lsize = rsize = 10 and lsize =
rsize = 30. We see that the latter produces both faster factorization times and faster
GMRES times compared to lsize = rsize = 30 and SYM-ILDL. However, with the
notable exception of Schenk IBMNA/c-big, for most problems, Tf is less for SYM-
ILDL than for HSL MI30 with lsize = rsize = 30, although in some cases where the
latter requires fewer iterations, HSL MI30 has the smaller total time.

Finally, we consider Test Set 1 (C = 0). Results are given in Tables 6.13 and
6.14. Again, the HSL MI30 times include the time to restart the factorization after
a change in shift (the number of shifts is reported in column 2 of Table 6.13). The
input parameter fill for SYM-ILDL is chosen for each problem to give good per-
formance with a level of fill in the factor that is generally similar to that for the
signed IC factorization; the default drop tolerance tol = 0.001 is used. Problems
GHS indef/cont-201 and GHS indef/cont-300 are omitted as SYM-ILDL did not con-
verge. The signed IC code is run with the MC77 equilibration scaling and the same
choices for lsize and rsize as in Table 6.3. The natural order is used for the first
four problems and the (constrained) Sloan ordering for the remainder. Again, we
see that the signed IC approach can outperform SYM-ILDL (for example, the stokes
problems) but for some problems (such as GHS indef/brainpc2), the latter is faster
and produces a higher quality preconditioner. We are not able to predict for which
problems which approach will give the better results.

7. Concluding remarks. In this paper, we have looked at extending the ro-
bust limited-memory incomplete Cholesky factorization algorithm of [58, 59] to sparse
symmetric indefinite systems in saddle-point form. By using two diagonal shifts to
prevent breakdown, we are able to compute a signed incomplete Cholesky factoriza-
tion of the form LDLT , where the diagonal matrix D has entries ±1. Some new
theoretical results have been given and numerical results presented to illustrate the
effectiveness of the approach. The effects of different orderings and scalings on the
preconditioner have also been investigated. As in the positive-definite case, we have
shown that the use of intermediate memory can improve the quality of the precon-
ditioner. Furthermore, the use of regularization parameters (that is, non-zero initial
diagonal shifts) for the blocks A and −C has been found to substantially improve per-
formance for interior-point optimization matrices. We have developed a new software

23

Table 6.13

GMRES(100) convergence results for Test Set 1. The settings for lsize and rsize for HSL MI30

are as for Table 6.3. nshift denotes the number of non-zero shifts used.

Identifier HSL MI30 SYM-ILDL
nshift fillIC efficiency iters fill fillIC efficiency iters

GHS indef/aug3dcqp 0 1.25 9.7×104 1 1.0 1.61 1.2×105 1
GHS indef/boyd1 2 0.40 1.3×107 52 1.0 0.86 1.1×107 19
GHS indef/brainpc2 3 1.28 2.9×107 238 1.0 0.72 1.5×106 22
GHS indef/d pretok 0 1.88 8.0×107 48 1.0 1.96 2.7×108 156
GHS indef/darcy003 0 5.02 2.0×108 35 10.0 4.84 2.3×108 40
GHS indef/mario001 0 4.91 7.9×106 11 4.0 4.25 1.2×107 24
GHS indef/ncvxqp9 3 5.28 1.7×105 1 3.0 3.64 7.0×104 61
GHS indef/olesnik0 0 3.77 3.9×107 26 4.0 4.81 6.6×107 34
GHS indef/qpband 0 1.17 3.5×104 1 0.5 1.67 3.5×104 1
GHS indef/sit100 0 3.17 2.2×106 20 5.0 3.24 6.2×106 56
GHS indef/stokes64 0 2.73 1.2×107 57 2.0 3.73 1.1×108 379
GHS indef/stokes128 0 2.73 1.2×108 149 4.0 5.86 1.3×109 740
GHS indef/tuma1 4 5.39 6.3×106 23 15.0 4.91 3.2×106 13
GHS indef/tuma2 4 5.25 3.3×106 22 15.0 4.66 1.4×106 11
GHS indef/turon m 0 3.84 1.5×108 42 6.0 5.58 3.5×108 67

Table 6.14

Times (in seconds) for performing the incomplete factroization and running GMRES(100). Tf

and Tg are the times to compute the factorization and run GMRES, respectively. The total time T

is the sum of Tf and Tg. – denotes failure to converge within 1000 iterations.

