
Sparse Matrices in Numerical Mathematics

Miroslav Tůma

Faculty of Mathematics and Physics
Charles University

mirektuma@karlin.mff.cuni.cz

Praha, December 21, 2021

1 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

2 / 408

Introductory notes

Created as a material supporting online lectures of NMNV533.
Assuming basic knowledge of algebraic iterative (Krylov space) and
direct (dense) solvers (elimination/factorization/solve)
Many techniques can be formulated for both SPD and nonsymmetric
cases with only slight algorithmic (but possibly strong theoretical)
differences. Orientation in variants of Cholesky and LU
decompositions is assumed.
We will concentrate here on purely algebraic techniques which often
serve as building blocks for more complex approaches.
Some important techniques are not mentioned at all (MG/ML
preconditioners, DD techniques, row projection techniques).
Some ideas and techniques are only mentioned (block algorithms)
Only preconditioning of real systems is considered here.

3 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

4 / 408

The problem

Most of our activities around solving

Ax = b

Direct methods
Iterative methods
Practical boundaries between them more and more fuzzy.
But they are principially different.

5 / 408

Direct methods and algebraic preconditioners

Direct methods

Direct methods: the name traditionally used for the approach based
on decomposition and subsequent substitutions
The most simple case: A→ LLT or LDLT or LU

In principal = Gaussian elimination. Modern (decompositional) form
based a lot on the work of Householder (end of 1950’s)

I Occasionally other decompositions
I Most work is in the (Cholesky, indefinite, LU) decomposition.
I But: It is the computer model (sequential, concurrent processors,

multicore, GPU) which decides about the relative complexity of the two
steps.

The algorithms can be made more efficient/stable by the use of
additional techniques used before, after or during the decomposition.
In particular, solution can be made more precise by an auxiliary
iterative method.

6 / 408

Sparse matrices

Sparse matrices may look like as follows

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 400
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 1822

7 / 408

Direct methods and algebraic preconditioners

Iterative methods

x0, x1, . . .

Iterative method are usually accompanied by a problem transformation
based on a direct method called preconditioner.
Algebraic preconditioners are tools to convert the problem Ax = b into
the one which is easier to solve. They are typically expressed in matrix
form as a transformation like:

MAx = Mb

M can be then used to apply approximation to A−1 to vectors used in
the iterative method.
In practice, it can store approximation to A or A−1 (approximate
inverse).
The computation is often based on a relaxation of a direct method,
but not always.

8 / 408

Sparsity: PR

SPARSITY!

Sparse decompositions
Exact (direct) decompositions A = LLT , LU (up to the
floating-point model) → Direct methods

Inexact processes able to provide approximation to A−1
I incomplete decompositions (A ≈ LLT , LU etc.)
I incomplete inverse decompositions (A−1 ≈ ZZT , WZT etc.)

→ Preconditioners

9 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

10 / 408

Basic Terminology

Definition

Size of a set X (number of its elements) will be denoted by |X|. Set
partitioning of a set X will be called the set PX = {P1, . . . , Pp} of a
system of its nonempty and mutually disjoints subsets whose union is X. In
the other words, it is PX of subsets of X satisfying the following conditions

I ∅ 6∈ PX ,

I X =
⋃

Pi∈PX
Pi,

I (P1 ∈ PX ∧ P2 ∈ PX) ∧ P1 6= P2 ⇒ P1 ∩ P2 = ∅.
Elements P ∈ PX are called classes of the partitioning PX .

11 / 408

Basic Terminology

(
X
2

)
= {Y ⊆ X | |Y | = 2}

Vectors denoted by small letters as v, u, x, matrices by capital letters
as A,B, . . .
A ∈ Rn×n, 1 ≤ i ≤ n, is nonsingular, the right-hand side vector
b ∈ Rn is given and x ∈ Rn is the required solution vector. n is the
order (or dimension) of A.

A = (aij), 1 ≤ i, j ≤ n. (1)

Similarly for other matrices.
Matlab notation for subvectors, submatrices as Ai1:i2,j1:j2
Using mostly real objects from Rn or Rn×n.

12 / 408

Basic Terminology (continuation)

An entry of A that has a non zero value or is treated as having a non
zero value is called a non zero. Column j of A is denoted by A∗j and
row i by Ai∗.
The matrix A is symmetric if, for all i and j,

aij = aji, 1 ≤ i, j ≤ n. (2)

Otherwise, the matrix is nonsymmetric.
If A is symmetric then it is said to be symmetric positive definite if

xTAx > 0 for all non zero x ∈ Rn. (3)

Otherwise, A is symmetric indefinite .

13 / 408

Basic Terminology (continuation)

The sparsity pattern S{A} of A is the set

S{A} = {(i, j) | aij 6= 0, i, j = 1, . . . , n}.

The number of non zeros in A is nz(A) (or |S{A}| or simply |A|).
S{A} is symmetric if aij 6= 0 if and only if aji 6= 0 (the values of the
two entries need not be the same).
If S{A} is symmetric then A is said to be structurally symmetric.
In some situations, sparse vectors (vectors that contain many zero
entries) are considered. The sparsity pattern of v ∈ Rn is given by

S{v} = {i | vi 6= 0},

and |S{v}| is the length of v.

14 / 408

Basic Terminology (continuation)

Block partitioning of A into nb > 1 blocks. We formally express the
partitioning as

A = (Ai,j), Ai,j ∈ Rni×nj , 1 ≤ i, j ≤ nb, (4)

that is,

A =


A1,1 A1,2 · · · A1,nb

A2,1 A2,2 · · · A2,nb
...

...
. . .

...
Anb,1 Anb,2 · · · Anb,nb

 . (5)

We assume the square blocks Ai,i on the diagonal are nonsingular.
A is block diagonal if Ai,j = 0, i 6= j, lower block triangular if
Ai,j = 0, i > j or upper block triangular if Ai,j = 0, i < j.

15 / 408

Basic Terminology

Algorithms, implementation

Basic generally used terminology: if, endif, while, end while, begin, end
Vague distinction between algorithm and implementation
Exercises in Matlab - with some details belonging more to
implementation

16 / 408

Basic Terminology (continued)

The computational complexity of a numerical algorithm is typically
based on estimating asymptotically the number of integer or
floating-point operations or the memory usage.

Definition
A real function f(k) of a nonnegative real k satisfies f = O(g) if there
exist positive constants cu and k0 such that

f(k) ≤ cug(k) for all k ≥ k0. (6)

We say that f = Θ(g) if, additionally, there exists a positive constant cl
such that

0 ≤ cl g(k) ≤ f(k) ≤ cu g(k) for all k ≥ k0.

17 / 408

Basic Terminology (continued)

While O(g) bounds f asymptotically from above, Θ(g) represents an
asymptotically tight bound.
As a simple illustration, consider the quadratic function

f(k) = α ∗ k2 + β ∗ k − γ.

Provided α 6= 0, f(k) = Θ(k2) and the coefficient of the highest
asymptotic term is α. Computational complexity can estimate
quantities related to the worst-case behaviour of an algorithm
(worst-case complexity), or it can express average behaviour
(average-case complexity).
Unit costs, Sparse matrix algorithms that are Θ(n3) are considered to
be computationally expensive.

18 / 408

Computer architectures

Computer architectures

Need to understand their basic principles
Von Neumann model: CPU, memory, communication system
Nowadays, all of these components extremely structured and always in
development
CPU

I Speed often measured by Mflops (millions of floating-point operations)
- this can be misleading, often because of memory effects, but also:

I multiple functional units (since early machines, up to now);
superscalar, threads

I instruction pipelining (segmentation of instructions)
I data pipelining (segmentation of operations) - vectorization
I chaining (connecting pipelines) to get supervector speed

19 / 408

Computer architectures

Computer architectures II

Memory
I Registers (fastest), cache, main (central) memory, disc memory, local

network, ...
I Real and virtual memory

All of this shows the importance of using vectors, blocks.
Underlined by the development of BLAS (basic linear algebra
subroutines)

procedure comm ops ratio
BLAS 1: AXPY: y = y + αx 3n+ 1 2n 2/3

BLAS 2: GEMV: y = Ax n2 + 2n n(2n− 1) 2

BLAS 3: GEMM: C = AB 3n2 n2(2n− 1) n/2

20 / 408

Complexity of algorithms

Complexity here and in CS

Because of the development in computations, MFLOPs may be
misleading
Still terminology O(.) (bounding from above) or Θ(.) (bounding from
both sides) sometimes relevant - consists in replacing the bound
(bounds) by constant× simpler function (etalon).
Simpler functions are, e.g., n2, n3, log n, . . .

Distinguish worst case and average case analysis
Inverse Ackermann function will be introduced in exercises
In CS: polynomial complexity versus superpolynomial complexity. Our
case: even n3 may be too much.
Decision problems, polynomial reduction, class NP, etc.

21 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

22 / 408

Sparsity

Sparsity: taking into account the structure of matrix nonzeros

Definition
Matrix A ∈ IRm×n is said to be sparse if it has O(min{m,n}) entries.

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

23 / 408

Sparsity

Definition
Matrix A ∈ IRm×n is said to be sparse if it has row counts bounded by
rmax << n or column counts bounded by cmax << m.

Definition
Matrix A ∈ IRm×n is said to be sparse if its number of nonzero entries is
O(n1+γ) for some γ < 1.

Definition
(pragmatic, application-based definition: J.H. Wilkinson) Matrix
A ∈ IRm×n is said to be sparse if we can exploit the fact that a part of its
entries is equal to zero.

24 / 408

Sparsity

An example showing importance of small exponent γ for n = 104

γ n1+γ

0.1 25119
0.2 63096
0.3 158489
0.4 398107
0.5 1000000

25 / 408

Sparsity

Rough comparison of dense and sparse (dimension, storage, time for
decomposition)

Dense matrix
dim space dec time (s)
3000 4.5M 5.72
4000 8M 14.1
5000 12.5M 27.5
6000 18M 47.8

Sparse matrix
dim space dec time (s)
10000 40k 0.02
90000 0.36M 0.5
1M 4M 16.6
2M 8M 49.8

26 / 408

Sparsity

Sparsity importance

Absolutely crucial for direct methods: complexity for generally dense
matrices, sequential case: O(n3) factorization, O(n2) substitutions
Useful for iterative methods as well: repeated multiplications
sparse matrix: its combinatorial structure of zeros and nonzeros can
be exploited
complexity in the sparse case depends on the decomposition model
(implementation, completeness/incompleteness)
Sparsity pattern

S(A) = {(i, j) | aij 6= 0, i, j = 1, . . . , n}. (7)

27 / 408

Sparsity

Structured sparsity

There are special and important types of structured sparsity
Consider, for example, a block structured matrix

A =


Ai1,i1 Ai1,i2 · · · Ai1,ip−1

Ai2i1 Ai2i2 · · · Ai2ip−1

...
...

. . .
...

Aip−1i1 Aip−1i2 · · · Aip−1ip−1

 (8)

special cases of structured sparsity: block diagonal, block
triangular matrices
we will introduce profile and banded structures later

28 / 408

Sparsity

Reducibility

Definition

Matrix A ∈ Rn×n is reducible, if there is a permutation matrix P such
that

P TAP =

(
A11 0
A21 A22

)
, (9)

where A11 and A22 are square nontrivial matrices (of dimension at least 1).
If A is not reducible, it is called irreducible. Matrices of dimension 1 are
always considered to be irreducible.

Remark

Symmetric reducible matrix is block diagonal.

29 / 408

Data structures for sparse matrices and vectors

Definition
List list = (x1, . . . , xk) represents a sequence of (arbitrary) elements. x1
will be called head (first element) of a list, xk is tail (last element) of a
list. Generally, list(i) = xi. Empty list: list = (). List length is k.

Definition
List is called queue, if it enables efficient

access head of a list,
deletion of the list head (pop) and
adding an element behind the current tail.

List is called stack, if it enables efficient
access head of a list,
deletion of the list head (pop) and
adding and element before the current head (push).

30 / 408

Data structures for sparse matrices and vectors

Queue and stack are schematically depicted below. The arrows represent
efficient (easily implementable) operations.

31 / 408

Sparse vectors and matrices in a computer

Consider a sparse vector.

Example

Consider the sparse row vector v ∈ R8

v =
(
1. −2. 0. −3. 0. 5. 3. 0.

)
. (10)

The real array valV that stores the non zero values and corresponding
integer array indV are as follows.

Subscripts 1 2 3 4 5

valV 1. -2. -3. 5. 3.
indV 1 2 4 6 7

32 / 408

Sparse vectors and matrices in a computer

Alternatively, a linked list can be used.
linked list - based format: stores matrix rows/columns as items
connected by pointers
linked lists can be cyclic, one-way, two-way
A figure for demonstration, only values (not their indices) are shown

2 6 1

rows/columns embedded into a larger array: emulated dynamic
behavior

33 / 408

Sparsity

Data structures for sparse matrices: dynamic data structures

Explicit embedding into a large array.

Example

Two possible ways of storing the sparse vector using linked lists.

Subscripts 1 2 3 4 5

Values 1. -2. -3. 5. 3.
Indices 1 2 4 6 7
Links 2 3 4 5 0
Header 1

Subscripts 1 2 3 4 5

Values 5. 3. 1. -2. -3.
Indices 6 3 1 2 4
Links 2 0 4 5 1
Header 3

dynamic: easy entry insertion, deletion

34 / 408

Sparse vectors and matrices in a computer

Reasons for using linked lists: straightforward adds and removes.

Example

An entry -4 has been added to the sparse vector in position 5.

Subscripts 1 2 3 4 5 6

Values 1. -2. -3. 5. 3. -4.
Indices 1 2 4 6 7 5
Links 2 3 4 5 6 0
Header 1

35 / 408

Sparse vectors and matrices in a computer

Reasons for using linked lists: straightforward adds and removes.

Example

An entry -2 in position 2 has been removed.

Subscripts 1 2 3 4 5

Values 1. ∗ -3. 5. 3.
Indices 1 ∗ 4 6 7
Links 3 ∗ 4 5 0
Header 1

36 / 408

Sparse vectors and matrices in a computer

The vector data structures can be generalized to store sparse matrices.
The simplest way to store a sparse matrix is using coordinate (or
triplet format. The individual entries of A are held as triplets
(i, j, aij), where i is the row index and j is the column index of the
entry aij 6= 0.
More commonly used is the CSR (Compressed Sparse Row)
format. The column indices of the entries of A are held by rows in an
integer array (which we will call colindA) of length nz(A), with those
in row 1 followed by those in row 2, and so on (with no space between
rows). Often, within each row, the entries are held by increasing
column index.
CSC (Compressed Sparse Columns) is defined analogously by
holding the entries by columns, rather than by rows.
If A is symmetric, only the lower (or upper) triangular part is
generally stored. If the matrix values are not stored, the arrays
rowptrA and colindA represent the graph G(A).

37 / 408

Sparse vectors and matrices in a computer

Consider the sparse matrix A ∈ R5×5



1 2 3 4 5

1 3. −2.
2 1. 4.
3 −1. 3. 1.
4 1.
5 7. 6.

. (11)

Coordinate format represents A as follows. Note that the entries are

in no particular order.

Subscripts 1 2 3 4 5 6 7 8 9 10

rowindA 3 2 3 4 1 1 2 5 3 5
colindA 3 2 1 4 4 1 5 5 5 2
valA 3. 1. -1. 1. -2. 3. 4. 6. 1. 7.

38 / 408

Sparse vectors and matrices in a computer

CSR format represents A as follows. Here the entries within each row
are in order of increasing column index. This additional condition is
often but not always used.

Subscripts 1 2 3 4 5 6 7 8 9 10

rowptrA 1 3 5 8 9 11
colindA 1 4 2 5 1 3 5 4 2 5
valA 3. -2. 1. 4. -1. 3. 1. 1. 7. 6.

In our codes: ia: rowptrA, ja: colindA, aa: valindA

39 / 408

Sparse vectors and matrices in a computer

Adding and deleting entries is possible if the sparse rows or columns
are stored using linked lists.
The matrix held as a collection of columns, each in a linked list, as
follows. Here the array colA_head holds header pointers. Columns
held in order but this is not a requirement.

Subscripts 1 2 3 4 5 6 7 8 9 10

rowindA 3 2 3 4 1 1 2 5 3 5
valA 3. 1. -1. 1. -2. 3. 4. 6. 1. 7.
link 0 10 0 0 4 3 9 0 8 0
colA_head 6 2 1 5 7

If we consider column 4, then colA_head(4) = 5, rowindA(5) = 1
and valA(5) = −2., so the first entry in column 4 is a1,4 = −2..
Next, link(5) = 4, rowindA(4) = 4 and valA(4) = 1., so the next
entry in column 4 is a4,4 = 1..

40 / 408

Sparse vectors and matrices in a computer

A disadvantage of linked list storage is that it prohibits the fast
access to rows (or columns) of the matrix that is needed for efficient
processing on contemporary computers that use vectorization and/or
work with matrix blocks. Consequently, CSR or CSC formats are
commonly used in sparse direct methods.
In some cases a storage format with some additional elbow space
for new non zero entries of A is needed. This is often the case in
approximate factorizations where new non zero entries can be
added and/or removed and it is hard to predict the necessary
space in advance. Such storage scheme that has some extra space to
embed new non zeros is the DS format.
Goal of the course is to show that in important cases we are able to
predict ...

41 / 408

Sparse vectors and matrices in a computer

Consider again the sparse matrix A ∈ R5×5 (11). The DS format
represents A as follows.

Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rowptrA 1 5 8 12 14
colindA 1 4 2 5 1 3 5 4 2 5
valAR 3. -2. 1. 4. -1. 3. 1. 1. 7. 6.
rowlength 2 2 3 1 2
colptrA 1 4 6 9 12
rowindA 1 3 2 5 3 1 4 2 3 5
valAC 3. -1. 1. 7. 3. -2. 1. 4. 1. 6.
collength 2 2 1 2 3

42 / 408

Sparse vectors and matrices in a computer

When dealing with the DS format it can happen that the free space
between row and/or column segments disappears throughout a
computational algorithm. Then the DS format must be
reorganized. In particular, a row segment can be moved to the end of
the arrays valAR and colindA implying also a corresponding update
in rowptrA. The space where the row i originally resided is then
denoted as free. If there is no free space at the end of the arrays
valAR and colindA, a compression of the row segments or full
reallocation of the DS format should be done.
While the DS format seems to be complicated, it can be extremely
useful in some cases. It is surprisingly efficient if the amount of
changes is reasonably limited as it often is in approximate
factorizations.

43 / 408

Sparsity

Data structures for sparse matrices: static versus dynamic data
structures: summary.

dynamic data structures:
I – more flexible but this flexibility might not be needed
I – difficult to vectorize
I – difficult to keep spatial locality
I – used preferably for storing vectors

static data structures:
I – we need to avoid ad-hoc insertions/deletions
I – much simpler to vectorize
I – efficient access to rows/columns

44 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

45 / 408

Graphs and their matrices

Undirected graphs: basic terminology

Definition

Simple undirected graph G is an ordered pair of sets (V,E), where
V = {v1, . . . , vn} is called the set of vertices of G, E = {e1, . . . , em} is
called the set of edges satisfying

E ⊆
(
V
2

)
.

Remark
Formally the definition also means that there are no multiple edges and no
loops (edges that would belong to V only).

46 / 408

Graphs and their matrices

Undirected graph: example

1

2

4

3

6 5

Simple undirected graph G = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {2, 3}, {1, 4},
{3, 4}, {3, 6}, {3, 5}, {5, 6}})

47 / 408

Graphs and their matrices

Directed graphs: example

Definition
A simple directed graph is an ordered pair of sets (V,E) such that
E = {(i, j)|i ∈ V, j ∈ V }. V is called the vertex (node) set and
E ⊆ V × V is called the edge (arc) set.

48 / 408

Graphs and their matrices

Bipartite graphs: example

Definition
A simple bipartite graph is an ordered pair of sets (R,C,E) such that
E = {{i, j}|i ∈ R, j ∈ C}. R is called the row vertex set, C is called the
column vertex set and E is called the edge set.

49 / 408

Graphs and their matrices

Terminology of undirected graphs (repetition)

neighbors, incidence, isolated vertices, subgraph, graph induced by a
set of vertices / edges, clique
adjacency set for a vertex set U (set of neighbors)

adjG(U) = {u 6∈ U |(∃v ∈ U)(u ∈ adjG(v))} (12)

A (finite) walk is a sequence of edges and vertices that can be written
as

{i0, i1}, {i1, i2}, . . . , {it−1, it}

A trail is a walk with all edges are distinct.

A path is a walk with all vertices distinct. Denoted by i0
G⇐===⇒

{1,...,j}
it

closed walks, trails, paths modify the definitions by setting i0 ≡ it.

50 / 408

Graphs and their matrices

Terminology of undirected graphs (repetition)

Definition
Two graphs G and H are isomorphic if there is a bijection between V (G)
and V (H) f : V (G)→ V (H)f : V (G)→ V (H) such that

(∀u, v ∈ V (G))(∃{u, v} ∈ E(G)⇔ ∃{f(u), f(v)} ∈ E(H).

Reachable vertices, Reachability set (undirected path between i0 and k
using intermediate vertices from S only.

Reach(i0, S,G) = {k ∈ V | i0
G⇐⇒
S
k}

Connected graph, components, coloring of vertices, cycle, acyclic
graphs, tree (connected acyclic), forest (acyclic).

51 / 408

Graphs and their matrices

Adjacency matrix of an undirected graph

Definition
For a simple undirected graph G = (V,E) with V = {1, . . . , n} the
adjacency matrix is the (0, 1) matrix AG = (aij) (i, j ∈ V), where aij is
0 if there is an edge {i, j} in E where i, j ∈ V and zero otherwise.



1 1
1 1

1 1 1 1
1 1

1 1
1 1


Adjacency matrix for the undirected graph above.

52 / 408

Graphs and their matrices

Incidence matrix of an undirected graph

Definition
For a simple undirected graph G = (V,E) with V = {1, . . . , n} and
E = {1, . . . ,m} the incidence matrix is the (0, 1) matrix AG = (aij)
(i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}), where aij = 1, if j is the vertex of the
edge i and aij = 0 otherwise.

Incidence matrix is generally rectangular.
More slightly differing definitions of adjacency and incidence matrices.
In particular, various generalizations.

53 / 408

Graphs and their matrices

Transfer between the classes of undirected and directed graphs

Symmetrization: directed → undirected

I Just considering edges from V × V as from
(
V
2

)
Orientation: undirected → directed

I Not unique. Instead from an edge from
(
V
2

)
we can have one or two

edges from V × V .

In any case, part of terminology is shared between the classes of
undirected and directed graphs

54 / 408

Graphs and their matrices

Terminology of directed graphs (additional)

Walks, trails, paths can be considered as undirected or directed.
For example, directed path is (i0, i1), (i1, i2), . . . , (it−1, it).
connectivity → strong connectivity.

