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Introductory notes

Created as a material supporting online lectures of NMNV533.
Assuming basic understanding of algebraic iterative (Krylov
space) and direct (dense) solvers (elimination/factorization/solve)
(A lot of these is repeated)
The text deal prevailably with purely algebraic techniques. Such
techniques often serve as building blocks for more complex
approaches. In particular, some important techniques are
mentioned at most. Like:

▶ Multigrid/multilevel preconditioners,
▶ Domain decomposition,
▶ Row projection techniques.

Only preconditioning of real systems considered here, although
extension to complex field is typically straightforward.
Orientation in variants of Cholesky and LU decompositions is
assumed.
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Introductory notes: resources / history

The main resource is:
Jennifer Scott and Miroslav Tůma: Algorithms for sparse linear
systems, Birkhäuser- Springer, 2022, to appear.
Printed parts of the resource will be provided to students until it
will appear (expected open access then).
Traditional material also the course text in Czech (nowadays
outdated, not supported); see the web page of the course.
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Introductory notes: resources and history of the
course

A few other resources:
Davis, T. A. (2006). Direct Methods for Sparse Linear Systems.
Fundamentals of Algorithms. SIAM, Philadelphia, PA.
Davis, T. A., Rajamanickam, S., & Sid-Lakhdar, W.M. (2016). A
survey of direct methods for sparse linear systems. Acta Numer.,
25, 383-566.
Duff, I. S., Erisman, A.M., & Reid, J. K. (2017). Direct Methods for
Sparse Matrices (Second ed.). Oxford University Press, Oxford.
George, A. & Liu, J. W. H. (1981). Computer Solution of Large
Sparse Positive Definite Systems. Prentice Hall, Englewood Cliffs,
NJ.
Saad, Y. (2003b). Iterative Methods for Sparse Linear Systems
(Second ed.). SIAM, Philadelphia, PA.
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Motivation

Most of our activities around solving

Ax = b

Direct methods
Iterative methods
Practical boundaries between them more and more fuzzy.
Principially different.
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Motivation

Direct methods

Direct methods: Transform A using a finite sequence of
elementary transformations: An approach based on factorization
(decomposition) and subsequent substitutions.
The most simple case: A→ LLT or LDLT or LU

In principal = Gaussian elimination. Modern (decompositional)
form based a lot on the work of Householder (end of 1950’s)

▶ Solving systems with triangular matrices like L, U is generally much
cheaper and more straightforward that using A.

▶ Factorizations are backbone of direct methods.
▶ Occasionally other factorizations than LU or LLT or LDLT

▶ Most of the work is in the (Cholesky, indefinite, LU) decomposition.
▶ But: also the computer model (sequential, concurrent processors,

multicore, GPU) decides about relative complexity of the two steps.
The algorithms can be made more efficient/stable using additional
techniques before, after or during factorization.
For example, the solution can be made more accurate by an
auxiliary iterative method.
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Motivation

Iterative methods

Compute a sequence of approximations

x(0), x(1), x(2), . . .

that (hopefully) converge to the solution x of the linear system.
Iterative method are usually accompanied by a problem
transformation based on a direct method called preconditioner.
Usually have to be accompanied by a problem transformation
based on a direct method called preconditioner.
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Motivation

Iterative methods

Algebraic preconditioners are tools to convert the problem Ax = b
into the one which is easier to solve. They are typically expressed
in matrix form as a transformation like:

MAx = Mb

M can be then used to apply approximation to A−1 to vectors
used in the iterative method.
In practice, it can store approximation to A or A−1 (approximate
inverse).
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Motivation

Contrast: direct versus iterative methods

Direct methods: designed to be robust, designed to solve
▶ Properly implemented, they can be used as block-box solvers for

computing solutions with predictable accuracy.
▶ As we have seen, they can be expensive, requiring large amounts

of memory, which increases with the size of A.
Iterative methods: designed to approximate

▶ The number of iterations depends on the initial guess x(0), A and b
▶ Use the matrix A only indirectly, through matrix-vector products→

memory requirements are limited to a (small) number of vectors of
length the size of A

▶ A does not need to be available explicitly.
▶ They can be terminated as soon as the required accuracy in the

computed solution is achieved.
▶ Typically must be preconditioned. Preconditioner computation is

sometimes based on a relaxation of a direct method.
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Motivation

Where is the problem with direct methods?

For example: sparse matrices and resulting factorizations may
look like as follows:
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Motivation

Where is the problem with direct methods?

For example: and they can look like as:
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Figure: The locations of the nonzero entries in a symmetric permutation of
the matrix from Figure ?? (left) and in L̄+ L̄T (right), where L̄ is the Cholesky
factor of the permuted matrix.
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Motivation

Where is the problem with direct methods?

For example: and they can look like as:
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Figure: The locations of the nonzero entries in a symmetric permutation of
the matrix from Figure ?? (left) and in L̄+ L̄T (right), where L̄ is the Cholesky
factor of the permuted matrix.
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Motivation

Where is the problem with direct methods?
We need exploit sparsity (mentioned later)
See the figures above
We need sparse (complete) factorizations A = LLT , LU (up to
the floating-point model)

Where is the problem with iterative methods?
We must transform (precondition)
We need sparse (incomplete) factorizations A = LLT , LU (up to
the floating-point model) like

▶ incomplete decompositions (A ≈ LLT , LU etc.)
▶ incomplete inverse decompositions (A−1 ≈ ZZT , WZT etc. )

Or specific (PDE-based, model-based) approaches.
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Basic Terminology

Interest in solving linear systems of equations

Ax = b, (1)

A ∈ Rn×n, 1 ≤ i ≤ n, is nonsingular
A is sparse
b ∈ Rn (sparse or dense), x ∈ Rn is the solutions
Used throughout:

A = (aij), 1 ≤ i, j ≤ n.

Matlab-like notation: nonzero (set a priori), A:,j , Ai,:, Ai:j,k:l, A∗j ,
Ai∗.
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Basic Terminology

(
X
2

)
= {Y ⊆ X | |Y | = 2}

Vectors denoted by small letters as v, u, x, matrices by capital
letters as A,B, . . .

A ∈ Rn×n, 1 ≤ i ≤ n, is nonsingular, the right-hand side vector
b ∈ Rn is given and x ∈ Rn is the required solution vector. n is the
order (or dimension) of A.

17 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 18 — #18 i
i

i
i

i
i

Basic Terminology

A is diagonal if for all i ̸= j, aij = 0;
A is lower triangular if for all i < j, aij = 0

A is upper triangular if for all i > j, aij = 0.
A is unit triangular if it is triangular and all the entries on the
diagonal are equal to one.
A is structurally symmetric if for all i and j for which aij is nonzero
the entry aji is also nonzero.
A is symmetric if

aij = aji, for all i, j.

Otherwise, A is nonsymmetric.
The symmetry index s(A) of A: the number of nonzeros aij , i ̸= j,
for which aji is also nonzero divided by the total number of
off-diagonal nonzeros. Small values of s(A): A is far from
symmetric.

18 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 19 — #19 i
i

i
i

i
i

Basic Terminology: special matrix classes

A is symmetric positive definite (SPD) if it is symmetric and
satisfies

vTAv > 0 for all nonzero v ∈ Rn.

Otherwise, A is symmetric indefinite.
Symmetric and (typically) indefinite saddle point matrices have the
form

A =

(
G RT

R B

)
,

where G ∈ Rn1×n1 , B ∈ Rn2×n2 , R ∈ Rn2×n1 with n1 + n2 = n, G is
a SPD matrix and B is a symmetric positive semidefinite matrix
(that is vTBv ≥ 0 for all nonzero v ∈ Rn2). In some applications,
B = 0.
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Basic Terminology: blocks

Symmetric block structure of A:

A = (Aib, jb), Aib, jb ∈ Rni×nj , 1 ≤ ib, jb ≤ nb, (2)

that is,

A =


A1,1 A1,2 · · · A1,nb

A2,1 A2,2 · · · A2,nb
...

...
. . .

...
Anb,1 Anb,2 · · · Anb,nb

 .

Assuming the square blocks Ajb, jb on the diagonal are
nonsingular.
Special cases: A is block diagonal if Aib, jb = 0 for all ib ̸= jb, A is
block lower triangular if A1:jb−1, jb = 0, 2 ≤ jb ≤ nb, block upper
triangular if Ajb+1:nb, jb = 0, 1 ≤ jb ≤ nb− 1.
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Basic Terminology: blocks and reducibility

Definition

Matrix A ∈ Rn×n is reducible, if there is a permutation matrix P such
that

P TAP =

(
A11 0
A21 A22

)
, (3)

where A11 and A22 are square nontrivial matrices (of dimension at
least 1). If A is not reducible, it is called irreducible. Matrices of
dimension 1 are always considered to be irreducible.

Remark

Symmetric reducible matrix is block diagonal.
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Basic Terminology: sparsity

A is a sparse matrix if many of its entries are zero.
Attempts to formalize matrix sparsity more precisely: matrix of
order n may be said to be sparse if it has O(n) nonzeros.
Our choice: A is sparse if it is advantageous to exploit its zero
entries. Otherwise, A is dense.
The sparsity pattern S{A} of A is the set of nonzeros, that is,

S{A} = {(i, j) | aij ̸= 0, 1 ≤ i, j ≤ n}.

S{A} is symmetric if for all i and j, aij ̸= 0 if and only if aji ̸= 0
(the values of the two entries need not be the same). If S{A} is
symmetric then A is structurally symmetric.
The number of nonzeros in A: denoted by nz(A) (or |S{A}|). A is
structurally (or symbolically) singular if there are no values of the
nz(A) entries of A whose row and column indices belong to S{A}
for which A is nonsingular.
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Basic Terminology: sparsity

Sparsity: taking into account the structure of matrix nonzeros

Definition
Matrix A ∈ IRm×n is said to be sparse if it has O(min{m,n}) entries.
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Basic Terminology: sparsity

Definition
Matrix A ∈ IRm×n is said to be sparse if it has row counts bounded by
rmax << n or column counts bounded by cmax << m.

Definition
Matrix A ∈ IRm×n is said to be sparse if its number of nonzero entries
is O(n1+γ) for some γ < 1.

Definition
(pragmatic, application-based definition: J.H. Wilkinson) Matrix
A ∈ IRm×n is said to be sparse if we can exploit the fact that a part of
its entries is equal to zero.
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Basic Terminology: sparsity

An example showing importance of small exponent γ for n = 104

γ n1+γ

0.1 25119
0.2 63096
0.3 158489
0.4 398107
0.5 1000000
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Basic Terminology: sparsity

Rough comparison of dense and sparse (dimension, storage, time for
decomposition)

Dense matrix
dim space dec time (s)

3000 4.5M 5.72
4000 8M 14.1
5000 12.5M 27.5
6000 18M 47.8

Sparse matrix
dim space dec time (s)

10000 40k 0.02
90000 0.36M 0.5

1M 4M 16.6
2M 8M 49.8

26 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 27 — #27 i
i

i
i

i
i

Basic Terminology: sparsity

Sparse vectors The sparsity pattern of v ∈ Rn is given by

S{v} = {i | vi ̸= 0},

and |S{v}| is the length of v.
Matrix A is factorizable (or strongly regular) if its principal leading
minors (the determinants of its principal leading submatrices) are
nonzero, that is, if its LU factorization without row/column
interchanges does not break down.
SPD matrices are factorizable.
For more general A, in exact arithmetic the following standard
result holds.

Theorem
If A is nonsingular then the rows of A can be permuted so that the
permuted matrix is factorizable. The row permutations do not need to
be known in advance. They can be constructed on-the-fly as the
factorization proceeds.
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Basic Terminology: factorizations

For symmetric positive definite A, the Cholesky factorization
A = LLT , where L is a lower triangular matrix with positive
diagonal entries.

▶ Rewritten as A = L̂DL̂T , where L̂ is a unit lower triangular
matrix and D is a diagonal matrix with positive diagonal
entries: square root-free Cholesky factorization.

For nonsymmetric A, the LU factorization A = LU , where L is a
unit lower triangular matrix and U is an upper triangular matrix.
Gaussian elimination is one process to put a matrix into LU form.

▶ Rewritten as A = LDÛ , where Û is a unit upper triangular
matrix and D is a diagonal matrix. This is called the LDU
factorization.
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Basic Terminology: direct solver phases

First look: The matrix A is factorized and then, given the
right-hand side b, the factors used to compute the solution x.
Second look:
Most approaches further split the factorization into a symbolic
phase (also called the analyse phase) and a numerical
factorization phase that computes the factors.
The symbolic phase: typically uses only S{A} to compute the
nonzero structure of the factors of A without computing the
numerical values of the nonzeros.
The solve phase uses the factors to solve for a single b or for a
block of multiple right-hand sides or for a sequence of right-hand
sides one-by-one.
Historically, the symbolic phase was much faster than the
factorization phase. But parallelising the factorization→ timings
are much more closer.
Series of problems in which the numerical values of the entries of
A change but S{A} does not: symbolic phase just once.
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Basic Terminology: computational environment

Basic sequential model: the von Neumann architecture:union of a
central processing unit (CPU) and the memory, interconnected via
input/output (I/O) mechanisms.

CPU

Memory

I/O

Figure: A simple uniprocessor von Neumann computer model.
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Basic Terminology: computational environment

Nowadays: CPU→ a mixture of powerful processors, co
processors, cores, GPUs, and so on.
Furthermore, performing arithmetic operations on the processing
units is much faster than communication-based operations.
Moreover, improvements in the speed of the processing units
outpaces those in the memory-based hardware. Moore’s Law is
an example of an experimentally derived observation of this kind.
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Basic Terminology: computational environment

Important milestones in processor development have been
multiple functional units that compute identical numerical
operations in parallel and data pipelining (also called vectorization)
that enables the efficient processing of vectors and matrices.
Vectorization often supported by additional tools like instruction
pipelining, registers and by memory architectures with multiple
layers, including small but fast memories called caches.
Superscalar processors that enable the overlapping of identical
(or different) arithmetic operations during run-time have been a
standard component of computers since the 1990s.
The ever-increasing heterogeneity of processing units and their
hardware environment inside computers: expressing the code via
units of scheduling and execution called threads.
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Basic Terminology: computational environment

Computer-based limitations:
▶ Compute throughput, that is, the number of arithmetic operations

that can be performed per cycle.
▶ Memory throughput, that is, the number of operands than can be

fetched from memory/cache and/or registers each cycle
▶ Latency, which is the time from initiating a compute instruction or

memory request before it is completed and the result available for
use in the next computation.

Distinguishing: algorithms compute-bound, memory-bound or
latency-bound.
More ways to hide latency (blocks, prefetch, threads)
Measuring computational intensity: the ratio of the number of
operations to the number of operands read from memory.
Most chips designed such that dense matrix-matrix multiply, which
typically performs n3 operations on n2 data (with ratio k for a
blocked algorithm with block size k), can run at full compute
throughput, whilst matrix-vector multiply performs n2 operations
on n2 data (ratio 1) and is limited by the memory throughput.
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Basic Terminology: computational environment

The development of basic linear algebra subroutines (BLAS) for
performing common linear algebra operations on dense matrices
partially motivated by obtaining a high ratio. efficiently.
Other important motivations behind using the BLAS
(standardization, portability).
Machine-specific optimized BLAS libraries available for a wide
variety of computer architectures.

procedure comm ops ratio
BLAS 1: AXPY: y = y + αx 3n+ 1 2n 2/3

BLAS 2: GEMV: y = Ax n2 + 2n n(2n− 1) 2

BLAS 3: GEMM: C = AB 3n2 n2(2n− 1) n/2

Consequently, exploiting Level 3 BLAS when designing and
implementing matrix algorithms (for both sparse and dense
matrices) can improve performance compared to using Level 1
and Level 2 BLAS.
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Basic Terminology: finite precision arithmetic

The IEEE standard (1985) expresses real numbers as
a = ±d1. d2 . . . dt × 2k, where k is an integer and
di ∈ {0, 1}, 1 ≤ i ≤ t, with d1 = 1 unless d2 = d3 = . . . = dt = 0.
t = 24 (single precision), t = 53 (double precision), exponent k
satisfies −126 ≤ k ≤ 127 (single precision) and −1022 ≤ k ≤ 1023
(double precision).
Floating-point (FP) operations:

fl(a op b) = (a op b)(1 + δ), |δ| ≤ ϵ,

(op is a mathematical operation (such as =,+,−,×, /,√) and
(a op b) is the exact result), ϵ is the machine epsilon.
2× ϵ is the smallest FP number which when added to the FP
number 1.0 gives a result different from 1.0.
ϵ is 2−24 ≈ 10−7 (single precision), ϵ = 2−53 ≈ 10−16 (double
precision).
rounding errors, truncation errors.
catastrophic errors→ numerical instability
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Basic Terminology: bit compatibility

Bit compatibility is essential for some users because of regulatory
requirements (such as within the nuclear or financial industries) or
to build trust in their software from non technical users.
The critical issue is the way in which N numbers (or, more
generally, matrices) are assembled:

sum =

N∑
j=1

Sj ,

where the Sj are computed using one or more processors. The
assembly is commutative but, because of the potential rounding of
the intermediate results, is not associative so that the result sum
depends on the order in which the Sj are assembled.
A straightforward approach to achieving bit compatibility is to
enforce a defined order in such operations.
This may adversely limit the scope for parallelism.
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Basic Terminology: complexity

The computational complexity of a numerical algorithm is typically
based on estimating asymptotically the number of integer or
floating-point operations or the memory usage.

Definition
A real function f(k) of a nonnegative real k satisfies f = O(g) if there
exist positive constants cu and k0 such that

f(k) ≤ cug(k) for all k ≥ k0. (4)

We say that f = Θ(g) if, additionally, there exists a positive constant cl
such that

0 ≤ cl g(k) ≤ f(k) ≤ cu g(k) for all k ≥ k0.
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Basic Terminology: complexity

While O(g) bounds f asymptotically from above, Θ(g) represents
an asymptotically tight bound.
As a simple illustration, consider the quadratic function

f(k) = α ∗ k2 + β ∗ k − γ.

Provided α ̸= 0, f(k) = Θ(k2) and the coefficient of the highest
asymptotic term is α. Computational complexity can estimate
quantities related to the worst-case behaviour of an algorithm
(worst-case complexity), or it can express average behaviour
(average-case complexity).
Unit costs, Sparse matrix algorithms that are Θ(n3) are
considered to be computationally expensive.
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Basic Terminology: complexity

Complexity here and in CS

Because of the development in computations, MFLOPs may be
misleading
Still terminology O(.) (bounding from above) or Θ(.) (bounding
from both sides) sometimes relevant - consists in replacing the
bound (bounds) by constant× simpler function (etalon).
Simpler functions are, e.g., n2, n3, log n, . . .

Distinguish worst case and average case analysis
Inverse Ackermann function will be introduced in exercises
In CS: polynomial complexity versus superpolynomial complexity.
Our case: even n3 may be too much.
Decision problems, polynomial reduction, class NP, etc.
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Basic Terminology: complexity and sparsity

Absolutely crucial for direct methods: complexity for generally
dense matrices, sequential case: O(n3) factorization, O(n2)
substitutions
Useful for iterative methods as well: repeated multiplications and
solve steps. But, expecting rather sparse matrices and (typically)
dense vectors.
Complexity in the sparse case depends on the decomposition
model and computer architecture (implementation,
completeness/incompleteness)

40 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 41 — #41 i
i

i
i

i
i

Outline
1 Introduction
2 Introductory notation and terminology
3 Sparse matrices and data structures
4 Graphs and sparse matrices
5 Factorizations
6 Reducibility and blocks
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Reorderings
12 Algebraic preconditioning
13 Incomplete factorizations
14 Sparse approximate inverses

41 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 42 — #42 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse vector in a computer

Example

Consider the sparse row vector v ∈ R8

v =
(
1. −2. 0. −3. 0. 5. 3. 0.

)
. (5)

The real array valV that stores the nonzero values and corresponding
integer array of their indices indV are of length |S{v}| = 5 and are as
follows:

Subscripts 1 2 3 4 5

valV 1. −2. −3. 5. 3.
indV 1 2 4 6 7
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Sparse vectors and matrices in a computer

Sparse vector in a computer

Alternatively, a linked list can be used.
linked list - based format: stores matrix rows/columns as items
connected by pointers
linked lists can be cyclic, one-way, two-way
A figure for demonstration, only values (not their indices) are
shown

2 6 1

rows/columns embedded into a larger array: emulated dynamic
behavior
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Sparsity

Sparse vector in a computer

Linked list can be embedded into a large array.

Example

Two possible ways of storing the sparse vector using linked lists.

Subscripts 1 2 3 4 5

Values 1. −2. −3. 5. 3.
Indices 1 2 4 6 7
Links 2 3 4 5 0
Header 1

Subscripts 1 2 3 4 5

Values 5. 3. 1. −2. −3.
Indices 6 7 1 2 4
Links 2 0 4 5 1
Header 3
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Sparse vectors and matrices in a computer

Reasons for using linked lists: straightforward adds and removes.

Example

On the left, an entry −4 has been added in position 5. On the right, an
entry −2 in position 2 has been removed. ∗ indicates the entry is not
accessed. The links that have changed are in bold.

Subscripts 1 2 3 4 5 6

Values 1. −2. −3. 5. 3. −4.
Indices 1 2 4 6 7 5
Links 2 3 4 5 6 0
Header 1

Subscripts 1 2 3 4 5

Values 1. ∗ −3. 5. 3.
Indices 1 ∗ 4 6 7
Links 3 ∗ 4 5 0
Header 1
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Sparse vectors and matrices in a computer

Sparse matrix storage
coordinate (or triplet format: the individual entries of A are held as
triplets (i, j, aij), where i is the row index and j is the column
index of the entry aij ̸= 0. (dynamic storage format)
CSR (Compressed Sparse Row) format. The column indices of
the entries of A held by rows in an integer array (which we will call
colindA) of length nz(A), with those in row 1 followed by those in
row 2, and so on (with no space between rows). Sorted or
unsorted. (static storage format)
CSC (Compressed Sparse Columns): analogously by columns
instead of rows.
If A is symmetric, only the lower (or upper) triangular part is
generally stored.
Possible to store only S{A}.
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Sparse vectors and matrices in a computer

Sparse matrix in the coordinate format

Example matrix A ∈ R5×5



1 2 3 4 5

1 3. −2.
2 1. 4.
3 −1. 3. 1.
4 1.
5 7. 6.

. (6)

Example

Subscripts 1 2 3 4 5 6 7 8 9 10

rowindA 3 2 3 4 1 1 2 5 3 5
colindA 3 2 1 4 4 1 5 5 5 2
valA 3. 1. -1. 1. -2. 3. 4. 6. 1. 7.

47 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 48 — #48 i
i

i
i

i
i

Sparse vectors and matrices in a computer

Sparse matrix stored using linked lists

Easy adding and deleting entries is possible if t linked lists are
used: the matrix held as a collection of columns, each in a linked
list. colA_head holds header pointers.

Example

Subscripts 1 2 3 4 5 6 7 8 9 10

rowindA 3 2 3 4 1 1 2 5 3 5
valA 3. 1. -1. 1. -2. 3. 4. 6. 1. 7.
link 0 10 0 0 4 3 9 0 8 0
colA_head 6 2 1 5 7

If we consider column 4, then colA_head(4) = 5, rowindA(5) = 1 and
valA(5) = −2., so the first entry in column 4 is a1,4 = −2.. Next,
link(5) = 4, rowindA(4) = 4 and valA(4) = 1., so the next entry in
column 4 is a4,4 = 1..
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Sparse vectors and matrices in a computer

Sparse matrix in the CSR format

CSR format represents A as follows. Here the entries within each
row are in order of increasing column index.

Example

Subscripts 1 2 3 4 5 6 7 8 9 10

rowptrA 1 3 5 8 9 11
colindA 1 4 2 5 1 3 5 4 2 5
valA 3. -2. 1. 4. -1. 3. 1. 1. 7. 6.

