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Abstract. The paper deals with estimating the condition number of triangular matrices in the Euclidean
norm. The two main incremental methods, based on the work of Bischof and on the later work of Duff and Vömel,
are compared. The paper presents new theoretical results revealing their similarities and differences. As typical
in condition number estimation, there is no universal always-winning strategy, but theoretical and experimental
arguments show that the clearly preferable approach is the algorithm of Duff and Vömel when appropriately applied
to both the triangular matrix itself and its inverse. This leads to a highly accurate incremental condition number
estimator.
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1. Introduction. The condition number

κ(A) = ‖A‖ · ‖A−1‖

of a nonsingular matrix is a very important quantity in numerical linear algebra. While its com-
putation is typically as expensive as solving a corresponding system of linear equations, there exist
efficient procedures for condition number estimation. Proper use of the computed estimates can
often save a lot of computational effort.

First of all, matrix condition number estimates may be used in the basic tasks of numeri-
cal linear algebra, that is, in solving systems of linear algebraic equations and solving eigenvalue
problems, to assess the quality of the computed solutions and their sensitivity to perturbations.
Further, there are specific fields in scientific computing that are strongly linked with condition num-
ber estimation. The estimated condition number may be used to monitor and control adaptive
computational processes, sometimes using the terminology adaptive condition estimators (ACE).
Such adaptive processes may include evaluation of adaptive filters [24], [31] and recursive least
squares in signal processing [22] or solving nonlinear problems by linearization methods [24], [36].
Standard algebraic approaches are used for tracking the condition number in a sequence of mod-
ified matrices of the same dimension as well as when matrices are subsequently constructed by
augmentation [34], [35], [37], [21], [22]. ACE based on properties of model and grid hierarchies
is a standard tool in multilevel PDE solvers [29]. Another type of problem-oriented ACE in re-
cursive least squares measured with a norm close to the Frobenius norm is represented in [1], [2].
An emerging application is the use of condition number estimates for dropping and pivoting in
incomplete matrix decompositions which we will mention later.

In order to have useful condition estimators, they should be cheap. At the same time, they
should provide condition number approximations which are reasonably accurate, and this may
mean different things in different applications. Sometimes, relatively rough estimates are satisfac-
tory, e.g., it is sufficient in many cases that the estimates stay within a reasonable multiplicative
factor from the exact condition number, see, e.g. [17]. In other cases, more precise estimates may
be needed [28].

Condition number estimators typically provide lower bounds on the condition number of a
nonsingular matrix A by estimating a lower bound on the norm of A and an upper bound on
the norm of A−1. The most popular general approaches compute approximations of the condition
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number in the 1-norm [23], [26], [25], [27]. An important milestone in the development of estimators
in the 2-norm was the incremental condition estimation (ICE) of a triangular matrix that was
introduced in a series of papers by Bischof [4], [6] and further generalized for solving related tasks
[7], [37]. This strategy is naturally connected to adaptive techniques and contains clearly visible
links to matrix decompositions. As mentioned by Stewart [38], the approach can be viewed as a
special case of the framework in [15]. A closely related approach called incremental norm estimation
(INE) was developed by Duff and Vömel in [19] to get an estimation of the norm of a triangular
matrix. While a slight reformulation of this algorithm similarly as in [4] can be used to estimate the
minimum singular value as well, we will see in this paper that this does not work well in practice
and we will give a partial explanation for this. Nevertheless, when the inverses of the triangular
factors of A are available, INE could be used to get a useful estimate for the minimum singular
value of A [19]. A similar conclusion follows for the recent iterative procedure to get a lower bound
for the minimum singular value given in the interesting paper [30]. The actual strategy is based on
an improvement of the algorithm in [20] and applied to symmetric and positive definite Toeplitz
matrices. Incremental condition estimation is also closely related to rank-revealing decompositions,
see, e.g., [33].

A strong motivation to study and further develop incremental condition estimators is their
applicability in incomplete decompositions. In particular, a part of recent advances in precon-
ditioning of systems of linear algebraic equations is based on monitoring the conditioning of the
partially computed factors via a condition estimator. The incremental nature of the estimator
enables to monitor and control both dropping and pivoting of the decomposition. This is done in
strategies developed by Bollhöfer and Saad [8, 9, 11] and implemented in the package ILUPACK
[10], see also their use in the multilevel framework [12]. Both perturbation arguments and ex-
periments point out that preconditioners from incomplete decompositions using dropping criteria
based on conditioning control are rather robust, but we believe that more accurate incremental
strategies may help to push the approach even further. Note that the use of ICE for pivoting in
decompositions was considered also much earlier, see, e.g., [5] but the significant progress in this
research direction is connected with the work of Bollhöfer and Saad.

Recently, incomplete decompositions that compute both direct and inverse factors were in-
troduced. That is, they compute not only the standard Cholesky or LU factors but also their
inverses. In [3] the authors propose to compute the inverse of the incomplete factor once the direct
factor is computed. The mixed direct-inverse decompositions in [13], [14] obtain the direct and
inverse factors simultaneously, enabling to exploit information from the partial inverse factor for
the computation of the direct factor and vice-versa. It was shown that despite rather sophisticated
implementation, typical computational costs of the decomposition may still be low. Moreover,
condition estimators can be applied to both the direct and the inverse factor, thus enabling to use
the more accurate condition estimators discussed in this paper.

This paper presents some new theoretical and practical results leading to an improved in-
cremental condition estimator in the 2-norm. As it is well-known that the strengths of different
condition estimators are often complementary and any one of them can sometimes fail, we do not
propose a strategy that is always better than all the other approaches, but we have rather strong
theoretical and computational evidence to propose a choice based on INE. In the paper, we will
show some theoretical results related to the condition estimators introduced in [4] and [19] as well
as the mutual relation of these estimators. In particular, we will show that the best strategy should
be based on the computed factor as well as its inverse. We will remind that factorizations that
could be used for this task are readily available. The paper is organized as follows. In Section 2
the two basic strategies for incremental condition estimation in the 2-norm are introduced. Section
3 provides new theoretical results on the ICE and INE estimators. In particular, it reveals the
strong potential of the INE algorithm using the factor as well as its inverse. Section 4 then analyzes
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reasons for the superiority of INE over ICE that is clear from both the graphical demonstration
in this section and from the numerical experiments in Section 5. In the sections to follow, we
will assume that A is real and ‖ · ‖ will denote the 2-norm. With ”direct factor” we will mean a
triangular Cholesky, L, or U factor of a given input matrix, as opposed to its inverse, the ”inverse
factor”.

2. Incremental condition estimators in the 2-norm. This section presents a brief over-
view of the two basic incremental strategies to estimate the 2-norm condition number of a triangular
matrix. The idea is to find an upper bound estimate σest

min of its smallest singular value and a
lower bound estimate σest

max of its largest singular value. The condition number estimate is then
σest
max/σ

est
min. Without loss of generality we assume our matrix to be upper triangular. By the

incremental nature of the estimates we mean that the estimate for the leading principal submatrix
R̂ of dimension k + 1 is obtained from the estimate for its leading principal submatrix R of
dimension k in a simple way, without explicitly accessing the entries of R. In order to be able to
do this, we also keep estimates of the corresponding singular vectors. Note that the basic matrix
decompositions like Cholesky or LU reveal the triangular factors just in this incremental way and
the incremental estimates may be used not only to form the final condition number estimate but
they may be exploited throughout the decomposition.