Definition
Vertices x1 and x2 of a directed graph G are strongly connected, if

x1
G
=⇒ x2 ∧ x2

G
=⇒ x1. (13)

Strong connectivity is an equivalence on V (G). Subgraphs induced
by strong connectivity on V (G) are called strong components of G.

Definition
Directed graph G is strongly connected iff it has only one strong
component.

55 / 408

Graphs and their matrices

Acyclic graphs and rooted trees

Definition

Topological ordering of a (directed graph, vertices of a directed graph) is
a mapping (numbering) α : V → {1, . . . , |V |} of V , such that for all its
edges (u, v), u, v ∈ V we have

α(u) > α(v).

Theorem

Directed graph is acyclic if and only if it can be topologically ordered (if
there is such numbering α).

56 / 408

Graphs and their matrices

Acyclic graphs and rooted trees: an example of a topologically
ordered acyclic graph

4

5

2

6 3

7

1

Remark
Note that we define it here by an exactly opposite inequality than it is
typically defined.

57 / 408

Graphs and their matrices

Definition
Rooted tree is an acyclic and connected graph (tree) having (in addition)
one designated vertex r called the root.

The root of a rooted tree determines a partial ordering of vertices.
Designating the root also means orientation of edges of the rooted
tree. We assume that the orientation is uniquely defined by having
directed paths from r to all vertices of V \ r.

58 / 408

Graphs and their matrices

Terminology of rooted trees

Parent u of a vertex v 6= r is the closest vertex on the unique path
r → v to v. r has no parent. We write u = parent(v) and state that
v is a child of u. A vertex of a rooted tree without children is its leaf.
Ancestors of a vertex v of the rooted tree T are all vertices on the
path r → v (including v) in T . Set of ancestors of v will be denoted
by anc(v) or ancT (v).
For vertices of a rooted tree T : if u is an ancestor of v then v is called
a descendant of u. Set of descendants of v will be denoted by
desc(v) or descT (v).

59 / 408

Graphs and their matrices

An example of a rooted tree

1

8 2 9

7 6

3 4 5

10

11

12

The root of this tree is 12
Then, for example, 10 is an ancestor of vertices 2, 8 a 9. These
vertices are descendants of 10. Set of ancestors of 10 is
anc(10) = {10, 11, 12}. parent(i) for vertices 1 . . . 11 is
8, 10, 7, 7, 6, 9, 9, 10, 10, 11, 12, null.

60 / 408

Graphs and their matrices

Remark
Topological numbering α of a directed acyclic graph G = (V,E) has the
following transitivity property.

α(v) < α(u) foru ∈ anc(v), u 6= v. (14)

61 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

62 / 408

From matrices to graphs

From matrices to graphs

Sparsity pattern S of a matrix (matrix structure, positions of nonzero
entries) can be conveniently expressed by graphs (graph models)

⇓

Different graph models for different purposes

undirected graph
directed graph
bipartite graph

Values of matrix entries can be stored as graph (vertex, edge) weights

63 / 408

From matrices to graphs

Symmetric matrix and undirected graph of its sparsity pattern
(structure)

Definition
{x, y} ∈ E or (x, y) ∈ E ⇔ vertices x and y are adjacent
Adj(x) = {y|y and x are adjacent }



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗


64 / 408

From matrices to graphs

Nonsymmetric matrix and directed graph of its sparsity pattern
(structure)

Arrows express that the edges (arcs) are directed.



∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗


65 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

66 / 408

Graph searches

Many sparse matrix reordering algorithms involve searching the
adjacency graph G(A) = (V,E). The sequence in which the vertices
are visited can be used, for example, to reorder the graph and hence
permute the matrix.
Given a start vertex, a graph search (also called a graph traversal)
performs a step-by-step exploration of the vertices and edges of G(A),
generating sets of visited vertices and explored edges.
Let Vv be the set of visited vertices and Vn be the set of vertices that
have not yet been visited. Following some chosen rule, the search step
selects an unexplored edge e = (v, w) ∈ E such that one of its vertices
belongs to Vv.

67 / 408

Graph searches:BFS

Starting from a chosen start vertex s, a breadth-first search (BFS)
explores all the vertices adjacent to s. It then explores all vertices
whose shortest path from s is of length 2, and then length 3, and so
on (that is, sibling vertices are visited before child vertices); a queue is
used in its implementation.

76

2

1

3

8

54

Figure: An illustration of a BFS of a connected undirected graph, with the
labels indicating the order in which the vertices are visited.

68 / 408

Graph searches:DFS

A depth-first search (DFS) visits the child vertices before visiting the
sibling vertices; that is, it traverses the depth of a path before
exploring its breadth. Starting from a chosen vertex s, the set of
vertices that are visited are those vertices u for which a directed path
from s to u exists in G. The edges that are traversed form a tree Ts,
called the depth-first-search tree of G starting at the chosen root s,
and the edges in this tree are called tree edges. The other edges can
be divided into three categories:

Back edges point from a vertex to one of its ancestors
in the DFS tree.
Forward edges point from a vertex to one of its
descendants.
Cross edges point from a vertex to a previously visited
vertex that is neither an ancestor nor a descendant.

69 / 408

Graph searches:DFS

43

2

1

5

6

87

Figure: An illustration of a DFS search of a connected directed graph. The
labels indicate the order in which the vertices are visited and the
classification of the edges. The tree edges are in bold; (1→ 8) is a forward
edge; (4→ 1) is a back edge; (4→ 3) is a cross edge.

70 / 408

Graph searches:DFS

Algorithm (Find preorder and postorder lists using a DFS)

1: Initialization: Vv = ∅, preorder = () and postorder = ()
2: for each v ∈ V do
3: if v 6∈ Vv then
4: push(preorder, v) . Add v onto the preorder stack
5: Vv = Vv ∪ {v} . Add v to the set of visited vertices
6: dfs_step(v)
7: end if
8: end for
9: recursive function (dfs_step(v))
10: for each (v → w) ∈ E do
11: push(preorder, w) . Add w onto the preorder stack
12: Vv = Vv ∪ {w} . Add w to the set of visited vertices
13: if w 6∈ Vv then
14: dfs_step(w) . recursive search
15: end if
16: end for
17: push(postorder, v) . Add v onto the postorder stack
18: end recursive function

71 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

72 / 408

Matmats

1) CSR - CSC

C = AB,A =

a1
...
am

 , B =
(
b1, . . . , bn

)
, C = (cij) (15)

Each entry cij computed as a product of a compressed row of A and
compressed column of B
Not clear whether the result cij is nonzero
Consequently: O(n3) operations, not useful for sparse matrices.

73 / 408

Matmats

2) CSR - CSR

C = AB,A =

a1
...
am

 , B =

b1...
bn

 , C = (cij) (16)

* *

* * * *

*
*

*
*

a
B

i

74 / 408

Matmats

2) CSR - CSR

C = AB,A =

a1
...
am

 , B =

b1...
bn

 , C = (cij) (17)

* *

* * * *

*
*

*
*

a
B

i

*
*

*
*

*

T

75 / 408

Matmats

3) CSC - CSR

C = AB,A =
(
a1, . . . , am

)
, B =

b1...
bn

 , C = (cij) (18)

How one can store A by CSC and pass it by rows?
Pointers to first entries in columns: (array first)
First test: nonzero in the first row → move one step down, add next
nonzero into the list value(next)
Complexity: O(nonzeros) +O(n)

76 / 408

Matmats

3) CSC - CSR

* *

* * *

first (pointers to starting entries)

head(i) row pointer

head(j) row pointer

row entries form linked lists

Based on forming virtual rows in A

77 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

78 / 408

Schemes for solving systems of linear algebraic equations

The schemes: introduction

methods based on solving Ax = b by a matrix decomposition – variant
of Gaussian elimination; typical decompositions:
A = LLT , A = LDLT (Cholesky decomposition, LDLT

decomposition for SPD matrices)
A = LU (LU decomposition for general nonsymmetric matrices)
A = LBLT (symmetric indefinite / diagonal pivoting decomposition
for A symmetric indefinite)

three steps of a (basic!) direct method:
1) A→ LU , 2) y from Ly = b, 3) x from Ux = y

79 / 408

Schemes for solving systems of linear algebraic equations

Definition
Matrix A ∈ Rn×n is strongly regular if all its leading principal minors are
nonzero.

Simple matrices that are regular but not strongly regular.

1 0 0
0 0 1
0 1 0

 1 1 0
1 1 1
0 1 0

 (19)

80 / 408

Schemes for solving systems of linear algebraic equations

Theorem

Let A ∈ Rn×n be strongly regular. Then there exist unique unit lower
triangular matrix L and upper triangular matrix U such that

A = LU. (20)

Theorem

For each regular A there is a row permutation matrix P such that PA is
strongly regular. This permutation matrix can be found on-the-fly during
the factorization.

81 / 408

Triangular solves

Gaussian elimination: sequence of operations that reduce the matrix A
to an upper triangular form. This is an an equivalent linear system
with an upper triangular matrix. The solution x is computed by
solving the triangular systems

Ly = b, (21)

and then
Ux = y. (22)

Solves with the dense right-hand side vector (straightforward) The
solution of (21) can be obtained by forward subsitution in which we
obtain the component y1 from the first equation, substitute it into the
second equation to obtain y2, and so on.

82 / 408

Triangular solves

Algorithm (Lower triangular solve Ly = b with b dense)
Input: Lower triangular matrix L with unit diagonal and dense b.
Output: Dense solution y.

1: Initialise: y = b
2: for j = 1 : n do
3: for i = j + 1 : n do
4: if lij 6= 0 then
5: yi = yi − lijyj
6: end if
7: end for
8: end for

83 / 408

Triangular solves

When b is sparse, the solution y is also sparse. In particular, if yk = 0
then the outer loop with j = k can be skipped.

Algorithm (Lower triangular solve Ly = b with b sparse)
Input: Lower triangular matrix L with unit diagonal, sparse b and the set
J .
Output: Sparse solution y.

1: Initialise: y = b
2: for j ∈ J do
3: for i = j + 1 : n do
4: if lij 6= 0 then
5: yi = yi − lijyj
6: end if
7: end for
8: end for

How to get J ?
84 / 408

Schemes for solving systems of linear algebraic equations

One step of elimination


a11 a12 . . . a1n
a21 a22 . . . a2n
a31 a32 . . . a3n
...

...
. . .

...
an1 an2 . . . ann

 =


1

a21/a11 1
a31/a11 1

... 1
an1/a11 1





a11 a12 . . . a1n

0 a
(1)
22 . . . a

(1)
2n

0 a
(1)
32 . . . a

(1)
3n

...
...

. . .
...

0 a
(1)
n2 . . . a

(1)
nn


(23)

≡M1A
(1).

Corresponding Schur complement

S = A
(1)
R =


a
(1)
22 a

(1)
2n

a
(1)
32 a

(1)
3n

...
. . .

...
a
(1)
n2 a

(1)
nn

 ∈ R(n−1)×(n−1) (24)

85 / 408

Schemes for solving systems of linear algebraic equations

Second step of the elimination



a11 a12 . . . a1n

0 a
(1)
22 . . . a

(1)
2n

0 a
(1)
32 . . . a

(1)
3n

...
...

. . .
...

0 a
(1)
n2 . . . a

(1)
nn

 =


1

1
a32/a11 1

... 1
an2/a11 1





a11 a12 a1n

0 a
(1)
22 a

(1)
2n

0 0 a
(1)
33 . . . a

(1)
3n

...
...

...
. . .

...
0 0 a

(1)
n3 . . . a

(1)
nn


(25)

≡M2A
(2).

Summarizing this

A = M1M2 . . .Mn−1A
(n−1). (26)

86 / 408

Schemes for solving systems of linear algebraic equations

L =



1

a
(0)
21 /a

(0)
11 1

a
(0)
31 /a

(0)
11

...
...

. . .
a
(0)
n1 /a

(0)
11 . . . 1




1

1

a
(1)
32 /a

(1)
22

...
...

. . .
a
(1)
n2 /a

(1)
22 . . . 1

 . . . = (27)



1

a
(0)
21 /a

(0)
11 1

a
(0)
31 /a

(0)
11 a

(1)
32 /a

(1)
22

...
...

. . .
a
(0)
n1 /a

(0)
11 a

(1)
n2 /a

(1)
22 . . . 1


Remark
Subdiagonal entries that are explicitly in the i-th column of Mi,
i = 1, . . . , n− 1 are entries of the unit lower triangular matrix (factor) L.

87 / 408

Schemes for solving systems of linear algebraic equations

(
A b

)
= M1

(
A(1) M−11 b

)
. (28)

and then (
A b

)
= M1M2 . . .Mn−1

(
A(n−1) L−1b

)
. (29)

Algorithm
Generic scheme of the LU factorization.

1. for —————-
for —————-

for —————-
aij = aij − likakj

end
end

end

88 / 408

Schemes for solving systems of linear algebraic equations

Submatrix factorization

A =

(
a11 uT

v C

)
, (30)

where
v = a2:n,1, C = A2:n,2:n, u

T = a1,2:n (31)

leads to

A = M1

(
a11 uT

C − vuT /a11

)
=

(
1

v/a11 I

)(
a11 uT

C − vuT /a11

)
(32)

≡
(

1
v/a11 I

)(
a11 uT

S

)
, (33)

89 / 408

Schemes for solving systems of linear algebraic equations

Submatrix factorization: example

A =


4 −1 −5 −11 6
−1 4 −2 −1 3
−1 0 4 −1 5
6 7 8 10 2
8 −1 −1 4 7



90 / 408

Schemes for solving systems of linear algebraic equations

A =


4 −1 −5 −11 6

−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.25 2.75 −3.75 6.5
1.5 8.5 15.5 26.5 −7
2 1 9 26 −5



91 / 408

Schemes for solving systems of linear algebraic equations

Submatrix factorization: example

A =


4 −1 −5 −11 6

−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.07 2.53 −4 6.8
1.5 2.27 22.87 35 −17.2
2 0.27 9.87 27 −6.2



92 / 408

Schemes for solving systems of linear algebraic equations

Submatrix factorization: example

A =


4 −1 −5 −11 6

−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.07 2.53 −4 6.8
1.5 2.27 9.03 71.1 −78.6
2 0.27 3.89 42.6 −32.7



93 / 408

Schemes for solving systems of linear algebraic equations

Submatrix factorization: example

A =


4 −1 −5 −11 6

−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.07 2.53 −4 6.8
1.5 2.27 9.03 71.1 −78.6
2 0.27 3.89 0.6 14.4



94 / 408

Schemes for solving systems of linear algebraic equations

Algorithm

kij lu decomposition (row oriented submatrix dense algorithm)

l = In
u = On
for k=1:n-1

for i=k+1:n
lik = aik/akk
for j=k+1:n
aij = aij − lik ∗ akj

end
end
ukk:n = akk:n

end
unn = ann

95 / 408

Schemes for solving systems of linear algebraic equations

Algorithm

kji lu decomposition (column oriented submatrix dense algorithm)

l = In, u = On
for k=1:n-1

for s=k+1:n
lsk = as,k/ak,k

end
for j=k+1:n

for i=k+1:n
aij = aij − lik ∗ akj

end
end
ukk:n = akk:n

end
unn = ann

96 / 408

Schemes for solving systems of linear algebraic equations

Depicting submatrix LU factorization

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������k

97 / 408

Schemes for solving systems of linear algebraic equations

Column algorithm

Generic scheme with the outer index j
For j = 1 clear since off-diagonal entries in the first column of L are
entries of the first column of A divided by u11 = a11.
Assume we have computed for 1 < j < n, in the first j − 1 steps of
factorization first j − 1 columns of L and U of the matrix A ∈ Rn×n.(

Lj−1
L′j−1

)
Uj−1 =

(
A 1:j−1,1:j−1
A j:n,1:j−1

)
, (34)

where

Lj−1 ∈ R (j−1)×(j−1), L′j−1 ∈ R (n−j+1)×(j−1), Uj−1 ∈ R (j−1)×(j−1)

(35)

98 / 408

Schemes for solving systems of linear algebraic equations

Column algorithm

Next step for the j-th column l of L a j-th column z of U is

U1:j−1,j = L−1j−1A 1:j−1,j , ujj = a j,j − (L′j−1) j,1:j−1U1:j−1,j , (36)

Lj+1:n,j = A j+1:n,j − L′j−1U1:j−1,j . (37)

Next slide: additional row interchanges

99 / 408

Schemes for solving systems of linear algebraic equations

Column algorithm

Algorithm
Basic sparse column LU factorization
Output: LU factorization PA = LU where P is a row permutation matrix.

1: Interchange rows of A so that a11 = max1≤i≤nai1
2: Set l11 = 1, u11 = a11, L2:n,1 = A2:n,1

3: for j = 2 : n do
4: Solve L1:j−1,1:j−1U1:j−1,j = A1:j−1,j

5: Set z = Aj:n,j − Lj:n,1:j−1U1:j−1,j . Vector z is of dimension n− j + 1.
6: Apply row interchanges to z, A and L such that z1 = max1≤i≤n−j+1zi.
7: Set ujj = z1
8: Set Lj:n,j = z2:n−j+1/ujj

9: end for

100 / 408

Schemes for solving systems of linear algebraic equations

Column algorithm: example

A =


4 −1 −5 −11 6
−1 4 −2 −1 3
−1 0 4 −1 5
6 7 8 10 2
8 −1 −1 4 7



101 / 408

Schemes for solving systems of linear algebraic equations

Column algorithm: example

A =


4 −1 −5 −11 6

−0.25 4 −2 −1 3
−0.25 0 4 −1 5
1.5 7 8 10 2
2 −1 −1 4 7



102 / 408

Schemes for solving systems of linear algebraic equations

Column algorithm: example

A =


4 −1 −5 −11 6

−0.25 3.75 −2 −1 3
−0.25 −0.07 4 −1 5
1.5 2.27 8 10 2
2 0.27 −1 4 7



103 / 408

Schemes for solving systems of linear algebraic equations

Column algorithm

Two completely different phases of the column construction.
I applying L−1j−1 (as a forward substitution)

I computing subdiagonal part of L as a linear combination of a
column of A with previously computed columns of L

They are separated in the Cholesky factorization
Row algorithm is column algorithm for AT

104 / 408

Schemes for solving systems of linear algebraic equations

Algorithm

jki lu decomposition (delayed column dense algorithm)
l = In, u = On, u11 = a11
for j=2:n

for s=j:n
lsj−1 = asj−1/aj−1j−1

end
for k=1:j-1

for i=k+1:n
aij = aij − lik ∗ akj

end
end
u1:jj = a1:jj

end

105 / 408

Schemes for solving systems of linear algebraic equations

Algorithm

jik lu decomposition (dot product - based column dense algorithm)
l = In, u11 = a11
for j=2:n

for s=j:n
lsj−1 = asj−1/aj−1j−1

end
for i=2:j

for k=1:i-1
aij = aij − lik ∗ akj

end
end
for i=j+1:n

for k=1:j-1
aij = aij − lik ∗ akj

end
end
u1:jj = a1:jj

end

106 / 408

Schemes for solving systems of linear algebraic equations

Depicting column LU factorization

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

j

107 / 408

Schemes for solving systems of linear algebraic equations

Algorithm

ikj lu decomposition (delayed row dense algorithm)
l = In
u = On
u11:n = a1,1:n
for i=2:n

for k=1:i-1
lik = aik/akk
for j=k+1:n
aij = aij − lik ∗ akj

end
end
uii:n = aii:n

end

108 / 408

Schemes for solving systems of linear algebraic equations

Algorithm

ijk lu decomposition (dot product - based row dense algorithm)
l = In, u = On, u11:n = a11:n
for i=2:n

for j=2:i
lij−1 = aij−1/aj−1j−1
for k=1:j-1
aij = aij − lik ∗ akj

end
end
for j=i+1:n

for k=1:i-1
aij = aij − lik ∗ akj

end
end
ui,i:n = ai,i:n

end
109 / 408

Schemes for solving systems of linear algebraic equations

Depicting row LU factorization

��i

110 / 408

Schemes for solving systems of linear algebraic equations

Bordering algorithm

Going outside the generic scheme determining i, j a k by

ai,j = ai,j − li,kak,j ≡ ai,j = ai,j − ai,ka−1k,kak,j , (38)

Based on A1:k,1:k =(
A1:k−1,1:k−1 A1:k−1,k
Ak,1:k−1 ak,k

)
=

(
L1:k−1,1:k−1 0
Lk,1:k−1 1

)(
U1:k−1,1:k−1 U1:k−1,k

0 uk,k

)
(39)

New row Lk,1:k−1 of L and new column U1:k−1,k from

Lk,1:k−1U1:k−1,1:k−1 = Ak,1:k−1,

L1:k−1,1:k−1U1:k−1,k = A1:k−1,k.

Diagonal entry uk,k of U obtained from

uk,k = ak,k − Lk,1:k−1U1:k−1,k.

Initialized by u1,1 = a1,1.

111 / 408

Schemes for solving systems of linear algebraic equations

Cholesky factorization

As expected – more variants as by LU
In addition, more different forms - not distinguished here if not needed

LDLT = L̃L̃T ,

If A is not SPD, L̃L̃T does not need to exist
LDLT then can exist but it can be unstable
An example of LDLT factorization−2 −6 4
−6 −21 15
4 15 −13

 =

 1 0 0
3 1 0
−2 −1 1

−2 0 0
0 −3 0
0 0 −2

1 3 −2
0 1 −1
0 0 1


112 / 408

Schemes for solving systems of linear algebraic equations

Lemma
Consider one step of the submatrix factorization of an SPD A. Schur
complement of A with respect to (positive) a1,1 is positive definite.

Proof.

For
(
α zT

)T we have xTAx =

(
α zT

)(a1,1 a1,2:n
a2:n,1 A2:n,2:n

)(
α
z

)
= (40)

α2a1,1 + αa1,2:nz + αzTa2:n,1 + zTA2:n,2:nz = (41)

(α+a−11,1a1,2:nz)
Ta1,1(α+a−11,1a1,2:nz)+z

T (A2:n,2:n−a2:n,1a−11,1a1,2:n)z (42)

Choosing z 6= 0 and setting α = −a−11,1a1,2:nz we get

xTAx = zTSz where S = A2:n,2:n − a2:n,1a−11,1a1,2:n.
113 / 408

Schemes for solving systems of linear algebraic equations

Schemes for Cholesky factorization
Left-looking schemes (second part of the column LU)
Right-looking schemes (just the submatrix scheme)
The row scheme corresponds to the first part of the Cholesky
algorithm.

