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Outline

1 Introduction
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Introductory notes

Created as a material supporting online lectures of NMNV533.
Assuming basic understanding of algebraic iterative (Krylov
space) and direct (dense) solvers (elimination/factorization/solve)
(A lot of these is repeated)
The text deal prevailably with purely algebraic techniques. Such
techniques often serve as building blocks for more complex
approaches. In particular, some important techniques are
mentioned at most. Like:

I Multigrid/multilevel preconditioners,
I Domain decomposition,
I Row projection techniques.

Only preconditioning of real systems considered here, although
extension to complex field is typically straightforward.
Orientation in variants of Cholesky and LU decompositions is
assumed.
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Introductory notes: resources / history

The main resource is:
Jennifer Scott and Miroslav Tůma: Algorithms for sparse linear
systems, Birkhäuser- Springer, 2022, to appear.
Printed parts of the resource will be provided to students until it
will appear (expected open access then).
Traditional material also the course text in Czech (nowadays
outdated, not supported); see the web page of the course.
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Introductory notes: resources and history of the
course

A few other resources:
Davis, T. A. (2006). Direct Methods for Sparse Linear Systems.
Fundamentals of Algorithms. SIAM, Philadelphia, PA.
Davis, T. A., Rajamanickam, S., & Sid-Lakhdar, W.M. (2016). A
survey of direct methods for sparse linear systems. Acta Numer.,
25, 383-566.
Duff, I. S., Erisman, A.M., & Reid, J. K. (2017). Direct Methods for
Sparse Matrices (Second ed.). Oxford University Press, Oxford.
George, A. & Liu, J. W. H. (1981). Computer Solution of Large
Sparse Positive Definite Systems. Prentice Hall, Englewood Cliffs,
NJ.
Saad, Y. (2003b). Iterative Methods for Sparse Linear Systems
(Second ed.). SIAM, Philadelphia, PA.
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Motivation

Most of our activities around solving

Ax = b

Direct methods
Iterative methods
Practical boundaries between them more and more fuzzy.
Principially different.
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Motivation

Direct methods

Direct methods: Transform A using a finite sequence of
elementary transformations: An approach based on factorization
(decomposition) and subsequent substitutions.
The most simple case: A→ LLT or LDLT or LU

In principal = Gaussian elimination. Modern (decompositional)
form based a lot on the work of Householder (end of 1950’s)

I Solving systems with triangular matrices like L, U is generally much
cheaper and more straightforward that using A.

I Factorizations are backbone of direct methods.
I Occasionally other factorizations than LU or LLT or LDLT

I Most of the work is in the (Cholesky, indefinite, LU) decomposition.
I But: also the computer model (sequential, concurrent processors,

multicore, GPU) decides about relative complexity of the two steps.
The algorithms can be made more efficient/stable using additional
techniques before, after or during factorization.
For example, the solution can be made more accurate by an
auxiliary iterative method.
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Motivation

Iterative methods

Compute a sequence of approximations

x(0), x(1), x(2), . . .

that (hopefully) converge to the solution x of the linear system.
Iterative method are usually accompanied by a problem
transformation based on a direct method called preconditioner.
Usually have to be accompanied by a problem transformation
based on a direct method called preconditioner.
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Motivation

Iterative methods

Algebraic preconditioners are tools to convert the problem Ax = b
into the one which is easier to solve. They are typically expressed
in matrix form as a transformation like:

MAx = Mb

M can be then used to apply approximation to A−1 to vectors
used in the iterative method.
In practice, it can store approximation to A or A−1 (approximate
inverse).
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Motivation

Contrast: direct versus iterative methods

Direct methods: designed to be robust, designed to solve
I Properly implemented, they can be used as block-box solvers for

computing solutions with predictable accuracy.
I As we have seen, they can be expensive, requiring large amounts

of memory, which increases with the size of A.
Iterative methods: designed to approximate

I The number of iterations depends on the initial guess x(0), A and b
I Use the matrix A only indirectly, through matrix-vector products→

memory requirements are limited to a (small) number of vectors of
length the size of A

I A does not need to be available explicitly.
I They can be terminated as soon as the required accuracy in the

computed solution is achieved.
I Typically must be preconditioned. Preconditioner computation is

sometimes based on a relaxation of a direct method.
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Motivation

Where is the problem with direct methods?

For example: sparse matrices and resulting factorizations may
look like as follows:
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Motivation

Where is the problem with direct methods?

For example: and they can look like as:
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Figure: The locations of the nonzero entries in a symmetric permutation of the
matrix from Figure ?? (left) and in L̄ + L̄T (right), where L̄ is the Cholesky
factor of the permuted matrix.
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Motivation

Where is the problem with direct methods?

For example: and they can look like as:
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Figure: The locations of the nonzero entries in a symmetric permutation of the
matrix from Figure ?? (left) and in L̄ + L̄T (right), where L̄ is the Cholesky
factor of the permuted matrix.
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Motivation

Where is the problem with direct methods?
We need exploit sparsity (mentioned later)
See the figures above
We need sparse (complete) factorizations A = LLT , LU (up to
the floating-point model)

Where is the problem with iterative methods?
We must transform (precondition)
We need sparse (incomplete) factorizations A = LLT , LU (up to
the floating-point model) like

I incomplete decompositions (A ≈ LLT , LU etc.)
I incomplete inverse decompositions (A−1 ≈ ZZT , WZT etc. )

Or specific (PDE-based, model-based) approaches.
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