Let us use the following notation

R̂ =

[

R v
0 γ

]

.(2.1)

As mentioned above, the first incremental estimation strategy of this kind was proposed by Bischof
[4] in 1990 and called incremental condition estimation (ICE). This method computes approxima-
tions to the extremal singular values and to left singular vectors of triangular leading principal
submatrices. Note that if R = UΣV T is the singular value decomposition of R, an extremal left
singular vector uext satisfies ‖uT

extR‖ = ‖uT
extUΣV T ‖ = σext(R) with σext denoting the extremal

singular value. The ICE method computes

σC
ext

(R) = ‖yTextR‖ ≈ σext(R),

where ext is substituted for either min or max and yext denotes a left singular vector approxima-
tion. The superscript C here means the considered ICE incremental strategy that can be described
as follows. Consider the submatrix R̂. The algorithm computes the approximation σC

ext(R̂) from
the optimization problem

‖ŷT
ext

R̂‖ = ext‖[s,c]‖=1

∥

∥

∥

∥

[

s yText, c
]

[

R v
0 γ

]∥

∥

∥

∥

=

∥

∥

∥

∥

[

sext y
T
ext, cext

]

[

R v
0 γ

]∥

∥

∥

∥

,

where the approximation ŷext of the left singular vector of R̂ is

ŷext ≡
[

sext yext
cext

]

.

It can be easily verified that sext and cext are the components of the eigenvector corresponding to
the extremal (minimum or maximum) eigenvalue of the matrix

BC
ext ≡





σC
ext(R)2 + (yTextv)

2 γ(yTextv)

γ(yTextv) γ2



 .(2.2)
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If BC
ext has two identical eigenvalues, the algorithm of [4] puts sext = 0 and cext = 1. Further,

σC
ext(R̂) ≡ ‖ŷTextR̂‖ =

√

λext(BC
ext),

where λext denotes the extremal (minimum or maximum) eigenvalue. Clearly, the involved eigen-
vectors are computed without accessing R. Note that the original derivation in [4] uses a lower
triangular matrix and it is slightly different from the one presented here, see [19].

Another incremental strategy was proposed in 2002 by Duff and Vömel [19] and used only
for norm estimation based on a maximization problem, although it is possible to formulate the
dual minimization problem as well. We will denote it here by the acronym INE (incremental norm
estimation) using the superscript N . It computes approximations σN

ext(R) of the extremal singular
values

σN
ext(R) = ‖Rzext‖ ≈ σext(R)

as well as the corresponding INE approximations zext to the right singular vectors. Similarly as
above, σN

ext(R̂) is obtained from the following optimization problem

‖R̂ẑext‖ = ext‖[s,c]‖=1

∥

∥

∥

∥

[

R v
0 γ

] [

s zext
c

]∥

∥

∥

∥

=

∥

∥

∥

∥

[

R v
0 γ

] [

sextzext
cext

]∥

∥

∥

∥

where the approximation ẑext of the right singular vector of R̂ is

ẑext ≡
[

sext zext
cext

]

.

The scalars sext and cext are then the entries of the eigenvector corresponding to the extremal
(minimum or maximum) eigenvalue of the matrix

BN
ext ≡





σN
ext(R)2 zTextR

T v

zTextR
T v vT v + γ2



 ,(2.3)

with the convention that sext = 0 and cext = 1 when BN
ext has two identical eigenvalues. Then

σN
ext(R̂) ≡ ‖R̂ẑext‖ =

√

λext(BN
ext).

In the remaining text we will further simplify the notation as follows. The subscripts min or max
denoting minimum or maximum, respectively, such as smax or ymin will be replaced by plus or
minus signs which gives in this example s+ ≡ smax and y− ≡ ymin.

Note that the main costs involved in both techniques come from the inner products needed
to get the entries of the matrices BC

ext and BN
ext. For a dense triangular matrix of dimension n

the total costs to obtain its estimate are of the order n2. Further, the above descriptions give no
clear indication about whether one technique is superior to the other. In [19] the authors conclude,
based on their experiments, that there is no general superiority of one technique. They explain
that INE is more suited for sparse matrices and they show experimentally that INE is slightly
superior for finding the largest singular value of dense triangular matrices. The following sections
contain, among others, new theoretical comparisons of the quality of the two described techniques
and a strong numerical confirmation of our findings.
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3. ICE and INE estimates using both direct and inverse factors. Let us consider ICE
and INE in the situation when we have both the direct triangular factor and its inverse available.
In this section we are interested to know whether exploiting the inverse factor may help to improve
accuracy of the estimates. At first sight this may seem trivial since the hard part in the estimation
is often to find a good approximation of the minimum singular value. If the inverse is available, the
problem can be circumvented by estimating the maximum singular value of the inverse. However,
we will see that the two considered techniques behave differently in this respect.

Note that the inverse or its approximation is naturally available in the mixed direct-inverse
decompositions [13], [14] mentioned in the introduction. In addition, information on rows and/or
columns of the inverse is computed when applying the techniques of [8, 9, 11]. In some other
applications, for example in signal processing [16, 32], it is necessary to compute the matrix
inverses explicitly and this is traditionally done via their triangular factors. Further, the inversion
of a triangular factor can be done at costs that are low compared to the computation of the factor.
For example, the algorithm in [19, Lemma 3.1] asks for about n3/6 flops, see also the techniques
in [39].

First we will show that using the inverse triangular factor does not give any improvement for
ICE. Let us start with a simple lemma related to the exact singular values and vectors.

Lemma 3.1. Let R be a nonsingular matrix. Then the extremal singular values of R and R−1

satisfy σ−(R) = 1/σ+(R
−1). The corresponding left singular vectors y− and x+ of R and R−1,

respectively, satisfy

σ−(R)xT
+ = yT−R.(3.1)

Proof. The first part of the assertion is trivial. Let R = USWT be the SVD of R with the
singular values in S in non-ascending order. Then R−1 = WS−1UT and the left singular vectors
y− and x+ can be expressed as y− = Uen and x+ = Wen, respectively. Then we can write
xT
+R

−1 = eTnW
TR−1 = eTnW

TWS−1UT = (1/σ−(R))eTnU
T = (1/σ−(R))yT−, which implies (3.1).

The main result relating the ICE estimates for R and R−1 looks similarly.

Theorem 3.2. Let R be a nonsingular upper triangular matrix. Then the ICE estimates of
the singular values of R and R−1 satisfy

σC
−(R) = 1/σC

+(R
−1).(3.2)

The approximate left singular vectors y− and x+ corresponding to the ICE estimates for R and
R−1, respectively, satisfy

σC
−(R)xT

+ = yT−R.(3.3)

Proof. Consider mathematical induction on the dimension n of R. Clearly, the estimates are
exact for n = 1, 2. Assume that the lemma holds for some n ≥ 2 and we will prove it for n+1. Let
us use the notation (2.1) for the upper triangular R̂ of dimension n+ 1. The estimate σC

−(R̂) for

the extended matrix R̂ is obtained as the square root of the minimum eigenvalue of the matrix BC
−

given above in (2.2) where “ext ≡ min ≡ −”. Clearly, BC
− has the following LTL decomposition.

