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Outline

1 Introductory notation and terminology
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Basic Terminology

Interest in solving linear systems of equations

Ax = b, (1)

A ∈ Rn×n, 1 ≤ i ≤ n, is nonsingular
A is sparse
b ∈ Rn (sparse or dense), x ∈ Rn is the solutions
Used throughout:

A = (aij), 1 ≤ i, j ≤ n.

Matlab-like notation: nonzero (set a priori), A:,j , Ai,:, Ai:j,k:l, A∗j ,
Ai∗.
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Basic Terminology

(
X
2

)
= {Y ⊆ X | |Y | = 2}

Vectors denoted by small letters as v, u, x, matrices by capital
letters as A,B, . . .
A ∈ Rn×n, 1 ≤ i ≤ n, is nonsingular, the right-hand side vector
b ∈ Rn is given and x ∈ Rn is the required solution vector. n is the
order (or dimension) of A.
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Basic Terminology

A is diagonal if for all i 6= j, aij = 0;
A is lower triangular if for all i < j, aij = 0

A is upper triangular if for all i > j, aij = 0.
A is unit triangular if it is triangular and all the entries on the
diagonal are equal to one.
A is structurally symmetric if for all i and j for which aij is nonzero
the entry aji is also nonzero.
A is symmetric if

aij = aji, for all i, j.

Otherwise, A is nonsymmetric.
The symmetry index s(A) of A: the number of nonzeros aij , i 6= j,
for which aji is also nonzero divided by the total number of
off-diagonal nonzeros. Small values of s(A): A is far from
symmetric.
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Basic Terminology: special matrix classes

A is symmetric positive definite (SPD) if it is symmetric and
satisfies

vTAv > 0 for all nonzero v ∈ Rn.

Otherwise, A is symmetric indefinite.
Symmetric and (typically) indefinite saddle point matrices have the
form

A =

(
G RT

R B

)
,

where G ∈ Rn1×n1 , B ∈ Rn2×n2 , R ∈ Rn2×n1 with n1 + n2 = n, G is
a SPD matrix and B is a symmetric positive semidefinite matrix
(that is vTBv ≥ 0 for all nonzero v ∈ Rn2). In some applications,
B = 0.
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Basic Terminology: blocks

Symmetric block structure of A:

A = (Aib, jb), Aib, jb ∈ Rni×nj , 1 ≤ ib, jb ≤ nb, (2)

that is,

A =


A1,1 A1,2 · · · A1,nb

A2,1 A2,2 · · · A2,nb
...

...
. . .

...
Anb,1 Anb,2 · · · Anb,nb

 .

Assuming the square blocks Ajb, jb on the diagonal are
nonsingular.
Special cases: A is block diagonal if Aib, jb = 0 for all ib 6= jb, A is
block lower triangular if A1:jb−1, jb = 0, 2 ≤ jb ≤ nb, block upper
triangular if Ajb+1:nb, jb = 0, 1 ≤ jb ≤ nb− 1.

7 / 27



i
i

“mrm_slides_2022” — 2022/9/18 — 16:45 — page 8 — #8 i
i

i
i

i
i

Basic Terminology: blocks and reducibility

Definition

Matrix A ∈ Rn×n is reducible, if there is a permutation matrix P such
that

P TAP =

(
A11 0
A21 A22

)
, (3)

where A11 and A22 are square nontrivial matrices (of dimension at
least 1). If A is not reducible, it is called irreducible. Matrices of
dimension 1 are always considered to be irreducible.

Remark

Symmetric reducible matrix is block diagonal.
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Basic Terminology: sparsity

A is a sparse matrix if many of its entries are zero.
Attempts to formalize matrix sparsity more precisely: matrix of
order n may be said to be sparse if it has O(n) nonzeros.
Our choice: A is sparse if it is advantageous to exploit its zero
entries. Otherwise, A is dense.
The sparsity pattern S{A} of A is the set of nonzeros, that is,

S{A} = {(i, j) | aij 6= 0, 1 ≤ i, j ≤ n}.

S{A} is symmetric if for all i and j, aij 6= 0 if and only if aji 6= 0
(the values of the two entries need not be the same). If S{A} is
symmetric then A is structurally symmetric.
The number of nonzeros in A: denoted by nz(A) (or |S{A}|). A is
structurally (or symbolically) singular if there are no values of the
nz(A) entries of A whose row and column indices belong to S{A}
for which A is nonsingular.
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Basic Terminology: sparsity

Sparsity: taking into account the structure of matrix nonzeros

Definition
Matrix A ∈ IRm×n is said to be sparse if it has O(min{m,n}) entries.
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Basic Terminology: sparsity

Definition
Matrix A ∈ IRm×n is said to be sparse if it has row counts bounded by
rmax << n or column counts bounded by cmax << m.