In our codes we often use: ia: rowptrA, ja: colindA, aa: valindA
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Sparse vectors and matrices in a computer

Sparse matrix: static versuis dynamic formats

dynamic data structures:
▶ – more flexible but this flexibility might not be needed
▶ – difficult to vectorize
▶ – difficult to keep spatial locality
▶ – used preferably for storing vectors

static data structures:
▶ – ad-hoc insertions/deletions should be avoided (better algorithms)
▶ – much simpler to vectorize
▶ – efficient access to rows/columns
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Sparse vectors and matrices in a computer

Simulating dynamic storage format
A disadvantage of linked list storage: prohibits the fast access to
rows (or columns) of the matrix. And this is needed!
Simulated dynamism of storage schemes: storage format with
some additional elbow space for new non zero entries of A is
needed.
Often the case in approximate factorizations where new non zero
entries can be added and/or removed and it is hard to predict the
necessary space in advance.
In this case, the elbow space can embed new non zeros.
The format is called the DS format.
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Sparse vectors and matrices in a computer

Sparse matrix: DS formats

Consider again the sparse matrix A ∈ R5×5 (6). The DS format
represents A as follows.

Example
Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rowptrA 1 5 8 12 14
colindA 1 4 2 5 1 3 5 4 2 5
valAR 3. -2. 1. 4. -1. 3. 1. 1. 7. 6.
rowlength 2 2 3 1 2
colptrA 1 4 6 9 12
rowindA 1 3 2 5 3 1 4 2 3 5
valAC 3. -1. 1. 7. 3. -2. 1. 4. 1. 6.
collength 2 2 1 2 3
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Sparse vectors and matrices in a computer

Sparse matrix: DS formats

It can happen that the free space between row and/or column
segments disappears throughout a computational algorithm. Then
the DS format must be reorganized.
In particular, a row segment can be moved to the end of the arrays
valAR and colindA implying also a corresponding update in
rowptrA. The space where the row i originally resided is then
denoted as free.
If there is no free space at the end of the arrays valAR and
colindA, a compression of the row segments or full reallocation
should be done.
While the DS format seems to be complicated, it can be extremely
useful in some cases. Surprisingly efficient if the amount of
changes is limited as it often is in approximate factorizations.
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Sparse matrices and data structures

Block formats
Blocked formats may be used to accelerate multiplication between
a sparse matrix and a dense vector.
The Variable Block Row (VBR) format groups together similar
adjacent rows and columns.
The data structure of the VBR format uses six arrays. Integer
arrays rptr and cptr hold the index of the first row in each block
row and the index of the first column in each block column,
respectively. In many cases, the block row and column
partitionings are conformal and only one of these arrays is
needed. The real array valA contains the entries of the matrix
block-by-block in column-major order. The integer array indx
holds pointers to the beginning of each block entry within valA.
The index array bindx holds the block column indices of the block
entries of the matrix and, finally, the integer array bptr holds
pointers to the start of each row block in bindx.
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Sparse matrices and data structures

Sparse matrix: DS formats

Example

Consider the sparse matrix A ∈ R8×8



1 2 3 4 5 6 7 8

1 1. 2. 3.
2 4. 5. 6.
3 7. 8. 9. 10.
4 11. 12. 15. 16.
5 13. 17.
6 14. 18.
7 19. 20.
8 21. 22.


.

Here the row blocks comprise rows 1:2, 3, 4:6 and 7:8. The column
blocks comprise columns 1:2, 3:5, 6, 7:8. The VBR format stores A as
follows.
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Sparse matrices and data structures

Sparse matrix: DS formats

Example

Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

rptr 1 3 4 7 9
cptr 1 3 6 7 9
valA 1. 4. 2. 5. 3. 6. 7. 8. 9. 10. 11. 14. 12. 13. 15. 17. 16. 18. 19. 21. 22. 20.
indx 1 5 7 10 11 15 19
bindx 1 3 2 3 1 4 2
bptr 1 3 5 7
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Sparse matrices and data structures

Matmats in CSR/CSC

1) CSR - CSC

C = AB,A =

a1
...
am

 , B =
(
b1, . . . , bn

)
, C = (cij) (7)

Each entry cij computed as a product of a compressed row of A
and compressed column of B
Not clear whether the result cij is nonzero
Consequently: O(n3) operations, not useful for sparse matrices.
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Sparse matrices and data structures

Matmats in CSR/CSC

2) CSR - CSR

C = AB,A =

a1
...
am

 , B =

b1
...
bn

 , C = (cij) (8)

*****

* *

* * * *

*
*

*
*

a
B

i
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Sparse matrices and data structures

Matmats in CSR/CSC

2) CSR - CSR

C = AB,A =

a1
...
am

 , B =

b1
...
bn

 , C = (cij) (9)

* *

* * * *

*
*

*
*

a
B

i

*
*

*
*

*

T
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Sparse matrices and data structures

Matmats in CSR/CSC

3) CSC - CSR

C = AB,A =
(
a1, . . . , am

)
, B =

b1
...
bn

 , C = (cij) (10)

How one can store A by CSC and pass it by rows?
Pointers to first entries in columns: (array first)
First test: nonzero in the first row→ move one step down, add
next nonzero into the list value(next)
Complexity: O(nonzeros) +O(n)
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Sparse matrices and data structures

Matmats in CSR/CSC

3) CSC - CSR

* *

* * *

first (pointers to starting entries)

head(i) row pointer

head(j) row pointer

row entries form linked lists

Based on forming virtual rows in A
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Graphs and sparse matrices

Directed and undirected graphs
Many sparse matrix algorithms exploit the relationship matrices↔
graphs.
A graph G = (V, E) is a finite set V of vertices (or nodes), and a
set E of edges defined as pairs of distinct vertices.
No distinction between the pairs (u, v) and (v, u): the edges are
represented by unordered pairs, the graph is undirected.

Definition

Simple undirected graph G is an ordered pair of sets (V,E), where
V = {v1, . . . , vn} is called the set of vertices of G, E = {e1, . . . , em} is
called the set of edges satisfying (no multiple edges, no loops)

E ⊆
(
V
2

)
.

If the pairs are ordered: directed graph (a digraph).
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Graphs and sparse matrices

Directed and undirected graphs

1 2

3

4

5

67

Figure: An example of an undirected graph.

1 2

3

4

5

6 7

Figure: An example of a directed graph (digraph). The arrows indicate the
direction of an edge. There is an edge (4→ 5) and an edge (5→ 4). 64 / 609
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Graphs and their matrices

Bipartite graphs

Definition
A simple bipartite graph is an ordered pair of sets (R,C,E) such that
E = {{i, j}|i ∈ R, j ∈ C}. R is called the row vertex set, C is called the
column vertex set and E is called the edge set.
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Graphs and their matrices

Graph terminology

A labelling (or ordering) of a graph G = (V, E) with n vertices is a
bijection of {1, 2, . . . , n} onto V. The integer i (1 ≤ i ≤ n) assigned
to a vertex in V is called the label (or simply the number).
Our standard choice of vertices will be V = {1, . . . , n} so that the
vertices are directly identified by their labels.
Another example of a labelled undirected graph:

1

2

4

3

6 5

Simple undirected graph G = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {2, 3},
{1, 4}, {3, 4}, {3, 6}, {3, 5}, {5, 6}})
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Graphs and their matrices

Graph terminology

Gs = (Vs, Es) is a subgraph of G = (V, E) if and only if Vs ⊆ V and
Es ⊆ E and (us, vs) ∈ Es implies us, vs ∈ Vs.
The subgraph is an induced subgraph if Es contains all the edges
in E that have both u and v in Vs.
Two graphs G = (V, E) and Gs = (Vs, Es) are isomorphic if there is
a bijection g : V → Vs that preserves adjacency, that is (u, v) ∈ E
if and only if (g(u), g(v)) ∈ Es.
Undirected graph: two vertices u and v in V are said to be
adjacent (or neighbours) if e = (u, v) ∈ E ; the edge e is incident to
the vertex u and to the vertex v. u and v are the endpoints of e.

We also use the notation (u←→ v) for an edge (or (u G←−−→ v) to
emphasise the edge belongs to the graph G).
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Graphs and their matrices

Graph terminology

The degree degG(u) of u ∈ V is the number of vertices in V that
are adjacent to u, and the adjacency set adjG{u} is the set of
these adjacent vertices (thus |adjG{u}| = degG(u)).
If Vs is a subset of the vertices, then the adjacency set adjG{Vs} is
the set of vertices in V \ Vs that are adjacent to at least one vertex
in Vs.
A subgraph is a clique when every pair of vertices is adjacent. In
the example in Figure 4, degG(2) = 4 and adjG{2} = {1, 3, 4, 6}.
The induced subgraph with vertices Vs = {2, 4, 6} is a clique.
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Graphs and their matrices

Graph terminology

Notation (u→ v) for a directed edge.

Emphasising the graph to which the edge belongs: (u G−−→ v).
In a digraph there can be an edge (u→ v) but no edge (v → u).
The adjacency set of u can be split into two parts

adj+G {u} = {v | (u→ v) ∈ E} and adj−G {u} = {v | (v → u) ∈ E}.

In the example given in Figure: adj+G {2} = {3, 4}, adj
−
G {2} = 1.

A sequence of k edges in an undirected graph G: a walk.

u0 ←→ u1 ←→ . . .←→ uk−1 ←→ uk

If G is a digraph then the sequence: a directed walk.

u0 −→ u1 −→ . . . −→ uk−1 −→ uk

k is the length of the walk. A walk of zero length: k = 0.
69 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 70 — #70 i
i

i
i

i
i

Graphs and their matrices

Graph terminology

The vertices u0 and uk are connected by the walk and for k > 0,
uk is said to be reachable from u0;
The set of vertices that are reachable from u0 is denoted by
Reach(u0). The walk is closed if u0 = uk; a closed walk is called a
cycle.
Graphs that do not contain cycles are acyclic.
A (directed) trail is a (directed) walk in which all the edges are
distinct and a (directed) path is a (directed) trail in which all the
vertices (and therefore also all the edges) are distinct.
The distance between two vertices is the number of edges in the
shortest path connecting them (this is also called the length of the
path).
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Graph terminology

If the vertices V are labelled 1, 2, . . . , n then in the undirected
graph G = (V, E) a path between a pair of its vertices with labels i
and j is denoted by

i
G⇐==⇒ j

or, if it is clear which graph the path is in, by

i⇐⇒ j.

If all intermediate vertices on the path are less than min{i, j} then
the path is called a fill-path and is denoted by

i
G⇐==⇒

min
j or i⇐==⇒

min
j.
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Graph terminology

If all intermediate vertices on the path belong to a subset Vs then
the path is denoted by

i
G⇐==⇒
Vs

j or i⇐===⇒
Vs

j.

If G is a digraph, the double-sided arrow symbols are replaced by
one-sided ones =⇒ in the direction of the edges. For example,

i
G

===⇒ j, i =⇒ j, i ===⇒
min

j and i ====⇒
Vs

j.
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Graph terminology
Digraph with no cycles (directed acyclic graph): DAG.
In a DAG, if there is a path u =⇒ v then u is called an ancestor of
v and v is said to be a descendant of u.
DAG with two different orderings. Left: vertices 2, 3, 5 and 6 are
descendants of 1. Only vertices 5 and 6 are descendants of
vertex 4.

1 2

3

4

5

6

2 3

5

1

4

6

Figure: An example of a DAG with two different topological orderings.

If directions of all edges in a DAG are reversed: also a DAG.
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Graph terminology: reachability

Given a graph and a subset Vs of vertices, if u and v are two
distinct vertices that do not belong to Vs, then v is reachable from
u through Vs if u and v are connected by a path that is either of
length 1 or is composed entirely of vertices that belong to Vs
(except for the endpoints u and v).
Given Vs and u /∈ Vs, the reachable set Reach(u,Vs) of u through
Vs is the set of all vertices that are reachable from u through Vs.
Note that if Vs is empty or u does not belong to adjG(Vs) then
Reach(u,Vs) = adjG(u).
A simple example is given in Figure.
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Graph terminology: reachability

1

23

4567

Figure: An example of an undirected graph to illustrate reachability. If
Vs = {4, 5} then Reach(2,Vs) = {1, 3, 6} and Reach(6,Vs) = {2, 3, 7}.
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Graph terminology: connectedness, trees

An undirected graph is connected if every pair of vertices is
connected by a path.
A connected acyclic graph is called a tree, that is, a tree is an
undirected graph in which any two vertices are connected by
exactly one path.
Every tree has at least two vertices of degree 1. Such vertices are
called leaf vertices.
A graph is a forest if it consists of a disjoint union of trees. This is
illustrated in Figure. Connectivity is an equivalence relation and
consequently, it provides a partition of V into disjoint equivalence
classes.
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Graph terminology: connectedness, trees

6
5

4
3

21

7

9

8

10 11

12

Figure: An example of an undirected graph with 12 vertices that is a forest (it
consists of two disjoint trees). Vertices 1, 2, 3, 6, 7, 8 and 11 are leaf vertices.
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Graph terminology: connected, strongly connected

If G is connected then a spanning tree of G is a subgraph of G that
is a tree containing every vertex of G.
A directed graph G = (V, E) is strongly connected if for every pair
of vertices u, v ∈ V there is a path from u to v and a path from v to
u.
Strong connectivity is an equivalence relation on V. It induces a
partitioning V = V1 ∪ . . . ∪ Vs such that each Vi (1 ≤ i ≤ s) is
strongly connected and is maximal with this property: no
additional vertices from G can be included in Vi without breaking
its strong connectivity.
The Vi are called strongly connected components (or sometimes
just strong components) of G.
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Graph terminology: rooted trees

Any undirected tree T = (V, E) can be converted to a directed
rooted tree T ′ = (V, E ′) by specifying a root vertex r.
r can be chosen arbitrarily: any choice gives a directed rooted
tree. An edge with endpoints u and v in E becomes a directed
edge (u→ v) in E ′ if there is a path from u to r such that the first
edge of this path is from u to v.
A rooted tree is a special case of a DAG.
v is called the parent of u if the directed edge (u→ v) ∈ E ′; u is
said to be a child of v (two or more child vertices are referred to as
children). Two vertices in a rooted tree are siblings if they have the
same parent. Leaf vertices have no children.
Given r, this directed path is unique.
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Graph terminology: rooted trees

1

4

2

6 5

7

3

1 2

4

6

7

5

3

Figure: An example of a an undirected tree T (left) and the rooted tree T ′

(right) obtained from T by choosing the root r = 4. The arrows indicate the
direction of the edges.
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Another example of a rooted tree

1

8 2 9

7 6

3 4 5

10

11

12

The root of this tree is 12

Then, for example, 10 is an ancestor of vertices 2, 8 a 9. These
vertices are descendants of 10. Set of ancestors of 10 is
anc(10) = {10, 11, 12}. parent(i) for vertices 1 . . . 11 is
8, 10, 7, 7, 6, 9, 9, 10, 10, 11, 12, null.
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Adjacency graphs provide a link between sparse matrices and
graphs. If A is a sparse matrix of order n then an adjacency graph
G(A) (often written simply as G) with n vertices V(A) = {1, . . . , n}
can be associated with it.
If A is structurally symmetric, then the edge set is

E(A) = {(i, j) | aij ̸= 0, i ̸= j} .

A digraph can be associated with a nonsymmetric A by setting

E(A) = {(i→ j) | aij ̸= 0, i ̸= j}.

Each diagonal nonzero aii corresponds to a loop or self edge.
Loops are generally omitted from G since many algorithms that
use A assume that the diagonal entries of A are present.
To capture not only the sparsity pattern of A but also the values of
the entries, G can be transformed into a weighted graph using a
mapping E(A)→ R and/or V(A)→ R.
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Adjacency matrix of an undirected graph

Definition
For a simple undirected graph G = (V,E) with V = {1, . . . , n} the
adjacency matrix is the (0, 1) matrix AG = (aij) (i, j ∈ V ), where aij is
0 if there is an edge {i, j} in E where i, j ∈ V and zero otherwise.



1 1
1 1

1 1 1 1
1 1

1 1
1 1


Adjacency matrix for the undirected graph above.
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Incidence matrix of an undirected graph

Definition
For a simple undirected graph G = (V,E) with V = {1, . . . , n} and
E = {1, . . . ,m} the incidence matrix is the (0, 1) matrix AG = (aij)
(i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}), where aij = 1, if j is the vertex of the
edge i and aij = 0 otherwise.

Incidence matrix is generally rectangular.
Several slightly differing definitions of adjacency and incidence
matrices.
Various generalizations.
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Transfer between the classes of undirected and directed graphs

Symmetrization: directed→ undirected

▶ Just considering edges from V × V as from
(
V
2

)
Orientation: undirected→ directed

▶ Not unique. Instead from an edge from
(
V
2

)
we can have one or

two edges from V × V .

In any case, part of terminology is shared between the classes of
undirected and directed graphs
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

1 2 3 4 5

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗




1 2 3 4 5

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗



3

5

4

2

1

3

5

4

2

1

Figure: An example of a structurally symmetric sparse matrix and its
undirected graph (left) and a nonsymmetric sparse matrix and its digraph
(right). Arrows indicate the direction of the edges in the digraph.
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Graphs of triangular matrices

A special case is the directed graph associated with a triangular
matrix. If L is a lower triangular matrix and U is an upper triangular
matrix then the directed graphs G(L) and G(U) have edge sets

E(L) = {(i→ j) | lij ̸= 0, i > j}

E(U) = {(i→ j) |uij ̸= 0, i < j}

It is sometimes convenient to use G(LT ) in which the direction of
the edges is reversed

E(LT ) = {(j → i) | lij ̸= 0, i > j}. (11)

It is straightforward to see that G(L), G(LT ) and G(U) are DAGs.
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Permutation matrices

A permutation matrix is a square matrix that has exactly one entry
equal to 1 in each row and column, and all remaining entries are
zeros (that is, it is a permutation of the identity matrix).
Premultiplying a matrix by P reorders the rows and postmultiplying
by P reorders the columns. P can be represented by an
integer-valued permutation vector p, where pi is the column index
of the 1 within the i-th row of P . For example,

P =

0 1 0
0 0 1
1 0 0

 and p =

2
3
1

 .

The graph of a matrix A is unchanged if a symmetric permutation
A′ = PAP T is performed, only the labelling of the vertices
changes and thus relabelling G(A) can be used to permute A.
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Graphs of arrowhead matrices
Consider the arrowhead matrix A and its graph G(A). The
symmetrically permuted matrix A′ and G(A′) are also shown, with P
such that the first row and column of A are the last row and column of
A′.


1 2 3 4 5

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗




1 2 3 4 5

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗ ∗



1

2

3

4

5

5

1

2

3
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Topological orderings of digraphs

The digraph of a general matrix A is not invariant under
nonsymmetric permutations PAQ, with Q ̸= P T . A topological
ordering of a directed graph is a labelling of its vertices such that
for every edge (i→ j), vertex i precedes vertex j (i.e., i < j).
A topological ordering is possible if and only if the graph has no
directed cycles, that is, if it is a DAG. Any DAG has at least one
topological ordering.
Non-unique (see above).
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Lists
A list is an ordered sequence of arbitrary elements

(u0, u1, . . . , uk−1, uk) (12)

u0 is the head of the list and uk is its tail. An empty list: ().
A stack is a list in which elements can only be added to or
removed from the head. A pointer locates the head of the stack.
Let S = (u0, u1, . . . , uk−1, uk) be a stack. push(S, v) denotes
adding v onto the stack by incrementing the pointer by one, giving
(v, u0, . . . uk). pop(S, u0) denotes the stack (u1, . . . uk) that results
from decreasing the pointer by one (removing u0 from the head).
A queue is a list in which elements can be added to the tail
(appended) or removed (popped) from the head. Two pointers
locate the head and the tail. Consider the queue
Q = (u0, u1, . . . , uk−1, uk). The append operation append(Q, uk+1)
results in the queue (u0, . . . uk, uk+1) and the pop operation
pop(Q, u0) results in the queue (u1, . . . uk).
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Stack and queue once more

Definition
List is called queue, if it enables efficient

access head of a list,
deletion of the list head (pop) and
adding an element behind the current tail.

List is called stack, if it enables efficient
access head of a list,
deletion of the list head (pop) and
adding and element before the current head (push).
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Stack and queue
Queue and stack are schematically depicted below. The arrows
represent efficient (easily implementable) operations.
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Searching the adjacency graph G(A) = (V, E)
The sequence in which the vertices are visited can be used to
reorder the graph and hence permute the matrix.
Given a start vertex, a graph search (graph traversal) performs
exploration of the vertices and edges of G(A)

It generates sets of visited vertices and explored edges.
Vv: the set of visited vertices, Vn: the set of vertices not yet visited.
The search: selects an unexplored edge in E with vertices in Vv. If
the other vertex belongs to Vn then this vertex is moved into Vv
and the edge is flagged as explored.
The explored edge may be directed or undirected; in an
undirected graph, the edge (v, w) formally corresponds to the pair
of edges (w → v) and (v → w).
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Starting from a chosen start vertex s, a breadth-first search (BFS)
explores all the vertices adjacent to s.
Then all the vertices whose shortest path from s is of length 2,
and then length 3, and so on
A queue is used in its implementation.
The search terminates when there are no unexplored edges (v, w)
with v ∈ Vv and w ∈ Vn that are reachable from s.

76

2

1

3

8

54

Figure: An illustration of a BFS of a connected undirected graph, with the
labels indicating the order in which the vertices are visited.
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DFS

A depth-first search (DFS) visits child vertices before visiting
sibling vertices
Starting from a chosen vertex s, the set of vertices that are visited
are those vertices u for which a directed path from s to u exists in
G.
Different results depending on s and how ties are broken.
Like the BFS, all vertices in Reach(s) are visited.
Traversed edges form a DFS spanning tree. Visiting all the edges
of a graph results in a DFS forest that consists of exactly one DFS
spanning tree for each connected component.
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DFS

43

2

1

5

6

7

Figure: An illustration of a DFS of a connected directed graph. The labels
indicate the order in which the vertices are visited. The edges of the DFS
spanning tree are in bold.
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DFS

Number of ways to construct the output vertex order for a DFS.
Given a start vertex s, in a preorder list, the vertices are returned
in the order in which they are added into Vv
In a postorder list, the vertices are in the order in which they are
last visited during the DFS algorithm
For the example in Figure, the vertices are added into Vv in the
order 1, 2, 3, 4, 5, 6, 7 and this is the preorder list.
The sequence in which the DFS visits the vertices is
1, 2, 3, 2, 4, 2, 1, 5, 6, 5, 1, 7, 1. In this sequence, vertex 3 is the first
vertex to appear for the last time so the postordering starts with
vertex 3. The next vertex to appear for the last time is vertex 4,
followed by vertex 2, and so on, resulting in the postorder list
3, 4, 2, 6, 5, 7, 1.
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Algorithm (Find preorder and postorder lists using a DFS)
1: Vv = ∅, preorder = () and postorder = ()

2: for all v ∈ V do
3: if v ̸∈ Vv then
4: push(preorder, v) ▷ Add v onto the preorder stack
5: Vv = Vv ∪ {v} ▷ Add v to the set of visited vertices
6: dfs_step(v)
7: end if
8: end for
9: recursive function (dfs_step(v))

10: for all (v → w) ∈ E do
11: if w ̸∈ Vv then
12: push(preorder, w) ▷ Add w onto the preorder stack
13: Vv = Vv ∪ {w} ▷ Add w to the set of visited vertices
14: dfs_step(w) ▷ recursive search
15: end if
16: end for
17: push(postorder, v) ▷ Add v onto the postorder stack
18: end recursive function 99 / 609
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1 Introduction
2 Introductory notation and terminology
3 Sparse matrices and data structures
4 Graphs and sparse matrices
5 Factorizations
6 Reducibility and blocks
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Reorderings
12 Algebraic preconditioning
13 Incomplete factorizations
14 Sparse approximate inverses
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Introduction to factorizations
Entries of factors outside S{A}: filled entries. Together the filled
entries are called the fill-in.
Adding the fill-in to G(A): the filled graph.
Numerical cancellations in LU factorizations rarely happen. Also
difficult to predict.
non-cancellation assumption: assuming that the result of adding,
subtracting or multiplying two nonzeros is nonzero. It follows that if
A = LU and EL denotes the set of (directed) edges of the digraph
G(L) then for i > j

aij ̸= 0 implies (i→ j) ∈ EL.

