
i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 1 — #1 i
i

i
i

i
i

Sparse Matrices in Numerical Mathematics

Miroslav Tůma

Faculty of Mathematics and Physics
Charles University

mirektuma@karlin.mff.cuni.cz

Praha, September 18, 2022

1 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 2 — #2 i
i

i
i

i
i

Outline

1 Sparse matrices and data structures

2 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 3 — #3 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse vector in a computer

Example

Consider the sparse row vector v ∈ R8

v =
(
1. −2. 0. −3. 0. 5. 3. 0.

)
. (1)

The real array valV that stores the nonzero values and corresponding
integer array of their indices indV are of length |S{v}| = 5 and are as
follows:

Subscripts 1 2 3 4 5

valV 1. −2. −3. 5. 3.
indV 1 2 4 6 7

3 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 4 — #4 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse vector in a computer

Alternatively, a linked list can be used.
linked list - based format: stores matrix rows/columns as items
connected by pointers
linked lists can be cyclic, one-way, two-way
A figure for demonstration, only values (not their indices) are
shown

2 6 1

rows/columns embedded into a larger array: emulated dynamic
behavior

4 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 5 — #5 i
i

i
i

i
i

Sparsity

Sparse vector in a computer

Linked list can be embedded into a large array.

Example

Two possible ways of storing the sparse vector using linked lists.

Subscripts 1 2 3 4 5

Values 1. −2. −3. 5. 3.
Indices 1 2 4 6 7
Links 2 3 4 5 0
Header 1

Subscripts 1 2 3 4 5

Values 5. 3. 1. −2. −3.
Indices 6 7 1 2 4
Links 2 0 4 5 1
Header 3

5 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 6 — #6 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Reasons for using linked lists: straightforward adds and removes.

Example

On the left, an entry −4 has been added in position 5. On the right, an
entry −2 in position 2 has been removed. ∗ indicates the entry is not
accessed. The links that have changed are in bold.

Subscripts 1 2 3 4 5 6

Values 1. −2. −3. 5. 3. −4.
Indices 1 2 4 6 7 5
Links 2 3 4 5 6 0
Header 1

Subscripts 1 2 3 4 5

Values 1. ∗ −3. 5. 3.
Indices 1 ∗ 4 6 7
Links 3 ∗ 4 5 0
Header 1

6 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 7 — #7 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse matrix storage
coordinate (or triplet format: the individual entries of A are held as
triplets (i, j, aij), where i is the row index and j is the column
index of the entry aij 6= 0. (dynamic storage format)
CSR (Compressed Sparse Row) format. The column indices of
the entries of A held by rows in an integer array (which we will call
colindA) of length nz(A), with those in row 1 followed by those in
row 2, and so on (with no space between rows). Sorted or
unsorted. (static storage format)
CSC (Compressed Sparse Columns): analogously by columns
instead of rows.
If A is symmetric, only the lower (or upper) triangular part is
generally stored.
Possible to store only S{A}.

7 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 8 — #8 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse matrix in the coordinate format

Example matrix A ∈ R5×5

1 2 3 4 5

1 3. −2.
2 1. 4.
3 −1. 3. 1.
4 1.
5 7. 6.

. (2)

Example

Subscripts 1 2 3 4 5 6 7 8 9 10

rowindA 3 2 3 4 1 1 2 5 3 5
colindA 3 2 1 4 4 1 5 5 5 2
valA 3. 1. -1. 1. -2. 3. 4. 6. 1. 7.

8 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 9 — #9 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse matrix stored using linked lists

Easy adding and deleting entries is possible if t linked lists are
used: the matrix held as a collection of columns, each in a linked
list. colA_head holds header pointers.

Example

Subscripts 1 2 3 4 5 6 7 8 9 10

rowindA 3 2 3 4 1 1 2 5 3 5
valA 3. 1. -1. 1. -2. 3. 4. 6. 1. 7.
link 0 10 0 0 4 3 9 0 8 0
colA_head 6 2 1 5 7

If we consider column 4, then colA_head(4) = 5, rowindA(5) = 1 and
valA(5) = −2., so the first entry in column 4 is a1,4 = −2.. Next,
link(5) = 4, rowindA(4) = 4 and valA(4) = 1., so the next entry in
column 4 is a4,4 = 1..

9 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 10 — #10 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse matrix in the CSR format

CSR format represents A as follows. Here the entries within each
row are in order of increasing column index.

Example

Subscripts 1 2 3 4 5 6 7 8 9 10

rowptrA 1 3 5 8 9 11
colindA 1 4 2 5 1 3 5 4 2 5
valA 3. -2. 1. 4. -1. 3. 1. 1. 7. 6.

In our codes we often use: ia: rowptrA, ja: colindA, aa: valindA

10 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 11 — #11 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse matrix: static versuis dynamic formats

dynamic data structures:
I – more flexible but this flexibility might not be needed
I – difficult to vectorize
I – difficult to keep spatial locality
I – used preferably for storing vectors

static data structures:
I – ad-hoc insertions/deletions should be avoided (better algorithms)
I – much simpler to vectorize
I – efficient access to rows/columns

11 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 12 — #12 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Simulating dynamic storage format
A disadvantage of linked list storage: prohibits the fast access to
rows (or columns) of the matrix. And this is needed!
Simulated dynamism of storage schemes: storage format with
some additional elbow space for new non zero entries of A is
needed.
Often the case in approximate factorizations where new non zero
entries can be added and/or removed and it is hard to predict the
necessary space in advance.
In this case, the elbow space can embed new non zeros.
The format is called the DS format.