114 / 408

Schemes for solving systems of linear algebraic equations

Submatrix Cholesky

A =

 a1,1 a1,2 a1,3:n
a2,1 a2,2 a2,3:n
a3:n,1 a3:n,2 A3:n,3:n



=


√
a1,1 0

a2,1√
a1,1

√
a
(1)
2,2

a3:n,1√
a1,1

a
(1)
3:n,2√
a
(1)
2,2

In−2




1 0 0
0 1 0

0 0 A
(2)
3:n,3:n −

a3:n,1a1,3:n

a1,1
− a

(1)
3:n,2a

(1)
2,3:n

a
(1)
2,2



√
a1,1

a2,1√
a1,1

a1,3:n√
a1,1

0
√
a
(1)
2,2

a
(1)
2,3:n√
a
(1)
2,2

In−2


=

 l1,1 0 0
l2,1 l2,2 0
l3:n,1 l3:n,2 In−2

l1,1 l2,1 l1,3:n
0 l2,2 l2,3:n
0 0 In−2


115 / 408

Schemes for solving systems of linear algebraic equations

Column Cholesky

Algorithm

Column Cholesky factorization: A → square-root factor L = (lij)
1. for j = 1 : n do
2. Compute an auxiliary vector tj:ntj...

tn

 =

ajj...
anj

− ∑
{k|ljk 6=0}

ljk

ljk...
lnk

 (43)

3. Get a column of L by scaling tj:nljj...
lnj

 =
1√
tj

tj...
tn

 (44)

4. end j
116 / 408

Schemes for solving systems of linear algebraic equations

Row Cholesky

Algorithm

Row Cholesky factorization: : A → square-root factor L = (lij). 1.
for i = 1 : n do
2. Solve the triangular system

L1:i−1,1:i−1

 li1
...

li,i−1

 =

 ai1
...

ai,i−1

 (45)

3. Compute the diagonal entry lii =

√(
aii −

∑i−1
k=1 l

2
ik

)
4. end i

117 / 408

Schemes for solving systems of linear algebraic equations

Dense direct methods: elimination versus decomposition

Householder (end of 1950’s, beginning of 1960’s): expressing Gaussian
elimination as a decomposition
Various reformulations of the same decomposition: different properties
in

I – sparse implementations
I – vector processing
I – parallel implementations

Six algorithms as for LU, but there are others (bordering,
Dongarra-Eisenstat)

118 / 408

Reducibility (again) and block triangular form

Mentioned above (
Aq1,q1 Aq1,q2

0 Aq2,q2

)
, (46)

where Aq1,q1 and Aq2,q2 are non trivial square matrix blocks (that is,
they are of order at least 1).
An irreducible matrix (G(A) is strongly connected): having the strong
Hall property.
The matrix A is said to have the Hall property if any set of its k ≥ 1
columns has non zeros in at least k rows.
The Hall property is a necessary condition for A to have full structural
rank.
A has the strong Hall property if any set of its 1 ≤ k ≤ n− 1
columns has non zeros in at least k + 1 rows.
An irreducible matrix (G(A) is strongly connected): having the strong
Hall property.

119 / 408

Reducibility (again) and block triangular form

Theorem
Given a nonsymmetric matrix A there exists a permutation matrix P such
that

PAP T =


A1,1 A1,2 · · · A1,nb

0 A2,2 · · · A2,nb
...

...
. . .

...
0 0 · · · Anb,nb

 , (47)

where the square blocks Ai,i on the diagonal are irreducible. The set of
blocks {Ai,i} is uniquely determined (but they may appear on the diagonal
in a different order). The order of the rows and columns within each block
Ai,i may not be unique.

The upper block triangular form (47) is also known as the
Frobenius normal form.

120 / 408

Reducibility (again) and block triangular form

An example of a matrix that can be symmetrically permuted to block
triangular form with nb = 2 is given in Figure 3.



1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





6 3 5 4 1 2

6 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
5 ∗ ∗
4 ∗ ∗
1 ∗ ∗ ∗ ∗
2 ∗ ∗


Figure: The sparsity patterns of a matrix A (left) and PAPT in upper block
triangular form with diagonal blocks of size 2 and 4 (right).

Block triangular form: only diagonal blocks needed to be factorized

121 / 408

Reducibility (again) and block triangular form

PAP T y = c, c = Pb, x = P T y.

Algorithm
Solve a sparse linear system in a upper block triangular form
(right-hand side c, solution y)

1: for i = 1 : nb do
2: Compute the LU factorization Ai,i = LiUi
3: end for
4: for i = nb : 1 do
5: s = ci
6: for j = i+ 1 : nb do
7: s = s−Ai,jyj
8: end for
9: Solve LiUiyi = s

10: end for

122 / 408

Reducibility (again) and block triangular form

We say that a matrix has a full or maximum transversal when the
diagonal is free from zeros.
Any nonsingular matrix A can be permuted using suitable permutation
matrices P and Q so that the nonsymmetric permutation PAQ has a
full transversal. The converse is (of course) not true.
If A has a full transversal, a permutation P can be found such that
PAP T has block triangular form and this is identical to finding the
strongly connected components (SCCs) of G.
The way to find the block triangular form: next slide.

123 / 408

Reducibility (again) and block triangular form

Quotient graph: assume the vertices V of the directed graph G are
partitioned into non-empty subsets Vi in such a way that every vertex
is included in exactly one subset. Each vertex i in a quotient graph
corresponds to a subset Vi and there is an edge in the quotient graph
with endpoints i and j if G has one or more edges with one endpoint
in the subset Vi and the other in Vj .
Condensation of a directed graph is the quotient graph where the
strongly connected components (SCCs) form the subsets of the
partition, that is, each SCC is contracted to a single vertex.

Theorem

The condensation of a directed graph is a DAG.

124 / 408

Reducibility (again) and block triangular form

We have a block triangular form

Because any DAG can be topologically ordered, the condensation
GC = (V, E) can be topologically ordered.
Consider an ordering of A induced by this ordering of GC , that is, a
symmetric permutation PAP T such that any two vertices i and j
from different SCCs si and sj of G satisfy

(i, j) ∈ E(PAP T)⇒ (si, sj) ∈ E .

Then PAP T is of block upper triangular form (47)

125 / 408

Reducibility (again) and block triangular form

Finding strong components

Here the approach based on the DFS
The modification with respect to the DFS involves a vector lowlink
defined for u ∈ V as follows:

lowlink(u) = min{preorder(v) | (u→ v) ∈ E}.

The algorithm performs a DFS, keeping track of two properties for
each vertex: when it was encountered (the index (its preorder)) and
the lowest index of any vertex reachable from this vertex (the
lowlink). It pushes vertices onto a stack as it goes and outputs a
strongly connected component when it finds a completely processed
vertex whose index and lowlink are the same.
lowlink(v) = min(lowlink(v), preorder(w)) (we will see what w is)
The algorithm is linear in the number of edges and vertices.

126 / 408

Reducibility: Tarjan’s SCC algorithm

Algorithm

1: Initialization: Vv = ∅, S = (), index = 0
2: for each v ∈ V do
3: if v 6∈ Vv then scomp_step(v)
4: end if
5: end for
6: recursive function (scomp_step(v))
7: Vv = Vv ∪ {v}, index = index+ 1 . Add v to the set of visited vertices
8: preorder(v) = index, lowlink(v) = index, push(S, v) . Put v on the stack
9: Set v = head(S) . v is the current head of S.
10: for each (v → w) ∈ E do . Look in the adjacency list of v
11: if w 6∈ Vv then . w not yet been visited; recurse on it
12: scomp_step(w)
13: lowlink(v) = min(lowlink(v), lowlink(w))
14: else if w ∈ S then . w is on the stack and hence in current SCC
15: lowlink(v) = min(lowlink(v), preorder(w))
16: end if
17: end for
18: if lowlink(v) = preorder(v) then
19: pop all vertices down to v from S to obtain a new SSC
20: end if
21: end recursive function

127 / 408

Reducibility (again) and block triangular form

Five SSCs: {s, p, q}, {t, u, v}, {x}, {y} and {z}. The condensation DAG
GC also shown; Tarjan’s algorithm computes a topological ordering for this
graph.

v x

u

t

y

p

q

s

z

s5

s4

s3

s1

s2

Figure: A graph to illustrate finding strong components. On the left, the five
SSCs are denoted using different colours and on the right is the condensation
DAG GC formed by the SSCs.

128 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

129 / 408

Definition of blocks

matrix → graph
blocks are defined as follows

I 1: vertices that are connected to each other
I 2: vertices that have the same sets of neighbors

130 / 408

Getting blocks: Approach by Ashcraft (1995)

The strategy of the first approach
1 Number graph nodes/vertices (use numbers as their labels)
2 Compute vertex checksums:

chksum =
∑
{u,v}∈E

w

3 Sort vertices by their checksums: in O(|E|+|V|log(|V|)) time
4 Different checksum means different block
5 First tie-breaking rule: if chksum(u) = chksum(v): compare
|adj(u)| and |adj(v)|

6 Second tie-breaking rule: compare adjacency sets of u and v (the
most time consuming)

131 / 408

Getting blocks: Approach by Saad (2005)

The strategy of the second approach
First idea: it is possible to use different (scaled) checksums (hash
functions)
Example where the previous approach is not the best: some blocks
seem to be here 

∗ ∗ 0 0 ∗ ∗ ∗ 0
∗ ∗ 0 0 ∗ ∗ 0 0
0 0 ∗ ∗ 0 0 0 ∗
0 0 ∗ ∗ 0 0 0 ∗
∗ 0 0 ∗ 0 ∗ 0

∗ ∗ 0 0 ∗ ∗ ∗ 0
∗ 0 0 0 ∗ ∗ ∗ 0
0 0 ∗ ∗ 0 0 0 ∗



132 / 408

Getting blocks

The strategy of the second approach (continued)
Cosine algorithm: comparison of angles between matrix rows

Getting them: multiply AAT

How it could be done cheaply?: see above: apply our matmats

Then grouping according to these products!

133 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

134 / 408

Sparse factorizations

Direct decomposition may fill

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 288
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 974

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 400
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 1822
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 400
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 1050

Need to describe the fill-in: 1) describe it 2) avoid it
Need to exploit the fill-in structure algorithmically
Or ... we can cut the fill-in and perform an incomplete process ... later

135 / 408

Sparse factorizations

Direct decomposition may fill

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 288
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 974

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 400
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 1822

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 400
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 1050

Need to describe the fill-in: 1) describe it 2) avoid it
Need to exploit the fill-in structure algorithmically
Or ... we can cut the fill-in and perform an incomplete process ... later

135 / 408

Sparse factorizations

Direct decomposition may fill

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 288
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 974
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 400
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 1822

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 400
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 1050

Need to describe the fill-in: 1) describe it 2) avoid it
Need to exploit the fill-in structure algorithmically
Or ... we can cut the fill-in and perform an incomplete process ... later

135 / 408

Sparse factorizations

Direct decomposition may fill

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 288
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 974
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 400
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 1822

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 400
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 1050

Need to describe the fill-in: 1) describe it 2) avoid it
Need to exploit the fill-in structure algorithmically
Or ... we can cut the fill-in and perform an incomplete process ... later

135 / 408

Sparse factorizations

Repeat matrix → description
Combinatorial structure of zeros and nonzeros → graphs



∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗





∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗





∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗



Fill-in changes during the decomposition: dynamic description
Data structures, implementation with respect to the architecture

136 / 408

Sparse factorizations

Repeat matrix → description
Combinatorial structure of zeros and nonzeros → graphs



∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗





∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗





∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗



Fill-in changes during the decomposition: dynamic description
Data structures, implementation with respect to the architecture

136 / 408

Sparse factorizations

Repeat matrix → description
Combinatorial structure of zeros and nonzeros → graphs



∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗





∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗





∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗



Fill-in changes during the decomposition: dynamic description
Data structures, implementation with respect to the architecture

136 / 408

Sparse factorizations

Sparsity structure changes during factorization

Arrow matrix - original matrices: example showing how bad the fill-in
problem can be


∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Arrow matrix - structure after elimination
∗ ∗ ∗ ∗ ∗
∗ ∗ f f f
∗ f ∗ f f
∗ f f ∗ f
∗ f f f ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Fill-in description and ways to avoid it must capture it dynamically!

137 / 408

Sparse factorizations

Sparsity structure changes during factorization

Arrow matrix - original matrices: example showing how bad the fill-in
problem can be


∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Arrow matrix - structure after elimination
∗ ∗ ∗ ∗ ∗
∗ ∗ f f f
∗ f ∗ f f
∗ f f ∗ f
∗ f f f ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Fill-in description and ways to avoid it must capture it dynamically!

137 / 408

Sparse factorizations

Sparsity structure changes during factorization

Arrow matrix - original matrices: example showing how bad the fill-in
problem can be


∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Arrow matrix - structure after elimination
∗ ∗ ∗ ∗ ∗
∗ ∗ f f f
∗ f ∗ f f
∗ f f ∗ f
∗ f f f ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Fill-in description and ways to avoid it must capture it dynamically!

137 / 408

Sparse factorizations

Dynamic development of the fill-in (generally nonsymmetric)


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗




∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ ∗
∗ ∗ ∗
∗ ∗


elimination of the first row and column


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ f ∗
∗ ∗ ∗
∗ f ∗


elimination of the second row and column


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ f ∗
∗ ∗ ∗ f
∗ f ∗


elimination of the third row and column

Formal description: the sequence of elimination matrices
A(1), A(2), . . .

And the sequence of their graphs

138 / 408

Sparse factorizations

Dynamic development of the fill-in (generally nonsymmetric)


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗




∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ ∗
∗ ∗ ∗
∗ ∗


elimination of the first row and column


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ f ∗
∗ ∗ ∗
∗ f ∗


elimination of the second row and column


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ f ∗
∗ ∗ ∗ f
∗ f ∗


elimination of the third row and column

Formal description: the sequence of elimination matrices
A(1), A(2), . . .

And the sequence of their graphs

138 / 408

Sparse factorizations

Dynamic development of the fill-in (generally nonsymmetric)


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ ∗
∗ ∗ ∗
∗ ∗


elimination of the first row and column


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ f ∗
∗ ∗ ∗
∗ f ∗


elimination of the second row and column


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ f ∗
∗ ∗ ∗ f
∗ f ∗


elimination of the third row and column

Formal description: the sequence of elimination matrices
A(1), A(2), . . .

And the sequence of their graphs

138 / 408

Sparse factorizations

Dynamic development of the fill-in (generally nonsymmetric)


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ ∗
∗ ∗ ∗
∗ ∗


elimination of the first row and column


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ f ∗
∗ ∗ ∗
∗ f ∗


elimination of the second row and column


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ f ∗
∗ ∗ ∗ f
∗ f ∗


elimination of the third row and column

Formal description: the sequence of elimination matrices
A(1), A(2), . . .

And the sequence of their graphs

138 / 408

Sparse factorizations

Dynamic development of the fill-in (generally nonsymmetric)


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ ∗
∗ ∗ ∗
∗ ∗


elimination of the first row and column


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ f ∗
∗ ∗ ∗
∗ f ∗


elimination of the second row and column


∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗



∗ ∗
∗ ∗

∗ f ∗ f ∗
∗ ∗ ∗ f
∗ f ∗


elimination of the third row and column

Formal description: the sequence of elimination matrices
A(1), A(2), . . .

And the sequence of their graphs

138 / 408

Sparse factorizations

Dynamic development of the fill-in (symmetric) - easier to track
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗



5

1

4

2

3


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗



∗ ∗ ∗
∗ ∗ f ∗ ∗
∗ f ∗ ∗
∗ ∗
∗ ∗ ∗


elimination of the first row and column

5

1

4

2

3

5

1

4

2

3


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗



∗ ∗ ∗
∗ ∗ f ∗ ∗
∗ f ∗ f ∗
∗ f ∗ f
∗ ∗ f ∗


elimination of the second row and column

5

1

4

2

3

5

1

4

2

3

139 / 408

Sparse factorizations

Dynamic development of the fill-in (symmetric) - easier to track


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗



5

1

4

2

3


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗



∗ ∗ ∗
∗ ∗ f ∗ ∗
∗ f ∗ ∗
∗ ∗
∗ ∗ ∗


elimination of the first row and column

5

1

4

2

3

5

1

4

2

3


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗



∗ ∗ ∗
∗ ∗ f ∗ ∗
∗ f ∗ f ∗
∗ f ∗ f
∗ ∗ f ∗


elimination of the second row and column

5

1

4

2

3

5

1

4

2

3

139 / 408

Sparse factorizations

Dynamic development of the fill-in (symmetric) - easier to track


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗



5

1

4

2

3


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗



∗ ∗ ∗
∗ ∗ f ∗ ∗
∗ f ∗ ∗
∗ ∗
∗ ∗ ∗


elimination of the first row and column

5

1

4

2

3

5

1

4

2

3


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗



∗ ∗ ∗
∗ ∗ f ∗ ∗
∗ f ∗ f ∗
∗ f ∗ f
∗ ∗ f ∗


elimination of the second row and column

5

1

4

2

3

5

1

4

2

3

139 / 408

Sparse factorizations

Dynamic development of the fill-in (symmetric) - easier to track

5

1

4

2

3

5

1

4

2

3

after 1st step after second step

5

1

4

2

3
5

1

4

2

3

after 1st step after second step

140 / 408

Sparse factorizations

Dynamic development of the fill-in (symmetric) - easier to track

5

1

4

2

3

5

1

4

2

3

after 1st step after second step

5

1

4

2

3
5

1

4

2

3

after 1st step after second step

140 / 408

Sparse factorizations

Another demonstration of the symmetric filling process



1 2 3 4 5

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗

 →



1 2 3 4 5

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ f f
3 ∗ ∗ ∗
4 ∗ f ∗ f
5 ∗ f ∗ f ∗




1 2 3 4 5

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ f f
3 ∗ ∗ f ∗
4 ∗ f f ∗ f
5 ∗ f ∗ f ∗



141 / 408

Sparse factorizations

Dynamic development of the fill-in: summary

Symmetric: Elimination step induces a clique in the graph model
Nonsymmetric: Elimination step induces a more general structure
that can be considered as a fully dense bipartite subgraph (after
permutation)

142 / 408

Local description of fill-in

The filling process (in graph model)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Lemma

Elimination graph G(k) = (V (k), E(k)) pro k ∈ {0, . . . , n− 1} can be
expressed using the notion of deficit as G(k) = (V (k), E(k−1)(V (k))∪D(k)).

D(k)(G) = {{i, j}|{i, k} ∈ E, {k, j} ∈ E, {i, j} 6∈ E, i 6= j, i > k, j > k}
(48)

143 / 408

Sparse factorizations

Memory considerations
How should be E stored in the computer?
Storing clique (symmetric case) instead of a subgraph → complexity?
A clique can be stored just implicitly - storing entries that caused it!
Nonsymmetric case is more complicated (pivoting may be needed)
symmetric example: Recursive storing of the cliques caused by the
elimination needed. Go implicit!

5

1

4

2

3

5

1

4

2

3

{{1,3},{1,4},{1,5}, {3,4}, {3,5},{4,5}} → {1,3,4,5}
Still: too local, row/column character of the decomposition not used

144 / 408

Local description of fill-in

No-cancellation assumption (always assumed throughout) ⇒
S(A) ⊆ S(L+ LT), S(A) ⊆ S(L+ U) (49)

Where fill-in can be expected (works also for nonsymmetric A)

145 / 408

Local description of fill-in

Fill-in and the Schur complement (k ∗ ∗ schemes)

A(k) = A(k−1) −



1 . . . k k + 1 . . . n

1
...
k

k + 1
ak−1
k+1,ka

k−1
k,k+1

ak−1
k,k

. . .
ak−1
k+1,ka

k−1
k,n

ak−1
k,k

...
...

. . .
...

n
ak−1
n,k a

k−1
k,k+1

ak−1
k,k

. . .
ak−1
n,n a

k−1
n,n

ak−1
k,k


(50)

Works also in the nonsymmetric case.

146 / 408

Local description of fill-in

Local description of the fill-in
(Notation uses elimination matrices A ≡ A(0), A(1), . . .)

Lemma
(Fill-in Lemma) Let i, j, k ∈ {1, . . . , n}, k < min{i, j} ≤ n. Then

a
(k)
ij 6= 0⇐⇒ a

(k−1)
ij 6= 0 ∨ (a

(k−1)
ik 6= 0 ∧ a(k−1)kj 6= 0).

Only sparsity pattern of L+ LT

Lemma
(Graph form of fill-in Lemma) Let i, j ∈ {1, . . . , n}, k < min{i, j}.
Then

{i, j} ∈ E(F)⇐⇒ {i, j} ∈ E(A) ∨ ({i, k} ∈ E(F) ∧ {k, j} ∈ E(F)),

where G(F) = (V,E(F)) represents graph of the filled matrix F = L+LT .

147 / 408

Global description of fill-in: Cholesky

Theorem

(Cholesky fill-in theorem) Let i, j, k ∈ {1, . . . , n}, k < min{i, j} ≤ n.
Then a(k)ij 6= 0 iff there is in the undirected graph model G of A a path

i
G⇐⇒ j,

such that all its vertices not equal to i or j are smaller than min{i, j}
(fill-in path).

Theorem

(Graph form of the Cholesky fill-in theorem) Let i, j ∈ {1, . . . , n}.
Then lij 6= 0 ({i, j} ∈ E(F)) iff there is a fill-in path in G(A)

i
G⇐⇒ j.

148 / 408

Global description of fill-in: Cholesky

Demonstration of the fill-in theorem for Cholesky



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗ ∗





1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗


(51)

5

6 1

2

8

4 3

7

5

6 1

2

8

4 3

7

l86 : 8↔ 2↔ 5↔ 1↔ 6

149 / 408

Global description of fill-in: Cholesky and LU

Theorem

Let A have a symmetric sparsity pattern and let A = LDLT . Let
F = L+ LT . Then fij 6= 0 (i 6= j) if and only if there is a fill-path

i
G⇐=⇒
min

j.

Let A have a nonsymmetric sparsity pattern and let A = LU . Let
F = L+ U . Then fij 6= 0 (i 6= j) if and only if there is a fill-path

i
G

===⇒
min

j. The fill-path may not be unique.

Still an implicit description.

150 / 408

Global description of fill-in: LU

Demonstration of the nonsymmetric fill-in theorem



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ f
5 ∗ f ∗
6 ∗ ∗ f f f ∗

 (52)

For the nonsymmetric matrix in the figure, entry (6, 4) of L is a fill-in entry
because there is a fill-path 6

G
===⇒
min

4 given by 6→ 1→ 3→ 4.

151 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

152 / 408

Sparse Cholesky factorization - components

Consider Cholesky factorization (symmetric, positive definite)
A way to see the fill-in: replication of column structures
Define terminology (of rooted trees) first

Definition

Denote by parent(j) for j ∈ {1, . . . , n} the row index of the first
subdiagonal (nonzero) entry in column j of L. If there is no such entry,
set parent(j) = 0. Denote further parent2(j) ≡ parent(parent(j)),
parent3(j) ≡ parent(parent(parent(j))) etc.