Identifier HSL MI30 SYM-ILDL
Tf Tg T Tf Tg T

GHS indef/aug3dcqp 0.03 0.01 0.04 0.06 0.05 0.11
GHS indef/boyd1 0.23 0.67 0.91 0.30 0.23 0.53
GHS indef/brainpc2 4.05 1.03 5.07 1.24 0.05 1.29
GHS indef/d pretok 0.56 2.28 2.85 1.18 10.43 11.60
GHS indef/darcy003 3.39 4.09 7.49 3.87 4.95 8.82
GHS indef/mario001 0.30 0.09 0.39 0.32 0.16 0.48
GHS indef/ncvxqp9 0.13 0.00 0.13 0.09 0.16 0.25
GHS indef/olesnik0 0.88 0.52 1.40 1.43 0.81 2.24
GHS indef/qpband 0.17 0.00 0.18 0.02 0.00 0.02
GHS indef/sit100 0.06 0.03 0.09 0.09 0.10 0.19
GHS indef/stokes64 0.08 0.14 0.22 0.25 1.31 1.56
GHS indef/stokes128 0.33 1.83 2.16 2.28 14.75 17.03
GHS indef/tuma1 0.38 0.08 0.46 0.19 0.04 0.23
GHS indef/tuma2 0.20 0.04 0.23 0.09 0.02 0.11
GHS indef/turon m 2.28 2.63 4.91 4.05 5.68 9.73

package HSL MI30 that implements our signed IC factorization algorithm; this For-
tran package (which also offers a MATLAB interface) is part of the HSL mathematical
software library [35].

We have presented some numerical results for the recent SYM-ILDL package,
which uses Bunch-Kaufman pivoting to avoid breakdown. In the case of a direct
solver, it has been reported [56] that a signed Cholesky factorization code in general
performs less well than a carefully engineered indefinite code that incorporates thresh-
old partial pivoting. However, our results show that our limited-memory signed IC
approach (implemented as HSL MI30) can be competitive with SYM-ILDL. It is now
our intention to develop an incomplete indefinite factorization code that incorporates
pivoting and also uses intermediate memory.

24

Acknowledgements

We are grateful to Chen Greif and Paul Liu for discussions around their code SYM-
ILDL and for advice on computing the numerical results for SYM-ILDL that are
reported in Sections 6.3 and 6.4. Thanks also to Chen for carefully reading and
commenting on a draft of this paper. The version of SYM-ILDL used was down-
loaded from https://github.com/inutard/matrix-factor on 10 December 2013.
All results were performed using the HSL implementations of SYMMBK and GMRES
(available from http://www.hsl.rl.ac.uk/catalogue/).

We would also like to thank two anonymous referees for their careful reading of
our manuscript and for their helpful and constructive comments.

REFERENCES

[1] G. Al-Jeiroudi, J. Gondzio, and J. Hall. Preconditioning indefinite systems in interior point
methods for large scale linear optimisation. Optimization Methods and Software, 23(3):345–
363, 2008.

[2] A. Altman and J. Gondzio. Regularized symmetric indefinite systems in interior point methods
for linear and quadratic optimization. Optimization Methods and Software, 11(1-4):275–
302, 1999.

[3] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate minimum
degree ordering algorithm. ACM Transactions on Mathematical Software, 30:381–388,
2004.

[4] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta
Numerica, 14:1–137, 2005.

[5] M. Benzi and A. Wathen. Some preconditioning techniques for saddle point problems. In Model
Order Reduction: Theory, Research Aspects and Applications, volume 13 of Mathematics
in Industry, pages 195–211. Springer, 2008.

[6] L. Bergamaschi, J. Gondzio, and G. Zilli. Preconditioning indefinite systems in interior point
methods for optimization. Computational Optimization and Applications, 28(2):149–171,
2004.

[7] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic
Press, New York, 1979.

[8] S. Bonettini and V. Ruggiero. Some iterative methods for the solution of a symmetric indefinite
KKT system. Computational Optimization and Applications, 38(1):3–25, 2007.

[9] R. Bridson. An ordering method for the direct solution of saddle-point matrices, 2007. Unpub-
lished preprint available from http://www.cs.ubc.ca/~rbridson/kktdirect/.

[10] J. R. Bunch and L. Kaufman. Some stable methods for calculating inertia and solving symmetric
linear systems. Mathematics of Computation, 31:162–179, 1977.

[11] R. Chandra. Conjugate gradient methods for partial differential equations. PhD thesis, Yale
University, 1978.

[12] X. Chen, K.-K. Phoon, and K.-C. Toh. Performance of zero-level fill-in preconditioning tech-
niques for iterative solutions with geotechnical applications. International Journal of Ge-
omechanics, 12:596–605, 2012.

[13] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices. J.
of Computational and Applied Mathematics, 86(2):387–414, 1997.

[14] E. H. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Pro-
ceedings 24th National Conference of the ACM, pages 157–172. ACM Press, 1969.

[15] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Transactions
on Mathematical Software, 38(1), 2011.