Observation
The sparsity structures of the LU factors of A satisfy

S{A} ⊆ S{L+ U}.
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Introduction to factorizations

The traditional way of describing Gaussian elimination is based on
the systematic annihilation of the entries in the lower triangular
part of A column-by-column.
Assuming A is factorizable, this can be written formally as
sequential multiplications by column elimination matrices
Getting the elimination sequence:

A = A(1), A(2), . . . , A(n) (13)

of partially eliminated matrices as follows:

A(1) → A(2) = C1A
(1) → A(3) = C2C1A

(1) → . . .→ A(n) = Cn−1 . . . C1A
(1).

The unit lower triangular matrices Ci (1 ≤ i ≤ n− 1) are the
column elimination matrices.
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Elementwise, assuming a11 = a
(1)
11 ̸= 0, the first step C1A

(1) = A(2) is

1

−a(1)
21 /a

(1)
11 1

−a(1)
31 /a

(1)
11 1

... 1

−a(1)
n1 /a

(1)
11 1





a
(1)
11 a

(1)
12 . . . a

(1)
1n

a
(1)
21 a

(1)
22 . . . a

(1)
2n

a
(1)
31 a

(1)
32 . . . a

(1)
3n

...
...

. . .
...

a
(1)
n1 a

(1)
n2 . . . a

(1)
nn


=



a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

0 a
(2)
32 . . . a

(2)
3n

...
...

. . .
...

0 a
(2)
n2 . . . a

(2)
nn


,

Provided a
(2)
22 ̸= 0, the second step C2A

(2) = A(3) is



1

1

−a
(2)
32 /a

(2)
22 1

... 1

−a
(2)
n2 /a

(2)
22 1





a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

0 a
(2)
32 . . . a

(2)
3n

...
...

. . .
...

0 a
(2)
n2 . . . a

(2)
nn


=



a
(1)
11 a

(1)
12 . . . . . . a

(1)
1n

0 a
(2)
22 . . . . . . a

(2)
2n

0 0 a
(3)
33 . . . a

(3)
3n

...
...

...
. . .

...

0 0 a
(3)
n3 . . . a

(3)
nn


.
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Introduction to factorizations
The k-th partially eliminated matrix is A(k).

The active entries in A(k): a(k)ij , 1 ≤ k ≤ i, j ≤ n. The submatrix of
A(k) with the active entries: active submatrix.
G(A(k)) is the k-th elimination graph and is denoted by Gk. If S{A}
is nonsymmetric then Gk is a digraph.
The inverse of each Ck is the unit lower triangular matrix obtained
by changing the sign of all the off-diagonal entries.
The product of unit lower triangular matrices (beware the order) is
a unit lower triangular matrix: provided a

(k)
kk ̸= 0 (1 ≤ k < n)

A = A(1) = C−1
1 C−1

2 . . . C−1
n−1A

(n) = LU,

The subdiagonal entries of L are the negative of the subdiagonal
entries of the matrix C1 + C2 + . . .+ Cn−1.
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Introduction to factorizations: SPD

If A is a symmetric positive definite (SPD) matrix then setting
U = DLT , the LU factorization can be written as

A = LDLT ,

This is the square root-free Cholesky factorization.
Alternatively, it can be expressed as the Cholesky factorization

A = (LD1/2)(LD1/2)T ,

where the lower triangular matrix LD1/2 has positive diagonal
entries.
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Introduction to factorizations: generic scheme

LU factorization can be stated in the generic form. lik: multipliers, a(k)kk :
pivots. A is factorizable⇒ a

(k)
kk ̸= 0 for all k.

Algorithm (Generic LU factorization)
Input: Factorizable matrix A.
Output: LU factorization A = LU .

1: for ————– do
2: for ————– do
3: for ————– do
4: lik = a

(k)
ik /a

(k)
kk

5: a
(k+1)
ij = a

(k)
ij − lika

(k)
kj

6: end for
7: end for
8: end for
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Introduction to factorizations: generic scheme

Three nested loops: six ways of assigning the indices to the loops.
The performance differs based on sparsity, computer architecture.
In exact arithmetic: the same L and U .
To identify the variants, names that derive from the order in which
the indices are assigned to the loops can be used.

▶ kij and kji: submatrix LU factorizations,

▶ jik and jki: column factorizations.

▶ The remaining ones: row factorizations (column LU factorization
applied to AT .)
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Submatrix LU
Each outermost step of the submatrix LU variants computes one row
of U and one column of L. The first step (k = 1) can be described
using a combination of matrix and vector notation as follows:

C1A =

(
1

−v/a11 I

)(
a11 uT

v A2:n,2:n

)
=

(
a11 uT

A2:n,2:n − vuT /a11

)
,

where

v =
(
a21, . . . , an1

)T
,
(
l21, . . . , ln1

)T
= v/a11, uT =

(
a12, . . . , a1n

)
.

The (n− 1)× (n− 1) active submatrix

S = A2:n,2:n − vuT /a11

is the Schur complement of A with respect to a11. If A is factorizable
then so too is S and the process can be repeated.
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Submatrix LU

The operations performed at each step k correspond to a
sequence of rank-one updates.
After k − 1 steps (1 < k ≤ n), the (n− k + 1)× (n− k + 1) Schur
complement of A with respect to its (k − 1)× (k − 1) principal
leading submatrix is the active submatrix of the partially
eliminated matrix A(k) given by

S(k) =

akk . . . akn

...
. . .

...
ank . . . ann

− k−1∑
j=1

lkj
...
lnj

(
ujk . . . ujn

)

=


a
(k)
kk . . . a

(k)
kn

...
. . .

...
a
(k)
nk . . . a

(k)
nn

 = A
(k)
k:n,k:n. (14)

If A is SPD then the Cholesky and LDLT factorizations are termed right-looking
(fan-out) factorizations.
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Factorizations

Submatrix LU: example

A =


4 −1 −5 −11 6
−1 4 −2 −1 3
−1 0 4 −1 5
6 7 8 10 2
8 −1 −1 4 7


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Factorizations

Submatrix LU: example

A =


4 −1 −5 −11 6

−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.25 2.75 −3.75 6.5
1.5 8.5 15.5 26.5 −7
2 1 9 26 −5


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Factorizations

Submatrix LU: example

A =


4 −1 −5 −11 6

−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.07 2.53 −4 6.8
1.5 2.27 22.87 35 −17.2
2 0.27 9.87 27 −6.2


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Factorizations

Submatrix LU: example

A =


4 −1 −5 −11 6

−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.07 2.53 −4 6.8
1.5 2.27 9.03 71.1 −78.6
2 0.27 3.89 42.6 −32.7


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Factorizations

Submatrix LU: example

A =


4 −1 −5 −11 6

−0.25 3.75 −3.25 −3.75 4.5
−0.25 −0.07 2.53 −4 6.8
1.5 2.27 9.03 71.1 −78.6
2 0.27 3.89 0.6 14.4


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Factorizations

Submatrix LU: kij algorithm

Algorithm

kij lu decomposition (row oriented submatrix dense algorithm)
l = In
u = On
for k=1:n-1

for i=k+1:n
lik = aik/akk
for j=k+1:n

aij = aij − lik ∗ akj
end

end
ukk:n = akk:n

end
unn = ann
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Factorizations

Submatrix LU: kji algorithm

Algorithm

kji lu decomposition (column oriented submatrix dense algorithm)
l = In, u = On
for k=1:n-1

for s=k+1:n
lsk = as,k/ak,k

end
for j=k+1:n

for i=k+1:n
aij = aij − lik ∗ akj

end
end
ukk:n = akk:n

end
unn = ann
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Factorizations

Submatrix LU: depiction
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Column LU
In the column LU factorization, the outermost index is j.
l11 = 1, the off-diagonal entries in column 1 of L are obtained by
dividing the corresponding entries in column 1 of A by u11 = a11.
Assume j − 1 columns (1 < j ≤ n) of L and U have been
computed. Then(

L1:j−1,1:j−1

Lj:n,1:j−1

)
U1:j−1,1:j−1 =

(
A1:j−1,1:j−1

Aj:n,1:j−1

)
.

Column j of U and then column j of L are computed as
U1:j−1,j = L−1

1:j−1,1:j−1A1:j−1,j , ujj = ajj − Lj,1:j−1U1:j−1,j ,

ljj = 1, Lj+1:n,j = (Aj+1:n,j − Lj+1:n,1:j−1U1:j−1,j)/ujj .

The strictly upper triangular part of U:j is determined from
L1:j−1,1:j−1U1:j−1,j = A1:j−1,j ,

The strictly lower triangular part of column j of L computed as a
linear combination of column Aj+1:n,j of A and previously
computed columns of L.
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Factorizations

Column LU: A symmetric

Observation

djj (1 ≤ j ≤ n) of the LDLT factorization of the symmetric A is

djj = ujj = ajj −
j−1∑
k=1

dkkl
2
jk.

The L factor is the same as is computed by the column LU factorization
and

djjLj+1:n,j = Aj+1:n,j −
j−1∑
k=1

Lj+1:n,k dkk ljk.

The U factor is equal to DLT . Computing L and D in this way is called
the left-looking (fan-in) factorization.
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Algorithm (Column LU factorization with interchanging rows
(partial pivoting))
Input: Nonsingular nonsymmetric matrix A.
Output: LU factorization PA = LU , where P is a row permutation
matrix.

1: Interchange rows of A so that |a11| = max{|ai1| | 1 ≤ i ≤ n}
2: l11 = 1, u11 = a11, L2:n,1 = A2:n,1/a11

3: for j = 2 : n do
4: Solve L1:j−1,1:j−1U1:j−1,j = A1:j−1,j

5: z1:n−j+1 = Aj:n,j − Lj:n,1:j−1U1:j−1,j

6: Apply row interchanges to z, A and L so that
|z1| = max{|zi| | 1 ≤ i ≤ n− j + 1}.

7: ljj = 1, ujj = z1 and Lj+1:n,j = z2:n−j+1/z1

8: end for
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Factorizations

Column algorithm: example

A =


4 −1 −5 −11 6
−1 4 −2 −1 3
−1 0 4 −1 5
6 7 8 10 2
8 −1 −1 4 7


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Factorizations

Column algorithm: example

A =


4 −1 −5 −11 6

−0.25 4 −2 −1 3
−0.25 0 4 −1 5
1.5 7 8 10 2
2 −1 −1 4 7


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Factorizations

Column algorithm: example

A =


4 −1 −5 −11 6

−0.25 3.75 −2 −1 3
−0.25 −0.07 4 −1 5
1.5 2.27 8 10 2
2 0.27 −1 4 7


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Column algorithm: example

Two completely different phases of the column construction.
▶ applying L−1

j−1 (as a forward substitution)

▶ computing subdiagonal part of L as a linear combination of a
column of A with previously computed columns of L

They are separated in the Cholesky factorization
Row algorithm is column algorithm for AT
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Column algorithm: jki

Algorithm

jki lu decomposition (delayed column dense algorithm)
l = In, u = On, u11 = a11
for j=2:n

for s=j:n
lsj−1 = asj−1/aj−1j−1

end
for k=1:j-1

for i=k+1:n
aij = aij − lik ∗ akj

end
end
u1:jj = a1:jj

end
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Column algorithm: jik

Algorithm

jik lu decomposition (dot product - based column dense algorithm)
l = In, u11 = a11
for j=2:n

for s=j:n
lsj−1 = asj−1/aj−1j−1

end
for i=2:j

for k=1:i-1
aij = aij − lik ∗ akj

end
end
for i=j+1:n

for k=1:j-1
aij = aij − lik ∗ akj

end
end
u1:jj = a1:jj

end
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Column algorithm: depiction
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Row algorithm: ikj

Algorithm

ikj lu decomposition (delayed row dense algorithm)
l = In
u = On
u11:n = a1,1:n
for i=2:n

for k=1:i-1
lik = aik/akk
for j=k+1:n

aij = aij − lik ∗ akj
end

end
uii:n = aii:n

end
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Row algorithm: ijk

Algorithm

ijk lu decomposition (dot product - based row dense algorithm)
l = In, u = On, u11:n = a11:n
for i=2:n

for j=2:i
lij−1 = aij−1/aj−1j−1
for k=1:j-1

aij = aij − lik ∗ akj
end

end
for j=i+1:n

for k=1:i-1
aij = aij − lik ∗ akj

end
end
ui,i:n = ai,i:n

end
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Row algorithm: depiction

������������������������������������������������������i
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Outside the generic scheme
An alternative is factorization by bordering.
Set all diagonal entries of L to 1 and assume the first k− 1 rows of
L and first k − 1 columns of U (1 < k ≤ n) have been computed
(that is, L1:k−1,1:k−1 and U1:k−1,1:k−1). At step k, A1:k,1:k satisfies(

A1:k−1,1:k−1 A1:k−1,k

Ak,1:k−1 akk

)
=

(
L1:k−1,1:k−1 0
Lk,1:k−1 1

)(
U1:k−1,1:k−1 U1:k−1,k

0 ukk

)
.

That is, the lower triangular part of row k of L and the upper
triangular part of column k of U are obtained by solving

Lk,1:k−1U1:k−1,1:k−1 = Ak,1:k−1,

L1:k−1,1:k−1U1:k−1,k = A1:k−1,k.

The diagonal entry ukk is then given by

ukk = akk − Lk,1:k−1U1:k−1,k (with u11 = a11).
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A not factorizable

What if A is not factorizable?
Then there exists a row permutation matrix P such that PA is
factorizable.
Consider the simple 2× 2 matrix A and its LU factorization

A =

(
δ 1
1 1

)
=

(
1

δ−1 1

)(
δ 1

1− δ−1

)
.

If δ = 0 this factorization does not exist and if δ is very small then
the entries in the factors involving δ−1 are very large.
Interchanging the rows of A we have

PA =

(
1 1
δ 1

)
=

(
1
δ 1

)(
1 1

1− δ

)
,

which is valid for all δ ̸= 1.
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Lemma
Consider one step of the submatrix factorization of an SPD A. Schur
complement of A with respect to (positive) a1,1 is positive definite.

Proof.
For

(
α zT

)T we have xTAx =

(
α zT

)( a1,1 a1,2:n
a2:n,1 A2:n,2:n

)(
α
z

)
= (15)

α2a1,1 + αa1,2:nz + αzT a2:n,1 + zTA2:n,2:nz = (16)

(α+ a−1
1,1a1,2:nz)

T a1,1(α+ a−1
1,1a1,2:nz) + zT (A2:n,2:n − a2:n,1a

−1
1,1a1,2:n)z (17)

Choosing z ̸= 0 and setting α = −a−1
1,1a1,2:nz we get

xTAx = zTSz where S = A2:n,2:n − a2:n,1a
−1
1,1a1,2:n.
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Schemes for Cholesky
Left-looking schemes (second part of the column LU)
Right-looking schemes (just the submatrix scheme)
The row scheme corresponds to the first part of the Cholesky
algorithm.
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Submatrix (right-looking) Cholesky

A =

 a1,1 a1,2 a1,3:n

a2,1 a2,2 a2,3:n

a3:n,1 a3:n,2 A3:n,3:n



=


√
a1,1 0

a2,1√
a1,1

√
a
(1)
2,2

a3:n,1√
a1,1

a
(1)
3:n,2√
a
(1)
2,2

In−2



1 0 0
0 1 0

0 0 A
(2)
3:n,3:n −

a3:n,1a1,3:n

a1,1
− a

(1)
3:n,2a

(1)
2,3:n

a
(1)
2,2



√
a1,1

a2,1√
a1,1

a1,3:n√
a1,1

0
√

a
(1)
2,2

a
(1)
2,3:n√
a
(1)
2,2

In−2


=

 l1,1 0 0
l2,1 l2,2 0
l3:n,1 l3:n,2 In−2

l1,1 l2,1 l1,3:n
0 l2,2 l2,3:n
0 0 In−2


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Column (left-looking) Cholesky

Algorithm

Column Cholesky factorization: A→ square-root factor L = (lij)
1. for j = 1 : n do
2. Compute an auxiliary vector tj:ntj

...
tn

 =

ajj

...
anj

− ∑
{k|ljk ̸=0}

ljk

ljk
...

lnk

 (18)

3. Get a column of L by scaling tj:nljj
...
lnj

 =
1√
tj

tj
...
tn

 (19)

4. end j
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Row (up-looking) Cholesky

Algorithm

Row Cholesky factorization: : A→ square-root factor L = (lij). 1. for
i = 1 : n do
2. Solve the triangular system

L1:i−1,1:i−1

 li1
...

li,i−1

 =

 ai1
...

ai,i−1

 (20)

3. Compute the diagonal entry lii =

√(
aii −

∑i−1
k=1 l

2
ik

)
4. end i
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Elimination versus decomposition (factorization)
Householder (end of 1950’s, beginning of 1960’s): expressing
Gaussian elimination as a decomposition
Various reformulations of the same decomposition: different
properties in

▶ sparse implementations
▶ vector processing
▶ parallel implementations

Six algorithms of the generic scheme for Cholesky as for LU, but
there are also others (bordering, Dongarra-Eisenstat)
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Sparse factorizations

Remind the fill-in

Arrow matrix - original matrices: example showing how bad the
fill-in problem can be


∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Arrow matrix - structure after elimination
∗ ∗ ∗ ∗ ∗
∗ ∗ f f f
∗ f ∗ f f
∗ f f ∗ f
∗ f f f ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Fill-in description and ways to avoid it must capture it dynamically!
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Sparse factorizations

Remind the fill-in

Arrow matrix - original matrices: example showing how bad the
fill-in problem can be


∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Arrow matrix - structure after elimination
∗ ∗ ∗ ∗ ∗
∗ ∗ f f f
∗ f ∗ f f
∗ f f ∗ f
∗ f f f ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Fill-in description and ways to avoid it must capture it dynamically!
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Sparse factorizations

Remind the fill-in

Arrow matrix - original matrices: example showing how bad the
fill-in problem can be


∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Arrow matrix - structure after elimination
∗ ∗ ∗ ∗ ∗
∗ ∗ f f f
∗ f ∗ f f
∗ f f ∗ f
∗ f f f ∗



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗



Fill-in description and ways to avoid it must capture it dynamically!
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Simple fill-in results
Assume S{A} is symmetric and consider the elimination graph Gk
at step k.
Its vertices are the n− k + 1 uneliminated vertices. Its edge set
contains the edges in G(A) connecting these vertices and
additional edges corresponding to filled entries produced during
the first k − 1 elimination steps.
The sequence of graphs G1 ≡ G(A),G2, . . . is generated
recursively using Parter’s rule:

To obtain the elimination graph Gk+1 from Gk, delete vertex k and
add all possible edges between vertices that are adjacent to
vertex k in Gk.
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Denoting Gk = (Vk, Ek), Gk+1 = (Vk+1, Ek+1), the Parter’s rule:
Vk+1 = Vk \ {k}, Ek+1 = Ek ∪ {(i, j) | i, j ∈ adjGk{k}} \ {i | i ∈ adjGk{k}}.

If S{A} is symmetric then Parter’s rule says that the adjacency set
of vertex k becomes a clique when k is eliminated: Gaussian
elimination systematically generates cliques.
As the elimination process progresses, cliques grow or more than
one clique joins to form larger cliques: clique amalgamation.
A clique with m vertices has m(m− 1)/2 edges. It can be
represented by storing a list of its vertices, without any reference
to edges.
If S{A} is nonsymmetric then the elimination graphs are digraphs
and Parter’s rule generalizes as follows:
To obtain the elimination graph Gk+1 from Gk, delete vertex k and

add all edges (i
Gk+1

−−−→ j) such that (i Gk

−→ k) and (k
Gk

−→ j).
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Factorizations

Simple example (symmetric):

2

6

3 4 5

1

2

6

3 4 5

Figure: Illustration of Parter’s rule. The original undirected graph G = G1 and the elimination
graph G2 that results from eliminating vertex 1 are shown on the left and right, respectively. The
red dashed lines denote fill edges. The vertices {2, 3, 4} become a clique.
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Simple example (nonsymmetric):

2

6

3 4 5

1

2

6

3 4 5

Figure: Illustration of Parter’s rule for a nonsymmetric S{A}. The original digraph G = G1 and
the directed elimination graph G2 that results from eliminating vertex 1 are shown on the left and
right, respectively. The red dashed lines denote fill edges.
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Parter’s rule for factors
The repeated application of Parter’s rule specifies all the edges in
G(L+ LT ):
(i, j) is an edge of G(L+ LT ) if and only if (i, j) is an edge of G(A)
or (i, k) and (k, j) are edges of G(L+ LT ) for some k < i, j.
This generalizes to a nonsymmetric matrix A and its LU
factorization:
(i→ j) is an edge of the digraph G(L+ U) if and only if (i→ j) is
an edge of the digraph G(A) or (i→ k) and (k → j) are edges of
G(L+ U) for some k < i, j.

144 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 147 — #147 i
i

i
i

i
i

Factorizations

Parter’s rule is a local rule that uses the dependency on nonzeros
obtained in previous steps of the factorization. The following result
fully characterizes the nonzero entries in the factors using only
paths in G(A).

Theorem
(a) Let S{A} be symmetric and A = LLT . Then

(L+LT )ij ̸= 0 if and only if there is a fill-path i
G(A)⇐====⇒
min

j.

(b) Let S{A} be nonsymmetric and A = LU . Then

(L+ U)ij ̸= 0 if and only if there is a fill-path i
G(A)

=====⇒
min

j.

The fill-paths may not be unique.
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Symmetric S{A}: a filled entry in position (8, 6) of L because of a

fill-path 8
G(A)⇐====⇒
min

6: 8←→ 2←→ 5←→ 1←→ 6.



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗ ∗





1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗



6

1

345
2

78 6

1

345
2

78
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Corollary
(Edges of Gk in terms of reachable sets) Assume S{A} is symmetric.
Let Vk be the set of k − 1 vertices of G(A) that have already been
eliminated and let v be a vertex in the elimination graph Gk. Then the
set of vertices adjacent to v in Gk is the set Reach(v,Vk) of vertices
reachable from v through Vk in G(A).

Proof.
The proof is by induction on k. The result holds trivially for k = 1 because the
Reach(v,V1) = adjG(A){v}. Assume the result holds for G1, . . . ,Gk with k ≥ 1 and let
v be a vertex in the graph Gk+1 that is obtained after eliminating vk from Gk. If v is not
adjacent to vk in Gk then Reach(v,Vk+1) = Reach(v,Vk). Otherwise, if v is adjacent
to vk in Gk then adjGk+1{v} = Reach(v,Vk) ∪Reach(vk,Vk). In both cases Parter’s
rule implies that the new adjacency set is exactly equal to the vertices that are
reachable from v through Vk+1, that is, Reach(v,Vk+1). □
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Figure depicts a graph G(A). The adjacency sets of the vertices in G4
that result from eliminating vertices V4 = {1, 2, 3} are
adjG4{4} = Reach(4,V4) = {5}, adjG4{5} = Reach(5,V4) = {4, 6, 7},
adjG4{6} = Reach(6,V4) = {5, 7}, adjG4{7} = Reach(7,V4) = {5, 6, 8},
adjG4{8} = Reach(8,V4) = {7}.