153 / 408

Sparse Cholesky factorization - components

Fill-in as replication of column structures II

j

i

parent(j)

parent(j)

(a)

j

i

parent(j)

parent(j)

(b)

parent(j)

parent (j)2

parent (j)2

j

i

parent(j)

(c)

parent (j)2

parent (j)2

j

i

parent(j)

parent(j)

(d)

154 / 408

Sparse Cholesky factorization - components

Fill-in as replication of column structures IIa

From the depiction we can see the following:

Observation

S(Lj+1:n,j) ⊆ S(Lparent(j):n,parent(j)).

Note that we use the non-cancellation assumption

155 / 408

Sparse Cholesky factorization - components

Fill-in as replication of column structures III

Theorem

Let lij 6= 0 for j < i ≤ n. Then there is an integer p > 0 such that
parentp(j) = i. In addition, lis 6= 0 for s = j, parent(j),
parent2(j) . . . , parentp(j).

parent (j)parent (j)

2

parent (j)

parent (j)

j

i

parent(j)

parent(j)

parent (j)

2

l−1l−1

l =

Replication of column structures → replication of nonzeros in a row.
156 / 408

Sparse Cholesky factorization - components

Fill-in as replication of column structures V

Theorem

(Extended fill-in theorem using column structure replication) Let
aij = 0 for j < i ≤ n. Then lij 6= 0 iff there exists k < j, for which
aik 6= 0 and there exists a p > 0 such that

parentp(k) = j .

The theorem says that at each row should be a starter: row
replication should start somewhere
This is a basis to easy determination of sparsity patterns of rows of L
Next slide demonstrates the principle.

157 / 408

Sparse Cholesky factorization - components

Fill-in as replication of column structures VI

i

k

j

Is there a simpler graph structure that describes the fill-in?
Yes, the directed acyclic graph based on the mapping parent, called
the elimination tree.

158 / 408

Sparse Cholesky factorization - components

Elimination tree



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ f ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ f ∗ ∗ f ∗
∗ ∗ f ∗ f ∗

∗ f ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ f ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ f ∗ ∗ f ∗
∗ ∗ f ∗ f ∗

∗ f ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


1

2

5

3

4

6

7

8

the elimination tree in computer: just one vector parent

159 / 408

Sparse Cholesky factorization - components

Elimination tree



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ f ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ f ∗ ∗ f ∗
∗ ∗ f ∗ f ∗

∗ f ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ f ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ f ∗ ∗ f ∗
∗ ∗ f ∗ f ∗

∗ f ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


1

2

5

3

4

6

7

8

the elimination tree in computer: just one vector parent

159 / 408

Sparse Cholesky factorization - components

Elimination tree



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ f ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ f ∗ ∗ f ∗
∗ ∗ f ∗ f ∗

∗ f ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





∗ ∗ ∗ ∗
∗ ∗ f ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ f ∗ ∗ f ∗
∗ ∗ f ∗ f ∗

∗ f ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


1

2

5

3

4

6

7

8

the elimination tree in computer: just one vector parent

159 / 408

Sparse Cholesky factorization - components

Definition

Elimination tree T (A) = (V,E(A)) of a symmetric matrix (not
necessarily SPD) A ∈ <n×n such that for some matrix values the Cholesky
factorization A = LDLT exists is the graph induced by the edge set

E(A) = {(i, j) | i = min{k | k > j ∧ lkj 6= 0}.

Lemma
If A is irreducible (not reducible), T (A) is tree. That is, the
symmetrization of T (A) is connected and acyclic. Otherwise, elimination
tree is a forest (not connected).

160 / 408

Sparse Cholesky factorization - components

Elimination tree
Remind: the elimination tree is defined via the filled graph (graph with
fill-in, G(F))
In practice, it has to be computed from the original matrix A (we do
not have the filled matrix)
Elimination tree (or its variations) is one of the most fundamental tree
structure connected to the Cholesky factorization.

161 / 408

Sparse Cholesky factorization - components

Some terminology related to the elimination tree

Definition
Reminder: Leafs of a rooted tree are its vertices that do not have
descendants.

Definition
Subtree T (j) of a directed acyclic graph T in vertex j is its subgraph
induced by the set descT (j) of all descendants of j in T . T (j) is a rooted
tree with the root j. Size of T (j) denoted by |T (j)| is the number of
vertices of T (j).

162 / 408

Sparse Cholesky factorization - components

Elimination tree: simple properties

Lemma

If i is an ancestor of j 6= i in the elimination tree T (A) then i > j.

Straightforward to see from the definition

1

2

5

3

4

6

7

8

163 / 408

Sparse Cholesky factorization - components

Elimination tree: using the rooted tree terminology

Observation
For i, j, i > j of V (T) and an integer p > 0 we have

i = ancT (j)⇔ j ∈ descT (i)⇔ (∃p > 0)(parentp(j) = i).

1

8 2 9

7 6

3 4 5

10

11

12

parent(6)

parent(parent(6))

belongs to anc(6)

...

164 / 408

Sparse Cholesky factorization - components

Elimination tree: construction

for i = 1 to n ≡ |V | do
parent(i) = 0
for k such that k ∈ adj(i) ∧ k < i do

j = k
while (parent(j) 6= 0 ∧ parent(j) 6= i) do
j = parent(j)

end while
if parent(j) = 0 then parent(j) = i

end k
end i

165 / 408

Sparse Cholesky factorization - components

Lemma

Consider the construction and its i-th step for i = 1, . . . , n. At its end we
have the elimination tree of T (A1:i,1:i).

Outer loop of the construction: scanning rows
I Either the first nonzero of a column is found and a new root of
the component of the elimination tree is set up.

I Or the replication principle induces moving current row index
(vertex) up the tree component toward its ancestors.

166 / 408

Sparse Cholesky factorization - components

Elimination tree: construction

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6

167 / 408

Sparse Cholesky factorization - components

Elimination tree: construction



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6

167 / 408

Sparse Cholesky factorization - components

Elimination tree: construction



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6

167 / 408

Sparse Cholesky factorization - components

Elimination tree: construction



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6

167 / 408

Sparse Cholesky factorization - components

Elimination tree: construction



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6

167 / 408

Sparse Cholesky factorization - components

Elimination tree: construction



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6

167 / 408

Sparse Cholesky factorization - components

Elimination tree: construction



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6

167 / 408

Sparse Cholesky factorization - components

Elimination tree: construction



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6

167 / 408

Sparse Cholesky factorization - components

Elimination tree construction: problems with long dependency chains



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗


(53)

Elimination tree is determined by the directed edges

parent(i) = i+ 1, i = 1, . . . , n.

But the search starts always from a leaf and goes up the tree:
algorithm may not be efficient

168 / 408

Sparse Cholesky factorization - components

Elimination tree: an improved construction

for i = 1 to n do
parent(i) = 0; ancestor(i) = 0
for k such that k ∈ adj(i) ∧ k < i do
j = k
while (ancestor(j) 6= 0 ∧ ancestor(j) 6= i) do
j = ancestor(j); ancestor(j) = i; j = t

end while
if ancestor(j) = 0 then parent(j) = i; ancestor(j) = i

end k

end i

Complexity O(|E(G(A))| log2 |V |). Can be further reduced by other
general tree techniques up to close O(|E(G(A))|).

169 / 408

Sparse Cholesky factorization - components

Theorem

(Locality property of the elimination tree) Vertex i is an ancestor of
j, i > j in the elimination tree T (A) iff there is in G({1, . . . , i}) an
undirected path

j
G(A)⇐===⇒
{1,...,i}

i.

How we can see this: replication in row i is always implied by vertices
smaller than i

170 / 408

Sparse Cholesky factorization - components

Corollary

Ancestor i of j, i > j in elimination tree T (A) is the father of j
(i = parent(j)) iff j is the smallest vertex of the component of
G({1, . . . , i}) \ {i} that contains an undirected path

j
G(A)⇐===⇒
{1,...,i}

i.

171 / 408

Sparse Cholesky factorization - components

Elimination tree: let us repeat our motivation and goals

How can be the fill-in described (and avoided ...)?

How should be data structures set up?

We have the elimination tree but this may be not enough.

172 / 408

Sparse Cholesky factorization - components

Row structures of L

Theorem

(Extended fill-in theorem formulated using the elimination tree)
Consider a computed Cholesky factor, no-cancellation. For i, j, i > j we
have lij 6= 0 iff j is an ancestor of some k in T for which aik 6= 0.

Theorem describes fill-in in the i-th row of L.

Some k must precede i in the elimination tree (starter)

Then all ancestors j correspond to nonzeros in the i-th row

173 / 408

Sparse Cholesky factorization - components

Pruned and row subtrees of T (A)

Definition
Subtree Tp(i) of the elimination tree T is called the pruned subtree of T
at the vertex i if it is a rooted tree with the root i, subset of vertices from
T (i) and such that for each leaf k of Tp(i) all vertices on the directed path
from i to k belong to Tp(i). Tp(i) is the subgraph of T (and also of T (i))
induced by this set of vertices.

Corollary

Let n ≥ i > j ≥ 1. Consider Tp(i) of T where j ∈ V (Tp(i)) iff (i) either
aij 6= 0, (ii) or j ∈ ancT (i)(k) for some k where aik 6= 0. This pruned
subtree we will denote by Tr(i) and call i-th row subtree of T . Vertices
rowL(i) ∪ {i} are then exactly vertices of Tr(i).

174 / 408

Sparse Cholesky factorization - components

Row subtrees: demonstration

i

k k’ k’’

k’’’

175 / 408

Sparse Cholesky factorization - components

Row subtrees



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗


176 / 408

Sparse Cholesky factorization - components

Row subtrees



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



1 2 3 4 5
5

5

6 7

3 4

8

1

9

7 6

10

8

1

2 9

7

3

6

177 / 408

Sparse Cholesky factorization - components

Row structures of L, row subtrees of T (A)

Just remind: vertices in the row subtree rooted at i correspond to
nonzeros in a row of L

rowL(j) ≡ S(Lj,1:j−1) = {k | k < j, ljk 6= 0}, 1 ≤ j ≤ n. (54)

Formally, we do not count diagonal nonzeros

178 / 408

Sparse Cholesky factorization - components

Row counts: simple algorithm

initialize all colcounts to 1
for i = 1 to n do
rowcount(i) = 1
mark(i) = i
for k such that k < i ∧ aik 6= 0 do
j = k
while mark(j) 6= i do
rowcount(i) = rowcount(i) + 1
colcount(j) = colcount(j) + 1
mark(j) = i
j = parent(j)

end while
end k

end i

i

k k’ k’’

k’’’

179 / 408

Sparse Cholesky factorization - components

It would be nice to know column structures of L as well

1

2

5

3

4

6

7

8

row structure column structure

row subtrees ?

180 / 408

Sparse Cholesky factorization - components

Column structures of L

Lemma
Column j is updated by such columns k satisfying ljk 6= 0.

j
j

i

Lemma
Struct(L∗j) = Struct(A∗j) ∪

⋃
k,ljk 6=0 Struct(L∗k) \ {1, . . . , j − 1}.

181 / 408

Sparse Cholesky factorization - components

Column structures of L

Lemma
Struct(L∗j) = Struct(A∗j) ∪

⋃
k,ljk 6=0 Struct(L∗k) \ {1, . . . , j − 1}.

*

*

*

*

**

*

*

*
*

*

182 / 408

Sparse Cholesky factorization - components

Column structures of L

Lemma
Struct(L∗j) \ {j} ⊆ Struct(L∗parent(j))

Struct(L∗j) = Struct(A∗j) ∪
⋃

{i|j=parent(i)}

Struct(L∗i) \ {1, . . . , j − 1}.
183 / 408

Sparse Cholesky factorization - components

Column structures of L

colL(j) ≡ S(Lj+1:n,j) = {k | k > j, lkj 6= 0}, 1 < j ≤ n. (55)

Rewritten replication

Lemma

colL(j) ⊆ colL(parent(j)) ∪ {parent(j)}. (56)

Summarizing theorem with a recursion behind

Theorem

Sparsity structure of a column j of the Cholesky factor L of A is given by
the adjacency set of the vertices of T (j) of the elimination tree T . In the
other words,

colL(j) = adjG(A)(T (j)). (57)

184 / 408

Sparse Cholesky factorization - components

Column structures

Once more, formulated as a theorem.

Theorem

colL(j) =

adjG(A)(j) ∪
⋃

{i|j=parent(i)}

colL(i)

 \ {1, . . . , j}. (58)

185 / 408

Sparse Cholesky factorization - components

Finding column structures: (called symbolic factorization in a
restricted sense

Algorithm

for j = 1 to n do
son(j) = ∅

end j
for j = 1 to n do

colL(j) = set of indices of adjG(j) \ {1, . . . , j − 1}
for k ∈ son(j) do
colL(j) = colL(j) ∪ colL(k) \ {j}

end k
if colL(j) 6= 0 then
p = min{i | i ∈ colL(j)}
son(p) = son(p) ∪ {j}

end if
end j

186 / 408

Sparse Cholesky factorization - components

Reorderings/renumberings induced by the elimination tree

Initial numbering of nodes of the elimination tree is topological.
Observe two different topological renumberings. Is some of them
preferable?

1

2

5

3

4

6

7

8

5

6

7

8

1

2

3

4

187 / 408

Sparse Cholesky factorization - components

Reorderings/renumberings induced by the elimination tree

Topological reorderings are equivalent from the point of view of
fill-in.

Theorem

Let A be a symmetric matrix and T (A) is its elimination tree. Let P be a
compatible permutation matrix where the relation between vertices of
P TAP and T (A) is given by a topological renumbering
α : V (A)↔ V (P TAP). Then the filled graphs of Cholesky factorizations
of A and P TAP are isomorphic.

188 / 408

Sparse Cholesky factorization - components

Reorderings/renumberings induced by the elimination tree

Definition of postordering: the importance of locality

Definition

Topological numbering α of a rooted tree T = (V = {1, . . . , n}, E) is
called postordering if sets of vertices of every its subtree

T (j), for j = 1, . . . , n

contain values of an interval of natural numbers from {1, . . . , n}.

189 / 408

Sparse Cholesky factorization - components

Reorderings/renumberings induced by the elimination tree

Two different postorderings

5

6

7

8

3

4

1

2 3

6

7

8

54 1

2

190 / 408

Sparse Cholesky factorization - components

Again: postordering = topological + labels in subtrees form intervals

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5

66

1

5

2

3
4

6

1

5

2

3
4

→



∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗
∗ ∗ f ∗ ∗ f

∗ ∗ f ∗



191 / 408

Sparse Cholesky factorization - components

Again: postordering = topological + labels in subtrees form intervals

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5

6

6

1

5

2

3
4

6

1

5

2

3
4

→



∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗
∗ ∗ f ∗ ∗ f

∗ ∗ f ∗



191 / 408

Sparse Cholesky factorization - components

Again: postordering = topological + labels in subtrees form intervals

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5

6

6

1

5

2

3
4

6

1

5

2

3
4

→



∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗
∗ ∗ f ∗ ∗ f

∗ ∗ f ∗



191 / 408

Sparse Cholesky factorization - components

Again: postordering = topological + labels in subtrees form intervals

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5

66

1

5

2

3
4

6

1

5

2

3
4

→



∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗
∗ ∗ f ∗ ∗ f

∗ ∗ f ∗


191 / 408

Sparse Cholesky factorization - components

Postordering: why?
Postordering is necessary for locality: efficient exploiting memory
hierarchies, paging environment, crucial for multifrontal methods,
efficient computation of factor row and column counts (different than
mentioned) etc.

1

2

5

3

4

6

7

8

6

7

8

1

Postordered tree

2

3

4 5

192 / 408

Sparse Cholesky factorization - components

Row counts: more sophisticated algorithm: the idea

i

k k’ k’’

k’’’

Needed: fast algorithm to determine junctions of branches in the
elimination tree,
and fast algorithm to find leaves of the elimination tree.
Can be done by traversing the postordered elimination tree.
The complexity can be then nearly linear in m.
Can be done similarly for column counts 193 / 408

Sparse Cholesky factorization - components

Elimination tree leaves

Theorem

Let the vertices of an elimination tree T of A are postordered. Consider a
row index i, 1 < i ≤ n. Denote also

adjG(A)(i) ∩ {1, . . . , i− 1} = {c1, . . . , cs}, 0 < c1 < . . . < cs < i, s ≥ 1.

Then ct pro t ∈ {1, . . . , s} is a leaf of Tr(i) of the elimination tree T iff
either t = 1 or

t > 1 ∧ ct−1 6∈ T (ct). (59)

Case t = 1 is clear
t > 1: ct−1 ∈ T (ct) ∧ ct is a leaf of Tr(i)⇒ lik for all ancestors k of
ct−1. Postordering implies that ct−1 ≤ k < ct and these ancestors are
then also in Tr(i). And this is a contradiction.
Proof of the reverse implication similar.

194 / 408

Sparse Cholesky factorization - components

Elimination tree leaves: figures to demonstrate the situation
Figure on the left demonstrates the described implication proof.

....

t−1
c

ct

i

k

t−1

....
ct

i

c k

195 / 408

Sparse Cholesky factorization - components

Elimination tree leaves
Corollary: closer to implementation

Corollary

Let the vertices of an elimination tree T of A are postordered. Consider a
row index i, 1 < i ≤ n. Denote also

adjG(A)(i) ∩ {1, . . . , i− 1} = {c1, . . . , cs}, 0 < c1 < . . . < cs < i, s ≥ 1.

Then ct pro t ∈ {1, . . . , s} is a leaf of Tr(i) of the elimination tree T iff
either

t = 1 nebo t > 1 ∧ ct−1 < ct − |T (ct)|+ 1.

196 / 408

Sparse Cholesky factorization - components

Elimination tree leaves

Needed subtree sizes

Algorithm

for i = 1 : n do
|T (i)| = 1

end i
4. for i = 1 : n− 1 do

k = parent(i)
|T (k)| = |T (k)|+ |T (i)|

end i

197 / 408

Sparse Cholesky factorization - components

Elimination tree leaves
Auxiliary result: looking for the leaves by columns

Theorem

Vertex j is a leaf of some row subtree of the postordered elimination tree T
iff there exists i ∈ adjG(A)(j), i > j such that i 6∈ adjG(A)(k) for all
k ∈ T (j) \ {j}, i > k.

That is: going through columns - we will surely recognize that it is a
leaf
Next algorithm is by columns - more useful because of: (1) combined
with other tasks, (2) compatible with column factorization

198 / 408

Sparse Cholesky factorization - components

Elimination tree leaves
Algorithm to find the leaves of row subtrees

Algorithm

for j = 1 : n do
isleaf(j)=false; prev_nonz(j)=0; compute |T (j)|

end j
for j = 1 to n do

for i such that i > j ∧ aij 6= 0 (j ∈ adjG(A)(i)) do
k = prev_nonz(i)
if k < j − |T (j)|+ 1 then
isleaf(j)=true

end if
prev_nonz(i) = j

end i
end j

199 / 408

Sparse Cholesky factorization - components

Recapitulation
Fill-in described both by rows and columns.
How to avoid it: reorderings: just keep in mind the arrow matrix
example 

∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗


But this is not enough. An efficient algorithm needs also blocks

200 / 408

Sparse Cholesky factorization - components

Blocks
Blocks are absolutely crucial to compute efficiently on contemporary
computers: we need as much data as possible for a unit of data
transfer inside memory hierarchy.
In BLAS terminology:

z = x+ αy −→ Z = X + αY (vector opes)

in general: saxpy −→ dgemm
But we have sparse matrices. It is not so straightforward to split their
nonzeros into blocks.
In fact, we need to reorder them in order to get blocks.

I Application-based blocks in discretized systems.
I Graph-based strategies which can be very fast.
I But we need to optimize the block structure of L: supernodes.
I Help: again our good friend, the elimination tree.

201 / 408

Sparse Cholesky factorization - components

Supernodes

* * * *
* * * *
* * * *
* * * *

*
*

*
*

*
*
*

*
* *s+t−1

s

202 / 408

Sparse Cholesky factorization - components

Supernodes

Definition

Let s, t ∈ N, 1 ≤ s ≤ n, 1 ≤ t ≤ n, s+ t− 1 ≤ n. We will say that a set of
columns of L with indices

{s, s+ 1, . . . , s+ t− 1}, kde s, t ∈ N, 1 ≤ s, t ≤ n, s+ t− 1 ≤ n, (60)

is a supernode of L if this set cannot be increased by adding the column
s− 1 for s > 1 or the column s+ t for s+ t− 1 < n a if, at the same time,
column indices s, s+ 1, . . . , s+ t− 1 satisfy

colL(s) ∪ {s} = colL(s+ t− 1) ∪ {s, . . . , s+ t− 1}. (61)

Vertex s and vertex s+ t− 1 (of the corresponding graph) will be called
starting and ending vertex of the supernode, respectively. Supernode can
be also a trivial set with one column (vertex) s only (t = 1).

203 / 408

Sparse Cholesky factorization - components

Supernodes

Definition
(Reworded) Let s, t ∈ {1, . . . , n} such that s+ t− 1 ≤ n. Then the
columns with indices {s, s+ 1, . . . , s+ t− 1} form a supernode if these
columns satisfy Struct(L∗s) = Struct(L∗s+t−1) ∪ {s, . . . , s+ t− 2}, and
the sequence is maximal.

204 / 408

Sparse Cholesky factorization - components

Supernodes



. s s′
...

. . . · · ·
...

...
. . .

s ∗
... ∗ . . .
... ∗ ∗ . . .
s′ ∗ ∗ ∗ ∗
...

. . .
... ∗ ∗ ∗ ∗ . . .
... ∗ ∗ ∗ ∗ . . .
...

. . .
... ∗ ∗ ∗ ∗ . . .


205 / 408

Sparse Cholesky factorization - components

Supernodes

Theorem

Set of matrix column S = {s, s+ 1, . . . , s+ t− 1} is a supernode of L iff
it is maximal set of subsequent columns such that

vertex s+ k − 1 is a son of vertex s+ k, k = 1, . . . , t− 1

provided
| colL(s) | = | colL(s+ t− 1) |+ t− 1. (62)

206 / 408

Sparse Cholesky factorization - components

Fundamental supernodes

Definition

Let s, t ∈ N, 1 ≤ s ≤ n, 1 ≤ t ≤ n, s+ t− 1 ≤ n We say that columns
{s, s+ 1, . . . , s+ t− 1} of L form a fundamental supernode of L if it is,
at the same time, a maximal set of subsequent columns for which s+ i− 1
is the only son of s+ i in T for all i = 1, . . . , t− 1 provided

colL(s) ∪ {s} = colL(s+ t− 1) ∪ {s, . . . , s+ t− 1}. (63)

207 / 408

Sparse Cholesky factorization - components

Fundamental supernodes
Example of a supernode that is not fundamental



1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗ ∗ ∗

 1

2

3

4

5

6

208 / 408

Sparse Cholesky factorization - components

Fundamental supernodes

Theorem

Column s, 1 ≤ s ≤ n is a starting column of a fundamental supernode iff s
has either at least two sons in the elimination tree T or if s is a leaf of a
row subtree of T .