BC
− =

[

σC
−(R)2 + (yT−v)

2 γ(yT−v)
γ(yT−v) γ2

]

=

[

σC
−(R) yT−v
0 γ

] [

σC
−(R) 0
yT−v γ

]

≡ (LC
−)

TLC
−.
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Further, the estimate 1/σC
+(R̂

−1) for

R̂−1 =

[

R−1 −R−1v/γ
0 1/γ

]

is the square root of 1/λ+(B
C
+) where BC

+ is defined with respect to R̂−1. This value is also equal to
the square root of λ−((B

C
+ )−1). Using the assumptions (3.2) and (3.3), from (2.2) we subsequently

get

(BC
+)−1 =

[
(

σC
+(R

−1)
)2

+ (−xT
+R

−1v/γ)2 −(xT
+R

−1v)/γ2

−(xT
+R

−1v)/γ2 1/γ2

]−1

=

[

1/(σC
−(R))2 + ((yT−v)

2/(σC
−(R))2γ2) −yT−v/(σ

C
−(R)γ2)

−yT−v/(σ
C
−(R)γ2) 1/γ2

]−1

=

([

1/σC
−(R) −yT−v/(σ

C
−(R)γ)

0 1/γ

] [

1/σC
−(R) 0

−yT−v/(σ
C
−(R)γ) 1/γ

])−1

=

[

σC
−(R) 0
yT−v γ

] [

σC
−(R) yT−v
0 γ

]

.

Clearly, we obtained the LLT decomposition (BC
+)−1 = LC

+(L
C
+)

T where LC
+ is the same as the

factor L of the LTL decomposition of BC
− . That is, we have L ≡ LC

+ = LC
−. It is easy to see from

the singular value decomposition ULSW
T
L of L that BC

+ and (BC
−)−1 have the same eigenvalues.

This implies the first part (3.2) of the theorem.
The approximate singular vectors for the extended problems are

ŷ− =

[

s− y−
c−

]

, x̂+ =

[

s+ x+

c+

]

,

where
[

s−, c−
]T

is the eigenvector of BC
− = (LC

−)
TLC

− corresponding to its minimum eigen-

value and
[

s+, c+
]T

is the eigenvector of BC
+ = (LC

+)
−T (LC

+)
−1 corresponding to its maximum

eigenvalue. Then
[

s−, c−
]T

= WLe2 is also the right singular vector of LC
− with the singular

value σC
−(R̂). Similarly,

[

s+, c+
]T

is equal to ULe2 and it is also the the right singular vector

of (LC
+)

−1 with the singular value σC
+(R̂

−1) = 1/σC
−(R̂). Taking all of these into account, we get

ŷT−R̂ =
[

s−y
T
−, c−

]

[

R v
0 γ

]

=
[

s−y
T
−R, s−y

T
−v + c−γ

]

=
[

σC
−(R)s−x

T
+, s−y

T
−v + c−γ

]

=
[

σC
−(R)s−, s−y

T
−v + c−γ

]

[

xT
+

1

]

=
[

s−, c−
]

(LC
−)

T

[

xT
+

1

]

= eT2 W
T
L WLSU

T
L

[

xT
+

1

]

= σC
−(R̂)eT2 U

T
L

[

xT
+

1

]

= σC
−(R̂)x̂T

+.

We remark that the previous equalities also hold in the special case where BC
− has two identical

eigenvalues and where ICE defines
[

s−, c−
]T

= eT2 and
[

s+, c+
]T

= eT2 .

Note that we can prove analogously that σC
+(R) = 1/σC

−(R
−1). Hence the ICE estimate of the

condition number of R is always identical with the reciprocal of the ICE estimate of the condition
number of R−1. Now let us consider the alternative incremental norm estimation technique. INE
deals with the right singular vectors of a triangular matrix. The following lemma is just an analogue
of Lemma 3.1 for right singular vectors.
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Lemma 3.3. Let R be a nonsingular matrix. Then the extremal singular values of R and R−1

satisfy σ−(R) = 1/σ+(R
−1). The corresponding right singular vectors z− and x+ of R and R−1,

respectively, satisfy

σ−(R)x+ = Rz−.(3.4)

Proof. As above, the first part is trivial. Let R = USWT be the SVD of R with the singular
values in S in non-ascending order. Clearly, z− = Wen. Since R−1 = WS−1UT we also have
x+ = Uen. Furthermore, R−1Uen = WS−1UTUen = 1/(σ−(R))Wen. This immediately implies
(3.4).

The following theorem shows that INE is inherently different from ICE and it reveals that
there is no analogy with Theorem 3.2. In particular, Theorem 3.4 cannot be applied recursively for
leading principal submatrices of growing dimension because the assumption 1/σN

+ (R−1) = σN
− (R)

will in general cease to hold.

Theorem 3.4. Let R be a nonsingular upper triangular matrix. Assume that the INE esti-
mates of the singular values of R and R−1 satisfy 1/σN

+ (R−1) = σN
− (R) = σ−(R). Then the INE

estimates of the singular values related to the extended matrix (2.1) satisfy

1/σN
+ (R̂−1) ≤ σN

− (R̂)

with equality if and only if v in (2.1) is collinear with the left singular vector corresponding to the
smallest singular value of R.

Proof. Consider the INE process applied to R̂. The estimate σN
− (R̂) is given by the square root

of the minimum eigenvalue of the matrix BN
− obtained from (2.3) by setting “ext ≡ min ≡ −”,

which is also equal to the inverse of the square root of the maximum eigenvalue of the matrix
(BN

− )−1. The LTL decomposition of the matrix (BN
− )−1 is derived as follows using also Lemma 3.3

and its notation.

(BN
− )−1 =

[

zT−R
TRz− vTRz−

vTRz− vT v + γ2

]−1

=

[

σ−(R)2 σ−(R)vTx+

σ−(R)vTx+ vT v + γ2

]−1

=

([

σ−(R) 0

vTx+

√

vT v − (vTx+)2 + γ2

] [

σ−(R) vTx+

0
√

vT v − (vTx+)2 + γ2

])−1

= LT
−L−

with

L− =

[

1/σ−(R) 0

−vTx+/
(

σ−(R)
√

vT v − (vTx+)2 + γ2
)

1/
√

vT v − (vTx+)2 + γ2

]

.

Further, the INE estimate for 1/σN
+ (R̂−1) is obtained from the eigenvalues of the matrix BN

+

which can be put down and represented in the form of a LLT decomposition. Its derivation uses
the fact that σ−(R)R−T z− = x+, which can be easily seen from the singular value decomposition
R = USWT with z− = Wen and x+ = Uen. Then with Lemma 3.3, R−TR−1x+ = x+/σ−(R)2. A
few simple steps provide

BN
+ =

[

xT
+R

−TR−1x+ −xT
+R

−TR−1v/γ
−xT

+R
−TR−1v/γ vTR−TR−1v/γ2 + 1/γ2

]

=

[

1/σ−(R)2 −vTx+/(σ−(R)2γ)
−vTx+/(σ−(R)2γ) (||R−1v||2 + 1)/γ2

]

= L+L
T
+
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with

L+ =

[

1/σ−(R) 0

−vTx+/(σ−(R)γ)
(√

||R−1v||2 − (vTx+)2/σ−(R)2 + 1
)

/γ

]

.

The Cauchy inequality (vTx+)
2 ≤ vT v and properties of the singular value decomposition imply

‖R−1v‖2 = ‖S−1UT v‖2 =

n
∑

j=1

(eTj U
T v)2

s2jj
≥ (vTx+)

2/σ−(R)2.(3.5)

This implies the relation

‖L−‖ =

∥

∥

∥

∥

∥

[

1
γ√

vT v−(vT x+)2+γ2

]

L+

[

1
1√

||R−1v||2−(vT x+)2/σN

−

(R)2+1

]∥

∥

∥

∥

∥

≤ ‖L+‖.