4 1 5 2

6 7 3

8

Figure: An example to illustrate reachable sets in G(A). The grey vertices 1, 2, and 3 are
eliminated in the first three elimination steps (V4 = {1, 2, 3}).
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So far, only implicit results

Neither the local characterization of filled entries using Parter’s
rule nor Theorem on paths provide a direct answer as to whether
a certain edge belongs to G(L+ LT ) (or G(L+ U)); without
performing the eliminations
Results presented so far do not tell us whether a given entry of a
factor of A is nonzero.
Such questions are addressed by deeper theoretical and
algorithmic results that are presented later.

149 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 152 — #152 i
i

i
i

i
i

Factorizations

From factorization to the solution

Once an LU factorization has been computed, the solution x of the
linear system Ax = b is computed by solving the lower triangular
system

Ly = b, (21)

followed by the upper triangular system

Ux = y. (22)

Triangular solves with a dense right-hand side
vectorstraightforward.
First forward substitution: the component y1 is determined from
the first equation. Substitution into the second equation to obtain
y2, and so on.
Once y is available, the solution can be obtained by back
substitution in which the last equation is used to obtain xn, which
is then substituted into equation n− 1 to obtain xn−1, and so on.
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Algorithm (Forward substitution: simple lower triangular solve
Ly = b with b dense)
Input: Lower triangular matrix L with nonzero diagonal entries and
dense right-hand side b.
Output: The dense solution vector y.

1: Initialise y = b

2: for j = 1 : n do
3: yj = yj/ljj

4: for i = j + 1 : n do
5: if lij ̸= 0 then
6: yi = yi − lijyj

7: end if
8: end for
9: end for
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Sparse right-hand side

When b is sparse, the solution y is also sparse. In particular, if in
Algorithm yk = 0, then the outer loop with j = k can be skipped.
Furthermore, if b1 = b2 = . . . = bk = 0 and bk+1 ̸= 0, then
y1 = y2 = . . . = yk = 0. Scanning y to check for zeros adds O(n)
to the complexity.
But if the set of indices J = {j | yj ̸= 0} is known beforehand then
we can use the following Algorithm,
A possible way to determine J is discussed later.
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Algorithm (Forward substitution: lower triangular solve Ly = b
with b sparse)
Input: Lower triangular matrix L with nonzero diagonal entries, sparse
vector b and the set J .
Output: The sparse solution vector y.

1: Initialise y = b

2: for j ∈ J do ▷ Take indices from J in increasing order
3: yj = yj/ljj

4: for i = j + 1 : n do
5: if lij ̸= 0 then
6: yi = yi − lijyj

7: end if
8: end for
9: end for
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1 Introduction
2 Introductory notation and terminology
3 Sparse matrices and data structures
4 Graphs and sparse matrices
5 Factorizations
6 Reducibility and blocks
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Reorderings
12 Algebraic preconditioning
13 Incomplete factorizations
14 Sparse approximate inverses
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Enhancements due to permuting into a block form
Permuting to block form is closely connected to matrix reducibility.
A is said to be reducible if there is a permutation matrix P such
that

PAP T =

(
Ap1,p1 Ap1,p2

0 Ap2,p2

)
,

where Ap1,p1 and Ap2,p2 are non trivial square matrices (that is,
they are of order at least 1).
If A is not reducible, it is irreducible. Matrices of order 1 are
irreducible.
If S{A} is symmetric then Ap1,p2 = 0 and PAP T is block diagonal.
A one-sided permutation can transform an irreducible matrix A
into a reducible matrix AQ.

A =

1 1 1
1 1
1

 , Q =

 1
1

1

 , AQ =

1 1 1
1 1

1

 .
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Hall properties

A matrix A is said to be a Hall matrix (or to have the Hall property)
if every set of k columns has nonzeros in at least k rows
(1 ≤ k ≤ n).
A is a strong Hall matrix (or to have the strong Hall property) if
every set of k columns (1 ≤ k < n) has nonzeros in at least k + 1
rows.
If A is square then A has the strong Hall property if and only if the
directed graph G(A) is strongly connected.
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Theorem
Given a nonsingular nonsymmetric matrix A there exists a permutation
matrix P such that

PAP T =


A1,1 A1,2 · · · A1,nb

0 A2,2 · · · A2,nb
...

...
. . .

...
0 0 · · · Anb,nb

 , (23)

where the square matrices Aib,ib on the diagonal are irreducible. The
set {Aib,ib | 1 ≤ ib ≤ nb} is uniquely determined (but the blocks may
appear on the diagonal in a different order). The order of the rows and
columns within each Aib,ib may not be unique.

This upper block triangular form (BTF) is also known as the
Frobenius normal form. It is said to be non trivial if nb > 1, and this
is the case if A does not have the strong Hall property.
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Permutation to BTF
An example of a matrix that can be symmetrically permuted to block
triangular form with nb = 2 is given in Figure 16.



1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





6 3 5 4 1 2

6 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
5 ∗ ∗
4 ∗ ∗
1 ∗ ∗ ∗ ∗
2 ∗ ∗


Figure: The sparsity patterns of A (left) and the upper block triangular form PAPT with two
blocks Aib,ib, i = 1, 2, of order 2 and 4 (right).
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Using BTF

Algorithm (Solve a sparse linear system in upper BTF)
Input: Upper block triangular matrix (23) and a conformally partitioned right-hand side vector c.
Output: The conformally partitioned solution vector y.

1: for ib = 1 : nb do
2: Compute PibAib,ib = LibUib

3: end for
4: Solve LnbUnb ynb = Pnbcnb ▷ Perform forward and back substitutions
5: for ib = nb− 1 : 1 do
6: for jb = ib+ 1 : nb do
7: cib = cib −Aib,jbyjb ▷ Sparse matrix-vector operation
8: end for
9: Solve LibUib yib = Pibcib ▷ Perform substitutions
10: end for
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Transversal

The transversal of a matrix A is the set of its nonzero diagonal
elements.
A has a full or maximum transversal if all its diagonal entries are
nonzero. There exist permutation matrices P and Q such that
PAQ has a full transversal if and only if A has the Hall property.
Moreover, if A is nonsingular then it can be nonsymmetrically
permuted to have a full transversal. However, the converse is
clearly not true (for example, a matrix with all its entries equal to
one has a full transversal but it is singular).
If A has a full transversal then there exists a permutation Ps such
that PsAP

T
s has the BTF form. In the other words, once A has a

full transversal, a symmetric permutation is sufficient to obtain the
BTF form.
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Permutation to BTF

Finding Ps is identical to finding the strongly connected
components (SCCs) of the digraph G(A) = (V, E).
To find the SCCs, V is partitioned into non-empty subsets Vi with
each vertex belonging to exactly one subset. Each vertex i in the
quotient graph corresponds to a subset Vi and there is an edge in
the quotient graph with endpoints i and j if E contains at least one
edge with one endpoint in Vi and the other in Vj .
The condensation (or component graph) of a digraph is a quotient
graph in which the SCCs form the subsets of the partition, that is,
each SCC is contracted to a single vertex. This reduction provides
a simplified view of the connectivity between components.
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Permutation to BTF
An example of SCCs. Here five SCCs: {p, q, r}, {s, t, u}, {v}, {w}, and
{x}.

u w

t

s

v

q

r

p

x

s5

s4

s3

s1

s2

Figure: An illustration of the strong components of a digraph. On the left, the five SCCs are
denoted using different colours and on the right is the condensation DAG GC formed by the
SCCs.
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Relationship between SCCs and DAGs

Theorem
The condensation GC of a digraph is a DAG (directed acyclic graph).

Any DAG can be topologically ordered.
Consequently, GC = (VC , EC) can be topologically ordered and if
Vi and Vj are contracted to si and sj and (si −→ sj) ∈ EC then
si < sj .
It follows that to permute A to block triangular form it is sufficient
to find the SCCs of G(A).
That is, topologically ordering the vertices of the condensation GC
induced by the SCCs is the quotient graph that implies the block
triangular form.
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Finding SCCs
Tarjan’s algorithm: the key idea here is that vertices of a SCC form
a subtree in the DFS spanning tree of the graph.
The algorithm performs depth-first searches, keeping track of two
properties for each vertex v: when v was first encountered (held in
invorder(v)) and the lowest numbered vertex that is reachable
from v (called the low-link value and held in lowlink(v)).
It pushes vertices onto a stack as it goes and outputs a SCC when
it finds a vertex for which invorder(v) and lowlink(v) are the
same. The value lowlink(v) is computed during the DFS from v,
as this finds the vertices that are reachable from v.
The outermost loop of the algorithm visits each vertex that has not
yet been visited, ensuring vertices that are not reachable from the
starting vertex are eventually visited.
The complexity bound is O(|V|+ |E|).
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Algorithm (Tarjan’s algorithm to find the SCCs)

1: Vv = ∅, S = (), index = 0, ▷ Each vertex is initially unvisited
2: for each v ∈ V do
3: if v ̸∈ Vv then
4: scomp_step(v)
5: end if
6: end for
7: recursive function (scomp_step(v))
8: Vv = Vv ∪ {v} ▷ Add v to the set of visited vertices
9: index = index + 1 ▷ Set the index for v to smallest unused index
10: invorder(v) = index, lowlink(v) = index

11: push(S, v) ▷ Put v on the stack
12: Set v = head(S) ▷ v is the current head of S.
13: for each (v → w) ∈ E do ▷ Look in the adjacency list of v
14: if w ̸∈ Vv then ▷ w not yet been visited; recurse on it
15: scomp_step(w)
16: lowlink(v) = min(lowlink(v), lowlink(w))

17: else if w ∈ S then ▷ w is in the stack and hence in current SCC
18: lowlink(v) = min(lowlink(v), invorder(w))

19: end if
20: end for
21: if lowlink(v) = invorder(v) then
22: pop all vertices down to v from S to obtain a new SCC
23: end if
24: end recursive function
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Finding blocks: indistinguishability
Finding sets of columns of A frequently have identical sparsity
patterns. For example, for A from a finite element discretisation.

Definition
We say that two vertices u and v of an undirected graph G = (V, E) are
indistinguishable if they have the same neighbours, that is,
adjG{u} ∪ {u} = adjG{v} ∪ {v}.
A set of mutually indistinguishable vertices is called an
indistinguishable vertex set. If U ⊆ V is an indistinguishable vertex set
then U is maximal if U ∪ {w} is not indistinguishable for any w ∈ V \ U .

Indistinguishability is an equivalence relation on V
Maximal indistinguishable vertex sets represent its classes→ a
partitioning of V into nsup ≥ 1 non-empty disjoint subsets

V = V1 ∪ V2 ∪ . . . ∪ Vnsup. (24)

An indistinguishable vertex set can be represented by a single
vertex, called a supervariable.
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Finding blocks: indistinguishability

S{A} is symmetric, G(A) = (V, E). Let V be partitioned into
indistinguishable vertex sets and reorder the vertices such that
those belonging to each subset V1, . . . ,Vnsup are numbered
consecutively, with those in Vi preceding those in Vi+1

(1 ≤ i < nsup).
If P is the permutation matrix corresponding to this ordering then
the permuted matrix PAP T has a block structure in which the
blocks are dense.
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Finding supervariables

Initially place all the vertices in a single vertex set (that is, into a
single supervariable).
Split into two supervariables by taking the first vertex j = 1 and
moving those vertices that are in the adjacency set of j into a new
vertex set (a new supervariable).
Each vertex j is considered in turn and each vertex set Vsv that
contains a vertex in adjG{j} ∪ j is split into two by moving the
vertices in adjG{j} ∪ j that belong to Vsv into a new vertex set.
As a result of the splitting and moving of vertices a vertex set can
become empty, in which case it is discarded.
Once the supervariables have been determined, the permuted
matrix PAP T can be condensed to a matrix of order equal to
nsup.
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Finding supervariables

Algorithm (Find the supervariables of an undirected graph)
Input: Graph G of a symmetrically structured matrix.
Output: Partitioning of V into indistinguishable vertex sets.

1: V1 = {1, 2, . . . , n}
2: for j = 1 : n do
3: for i ∈ adjG{j} ∪ j do
4: Find sv such that i ∈ Vsv

5: if this is the first occurrence of sv for the current index j then
6: Establish a new set Vnsv and move i from Vsv to Vnsv

7: else
8: Move i from Vsv to Vnsv

9: end if
10: Discard Vsv if it is empty
11: end for
12: end for
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Finding supervariables: illustration


1 2 3 4 5

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗

.

Initially, 1, 2, 3, 4, 5 are put into a single vertex set V1.
Vertices i = 1, 2 and 5 belong to adjG{1} ∪ {1}; they are moved
from V1 into a new vertex set.
There is no further splitting of the vertex sets for j = 2.
adjG{3}∪{3} = {3, 4, 5}. i = 3 and 4 are moved from V1 into a new
vertex set. V1 is now empty and can be discarded. Vertex i = 5 is
moved from the vertex set that holds vertices 1 and 2 into a new
vertex set. For j = 4 and 5 no additional splitting is performed.
Thus, three supervariables are found, namely {1, 2}, {3, 4} and
{5}.
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Reducibility and blocks

Approach by Ashcraft
1 Number graph nodes/vertices (use numbers as their labels)
2 Compute vertex checksums:

chksum =
∑

{u,v}∈E

w

3 Sort vertices by their checksums: in O(|E|+|V|log(|V|)) time
4 Different checksum means different block
5 First tie-breaking rule: if chksum(u) = chksum(v): compare
|adj(u)| and |adj(v)|

6 Second tie-breaking rule: compare adjacency sets of u and v (the
most time consuming)
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Reducibility and blocks

Approximate indistinguishability: Saad
Using symbolic dot products between the rows of the matrix.
Here we assume that S{A} is symmetric but modifications exist.
Rewrite A as row vectors

A =
(
aT1 , . . . , a

T
n

)T
,

and consider G(A) = (V, E).
A partition V = V1 ∪ . . . ∪ Vnb is constructed using row products
aTi ak between different rows of A that express the level of
orthogonality between the rows;
if aTi ak is large then i and k are assigned to different vertex sets.
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Reducibility and blocks

Approximate indistinguishability
Algorithm treats all entries of A as unity (symbolically)
The symbolic row products can be considered as a generalization
of the angles between rows expressed by their cosines, hence
On output, if adjmap(i1) = adjmap(i2) then vertices i1 and i2
belong to the same vertex set.
Symmetry of S{A} simplifies the computation of the symbolic row
products because for row i only k > i is considered, that is, only
the symbolic row products that correspond to one triangle part of
ATA are checked.
The procedure outlined in Algorithm 6.4 is controlled by a
threshold parameter τ ∈ (0, 1].
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Reducibility and blocks

Algorithm
Find approximately indistinguishable vertex sets

1: nb = 0, adjmap(1 : n) = 0, cosine(1 : n) = 0

2: for i = 1 : n do
3: if adjmap(i) = 0 then
4: nb = nb+ 1 ▷ Start a new set
5: adjmap(i) = ib

6: for (i, j) ∈ E do ▷ Corresponds to an entry in Ai,1:n

7: for (k, j) ∈ E with k > i do ▷ Both rows i and k have an entry in column j

8: if adjmap(k) = 0 then ▷ k has not been yet added to some partitioning set
9: cosine(k) = cosine(k) + 1 ▷ Increase partial dot product
10: end if
11: end for
12: for k with cosine(k) ̸= 0 do
13: if cosine(k)2 ≥ τ2 ∗ nzi ∗ nzk then ▷ Test similarity of row patterns
14: adjmap(k) = nb

15: end if
16: cosine(k) = 0

17: end for
18: end for
19: end if
20: end for
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Reducibility and blocks



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗
5 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗





1 3 2 6 4 5

1 ∗ ∗ ∗
3 ∗ ∗ ∗
2 ∗ ∗ ∗
6 ∗ ∗ ∗
4 ∗
5 ∗ ∗ ∗ ∗ ∗





1 3 5 2 6 4

1 ∗ ∗ ∗
3 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
6 ∗ ∗ ∗
4 ∗


Figure: A example to illustrate Algorithm. The original matrix is given (left) together with the
permuted matrix with indistinguishable vertex sets V = {1, 3} ∪ {2, 6} ∪ {4} ∪ {5} obtained
using τ = 1 (centre) and the permuted matrix with approximately indistinguishable vertex sets
V = {1, 3, 5} ∪ {2, 6} ∪ {4} obtained using τ = 0.5 (right). The threshold τ = 0.5 results in
putting row 5 into the same set as row 1, making the vertex sets only approximately
indistinguishable. The permuted matrix has an approximate block form.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Sparse matrices and data structures
4 Graphs and sparse matrices
5 Factorizations
6 Reducibility and blocks
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Reorderings
12 Algebraic preconditioning
13 Incomplete factorizations
14 Sparse approximate inverses
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Symbolic Cholesky

Symbolic Cholesky

Symbolic Cholesky: only S{A} used to determine the nonzero
structure of the Cholesky factor L without computing the
numerical values of the nonzeros.
Implicitly assumed that all the diagonal entries of A are included in
S{A} (even if they are zero - this cannot happen if A is SPD).

A fundamental difference between dense and sparse Cholesky
factorizations is that, in the latter, each column of L depends on
only a subset of the previous columns.
Operations to update a computed column should be also sparse.
We will see that the symbolic Cholesky can be clearly described
using a tree structure.
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Symbolic Cholesky

Column replication

Let us start from the patterns of subsequent Schur complements.

S(k) = Ak:n,k:n −
k−1∑
j=1

lkj
...
lnj

(lkj . . . lnj
)
. (25)

Consider column j of L (1 ≤ j ≤ k − 1) and let lij ̸= 0 for some
i > j.

Observation

For any i > j ≥ 1 such that lij ̸= 0

S{Li:n,j} ⊆ S{Li:n,i}. (26)

This is called the column replication principle because the pattern of
column j of L (rows i to n) is replicated in the pattern of column i of L.
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Symbolic Cholesky

Column replication

Denote the row index of the first subdiagonal nonzero entry in
column j of L by parent(j), that is,

parent(j) = min{i | i > j and lij ̸= 0}. (27)

If there is no such entry, set parent(j) = 0. The row index
parent(parent(j)) is denoted by parent2(j), and so on.
Applying column replication recursively implies the sparsity pattern
of column j of L is replicated in that of column parent(j), which in
turn is replicated in the pattern of column parent2(j), and so on.
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Symbolic Cholesky

Column replication

Example: Consider j = 1. Because the first subdiagonal entry in
column 1 is in row 3, parent(1) = 3, parent(3) = parent2(1) = 5.



1 2 3 4 5 6 7

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗





1 2 3 4 5 6 7

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ f ∗ ∗
7 ∗ f ∗ ∗





1 2 3 4 5 6 7

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ f ∗ f ∗
7 ∗ f f ∗ ∗



Figure: An illustration of column replication. On the left are the entries in L before step 1 of a
Cholesky factorization (that is, the entries in the lower triangular part of A); in the centre we show
the replication of the nonzeros from column 1 in the pattern of column parent(1) = 3 (red entries
f); on the right, we show the subsequent replication in column parent2(1) = 5.
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Symbolic Cholesky

Fill-in as replication of column structures

j

i

parent(j)

parent(j)

(a)

j

i

parent(j)

parent(j)

(b)

parent(j)

parent (j)2

parent (j)2

j

i

parent(j)

(c)

parent (j)2

parent (j)2

j

i

parent(j)

parent(j)

(d)
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Symbolic Cholesky

Existence of nonzeros in columns
The following result shows that, provided A is irreducible, the mapping
parent(j) has nonzero values given by (27) for all j < n.

Theorem
If A is SPD and irreducible then in each column j (1 ≤ j < n) of its
Cholesky factor L there exists an entry lij ̸= 0 with i > j.

Proof.
From Parter’s rule, each step of the Cholesky factorization corresponds to adding new
edges into the graph of the corresponding Schur complement. If A is irreducible then
the graphs corresponding to the Schur complements are connected. Consequently,
for any vertex j (1 ≤ j < n) in any of these graphs there is at least one vertex i with
i > j to which j is connected. This corresponds to the nonzero entry in column j of L.
□
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Symbolic Cholesky

Row replication
With the convention parent1(j) = parent(j), the next theorem shows
that if entry lij of L is nonzero then parentt(j) = i for some t ≥ 1 and
there is row replication in the sequence
j, parent1(j), parent2(j), . . . , parentt(j).

Theorem
Let A be SPD and let L be its Cholesky factor. If lij ̸= 0 for some
j < i ≤ n then there exists t ≥ 1 such that parentt(j) = i and lik ̸= 0
for k = j, parent1(j), parent2(j), . . . , parentt(j).

Proof.
If i = parent1(j), the result is immediate. Otherwise, there exists an index k,
j < k < i of a subdiagonal entry in column j of L such that k = parent1(j). Column
replication implies lik ̸= 0. Applying an inductive argument to lik, the result follows
after a finite number of steps. □
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Symbolic Cholesky

Row replication: example

parent   (j)parent   (j)

2

parent (j)

parent (j)

j

i

parent(j)

parent(j)

parent (j)

2

l−1l−1

l =

Replication of column structures→ replication of nonzeros in a
row.
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Symbolic Cholesky

Necessary and sufficient condition (NSC) for a fill-in entry

If there is sequence of nonzeros in a row of L, it is natural to ask
where the sequence begins:
If there is no k ≥ 1 such that aik ̸= 0, no replication of nonzeros
can start in row i.

Theorem
Let A be SPD and let L be its Cholesky factor. If aij = 0 for some
1 ≤ j < i ≤ n then there is a filled entry lij ̸= 0 if and only if there
exists k < j and t ≥ 1 such that aik ̸= 0 and parentt(k) = j.
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Symbolic Cholesky

Elimination tree

The discussion of column replication is significantly simplified
using elimination trees.
The elimination tree (or etree) T (A) (or simply T ) of a SPD matrix
has vertices 1, 2, . . . , n and an edge between each pair
(j, parent(j)), where parent(j) has been defined above;
j is a root vertex of the tree if parent(j) = 0.
The edges of T are considered to be directed from a child to its
parent, that is,

E(T ) = {(j −→ i) | i = parent(j)}.

If T has a single component then the root vertex is n.
Despite the terminology, the elimination tree need not be
connected and in general is a forest. For simplicity, in our
discussions, we assume T has a single component and we say
that T is described by the vector parent.
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Symbolic Cholesky

Elimination tree



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗


1

5

4

2 3

6 7

8

Figure: An illustration of a sparse matrix A with a symmetric sparsity pattern and its elimination
tree T (A). The root vertex is 8. The filled entries in S{L+ LT } are denoted by f .
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Symbolic Cholesky

Elimination tree: terminology

Concepts such as child, leaf, ancestor and descendant vertices
for directed rooted trees can be applied to T .
Additionally, ancT {j} and descT {j} are defined to be the sets of
ancestors and descendants of vertex j in T .
T (j): the subtree of T induced by j and descT {j); j is the root
vertex of T (j).
The size |T (j)| is the number of vertices in the subtree.
A pruned subtree of T (j) is the connected subgraph induced by j
and a subset of descT {j). That is, for any vertex i in a pruned
subtree of T (j), all the ancestors of i belong to T (j).
A pruned subtree of T shares the mapping parent with T .
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Symbolic Cholesky

Elimination tree: simple properties
The following observation is straightforward.

Observation
If i ∈ ancT {j} for some j ̸= i then i > j.

The connection between the mapping parent and the sets of
ancestors and descendants is emphasized by the next
observation.

Observation
If i and j are vertices of the elimination tree T with j < i ≤ n then
i ∈ ancT {j} if and only if j ∈ descT {i} if and only if parentt(j) = i for
some t ≥ 1.
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Symbolic Cholesky

Elimination tree: simple properties

Replications can be expressed using rooted trees.
For example, instead of stating that there exists t ≥ 1 such that
parentt(j) = i, we can write that i ∈ ancT {j} \ {j}.
Rewriting the necessary and sufficient condition in Theorem
above as the following corollary we get a clear characterization of
the sparsity patterns of the rows of L.