Fundamental supernodes can be found in a nearly linear time by
traversing the postordered elimination tree

209 / 408

Sparse Cholesky factorization - components

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)

the loop over columns of the updating supernode can be unrolled to
save memory references (dense BLAS2)
parts of the updating supernode can be used for blocks of updated
supernode (dense BLAS3)

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

}���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

210 / 408

Sparse Cholesky factorization - components

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)

the loop over columns of the updating supernode can be unrolled to
save memory references (dense BLAS2)
parts of the updating supernode can be used for blocks of updated
supernode (dense BLAS3)

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

}���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

210 / 408

Sparse Cholesky factorization - components

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)
the loop over columns of the updating supernode can be unrolled to
save memory references (dense BLAS2)

parts of the updating supernode can be used for blocks of updated
supernode (dense BLAS3)

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

}���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

210 / 408

Sparse Cholesky factorization - components

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)
the loop over columns of the updating supernode can be unrolled to
save memory references (dense BLAS2)

parts of the updating supernode can be used for blocks of updated
supernode (dense BLAS3)

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

}

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

210 / 408

Sparse Cholesky factorization - components

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)
the loop over columns of the updating supernode can be unrolled to
save memory references (dense BLAS2)
parts of the updating supernode can be used for blocks of updated
supernode (dense BLAS3)

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

}

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

210 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

211 / 408

Sparse Cholesky factorization - synthesis

Solvers: general strategy in the SPD case
Preprocessing

– prepares the matrix so that the fill-in amount is as small as
possible

Symbolic factorization
– elimination tree, determines structures of columns of L
(symbolic elimination in the strict sense). Consequently, L
can be allocated and used for the actual decomposition
– the boundary between the first two steps is somewhat
blurred due to many possible enhancements

Numeric factorization
– the actual decomposition to obtain numerical values of the
factor L

212 / 408

Sparse Cholesky factorization - synthesis

Solvers: Preprocessing - an example why it is needed
∗ ∗ ∗ ∗ ∗
∗ ∗ f f f
∗ f ∗ f f
∗ f f ∗ f
∗ f f f ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗


A→ P TAP

P =


1

1
1

1
1

 .

(our well-known arrow example)
213 / 408

Sparse Cholesky factorization - synthesis

Solvers

1) Row Cholesky. Based on substitution steps. They are difficult to
be efficiently implemented on modern computers. We mention this
approach only marginally

2) Block (supernodal) column algorithm. Sometimes called
left-looking.

3) Multifrontal algorithm - efficient variant of the submatrix
algorithm

All sparse solvers may use blocks. More profound use of blocks in the
two latter approaches. Distinguish blocks based on A and
supernodes.

214 / 408

Sparse Cholesky factorization - synthesis

Sparse row Cholesky

See the scheme in Section Schemes for solving systems - row
Cholesky
(1) The scheme is based on repeated solution of systems with
triangular matrices (see above the Cholesky scheme)
(2) We may also need to find sparsity patterns of the rows as they are
constructed

215 / 408

Sparse Cholesky factorization - synthesis

Sparse row Cholesky

Theorem

Let L = (lij)i,j∈{1,...,n} ∈ Rn×n is a regular lower triangular matrix and
b = (bi)i∈{1,...,n} ∈ Rn. Assuming (as always) non-cancelation in solving
the system

Lx = b

for x = (xi)i∈{1,...,n} ∈ Rn we have xi 6= 0 iff there is in G(LT) a path
j ⇒ i from j ∈ {1, . . . , n}, j < i such that bj 6= 0.

Apply this prediction to the repeated solution mentioned on the
previous slide.
Similarly for an upper triangular matrix.

216 / 408

Sparse Cholesky factorization - synthesis

Sparse row Cholesky: example


∗
∗

∗ ∗
∗

∗ ∗



∗

∗

∗

 =


∗
 (64)

The only nonzero of the right-hand side implies the three nonzeros in
the solution

217 / 408

Sparse Cholesky factorization - synthesis

Another example: subsequent development of fill-in

1

2

3

4

5

6

1 2 3 4 5 6

*

*

*
*

*

*

*

*

* * *

*
*

*
* *

=x

x b

* 1

2

3

4

5

6

1 2 3 4 5 6

*

*

*
*

*

*

*

*

* * *

*
*

*
* *

=x

x b

*

1

2

3

4

5

6

1 2 3 4 5 6

*

*

*
*

*

*

*

*

* * *

*
*

*
* *

=x

x b

* 1

2

3

4

5

6

1 2 3 4 5 6

*

*

*
*

*

*

*

*

* * *

*
*

*
* *

=x

x b

*

1

2

3

4

5

6

1 2 3 4 5 6

*

*

*
*

*

*

*

*

* * *

*
*

*
* *

=x

x b

* 1

2

3

4

5

6

1 2 3 4 5 6

*

*

*
*

*

*

*

*

* * *

*
*

*
* *

=x

x b

*

218 / 408

Sparse Cholesky factorization - synthesis

Block column (left-looking) algorithm

Algorithm

Find initial fill-in minimizing matrix reordering
Symbolic factorization:

Find elimination tree
Find its postordering
Find column counts
Optimize the postordering (more reasons, partially mentioned later)
Find supernodes, optimize them, estimate the workspace, reorder again.
Find supernodal elimination tree.
Find column structures for the left-looking supernodal factorization

Supernodal numeric factorization

219 / 408

Sparse Cholesky factorization - synthesis

Block column (left-looking) algorithm: notes on implementation

The following theorem shows that we need to go through rows of
columns of L computed so far within a block algorithm.

Theorem

Let j > k. Numerical values of entries in L∗j depend on the values of
entries in L∗k iff ljk 6= 0.

Note that to get the sparsity patterns of columns we need less.

220 / 408

Sparse Cholesky factorization - synthesis

Block left-looking algorithm: notes on implementation

Construction columns (block columns) one by one.
Going through the rows can be simulated by linked lists as we saw
in CSC-CSR matvec.
Plan to mention this again when discussing approximate
factorizations.

221 / 408

Sparse Cholesky factorization - example

Multifrontal method: (example 1)



∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ f ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ f ∗ ∗ f ∗

∗ ∗ ∗ ∗ ∗ f ∗ f
∗ ∗ ∗ ∗ f ∗





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ f ∗ ∗

∗ ∗ f ∗ f ∗
∗ ∗ ∗ ∗ ∗ f ∗ f
∗ ∗ ∗ ∗ f ∗



222 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method: (example 1)

1

6

3 2

5 4

7

8

9

1

2

3 5

4 6

7

8

9

223 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method: (example 1)

F1 =


1 6 8 9

1 ∗ ∗ ∗ ∗
6 ∗
8 ∗
9 ∗

, V1 =


6 8 9

6 ∗ ∗ ∗
8 ∗ ∗ f
9 ∗ f ∗

.
Here V1 is dense and f denotes fill-in entries. Similarly, we have

F2 =


2 4 7

2 ∗ ∗ ∗
4 ∗
7 ∗

, V2 =
(4 7

4 ∗ f
7 f ∗

)
, F3 =


3 5 8

3 ∗ ∗ ∗
5 ∗
8 ∗

, V3 =
(5 8

5 ∗ ∗
8 ∗ ∗

)
.

The sparsity pattern of the frontal matrix F4 is then

F4 =


4 8 9

4 ∗ ∗ ∗
8 ∗
9 ∗

←→l V2 =


4 7 8 9

4 ∗ f ∗ ∗
7 f ∗
8 ∗
9 ∗

, V4 =


7 8 9

7 ∗ f ∗
8 f ∗ f
9 ∗ f ∗

,
and so on.

224 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method

Theorem

Let T be postordered. Assume each computed generated element (Vx) is
pushed onto a stack. Then when constructing the (frontal matrix) Fj , the
required generated elements are on the top of the stack. They can be
directly popped from the stack and assembled into Fj .

Proof sketch: 1) Vertices of each subtree of the postordered T form an
interval. 2) Denote cl, l = 1, . . . , s children of j in T . 3) Each cl is the
root of a subtree T (cl). 4) Once the frontal matrix Fcl for a leaf of T (cl)
is constructed, all its children have been processed and the generated Vcl is
pushed onto the stack. 5) That is, all subtrees Tcl , l = 1, . . . , s are fully
assembled into the generated elements before Fj can be constructed. 6) If
Fj is ready to be assembled (step j), the s generated Vcl , l = 1, . . . , s are
on the top of the stack.

225 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method: (example 2)



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗

 10

108

8

10

108

8

1

8

10

1 8 10

stack

stack

226 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method: (example 2)



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8
10

102

2

10

10

10

10

stack

stack

227 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method: (example 2)



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

10

7

7

10

10

stack

stack

10
10

3

3

7

7

228 / 408

Direct methods: Multifrontal method



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

7
7

7
7

stack

stack

10

4

4

7

7

229 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method: (example 2)



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

6

6 9

9

6

6 9

9
stack

stack

10

7
7

5

5 6

6

9

9

230 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method: (example 2)



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

6

6 9

9

6

6 9

9

10

109

9

10

109

9

stack

10

7
7

+

stack

6

6 10

10

231 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method: summary

Right-looking (submatrix) method

Does not form the Schur complement directly. Instead, the updates
are moved to a stack as dense matrices and used when needed.

The processing order is based on the elimination tree

We will see that in order to have the needed updates at the stack
top, postordering is needed.

Specific postorderings used to minimize the needed amount of
memory.

Now example, properties repeated once more later.

232 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method: assumptions and properties

We do need to have the entries from the stack readily available.
→ elimination tree should be postordered
Arithmetic of dense matrices
Connection with the frontal method (later) is relatively week.
One of the most important methods for the sparse direct factorization.

233 / 408

Sparse Cholesky factorization - synthesis

Multifrontal method: postorderings memory issues

5

1

2
3

4

6

7

8

9 9

1 2

3 4

5
6

7 8

First case: Maximum stack size may be 1× 1+2× 2+3× 3+4× 4

Second case: Maximum stack size may be 4× 4

Conclusion: Even postorderings can be very different with
respect to algorithmic/architectural needs

234 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

235 / 408

Sparse LU factorization of generally nonsymmetric matrices

Similarities with the SPD case

Fill-in lemma - it was formulated generally, and it is valid for the
nonsymmetric case as well. But, matrix factorizability should be
assumed here.
Fill-in theorem: next slide: uses directed paths instead of the
undirected ones.
Extended fill-in theorem: based on the interplay of both factors

236 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

237 / 408

Sparse LU factorization of generally nonsymmetric matrices

Nonsymmetric fill-in theorem: statement

Theorem

(nonsymmetric fill-in theorem) Let i, j, k ∈ {1, . . . , n}, k < min{i, j},
k ≤ n− 1. Then a(k)ij 6= 0 iff there is a directed path i G

=⇒ j denoted as
(i, p1, . . . , pt, j) v G(A), such that

pl ≤ k, 1 ≤ l ≤ k. (65)

The set of intermediate vertices {p1, . . . , pt} can be empty.

The theorem is a direct analogy of the one for symmetric
factorizations. But it uses directed paths.

238 / 408

Sparse LU factorization of generally nonsymmetric matrices

Nonsymmetric fill-in theorem: example



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ f
5 ∗ f ∗
6 ∗ ∗ f f f ∗

 (66)

For example, l64 implied by existence of the path

6⇒ 4 ≡ 6→ 1→ 3→ 4, (67)

or the path
6⇒ 4 ≡ 6→ 2→ 1→ 3→ 4. (68)

239 / 408

Sparse LU factorization of generally nonsymmetric matrices

Graph model 1: directed acyclic graphs



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ f
5 ∗ f ∗
6 ∗ ∗ f f f ∗

 (69)

directed acyclic graphs capture structure of the factors. We use
G(LT) (L by columns) and G(U) (U by rows).

1

3

2

4

6 G(L)^T

5
1

G(U)

4

5

2

6
3

240 / 408

Sparse LU factorization of generally nonsymmetric matrices

Interplay of L and U

Theorem

Let A = LU . Consider graf G(A) with V = {1, . . . , n}. Let i > j. Then
lij 6= 0 iff there is a k, k ≤ j such that aik 6= 0 and there is directed path
k ⇒ j in G(U).

Let A = LU . Consider graf G(A) with V = {1, . . . , n}. Let i < j. Then
uij 6= 0 iff there is a k, k ≤ i such that akj 6= 0 and there is a directed
path k ⇒ i in G(LT).

That is: For LU factorization a starter plus a path in the "opposite"
graph are needed.
Clear hopefully even without the formal proof ©

241 / 408

Sparse LU factorization of generally nonsymmetric matrices

Interplay of L and U : an example



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ f
5 ∗ f ∗
6 ∗ ∗ f f f ∗

 (70)

L fills at (6, 4) since
aij ≡ a62 6= 0

and in G(U) there is a path

k ≡ 2→ 3→ 4 ≡ j.

242 / 408

Sparse LU factorization of generally nonsymmetric matrices

Column structures of L, row structures of U

Theorem

Let A = LU and there is no cancellation. Then

S(L∗j) = S(A∗j) ∪
⋃
{S(L∗k) | k < j, ukj 6= 0} \ {1, . . . , j − 1} (71)

Let A = LU and there is no cancellation. Then

S(Ui∗) = S(Ai∗) ∪
⋃
{S(Uk∗) | k < i, lik 6= 0} \ {1, . . . , i− 1} (72)

Not a victory - too many entries to take into account

243 / 408

Sparse LU factorization of generally nonsymmetric matrices

Nonsymmetric replication

Observation

Let 1 ≤ . . . ≤ k < j ≤ . . . ≤ n a (k, j) ∈ E(G(U)). Then

S(L∗k) \ {1, . . . , j − 1} ⊆ S(L∗j). (73)

The structures can be possibly constructed sequentially. The
construction should interleave updates of of columns of S(L) and rows
of S(U).
But: the construction complexity is a problem.

Previous example:
S(L∗1) \ {2} ⊆ S(L∗3).

244 / 408

Sparse LU factorization of generally nonsymmetric matrices

How can be structures reduced: transitive reduction

Definition

Graph G0 = (V,E0) is called a transitive reduction of the directed graph
G = (V,E) if

For any u, v ∈ V we have u G0

=⇒ v iff u G
=⇒ v.

There is no graph with the vertex set V with a smaller size |E0|
satisfying this condition.

Transitive reduction is not necessarily unique.
Transitive reduction G0 may not be a subgraph of G.

245 / 408

Sparse LU factorization of generally nonsymmetric matrices

Transitive reduction

Transitive reduction is the loop interconnecting vertices 1, 2 and 3.

1
2 3

Theorem

Transitive reduction of a directed acyclic graph is unique and is a
subgraph of G.

Theorem
Transitive reduction of a directed acyclic graph G(U) ≡ G(LT) of a
symmetric irreducible matrix is the elimination tree.

246 / 408

Sparse LU factorization of generally nonsymmetric matrices

Transitive reduction

1

3

2

4

6 G(L)^T

5

1

3

2

4

5

6
G (L)0 T

1
G(U)

4

5

2

6
3

1

4

5

2

6
3 G (U)

0

247 / 408

Sparse LU factorization of generally nonsymmetric matrices

Using transitive reductions

Transitive reduction does not change vertex reachability.

Theorem

Let A = LU and there is no cancellation and let lij 6= 0, i > j. Then there

is a directed path i
G0(L)
===⇒ j.

Nonzero in L (edge in G(LT)) means a path in the transitive
reduction G0(LT).

248 / 408

Sparse LU factorization of generally nonsymmetric matrices

Using transitive reductions

Theorem

Let A = LU and there is no cancellation. Consider G(A) with
V = {1, . . . , n} and transitive reduction of G(U) G0(U) = (V,E0

U). Then

S(L∗j) = S(A∗j) ∪
⋃
{S(L∗k) | (k, j) ∈ E0

U} \ {1, . . . , j − 1} (74)

This is a straightforward generalization of the column structure
formula from the symmetric case.

249 / 408

Sparse LU factorization of generally nonsymmetric matrices

Strengthened interplay of L and U

Theorem

Let A = LU and there is no cancellation. Consider G(A) with
V = {1, . . . , n}.
Let i > j. Then lij 6= 0 iff there is a k, k ≤ j such that aik 6= 0 and there

is a directed path k
G0(U)
===⇒ j.

Let i < j. Then uij 6= 0 iff there is a k, k ≤ i such that akj 6= 0 and there

is a directed path i
G0(L)
===⇒ k.

And that’s it. ©: We can use the transitive reductions.
Or something in between.

250 / 408

Sparse LU factorization of generally nonsymmetric matrices

We need to know how transitive reductions can be constructed.
Next slide: symmetric pruning
We can remove some edges of G(L) (or G(LT)) or G(U).
The next pattern can be easily exploited.

251 / 408

Sparse LU factorization of generally nonsymmetric matrices

One TR possibility: symmetric pruning



j s k

∗
j ∗ ∗ ∗

∗
s ∗ ∗

∗
k ∗ ∗

∗





j s k

∗
j ∗ ∗ ∗

∗
s ∗ ∗ f

∗
k ∗ f ∗

∗


(75)

↓



j s k

∗
j ∗ ∗

∗
s ∗ ∗ f

∗
k f ∗

∗


(76)

252 / 408

Sparse LU factorization of generally nonsymmetric matrices

Problems of the approach based on directed acyclic graphs

Pivoting is often needed.
This problem is still partially shared by other approaches as well.
But not by the next approach.

253 / 408

Sparse LU factorization of generally nonsymmetric matrices

Sparse LU based on the column elimination tree

Theorem
Assume that A has all diagonal entries nonzero. Furthermore assume that
ATA = L̃L̃T without cancellation. Then

S(L+ U) ⊆ S((L̃) + (L̃)T)

for any permutation matrix P such that PA = LU .

(PA)TPA = ATP TPA = ATA

Therefore, ATA is independent of partial (row) pivoting.
The problem is that ATA can be much denser.

254 / 408

Sparse LU factorization of generally nonsymmetric matrices

Sparse LU based on the column elimination tree


∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗




∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗




∗ ∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗
∗ f ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 (77)

A ATA L̃+ L̃T

1

4

5

6

3

2
255 / 408

Sparse LU factorization of generally nonsymmetric matrices

Sparse LU based on the column elimination tree

A :



∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗


ATA :



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗



L+ U :



∗ ∗
∗ ∗ f ∗

∗ ∗
∗ ∗ ∗ f ∗
∗ ∗ f ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ f ∗


L̃+ L̃T :



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ f ∗ ∗ ∗

∗ ∗ f ∗ ∗ f ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ f ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗


256 / 408

Sparse LU factorization of generally nonsymmetric matrices

Sparse LU based on the nonsymmetric elimination tree

parent(k) = min{j | j > k ∧ j G(L)−−−→ k}.

↓

parent(k) = min{j | j > k ∧ j G(L)−−−→ k
G(LT)−−−−→ j}.

↓

parent(k) =: min{j | j > k ∧ j G(L)
===⇒ k

G(U)
===⇒ j}. (78)

257 / 408

Sparse LU factorization of generally nonsymmetric matrices

Sparse LU based on the nonsymmetric elimination tree
3

L

3

L

Path 7
G(L)−−−→ 1

G(LT)−−−−→ 7

3

L

3

L

Path 7
G(L)
===⇒ 1

G(LT)
====⇒ 7

258 / 408

Sparse LU factorization of generally nonsymmetric matrices

Sparse LU based on the nonsymmetric elimination tree



1 2 3 4 5 6 7 8 9 10

1 ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗
9 ∗ ∗
10 ∗ ∗ ∗





1 2 3 4 5 6 7 8 9 10

1 ∗ ∗
2 ∗ ∗ f ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ f f
6 ∗ f f f ∗ f f f
7 ∗ ∗ f f
8 ∗ ∗ f f f f ∗ f f
9 ∗ ∗
10 ∗ f ∗ f f ∗



6
G(L)−−−→ 2

G(U)−−−→ 5
G(U)−−−→ 6, 6

G(L)−−−→ 5
G(U)−−−→ 6 implies that 6 is father

of 5 and 2.

259 / 408

Sparse LU factorization of generally nonsymmetric matrices

Sparse LU based on the nonsymmetric elimination tree

Theorem

Let A = LU and there is no cancellation. We have

j
G(L)
===⇒ k ⇐==⇒ j

G(A)
====⇒
{1,...,j}

k, (79)

where all the intermediate vertices on the considered paths are j at most.

This is just an extension of the path theorem. Each L entry is
replaced by such feasible path.

260 / 408

Sparse LU factorization of generally nonsymmetric matrices

Sparse LU based on the nonsymmetric elimination tree

Theorem

Vertex i is ancestor of j in the nonsymmetric elimination tree T (A) of
G(A) iff i > j and both the vertices j and i belong to the same strong
component of G({1, . . . , i}).

Based on this theorem we can construct the nonsymmetric elimination
tree!
The construction combines finding strong components (algorithm
based on the depth-first search) and simple additional numbering.

261 / 408

Sparse LU factorization of generally nonsymmetric matrices

Sparse LU based on the nonsymmetric elimination tree

A simple construction of the nonsymmetric elimination tree.

Algorithm

for i = 1 : n do
parent(i) = n+ 1

end i
for i = 1 : n do

Find the component Ci that contains i.
for j ∈ Ci, j 6= i do

if parent(j) > n set parent(j) = i
end j
parent(i) = n+ 1

end i

262 / 408

Sparse LU factorization of generally nonsymmetric matrices

Left-looking LU with partial pivoting

for j = 1 : n do

Compute u1:j−1,j from L1:j−1,1:j−1u1:j−1,j = A1:j−1,j

Set L̃j:n,j = Aj:n,j − Lj:n,1:j−1u1:j−1,j
Find in L̃j:n,j a component ` of maximum value and permute it to

diagonal.

Set Uj,j = `

Set Lj:n,j = L̃j:n,j/Ujj

end j

263 / 408

Sparse LU factorization of generally nonsymmetric matrices

Left-looking LU with partial pivoting

U

L

not used

so far

j−th column

264 / 408

Sparse LU factorization of generally nonsymmetric matrices

Preprocessing 1: Forcing diagonal dominance



1′ 2′ 3′ 4′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

Figure: A sparse matrix A and its bipartite graph Gb(A) .
265 / 408

Sparse LU factorization of generally nonsymmetric matrices

Diagonal dominance

Definition
Matching of a simple undirected graph G = (V,E) is its subgraph
M = (VM , EM) induced by a set of its vertex disjoint edges EM , EM ⊆ E.