The involved norms of the triangular factors directly provide

(

σN
+ (R̂−1)

)−1

= ‖L+‖−1 ≤ ‖L−‖−1 = σN
− (R̂).(3.6)

Equality in (3.6) is attained if and only if (vTx+)
2/(σ−(R))2 = ‖R−1v‖2 and also (vTx+)

2 = vT v.
These two conditions are equivalent with the collinearity of v with x+ = Uen.

We can obtain the analogue result for the approximate largest singular value σN
+ (R̂) if we

consider in Theorem 3.4 instead of R̂ its inverse. Let us denote the inverse of R̂ by Ŝ. Using
Theorem 3.4 we get σN

− (R̂) = σN
− (Ŝ−1) ≥ 1/σN

+ (R̂−1) = 1/σN
+ (Ŝ), i.e. for any upper triangular S

with 1/σN
− (S−1) = σN

+ (S) = σ+(S) we have for the extended matrix Ŝ

σN
+ (Ŝ) ≥ 1/σN

− (Ŝ−1).(3.7)

Consequently, under the assumption of starting with exact estimates like in Theorem 3.4, INE will
be more accurate when estimating σ−, respectively σ+, if one applies incremental maximization
(using 1/σN

+ or σN
+ , respectively) instead of incremental minimization (using σN

− or 1/σN
− , respec-

tively). This is in contrast with the ICE technique, where maximization and minimization give
identical approximations in the sense of (3.2). When the inverse is not available, Theorem 3.4
and (3.7) seem to suggest that the quality of the INE estimate of the largest singular value might
in most cases be better than the quality of the estimate for the smallest singular value. Further,
Theorem 3.4 and (3.7) assume that the INE estimates of the singular values of R and R−1 are
exact. Our experiments suggest that even in the more general situation when the assumptions
of Theorem 3.4 may not hold, minimization works better than maximization very rarely in prac-
tice. In fact, in our tests with various types of matrices traditionally used to asses the quality of
incremental condition estimators and with matrices from the Matrix Market collection [18] this
never occurred. In order to better understand this behavior, we propose to consider the following
expressions for 1/σN

+ (R̂−1) and σN
− (R̂).

Proposition 3.5. Let R be a nonsingular upper triangular matrix and let the INE approximate
singular vectors for σN

+ (R−1) and σN
− (R) be denoted by x+ and z−, respectively. Then the INE

estimates of the singular values related to the extended matrix (2.1) satisfy

σN
− (R̂) = σ−(L

N
− ), LN

− =

[

σN
− (R) 0

ι−

√

γ2 + vT v − ι2−

]

, ι− = vTRz−/σ
N
− (R)
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and

1/σN
+ (R̂−1) = σ−(L

N
+ ), LN

+ =







1/σN
+ (R−1) 0

ι+
√

‖R−1v‖2−(
ι+

σ+
)2+1

γ
√

‖R−1v‖2−(
ι+

σ+
)2+1






,

where σ+ = σN
+ (R−1), ι+ = vTR−TR−1x+/σ

2
+.

Proof. The estimate σN
− (R̂) is given by the root of the minimum eigenvalue of the matrix BN

−

obtained from (2.3) by setting “ext ≡ min ≡ −”. The Cholesky decomposition of the matrix BN
−

is

BN
− =

[

zT−R
TRz− vTRz−

vTRz− vT v + γ2

]

=

[

σN
− (R) 0

ι−

√

γ2 + vT v − ι2−

][

σN
− (R) ι−

0
√

γ2 + vT v − ι2−

]

= LN
− (LN

− )T .

This gives σN
− (R̂) = σ−(L

N
− ). Similarly, the estimate 1/σ+(R̂

−1)N is given by the root of the

minimum eigenvalue of the matrix (BN
+ )−1 obtained from (2.3) and defined with respect to R̂−1

by setting “ext ≡ max ≡ +”. The LTL decomposition of the matrix (BN
+ )−1 is

(BN
+ )−1 =

[

xT
+R

−TR−1x+ −vTR−TR−1x+/γ
−vTR−TR−1x+/γ vTR−TR−1v/γ2 + 1/γ2

]−1

=

[

σN
+ (R−1)2 −ι+σ

N
+ (R−1)2/γ

−ι+σ
N
+ (R−1)2/γ ‖R−1v‖2/γ2 + 1/γ2

]−1

=

[

σN
+ (R−1) −ι+σ

N
+ (R−1)/γ

0
√

||R−1v||2 − ι2+σ
N
+ (R−1)2 + 1/γ

]−1

[

σN
+ (R−1) 0

−ι+σ
N
+ (R−1)/γ

√

||R−1v||2 − ι2+σ
N
+ (R−1)2 + 1/γ

]−1

= (LN
+ )TLN

+ .

The claim follows from

LN
+ =

[

1/σN
+ (R−1) 0

ι+/
√

||R−1v||2 − ι2+/(σ
N
+ (R−1))2 + 1 γ/

√

||R−1v||2 − ι2+/(σ
N
+ (R−1))2 + 1

]

.

For a partial explanation why maximization seems in general to outperform minimization, let
us compare the entries of the matrices LN

− and LN
+ defined in Proposition 3.5. Since we have

i2− ≤ vT v and ι2+/(σ
N
+ (R−1))2 ≤ ||R−1v||2, the second diagonal entry of LN

+ is always smaller than

that of LN
− . When the dimension of R̂ is two, the first diagonal entries of LN

− are LN
+ identical at

the beginning of the estimation process, because they are exact. When R̂ has dimension three, the
first diagonal entry of LN

+ is not larger than that of LN
− from Theorem 3.4. Further, when started

with 1/σN
+ (R−1) ≤ σN

− (R), in order for 1/σN
+ (R̂−1) ≤ σN

− (R̂) to hold it clearly suffices that the
off-diagonal entries of LN

+ and LN
− satisfy the simple inequality stated in the following corollary.
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Corollary 3.6. Using the notation of Proposition 3.5 and assuming 1/σN
+ (R−1) ≤ σN

− (R),
there holds

1/σN
+ (R̂−1) ≤ σN

− (R̂) if |ι−| ≤

∣

∣

∣

∣

∣

∣

ι+
√

‖R−1v‖2 − ( ι+
σ+

)2 + 1

∣

∣

∣

∣

∣

∣

.(3.8)

The following example shows that the sufficient condition in the previous corollary may be
possibly simplified but it cannot be removed. Let us consider matrices R and R−1 defined as
follows:

R =





2 0 1
1 0

1



 , R−1 =





1
2 0 − 1

2
1 0

1



 .

The ICE estimate σC
−(R) for the smallest singular value σ−(R) = 0.874 is σC

−(R) = 1. The
ICE estimate 1/σC

+(R
−1) is of the same value, i.e. 1/σC

+(R
−1) = 1, which is in agreement with

Theorem 3.2. Note that here we used a matrix in block angular form that does not pass the
information in ICE as discussed in [6]. The INE estimate σN

− (R) for the smallest singular value is

also σN
− (R) = 1, but the INE estimate 1/σN

+ (R−1) is more accurate since 1/σN
+ (R−1) =

√

4/5 ≈
0.8944. This is what one would expect from Theorem 3.4 (its assumptions are satisfied because
the estimates for triangular matrices of size two are always exact).