12 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 13 — #13 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse matrix: DS formats

Consider again the sparse matrix A ∈ R5×5 (2). The DS format
represents A as follows.

Example
Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rowptrA 1 5 8 12 14
colindA 1 4 2 5 1 3 5 4 2 5
valAR 3. -2. 1. 4. -1. 3. 1. 1. 7. 6.
rowlength 2 2 3 1 2
colptrA 1 4 6 9 12
rowindA 1 3 2 5 3 1 4 2 3 5
valAC 3. -1. 1. 7. 3. -2. 1. 4. 1. 6.
collength 2 2 1 2 3

13 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 14 — #14 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse matrix: DS formats

It can happen that the free space between row and/or column
segments disappears throughout a computational algorithm. Then
the DS format must be reorganized.
In particular, a row segment can be moved to the end of the arrays
valAR and colindA implying also a corresponding update in
rowptrA. The space where the row i originally resided is then
denoted as free.
If there is no free space at the end of the arrays valAR and
colindA, a compression of the row segments or full reallocation
should be done.
While the DS format seems to be complicated, it can be extremely
useful in some cases. Surprisingly efficient if the amount of
changes is limited as it often is in approximate factorizations.

14 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 15 — #15 i
i

i
i

i
i

Sparse matrices and data structures

Block formats
Blocked formats may be used to accelerate multiplication between
a sparse matrix and a dense vector.
The Variable Block Row (VBR) format groups together similar
adjacent rows and columns.
The data structure of the VBR format uses six arrays. Integer
arrays rptr and cptr hold the index of the first row in each block
row and the index of the first column in each block column,
respectively. In many cases, the block row and column
partitionings are conformal and only one of these arrays is
needed. The real array valA contains the entries of the matrix
block-by-block in column-major order. The integer array indx
holds pointers to the beginning of each block entry within valA.
The index array bindx holds the block column indices of the block
entries of the matrix and, finally, the integer array bptr holds
pointers to the start of each row block in bindx.

15 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 16 — #16 i
i

i
i

i
i

Sparse matrices and data structures

Sparse matrix: DS formats

Example

Consider the sparse matrix A ∈ R8×8

1 2 3 4 5 6 7 8

1 1. 2. 3.
2 4. 5. 6.
3 7. 8. 9. 10.
4 11. 12. 15. 16.
5 13. 17.
6 14. 18.
7 19. 20.
8 21. 22.

.

Here the row blocks comprise rows 1:2, 3, 4:6 and 7:8. The column
blocks comprise columns 1:2, 3:5, 6, 7:8. The VBR format stores A as
follows.

16 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 17 — #17 i
i

i
i

i
i

Sparse matrices and data structures

Sparse matrix: DS formats

Example

Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

rptr 1 3 4 7 9
cptr 1 3 6 7 9
valA 1. 4. 2. 5. 3. 6. 7. 8. 9. 10. 11. 14. 12. 13. 15. 17. 16. 18. 19. 21. 22. 20.
indx 1 5 7 10 11 15 19
bindx 1 3 2 3 1 4 2
bptr 1 3 5 7

17 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 18 — #18 i
i

i
i

i
i

Sparse matrices and data structures

Matmats in CSR/CSC

1) CSR - CSC

C = AB,A =

a1
...
am

 , B =
(
b1, . . . , bn

)
, C = (cij) (3)

Each entry cij computed as a product of a compressed row of A
and compressed column of B
Not clear whether the result cij is nonzero
Consequently: O(n3) operations, not useful for sparse matrices.

18 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 19 — #19 i
i

i
i

i
i

Sparse matrices and data structures

Matmats in CSR/CSC

2) CSR - CSR

C = AB,A =

a1
...
am

 , B =

b1
...
bn

 , C = (cij) (4)

* *

* * * *

*
*

*
*

a
B

i

19 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 20 — #20 i
i

i
i

i
i

Sparse matrices and data structures

Matmats in CSR/CSC

2) CSR - CSR

C = AB,A =

a1
...
am

 , B =

b1
...
bn

 , C = (cij) (5)

* *

* * * *

*
*

*
*

a
B

i

*
*

*
*

*

T

20 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 21 — #21 i
i

i
i

i
i

Sparse matrices and data structures

Matmats in CSR/CSC

3) CSC - CSR

C = AB,A =
(
a1, . . . , am

)
, B =

b1
...
bn

 , C = (cij) (6)

How one can store A by CSC and pass it by rows?
Pointers to first entries in columns: (array first)
First test: nonzero in the first row→ move one step down, add
next nonzero into the list value(next)
Complexity: O(nonzeros) +O(n)

21 / 22

i
i

“mrm_slides_2022” — 2022/9/18 — 16:46 — page 22 — #22 i
i

i
i

i
i

Sparse matrices and data structures

Matmats in CSR/CSC

3) CSC - CSR

* *

* * *

first (pointers to starting entries)

head(i) row pointer

head(j) row pointer

row entries form linked lists

Based on forming virtual rows in A

22 / 22

	Sparse matrices and data structures