Corollary
Consider the elimination tree T and the Cholesky factor L of A. If i and
j are vertices of T with j < i ≤ n and aij = 0 then lij ̸= 0 if and only if
there exists k < j such that j ∈ ancT (k) and aik ̸= 0.
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Symbolic Cholesky

Elimination tree: row subtrees

The subtree of T with vertices that correspond to the nonzeros of
row i of L is called the i-th row subtree and is denoted by Tr(i).
Formally, row subtree is a pruned subtree of T induced by the
union of the vertex set

{i} ∪ {k | aik ̸= 0 and k < i}

with all vertices on the directed paths in T from k to i, that is, with
all their ancestors from Tr(i).
The root vertex is i and the leaf vertices are a subset of the
column indices in the i-th row of the lower triangular part of A.
The row subtrees are connected subgraphs of T , even if T is not
connected. If T can be found without determining the pattern of L,
then Tr(i) can be used to derive the sparsity pattern of row i of L,
without having to store each entry explicitly.
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Symbolic Cholesky

Elimination tree: row subtrees

1

5

4

2

5

4

2 3

6 7

8

Figure: The row subtree Tr(5) of the elimination tree T from above (left). Vertex 3 has been
pruned because a35 = 0. The row subtree Tr(8) (right) differs from T = T (A) because vertex 1
has been pruned (a18 = 0).
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Symbolic Cholesky

Elimination tree: row subtrees: another example

i

k k’ k’’

k’’’
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Symbolic Cholesky

Row subtrees



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗


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Symbolic Cholesky

Row subtrees



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



1 2 3 4 5
5

5

6 7

3 4

8

1

9

7 6

10

8

1

2 9

7

3

6
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Symbolic Cholesky

Theorem
If i and j are vertices in the elimination tree T with j < i ≤ n then
i ∈ ancT {j} if and only if there exists a path

j
G(A)⇐====⇒

{1,...,i}
i. (28)

Proof.
Assume i ∈ ancT {j}. Then there is a path j

T
===⇒ i of length l ≥ 1. Each edge of this path

belongs to G(L) and corresponds either to an edge in G(A) or to a fill-path in G(A). Connecting
these paths together gives (28).

Conversely, if the path (28) exists, induction on its length can be used to prove the result. If the

path is of length 1 then the result holds because i and j are connected in G(A) by an edge.

Consequently, i is an ancestor of j. Now assume that the result is true for all paths of length less

than l (l > 1), and consider a path of length l. Let m be the largest vertex on this path. If m < j

then (28) is a fill-path connecting i and j and, therefore, i ∈ ancT {j}. Otherwise, for m ≥ j the

assumption implies i ∈ ancT {m} and m ∈ ancT {j}, that is, i ∈ ancT {j}. □
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Symbolic Cholesky

Locality in characterization of ancestors

Given a vertex j in T , the following corollary indicates how to find
parent(j) (if it exists).
If the set of ancestors of j is non empty then the lowest numbered
one is its parent.

Corollary
Vertex i is the parent of vertex j in T if and only if i is the lowest
numbered vertex satisfying j < i ≤ n for which there is a path (28).

The existence of (28) is equivalent to requiring i and j belong to
the same component of the graph G(A1:i,1:i) corresponding to the
i× i principal leading submatrix A1:i,1:i of A.
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Locality in characterization of ancestors
Figure depicts G(A) for the matrix A given in Figure above.
Consider vertex 4. Its set of ancestors for which the paths
mentioned above exist comprises vertices 5, 6 and 8. Vertex 7 is
not an ancestor of 4 because there is no path from 7 to 4 in the
graph G(A1:7,1:7). Among the ancestors of 4, vertex 5 fulfils the
condition from Corollary above and is thus the parent of 4.

1

5

4

2 3

6

78

Figure: The graph G(A) of the matrix from Figure 20 illustrating Theorem and Corollary above.
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Symbolic Cholesky

Constructing elimination tree
Locality: T = T (A) can be constructed by stepwise extensions of
the elimination trees of the principal leading submatrices of A.
Assume we have T (A1:i−1,1:i−1) and we want T (A1:i,1:i).
Initialise T (A1:i,1:i) = T (A1:i−1,1:i−1). If there are no entries in row
i of A to the left of the diagonal then there is nothing to do, only an
isolated vertex i is added. Otherwise, i is the root of the row
subtree Tr(i) and an ancestor of some vertex in T .
For each such vertex, say j, its ancestors k with k < i are vertices
of T (A1:i−1,1:i−1). Consider the directed path in T (A1:i,1:i) t ≥ 1
such that parentt(j) = i, we can write that i ∈ ancT {j} \ {j}. are
connected subgraphs of T .
If parentt(j) ̸= i then the new root of the subtree of T (A1:i,1:i) that
contains j is added by setting i = parentt+1(j). Otherwise, i has
already been added.
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Symbolic Cholesky

Constructing elimination tree

Algorithm (Construction of an elimination tree)
Input: A with a symmetric sparsity pattern and its undirected graph G.
Output: Elimination tree T described by the vector parent.

1: for i = 1 : n do
2: parent(i) = 0

3: for j ∈ adjG{i} and j < i do ▷ For row i of the lower triangular part
4: jroot = j

5: while parent(jroot) ̸= 0 and parent(jroot) ̸= i do
6: jroot = parent(jroot)

7: end while
8: if parent(jroot) = 0 then
9: parent(jroot) = i ▷ Make i the parent of jroot

10: end if
11: end for
12: end for
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Sparse Cholesky factorization - components

Constructing elimination tree

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6
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Sparse Cholesky factorization - components

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6
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Sparse Cholesky factorization - components

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6
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Sparse Cholesky factorization - components

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6
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Sparse Cholesky factorization - components

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6
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Sparse Cholesky factorization - components

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6
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Sparse Cholesky factorization - components

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6
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Sparse Cholesky factorization - components

Constructing elimination tree



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



1 1 2

3

1

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



3

1
3

1

1 1 2

2
4

2



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

5



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗





∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ f ∗ f
∗ ∗ f ∗



4
2

3

1

54
2

3

1

5
6
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Symbolic Cholesky

Constructing elimination tree: comments

The most expensive part of Algorithm to find the elimination tree is
the while loop that searches for subtree roots. This search is
based on tracing the directed path from j to its root parentt(j).
Because this path is unique for a given j, shortcuts can be
incorporated; this is called path compression.
Having found a directed path from j to k, subsequent searches
can be made more efficient by introducing a vector ancestor and
setting ancestor(j) = k.
The modified algorithm is outlined below. It maintains two
structures side-by-side using the current values of parent and
ancestor. The tree described by ancestor is termed the virtual
tree.
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Symbolic Cholesky

Algorithm (Construction of an elimination tree using path
compression)
Input: A with a symmetric sparsity pattern and its undirected graph G.
Output: Elimination tree T described by the vector parent.

1: for i = 1 : n do
2: parent(i) = 0, ancestor(i) = 0

3: for j ∈ adjG{i} and j < i do
4: jroot = j

5: while ancestor(jroot) = 0 and ancestor(jroot) = i do
6: l = ancestor(jroot)

7: ancestor(jroot) = i ▷ To accelerate future searches
8: jroot = l

9: end while
10: if ancestor(jroot) = 0 then
11: ancestor(jroot) = i and parent(jroot) = i

12: end if
13: end for
14: end for 203 / 609
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Symbolic Cholesky

Constructing elimination tree with compression

Figure below shows a matrix for which path compression makes
building T significantly more efficient.


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗


Figure: A sparse matrix for which computing the elimination tree using Algorithm 7.2 is much
more efficient than using Algorithm 7.1.

For this example, T is determined by the mapping parent(6) = 0;
parent(i) = i+ 1 for i = 1, . . . , 5.
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Symbolic Cholesky

Constructing elimination tree with compression

The complexity of the first Algorithm is O(n2).
For this example the complexity of the Algorithm with compression
is O(n).
Formally, the complexity of the new Algorithm is O(nz(A) log2(n)),
where nz(A) is the number of nonzeros of A but the logarithmic
factor is rarely reached.
Additional modifications can reduce the theoretical complexity to
O(nz(A) g(nz(A), n)), where g(nz(A), n) is a very slowly
increasing function called the functional inverse of Ackermann’s
function.
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Symbolic Cholesky

Constructing elimination tree with compression
Independence of subtrees

The following simple theorem states that there is no edge in
G(L+ LT ) between vertices belonging to subtrees of T with
different vertex sets.
Importance for parallel computations.

Theorem
Consider the elimination tree T and the Cholesky factor L of A. Let
T (i) and T (j) be two vertex-disjoint subtrees of T . Then for all
s ∈ T (i) and t ∈ T (j) the entry lst of L is zero.
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Symbolic Cholesky

Sparsity pattern of L
The explicit structure of L is not always required, only the
numbers of nonzeros in each row and column of L are needed.
For example, to allocate the storage
Let rowL{i} denote the sparsity pattern of the off-diagonal part of
row i of L, that is,

rowL{i} = S{Li,1:i−1} = {j | j < i, lij ̸= 0}, 1 ≤ i ≤ n.

The number of entries in L is

nz(L) =

n∑
i=1

|rowL{i}|+ n.

rowL{i} is given by the vertices of the row subtree Tr(i).
The complexity of the algorithm is O(nz(L)).
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Symbolic Cholesky

Algorithm (Computation of the row sparsity patterns of the
Cholesky factor L)
Input: A with a symmetric sparsity pattern, its undirected graph G and elimination tree
T described by the vector parent.
Output: Row sparsity patterns rowL{i} of the Cholesky factor L of A (1 ≤ i ≤ n).

1: for i = 1 : n do ▷ Loop over the rows of A
2: rowL{i} = ∅ ▷ Initialisation
3: mark(i) = i

4: for k ∈ adjG{i} and k < i do ▷ Loop over below diagonal entries in column i of
A

5: j = k

6: while mark(j) ̸= i do ▷ Column j not yet encountered in row i

7: mark(j) = i ▷ Flag j as encountered in row i

8: rowL{i} = rowL{i} ∪ {j} ▷ Add j to the sparsity pattern of row i

9: j = parent(j) ▷ Move up the elimination tree
10: end while
11: end for
12: end for 208 / 609
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Symbolic Cholesky

Cholesky factorization skeleton

Efficiency can be improved by employing the skeleton graph
G(A−) that is obtained from G(A) by removing every edge (i, j) for
which j < i and j is not a leaf vertex of Tr(i).
G(A−) is the smallest subgraph of G(A) with the same filled graph
as G(A). The corresponding matrix is the skeleton matrix.
The complexity of constructing the elimination tree using the
skeleton matrix and its graph G(A−) is O(nz(A−) g(nz(A−), n)),
where nz(A−) is the number of entries in the skeleton matrix.
Because nz(A−) is often significantly smaller than nz(A), an
implementation that processes G(A−) rather than G(A) can be
substantially faster.
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Symbolic Cholesky

Cholesky factorization skeleton

A =



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗


A

−
=



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗



1 2

3

4

5

6

7

1 2

3

4

5

6

7

Figure: An illustration of the sparsity pattern of A and its graph G(A) (left) and the sparsity
pattern of the corresponding skeleton matrix A− and graph G(A−) (right). The entries in A and
edges of G(A) that do not belong to the skeleton matrix and graph are depicted in red.
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Symbolic Cholesky

Row counts: more spohisticated approach
Row counts: more sophisticated algorithm: the idea

i

k k’ k’’

k’’’

Needed: fast algorithm to determine junctions of branches in the
elimination tree,
and fast algorithm to find leaves of the elimination tree.
Can be done by traversing the postordered elimination tree.
The complexity can be then nearly linear in m.
Can be done similarly for column counts
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Sparse Cholesky factorization - components

It would be nice to know column structures of L as well

1

2

5

3

4

6

7

8

row structure column structure

row subtrees ?
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Symbolic Cholesky

Column structures

Analogously to the row sparsity patterns, let colL{j} denote the
sparsity pattern of the off-diagonal part of column j of L, that is,

colL{j} = S(Lj+1:n,j) = {i | i > j, lij ̸= 0}, 1 ≤ j ≤ n.

The column replication principle can be written as

colL{j} ⊆ colL{parent(j)} ∪ parent(j).
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Symbolic Cholesky

Column structures

Theorem describes colL{j} using the vertices of the subtree T (j).

Theorem
The column sparsity pattern colL{j} of the Cholesky factor L of the
matrix A is equal to the adjacency set of vertices of the subtree T (j) in
G(A), that is,

colL{j} = adjG(A){T (j)}. (29)

Proof.
If i ∈ colL{j} then j ∈ rowL{i} and Theorem on necessary and sufficient condition for the fill-in

implies j ∈ ancT {k} for some k such that aik ̸= 0. That is, i ∈ adjG{T (j)}. Conversely,

i ∈ adjG{T (j)} implies that in row i the entry in column j of L is nonzero. Thus, j ∈ rowL{i}
and hence i ∈ colL{j}. □
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Column structures

Algorithm can be used to compute the column counts and the
column sparsity patterns because when j is added to rowL{i} at
line 8, i can be added to colL{j}. This does not generally obtain
the column sparsity patterns sequentially.

To derive an approach that does compute them sequentially consider

colL{j} =

adjG(A){j}
⋃

{k | k∈T (j)}

colL{k}

 \ {1, . . . , j}.
Using the column replication, this can be significantly simplified

colL{j} =

adjG(A){j}
⋃

{k | j=parent(k)}

colL{k}

 \ {1, . . . , j}. (30)
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Column structures

The following algorithm constructs the sparsity pattern of each
column j of L as the union of the sparsity pattern of column j of A
(adjG(A){j}) and the patterns of the children of j in T (A).

Here child{j} denotes the set of children j.

Because any child k of j satisfies k < j, the j-th outer step has
the information needed to compute the sparsity pattern described
by (30). Observe that T (A) does not need to be input.
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Algorithm (Determining sparsity patterns of columns of L)
Input: A with symmetric sparsity pattern and its undirected graph G(A).
Output: Column sparsity patterns colL{j} of the Cholesky factor L of A (1 ≤ j ≤ n).

1: for j = 1 : n do
2: child{j} = ∅ ▷ Initialisation
3: end for
4: for j = 1 : n do ▷ Loop over the columns of L
5: colL{j} = adjG(A){j} \ {1, . . . , j − 1}
6: for k ∈ child{j} do ▷ Unifying child structures in (30)
7: colL{j} = colL{j} ∪ colL{k} \ {j}
8: end for
9: if colL{j} ≠ ∅ then

10: l = min{i | i ∈ colL{j}}
11: child{l} = child{l} ∪ {j} ▷ Parent of j detected using Corollary ??
12: end if
13: end for
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Topological orderings

The outer loop in Algorithm to find column sparsity patterns does
not have to be performed in the strict order j = 1, . . . , n.
What is necessary is that for each step j, the column sparsity
pattern for each child of j has already been computed.
An ordering of the vertices in a tree (and, more generally, in a
DAG) is a topological ordering if, for all i and j, j ∈ descT {i}
implies j < i

Observation above confirms that the ordering of vertices in the
elimination tree T is a topological ordering.
A new topological ordering of T defines a relabelling of its vertices
corresponding to a symmetric permutation of A.
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Topological orderings

1

2 3

45

6

7

3

4 1

25

6

7

Figure: Two topological orderings of an elimination tree.
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Topological orderings
The sparsity patterns of the Cholesky factors of A and PAP T can be
different but the following result shows that the amount of fill-in is the
same.

Theorem
Let S{A} be symmetric. If P is the permutation matrix corresponding
to a topological ordering of the elimination tree T of A then the filled
graphs of A and PAP T are isomorphic.
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Topological orderings

There are many topological orderings of T .
One class is obtained using the depth-first search.
This algorithm searches all the components of T starting at their
root vertices.
In this case, once vertex i has been visited, all the vertices of the
subtree T (i) are visited immediately after i and i is labelled as the
last vertex of T (i).
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Postordering

A topological ordering of T is a postordering if the vertex set of
any subtree T (i) (i = 1, . . . , n) is a contiguous sublist of 1, . . . , n.
Unless additional rules on how vertices are selected are imposed,
a postordering is generally not unique.
One possible postordering is defined by the depth-first search,
and this is apparently not unique.
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Postordering

1

2 3

54

6

7

3

4 2

15

6

7

Figure: An example to illustrate the non uniqueness of postorderings of an elimination tree.
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Leaf vertices of row subtrees

Leaf vertices of row subtrees play a key role in graph algorithms
related to sparse Cholesky factorizations.

They can be used to find the skeleton matrix described above.

See the next theorem
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Theorem
Let the elimination tree T of A be postordered. Let the column indices
of the nonzeros in the strictly lower triangular part of row i of A be
c1, . . . , cs with s ≥ 1 and 0 < c1 < . . . < cs < i. Then ct is a leaf vertex
of the row subtree Tr(i) if and only if

t = 1 or (1 < t ≤ s and ct−1 ̸∈ T (ct)).

Proof.
c1 is always a leaf vertex of Tr(i). If this is not the case then there exists a directed path from
some vertex k, k ̸= c1 to i via c1 such that k ∈ Tr(i) and aik ̸= 0. Postordering of T implies
k < c1. This is a contradiction because c1 is the index of the first nonzero in row i.

Consider now t > 1. Assume that ct−1 ∈ T (ct) and that ct is a leaf vertex of Tr(i). Row
replication implies any k ∈ ancT {ct−1} such that ct−1 ≤ k < i satisfies lik ̸= 0. Because T is
postordered, ct−1 ≤ k ≤ ct and there is at least one k < ct satisfying this inequality. It follows
that k = ct−1. Because k belongs to Tr(i), ct cannot be a leaf vertex of Tr(i), which is a
contradiction.

Conversely, assume for t > 1 that ct−1 ̸∈ T (ct) and ct is not a leaf vertex of Tr(i). From the

second part of the assumption and the fact that ct ∈ Tr(i) it follows that there is at least one leaf

vertex k < i of Tr(i) from which there is a directed path to i via ct. Thus k < ct. From the

definition of the postordering of T , all vertices l with k < l ≤ ct are vertices of T (ct). Vertex ct−1

must be among them and ct−1 ∈ T (ct). This contradiction completes the proof. □
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Leaf vertices of row subtrees

Corollary
Under the assumptions of the previous Theorem, ct is a leaf vertex of
Tr(i) if and only if

t = 1 or (1 < t ≤ s and ct−1 < ct − |T (ct)|+ 1).

Subtree sizes can be easily computed bottom up.
Correctness of next Algorithm is guaranteed because parent
defines a topological ordering of T .
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Subtree sizes - needed to get the leaf vertices of row subtrees

Algorithm (Find the sizes of subtrees T (i) of T )
Input: Elimination tree T described by the vector parent.
Output: Subtree sizes |T (i)| (1 ≤ i ≤ n).

1: |T (1 : n)| = 1

2: for i = 1 : n− 1 do
3: k = parent(i)

4: |T (k)| = |T (k)|+ |T (i)|
5: end for
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Leaf vertices of row subtrees by columns
Theorem relaxes the condition that the entries in the rows of A are
sorted by increasing column indices. This allows the leaf vertices
of the row subtrees to be determined by columns.

Theorem
Consider the elimination tree T of A. Vertex j is a leaf vertex of some
row subtree of T if and only if there exists i ∈ adjG(A){j}, j < i ≤ n,
such that i ̸∈ adjG(A){k} for all k ∈ T (j) \ {j}.

Proof.
Assume that for some i ∈ ancT {j} vertex j is a leaf vertex of Tr(i). That is, i ∈ adjG(A){j},
i > j. Suppose there exists k in T (j) \ {j} such that i ∈ adjG(A){k}. Then all the ancestors of
k, k ≤ i, in particular j, belong to Tr(i) and j cannot be a leaf vertex of Tr(i). This is a
contradiction.

Conversely, assume that j is not a leaf vertex of any row subtree of T and that there exists

i ∈ adjG(A){j}, j < i ≤ n, such that i ̸∈ adjG(A){k} for all k ∈ T (j) \ {j}. Because j is not a

leaf vertex of any such Tr(i), Theorem on necessary and sufficient fill-in conditions implies that

there exists k ∈ T (j) \ {j} such that aik ̸= 0, which gives a contradiction and completes the

proof. □

228 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 238 — #238 i
i

i
i

i
i

Symbolic Cholesky

Leaf vertices of row subtrees

To find leaf vertices of row subtrees of T , Algorithm uses a
marking scheme based on Theorem above and exploits the
postordering of T .
The auxiliary vector prev_nonz stores the column indices of the
most recently encountered entries in the rows of the strictly lower
triangular part of A.
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Leaf vertices of row subtrees
Algorithm (Find leaf vertices of row subtrees of T )
Input: A with a symmetric sparsity pattern and a corresponding postordered
elimination tree T .
Output: Logical vector isleaf with entries set to true for leaf vertices of row subtrees.

1: isleaf(1 : n) = false, prev_nonz(1 : n) = 0

2: Compute |T (1 : n)| ▷ Use Algorithm 7.5
3: for j = 1 : n do ▷ Loop over the columns of A
4: for i such that i > j and aij ̸= 0 do ▷ Row index in strictly lower triangular part

of A
5: k = prev_nonz(i) ▷ Column index of most recently seen entry in row i

6: if k < j − |T (j)|+ 1 then
7: isleaf(j) = true ▷ j is a leaf vertex by Corollary ??
8: end if
9: prev_nonz(i) = j ▷ Flag j as the most recently seen entry in row i

10: end for
11: end for
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Blocks
Blocks are absolutely crucial to compute efficiently on
contemporary computers: we need as much data as possible for a
unit of data transfer inside memory hierarchy.
In BLAS terminology:

z = x+ αy −→ Z = X + αY ( vector opes )

in general: saxpy −→ dgemm
But we have sparse matrices. It is not so straightforward to split
their nonzeros into blocks.
In fact, we need to reorder them in order to get blocks.

▶ Application-based blocks in discretized systems.
▶ Graph-based strategies which can be very fast.
▶ But we need to optimize the block structure of L: supernodes.
▶ Help: again our good friend, the elimination tree.
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Supernodes

* * * *
* * * *
* * * *
* * * *

*
*

*
*

*
*
*

*
* *s+t−1

s
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Supernodes and the assembly tree
Because of column replication, the columns of L generally
become denser as the Cholesky factorization proceeds.
To exploit this, we require the concept of supernodes. The idea:
group together columns with the same sparsity structure, so that
they can be treated as a dense matrix.
Let 1 ≤ s, t ≤ n with s+ t− 1 ≤ n. A set of contiguously numbered
columns of L with indices S = {s, s+ 1, . . . , s+ t− 1} is a
supernode of L if

colL{s} ∪ {s} = colL{s+ t− 1} ∪ {s, . . . , s+ t− 1}, (31)

and S cannot be extended for s > 1 by adding s− 1 or for
s+ t− 1 < n by adding s+ t.
Because S cannot be extended it is a maximal subset of column
indices. In graph terminology, a supernode is a maximal clique of
contiguous vertices of G(L+ LT ).
A supernode may contain a single vertex.
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Supernodes



. . . . . . s . . . . . . s′ . . . . . . . . . . . .
...

. . . · · ·
...

...
. . .

s ∗
... ∗ . . .
... ∗ ∗ . . .
s′ ∗ ∗ ∗ ∗
... . . . . . . . .

. . .
... ∗ ∗ ∗ ∗ . . .
... ∗ ∗ ∗ ∗ . . .
... . . . . . . . .

. . .
... ∗ ∗ ∗ ∗ . . .


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Supernodes

L =



1 2 3 4 5 6 7 8

1 ∗
2 ∗ ∗
3 ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗ ∗ ∗
8 ∗ ∗ ∗ ∗ ∗ ∗


Figure: An example to illustrate supernodes in L. The first supernode comprises columns 1
and 2, the second columns 3 and 4, and the third columns 5 to 8.
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Supernodes

The supernodal elimination or assembly tree is defined to be the
reduction of the elimination tree that contains only supernodes.
Each vertex of the elimination tree is associated with one
elimination and a single integer (the index of its parent) is needed.
Associated with each vertex of the assembly tree is an index list of
the row indices of the nonzeros in the columns of the supernode.
These implicitly define the sparsity pattern of L.
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Demonstrating the difference between the elimination and
assembly trees is given in Figure 28. Here the elimination tree is
postordered and there are 5 supernodes: {1, 2}, 3, 4, 5,
{6, 7, 8, 9}. For supernode 1 that comprises columns 1 and 2, the
row index list is {1, 2, 8, 9}.