In matrix terms, a matching corresponds to a set of non zero entries
with no two belonging to the same row or column. A vertex is
matched if there is an edge in the matching incident on the vertex,
and is unmatched (or free) otherwise.
The cardinality of a matching is the number of edges in it and is
sometimes called the structural rank of A.
A maximum cardinality matching (or maximum matching) is a
matching of maximum cardinality. This is equal to n if A is
structurally nonsingular and, in this case, the matching is said to be
perfect.

266 / 408

Sparse LU factorization of generally nonsymmetric matrices

Preprocessing 1: Forcing diagonal dominance



1′ 2′ 3′ 4′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

Figure: A sparse matrix A and its bipartite graph Gb(A) (left). The edges that
belong to the perfect matching in Gb(A) are given by the dashed lines (right).267 / 408

Sparse LU factorization of generally nonsymmetric matrices

Preprocessing 1: Forcing diagonal dominance

Matching defines an n× n permutation matrix Q with entries qij
given by {

qij = 1, if (j → i) ∈M,

qij = 0, otherwise.

Both QA and AQ have the matching entries on the (zero-free)
diagonal. The column permuted matrix AQ is illustrated on the next
slide.

268 / 408

Sparse LU factorization of generally nonsymmetric matrices

Preprocessing 1: Forcing diagonal dominance

Q =



1 2 3 4 5 6

1 1
2 1
3 1
4 1
5 1
6 1

 AQ =



3′ 1′ 4′ 2′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



6

5

4

3

2

1

6′

5′

2′

4′

1′

3′

Figure: The permutation matrix Q, the column permuted matrix AQ
corresponding to the matrix in Figure 5 and its relabelled bipartite graph. The
row vertices in AQ retain their original labels.

269 / 408

Sparse LU factorization of generally nonsymmetric matrices

Preprocessing 1: Forcing diagonal dominance

If a perfect matching exists, it can be found using augmenting paths.
Recall that a path P in a graph is an ordered set of edges in which
successive edges are incident to the same vertex. P is called an
M-alternating path if the edges of P are alternately inM and not
inM. AnM-alternating path is anM-augmenting path if it
connects an unmatched column node with an unmatched row node.
LetM and P be subsets of E and define

M⊕P := (M\P) ∪ (P \M).

IfM is a matching and P is anM-augmenting path, thenM⊕P is
a matching with cardinality |M|+1.
Growing the matching in this way is called augmenting along P and
can be used to find a perfect matching.

270 / 408

Sparse LU factorization of generally nonsymmetric matrices

Preprocessing 1: Forcing diagonal dominance

6

5

4

3

2

1

6′
5′
4′
3′
2′
1′

6

5

4

3

2

1

6′
5′
4′
3′
2′
1′

6

5

4

3

2

1

6′
5′
4′
3′
2′
1′

Figure: An illustration of the search for a perfect matching using augmenting
paths. On the left, the dashed lines are the initial matching. In the centre, the
red line is an augmenting path with end vertices 2 and 2′. On the right is a
perfect matching obtained using the augmenting path.

271 / 408

Sparse LU factorization of generally nonsymmetric matrices

Preprocessing 1: Forcing diagonal dominance: summary

Observation

If there exists a perfect matching of the bipartite graph model
G(A) = (R,C,E) of the matrix A, where |R| = |C| and edge set
EM = {(ik, jk) | k = 1, . . . , n} then there are permutation matrices P and
Q such that the diagonal entries of PAQ are

{aik,jk | k = 1, . . . , n}.

Hooray! We are able to move nonzeros to diagonal.
But we would like to have at the diagonal large entries.
Modified matching problems: matchings weighted by various ways.

272 / 408

Sparse LU factorization of generally nonsymmetric matrices

Preprocessing 2: Block triangular forms

Nonsymmetric matrices enable nonsymmetric permutations. Having
symmetric matrices, nonsymmetric permutations it may be possible
but very often not advisable.

Definition

Let G = (V,E) be a directed graph and let V1, . . . , Vk be vertex sets of its
strong components. Its condensation (see above in the slides) is the
directed graph GC = (V ′, E′) where V ′ = {V1, . . . , Vk} and where

E′ = {(Vi, Vj)| (∃x ∈ Vi)(∃y ∈ Vj)((x, y) ∈ E)}.

273 / 408

Sparse LU factorization of generally nonsymmetric matrices

Preprocessing 2: Block triangular forms (some repetition)

Theorem

Condensation GC of G does not contain any directed walk and it is a
directed acyclic graph.

Corollary

Vertices of condensation can be topologically ordered.

Algorithmically, we are again by algorithms to find strong components

274 / 408

Sparse LU factorization of generally nonsymmetric matrices

Block triangular forms

Theorem

For a square A of dimension n exist permutation matrix P and a natural
number t ≥ 1 such that

PAP T =


A11 A12 . . . A1t

0 A22 . . . A2t
...

... · · ·
...

0 0 . . . Att

 , (80)

where A11, A22, . . . , Att are square irreducible matrices. The matrices
A11, A22, . . . , Att are uniquely determined up to symmetric permutation of
their rows and columns and up to their order on the diagonal of PAP T .

275 / 408

Sparse LU factorization of generally nonsymmetric matrices

Preprocessing 2: Block triangular forms (an example)



1 2 3 4 5

1 ∗ ∗
2 ∗ ∗
3 ∗
4 ∗
5 ∗ ∗ ∗

 →


1 2 3 5 4

1 ∗ ∗
2 ∗ ∗
3 ∗
4 ∗
5 ∗ ∗ ∗

 →


5 4 1 2 3

4 ∗
5 ∗ ∗ ∗
1 ∗ ∗
2 ∗ ∗
3 ∗



276 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

277 / 408

Initial reordering

Initial reordering: description

Needed to avoid high amount of fill-in

Two basic types
I local reorderings: based on a local greedy criterion

F based on the vertex degree deg(v) = |AdjG(v)| (minimum degree type)
F based on the expected fill-in (minimum fill-in type)
F both of them can be exact or approximate

I global reorderings: take into account the whole graph / matrix

278 / 408

Initial reordering

Initial local reordering: motivating example

v v

G G_v

Gv is G after symbolic elimination on v with v removed
Note that it is needed to eliminate (symbolically) without the
theoretical support of Cholesky described above.

279 / 408

Initial reordering

Basic minimum degree algorithm

Algorithm

Set the list V ′ = ∅
for i = 1 : n do

Find i such that degG(i) = minj∈V (G)degG(j)

Add i behind the current tail of the list V ′

Set G = Gi

end i

Order of vertices in V ′ induces renumbering (matrix reordering)
Obtained list V ′ is generally not unique.

280 / 408

Initial reordering

Basic minimum degree algorithm: notes

v
G G_v

The complexity hidden behind the elimination that repeatedly creates
graphs of Schur complements.
Ways to implement the minimum degree algorithm faster motivated by
the following text.

281 / 408

Initial reordering

Multiple minimum degree algorithm: block elimination

Algorithm

Set V ′ = ∅
while G 6= ∅ do

Find all v′j , j = 1, . . . , s such that
degG(v′j) = minv∈V (G)degG(v) and adj(v′j) ∩ adj(v′k) for j 6= k

Add all v′j , j = 1, . . . , s behind the current tail of V ′

for j = 1 : s do
G = Gv′j

end i
end while

Again, order of vertices in V ′ induces renumbering (matrix reordering)
282 / 408

Initial reordering

Multiple minimum degree algorithm: demonstration

283 / 408

Initial reordering

Minimum degree algorithm: indistinguishability

Definition

Two different vertices u and v of G are called indistinguishable if

AdjG(u) ∪ {u} = AdjG(v) ∪ {v}. (81)

u v u v

G G_v

284 / 408

Initial reordering

Minimum degree algorithm: indistinguishability

Lemma
Let vertices u and v of G are indistinguishable Furthermore, let y ∈ V (G),
y 6= u, v. Then u and v are also indistinguishable in Gy.

Proof.
Let u 6∈ adjG(y). Then also v 6∈ adjG(y) and the vertices are still
indistinguishable since their neighbors were not influenced. Consider now
u,v ∈ adjG(y). Then cardinalities of the adjacency sets are decreased by
one but u and v still stay indistinguishable as defined above.

285 / 408

Initial reordering

Minimum degree algorithm: indistinguishability

Lemma
Let the vertices u and v are indistinguishable in G. Furthermore, let y ≡ u
is a vertex of minimum degree in G. Then v is a vertex of minimum degree
in Gy.

Consequently, two indistinguishable vertices can be eliminated one
after another. In other words, the vertices may imply a matrix block
used for joint elimination using group of two vertices.
Easy to extend for larger groups getting the quotient graph (mass
elimination).

286 / 408

Initial reordering

Minimum degree algorithm: dominance

Definition

Vertex v is dominated in G by another vertex u of G if

AdjG(u) ∪ {u} ⊆ AdjG(v) ∪ {v}. (82)

degG(u) ≤ degG(v).

Lemma

Let u dominates v in G. Furthermore, let y 6= u, v is a minimum degree
vertex in G. Then u dominates v in Gy.

287 / 408

Initial reordering

Minimum degree algorithm: dominance

To run MD we need to recompute vertex degrees:

v 6∈ AdjG(y)⇒ AdjGy(v) = AdjG(v) (83)

v ∈ AdjG(y)⇒ AdjGy(v) = (AdjG(y) ∪AdjG(v)) \ {y} (84)

If u dominates v then it is not necessary to update its degree in the
sequence of Schur complement graphs until u is eliminated.
Still the problem of implementation → partially eliminated graph
implicitly expressed serves as an implementation model.

288 / 408

Initial reordering

Minimum degree algorithm: mass elimination model

Definition
Mass elimination graph Γ of the graph G = (V,E) is a ordered triple

(S, E , E), where S ∪ E = V,S ∩ E = ∅ and E ⊆
(
S
2

)
∪
(
E(Γ)

2

)
are its

edges.

Edge set E captures eliminated vertices.
Edge set S captures non-eliminated vertices.
Neighbors of non-eliminated vertices are found as reachability sets.
Search through the reachability sets can be pruned: → approximate
minimum degree (AMD) algorithm.

289 / 408

Initial reordering

Band and profile initial reorderings: shape pushers

Assume A ∈ Rn×n, i ∈ {1, . . . , n} Define column positions of first
nonzeros in rows by

ri(A) = min{j| aij 6= 0}. (85)

Analogically
cj(A) = min{k| akj 6= 0}.

Define i-th lower bandwidth

βLi (A) = i− ri(A)

j-th upper bandwidth

βUj (A) = j − cj(A)

Bandwidth

β(A) = max{βLi (A)| 1 ≤ i ≤ n}+max{βUi (A)| 1 ≤ i ≤ n}+1. (86)

290 / 408

Initial reordering

Classical local reorderings: shape pushers

*

**

*

**

*

Band 6

*

**

*

**

*

Profile 6

*

**

*

**

*

Frontal method - dynamic band

Moving
window -

291 / 408

Initial reordering

Band and profile initial reorderings



∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗


(87)

r1 = 1, r2 = 1, r3 = 1, c1 = 1, c2 = 2, c3 = 2, βL1 (A) = 0,
βL2 (A) = 1, βL3 (A) = 2, βL7 (A) = 3, βU6 (A) = 2, βU7 (A) = 0.

β(A) = 6.

292 / 408

Initial reordering

Band and profile initial reorderings

Band

band(A) = {(i, j)| 0 ≥ i− j ≤ β(A)} ∪ {(j, i)| 0 < j − i ≤ β(A)}.

Profile (envelope)

env(A) = {(i, j)| 0 ≥ i− j ≤ βLi (A)} ∪ {(j, i)| 0 < j − i ≤ βUi (A)}.

293 / 408

Initial reordering

Band and profile initial reorderings

Band Profile



~ ~ ~ ~
~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~
~ ~ ~ ~





~
~ ~ ~
~ ~ ~ ~

~ ~ ~ ~
~ ~ ~

~ ~
~ ~ ~ ~ ~

~ ~ ~


(88)

294 / 408

Initial reordering

Band and profile initial reorderings: additional notation

Frontwidth

ωLi (A) = |{k|k > i ∧ (∃l ≤ i)(akl 6= 0)}|. (89)

Number of active rows at the i-th stepf in the factorization

Front

front(A) = {(i, j)| 0 ≥ i− j ≤ ωLi (A)} ∪ {(j, i)| 0 < j − i ≤ ωUi (A)}.

295 / 408

Initial reordering

Band and profile initial reorderings


∗
∗ ∗

∗
∗ ∗ ∗

∗ ∗ ∗


ωLi for i = 1, . . . , 5 are 2, 1, 2, 1, 0

βLi for i = 1, . . . , 5 are 0, 1, 0, 3, 2.

296 / 408

Initial reordering

Band and profile initial reorderings

Theorem

Band(L+ LT) = Band(A)

Env(L+ LT) ≡ Env(F) = Env(A)

297 / 408

Initial reordering

Band and profile initial reorderings: CM algorithm

Algorithm

Find initial vertex r and set v1 = r, set V ′ = ∅ (queue)
Add v1 as unmarked at the tail of V ′

while |V ′| 6= n do
Find first unmarked vertex vj at the head of V ′

Mark vj
Add all its neighbors not in V ′ at its tail.

end while

Only graph G(A) needed → much cheaper than algorithms from MD
family
But: minimizing band/profile and not the fill-in.

298 / 408

Initial reordering

Band and profile initial reorderings: starting vertex r for CM

Excentricity defined as

ε(u) = max
v∈V

d(u, v) (90)

Here d(u, v) is the length of the shortest path between u and v
Maximum excentricity of a vertex in a graph is called graph diameter
Good candidates for r are vertices with large excentricity.
But finding excentricities would be expensive.

299 / 408

Initial reordering

Band and profile initial reorderings: starting vertex r for CM

GPS algorithm

Definition
Level structure of graph G = (V,E) is its vertex partitioning
L = (L0, . . . , Lλ) for which λ ∈ N, λ ≥ 1, adj(Li) ⊆ Li−1 ∪ Li+1 for
i = 1, . . . , λ− 1, adj(L0) ⊆ L1 and adj(Lλ) ⊆ Lλ−1. Its width L is the
number w(L) = max0≤i≤λ |Li|

Construction: Set L0(r) = {r}, Li(r) = adj(
⋃ i−1
k=0 Lk(r)) for

i = 1, . . . , λ, where λ = ε(r).
Level structure is then L(r) = (L0(r), . . . , Lλ(r)).

300 / 408

Initial reordering

Band and profile initial reorderings: CM algorithm

Finding starting vertex r for the CM algorithm: GPS algorithm

Algorithm

Choose an arbitrary vertex r
do

Find the level structure L(r) = (L0(r), . . . , Lλ(r)(r)).
Sort vertices in x ∈ Lλ(r) by degrees non-decreasingly
for all x ∈ Lλ(r) in this order do

Look for the level structure L(x) with the width λ(x).
end for all
if |L(x)| > |L(r)| then

set r = x
else

exit do
end if

end do
301 / 408

Initial reordering

Band and profile initial reorderings: properties

Lemma

Irreducible symmetric A ordered by the CM algorithm such that ri(A) < i
for 1 < i ≤ n has fully nonzero profile env(F).

Lemma
Irreducible symmetric A ordered by the CM algorithm satisfies

front(A) ⊆ env(A). (91)

302 / 408

Initial reordering

Band and profile initial reorderings: RCM algorithm

Algorithm

Find the list V ′′ = (v1, . . . , vn) using CM algorithm
Set new ordering by reversing the list items: V ′ = (vn, . . . , v1)

For CM reordered matrix A and RCM reordered matrix Ã we have

|env(Ã)| ≤ |env(A)|.

303 / 408

Initial reordering

Global reorderings

Definition

Vertex separator of an undirected G = (V,E) is subset S of its vertices
such that the subgraph induced by V \ S has more components than G.

Induced reordering

A =

A11 0 AT31
0 A22 AT32
A31 A32 A33

 (92)

304 / 408

Initial reordering

Global reorderings

1 7 4 43 22 28 25

3 8 6 44 24 29 27

2 9 5 45 23 30 36

19 20 21 46 40 41 42

10 16 13 47 31 37 34

1712 15 48 33 38 36

11 18 14 49 32 39 35

305 / 408

Initial reordering

Global reorderings

1 2

3

4 5

6

7

8

9

10 11 13 14

12 15

16

17

18
19

20

21

22 23

24

25 26

27

28

29

30

31 32

33

34 35

36

37

38

39
40

41

42

43

44

45

46

47

48

49

306 / 408

Initial reordering

Complexity

Overall time dominated by time for the factorization
General dense matrices

I Space: O(n2)
I Time: O(n3)

General sparse matrices
I Space: η(L) = n+

∑n−1
i=1 (η(L∗i)− 1)

I Time in the i-th step: η(L∗i)− 1 divisions, 1/2(η(L∗i)− 1)η(L∗i)
multiple-add pairs

I Time totally: 1/2
∑n−1

i=1 (η(L∗i)− 1)(η(L∗i) + 2)

307 / 408

Initial reordering

Complexity

Band schemes (β << n)
I Space: O(βn)
I Time: O(β2n)

Band

308 / 408

Initial reordering

Complexity

Profile/envelope schemes
I Space:

∑n
i=1 βi

I Frontwidth: ωi(A) = |{k|k > i ∧ akl 6= 0 for some l ≤ i}|
I Time: 1/2

∑n−1
i=1 ωi(A)(ωi(A) + 3)

Profile (Envelope)

309 / 408

From direct to iterative methods

Complexity

General sparse schemes can be analyzed in some cases
I Nested dissection

1 7 4 43 22 28 25

3 8 6 44 24 29 27

2 9 5 45 23 30 36

19 20 21 46 40 41 42

10 16 13 47 31 37 34

1712 15 48 33 38 36

11 18 14 49 32 39 35

Definition
(α, σ) separation of a graph with n vertices: each its subgraph can be
separated by a vertex separator S such that its size is of the order O(nσ)
and the separated subgraphs components have sizes ≤ αn,1/2 ≤ α < 1.

310 / 408

From direct to iterative methods

Complexity: Generalized nested dissection

Vertex separator

C_1 C_2

S

Planar graphs, 2D finite element graphs (bounded degree)
I σ = 1/2, α = 2/3
I Space: O(n log n)
I Time: O(n3/2)

3D Finite element graphs
I σ = 2/3
I Space: O(n4/3)
I Time: O(n2)

Lipton, Rose, Tarjan (1979), Teng (1997).
311 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

312 / 408

Stability of sparse factorizations

Stability of LU factorization

finite precision, L̂ and Û are computed LU factors for A ∈ Rn×n, ε is
machine precision
Let

A+ E = L̂Û

Then this factorization backward error is bounded as

||E||∞ ≤ 2nε||L̂||∞||Û ||∞ +O(ε2). (93)

If
nε� 1 (94)

and x̂ is computed solution of (A+ ∆A)x̂ = b then

||∆A||∞ ≤ 6nε||L̂||∞||Û ||∞ +O(ε2). (95)

Can be formulated in other matrix norms
313 / 408

Stability of sparse factorizations

Stability of LU factorization

Growth factor ρgrowth → conditional backward stability

||Û ||∞
||Â||∞

, (96)

314 / 408

Stability of sparse factorizations

Stability of Cholesky factorization

A+ E = L̂L̂T

||E||F ≤

(
2n3/2

1− 2n3/2ε

)
ε||A||F +O(ε2). (97)

315 / 408

Stability of sparse factorizations

Pivoting
Partial pivoting: still possible the exponential growth factor

ρgrowth ≤ 2n−1 max
i,j
|aij |. (98)

Complete pivoting

ρgrowth ≤
√
n2 31/241/3 . . . n1/(n−1) max

i,j
|aij |. (99)

In addition, sparsity needs to be taken into account

316 / 408

Stability of sparse factorizations

Pivoting
Markowitz number: generalization of the concept of degree using row
and column counts in A

Mij = (ri − 1)(cj − 1), i, j = 1, . . . , n (100)


1 2 3 4

5 6
7 8 9

10 11 12
13 14 15


Smallest M: (2, 4) : (M = 1) and (4, 4) : (M = 2)

Choosing an entry at the position (4, 4) because of its magnitude.

But the full choice can be very expensive
317 / 408

Stability of sparse factorizations

Threshold (partial) pivoting in LU: search in columns only
Satisfying

|a(k)ij | ≥ µ maxl|a
(k)
lj | (101)

for some 0 < µ ≤ 1 that maximized among them the Markowitz
number.
It is possible to show that

maxi|a(k+1)
ij | ≤ (1 + 1/µ)maxi|a(k)ij |.

Modifying diagonal entries. An example is modify small diagonal
entries by

||A||
√
ε, (102)

This is a way towards approximate factorizations useful to be
combined with iterations.

318 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

319 / 408

Symmetric indefinite factorization

1 1 0
1 1 1
0 1 0


Standard symmetric factorization of the following matrix is unstable
for small ε (

ε 1
1 0

)

320 / 408

Symmetric indefinite factorization

An example: diagonal blocks of size 1 and 2.1 1 0
1 1 1
0 1 0

 =

1 0 0
1 1 0
0 0 1

1 0 0
0 0 1
0 1 0

1 1 0
0 1 1
0 0 1

 .

321 / 408

Symmetric indefinite factorization

Why blocks of the size up to 2 and not larger?
Either ad or ad− bc has large magnitude:

(
a b
c d

)−1
= 1/(ad− bc)

(
d −b
−c a

)

322 / 408

Symmetric indefinite factorization

Algorithm

One step of full indefinite pivoting by Bunch and Parlett (1971)
Set α = (1 +

√
17)/8 ≈ 0.64

Find akk: diagonal entry of maximum size
Find aij : off-diagonal entry of maximum size (i < j)
if |akk| ≥ α|aij | then

use akk as 1× 1 pivot (ready for akk = 0)
else

use
(
aii aij
aji ajj

)
as 2× 2 pivot

end if

Full pivoting: choosing entries of largest magnitudes: can be
expensive.
But a growth factor bound can be derived (slightly worse than for LU)

323 / 408

Symmetric indefinite factorization: Bunch-Kaufmann

Algorithm

α = (1 +
√

17)/8 ≈ 0.64, i = 1 (possible an initial preprocessing)
Find j 6= i such that aji = max{|aki|, k 6= i} =: λ
if |aii| ≥ αλ then

use aii as 1× 1 pivot
else
σ = max{|akj |, k 6= j}
if |aii|σ ≥ αλ2 then

use aii as 1× 1 pivot
else if |ajj | ≥ ασ then

use ajj as a 1× 1 pivot
else

use
(
aii aij
aji ajj

)
as 2× 2 pivot

end if
end if

324 / 408

Symmetric indefinite factorization

This scheme shows why Bunch-Kaufmann is useful to factorize sparse
matrices
The price for less searches expressed theoretically by large growth
factor bound



d . . λ . . .
.
.
λ . . c . σ .
.
. . . σ . . .
.