Consider now an extended matrix R̂ with γ = 1 in (2.1). The choice of v influences the
values ι− and ι+ in Proposition 3.5, which can be crucial for whether 1/σN

+ (R̂−1) < σN
− (R̂)

holds, see Corollary 3.6. The INE approximation of the right singular vector z− corresponding
to σN

− (R) is z− = [0, 1, 0]T , hence ι− = (vTRz−)/σ
N
− (R) = vT [0, 1, 0]T . Similarly, using the

INE approximate right singular vector x+ = [0, 0, 1]T corresponding to 1/σN
+ (R−1) we arrive at

ι+ = (vTR−TR−1x+)/σ
N
+ (R−1)2 = 4/5 ·vT [−1/4, 0, 5/4]T . Let us consider the vector v = [1, 1, 1]T

giving

R̂ =









2 0 1 1
1 0 1

1 1
1









, σ−(R̂) ≈ 0.5155, ι− = 1, ι+ = 4/5, and

0.5381 ≈





17/4 +

√

(17/4)
2 − 11

2





− 1
2

= 1/σN
+ (R̂−1) < σN

− (R̂) =

√

5−
√
13

2
≈ 0.835,

which is what one may expect from Proposition 3.5. Just note that the ICE estimates are

σC
−(R̂) = 1/σC

+(R̂
−1) =

√

3−
√
5

2
≈ 0.618.

We can, however, construct a case where the sufficient condition of Corollary 3.6 is not satisfied
and 1/σN

+ (R̂−1) > σN
− (R̂) by making ι+ smaller. For instance, with v = [0, 1, 0]T we have ι+ = 0

and ι− = 1. The extended matrix is then

R̂ =









2 0 1 0
1 0 1

1 0
1









, with σ−(R̂) =

√

3−
√
5

2
,
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Fig. 3.1. INE estimation of the smallest
singular value of the 1D Laplacians of size one
until hundred: INE with minimization (solid
line), INE with maximization (circles) and ex-
act minimum singular values (crosses).
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Fig. 3.2. INE estimation of the small-
est singular value of the 1D Laplacians of size
fifty until hundred, zoom of Figure 3.1 for INE
with maximization and exact minimum singu-
lar values.

and we obtain

0.618 ≈

√

3−
√
5

2
= σN

− (R̂) < 1/σN
+ (R̂−1) =

√

1

2
≈ 0.7071.

The ICE estimates satisfy in this case σC
−(R̂) = 1/σC

+(R̂
−1) = 1.

This example might indicate that it is not too difficult to find academic examples where
estimating σ−(R̂) by σN

− (R̂) (i.e. with minimization) works better than using 1/σN
+ (R̂−1) (i.e.

maximization). But as we mentioned before, we never observed this is practice. Let us give
one striking example. In Figure 3.1 the crosses display the minimum singular value of the one-
dimensional Laplacians Li, i = 1, . . . , 100, of size one until hundred. The circles represent the INE
estimates 1/σN

+ (L−1
i ), i = 1, . . . , 100, and they are very accurate (see also Figure 3.2 which is a

zoom of Figure 3.1 for the INE estimates 1/σN
+ (L−1

i ), i = 50, . . . , 100). The solid line represents
the INE estimates σN

− (Li), i = 1, . . . , 100 based on minimization. They stagnate around the value
0.6356.

Summarizing, we presented at the end of this section a number of results suggesting superiority
of INE maximization based on the inverse of the triangular factor over INE minimization. A sound
theoretical explanation for this phenomenon, which is often observed but for which counterexamples
can be constructed (see above), is an open problem.

4. Superiority of INE maximization over ICE maximization. While the previous sec-
tion concludes that the maximization problem in INE should be preferred for estimating both the
maximum and the minimum singular value (exploiting the inverse), this section addresses the ques-
tion whether the ICE technique can be more efficient than INE when the inverse is available. We
did already prove that using the inverse does not improve the ICE technique (Theorem 3.2), but
this does not mean that ICE estimates are worse than INE estimates exploiting the inverse. If ICE
maximization were more powerful than INE maximization, there would hold, with the assumptions
of Theorem 3.4,

σC
−(R̂) = 1/σC

+(R̂
−1) ≤ 1/σN

+ (R̂−1) ≤ σN
− (R̂)

and in that case also ICE minimization would be more powerful than INE minimization. We
therefore concentrate on maximization. The subsequent text presents sufficient conditions for the
opposite case, that is for superiority of INE maximization over ICE maximization. Extensive
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numerical experiments confirm that INE maximization is the method of choice. We also graph-
ically demonstrate strength of the introduced sufficient conditions. Let us discuss INE and ICE
maximization from the theoretical point of view first.

Similarly to the results of the previous section, we are not able to prove the superiority of INE
unconditionally and counterexamples exist. This type of conclusions seems to be present in many
areas connected with condition estimators that can sometimes fail. On the other hand we are just
interested in proposing a strategy which would give as good results as possible on average and we
believe that we are successful in this. We will see that both the theoretical arguments, the figures
displayed in this section and also the results in the experimental section support the claim that
INE maximization, is preferable over ICE maximization.

The theoretical arguments consist of the two following theorems that provide sufficient condi-
tions for superiority of INE.

Theorem 4.1. Consider norm estimation of the extended matrix (2.1) where ICE and INE
start with the same approximation σ+ ≡ σC

+(R) = σN
+ (R). Let y be the corresponding approximate

left singular vector, let z be the corresponding approximate right singular vector and let w = Rz/σ+.
Then the approximation σN

+ (R̂) obtained from INE is at least as good as the approximation σC
+(R̂)

from ICE if

(vTw)2 ≥ (vT y)2.(4.1)

Proof. The largest eigenvalue of BC
+ from (2.2) (with the simplified notation introduced here)

corresponds to the rightmost intersection of the parabola ℓ(λ) =
(

λ− σ2
+ − (vT y)2

)

(λ− γ2) with
the horizontal line h(λ) ≡ γ2(vT y)2. Hence the largest eigenvalue λR of BN

+ from (2.3) is larger or
equal to the leading eigenvalue of BC

+ if and only if

ℓ(λR) ≥ γ2(vT y)2.(4.2)

The condition (4.2) corresponds to the case when INE maximization for R̂ is at least as good as
ICE maximization for the same matrix. Substituting

λR ≡ 1

2

(

σ2
+ + vT v + γ2 + S

)

, S ≡
√

(σ2
+ − γ2 − vT v)2 + 4σ2

+(v
Tw)2(4.3)

into ℓ(λR) we have

ℓ(λR) =
(

γ2 − λR

) (

σ2
+ + (vT y)2 − λR

)

=
1

4

(

γ2 − σ2
+ − vT v − S

) (

σ2
+ + 2(vT y)2 − vT v − γ2 − S

)

=
1

4

(

(γ2 − σ2
+ − vT v)(σ2

+ − γ2 − vT v + 2(vT y)2)− 2((vT y)2 − vT v)S + S2
)

.

Thus (4.2) is satisfied if and only if

(γ2 − σ2
+ − vT v)(σ2

+ − γ2 − vT v + 2(vT y)2)− 2((vT y)2 − vT v)S + S2 ≥ 4γ2(yT v)2.