Definition
Matrix A ∈ IRm×n is said to be sparse if its number of nonzero entries
is O(n1+γ) for some γ < 1.

Definition
(pragmatic, application-based definition: J.H. Wilkinson) Matrix
A ∈ IRm×n is said to be sparse if we can exploit the fact that a part of
its entries is equal to zero.
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Basic Terminology: sparsity

An example showing importance of small exponent γ for n = 104

γ n1+γ

0.1 25119
0.2 63096
0.3 158489
0.4 398107
0.5 1000000
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Basic Terminology: sparsity

Rough comparison of dense and sparse (dimension, storage, time for
decomposition)

Dense matrix
dim space dec time (s)

3000 4.5M 5.72
4000 8M 14.1
5000 12.5M 27.5
6000 18M 47.8

Sparse matrix
dim space dec time (s)

10000 40k 0.02
90000 0.36M 0.5

1M 4M 16.6
2M 8M 49.8
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Basic Terminology: sparsity

Sparse vectors The sparsity pattern of v ∈ Rn is given by

S{v} = {i | vi 6= 0},

and |S{v}| is the length of v.
Matrix A is factorizable (or strongly regular) if its principal leading
minors (the determinants of its principal leading submatrices) are
nonzero, that is, if its LU factorization without row/column
interchanges does not break down.
SPD matrices are factorizable.
For more general A, in exact arithmetic the following standard
result holds.

Theorem
If A is nonsingular then the rows of A can be permuted so that the
permuted matrix is factorizable. The row permutations do not need to
be known in advance. They can be constructed on-the-fly as the
factorization proceeds.
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Basic Terminology: factorizations

For symmetric positive definite A, the Cholesky factorization
A = LLT , where L is a lower triangular matrix with positive
diagonal entries.

I Rewritten as A = L̂DL̂T , where L̂ is a unit lower triangular
matrix and D is a diagonal matrix with positive diagonal
entries: square root-free Cholesky factorization.

For nonsymmetric A, the LU factorization A = LU , where L is a
unit lower triangular matrix and U is an upper triangular matrix.
Gaussian elimination is one process to put a matrix into LU form.

I Rewritten as A = LDÛ , where Û is a unit upper triangular
matrix and D is a diagonal matrix. This is called the LDU
factorization.
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Basic Terminology: direct solver phases

First look: The matrix A is factorized and then, given the
right-hand side b, the factors used to compute the solution x.
Second look:
Most approaches further split the factorization into a symbolic
phase (also called the analyse phase) and a numerical
factorization phase that computes the factors.
The symbolic phase: typically uses only S{A} to compute the
nonzero structure of the factors of A without computing the
numerical values of the nonzeros.
The solve phase uses the factors to solve for a single b or for a
block of multiple right-hand sides or for a sequence of right-hand
sides one-by-one.
Historically, the symbolic phase was much faster than the
factorization phase. But parallelising the factorization→ timings
are much more closer.
Series of problems in which the numerical values of the entries of
A change but S{A} does not: symbolic phase just once.
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Basic Terminology: computational environment

Basic sequential model: the von Neumann architecture:union of a
central processing unit (CPU) and the memory, interconnected via
input/output (I/O) mechanisms.

CPU

Memory

I/O

Figure: A simple uniprocessor von Neumann computer model.
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Basic Terminology: computational environment

Nowadays: CPU→ a mixture of powerful processors, co
processors, cores, GPUs, and so on.
Furthermore, performing arithmetic operations on the processing
units is much faster than communication-based operations.
Moreover, improvements in the speed of the processing units
outpaces those in the memory-based hardware. Moore’s Law is
an example of an experimentally derived observation of this kind.
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Basic Terminology: computational environment

Important milestones in processor development have been
multiple functional units that compute identical numerical
operations in parallel and data pipelining (also called vectorization)
that enables the efficient processing of vectors and matrices.
Vectorization often supported by additional tools like instruction
pipelining, registers and by memory architectures with multiple
layers, including small but fast memories called caches.
Superscalar processors that enable the overlapping of identical (or
different) arithmetic operations during run-time have been a
standard component of computers since the 1990s.
The ever-increasing heterogeneity of processing units and their
hardware environment inside computers: expressing the code via
units of scheduling and execution called threads.
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Basic Terminology: computational environment

Computer-based limitations:
I Compute throughput, that is, the number of arithmetic operations

that can be performed per cycle.
I Memory throughput, that is, the number of operands than can be

fetched from memory/cache and/or registers each cycle
I Latency, which is the time from initiating a compute instruction or

memory request before it is completed and the result available for
use in the next computation.