325 / 408

Symmetric indefinite factorization

What if only f is used to decide such that |f | ≥ τ |λ|?
Again weaker bounds
This can be practical if the processed matrix is not available in a
current step (this can happen in multifrontal approaches). Implies
rules like

Algorithm

if |d| ≥ α|λ| use d as 1× 1 pivot
if |dγ| ≥ α|λ|2: use d as 1× 1 pivot
if |e| ≥ α|γ|: use e as 1× 1 pivot
else
use

(
d f
f e

)
as 2× 2 pivot

326 / 408

Symmetric indefinite factorization



d . f λ . . .
.
.
f . e . . γ .
λ
. . γ
.



327 / 408

Symmetric indefinite factorization: rook pivoting

Algorithm

α = (1 +
√

17)/8 ≈ 0.64, i = 1
Find j 6= i such that aji = max{|api|, p 6= i}
if |aii| ≥ α|aji| a aii 6= 0 then

use aii as 1× 1 pivot
else

repeat
Find k 6= j such that |akj | = max{|apj |, p 6= j}
if |ajj |σ ≥ α|akj | a ajj 6= 0 then

use ajj as 1× 1 pivot
else if |aij | = |akj | then

use
(
aii aij
aji ajj

)
as 2× 2 pivot

else
Set i = j and j = k

end
until pivot found or all columns processed

end if

328 / 408

Symmetric indefinite factorization

Algorithm

Stable tridiagonal pivoting: approach by Bunch

α = (
√

5− 1)/2 ≈ 0.62
Find σ: entry of maximum magnitude of A
if |a11|σ ≥ α|a21|2 then

use a11 as 1× 1 pivot
else

use
(
a11 a12
a21 a22

)
as 2× 2 pivot

end
end

Increased probability of a 1× 1 pivot
Useful to keep tridiagonal structure

329 / 408

Symmetric indefinite factorization

Algorithm

Pivoting Bunch-Marcia

α = (
√

5− 1)/2 ≈ 0.62
∆ = a11a12 − a221
if |∆| ≤ α|a11a32| or |a21∆| ≤ α|a211a32| or |a11a22| ≥ αa221 then

use a11 as 1× 1 pivot
else

use
(
a11 a12
a21 a22

)
as 2× 2 pivot

end if

Useful when matrix is not known in advance (Lanczos)

330 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

331 / 408

Approximate factorizations, splitting and preconditioning

Why approximate factorizations?
Direct factorizations may not be feasible (data structures and pivoting,
operation counts, stability)
Improving solution when using less accurate arithmetic (smaller ε) –
see also modification metnioned above
Improving solution after relaxation (e.g., in parallel computational
environment)
−→ Simple iterative procedure: iterative improvement.
But there are other possibilities (Krylov methods).

332 / 408

Approximate factorizations, splitting and preconditioning

Iterative improvement
B is the computed factorization, Ax∗ = b, x is a current solution
Bx∗ = (B −A)x∗ − b
Iterative procedure: x+ = (I −B−1A)x+B−1b

ρ(I −B−1A) < 1 sufficient for the convergence

Theorem
One step of single precision iterative refinement enough for obtaining
componentwise relative backward error to the order of O(ε) under weaker
assumptions.
Strong bound for the error norm using double precision iterative
refinement.

333 / 408

Approximate factorizations, splitting and preconditioning

Definition
Linear onestep stationary iterative method is a process where the
relation between the two subsequent iterates x, x+ ∈ Rn is expressed as

x+ = Sx+M−1b. (103)

S,M ∈ Rn×n; M regular. Matrix S is called the iteration matrix.

Briefly called stationary iterative methods.

Consistence of an iterative method is expressed by

x∗ = Sx∗ +M−1Ax∗,

This implies
S = I −M−1A,

where x∗ is a solution of Ax = b.
334 / 408

Approximate factorizations, splitting and preconditioning

Another expression

x+ = x−M−1Ax+M−1b ≡ (I −M−1A)x+M−1b. (104)

Or
M(x− x+) = Ax− b. (105)

Different choices of M imply different iterative methods.
Choosing M from

A = M −R ≡M − (M −A) (106)

for some R ∈ Rn is called a choice by splitting of A.
The choice M = I is sometimes called simple iteration.
Matrix M can be called a preconditioning of the simple iteration.

335 / 408

Approximate factorizations, splitting and preconditioning

Definition
Stationary iterative method for solving

Ax = b, A ∈ Rn×n, x ∈ Rn, b ∈ Rn (107)

is convergent if the sequence of its iterates converges to the problem
solution x∗ independently of the choice of the initial approximation x0.

Remind that the spectral radius of S ∈ Rn×n is given as

lim
k→∞

‖ Sk ‖1/k, (108)

Another equivalent expression:

ρ(S) = max{|λi| |λ ∈ σ(A)}, (109)

336 / 408

Approximate factorizations, splitting and preconditioning

Theorem
Stationary iterative method (103) with iteration matrix S is convergent iff

ρ(S) < 1,

where ρ(S) is the spectral radius of S.

337 / 408

Approximate factorizations, splitting and preconditioning

Preconditioning as a general transformation

Ax = b, M regular

M−1Ax = M−1b. (110)

x+ +M−1Ax = x+M−1b. (111)

x+ = (I −M−1A)x+M−1b, (112)

338 / 408

Approximate factorizations, splitting and preconditioning

Construct M−1A or not?

Desirable properties of preconditioning

small
‖M −A ‖

small
‖ I −M−1A ‖ .

Note that these norms may be very different
Stable application of composed preconditioners as M = M1M2

Useful for the specific target computer architecture.

339 / 408

Approximate factorizations, splitting and preconditioning

Left, right or split preconditioning

M−1Ax = M−1b

AM−1y = b, x = My

M−11 AM−12 y = M−11 b, x = M2y, M = M1M2

Theorem
Let ε and ∆ are positive numbers. Then for every n ≥ 2 there are regular
matrices A ∈ Rn and X ∈ Rn such that all entries of XA− I have
magnitudes less than ε and all entries of AX − I have magnitudes larger
than ∆.

340 / 408

Approximate factorizations, splitting and preconditioning

Let A be SPD. Then the system preconditioned from both sides

L−1M AL−TM y = L−1M b, x = LTMy (113)

where M = LML
T
M has SPD system matrix L−1M AL−TM and can be solved

by the CG method.

Theorem
Consider solving Ax = b with SPD preconditioning matrix M . Then

M−1A is self-adjoint in the dot product (., .)M = (M., .).
AM−1 is self-adjoint in the dot product (., .)M−1 = (M−1., .).

341 / 408

Approximate factorizations, splitting and preconditioning

Proof.

(M−1Ax, y)M = (Ax, y)

= (x,Ay)

= (x,MM−1Ay)

= (Mx,M−1Ay)

= (x,M−1Ay)M

(AM−1x, y)M−1 = (AM−1x,M−1y) = (M−1x,AM−1y) = (x,AM−1y)M−1

(114)

342 / 408

Approximate factorizations, splitting and preconditioning

Corollary
CG method preconditioned from the left based on the dot product (., .)M ,
CG method preconditioned from the right based on the dot product
(., .)M−1 and CG method using standard dot product and preconditioned
from both sides as above (113) provide in the exact arithmetic the same
iterates.

343 / 408

Approximate factorizations, splitting and preconditioning

Preconditioning of a simple iteration

x+ = (I −A)x+ b (115)

Richardson method
M = (1/θ) I, (116)

Jacobi method
M = DA;A = DA − LA − UA

Gauss-Seidel method
M = DA − LA

344 / 408

Approximate factorizations, splitting and preconditioning

Theorem
If A ∈ Rn×n is strongly diagonally dominant then Jacobi method and
Gauss-Seidel method are convergent.

Theorem
If A ∈ Rn×n is symmetric with positive diagonal DA then the Jacobi
method is convergent iff A and 2DA −A are positive definite.

Theorem
If A ∈ Rn×n is symmetric and positive definite then the Gauss-Seidel
method is convergent.

345 / 408

Approximate factorizations, splitting and preconditioning

Still theoretical assumptions are rather strong.
Concept of special matrices

Theorem
Matrix A is called a regular M-matrix if aij ≤ 0, i 6= j, is regular and
A−1 ≥ 0.

Theorem
A is a H-matrix if B = |DA| − |A−DA| is an M -matrix.

Many equivalent definitions

346 / 408

Approximate factorizations, splitting and preconditioning



4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4


.

347 / 408

Approximate factorizations, splitting and preconditioning

Another approach: via simple diagonal preconditioning

Theorem
Let A be SPD. Then

κ(D
−1/2
A AD

−1/2
A) ≤ pmin{D |Dij=0 pro i6=j}κ(D−1/2AD−1/2), (117)

where DA = diag(A) and where p bounds row counts of A.

Towards incomplete factorizations

348 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (Crout incomplete LU factorization)
Input: Matrix A, target sparsity pattern S{F̃}.
Output: Incomplete LU factorization A ≈ L̃Ũ .

1: for j = 1 : n do
2: L̃j+1:n,j = Aj+1:n,j , l̃jj = 1.
3: Ũj,j:n = Aj,j:n

4: for k = 1 : j − 1 such that (j, k) ∈ S{L̃} do . Sparse linear combination
5: Ũj,j:n = Ũj,j:n − l̃jkŨk,j:n

6: end for
7: sparsify Ũj+1,j:n . Drop entries from row j of Ũ
8: for k = 1 : j − 1 such that (k, j) ∈ S{Ũ} do . Sparse linear combination
9: L̃j+1:n,j = L̃j+1:n,j − ũkjL̃j+1:n,k

10: end for
11: sparsify L̃j+1:n,j . Drop entries from column j of L̃
12: L̃j+1:n = L̃j+1:nũ

−1
jj

13: end for

349 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (Row incomplete LU factorization)
Input: Matrix A, target sparsity pattern S{F̃}.
Output: Incomplete LU factorization A ≈ L̃Ũ .

1: for i = 1 : n do
2: Ũi,1:n = Ai,1:n

3: L̃i,1:i−1 = Ai,1:i−1, l̃ii = 1.
4: for k = 1 : i− 1 such that (i, k) ∈ S{L̃} do
5: l̃ik = l̃iku

−1
kk

6: for j = k + 1 : i− 1 such that (k, j) ∈ S{Ũ} do
7: l̃ij = l̃ij − l̃ikũkj

8: end for
9: sparsify L̃i,k+1:i−1

10: for j = i : n such that (k, j) ∈ S{Ũ} do
11: ũij = ũij − l̃ikũkj

12: end for
13: sparsify Ũi,i+1:n

14: end for
15: end for

350 / 408

Approximate factorizations, splitting and preconditioning

Crucial observation

Theorem

A = L̃Ũ − E,

(i, j) ∈ S(L̃+ Ũ)⇒ eij = 0. (118)

351 / 408

Approximate factorizations, splitting and preconditioning

Various ways to use approximations for preconditioning

Incomplete factorizations developing the ILU (IC for SPD matrices)
given above (see MILU below)

I The sparsity pattern S can be given a priori
I The sparsity pattern S can be found throughout
I Additional modifications

Incomplete inverse factorizations: direct approximation of the inverse:
avoiding substitution steps

I Factorized inverses (often reasonably sparse)
I Non-factorized (dense for irreducible matrices)

Polynomial preconditioners (M as a polynomial in A; feasibility follows
for example, from Cayley-Hamilton theorem.
More complex approaches: algebraic multigrid, domain decomposition

352 / 408

Approximate factorizations, splitting and preconditioning

Level-based incomplete factorization
Define

level(i, j) = min
1≤k<min{i,j}

(level(i, k) + level(k, j) + 1). (119)

Given ` ≥ 0, fill-in is permitted in the incomplete factors at position
(i, j) provided level(i, j) ≤ l. The resulting incomplete factorization is
denoted by ILU(`) and is called a level-based incomplete
factorization.
Diagonal entries of A are treated as nonzero while level is set to
n+ 1 for all off-diagonal zero entries in A. Levels of all other entries
are set to zero.

353 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (Level-based row incomplete LU factorization)
1: Initialize level to 0 for nonzeros and diagonal entries of A and to n+ 1 otherwise.
2: for i = 1 : n do
3: Ũi,i:n = Ai,i:n

4: L̃i,1:i−1 = Ai,1:i−1, l̃ii = 1.
5: for k = 1 : i− 1 such that level(i, k) ≤ ` do
6: l̃ik = l̃iku

−1
kk

7: for j = k + 1 : i− 1 do
8: l̃ij = l̃ij − l̃ikũkj

9: level(i, j) = min(level(i, j), level(i, k) + level(k, j) + 1)
10: end for
11: sparsify L̃i,k+1:i−1

12: for j = i : n do
13: ũij = ũij − l̃ikũkj

14: level(i, j) = min(level(i, j), level(i, k) + level(k, j) + 1)
15: end for
16: sparsify Ũi,i:n

17: end for
18: for k = 1 : i− 1 do
19: if level(i, k) > ` then
20: lik = 0
21: end if
22: end for
23: for k = i : n do
24: if level(i, k) > ` then
25: uik = 0
26: end if
27: end for
28: end for

354 / 408

Approximate factorizations, splitting and preconditioning

ILU(0) ILU(2) ILU(4)

ILU(0) ILU(2) ILU(4)

Figure: Sparsity patterns for ILU(`) factorizations of a discretized Poisson
problem (top) and a more general sparse matrix (bottom).

355 / 408

Approximate factorizations, splitting and preconditioning

Theorem

Consider the ILU(`) factorization A ≈ L̃Ũ . level(i, j) = k for some k ≤ `
if and only if there is a shortest fill path i⇒ j of length k + 1 in G(A).

Theorem can be used to find the sparsity patterns of L̃ and Ũ .

356 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (Find the sparsity pattern of row i of Ũ .)
Input: Matrix A. Level parameter ` ≥ 0. Row index i.
Output: Sparsity pattern Ũi,i:n of the ILU(`) factorization A = L̃Ũ .

1: Set Q to be an empty queue
2: inject(Q, i) . add i to the queue
3: Initialise: set length(i) = 0, visited(i) = i . length and visited are arrays of length
n

4: while Q is not empty do
5: pop(Q,h) . take h from the queue
6: for t ∈ adjG(A)(h) with visited(t) 6= i do
7: Set visited(t) = i
8: if t < i and length(h) < ` then
9: inject(Q, t) . add t to the queue
10: length(t) = length(h) + 1
11: else if t > i then
12: insert t into the sparsity pattern of set of Ũi,i:n

13: end if
14: end for
15: end while

357 / 408

Approximate factorizations, splitting and preconditioning

The idea behind modified incomplete factorizations (MILU) is to
maintain equality between the row sums of A and L̃Ũ , that is, L̃Ũe = Ae,
where e is the vector of all ones.

358 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (Submatrix formulation of MILU)

1: Set L̃ to I plus the strictly lower triangular part of A and Ũ to the upper triangular
part of A

2: for k = 1 : n− 1 do
3: for i = k + 1 : n such that (i, k) ∈ S{L̃} do
4: l̃ik = aikũ

−1
kk

5: for j = i : n such that (k, j) ∈ S{F̃} do
6: if (i, j) ∈ S{F̃} then
7: ũij = ũij − l̃ikũkj

8: else
9: ũii = ũii − l̃ikũkj . Modify diagonal instead of creating fill-in
10: end if
11: end for
12: for j = k + 1 : i− 1 such that (k, j) ∈ S{F̃} do
13: if (i, j) ∈ S{F̃} then
14: l̃ij = l̃ij − l̃ikũkj

15: else
16: ũii = ũii − l̃ikũkj . Modify diagonal instead of creating fill-in
17: end if
18: end for
19: end for
20: end for

359 / 408

Approximate factorizations, splitting and preconditioning

Theorem

Consider the MILU factorization A+ E = L̃Ũ with sparsity pattern S{F̃}.
Then the off-diagonal entries aij of A for which (i, j) ∈ S{F̃} are exactly
approximated by the entries of L̃Ũ .

Theorem

Let A be from a discretized Poisson problem on a uniform two-dimensional
rectangular grid with the Dirichlet boundary conditions and discretization
parameter h. Then the condition number κ((L̃Ũ)−1A) for the level-based
MIC(0) preconditioner is O(h−1).

360 / 408

Approximate factorizations, splitting and preconditioning

Next algorithm describes the row ILU factorization with dynamic
modification that uses a parameter ρaj computed as the ratio

√
uii/ujj . In

practice ρaj can be chosen more generally from 0 ≤ ρaj ≤ 1.

361 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (Row incomplete LU with dynamic modification)

1: Set L̃ to I plus the strictly lower triangular part of A
2: Set Ũ to the upper triangular part of A
3: for k = 1 : n− 1 do
4: for i = k + 1 : n such that (i, k) ∈ S{L̃} do
5: l̃ik = aikũ

−1
kk

6: if (k, j) ∈ S{F̃} then
7: for j = i : n do
8: if (i, j) ∈ S{F̃} then
9: ũij = ũij − l̃ikũkj

10: else
11: ρaj =

√
ũii/ũjj , ũii = ũii + ρaj |ũij |, ũjj = ũjj + |ũij |/ρaj ,

ũij = 0.
12: end if
13: end for
14: end if
15: if (k, j) ∈ S{F̃} then
16: for j = k + 1 : i− 1 do
17: if (i, j) ∈ S{F̃} then
18: l̃ij = l̃ij − l̃ikũkj

19: else
20: ρaj =

√
ũii/ũjj , ũii = ũii + ρaj |l̃ij |, ũjj = ũjj + |l̃ij |/ρaj ,

l̃ij = 0.
21: end if
22: end for
23: end if
24: end for
25: end for

362 / 408

Approximate factorizations, splitting and preconditioning

A related modification called diagonally compensated reduction
can be performed in advance.
As it is known that the incomplete LU factorization does not break
down for M-matrices, it is possible to modify A in advance by setting
its positive off-diagonal entries to zero and adding their values to the
diagonal of A.
If A has been originally symmetric and positive definite, then the
resulting matrix is a symmetric M-matrix since the transformation can
be considered as adding a positive semidefinite matrix to A.

363 / 408

Approximate factorizations, splitting and preconditioning

Incomplete factorizations with intermediate memory

Algorithm (Recursively constructed S{F̃} for the incomplete
LU factorization)
Input: Matrix A.
Output: Target sparsity pattern S{F̃}.

1: Set S{F̃} = S{A}.
2: for k = 1 : n− 1 do
3: Denote Sk = {i | i > k, (i, k) ∈ S{F̃}}
4: Choose arbitrarily Sk ⊆ Sk
5: Set S̄k = Sk \ Sk

6: Set S{F̃} = S{F̃} \ (Sk ∪ ST
k) ∪ Sk × Sk ∪ S̄k × Sk ∪ S̄k × Sk.

7: end for

364 / 408

Approximate factorizations, splitting and preconditioning

Note that the constructed sparsity pattern is symmetric. The following
Theorem 118 shows that if the matrix is symmetric and positive definite,
the resulting incomplete Cholesky factorization of A is breakdown free.

Theorem

Consider the incomplete LU factorization with the target sparsity pattern
determined by Algorithm 19.7 without any additional modification. Then
the factorization is breakdown-free.

365 / 408

Approximate factorizations, splitting and preconditioning

Reordering and pivoting in incomplete factorizations
If dropping rules involve upper bounds on row/column count allowed
in the incomplete factors, like lsize and rsize then the minimum
degree type may not be a suitable choice. In such cases,
specification of nonzero counts in rows/columns of the incomplete
factorization should vary among the rows.
Incomplete factorizations allowing a small amount of fill-in, as the
level-based factorizations with low ` may not be so efficient as
preconditioners since the fill-in in A reordered by an ordering of the
minimum degree type is typically generated irregularly throughout the
steps of the complete factorization: initially less, later steps use a lot
of updates.

366 / 408

Approximate factorizations, splitting and preconditioning

Combining complete and incomplete factorizations
A posteriori dropping
Mimicking row/column counts in complete factorization
Row and column updates based on an auxiliary elimination tree

367 / 408

Approximate factorizations, splitting and preconditioning

Approximate inverses

Theorem

Consider an entry αij , i, j = 1, . . . , n of the inverse of the matrix A. It is

nonzero if and only if there is a path i
G(A)
===⇒ j.

In the other words, the nonzeros in the matrix inverse of are implied by
all paths in G(A).
In contrast, nonzeros in factors of the LU factorization of A are
implied only by fill paths.
In the case of the incomplete factorization based on levels are implied
by fill-paths of limited lengths.

368 / 408

Approximate factorizations, splitting and preconditioning

Other motivations

369 / 408

Approximate factorizations, splitting and preconditioning

Approximate inverses based on Frobenius norm minimization

A symmetric and positive definite.

(A+ E)−1 = Z̃Z̃T (120)

Constrained optimization problem

min
S{Z̃}⊆S

Z̃

FW (Z̃) = ‖I − Z̃TL‖2W = tr
[
(I − Z̃TL)W (I − Z̃TL)T

]
,

(121)
W positive definite matrix of weights of the dimension n, L is the
Cholesky factor of A and tr denotes the matrix trace operator.

370 / 408

Approximate factorizations, splitting and preconditioning

Approximate inverses based on Frobenius norm minimization

The objective function FW (Z̃) can be transformed

FW (Z̃) = tr
[
(I − Z̃TL)W (I − Z̃TL)T

]
= tr(W)− tr(Z̃TLW)− tr(WLT Z̃) + tr(Z̃TLWLT Z̃)

= tr(W)−
∑
i,j

z̃ji
[
(LW)ji + (WLT)ij

]
+ tr(Z̃TLWLT Z̃),

where we have used that traces of any two matrices
C = (cij), D = (dij), i, j = 1, . . . , n satisfy

tr(CD) =
∑
i

∑
j

cijdji

. Taking into account the minimality condition to be satisfied

∂FW (Z̃)

∂z̃ji
= 0, (j, i) ∈ S

Z̃
(122)

371 / 408

Approximate factorizations, splitting and preconditioning

Approximate inverses based on Frobenius norm minimization

we get

− (LW)ji − (WLT)ij + (LWLT Z̃)ji + (Z̃TLWLT)ij = 0, (i, j) ∈ S
Z̃T .

(123)
This implies

(Z̃TLWLT)ij = (WLT)ij , (i, j) ∈ S
Z̃T . (124)

Setting W = I we get the condition

(Z̃TA)ij = (LT)ij for (i, j) ∈ S
Z̃T , (125)

that has to be satisfied by the solution FI(Z̃) of (121).
FSAI approximated inverse

372 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (FSAI algorithm to find and approximate
factorization Z̃T Z̃ ≈ A−1)
Input: Symmetric and positive definite matrix A.
Output: An upper triangular matrix Z̃.