[16] A. C. de Niet and F. W. Wubs. Numerically stable LDLT -factorization of F-type saddle point
matrices. IMA Journal of Numerical Analysis, 29:208–234, 2009.

[17] I. S. Duff. MA57– a new code for the solution of sparse symmetric definite and indefinite
systems. ACM Transactions on Mathematical Software, 30:118–154, 2004.

[18] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse
matrix. SIAM J. on Matrix Analysis and Applications, 22:973–996, 2001.

25

[19] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate gradients.
BIT Numerical Mathematics, 29:635–657, 1989.

[20] I. S. Duff and S. Pralet. Strategies for scaling and pivoting for sparse symmetric indefinite
problems. SIAM J. on Matrix Analysis and Applications, 27:313–340, 2005.

[21] I. S. Duff and J. A. Scott. Towards an automatic ordering for a symmetric sparse direct
solver. Technical Report RAL-TR-2006-001, Rutherford Appleton Laboratory, Chilton,
Oxfordshire, England, 2005.

[22] V. Eijkhout. Analysis of parallel incomplete point factorizations. Linear Algebra and its Ap-
plications, 154/156:723–740, 1991.

[23] H. C. Elman and G. H. Golub. Inexact and preconditioned Uzawa algorithms for saddle point
problems. SIAM J. on Numerical Analysis, 31:1645–1661, 1994.

[24] R. Fourer and S. Mehrotra. Solving symmetric indefinite systems in an interior-point method
for linear programming. Math. Programming, 62(1, Ser. B):15–39, 1993.

[25] P. E. Gill, M. A. Saunders, and J. R. Shinnerl. On the stability of Cholesky factorization for
symmetric quasidefinite systems. SIAM J. Matrix Anal. Appl., 17(1):35–46, 1996.

[26] G. H. Golub and C. F. Van Loan. Unsymmetric positive definite linear systems. Linear Algebra
and its Applications, 28:85–97, 1979.

[27] J. Gondzio. HOPDM (version 2.12) - a fast LP solver based on a primal-dual interior point
method. European Journal of Operational Research, 85(1):221–225, 1995.

[28] C. Greif. Preconditioners for linear systems arising from interior-point methods. Presentation
at the International Conference On Preconditioning Techniques for Scientific and Industrial
Applications, The University of Oxford, 2013.

[29] C. Greif, S. He, and P. Liu. SYM-ILDL: C++ package for incomplete factorizations of symmetric
indefinite matrices. https://github.com/inutard/matrix-factor, 2013.

[30] M. Hagemann and O. Schenk. Weighted matchings for preconditioning symmetric indefinite
linear systems. SIAM J. on Scientific Computing, 28(2):403–420, 2006.

[31] J. D. Hogg and J. A. Scott. The effects of scalings on the performance of a sparse symmetric
indefinite solver. Technical Report RAL-TR-2008-007, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, England, 2008.

[32] J. D. Hogg and J. A. Scott. An indefinite sparse direct solver for large problems on multicore
machines. Technical Report RAL-TR-2010-011, Rutherford Appleton Laboratory, Chilton,
Oxfordshire, England, 2010.

[33] J. D. Hogg and J. A. Scott. HSL MA97: a bit-compatible multifrontal code for sparse symmetric
systems. Technical Report RAL-TR-2011-024, Rutherford Appleton Laboratory, Chilton,
Oxfordshire, England, 2011.

[34] J. D. Hogg and J. A. Scott. Pivoting strategies for tough sparse indefinite systems. ACM
Transactions on Mathematical Software, 40, 2013. Article 4, 19 pages.

[35] HSL. A collection of Fortran codes for large-scale scientific computation, 2013. http://www.

hsl.rl.ac.uk.

[36] I. E. Kaporin. High quality preconditioning of a general symmetric positive definite matrix based
on its UTU + UTR + RTU decomposition. Numerical Linear Algebra with Applications,
5:483–509, 1998.

[37] D. S. Kershaw. The incomplete Cholesky-conjugate gradient method for the iterative solution
of systems of linear equations. J. of Computational Physics, 26:43–65, 1978.

[38] N. Li and Y. Saad. Crout versions of ILU factorization with pivoting for sparse symmetric
matrices. Electronic Transactions on Numerical Analysis, 20:75–85, 2005.

[39] N. Li, Y. Saad, and E. Chow. Crout versions of ILU for general sparse matrices. SIAM J. on
Scientific Computing, 25(2):716–728, 2003.

[40] S. X. Li and J. W. Demmel. Making parallel Gaussian elimination scalable by static pivoting.
In Proceedings of SuperComputing’98, November 7–13, 1998, Orlando, FL, pages 519–523,
1998.