1 2 3 4 5 6 7 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗
7 ∗ ∗ f ∗ f ∗
8 ∗ ∗ ∗ ∗ ∗ f ∗ f
9 ∗ ∗ ∗ ∗ f ∗


1

2

3 5

4 6

7

8

9

4; {5, 7, 8}

2; {3, 4, 8}

1; {1, 2, 8, 9}

3; {4, 7, 8}

5; {6, 7, 8, 9}

Figure: A sparse matrix and its postordered elimination tree (left) and postordered assembly
tree (right). Filled entries in S{L+LT } are denoted by f . For the assembly tree, the vertices are
in red and the index lists associated with each vertex are given.

237 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 247 — #247 i
i

i
i

i
i

Symbolic Cholesky

Convenient characterization of supernodes

Theorem
The set of columns of L with indices S = {s, s+ 1, . . . , s+ t− 1} is a
supernode of L if and only if it is a maximal set of contiguous columns
such that s+ i− 1 is a child of s+ i for i = 1, . . . , t− 1 and

| colL{s} | = | colL{s+ t− 1} |+ t− 1. (32)

Proof.
Let S be a supernode. For i, j ∈ S with i > j we have i ∈ colL{j}. This implies that in the
postordered elimination tree the vertex i = j + 1 is the parent of j for j = s, . . . , s+ t− 2.
Moreover, from Observation 26, for any i, j ∈ S with i > j,
i ∈ colL{j} implies colL{j} \ {1, . . . , i} ⊆ colL{i}. Therefore,

| colL{s+ i} | ≥ | colL{s+ i− 1} | − 1, i = 1, . . . , t− 1, (33)

with equality if and only if

colL{s+ i} = colL{s+ i− 1} \ {s+ i},

that is, if S is a supernode.

Conversely, assume S is a maximal set of contiguous columns such that, for i = 1, . . . , t− 1,

s+ i− 1 is a child of s+ i and S satisfies (32). Because of column replication, such a sequence

of parent and child vertices must satisfy (33) with equality if and only if (31) is satisfied. It follows

that S is a supernode. □
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Supernodes
Enhance the efficiency of sparse factorizations and sparse
triangular solves because they enable floating-point operations to
be performed on dense submatrices rather than on individual
nonzeros, thus improving memory hierarchy utilization and
allowing the use of highly efficient dense linear algebra kernels
(such as Level 3 BLAS kernels).
Columns within a supernode are numbered consecutively but they
can be numbered within the supernode in any order without
changing the number of nonzeros in L (assuming the
corresponding rows are permuted symmetrically). On some
architectures, particularly those using GPUs, this freedom can be
exploited to improve the factorization efficiency.
Supernode amalgamation to achieve better efficiency.

239 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 249 — #249 i
i

i
i

i
i

Symbolic Cholesky

Fundamental supernodes
In practice, fundamental supernodes are easier to work with in the
numerical factorization.
Let 1 ≤ s, t ≤ n with s+ t− 1 ≤ n. A maximal set of contiguously
numbered columns of L with indices S = {s, s+ 1, . . . , s+ t− 1} is
a fundamental supernode if for any successive pair i− 1 and i in
the list, i− 1 is the only child of i in T and
colL{i} ∪ {i} = colL{i− 1}. s is termed the starting vertex.
The difference between the sets of supernodes and fundamental
supernodes is normally not large, with the latter having (slightly)
more blocks in the resulting partitioning of L.
Note that fundamental supernodes are independent of the choice
of the postordering of T .
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

1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ f f
3 ∗ ∗ ∗ ∗
4 ∗ ∗ f f
5 ∗ f ∗ f ∗ ∗
6 ∗ f ∗ f ∗ ∗


1

2

3

4

5

6

Figure: A matrix A and its postordered elimination tree T for which the set of
supernodes {1, 2} and {3, 4, 5, 6} and the set of fundamental supernodes
{1, 2}, {3, 4} and {5, 6} are different. The filled entries in S{L+ LT } are
denoted by f .
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Fundamental supernodes and leaves of row subtrees

Theorem
Assume T is postordered. Vertex s is the starting vertex of a
fundamental supernode if and only if it has at least two child vertices in
T or it is a leaf vertex of a row subtree of T .

Proof.
If s has at least two child vertices then, from the definition of a fundamental supernode, it must be
the starting vertex of a fundamental supernode. Assume that, for some i > s, s is a leaf vertex of
Tr(i). If s is also a leaf vertex of T then s is a starting vertex of a supernode. The remaining
case is s having only one child. Because T is postordered, this child must be s− 1. Theorem of
necessary and sufficient condititions for the fill-in implies ais ̸= 0 and ai,s−1 = 0, that is,
i ∈ colL{s} and i /∈ colL{s− 1}. It follows that

S{Ls−1:n,s−1} & S{Ls:n,s} ∪ {s− 1},

and vertices s and s− 1 cannot belong to the same supernode. Hence, s is the starting vertex of
a new fundamental supernode.

Conversely, assume that s is the starting vertex of a fundamental supernode S. If s has no child

vertices or at least two child vertices, the result follows. If s has exactly one child vertex,

postordering implies this child is s− 1. Because S is maximal there exists i such that

i ̸∈ colL{s− 1} and i ∈ colL{s}, (otherwise S could be extended by adding s− 1). Hence s is

a leaf vertex of Tr(i). □
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Complexity of symbolic operations

Because fundamental supernodes are characterized by their
starting vertices, they can be found by modifying Algorithm to
incorporate marking leaf vertices of the row subtrees and vertices
with at least two child vertices.
Once the elimination tree has been computed, the complexity is
O(n+ nz(A)).
The computation can be made even more efficient by using the
skeleton graph G(A−).
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Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)

the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)
parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Symbolic Cholesky

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)

the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)
parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Symbolic Cholesky

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)
the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)

parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Symbolic Cholesky

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)
the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)

parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Symbolic Cholesky

Supernodes and efficient computation
the loop over rows has no indirect addressing: (dense BLAS1)
the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)
parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Outline
1 Introduction
2 Introductory notation and terminology
3 Sparse matrices and data structures
4 Graphs and sparse matrices
5 Factorizations
6 Reducibility and blocks
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Reorderings
12 Algebraic preconditioning
13 Incomplete factorizations
14 Sparse approximate inverses
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Factorization Cholesky

Numerical factorization: blocks and panels needed

Positive definite (SPD) matrix is factorizable (strongly regular) and
(in exact arithmetic) its Cholesky factorization A = LLT exists.
Because efficient implementations of sparse Cholesky
factorizations rely heavily on exploiting dense blocks, we first
consider algorithms for the Cholesky factorization of dense
matrices that can be applied to such blocks.
The first one is an in-place algorithm because L can overwrite the
lower triangular part of A (thus reducing memory requirements if
A is no longer required).
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Factorization Cholesky

In-place dense factorization

Algorithm (In-place dense left-looking Cholesky
factorization)
Input: Dense SPD matrix A.
Output: Factor L such that A = LLT .

1: for j = 1 : n do
2: Lj:n,j = Aj:n,j ▷ Only the lower triangular part of A is required
3: for k = 1 : j − 1 do
4: Lj:n,j = Lj:n,j − Lj:n,k ljk ▷ Update column j using previous columns
5: end for
6: ljj = (ljj)

1/2 ▷ Overwrite the diagonal entry with its square root
7: Lj+1:n,j = Lj+1:n,j/ ljj ▷ Scale off-diagonal entries in column j

8: end for
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Factorization Cholesky

Reorganized using block panels (left-looking)

Algorithm (In-place dense left-looking panel Cholesky
factorization)
Input: Dense SPD matrix A with nb panels.
Output: Factor L such that A = LLT .

1: for jb = 1 : nb do
2: Ljb:nb,jb = Ajb:nb,jb

3: for kb = 1 : jb− 1 do
4: Ljb:nb,jb = Ljb:nb,jb − Ljb:nb,kb L

T
jb,kb ▷ Update block column jb

5: end for
6: Compute in-place factorization of Ljb,jb ▷ Overwrite Ljb,jb with its Cholesky factor
7: Ljb+1:nb,jb = Ljb+1:nb,j L

−T
jb,jb ▷ Dense triangular solve

8: end for
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Factorization Cholesky

Reorganized using panels (right-looking)

Algorithm (In-place dense right-looking panel Cholesky
factorization)
Input: Dense SPD matrix A in the form with nb panels.
Output: Factor L such that A = LLT .

1: for jb = 1 : nb do
2: Ljb:nb,jb = Ajb:nb,jb

3: end for
4: for jb = 1 : nb do
5: Compute in-place factorization of Ljb,jb ▷ Overwrite Ljb,jb with its Cholesky factor
6: Ljb+1:nb,jb = Ljb+1:nb,j L

−T
jb,jb ▷ Dense triangular solve

7: for kb = jb+ 1 : nb do
8: Lkb:nb,kb = Lkb:nb,kb − Lkb:nb,jb L

T
kb,jb

9: end for
10: end for
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Factorization Cholesky

Large panels split to blocks, right-looking

Algorithm (In-place dense right-looking block Cholesky
factorization)
Input: Dense SPD matrix A in the form (2) with nb× nb blocks.
Output: Factor L such that A = LLT .

1: for jb = 1 : nb do
2: Ljb:nb,jb = Ajb:nb,jb

3: end for
4: for jb = 1 : nb do
5: Compute in-place factorization of Ljb,jb ▷ Task factorize(jb)
6: for ib = jb+ 1 : nb do
7: Lib,jb = Lib,jb L

−T
jb,jb ▷ Task solve(ib, jb)

8: for kb = jb+ 1 : ib do
9: Lib,kb = Lib,kb − Lib,jb L

T
kb,jb ▷ Task update(ib, jb, kb)

10: end for
11: end for
12: end for
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Factorization Cholesky

Tasks for efficient parallelization (still dense case)

The panel and block descriptions of the factorization enable
efficient parallelization. The three main block operations, which
are called tasks, are factor(jb), solve(ib, jb) and update(ib, jb, kb).
There are the following dependencies between the tasks.
factorize(jb) depends on update(jb, kb, jb) for all

kb = 1, . . . , jb− 1.
solve(ib, jb) depends on update(ib, kb, jb) for all

kb = 1, . . . , jb− 1, and factorize(jb).
update(ib, jb, kb) depends on solve(ib, kb), solve(jb, kb).
A dependency graph (DAG) can be used to schedule the tasks.
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Factorization Cholesky

Sparse Cholesky factorizations
Several classes of algorithms that implement sparse Cholesky
factorizations.
Their major differences relate to how they schedule the
computations.
First discussed: straightforward extension of the dense Cholesky
factorization.
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Factorization Cholesky

Sparse Cholesky factorizations
The entries of L satisfy the relationship

Lj+1:n,j =

(
A j+1:n,j −

j−1∑
k=1

Lj+1:n,kljk

)
/ljj with ljj =

(
ajj −

j−1∑
k=1

l2jk

)1/2

,

Theorem
The numerical values of the entries in column j > k of L depend on
the numerical values in column k of L if and only if ljk ̸= 0.
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Factorization Cholesky

Sparse Cholesky factorizations

Straightforward sparse: S{L} already determined, static storage
formats based, for example, on compressed columns and/or rows.

Algorithm (Simplified sparse left-looking Cholesky)
Input: SPD matrix A and sparsity pattern S{L}.
Output: Factor L such that A = LLT .

1: lij = aij for all (i, j) ∈ S{L} ▷ Filled entries in L are initialised to zero
2: for j = 1 : n do
3: for k ∈ {k < j | ljk ̸= 0} do
4: for i ∈ {i ≥ j | lik ̸= 0} do
5: lij = lij − likljk
6: end for
7: end for
8: ljj = (ljj)

1/2

9: for i ∈ {i > j | lij ̸= 0} do
10: lij = lij/ ljj
11: end for
12: end for
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Factorization Cholesky

Sparse Cholesky factorizations

Algorithm (Simplified sparse right-looking Cholesky)
Input: SPD matrix A and sparsity pattern S{L}.
Output: Factor L such that A = LLT .

1: For all (i, j) ∈ S{L} set lij = aij ▷ Filled entries in L are initialised to zero
2: for j = 1 : n do
3: ljj = (ljj)

1/2

4: for i ∈ {i > j | lij ̸= 0} do
5: lij = lij/ ljj
6: end for
7: for k ∈ {k > j | lkj ̸= 0} do
8: for i ∈ {i ≥ k | lij ̸= 0} do
9: lik = lik − lij lkj
10: end for
11: end for
12: end for
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Factorization Cholesky

Sparse Cholesky factorizations

The theoretical background based on the elimination tree T
enables the dependencies to be searched for efficiently.
T allows:

▶ row (or column) counts of L to be computed
▶ storage allocated
▶ supernodes

In practice, it can be beneficial to split large supernodes into
smaller panels to better conform to computer caches.
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Factorization Cholesky

Block column (left-looking) algorithm: notes on implementation

The following theorem shows that we need to go through rows of
columns of L computed so far within a block algorithm.

Theorem

Let j > k. Numerical values of entries in L∗j depend on the values of
entries in L∗k iff ljk ̸= 0.

Note that to get the sparsity patterns of columns we need less.

257 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 271 — #271 i
i

i
i

i
i

Factorization Cholesky

Block left-looking algorithm: notes on implementation

Construction columns (block columns) one by one.
Going through the rows can be simulated by linked lists as we saw
in CSC-CSR matvec.
Plan to mention this again when discussing approximate
factorizations.
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Factorization Cholesky

Sparse Cholesky factorizations

An alternative for sparse matrices is to compute L one row at a
time. This is sometimes called an up-looking factorization.
Asymptotically optimal. Difficult to incorporate high level BLAS.
The following relation holds for the i-th row of L

LT
i,1:i−1 = L−1

1:i−1,1:i−1A 1:i−1,i with l2ii = aii − Li,1:i−1L
T
i,1:i−1.

The application of L−1
1:i−1,1:i−1 can be implemented by solving the

triangular system

L1:i−1,1:i−1y = A 1:i−1,i,

and setting LT
i,1:i−1 = y.
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Factorization Cholesky

Triangular systems and sparsity pattern of L

Theorem
Consider a sparse lower triangular matrix L and the DAG G(LT ) with
vertex set {1, 2, . . . , n} and edge set {(j −→ i) | lij ̸= 0}. The sparsity
pattern S{y} of the solution y of the system Ly = b is the set of all
vertices reachable in G(LT ) from S{b}.

Proof.
From factorization Algorithm and assuming the non-cancellation assumption, we see that (a) if

bi ̸= 0 then yi ̸= 0 and (b) if for some j < i, yj ̸= 0 and lij ̸= 0 then yi ̸= 0. These two

conditions can be expressed as a graph transversal problem in G(LT ). (a) adds all vertices in

S{b} to the set of visited vertices and (b) states that if vertex j has been visited then all its

neighbours in G(LT ) are added to the set of visited vertices. Thus

S{y} = Reach(S{b}) ∪ S{b}. □
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Factorization Cholesky

Triangular systems and sparsity pattern of L
Figure illustrates the sparsity patterns of a lower triangular matrix L
and vector b together with G(LT ). The vertices that are reachable from
S{b} = {2, 4} are 5 and 6 and thus S{y} = {2, 4, 5, 6}.

L =



1 2 3 4 5 6

1 ∗
2 ∗ ∗
3 ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗

 b =



1

1
2 ∗
3
4 ∗
5
6



1

2

3
4

5

6

Figure: An example to illustrate L, b and G(LT ).
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Factorization Cholesky

Triangular systems and sparsity pattern of L
∗
∗

∗ ∗
∗

∗ ∗



∗

∗

∗

 =


∗
 (34)

The only nonzero of the right-hand side implies the three
nonzeros in the solution
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Factorization Cholesky

Triangular systems and sparsity pattern of L
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Factorization Cholesky

Up-looking Cholesky - comments

Sparse row Cholesky factorization is based on the repeated
solution of triangular linear systems.
Theorem above can be used to determine the sparsity pattern of
row i at Step 3, that is, by finding all the vertices that are
reachable in G(LT

1:j−1,1:j−1) from the set {i | aij ̸= 0, i < j}.
A depth-first search of G(LT

1:j−1,1:j−1) determines the vertices in
the row sparsity patterns in topological order, and performing the
numerical solves in that order correctly preserves the numerical
dependencies.
Another option is to find the row subtrees using T (A).
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Factorization Cholesky

Algorithm (Sparse up-looking Cholesky factorization)
Input: SPD matrix A.
Output: Factor L such that A = LLT .

1: l11 = (a11)
1/2

2: for i = 2 : n do
3: Find S{Li,1:i−1} ▷ Sparsity pattern of Li,1:i−1

4: LT
i,1:i−1 = L−1

1:i−1,1:i−1A 1:i−1,i ▷ Sparse triangular solve

5: lii = aii − Li,1:i−1L
T
i,1:i−1

6: lii = (lii)
1/2

7: end for
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Supernodal algorithms
Sophisticated supernodal algorithms: efficiency in parallel
computational environments.
Assume supernodal structure. Arithmetic of dense trapezoidal
matrices. Blocks termed a nodal matrix.

Figure: An illustration of a supernode (left), the corresponding nodal matrix
(centre), and the nodal matrix with two panels (right).
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Comments on (right-looking) supernodal processing
Once a supernode is ready to be factorized, a dense Cholesky
factorization of the block on the diagonal of the nodal matrix is
performed
Then a triangular solve is performed with the computed factor and
the rectangular part of the nodal matrix.
Iterate over ancestors of the supernode in the assembly tree.
For each parent, the rows of the current supernode for each
parent columns are identified. The outer product of those rows
and the subdiagonal part of the supernode (update operations).
The resulting matrix can be held in a temporary buffer. The rows
and columns of this buffer are matched against indices of the
ancestors and are added to them in a sparse scatter operation.
For efficiency, the updates may use panels so that the temporary
buffer remains in cache.
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DAG-based approach and the sparse case
Each nodal matrix is subdivided into blocks.

Ldiag

Ldiag

Lrect

Ldiag

Ldest

Figure: An illustration of a blocked nodal matrix with two block columns. The
first block on the diagonal is triangular and the second one is trapezoidal. The
task factorize_block is illustrated on the left and in the centre; the task
solve_block is illustrated on the right.
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DAG-based approach and the sparse case
Different splitting into tasks.
The key difference: distinguish: update_internal (the same nodal
matrix), update_between (different nodal matrices).

factorize_block(Ldiag) Computes the dense Cholesky factor Ldiag of
the block on the diagonal (leftmost plot). If the block is
trapezoidal, the factorization is followed by a triangular
solve of its rectangular part Lrect = LrectL

−T
diag (centre).

solve_block(Ldest) Performs a triangular solve of an off-diagonal block
Ldest of the form Ldest = LdestL

−T
diag (rightmost).

update_internal (Ldest, Lr, Lc) Performs the update
Ldest = Ldest − LrL

T
c , where Ldest, Lr and Lc belong to

the same nodal matrix.
update_between (Ldest, Lr, Lc) Performs the update

Ldest = Ldest − LrL
T
c , where Lr and Lc belong to the

same nodal matrix and Ldest belongs to a different nodal
matrix.
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DAG-based approach and the sparse case
Again, the tasks are partially ordered and a task DAG is used to
capture the dependencies.
For example, the updating of a block of a nodal matrix from a
block column of L that is associated with a descendant of the
supernode has to wait until all the relevant rows of the block
column are available.
At each stage of the factorization, tasks will be executing (in
parallel) while others are held (in a stack or pool of tasks) ready
for execution.
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Alternative way: the multifrontal method

Theorem
Let A be SPD and let T be its elimination tree. The numerical values
of entries in column k of the Cholesky factor L of A only affect the
numerical values of entries in column i of L for i ∈ ancT {k}
(1 ≤ k ≤ n− 1).

Proof.
Setting S(1) = A, for k ≥ 2 the (n− k + 1)× (n− k + 1) Schur complement S(k) can be
expressed as

S(k) = S
(k−1)
k:n,k:n −

lk,k−1

...
ln,k−1

(lk,k−1 . . . ln,k−1

)
= S

(k−1)
k:n,k:n − Lk:n,k−1L

T
k:n,k−1. (35)

Theorem on replication implies that all nonzero entries lik in column k of L explicitly used in the

update are such that i ∈ ancT {k}. Considering the Cholesky factorization as a sequence of

Schur complement updates, only columns i with i ∈ ancT {k} can be influenced numerically by

the Schur complement update in the k-th step of the factorization, and the result follows. □
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Alternative way: the multifrontal method

The computation of subsequent Schur complements by adding
individual updates is straightforward; the multifrontal method
employs further modifications and enhancements of this basic
concept.
Because the vertices of T are topologically ordered, the order in
which the updates are applied progresses up the tree from the
leaf vertices to the root vertex.
This allows the computation of S(k) to be rewritten as

S(k) = Ak:n,k:n −
∑

j∈T (k)\{k}

Lk:n,jL
T
k:n,j ,

emphasizing the role of T .
In place of Schur complements, the multifrontal method uses
frontal matrices connected to subtrees of T .
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Alternative way: the multifrontal method

Assume k, k1, . . . , kr are the row indices of the nonzeros in column
k of L.
The frontal matrix Fk of the k-th subtree T (k) of T is the dense
(r + 1)× (r + 1) matrix defined by

Fk =


akk akk1 . . . akkr
ak1k 0 . . . 0

...
...

. . .
...

akrk 0 . . . 0

− ∑
j∈T (k)\{k}


lkj
lk1j

...
lkrj

(lkj lk1j . . . lkrj
)

(36)
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One step of the Cholesky factorization of Fk can be written as

Fk =


lkk 0 . . . 0
lk1k

... I
lkrk



1

Vk



lkk lk1k . . . lkrk
0
... I
0

(37)

=


lkk
lk1k

...
lkrk

(lkk lk1k . . . lkrk
)
+


0

Vk

 , (38)

Vk is termed a generated element (it is also sometimes called an
update matrix or a contribution block).
The name “generated element” is because the multifrontal method
has its origins in the simpler frontal method, which uses a single
frontal matrix.
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Equating the last r rows and columns yields

Vk = −
∑

j∈T (k)

lk1j
...

lkrj

(lk1j . . . lkrj
)
. (39)

Assume that cj (j = 1, . . . , s) are the children of k in T . The set
T (k) \ {k} is the union of disjoint sets of vertices in the subtrees
T (cj). Each of these subtrees is represented in the overall update
by the generated element. Thus, Fk can be written in an recursive
form as follows

Fk =


akk akk1 . . . akkr
ak1k 0 . . . 0

...
...

. . .
...

akrk 0 . . . 0

←→↕ Vc1 ←→↕ . . .←→↕ Vcs . (40)
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Here, the operation←→↕ denotes the addition of matrices that have
row and column indices belonging to subsets of the same set of
indices (in this case, k, k1, . . . , kr); entries that have the same row
and column indices are summed. This is referred to as the
extend-add operator.
Adding a row and column of A and the generated elements into a
frontal matrix is called the assembly.
A variable is fully summed if it is not involved in any rows and
columns of A that have still to be assembled or in a generated
element.
Once a variable is fully summed, it can be eliminated.
A key feature of the multifrontal method is that the frontal matrices
and the generated elements are compressed and stored without
zero rows and columns as small dense matrices.
Integer arrays used to maintain a mapping of the local indices to
the global indices of A and its factors.
Symmetry allows only the lower triangular part of these matrices
to be held. 276 / 609
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Algorithm outlines the basic multifrontal method.