Substituting S2 from (4.3) we can obtain

2
(

σ2
+ − γ2 + vT v + S + 2γ2

) (

vT v − (vT y)2
)

− 4σ2
+

(

vT v − (vTw)2
)

≥ 0,

and after some rewriting we arrive at the equivalent condition

2
(

γ2 − σ2
+ + vT v + S

) (

vT v − (vT y)2
)

+ 4σ2
+

(

(vTw)2 − (vT y)2
)

≥ 0(4.4)
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that is equivalent with (4.2). The Cauchy inequality implies that vT v − (vT y)2 ≥ 0. If vT v −
(vT y)2 = 0 then we are done since (4.4) follows directly from (4.1).

Consider vT v − (vT y)2 > 0. Let ǫ ≥ 0 be defined through

(vTw)2 − (vT y)2 = ǫ
(

vT v − (vT y)2
)

.(4.5)

Then (4.4) implies that (4.2) is satisfied if and only if

2
(

γ2 + vT v + S + (2ǫ− 1)σ2
+

)

≥ 0,(4.6)

that is, if and only if

S2 = (σ2
+ − γ2 − vT v)2 + 4σ2

+(v
Tw)2 ≥

(

σ2
+ − γ2 − vT v − 2ǫσ2

+

)2
.

Equivalently, (4.2) is valid with vT v − (vT y)2 > 0 if and only if

ǫ2σ2
+ − ǫ(σ2

+ − γ2 − vT v)− (vTw)2 ≤ 0.(4.7)

This is true for ǫ = 0. But this means, in view of (4.6), that for ǫ = 0

γ2 + vT v + S + (2ǫ− 1)δ2 ≥ 0.

Consequently, for all ǫ ≥ 0,

γ2 + vT v + S + (2ǫ− 1)δ2 ≥ 0.

The next theorem formulates an even stricter sufficient condition for the superiority of INE.
This condition seems to be rather technical but it enables to specify more precisely the areas of
parameters where one of the techniques is better than the other one. We will see that based on the
input parameters of the condition estimator, there is always a possibility that the INE technique
is better than ICE but not vice versa.

Theorem 4.2. Using the same notation and assumptions as in Theorem 4.1, the approxima-
tion σN

+ (R̂) obtained from INE is at least as good as the approximation σC
+(R̂) from ICE if

(vTw)2 ≥ ρ1,(4.8)

where ρ1 is the smaller root of the quadratic equation in (vTw)2,

(vTw)4 +

(

γ2 + (vT y)2

σ2
+

(

vT v − (vT y)2
)

− vT v − (vT y)2
)

(vTw)2

+ (vT y)2
(

γ2 + vT v

σ2
+

(

(vT y)2 − vT v
)

+ vT v

)

= 0.(4.9)

Proof. Assume for the moment that vT v − (vT y)2 > 0. Let us substitute the expression for ǫ
from (4.5) into the inequality (4.7). We get directly

(

(vTw)2 − (vT y)2

vT v − (vT y)2

)2

σ2
+ −

(

(vTw)2 − (vT y)2
) (

vT v − (vT y)2
)

(vT v − (vT y)2)
2 (σ2

+ − γ2 − vT v)

− (vTw)2
(

vT v − (vT y)2
)2

(vT v − (vT y)2)
2 ≤ 0,
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Fig. 4.1. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 0.1, σ+ = 1 and with ∆ = 0 in (4.13).
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Fig. 4.2. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 1, σ+ = 1 and with ∆ = 0 in (4.13).

and after a few simple steps we obtain the sufficient condition for the superiority of INE

ρ1 ≤ (vTw)2 ≤ ρ2,(4.10)

where ρ1,2 are the roots of (4.9). They have the form

(vT y)2 +

(

vT v − (vT y)2
)

2σ2
+

(

β ±
√

β2 + 4σ2
+(v

T y)2
)

,(4.11)

where β = σ2
+ − γ2 − (vT y)2. Clearly, we get

ρ1 ≤ (vT y)2 ≤ ρ2,(4.12)

If (vTw)2 < (vT y)2 then (4.8) and (4.12) imply superiority of INE based on (4.10), otherwise
Theorem 4.1 can be applied. Finally, if vT v− (vT y)2 = 0, then the roots of (4.9) coincide and take
the value ρ1,2 = (vT y)2, see (4.11). Hence the condition (4.8) reduces to (4.1) and again, Theorem
4.1 can be applied.

An important conclusion of the previous theorems is as follows. Let us divide the possible
input vectors v into two sets. The first set contains the v such that (vTw)2 ≥ (vT y)2 and the
second set contains the other instances of v. Then, the sufficient condition for superiority is always
valid for all v from the first group and it is possibly valid also for some v from the second group.
In particular, INE is never worse than ICE under the assumptions of these theorems whenever
ρ1 ≤ 0. We do not have a similar claim for superiority of ICE.

4.1. Graphical demonstration. In this subsection we graphically demonstrate the relation
between ICE and INE maximization that points out the superiority of the latter approach. The
presented figures depict on the z-axis the value max(0, ρ1), that is, the sufficient condition for the
superiority of INE estimation in (4.8), where we display max(0, ρ1) because for ρ1 ≤ 0 the condition
is automatically satisfied. If we scale the matrix such that σ+ = 1, and this can be always done
without loss of generality, the coefficients of the equation (4.9) depend on three variables only.
These three variables are (vT y)2, vT v and γ2. Fixing vT v, we can display the dependence on the
other variables in the remaining two dimensions of the figures. We plot the values of (vT y)2 on the
x-axis and γ2 on the y-axis. For practical reasons, we restrict ourselves to γ2 ≤ 5 but the behavior
for larger values is more or less the same as for γ2 = 5. Figures 4.1-4.3 display the values for
three different choices of the norm vT v. We know from Theorem 4.2 that INE is unconditionally
(regardless of the vector w) superior over ICE for ρ1 ≤ 0. In our pictures this case corresponds to
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Fig. 4.3. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 10, σ+ = 1 and with ∆ = 0 in (4.13).
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Fig. 4.4. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 0.1, σ+ = 1 and with ∆ = 0.6 in
(4.13).
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Fig. 4.5. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 1, σ+ = 1 and with ∆ = 0.6 in (4.13).
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Fig. 4.6. Value of ρ1 in (4.8) in depen-
dence of (vT y)2 (x-axis) and γ2 (y-axis) with
vT v = 10, σ+ = 1 and with ∆ = 0.6 in (4.13).

its crosshatched part. In the other cases (dark part of the figures), the conclusion whether ICE or
INE maximization is better still depends on the mutual relation of (vTw)2 and (vT y)2 and either
of the techniques can be better than the other one.

Let us mention here that also a result similar to Theorem 4.2 could be derived that uses as an
additional parameter the distance

∆ ≡
√

(σN
+ )2 − (σC

+)2, σN
+ ≥ σC

+ ,(4.13)

with σN
+ = σN

max(R) and σC
+ = σC

max(R). The previous case corresponds to the case ∆ = 0.
The claims and proofs are very similar and we omit them here since they would not give an
additional insight for our statement that INE maximization is preferable over ICE maximization.
Nevertheless, just for illustration, we present here also figures for the same choices of values of ||v||
and with nonzero ∆, here, ∆ = 0.6. In Figures 4.4-4.6 we can see that the results are as we would
intuitively expect, ∆ > 0 seems to even increase the expectation for the superiority of INE over
ICE.