[41] C.-J. Lin and J. J. Moré. Incomplete Cholesky factorizations with limited memory. SIAM J.
on Scientific Computing, 21(1):24–45, 1999.

[42] T. A. Manteuffel. An incomplete factorization technique for positive definite linear systems.
Mathematics of Computation, 34:473–497, 1980.

[43] O. Marques. Skypack user’s guide. Technical Report, National Energy Research Scientific
Computing Center (NERSC), Lawrence Berkeley National Laboratory, 2009.

26

[44] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M -matrix. Mathematics of Computation,
31(137):148–162, 1977.

[45] A. Messaoudi. On the stability of the incomplete LU -factorizations and characterizations of
H-matrices. Numerische Mathematik, 69(3):321–331, 1995.

[46] D. Orban. Limited-memory LDLT factorization of symmetric quasi-definite matrices. GERAD
Technical Report G-2013-87, 2013.

[47] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM
J. on Numerical Analysis, 12(4):617–629, 1975.

[48] J. K. Reid and J. A. Scott. Ordering symmetric sparse matrices for small profile and wavefront.
International J. of Numerical Methods in Engineering, 45:1737–1755, 1999.

[49] W. Ren and J. Zhao. Iterative methods with preconditioners for indefinite systems. J. of
Computational Mathematics, 17:89–96, 1999.

[50] M. Rozložńık, A. Smoktunowicz, and F. Okulicka-D lużewska. Indefinite orthogonalization with
rounding errors, submitted for publication. 2013.

[51] D. Ruiz. A scaling algorithm to equilibrate both rows and columns norms in matrices. Tech-
nical Report RAL-TR-2001-034, Rutherford Appleton Laboratory, Chilton, Oxfordshire,
England, 2001.

[52] D. Ruiz and B. Uçar. A symmetry preserving algorithm for matrix scaling. Technical Report
INRIA RR-7552, INRIA, Grenoble, France, 2011.

[53] Y. Saad and M. H. Schulz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. on Scientific and Statistical Computing, 7:856–
869, 1986.

[54] M. A. Saunders and J. A. Tomlin. Solving regularized linear porograms using barrier methods
and KKT systems. Technical Report SOL-96-4, SOL, Department of Operations Research,
Stanford University, 1996.

[55] O. Schenk and K. Gärtner. On fast factorization pivoting methods for symmetric indefinite
systems. Electronic Transactions on Numerical Analysis, 23:158–179, 2006.

[56] J. A. Scott. A note on a simple constrained ordering for saddle-point systems. Technical Report
RAL-TR-2009-007, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2009.

[57] J. A. Scott and M. Tůma. The importance of structure in incomplete factorization precondi-
tioners. BIT Numerical Mathematics, 51:385–404, 2011.

[58] J. A. Scott and M. Tůma. HSL MI28: an efficient and robust limited memory incomplete
Cholesky factorization code. ACM Transactions on Mathematical Software, 40, 2014. Ar-
ticle 24, 19 pages.

[59] J. A. Scott and M. Tůma. On positive semidefinite modification schemes for incomplete
Cholesky factorization. SIAM J. on Scientific Computing, 36:A609–A633, 2014.

[60] S. W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. International
J. of Numerical Methods in Engineering, 23:239–251, 1986.

[61] S. W. Sloan. A Fortran program for profile and wavefront reduction. International J. of
Numerical Methods in Engineering, 28:2651–2679, 1989.

[62] M. Tůma. A note on the LDLT decomposition of matrices from saddle-point problems. SIAM
J. on Matrix Analysis and Applications, 23(4):903–915, 2002.

[63] M. ur Rehman, C. Vuik, and G. Segal. A comparison of preconditioners for incompressible
Navier-Stokes solvers. International J. for Numerical Methods in Fluids, 57:1731–1751,
2008.

[64] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge Mono-
graphs on Applied and Computational Mathematics, Cambridge University Press, Cam-
bridge, UK, 2003.

[65] R. J. Vanderbei. Symmetric quasidefinite matrices. SIAM J. on Optimization, 5(1):100–113,
1995.

[66] R. J. Vanderbei. LOQO user’s manual—version 3.10. Optimization Methods and Software,
11/12(1-4):485–514, 1999.

[67] R. J. Vanderbei and D. F. Shanno. An interior-point algorithm for nonconvex nonlinear pro-
gramming. Computational Optimization and Applications, 13(1-3):231–252, 1999.

[68] R. S. Varga, E. B. Saff, and V. Mehrmann. Incomplete factorizations of matrices and connections
with H-matrices. SIAM J. on Numerical Analysis, 17:787–793, 1980.

[69] J. Zhao. The generalized Cholesky factorization method for saddle-point problems. Applied
Mathematics and Computation, 92:49–58, 1998.

27