Algorithm (Basic multifrontal Cholesky factorization)
Input: SPD matrix A and its elimination tree.
Output: Factor L such that A = LLT .

1: for k = 1 : n do
2: Assemble the frontal matrix Fk using (40) ▷ Only the lower triangle is needed
3: Perform a partial Cholesky factorization of Fk using (37) to obtain column k of L and the

generated element Vk

4: end for

We have the following observation.

Observation

Each generated element Vk is used only once to contribute to a frontal
matrix Fparent(k). Furthermore, the index list for the frontal matrix Fk is
the set of row indices of the nonzeros in column k of the Cholesky
factor L.
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In practical implementations, efficiency is improved by using the
assembly tree because it allows more than one elimination to be
performed at once.
This is outlined here. kb is used to index the frontal matrix on the
kb-th step (1 ≤ kb ≤ nsup).

Algorithm (Multifrontal Cholesky factorization using the
assembly tree)
Input: SPD matrix A and its assembly tree.
Output: Factor L such that A = LLT .

1: nelim = 0 ▷ nelim is the number of eliminations performed
2: for kb = 1 : nsup do ▷ nsup is the number of supernodes
3: Assemble the frontal matrix Fkb; let l be the number of fully summed variables in Fkb.
4: Perform a block partial Cholesky factorization of Fkb to obtain columns nelim+ 1 to

nelim+ l of L and the generated element Vkb

5: nelim = nelim+ l

6: end for
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As an example, consider the matrix and its assembly tree given above.
The nsup = 5 supernodes are {1, 2}, 3, 4, 5, {6, 7, 8, 9} and so variables
1 and 2 can be eliminated together on the first step. Assembling
rows/columns 1 and 2 of the original matrix, the frontal matrix F1 and
generated element V1 have the structure

F1 =


1 2 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
8 ∗ ∗
9 ∗ ∗

, V1 =
( 8 9

8 f f
9 f f

)
,

where f denotes fill-in entries (only the lower triangular entries are
stored in practice). Similarly,

F2 =


3 4 8

3 ∗ ∗ ∗
4 ∗ ∗ ∗
8 ∗ ∗ ∗

, V2 =
( 4 8

4 ∗ ∗
8 ∗ ∗

)
.
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The frontal matrix F3 and generated element V3 are given by

F3 =


4 7 8

4 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗

←→↕ V2, V3 =
( 7 8

7 ∗ f
8 f ∗

)
.

Then

F4 =


5 7 8

5 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗

, V4 =
( 7 8

7 ∗ f
8 f ∗

)
,

and, finally, with kb = 5 we have

F5 =


6 7 8 9

6 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗
9 ∗ ∗ ∗

←→↕ V4 ←→↕ V3 ←→↕ V1.
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An important implementation detail is how and where to store the
generated elements.
The partial factorization of Fkb at supernode kb can be performed
once the partial factorizations at all the vertices belonging to the
subtree of the assembly tree with root vertex kb are complete.
If the vertices of the assembly tree are ordered using a depth-first
search, the generated elements required at each stage are the
most recently computed ones amongst those that have not yet
been assembled.
This makes it convenient to use a stack.
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The memory demands of the multifrontal method can be very
large. Auxiliary storage can be used.
The ordering of the children of a vertex in the assembly tree can
significantly affect the required stack size.
Tree and node parallelism.
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Multifrontal method: (example 1)



∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ f ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ f ∗ ∗ f ∗

∗ ∗ ∗ ∗ ∗ f ∗ f
∗ ∗ ∗ ∗ f ∗





∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ f ∗ ∗

∗ ∗ f ∗ f ∗
∗ ∗ ∗ ∗ ∗ f ∗ f
∗ ∗ ∗ ∗ f ∗


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Multifrontal method: (example 1)

1

6

3 2

5 4

7

8

9

1

2

3 5

4 6

7

8

9
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Multifrontal method: (example 1)

F1 =


1 6 8 9

1 ∗ ∗ ∗ ∗
6 ∗
8 ∗
9 ∗

, V1 =


6 8 9

6 ∗ ∗ ∗
8 ∗ ∗ f
9 ∗ f ∗

.

Here V1 is dense and f denotes fill-in entries. Similarly, we have

F2 =


2 4 7

2 ∗ ∗ ∗
4 ∗
7 ∗

, V2 =
( 4 7

4 ∗ f
7 f ∗

)
, F3 =


3 5 8

3 ∗ ∗ ∗
5 ∗
8 ∗

, V3 =
( 5 8

5 ∗ ∗
8 ∗ ∗

)
.

The sparsity pattern of the frontal matrix F4 is then

F4 =


4 8 9

4 ∗ ∗ ∗
8 ∗
9 ∗

←→↕ V2 =


4 7 8 9

4 ∗ f ∗ ∗
7 f ∗
8 ∗
9 ∗

, V4 =


7 8 9

7 ∗ f ∗
8 f ∗ f
9 ∗ f ∗

,

and so on.
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Multifrontal method

Theorem

Let T be postordered. Assume each computed generated element (Vx)
is pushed onto a stack. Then when constructing the (frontal matrix) Fj ,
the required generated elements are on the top of the stack. They can
be directly popped from the stack and assembled into Fj .

Proof sketch: 1) Vertices of each subtree of the postordered T form an
interval. 2) Denote cl, l = 1, . . . , s children of j in T . 3) Each cl is the
root of a subtree T (cl). 4) Once the frontal matrix Fcl for a leaf of T (cl)
is constructed, all its children have been processed and the generated
Vcl is pushed onto the stack. 5) That is, all subtrees Tcl , l = 1, . . . , s are
fully assembled into the generated elements before Fj can be
constructed. 6) If Fj is ready to be assembled (step j), the s generated
Vcl , l = 1, . . . , s are on the top of the stack.
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Multifrontal method: (example 2)



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗

 10

108

8

10

108

8

1

8

10

1 8 10

stack

stack

287 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 301 — #301 i
i

i
i

i
i

Factorization Cholesky

Multifrontal method: (example 2)



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8
10

102

2

10

10

10

10

stack

stack
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Multifrontal method: (example 2)



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

10

7

7

10

10

stack

stack

10
10

3

3

7

7
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

∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

7
7

7
7

stack

stack

10

4

4

7

7
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Multifrontal method: (example 2)



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

6

6 9

9

6

6 9

9
stack

stack

10

7
7

5

5 6

6

9

9
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Multifrontal method: (example 2)



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

6

6 9

9

6

6 9

9

10

109

9

10

109

9

stack

10

7
7

+

stack

6

6 10

10
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Factorization Cholesky

Multifrontal method: summary

Right-looking (submatrix) method

Does not form the Schur complement directly. Instead, the
updates are moved to a stack as dense matrices and used when
needed.

The processing order is based on the elimination tree

We will see that in order to have the needed updates at the stack
top, postordering is needed.

Specific postorderings used to minimize the needed amount of
memory.

Now example, properties repeated once more later.
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Factorization Cholesky

Multifrontal method: assumptions and properties

We do need to have the entries from the stack readily available.
→ elimination tree should be postordered
Arithmetic of dense matrices
Connection with the frontal method (later) is relatively week.
One of the most important methods for the sparse direct
factorization.
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Factorization Cholesky

Multifrontal method: postorderings memory issues

5

1

2
3

4

6

7

8

9 9

1 2

3 4

5
6

7 8

First case: Maximum stack size may be 1× 1+2× 2+3× 3+4× 4

Second case: Maximum stack size may be 4× 4

Conclusion: Even postorderings can be very different with respect
to algorithmic/architectural needs
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Outline
1 Introduction
2 Introductory notation and terminology
3 Sparse matrices and data structures
4 Graphs and sparse matrices
5 Factorizations
6 Reducibility and blocks
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Reorderings
12 Algebraic preconditioning
13 Incomplete factorizations
14 Sparse approximate inverses
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Sparse LU

Graphs and LU factorization
Structural changes during a sparse Cholesky factorization
described by graphs.
In particular, using elimination tree.
For LU: more possibilities to capture structure by graphs
But, often factorizability has to be assumed: much harder combine
pivoting and structural predictions.
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Sparse LU factorization of generally nonsymmetric
matrices

LU factorization and DAGs



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ f
5 ∗ f ∗
6 ∗ ∗ f f f ∗

 (41)

directed acyclic graphs capture structure of the factors. We use
G(LT ) (L by columns) and G(U) (U by rows).

1

3

2

4

6 G(L)^T

5
1

G(U)

4

5

2

6
3
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Sparse LU

LU factorization and DAGs
The first graph model uses the elimination DAGs associated with
L and U : see previous slide.
Observation, generalizes predictions to the nonsymmetric case.

Observation
If i > j and uji ̸= 0 then the column replication principle states

S{Li:n,j} ⊆ S{Li:n,i},

that is, the pattern of column j of L (rows i to n) is replicated in the
pattern of column i of L.
Analogously, if i > j and lij ̸= 0 then the row replication principle
states

S{Uj,i:n} ⊆ S{Ui,i:n},

that is, the pattern of row j of U (columns i to n) is replicated in the
pattern of row i of U .
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Sparse LU



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗





1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ f ∗ ∗
4 ∗ f ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ f ∗





1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ f ∗ f ∗ f
4 ∗ f f ∗ f
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ f f f ∗



Figure: An illustration of the column and row replication principles of sparse
LU factorizations. Left: the matrix A. Centre: showing column replication.
Right: also row replication. Filled entries not involved in the demonstration
and resulting from subsequent steps of the factorization are denoted in black.
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Sparse LU

Basic sparse LU factorization
Assumed that A is factorizable so that pivoting is not needed (we
will remind this only sometimes).

Algorithm (Basic sparse LU factorization)
Input: Nonsymmetric and factorizable matrix A = LA +DA + UA.
Output: LU factorization A = LU .

1: L = I + LA ▷ Strictly lower triangular part of A
2: U = DA + UA ▷ Diagonal plus strictly upper triangular part of A
3: for k = 1 : n− 1 do
4: for i ∈ {i > k | lik ̸= 0} do
5: lik = lik/ukk

6: Ui,i:n = Ui,i:n − Uk,i:nlik ▷ Update row i of U
7: end for
8: for j ∈ {j > k |ukj ̸= 0} do
9: Lj+1:n,j = Lj+1:n,j − Lj+1:n,kukj ▷ Update column j of L
10: end for
11: end for
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Sparse LU

Recursive replications
The following theorem formulates the recursive column replication and
the replication of nonzeros along rows of L using directed paths in
G(U).

Theorem

Assume that for some k < j there is a directed path k
G(U)
===⇒ j. Then

S{Lj:n,k} ⊆ S{Lj:n,j}. (42)

Moreover, if lik ̸= 0 for some i > j then lis ̸= 0 for all vertices s on this
path.

An analogous result holds for the rows of U and directed paths in
G(LT ).
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Sparse LU

Generalizing the necessary and sufficient condition for fill-in

Theorem
If aij = 0 and i > j then there is a filled entry lij ̸= 0 if and only if there

exists k < j such that aik ̸= 0 and there is a directed path k
G(U)
===⇒ j.

Theorem
If aij = 0 and i < j then there is a filled entry uij ̸= 0 if and only if there

exists k < i such that akj ̸= 0 and there is a directed path k
G(LT )
====⇒ i.
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Sparse LU

Consider the path 1→ 3→ 5→ 6 in G(U). Its existence implies the
fill-in in L, first in column 3, then in columns 5 and 6. Similarly, the path
2→ 4→ 5→ 6 in G(LT )⇒ fill-in at (4, 7), (5, 7) and (6, 7) in U .



1 2 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗





1 2 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ f
5 ∗ ∗ f f ∗ ∗ f
6 ∗ f ∗ ∗ f
7 ∗ f f f ∗



1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7
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Sparse LU

Transitive reduction

To employ G(LT ) and G(U) in efficient algorithms, they need to be
simplified. Transitive reductions are sparser and preserve
reachability within the graphs.

A subgraph G0 = (V, E0) is a transitive reduction of G = (V, E) if
the following conditions hold:
(T1) there is a path from vertex i to vertex j in G if and only if there is a

path from i to j in G0 (reachability condition), and
(T2) there is no subgraph with vertex set V that satisfies (T1) and has

fewer edges (minimality condition).

A transitive reduction is unique for a DAG, as shown in the
following theorem and illustrated below.
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Sparse LU factorization of generally nonsymmetric
matrices

Transitive reduction

Transitive reduction is the loop interconnecting vertices 1, 2 and 3.

1
2 3

Theorem

Transitive reduction of a directed acyclic graph is unique and is a
subgraph of G.
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Sparse LU factorization of generally nonsymmetric
matrices

Transitive reduction

1

3

2

4

6 G(L)^T

5

1

3

2

4

5

6
G (L )0 T

1
G(U)

4

5

2

6
3

1

4

5

2

6
3 G (U)

0

307 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 321 — #321 i
i

i
i

i
i

Sparse LU

Theorem
Let G be a DAG. The transitive reduction G0 of G is unique and is the
subgraph that has an edge for every path in G and has no proper
subgraph with this property.

1

5

4

2 3

1

5

4

2 3

1

5

4

2 3

Figure: Example to show the transitive reduction of a DAG. G is on the left, its
transitive reduction G0 is in the centre, and one possible G′ that is
equireachable with G is on the right.
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Sparse LU

Transitive reduction
If S{A} is symmetric, the role of the transitive reduction is played by
the elimination tree.

Theorem
If A is symmetrically structured then the transitive reduction of the DAG
G(LT ) (= G(U)) is the elimination tree T (A).
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Sparse LU

Transitive reduction



1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ f
4 ∗ ∗ f ∗
5 ∗ ∗ ∗ f ∗ f
6 ∗ f ∗ f ∗



1
23

45

6

1
23

45

6

Figure: The sparsity patterns of L+ U of a symmetrically structured A, the
DAG G(LT ) (left) and the elimination tree T (A) (right). Straightforward to see
that T (A) is the transitive reduction of G(LT ). 310 / 609
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Sparse LU

Transitive reduction may be expensive to obtain
Obtaining the exact transitive reduction of a DAG can be
expensive. Instead, approximate reductions that drop the
minimality condition may be computed.
A directed graph G′ with the same vertex set as G that satisfies
condition (T1) is said to be equireachable with G.
This is something in between the DAG and transitive reduction. Of
course, due to the reachability, a lot of theoretical results are
satisfied.

Theorem
Assume G′ is equireachable with G(U) and for some k < j there is a

directed path k
G′
=⇒ j. Then the replication theorem can use the

reduced DAGs. Moreover, if lik ̸= 0 for some i > j then lis ̸= 0 for all
vertices s on the directed path.
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Sparse LU

Equireachability and efficiency
Equireachability enables sparse triangular linear systems to be
solved more efficiently being sparser.
The necessary and sufficient conditions for the fill-in from above:

Theorem
If aij = 0 and i > j then there is a filled entry lij ̸= 0 if and only if there

exists k < j such that aik ̸= 0 and a directed path k
G′(U)
===⇒ j, where

G′(U) is equireachable with G(U).

Theorem
If aij = 0 and i < j then there is a filled entry uij ̸= 0 if and only if there

exists k < i such that akj ̸= 0 and a directed path k
G′(LT )
====⇒ i, where

G′(LT ) is equireachable with G(LT ).
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Sparse LU

Equireachability: example
Figure 36 depicts G(U) and G′(U) for the matrix in Figure above.

1 5

3

6 1 5

3

6

2 7

4

2 7

4

Figure: The DAG G(U) for the matrix from Figure ?? (left) and G′(U) which is
equireachable with G(U) (right).
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Sparse LU

Column sparsity patterns (for L)
Standard description of the sparsity patterns of the columns of L can
be obtained from the Schur complement as follows:

S{Lj:n,j} = S{Aj:n,j}
⋃

k<j,ukj ̸=0

S{Lj:n,k}, 1 ≤ j ≤ n.

Theorem on the next slide implies that not all the terms in this union
are needed to obtain S{Lj:n,j}.
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Sparse LU

Column sparsity patterns (for L)

Theorem
If G′(U) is equireachable with G(U) then

S{Lj:n,j} = S{Aj:n,j}
⋃

(k→j)∈E(G′(U))

S{Lj:n,k}, 1 ≤ j ≤ n. (43)

Proof.
Consider an edge (k → j) in G(U) but not in G′(U). Repeatedly applying replication results

along the directed path k
G′(U)
====⇒ j, we see that Lj:n,k is contained in the right-hand side of the

predicted structure and therefore S{Lj:n,j} is contained in the right-hand side of this structure

as well. Because the right-hand side of the formula is trivially contained in the left-hand side, the

result follows. □
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Sparse LU

Row sparsity patterns (for U )
An analogous result holds for the rows of U .

Theorem
If G′(L) is equireachable with G(L) then

S{Ui,i:n} = S{Ai,i:n}
⋃

(k→i)∈E(G′(LT ))

S{Uk,i:n}, 1 ≤ i ≤ n.

As an example, consider the matrix above. Because (3→ 5) is the
only edge of G′(U) in the union on the right-hand side of (43), S{L5:7,5}
is given by

S{L5:7,5} = S{A5:7,5} ∪ S{L5:7,3}.

We can see this from the graph G′(U) in Figure that demonstrates
equireachability (top right).
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Sparse LU

Factorization by bordering
Factorization by bordering can be used to obtain S{L} by rows
and S{U} by columns.
Assume the sparsity patterns of the first k − 1 rows of L and the
first k − 1 columns of U (1 < k ≤ n) have been computed.
At step k, the matrix A1:k,1:k is

(
A1:k−1,1:k−1 A1:k−1,k

Ak,1:k−1 akk

)
=

(
L1:k−1,1:k−1 0
Lk,1:k−1 1

)(
U1:k−1,1:k−1 U1:k−1,k

0 ukk

)
(44)

Equating terms for the (2, 1) block, row k of L satisfies

Lk,1:k−1U1:k−1,1:k−1 = Ak,1:k−1,

or, equivalently, if y denotes the off-diagonal part of the column k
of LT then it is the solution of the lower triangular system

UT
1:k−1,1:k−1y = AT

k,1:k−1.
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Sparse LU

Factorization by bordering
The sparsity pattern of y is the set of all vertices reachable in the
DAG G(U 1:k−1,1:k−1) (or in a graph that is equireachable with it)
from the nonzeros in Ak,1:k−1.
Similarly, equating terms in (44) for the (1, 2) block, column k of U
satisfies

L1:k−1,1:k−1U1:k−1,k = A1:k−1,k.

Again, its sparsity pattern can be determined by searching the
DAG G(LT

1:k−1,1:k−1).
The diagonal entry ukk is then computed as akk − Lk,1:k−1U1:k−1,k.
Determining the sparsity patterns of L and U and computing their
numerical values is coupled: computation of the factors needs be
mutually interleaved because computing part of one requires
information from a part of the other.
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Sparse LU

Pruning of the elimination DAGs
The matrix in the centre is the same as the one on the left except
that the entries in positions (4, 6) and (6, 4) have been removed
(that is, pruned).
Both matrices have the same sets of reachable vertices in G(LT )
and G(U). This suggests how to find G′(LT ) and G′(U) that are
equireachable with G(LT ) and G(U), respectively.



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗


Figure: An example of symmetric pruning. On the left is S{L+ U}. In the
centre is the reduced sparsity pattern obtained by symmetric pruning. On the
right is the reduced sparsity pattern that results from symmetric path pruning.
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Sparse LU

Pruning of the elimination DAGs

Theorem
If for some j < s both lsj ̸= 0 and ujs ̸= 0, then there are no edges
(j → k) with k > s in the transitive reductions of G(U) and G(LT ).

Proof.
Let (j → k) be an edge of G(U), that is, ujk ̸= 0. Because lsj ̸= 0 and ujk ̸= 0 implies that

usk ̸= 0, there is a path j → s → k in G(U) and the edge (j → k) does not belong to the

transitive reduction of G(U). The result for G(LT ) can be seen analogously. □

The theorem implies that if for some s > 1 there are edges

j
G(LT )−−−−→ s and j

G(U)−−−→ s,

then all edges (j → k) in G(U) and G(LT ) with k > s can be pruned.
The resulting DAGs G′(U) and G′(LT ) have fewer edges and are
equireachable with G(U) and G(LT ), respectively. The removal of
redundant edges based on the Theorem is called symmetric pruning.
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Sparse LU

Other ways of pruning of the elimination DAGs
If for some s > 1 there are paths

j
G(LT )
====⇒ s and j

G(U)
===⇒ s,

then for all k > s symmetric path pruning removes the edges
(j → k) from G(U) and G(LT ).
Consider again previous Figure. In the centre: the sparsity pattern
after symmetric pruning. On the right: the reduced sparsity
pattern that results from symmetric path pruning. The edge
(1→ 6) is not required in G′(LT ) or G′(U) because there are paths

1
G(LT )−−−−→ 2

G(LT )−−−−→ 4
G(LT )−−−−→ 5

G(LT )−−−−→ 6 and 1
G(U)−−−→ 3

G(U)−−−→ 6.
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Sparse LU

Another graph model: nonsymmetric elimination tree
The elimination DAGs G(L) and G(U) can be combined into a
single structure called the nonsymmetric elimination tree in
which edges are replaced by paths.
This can be advantageous because it is more compact.
If S{A} is symmetric then its elimination tree is defined in terms of
the mapping

parent(j) = min{i | i > j and lij ̸= 0}.

The condition lij ̸= 0 is equivalent to i
G(L)−−−→ j

G(LT )−−−−→ i.
In the nonsymmetric case, the definition can be generalized using
directed paths

parent(j) = min{i | i > j and i
G(L)
====⇒ j

G(U)
====⇒ i}. (45)
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Sparse LU

Example of the next slide
Vertices 6, 8 and 10 are the only ones with cycles of the form

i
G(L)
====⇒ 2

G(U)
====⇒ i.

Namely,

6
G(L)−−−−→ 2

G(U)−−−−→ 5
G(U)−−−−→ 6, 8

G(L)−−−−→ 2
G(U)−−−−→ 8

and
10

G(L)−−−−→ 6
G(L)−−−−→ 2

G(U)−−−−→ 10.

In this example, parent(2) = 6.
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

1 2 3 4 5 6 7 8 9 10

1 ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗
9 ∗ ∗
10 ∗ ∗ ∗





1 2 3 4 5 6 7 8 9 10

1 ∗ ∗
2 ∗ ∗ f ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ f f
6 ∗ f f f ∗ f f f
7 ∗ ∗ f f
8 ∗ ∗ f f f f ∗ f f
9 ∗ ∗
10 ∗ f ∗ f f ∗



1

3

4

6

7 8

2 5

9

10

Figure: An example of the sparsity pattern of a nonsymmetric matrix A (left),
S{L+ U} with filled entries denoted by f (right) and its elimination tree.
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Locality: way to find the nonsymmetric elimination tree
Theorem can be regarded as a generalization of corollary on the
standard symmetric elimination tree.

Theorem
Let A be a nonsymmetric matrix. i = parent(j) if and only if i > j and i
is the smallest vertex that belongs to the same strong component of
G(A1:i,1:i) as vertex j.

The result is employed in Algorithm below to find the elimination
tree.
The complexity of finding the strong components of a digraph with
m edges and n vertices is O(n+m) time. Hence, the complexity
of Algorithm is O(nz(A)n). More sophisticated approaches with
complexity O(nz(A) log n) exist.
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Locality: way to find the nonsymmetric elimination tree

Algorithm (Basic computation of the elimination tree for
nonsymmetric A)
Input: Digraph G(A).
Output: The elimination tree given by the mapping parent.