Let us recall the one-dimensional Laplacian example from Section 3. It shows not only that
INE maximization based on the inverse matrix may be very accurate, it also points out that the
estimate of σN

− via INE minimization can be very poor. Therfore, if the plain ICE-based strategy
is used without the matrix inverse to estimate both singular values, the condition number estimate
is often better than if plain INE without inverse is used. In other words, experiments show that
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INE minimization is by far the weakest point of the two investigated strategies. The explanation
of this observation is an interesting open problem.

5. Numerical experiments. In this section we focus on illustrating the theoretical results
in Sections 3 and 4. In particular, we confirm that using just maximization in INE seems to
be a better strategy than using minimization as well. Further, we will see that ICE is clearly
outperformed by INE using various matrix test sets. The experiments, all run in Matlab, show
that the availability of the inverse inside the decomposition is desirable, but, except for the last
experiment, we compute the inverse separately with Matlab’s backslash command.

Our experiments compare the following four strategies:
1. The original ICE technique from [4] with the estimates defined as σC

+(R)/σC
−(R).

2. The INE technique from [19] for estimating both the norm and the minimum singular
value with the estimates defined by σN

+ (R)/σN
− (R). Although INE was originally proposed

for norm estimation only, we refer to this estimator as to original INE.
3. The INE technique based on maximization only, that uses also the inverse R−1, that is,

estimates defined as σN
+ (R)σN

+ (R−1).
4. The INE technique based on minimization only which uses the matrix inverse as well, that

is
(

σN
− (R)σN

− (R−1)
)−1

.
Note that we do not display any results for the estimates σC

−(R−1)/σC
+(R

−1) since, as we proved
in Theorem 3.2, they are identical with the original ICE estimates.

5.1. Example 1. Using the Matlab command A=rand(100,100) - rand(100,100) we generated
50 matrices A of size 100, computed a column pivoting using colamd and obtained an upper
triangular factor R from the QR decomposition of the column permuted matrix A. This is the
same type of experiments as in [4, Section 4, Test 1]. The condition estimators were tested on R,
see Figure 5.1. When omitting the column pivoting we get qualitatively the same picture.

We can see that the estimate σN
+ (R)σN

+ (R−1) which uses maximizing INE processes only, per-

forms by far the best. On the other hand, the estimate
(

σN
− (R)σN

− (R−1)
)−1

which uses minimizing
INE processes only, performs very poorly. This supports experimentally the fact mentioned above
that INE is powerful when maximizing and weak when minimizing. The ICE technique performs
moderately (and it can not be improved by exploiting the inverse) and the original INE tech-
nique performs even worse, again, because of the weak performance when estimating the minimum
singular value.

It may be interesting to see a comparison between the theoretically derived sufficient conditions
for superiority of INE maximization over ICE maximization. Figures 5.3 and 5.4 display the
fraction of cases in which the sufficient conditions for superiority of INE maximization (4.1), (4.8)
and (3.8) are satisfied if this superiority is actually achieved. Note that the first two conditions refer
to comparison of INE and ICE and the third one just relates INE maximization and minimization.
Overall, in about half of the cases the conditions are satisfied and they represent a non-negligible
case in the estimation process. We see also verified the fact that condition (4.1) is weaker than
(4.8), as mentioned in Section 4.

5.2. Example 2. We generated 50 matrices of the form A = UΣV T of size 100 with a
prescribed condition number κ by choosing Σ = diag(σ1, . . . , σ100) with

σk = αk, 1 ≤ k ≤ 100, where α = κ− 1
99 .

U and V are the Q factors of the QR factorizations of matrices B generated using the Matlab
command B=rand(100,100) - rand(100,100). Then we computed a column pivoting with the colamd
command and obtained an upper triangular factor R from the QR decomposition of the permuted
A. This corresponds to the experiments in [4, Section 4, Test 2] and in [19, Section 5, Table
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Fig. 5.1. Ratio of estimate to real condition num-
ber for the 50 matrices in example 1. Solid line: ICE
(original), pluses: INE with inverse and using only
maximization, circles: INE (original), squares: INE
with inverse and using only minimization.
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Fig. 5.2. Ratio of estimate to real condition num-
ber for the matrices in example 2 with κ(A) = 10.
Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimiza-
tion.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Fig. 5.3. Ratio of the satisfied sufficient condi-
tions in condition number estimation for the 50 ma-
trices in example 1. Solid line: (4.8), dotted: (4.1),
dashed: (3.8)
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Fig. 5.4. Ratio of the satisfied sufficient condi-
tions in condition number estimation for the 50 ma-
trices in example 2 with κ(A) = 10. Solid line: (4.8),
dotted: (4.1), dashed: (3.8)

5.4]. The condition estimators were tested on R, see Figures 5.2, 5.5, 5.6, for κ = 10, 100, 1000,
respectively. When omitting the column pivoting we get qualitatively the same picture.

All the observations from the first example apply. Note that the two better techniques are
nearly insensitive to increasing the condition number while the two other are getting worse. Also
note that Figures 5.2 and 5.5 seem to suggest a general inferiority of INE using minimization
only compared to original INE. This again supports the conjecture that INE is powerful when
maximizing and weak when minimizing.

5.3. Example 3. We generated 50 matrices A of size 100 all with the same prescribed Eu-
clidean norm N , by choosing the uniformly distributed singular values

σk =
N

k
, 1 ≤ k ≤ 100.
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Fig. 5.5. Ratio of estimate to real condition num-
ber for the 50 matrices in example 2 with κ(A) = 100.
Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimiza-
tion.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5.6. Ratio of estimate to real condition num-
ber for the 50 matrices in example 2 with κ(A) = 1000.
Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimiza-
tion.
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Fig. 5.7. Ratio of estimate to real condition num-
ber for the 50 matrices in example 3 with N = 10.
Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimiza-
tion.
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Fig. 5.8. Ratio of estimate to real condition num-
ber for the 50 matrices in example 3 with N = 1012.
Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimiza-
tion.

The matrix A was formed as A = UΣV T where Σ = diag(σ1, . . . , σ100) and the matrices U and
V are the Q factors of the QR factorizations of matrices B generated using the Matlab com-
mand B=rand(100,100) - rand(100,100). Then we computed a column pivoting (using the Matlab
command colamd(A)) and obtained an upper triangular factor R from the QR decomposition of
the column permuted matrix A. This is the same type of experiments as tested in [19, Section
5, Table 5.3]. The condition estimators were tested on R, see Figures 5.7, 5.8, for, respectively,
N = 10, 1012. Qualitatively the same pictures are obtained when one omits column pivoting.