1: Solve for Ẑ the system

(ẐTA)ij = δij for (i, j) ∈ SZ̃T (126)

2: Find DZ such that (DZẐ
TAẐDZ)ii = 1, i = 1, . . . , n . Symmetric Jacobi scaling

3: Set Z̃ = ẐDZ

373 / 408

Approximate factorizations, splitting and preconditioning

Define the reduced symmetric matrices Âi = A(Ji,Ji) of the dimension
|Ji| by their entries as follows

(Âi)ij =

{
aij if i = j or (i, j) ∈ S

Ẑ
or (j, i) ∈ S

Ẑ
0 otherwise

(127)

Solution of the system above decouples into solving the following n systems
of linear equations independently for each column z̃i, i = 1, . . . , n of Z̃T .

Âiz̃i = ê|Ji|, (128)

Here, ê|Ji| is the |Ji|-th unit vector of the dimension |Ji| for

Ji = {j | (j, i) ∈ S
Z̃
∪ (i, i)} (129)

The following theorem states an existence and uniqueness of the computed
Z̃ exists under a weak assumption. It is instructive to present its short
proof as well.

374 / 408

Approximate factorizations, splitting and preconditioning

Theorem

Let A be symmetric and positive definite. Let the S
Z̃
includes all diagonal

positions. Then Z̃ exists and it is unique.

The reduced systems (128) are symmetric and positive definite. Moreover,
for any i ∈ {1, . . . , n} we get

(Z̃TAZ̃)ii =
∑
j∈Ji

δijZ̃ji = (Z̃)ii =
[
Â−1i

]
ii
. (130)

375 / 408

Approximate factorizations, splitting and preconditioning

Theorem

Let A be symmetric and positive definite with LLT be its Cholesky
factorization. Moreover, let S

Z̃
be an upper triangular pattern which

contains positions of diagonal entries and let Z̃ be obtained from FSAI
algorithm with S

Z̃
. Then any upper triangular matrix T ∈ Rn×n with the

sparsity pattern included in S
Z̃
such that (T TAT)ii = 1 for i = 1, . . . , n

satisfies
||I − Z̃TL||F ≤ ||I − T TL||F . (131)

376 / 408

Approximate factorizations, splitting and preconditioning

Theorem

Assume that we have two different upper triangular patterns S
Z̃′ and SZ̃′′

which both contain positions of diagonal entries. Let A ∈ Rn×n be a
symmetric and positive definite matrix with the Cholesky factorization
LLT . Assume further S

Z̃′ ⊇ SZ̃′′ . Let Z̃
′ and Z̃ ′′ be the FSAI approximate

inverses for these two patterns, respectively. Then

FI(Z̃
′) ≤ FI(Z̃ ′′). (132)

377 / 408

Approximate factorizations, splitting and preconditioning

Let A be a generally nonsymmetric and assume the factorized approximate
inverse be provided in the form

A ≈ (A+ E)−1 = Z̃D̃−1W̃ T (133)

(Z̃TA)ij = δij for (i, j) ∈ S
Z̃T (134)

(AW̃)ij = δij for (i, j) ∈ S
W̃

(135)

Then, finally, D̃ is obtained as the inverse of the diagonal of the matrix

W̃ TAZ̃

378 / 408

Approximate factorizations, splitting and preconditioning

Nonfactorized approximate inverses based on Frobenius norm minimization

‖ I −MA ‖ → min or ‖ I −AM ‖ → min . (136)

‖I −AM‖2F =
n∑
i=1

‖ei −Ami‖22, (137)

min(Ji) ≡ min
m̂i

‖êi −A(1 : n,Ji)m̂i‖2 (138)

379 / 408

Approximate factorizations, splitting and preconditioning

Problems above can be solved, for instance, using the dense QR
factorization of A(1 : n,Ji) which can be written as

A(1 : n,Ji) = Q̂

(
R̂
0

)
, (139)

Then
mi = R̂−1Q̂T ei. (140)

380 / 408

Approximate factorizations, splitting and preconditioning

Guessing S(M) such that the computed M well approximates the inverse
of A and leads to an efficient preconditioner, is a difficult problem. A
successful variant of the minimization-based approach in the Frobenius
norm improves an initial guess of S(M) iteratively.

Denote by Ii the set of nonzero rows of A1:n,Ji . Consider the residual
ri of the least squares problem (138) given by

ri = ei −A1:n,Jim̂i.

Denote by Ii the set of nonzero rows of A1:n,Ji . Consider the residual
ri of the least squares problem (138) given by

ri = ei −A1:n,Jim̂i.

Consider nonzero residual components of ri with row indices outside
the set Ii and denote their union by Îi. That is

Îi =
⋃

{k | (ri)k 6=0}

k

Ĵi = {l | ajl 6= 0 and j ∈ Îi} \ Ji. 381 / 408

Approximate factorizations, splitting and preconditioning

We will call this set the set of candidate columns.
If J ′i denotes the sparsity pattern Ji extended by an index k of a
candidate column from Ĵi, then we get a minimization problem
min(Ji ∪ {k}) for the solution m̂i extended by µki with the column
sparsity pattern Ji extended by k.
In this way, performing a sequence of such minimization steps for each
column of M , the final Frobenius norm may be significantly reduced.
Note that in practice, solution of the extended problem min(Ji ∪ {k})
does not need to be computed from scratch. Instead, it can be
computed as an update of the problem min(Ji).

382 / 408

Approximate factorizations, splitting and preconditioning

Let us discuss the ways to choose a suitable candidate column k from Ĵi to
extend Ji.

min
m̂i,µki

||ei −A(1 : n,Ji)m̂i −A(1 : n), k)µki||2. (141)

One possibility is to keep the computed m̂i fixed and minimize only with
respect to µki. In this case, the solution of the underlying one-dimensional
minimization problem is achieved for

µki = rTi A(1 : n, k)/A(1 : n, k)TA(1 : n, k)

and the square of the norm under minimization is given by

ρik = ‖ri‖2 −
(rTi A(1 : n, k))2

A(1 : n, k)TA(1 : n, k)
.

Clearly, column k that minimizes ρ2ik is a good candidate k to extend Ji.
Note that if ri 6= 0, there is at least one such candidate.

383 / 408

Approximate factorizations, splitting and preconditioning

Another possibility to evaluate candidate columns that is more accurate
and not much less efficient to compute is based on the full minimization in
(141) without fixing the value of m̂i. Square norm resulting from this full
minimization obtained by explicit solving of (141) is

ρ̄ik = ||ri||22 −
(rTi A(1 : n, k))2

||PJiA(1 : n, k)||22
, (142)

where PJi is an orthogonal projector onto the null space of the matrix
A(1 : n,Ji)T . Note that for the chosen i-th column of M with given
sparsity pattern and a column k from the set of candidate columns we have

ρ̄ik ≤ ρik ≤ ‖ri‖2.

384 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (SPAI algorithm to find its right approximate
inverse M ≈ A−1)
Input: Generally nonsymmetric matrix A.
Output: Right approximate inverse of A.

1: for i=1:n do
2: Set the initial column sparsity pattern Ji = {j|(j, i) ∈ S{A}}
3: while Stopping criterion is not satisfied do
4: Set the row sparsity pattern Ii = {j|A(j,Ji) 6= 0}
5: Set Find the solution m̂i to min

m̂i

||êi − Âim̂i||2
6: Update the column sparsity pattern Ji to J ′i and set J ′i = Ji.
7: end while
8: Extend m̂i of the dimension |Ji| to the dimension n by zeros at the remaining

positions
9: end for
10: Set M = [m1, . . . ,mn]

385 / 408

Approximate factorizations, splitting and preconditioning

Factorized approximate inverses based on biconjugation
A symmetric and positive definite
The factorized approximate inverse algorithm for A called AINV is
based on orthogonalization in the inner product 〈. , .〉A. The approach
constructs the columns z1, . . . , zn of the unit upper triangular matrix

Z = [z1, z2, . . . , zn] (143)

and the diagonal matrix D with nonzero diagonal entries d1, . . . , dn
such that

ZTAZ = D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 . (144)

That is, the columns of Z for 1 ≤ i, j ≤ n satisfy

zTi Azj =

{
0 i 6= j
di i = j

.

386 / 408

Approximate factorizations, splitting and preconditioning

Since A is symmetric and positive definite, such matrices Z and D
exist. The relation (144) directly reveals the inverse of A. It is easy to
see that

A−1 = ZD−1ZT =

n∑
i=1

ziz
T
i

di
(145)

387 / 408

Approximate factorizations, splitting and preconditioning

Algorithmically, Z is constructed orthogonalizing in the inner product
〈. , .〉A the set of linearly independent starting vectors.
The orthogonalization algorithm thus generalizes standard
Gram-Schmidt algorithm.
Choosing e1, . . . , en as the starting vectors, the Z resulting is unit
upper triangular and due to the uniqueness of the factorization
A = Z−TDZ−1 we have

Z = L−T , (146)

where L is the lower triangular factor of the square root-free Cholesky
factorization of A and D is the diagonal matrix of this factorization.

388 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (SPD left-looking AINV algorithm to find a
factorized approximate inverse of A)
Input: Symmetric and positive definite matrix A.
Output: A unit upper triangular matrix Z̃ and diagonal matrix D̃ such that
A−1 ≈ Z̃T D̃−1Z̃.

1: Initiate Z̃ = [z̃
(0)
1 , . . . , z̃

(0)
n] = I

2: for j = 1 : n do
3: for k = 1 : j − 1 do
4: Set α̃kj = Ak,1:nz̃

(k−1)
j d̃−1

k

5: z̃
(k)
j = z̃

(k−1)
j − α̃kj z̃

(k−1)
k

6: sparsify z̃(k)j . Drop entries from the column z̃(k)j

7: end for
8: d̃j = Aj,1:nz̃

(j−1)
j

9: end for
10: Set Z̃ = [z̃1, . . . , z̃n] = [z̃

(0)
1 , . . . , z̃

(n−1)
n]

389 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (SPD right-looking AINV algorithm to find a
factorized approximate inverse of A)
Input: Symmetric and positive definite matrix A.
Output: A unit upper triangular matrix Z̃ and diagonal matrix D̃ such that
A−1 ≈ Z̃T D̃−1Z̃.

1: Initiate Z̃ = [z̃
(0)
1 , . . . , z̃

(0)
n] = I

2: for j = 1 : n do
3: Set d̃j = Aj,1:nz̃

(j−1)
j

4: for k = j + 1 : n do
5: Set α̃jk = AT

j,1:nz̃
(j−1)
k d̃−1

j

6: z̃
(j)
k = z̃

(j−1)
k − α̃jkz̃

(j−1)
j

7: sparsify z̃(j)k . Drop entries from the column z̃(j)k

8: end for
9: end for
10: Set Z̃ = [z̃1, . . . , z̃n] = [z̃

(0)
1 , . . . , z̃

(n−1)
n]

390 / 408

Approximate factorizations, splitting and preconditioning

Assume now that A is nonsymmetric and consider a more general AINV
approach that computes the unit upper triangular matrices Z and W and
the diagonal matrix D. Columns of the computed factors z1, . . . , zn and
w1, . . . , wn of Z and W as well as the nonzero diagonal entries of D
should satisfy

W TAZ = D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 . (147)

Rewriting this we demand that the columns of Z and W satisfy

wTi Azj =

{
0 i 6= j
di i = j

.

If such matrices Z and W exist, they are nonsingular and we have

A−1 = ZD−1W T =

n∑
i=1

ziw
T
i

di
. (148)

391 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (Nonsymmetric right-looking AINV algorithm to
find a factorized approximate inverse of A)
Input: Symmetric and positive definite matrix A.
Output: A unit upper triangular matrix W̃ , Z̃ and diagonal matrix D̃ such that
A−1 ≈ W̃T D̃−1Z̃.

1: Initiate Z̃ = [z̃
(0)
1 , . . . , z̃

(0)
n] = I, W̃ = [w̃

(0)
1 , . . . , w̃

(0)
n] = I

2: for j = 1 : n do
3: Set d̃j = Aj,1:nz̃

(j−1)
j or d̃j = AT

1:n,jw̃
(j−1)
j

4: for k = j + 1 : n do
5: Set α̃jk = Aj,1:nz̃

(j−1)
k d̃−1

j

6: z̃
(j)
k = z̃

(j−1)
k − α̃jkz̃

(j−1)
j

7: sparsify z̃(j)k . Drop entries from the column z̃(j)k

8: β̃jk = AT
1:n,jw̃

(j−1)
k d̃−1

j

9: w̃
(j)
k = w̃

(j−1)
k − β̃jkw̃(j−1)

j

10: sparsify w̃(j)
k . Drop entries from the column w̃(j)

k

11: end for
12: end for
13: Set Z̃ = [z̃1, . . . , z̃n] = [z̃

(0)
1 , . . . , z̃

(n−1)
n], W̃ = [w̃1, . . . , w̃n] = [w̃

(0)
1 , . . . , w̃

(n−1)
n]

392 / 408

Approximate factorizations, splitting and preconditioning

Theorem

Consider Algorithm 19.11 without sparsification, that is, with the exactly
computed quantities. The following identities are valid for the exactly
computed quantities inside the algorithm.

Aj,1:nz
(j−1)
k ≡ eTj Az

(j−1)
k = (z

(j−1)
j)TAz

(j−1)
k for n ≥ k ≥ j ≥ 1. (149)

393 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (SPD right-looking SAINV algorithm to find a
factorized approximate inverse of A)
Input: Symmetric and positive definite matrix A.
Output: A unit upper triangular matrix Z̃ and diagonal matrix D̃ such that
A−1 ≈ Z̃T D̃−1Z̃.

1: Initiate Z̃ = [z̃
(0)
1 , . . . , z̃

(0)
n] = I

2: for j = 1 : n do
3: Set d̃j = (z̃

(j−1)
j)TAz̃

(j−1)
j

4: for k = j + 1 : n do
5: Set α̃jk = (z̃

(j−1)
j)TAz̃

(j−1)
k d̃−1

j

6: z̃
(j)
k = z̃

(j−1)
k − α̃jkz̃

(j−1)
j

7: sparsify z̃(j)k . Drop entries from the column z̃(j)k

8: end for
9: end for
10: Set Z̃ = [z̃1, . . . , z̃n] = [z̃

(0)
1 , . . . , z̃

(n−1)
n]

394 / 408

Approximate factorizations, splitting and preconditioning

Theorem

The following identities are valid for the exactly computed quantities after
the k-th major step of Algorithm 19.12 was finished

Aj,1:nz
(j−1)
k ≡ eTj Az

(j−1)
k = (w

(j−1)
j)TAz

(j−1)
k for n ≥ k ≥ j ≥ 1. (150)

AT1:n,jw
(j−1)
k ≡ eTj ATw

(j−1)
k = (z

(j−1)
j)TATw

(j−1)
k for n ≥ k ≥ j ≥ 1.

(151)

395 / 408

Approximate factorizations, splitting and preconditioning

Alternative computation of the Cholesky factorization
Consider the AINV algorithm without dropping and the LDLT factorization
A = LDLT of A symmetric and positive definite with L unit lower
triangular and D diagonal. The factor L and the inverse factor Z satisfy

AZ = LD or L = AZD−1,

where D is the diagonal matrix containing the pivots. Since
dj = (z

(j−1)
j)TAz

(j−1)
j , by equating corresponding entries of AZD−1 and

L we find that

Lkj =
(z

(j−1)
j)TAz

(j−1)
k

(z
(j−1)
j)TAz

(j−1)
j

, n ≥ k ≥ j ≥ 1. (152)

396 / 408

Approximate factorizations, splitting and preconditioning

Factorized sparse inverses can be influenced by reorderings more deeply
than the nonfactored approximate inverses as SPAI, that are largely
insensitive to reorderings. The following theorem describes the fill-in in the
inverse of a triangular factor of the Cholesky factorization.

Theorem
Assume that A is symmetric and positive definite and LLT is its Cholesky
factorization. Sparsity pattern S(L−1) is a union of all positions (i, j) such
that i is an ancestor of j in the elimination tree T (A).

397 / 408

Approximate factorizations, splitting and preconditioning

Approximate inverse by global iterations
Consider one-dimensional Newton-Raphson iterations to find a scalar value
p which is the root of a given function f , that is

f(p) = 0.

The method approaches p by a sequence of approximations p0, p1,
Consider a tangent of f at pk for some integer k ≥ 0 in the following form

y = f ′(pk)pk + b. (153)

The tangent crosses (pk, f(pk)) and this can be put down as

f(pk) = f ′(pk)pk + b. (154)

This implies
b = f(pk)− f ′(pk)pk (155)

and we get a function of x given by

y = f ′(x)x+ f(pk)− f ′(pk)pk. (156)

398 / 408

Approximate factorizations, splitting and preconditioning

Assume that the root is achieved at pk+1. Then

0 = f ′(pk+1)pk+1 + f(pk)− f ′(pk)pk (157)

and therefore
pk+1 = pk −

f(pk)

f ′(pk)
. (158)

For f beeing the function of the inverse given by

f(x) = 1/x− a
we have

pk+1 = pk −
1/pk − a
−1/p2k

= pk(2− apk). (159)

Matrix generalization for finding the matrix inverse in case it is well-defined
is then given by the following iterative scheme

Gi+1 = Gi(2I −AGi), i = 1, . . .

for the sequence of non-factorized approximate inverses G0, The main
problem with this approach is that the G is for irreducible A fully dense
and it may be very difficult to find useful sparsity patterns for the iterates
and keep the iterative computational scheme efficient.

399 / 408

Approximate factorizations, splitting and preconditioning

The bordering method
Based on the following bordering identity
Consider the factorization A−1 = ZD−1W T , where W and Z are unit
upper triangular matrices and D is the diagonal matrix.

Then we can write in exact arithmetic for the factorization of
W T

1:j,1:jA1:j,1:jZ1:j,1:j(
W T

1:j−1,1:j−1 0

wTj 1

)(
A1:j−1,1:j−1 A1:j−1,j
Aj,1:j−1 Ajj

)(
Z1:j−1,1:j−1 zj

0 1

)
=

(
D1:j−1,1:j−1 0

0 dj

)
(160)

400 / 408

Approximate factorizations, splitting and preconditioning

Algorithm (Nonsymmetric inverse bordering algorithm)
Input: Generally nonsymmetric A.
Output: A unit upper triangular matrix Z̃ and diagonal matrix D̃ such that
A−1 ≈ Z̃T D̃−1W̃T .

1: Set Z̃1 = (1), W̃1 = (1), D̃1 = (a11).
2: for j = 2 : n do
3: Set z̃j = −Z̃1:j−1,1:j−1D̃

−1
1:j−1,1:j−1W̃

T
1:j−1,1:j−1A1:j−1,j

4: Set w̃j = −W̃1:j−1,1:j−1D̃
−1
1:j−1,1:j−1Z̃

T
1:j−1,1:j−1A

T
j,1:j−1

5: Set d̃j = Ajj +AT
1:j−1,jw̃j +Aj,1:j−1z̃j + w̃T

j Aj−1z̃j

6: Set Z̃j =

(
Z̃1:j−1,1:j−1 z̃j

0 1

)
7: Set W̃j =

(
W̃1:j−1,1:j−1 w̃j

0 1

)
8: end for
9: Set Z̃ = Z̃n, W̃ = W̃n, D̃ = D̃n

401 / 408

Approximate factorizations, splitting and preconditioning

Consider the computation of the j-th diagonal entry and assume the
exactly computed quantities. The computation from the formula

dj = Ajj +AT1:j−1,jwj +Aj,1:j−1zj + wTj Aj−1zj (161)

can be easily replaced by the mathematically equivalent formula which we
used in the algorithms using biconjugation computation:

dj = Aj,1:j−1zj or dj = AT1:j−1,jwj . (162)

402 / 408

Outline
1 Foreword
2 Direct methods and algebraic preconditioners
3 Basic terminology
4 Sparsity
5 Graphs and their matrices
6 From matrices to graphs
7 Graph searches
8 Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
9 Schemes for solving systems of linear algebraic equations
10 Notes: on getting blocks in sparse matrices
11 Sparse factorization: fill-in
12 Sparse Cholesky factorization - components
13 Sparse Cholesky factorization - synthesis
14 Sparse LU factorization of generally nonsymmetric matrices
15 Sparse LU factorization of generally nonsymmetric matrices
16 Initial reordering
17 Stability of sparse factorizations
18 Symmetric indefinite factorization
19 Approximate factorizations, splitting and preconditioning
20 Factorization and computer architectures: brief notes

403 / 408

Decomposition and computer architectures: Parallelism

1. Shared memory computers

1st level of parallelism: tree structure of the decomposition.
2nd level of parallelism: local node parallel enhancements.

Both may/should be coordinated.
Tree parallelism potential decreases towards its root.
Potential for the local parallelism (larger dense matrices) increases
towards the root.

404 / 408

Decomposition and computer architectures: 1st level of
parallelism

Two basic possibilities for the tree parallelism
Dynamic task scheduling on shared memory computers
Direct static mapping: subtree to subcube

1. Dynamic task scheduling on shared memory computers

Dynamic scheduling of the tasks
Each processor selects a task
Again, problem of elimination tree reordering
Not easy to optimize memory, e.g., in the multifrontal method

405 / 408

Decomposition and computer architectures: 1st level of
parallelism: II

2. Direct static mapping: subtree to subcube
Recursively map processors to the tree parts from the top
Various ways of mapping.
Note: In the SPD (non-pivoting) case the arithmetic work can be
computed and considered
Localized communication
More difficult to share the work among processors in more complex
models

1,2,3,4

1,2,3,4

1,2

1,2

3,4

3,4

406 / 408

Decomposition and computer architectures: 2nd level of
parallelism

Block Cholesky/LU factorization
BLAS / parallel BLAS operations

1D partitioning

2D partitioning

1D and 2D block cyclic distribution

(Only illustrative figures for the talk!)

407 / 408

Decomposition and computer architectures: Distributed
memory parallelism

Basic classical parallelization approaches (consider Cholesky)

Fan-in approach
I Demand-driven column-based algorithm
I Required data are aggregated updates asked from previous columns

bf Fan-out approach
I Data-driven column-based algorithm
I Updates are broadcasted once computed and aggregated
I Historically the first approach; greater interprocessor communication

than fan-in
Multifrontal approach

I Example: MUMPS

408 / 408

	Foreword
	Direct methods and algebraic preconditioners
	Basic terminology
	Sparsity
	Graphs and their matrices
	From matrices to graphs
	Graph searches
	Notes: on matmats (matrix-matrix multiplications) in CSR/CSC formats
	Schemes for solving systems of linear algebraic equations
	Notes: on getting blocks in sparse matrices
	Sparse factorization: fill-in
	Sparse Cholesky factorization - components
	Sparse Cholesky factorization - synthesis
	Sparse LU factorization of generally nonsymmetric matrices
	Sparse LU factorization of generally nonsymmetric matrices
	Initial reordering
	Stability of sparse factorizations
	Symmetric indefinite factorization
	Approximate factorizations, splitting and preconditioning
	Factorization and computer architectures: brief notes

