Sparse Matrices in Numerical Mathematics

Miroslav Tůma

Faculty of Mathematics and Physics Charles University mirektuma@karlin.mff.cuni.cz

Praha, September 18, 2022

Introductory notes

- Created as a material supporting online lectures of NMNV533.
- Assuming basic understanding of algebraic iterative (Krylov space) and direct (dense) solvers (elimination/factorization/solve) (A lot of these is repeated)
- The text deal prevailably with purely algebraic techniques. Such techniques often serve as building blocks for more complex approaches. In particular, some important techniques are mentioned at most. Like:
 - Multigrid/multilevel preconditioners,
 - Domain decomposition,
 - Row projection techniques.
- Only preconditioning of real systems considered here, although extension to complex field is typically straightforward.
- Orientation in variants of Cholesky and LU decompositions is assumed.

The main resource is:

Jennifer Scott and Miroslav Tůma: Algorithms for sparse linear systems, Birkhäuser- Springer, 2022, to appear.

- Printed parts of the resource will be provided to students until it will appear (expected open access then).
- Traditional material also the course text in Czech (nowadays outdated, not supported); see the web page of the course.

Introductory notes: resources and history of the course

• A few other resources:

Davis, T. A. (2006). Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms. SIAM, Philadelphia, PA.

Davis, T. A., Rajamanickam, S., & Sid-Lakhdar, W.M. (2016). A survey of direct methods for sparse linear systems. Acta Numer., 25, 383-566.

Duff, I. S., Erisman, A.M., & Reid, J. K. (2017). Direct Methods for Sparse Matrices (Second ed.). Oxford University Press, Oxford. George, A. & Liu, J. W. H. (1981). Computer Solution of Large Sparse Positive Definite Systems. Prentice Hall, Englewood Cliffs, NJ.

Saad, Y. (2003b). Iterative Methods for Sparse Linear Systems (Second ed.). SIAM, Philadelphia, PA.

Most of our activities around solving

$$Ax = b$$

- Direct methods
- Iterative methods
- Practical boundaries between them more and more fuzzy.
- Principially different.

Direct methods

- Direct methods: Transform *A* using a finite sequence of elementary transformations: An approach based on factorization (decomposition) and subsequent substitutions.
- The most simple case: $A \rightarrow LL^T$ or LDL^T or LUIn principal = Gaussian elimination. Modern (decompositional) form based a lot on the work of Householder (end of 1950's)
 - ► Solving systems with triangular matrices like *L*, *U* is generally much cheaper and more straightforward that using *A*.
 - Factorizations are backbone of direct methods.
 - Occasionally other factorizations than LU or LL^T or LDL^T
 - Most of the work is in the (Cholesky, indefinite, LU) decomposition.
 - But: also the computer model (sequential, concurrent processors, multicore, GPU) decides about relative complexity of the two steps.
- The algorithms can be made more efficient/stable using additional techniques before, after or during factorization.
- For example, the solution can be made more accurate by an auxiliary iterative method.

Iterative methods

Compute a sequence of approximations

 $x^{(0)}, x^{(1)}, x^{(2)}, \dots$

that (hopefully) converge to the solution x of the linear system.

- Iterative method are usually accompanied by a problem transformation based on a direct method called preconditioner.
- Usually have to be accompanied by a problem transformation based on a direct method called preconditioner.

Iterative methods

• Algebraic preconditioners are tools to convert the problem Ax = b into the one which is easier to solve. They are typically expressed in matrix form as a transformation like:

$$MAx = Mb$$

- *M* can be then used to apply approximation to *A*⁻¹ to vectors used in the iterative method.
- In practice, it can store approximation to *A* or *A*⁻¹ (approximate inverse).

Contrast: direct versus iterative methods

• Direct methods: designed to be robust, designed to solve

- Properly implemented, they can be used as block-box solvers for computing solutions with predictable accuracy.
- As we have seen, they can be expensive, requiring large amounts of memory, which increases with the size of A.
- Iterative methods: designed to approximate
 - The number of iterations depends on the initial guess $x^{(0)}$, A and b
 - Use the matrix A only indirectly, through matrix-vector products \rightarrow memory requirements are limited to a (small) number of vectors of length the size of A
 - A does not need to be available explicitly.
 - They can be terminated as soon as the required accuracy in the computed solution is achieved.
 - Typically must be preconditioned. Preconditioner computation is sometimes based on a relaxation of a direct method.

Where is the problem with direct methods?

 For example: sparse matrices and resulting factorizations may look like as follows:

Where is the problem with direct methods?

• For example: and they can look like as:

Figure: The locations of the nonzero entries in a symmetric permutation of the matrix from Figure **??** (left) and in $\overline{L} + \overline{L}^T$ (right), where \overline{L} is the Cholesky factor of the permuted matrix.

Where is the problem with direct methods?

• For example: and they can look like as:

Figure: The locations of the nonzero entries in a symmetric permutation of the matrix from Figure **??** (left) and in $\overline{L} + \overline{L}^T$ (right), where \overline{L} is the Cholesky factor of the permuted matrix.

Where is the problem with direct methods?

- We need exploit sparsity (mentioned later)
- See the figures above
- We need sparse (complete) factorizations $A = LL^T$, LU (up to the floating-point model)

Where is the problem with iterative methods?

- We must transform (precondition)
- We need sparse (incomplete) factorizations $A = LL^T$, LU (up to the floating-point model) like
 - incomplete decompositions ($A \approx LL^T$, LU etc.)
 - ▶ incomplete inverse decompositions ($A^{-1} \approx ZZ^T$, WZ^T etc.)
- Or specific (PDE-based, model-based) approaches.