Again, INE with maximization only is the best for both cases of N . Also the other techniques
keep the same relative superiority as above (exception for one matrix in Figure 5.7 and two matrices
in Figure 5.8). Further, all techniques perform overall better than with exponentially distributed
singular values, even when the condition number is the same like in Figure 5.5.
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5.4. Example 4. We considered 20 small sparse matrices from the Matrix Market collec-
tion [18], most of them tested also in [19, Section 5, Table 5.1]. We computed their QR decomposi-
tion (with and without column pivoting) and tested the estimators with the factor R. We provide
the ratios of the ICE and INE estimates versus the actual condition numbers in Figures 5.9 and
5.10, with and without column pivoting by colamd, respectively. In these figures the x-axis corre-
sponds to the matrix number, where the numbering follows from alphabetical ordering according
to matrix name. In order to see the huge differences in the quality of the estimators we also provide
the values of these ratios in Table 1. We can see that the differences between the individual tech-
niques do change more among the matrices than in the previous examples, but the basic message
is the same: the INE technique with maximization is the clear winner. Column pivoting seems to
have a more profound influence. In some situations all techniques do reasonably well (the matrix
’steam’ without pivoting) or badly except for INE using only maximization (the matrix ’rw496’
with pivoting).
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Fig. 5.9. Ratio of estimate to actual condition
number for the 20 matrices from the Matrix Market
collection without column pivoting. Solid line: ICE
(original), pluses: INE with inverse and using only
maximization, circles: INE (original), squares: INE
with inverse and using only minimization.
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Fig. 5.10. Ratio of estimate to actual condition
number for the 20 matrices from the Matrix Market
collection with column pivoting. Solid line: ICE (orig-
inal), pluses: INE with inverse and using only maxi-
mization, circles: INE (original), squares: INE with
inverse and using only minimization.

As above, we display for the matrices from Matrix Market the fraction of cases in which the
sufficient conditions for superiority of INE maximization (4.1), (4.8) and (3.8) are satisfied if this
superiority is actually achieved. They are depicted on Figures 5.11 and 5.12. We can see that
these conditions often seem to cover even more cases of INE maximization superiority than in the
case of the random matrices from Example 1.

5.5. Example 5. The last series of experiments uses the investigated condition estimators
inside a mixed direct-inverse matrix decomposition. As we mentioned in the Introduction, we be-
lieve that more accurate estimates are also useful in an incomplete decomposition since their values
may decide about dropping and pivoting. Here we use the compact BIF decomposition introduced
in [13, 14] (see the Matlab code there) that computes the incomplete direct and inverse factor at
the same time and their mutual computation can be exploited in monitoring the decomposition.
However, to facilitate comparison of the condition estimators, we will use only BIF decomposition
without dropping, i.e. both the full direct and inverse factor are computed. Of course, in case of
the original ICE method we could use any other implementation of the Cholesky decomposition
but for simplicity we stick with the same method also here.

First, we generated 50 dense symmetric positive definite matricesA of size 100 using the Matlab
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Table 1

Examples of matrices from Matrix Market: Ratios of the estimates over the actual condition numbers.

Number Name dim. nnz ICE (orig) INE (orig) INE (max) INE (min)
1 494 bus 494 1666 0.09 0.06 0.99 0.02
1 (colamd) 494 1666 0.09 0.06 1 0.057
2 arc130 130 1037 0.42 4e-06 1 9e-10
2 (colamd) 130 1037 0.63 5e-06 1 5e-6
3 bfw398a 398 3678 0.29 0.005 0.83 0.004
3 (colamd) 398 3678 0.03 0.005 0.9 0.004
4 cavity04 317 5923 0.11 1e-4 0.88 3e-5
4 (colamd) 317 5923 0.13 5e-4 0.87 7e-6
5 ck400 400 2860 0.15 9e-5 0.99 8e-5
5 (colamd) 400 2860 0.09 2e-4 1 2e-5
6 dwa512 512 2480 0.16 0.005 0.97 0.003
6 (colamd) 512 2480 0.11 0.005 0.94 0.003
7 e05r0400 236 5846 0.09 5e-4 0.86 1e-4
7 (colamd) 236 5846 0.06 0.001 0.94 3e-4
8 fidap001 216 4339 0.63 0.02 0.76 0.01
8 (colamd) 216 4339 0.19 0.03 0.85 0.02
9 gre 343 343 1310 0.37 0.05 0.87 0.05
9 (colamd) 343 1310 0.33 0.025 0.9 0.023
10 impcol b 59 271 0.16 2e-4 0.98 5e-5
10 (colamd) 59 271 0.17 2e-4 0.98 5e-5
11 impcol c 137 400 0.24 0.007 0.99 0.007
11 (colamd) 137 400 0.32 0.006 0.99 0.006
12 lshp 406 406 2716 0.11 0.006 0.88 0.004
12 (colamd) 406 2716 0.13 0.006 0.88 0.005
13 lund a 147 2449 0.18 3e-5 0.94 1e-5
13 (colamd) 147 2449 0.15 2e-4 0.91 1e-4
14 olm500 500 1996 0.08 0.03 0.93 0.019
14 (colamd) 500 1996 0.08 0.03 0.93 0.019
15 pde225 225 1065 0.38 0.11 0.77 0.088
15 (colamd) 225 1065 0.53 0.099 0.96 0.093
16 rw496 496 1859 0.92 3e-8 0.99 3e-8
16 (colamd) 496 1859 1e-5 3e-8 1 2e-8
17 saylr1 238 1128 0.4 0.07 0.69 0.02
17 (colamd) 238 1128 0.77 0.11 0.89 0.08
18 steam 240 2248 1 0.96 1 0.81
18 (colamd) 240 2248 1 0.2 1 0.03
19 str 0 363 2454 0.38 0.07 0.97 0.04
19 (colamd) 363 2454 0.06 0.08 0.71 0.02
20 west0381 381 2134 0.66 0.005 0.99 0.002
20 (colamd) 381 2134 0.4 0.003 0.92 0.002

command B=randn(100,100) and putting A = BTB. The results are displayed in Figure 5.13.
Next we generated 50 sparse symmetric positive definite matrices A of size 100 using the Matlab
command B=sprandn(100,100,0.02)+speye(100) and putting A = BTB. This gave matrices A with
an average of about 850 nonzeros. The results are displayed in Figure 5.14.

As for Example 4, with sparse matrices the differences between the estimators are somehow
less regular and sparse matrices seem to be favorable for original ICE. Nevertheless, the overall
assessment of the quality of the individual techniques is as in the previous examples.

6. Conclusions and future work. In this paper, we have discussed incremental condition
estimators in the 2-norm. In particular, the two main strategies, ICE and INE, were analyzed.
It was shown that these two strategies are inherently different and the presented experiments
support this claim. Moreover, we accumulated both theoretical and experimental evidence that
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Fig. 5.11. Ratio of the satisfied sufficient condi-
tions in condition number estimation for the 20 matri-
ces from the Matrix Market. Solid line: (4.8), dotted:
(4.1), dashed: (3.8)
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Fig. 5.12. Ratio of the satisfied sufficient condi-
tions in condition number estimation for the 20 matri-
ces from the Matrix Market. Solid line: (4.8), dotted:
(4.1), dashed: (3.8)
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Fig. 5.13. Ratio of estimate to actual condi-
tion number for the 50 dense symmetric positive def-
inite matrices in example 5 decomposed with the BIF
method. Solid line: ICE (original), pluses: INE with
inverse and using only maximization, circles: INE
(original), squares: INE with inverse and using only
minimization.
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Fig. 5.14. Ratio of estimate to actual condi-
tion number for the 50 sparse symmetric positive def-
inite matrices in example 5 decomposed with the BIF
method. Solid line: ICE (original), pluses: INE with
inverse and using only maximization, circles: INE
(original), squares: INE with inverse and using only
minimization.

the INE strategy using both the direct and inverse factor is a method of choice yielding a highly
accurate 2-norm estimator. Our future work will consider the effects of higher accuracy of the
condition estimator used inside incomplete factorizations. In particular, we intend to use accurate
condition estimation for dropping and pivoting. We also intend to develop a fast block version of
the described strategy taking into account several ways to extract the estimates for the diagonal
blocks.
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