Distinguishing: algorithms compute-bound, memory-bound or
latency-bound.
More ways to hide latency (blocks, prefetch, threads)
Measuring computational intensity: the ratio of the number of
operations to the number of operands read from memory.
Most chips designed such that dense matrix-matrix multiply, which
typically performs n3 operations on n2 data (with ratio k for a
blocked algorithm with block size k), can run at full compute
throughput, whilst matrix-vector multiply performs n2 operations
on n2 data (ratio 1) and is limited by the memory throughput.
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Basic Terminology: computational environment

The development of basic linear algebra subroutines (BLAS) for
performing common linear algebra operations on dense matrices
partially motivated by obtaining a high ratio. efficiently.
Other important motivations behind using the BLAS
(standardization, portability).
Machine-specific optimized BLAS libraries available for a wide
variety of computer architectures.

procedure comm ops ratio
BLAS 1: AXPY: y = y + αx 3n+ 1 2n 2/3

BLAS 2: GEMV: y = Ax n2 + 2n n(2n− 1) 2

BLAS 3: GEMM: C = AB 3n2 n2(2n− 1) n/2

Consequently, exploiting Level 3 BLAS when designing and
implementing matrix algorithms (for both sparse and dense
matrices) can improve performance compared to using Level 1
and Level 2 BLAS.
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Basic Terminology: finite precision arithmetic

The IEEE standard (1985) expresses real numbers as
a = ±d1. d2 . . . dt × 2k, where k is an integer and
di ∈ {0, 1}, 1 ≤ i ≤ t, with d1 = 1 unless d2 = d3 = . . . = dt = 0.
t = 24 (single precision), t = 53 (double precision), exponent k
satisfies −126 ≤ k ≤ 127 (single precision) and −1022 ≤ k ≤ 1023
(double precision).
Floating-point (FP) operations:

fl(a op b) = (a op b)(1 + δ), |δ| ≤ ε,

(op is a mathematical operation (such as =,+,−,×, /,√) and
(a op b) is the exact result), ε is the machine epsilon.
2× ε is the smallest FP number which when added to the FP
number 1.0 gives a result different from 1.0.
ε is 2−24 ≈ 10−7 (single precision), ε = 2−53 ≈ 10−16 (double
precision).
rounding errors, truncation errors.
catastrophic errors→ numerical instability
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Basic Terminology: bit compatibility

Bit compatibility is essential for some users because of regulatory
requirements (such as within the nuclear or financial industries) or
to build trust in their software from non technical users.
The critical issue is the way in which N numbers (or, more
generally, matrices) are assembled:

sum =

N∑
j=1

Sj ,

where the Sj are computed using one or more processors. The
assembly is commutative but, because of the potential rounding of
the intermediate results, is not associative so that the result sum
depends on the order in which the Sj are assembled.
A straightforward approach to achieving bit compatibility is to
enforce a defined order in such operations.
This may adversely limit the scope for parallelism.
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Basic Terminology: complexity

The computational complexity of a numerical algorithm is typically
based on estimating asymptotically the number of integer or
floating-point operations or the memory usage.

Definition
A real function f(k) of a nonnegative real k satisfies f = O(g) if there
exist positive constants cu and k0 such that

f(k) ≤ cug(k) for all k ≥ k0. (4)

We say that f = Θ(g) if, additionally, there exists a positive constant cl
such that

0 ≤ cl g(k) ≤ f(k) ≤ cu g(k) for all k ≥ k0.
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Basic Terminology: complexity

While O(g) bounds f asymptotically from above, Θ(g) represents
an asymptotically tight bound.
As a simple illustration, consider the quadratic function

f(k) = α ∗ k2 + β ∗ k − γ.

Provided α 6= 0, f(k) = Θ(k2) and the coefficient of the highest
asymptotic term is α. Computational complexity can estimate
quantities related to the worst-case behaviour of an algorithm
(worst-case complexity), or it can express average behaviour
(average-case complexity).
Unit costs, Sparse matrix algorithms that are Θ(n3) are
considered to be computationally expensive.
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Basic Terminology: complexity

Complexity here and in CS

Because of the development in computations, MFLOPs may be
misleading
Still terminology O(.) (bounding from above) or Θ(.) (bounding
from both sides) sometimes relevant - consists in replacing the
bound (bounds) by constant× simpler function (etalon).
Simpler functions are, e.g., n2, n3, log n, . . .

Distinguish worst case and average case analysis
Inverse Ackermann function will be introduced in exercises
In CS: polynomial complexity versus superpolynomial complexity.
Our case: even n3 may be too much.
Decision problems, polynomial reduction, class NP, etc.
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Basic Terminology: complexity and sparsity

Absolutely crucial for direct methods: complexity for generally
dense matrices, sequential case: O(n3) factorization, O(n2)
substitutions
Useful for iterative methods as well: repeated multiplications and
solve steps. But, expecting rather sparse matrices and (typically)
dense vectors.
Complexity in the sparse case depends on the decomposition
model and computer architecture (implementation,
completeness/incompleteness)
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