1: parent(1 : n) = 0

2: for i = 1 : n do
3: Find the vertex set VC of the strong component of G(A1:i,1:i) that contains i

4: for j ∈ VC \ {i} do
5: if parent(j) = 0 then
6: parent(j) = i

7: end if
8: end for
9: parent(i) = 0

10: end for
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Illustration using the matrix from above

The main loop sets the first nonzero value in the array parent
when i = 3 because this is the first i for which the set VC \ {i} is
non empty; it is equal to {1} and thus parent(1) = i = 3.
For i = 4, the vertex set {1, 3, 4} forms a strong component of
G(A1:4,1:4) and so parent(3) = 4.
For i = 5, the single vertex {5} is a strong component of
G(A1:5,1:5) and, therefore, 5 is not a parent of any other vertex (it is
a leaf vertex).
G(A1:6,1:6) has two strong components with vertex sets {1, 3, 4}
and {2, 5, 6}. i = 6 belongs to the second of these and thus the
algorithm sets parent(j) = i = 6 for j = 2 and 5.
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Another graph model: column elimination tree
An attractive idea for constructing S{L+ U} and subsequently
computing the LU factorization is based on using the column
elimination tree T (ATA).

Theorem

Assume all the diagonal entries of A are nonzero and let L̂L̂T be the
Cholesky factorization of ATA. Then for any row permutation matrix P
such that PA = LU

S{L+ U} ⊆ S{L̂+ L̂T }.
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Holds for any row permutation matrix P applied to A. This allows
partial pivoting.
The following result states that T (ATA) represents the potential
dependencies among the columns in an LU factorization.
For strong Hall matrices no tighter prediction is possible from the
sparsity structure of A.

Theorem
If PA = LU is any factorization of A with partial pivoting then the
following hold.

1 If vertex i is an ancestor of vertex j in T (ATA) then i ≥ j.

2 If lij ̸= 0 then vertex i is an ancestor of vertex j in T (ATA).

3 If uij ̸= 0 then vertex j is an ancestor of vertex i in T (ATA).

4 Suppose in addition that A is a strong Hall matrix. If l = parent(k) in
T (ATA), then there are values of the nonzero entries of A for which
ukl ̸= 0.
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Figures below illustrate the differences in the sparsity patterns of A
and ATA and of their factors; the corresponding elimination trees are
also given.



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ f ∗
3 ∗ ∗
4 ∗ ∗ ∗ f ∗
5 ∗ ∗ f ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗ f ∗


1 2

34

5 6

7
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

1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ f ∗ ∗ ∗
4 ∗ ∗ f ∗ ∗ f ∗
5 ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗ ∗ ∗


1

2

3

4

5

6

7

Figure: Both figures: the sparsity patterns of A and L+ U (top) and of ATA
and L̂+ L̂T , where ATA = L̂L̂T (bottom). Filled entries are denoted by f .
The corresponding elimination trees are also given.
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The column elimination tree
A potential problem with the column elimination tree:

S{ATA} can have significantly more entries than S{L+ U}. An
extreme example is when A has one or more dense rows because
ATA is then fully dense.
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Supernodes and LU
Supernodes group together columns of the factors with the same
nonzero structure, allowing them to be treated as a dense
submatrix for storage and computation.
For nonsymmetric matrices, supernodes are harder to
characterize.
The need to incorporate pivoting means it may not be possible to
predict the sparsity structures of the factors before the numerical
factorization and they must be identified on the fly.
More ways to define supernodes.
Cholesky solver: fundamental supernodes are made contiguous
by symmetrically permuting the matrix according to a postordering
of its elimination tree; this does not change the sparsity of the
Cholesky factor.
For nonsymmetric A, before the numerical factorization, T (ATA)
can be constructed and the columns of A then permuted
according to its postordering to bring together supernodes.
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Theorem
Let A have column elimination tree T (ATA). Let p be a permutation
vector such that if pi is an ancestor of pj in T (ATA) then i ≥ j. Let P
be the permutation matrix corresponding to p and let Â = PAP T . Then
T (ÂT Â) is isomorphic to T (ATA); in particular, relabelling each vertex
i of T (ÂT Â) as pi yields T (ATA). If, in addition, Â = L̂Û is an LU
factorization without pivoting then P T L̂P and P T ÛP are lower
triangular and upper triangular matrices, respectively, so that
A = (P T L̂P )(P T ÛP ) is also an LU factorization.

In practice, for many matrices the average size of a supernode is
only 2 or 3 columns and many comprise a single column.
Larger artificial supernodes may be created by merging vertex j
with its parent vertex i in T (ATA) if the subtree rooted at i has
fewer than some chosen number of vertices.
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Multifrontal LU
The multifrontal method can be generalized to nonsymmetric A by
modifying the definitions of the frontal matrices and generated
elements to conform to an LU factorization.
Natural generalizations to rectangular frontal and generated
element matrices do not simultaneously satisfy the statements
from above. Rewritten for the LU factorization:
(a) Each generated element Vj is used only once to contribute to a

frontal matrix.
(b) The row and column index lists for the rectangular frontal matrix Fj

correspond to the nonzeros in column Lj:n,j and nonzeros in row
Uj,j:n, respectively.

An approach that satisfies (a) can be based on the sparsity
pattern of S{A+AT } and storing some explicit zeros if S{A} is
not symmetric. It is then analogous to the symmetric multifrontal
method.
Performs well if S{A} is close to symmetric.
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Multifrontal LU
An approach that satisfies (b) and not necessarily (a) splits the
generated elements into smaller ones that are embedded into
further rectangular frontal matrices. We illustrate this using the
example from above.



1 2 3 4 5 6 7 8 9 10

1 ∗ ∗
2 ∗ ∗ f ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ f f
6 ∗ f f f ∗ f f f
7 ∗ ∗ f f
8 ∗ ∗ f f f f ∗ f f
9 ∗ ∗
10 ∗ f ∗ f f ∗


,

where ∗ are entries in A and filled entries in L+ U are denoted by
f .
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Multifrontal LU

F1 =


1 3

1 ∗ ∗
2 ∗
3 ∗
8 ∗

, V1 =


3

2 f
3 ∗
8 f

.

To construct F2 that satisfies (b) we can only use part of V1. Because
a13 ̸= 0, the sparsity pattern of column 1 is replicated in that of column
3 of the factors. The entry in position (2, 3) belongs to F2. The row
replication implies that the remaining entries contribute to F3 and so
we split V1 into two as follows

V 2
1 =

( 3
2 f

)
, V 3

1 =
( 3

3 ∗
8 f

)
, V1 = V 2

1 ←→↕ V 3
1 ,

where←→↕ is the extend-add operator and V 2
1 and V 3

1 contribute to F2

and F3, respectively. 337 / 609
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Multifrontal LU
Then F2 and the corresponding generated element V2 are

F2 =


2 5 8 10

2 ∗ ∗ ∗ ∗
6 ∗
8 ∗

←→↕ V 2
1 =


2 3 5 8 10

2 ∗ f ∗ ∗ ∗
6 ∗
8 ∗

, V2 =

( 3 5 8 10

6 f f f f
8 f f ∗ f

)
.

Consider the following splitting of V2

V2 =
( 3

6 f
8 f

)
←→↕

( 5

6 f
8 f

)
←→↕

( 8 10

6 f f
8 ∗ f

)
≡ V 3

2 ←→↕ V 5
2 ←→↕ V 6

2 .

The next frontal matrix is

F3 =
( 3 4

3 ∗ ∗
4 ∗ ∗

)
←→↕ V 3

1 ←→↕ V 3
2 =


3 4

3 ∗ ∗
4 ∗ ∗
6 f
8 f

, V3 =


4

4 ∗
6 f
8 f

.

The subsequent steps can be described in a similar way.
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Multifrontal LU
Theorem expresses the nested relationship between the
nonsymmetric multifrontal method and the nonsymmetric
elimination tree.

Theorem
Assume A is a general nonsymmetric matrix and t = parent(k) in
T (A). Then

S{Lt:n,k} ⊆ S{Lt:n,t} and S{Uk,t:n} ⊆ S{Ut,t:n}.

Proof.

Because t is the parent of k, by definition t
G(L)
===⇒ k

G(U)
====⇒ t. If uij ̸= 0 then a multiple of column

i is added to column j during the LU factorization. Thus, by a simple induction argument, for

each j on the path k
G(U)
====⇒ t, we must have S{Lj:n,k} ⊆ S{Lj:n,j}. In particular, this holds for

column t. The second part follows by a similar argument using the path t
G(L)
===⇒ k. □
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Multifrontal LU
The theorem shows that the parent relationship in the
nonsymmetric elimination tree guarantees that both row and
column replications can be applied at the same time.
Hence all entries of the submatrices of the generated element Vk

with indices greater than or equal to parent(k) can be added to
Vparent(k) using the operation←→↕ .
To illustrate this, consider again the 10× 10 example above for
which parent(1) = 3. Theorem guarantees that V1 can be
embedded into F3 because S{L3:n,1} ⊆ S{L3:n,3} and
S{U1,3:n} ⊆ S{U3,3:n}.
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Preprocessing for LU
Consider the case when A does not have a full transversal (that is,
it has one or more zeros on the diagonal).
For numerical stability and to reduce the number of permutations
required during the factorization, it can be useful to permute A
before the factorization begins to put large nonzero entries on the
diagonal.
Given a graph G = (V, E), an edge subsetM⊆ E is called a
matching (or assignment) if no two edges inM are incident to
the same vertex.
The cardinality of a matching is the number of edges in it. A
maximum cardinality matching (or maximum matching) is a
matching of maximum cardinality. A matching is perfect if all the
vertices are matched.

341 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 355 — #355 i
i

i
i

i
i

Sparse LU

A bipartite graph is an undirected graph whose vertices can be
partitioned into two disjoint sets such that no two vertices within
the same set are adjacent, that is, each set is an independent
set.
Let the n× n matrix A have entries {aij′}. Associated with A is a
bipartite graph defined as a triple Gb = (Vrow,Vcol, E), where the
row vertex set Vrow = {i |aij′ ̸= 0} and the column vertex set
Vcol = {j′ |aij′ ̸= 0} correspond to the rows and columns of A and
there is an (undirected) edge (i, j′) ∈ E if and only if aij′ ̸= 0.
In Figure below we use prime to distinguish between the
independent set of row vertices and the independent set of
column vertices, that is, i denotes a row vertex and i′ denotes a
column vertex.
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

1′ 2′ 3′ 4′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗


6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

Figure: A sparse matrix its bipartite graph Gb (left), perfect matching.
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If A is structurally nonsingular, a matchingM in Gb is perfect if it
has cardinality n.
A perfect matching defines an n× n permutation matrix Q with
entries qij given by

qij =

{
1, if (j, i′) ∈M,

0, otherwise.

Both QA and AQ have the matching entries on the (zero-free)
diagonal.
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Q and the column permuted matrix AQ for the example in Figure
above.

Q =



1 2 3 4 5 6

1 1
2 1
3 1
4 1
5 1
6 1

 AQ =



3′ 1′ 4′ 2′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗


Figure: The permutation matrix Q and the column permuted matrix AQ
corresponding to the matrix above. The matched entries are on the diagonal
of AQ.
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Augmenting paths
If a perfect matching exists, it can be found using augmenting
paths.
A path P in a graph is an ordered set of edges in which
successive edges are incident to the same vertex. P is called an
M-alternating path if the edges of P are alternately inM and
not inM.
AnM-alternating path is anM-augmenting path in Gb if it
connects an unmatched column vertex with an unmatched row
vertex. Note that the length of anM-augmenting path is an odd
integer.

346 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 360 — #360 i
i

i
i

i
i

Sparse LU

LetM and P be subsets of E and define the symmetric difference

M⊕P := (M\P) ∪ (P \M),

This is set of edges that belongs to eitherM or P but not to both.
IfM is a matching and P is anM-augmenting path, thenM⊕P
is a matching with cardinality |M|+1.
Growing the matching in this way is called augmenting along P.

Theorem
A matchingM in an undirected graph is a maximum matching if and
only if there is noM-augmenting path
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Algorithm (Maximum matching algorithm)
Input: An undirected graph.
Output: Output maximum matching.

1: Find an initial matching M ▷ For example, M = ∅
2: while there exists a M-augmenting path P do
3: M = M⊕P ▷ Augment the matching along P
4: end while
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Augmenting paths: demonstration
On the left is a bipartite graph with a matching with cardinality 5.
An augmenting path 2 =⇒ 3′ =⇒ 3 =⇒ 4′ =⇒ 4 =⇒ 2′ shown.
Augmenting the matching along this path, the cardinality of the
matching increases to 6 andM⊕P is a perfect matching.

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

Figure: Search for a perfect matching using augmenting paths.
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Weighted matchings
While the maximum matching algorithm finds a permutation of A
such that the permuted matrix has nonzero diagonal entries, there
are more sophisticated variations that aim to ensure the absolute
values of the diagonal entries of the permuted matrix (or their
product) are in some sense large.
The problem: given an n× n matrix A, find a matching of the rows
to the columns such that the product of the matched entries is
maximized.
That is, find a permutation vector q that maximizes

n∏
i=1

|aiqi |. (46)

Define a matrix C corresponding to A with entries cij′ ≥ 0 as
follows:

cij′ =

{
log(maxi |aij′ |)− log |aij′ |, if aij′ ̸= 0

∞, otherwise.
(47)
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It is straightforward to see that finding a q that solves the problem
is equivalent to finding a q that minimizes

n∑
i=1

|ciqi |, (48)

This is equivalent to finding a minimum weight perfect matching in
an edge weighted bipartite graph.
This is a well-studied problem and is known as the bipartite
weighted matching or linear sum assignment problem.
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Weighted matchings: formally
If Gb = (Vrow,Vcol, E) is the bipartite graph associated with A then
let Gb(C) = (Vrow,Vcol, E) be the corresponding weighted bipartite
graph in which each edge (i, j′) ∈ E has a weight cij′ ≥ 0.
The weight (or cost) of a matchingM in Gb(C), denoted by
csum(M), is the sum of its edge weights; i.e.,

csum(M) =
∑

(i,j′)∈M

cij′ .

A perfect matchingM in Gb(C) is said to be a minimum weight
perfect matching if it has smallest possible weight i.e.,
csum(M) ≤ csum(M̂) for all possible perfect matchings M̂.
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Weighted matchings: shortest augmenting paths
The key concept for finding a minimum weight perfect matching is
that of a shortest augmenting path.
AnM-augmenting path P starting at an unmatched column vertex
is called shortest if

csum(M⊕P) ≤ csum(M⊕ P̂)

for all other possibleM-augmenting paths P̂ starting at the same
column vertex.
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Weighted matchings: primal-dual algorithm
A matchingMe is extreme if and only if there exist ui and vj′

(which are termed dual variables) satisfying{
cij′ = ui + vj′ , if (i, j′) ∈Me,

cij′ ≥ ui + vj′ , otherwise.
(49)

This is employed by the MC64 algorithm.
The dual variables can be used for scaling.
The algorithm starts with a feasible solution and corresponding
extreme matching and then proceeds to iteratively increase its
cardinality by one by constructing a sequence of shortest
augmenting paths until a perfect extreme matching is found.
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Can be more efficient if a large initial matching is used.
For example, Step 3 can be replaced by setting
ui = min{cij′ | j′ ∈ S{Ai,1:n}} for i ∈ Vrow and
vj′ = min{cij′ − ui| i ∈ S{A1:n,j′}} for j′ ∈ Vcol. In Step 4, an initial
extreme matching can be determined from the edges for which
cij′ − ui − vj′ = 0.

Algorithm (Outline of the MC64 algorithm)
Input: Matrix A.
Output: A matching M and dual variables ui, vj′ .

1: Define the weights cij′ using (47)
2: Construct the weighted bipartite graph Gb(C) = (Vrow,Vcol, E)
3: Set ui = 0 for i ∈ Vrow and vj′ = min{cij′ : (i, j′) ∈ E} for j′ ∈ Vcol ▷ Initial solution
4: Set M = {(i, j′)|ui + vj′} ▷ Initial extreme matching
5: while M is not perfect do
6: Find the shortest augmenting path P with respect to M
7: Augment the matching M = M⊕P
8: Update ui, vj′ so that (49) is satisfied for new M ▷ make M extreme
9: end while
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Number of potential problems with the MC64 algorithm.
▶ The runtime is hard to predict and depends on the initial ordering of

A.
▶ It is a serial algorithm and as such it can represent a significant

fraction of the total factorization time of a direct solver.

Because the complexity of Step 6 of Algorithm is
O((n+ nz(A)) log n) and the complexity of Step 7 is O(n) and of
Step 8 is O(n+ nz(A), MC64 has a worst-case complexity of
O(n(n+ nz(A)) log n).
In practice, this bound is not achieved and the algorithm is widely
used.
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Extension to non-square matrices
The Dulmage-Mendelsohn decomposition is based on
matchings and it generalizes the block triangular form.
It comprises row and column permutations P and Q such that

PAQ =


C1 C2 C3

R1 A1 A4 A6

R2 0 A2 A5

R3 0 0 A3

. (50)

Here A1 is an m1 × n1 underdetermined matrix (m1 < n1 or
m1 = n1 = 0), A2 is an m2 ×m2 square matrix and A3 is an
m3 × n3 overdetermined matrix (m3 > n3 or m3 = n3 = 0).
AT

1 and A3 are strong Hall matrices but A2 need not be a strong
Hall matrix.
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DM decomposition: an example

An example decomposition for a 10× 10 matrix is given in Figure 43.
Here R = {1, 2, . . . , 9} and C = {2, 3, . . . , 10}.

PAQ =



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗
∗

∗


.

Figure: An example of a coarse Dulmage-Mendelsohn decomposition. The
blue entries belong to the maximum matching. m1 = 3, m2 = 4, m3 = 3,
n1 = 4, n2 = 4, n3 = 2. Column 1 and row 10 are unmatched.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Sparse matrices and data structures
4 Graphs and sparse matrices
5 Factorizations
6 Reducibility and blocks
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Reorderings
12 Algebraic preconditioning
13 Incomplete factorizations
14 Sparse approximate inverses
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Stability and ill-conditioning

Backward stability

Practical computations are invariably based on finite precision
arithmetic.
Computational algorithm

z = g(d)

for computing z as a function g of given data d.
The algorithm is said to be backward stable if the computed
solution ẑ is the exact solution of ẑ = g(d+∆d), where the
perturbation ∆d is “small” for all possible inputs d. What is meant
by small depends on the context.
If d is based on physical measurements (necessarily inaccurate),
∆d is small if it is of the same or smaller absolute value as the
inaccuracies in determining d.
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Stability and ill-conditioning

Forward and backward errors

The minimum absolute value |∆d| among such perturbations is
called the (absolute) backward error (or, if divided by |d|, the
relative backward error).
The absolute and relative errors of ẑ are called forward errors, to
distinguish them from the backward error.
Backward stability is a property of the computational algorithm
and to compute solutions with a small backward error we need to
consider stable algorithms.
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Stability and ill-conditioning

Ill-conditioning

A related concept is ill-conditioning.
We say that the problem z = g(d) is ill-conditioned if small
perturbations in the data d can lead to large changes in ẑ.
The condition number measures how sensitive the output of a
function is to its input. Ill-conditioning, which is measured in terms
of the condition number, is a property of the problem.
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Stability and ill-conditioning

Ill-conditioning

Provided the backward error, forward error, and the condition
number are defined in a consistent manner, the following
approximate inequality holds:

forward error ⪅ condition number× backward error.

This says that the computed solution to an ill-conditioned problem
can have a large forward error because even if the computed
solution has a small backward error, this error can be amplified by
a large condition number.
By preprocessing the problem it may be possible to improve its
conditioning.
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Stability and ill-conditioning

Backward error result for LU
ϵ denotes the machine precision.

Theorem

Let the computed LU factorization of a matrix A be A+∆A = L̂ Û . The
perturbation ∆A that results from using finite precision arithmetic
satisfies

||∆A||∞ ≤ nO(ϵ) ||L̂||∞||Û ||∞ +O(ϵ2). (51)

Moreover, the computed solution x̂ of the linear system Ax = b
satisfies (A+∆′A)x̂ = b with

||∆′A||∞ ≤ nO(ϵ) ||L̂||∞||Û ||∞ +O(ϵ2). (52)
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Stability and ill-conditioning

Pivoting to improve stability

At step k of GE, the computed diagonal entry a
(k)
kk is termed the

pivot (1 ≤ k < n).
Gaussian elimination breaks down if a zero pivot is encountered.
Provided A is nonsingular, row interchanges can be incorporated
to prevent this happening
The systematic use of row permutations is called partial pivoting.
If |a(k)kk | is very small (compared to other entries in the active
submatrix) then it can cause difficulties in finite precision
arithmetic because the absolute value of the corresponding
computed multiplier lik = a

(k)
ik /a

(k)
kk can then be very large.

Partial pivoting can be used to ensure |lik| ≤ 1, that is, the rows of
A that have not yet been pivoted on can be permuted so that the
new pivot satisfies

max
i>k
|a(k)ik | ≤ |a

(k)
kk |.
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Pivoting to improve stability
If Pk is the row permutation at stage k and P = Pn−1Pn−2 . . . P1

then the computed factors of PA satisfy

||L̂||∞ ≤ n and ||Û ||∞ ≤ nρgrowth||A||∞,

where the growth factor ρgrowth is defined to be

ρgrowth = max
i,j,k

( |a(k)ij | / |aij | ). (53)

The bounds (51) and (52) can be rewritten as

||∆A||∞ ≤ n3 ρgrowthO(ϵ) ||A||∞, ||∆′A||∞ ≤ n3 ρgrowthO(ϵ) ||A||∞.

In practice, these bounds are pessimistic and the actual errors are
typically much smaller.
Because backward stability of an LU factorization is influenced
both by the initial ordering of A and the pivoting strategy, it is said
to be conditionally backward stable.
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Stability of Cholesky

Pivoting not needed.
Cholesky factorization of A is unconditionally backward stable. It
enables the stable computation of the solution of the
corresponding linear system.

Theorem
Let the computed Cholesky factorization of a SPD matrix A be
A+∆A = L̂L̂T . The perturbation ∆A that results from using finite
precision arithmetic satisfies

||∆A||∞ ≤ n2O(ϵ) ||A||∞.

Moreover, the computed solution x̂ of the linear system Ax = b
satisfies (A+∆′A)x̂ = b with

||∆′A||∞ ≤ n2O(ϵ) ||A||∞.
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Stability and ill-conditioning

Using the inverse instead of factorization

No such stability results: The computed inverse is typically not the
exact inverse of a nearby matrix A+∆A for any small
perturbation ∆A.
Impractical to compute and store A−1, regardless of how sparse A
is: see below.
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Using the inverse instead of factorization

Theorem
If A is irreducible then the sparsity pattern S{A−1} of its inverse is fully
dense.

Proof.
Without loss of generality, assume A is factorizable. For if not, there is a permutation matrix P
such that the LU factorization of the row permuted matrix PA is factorizable. In this case,
consider PA instead of A because for any permutation matrix P the inverse (PA)−1 is fully
dense if and only if A is fully dense. Consider the matrix K of order 2n

K =

(
A In
In 0

)
.

After applying n elimination steps to K = K(1), the order n active submatrix of K(n+1) is

−A−1. Consider entry (A−1)ij (1 ≤ i, j ≤ n). Because A is irreducible and the off-diagonal

(1, 2) and (2, 1) blocks of K are equal to the identity matrix, there is a directed path i =⇒ j in

G(K) such that the indices of all the intermediate vertices on the path are less than or equal to n.

Theorem on fill paths and the non-cancellation assumption imply (A−1)ij ̸= 0. It follows that

A−1 is fully dense. □
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Using the inverse instead of factorization

Theorem above implies that entries of A−1 correspond to paths in
G(A) even when A is not irreducible.

Corollary
If A is factorizable then (A−1)ij ̸= 0 (1 ≤ i, j ≤ n) if and only if there

exists a path i
G(A)
===⇒ j.

370 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 384 — #384 i
i

i
i

i
i
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Pivoting strategies for dense matrices

Convention here: all the quantities (such as a
(k)
ij ) are the

computed quantities.
Partial pivoting

Partial pivoting interchanges rows at each step of the factorization
to select the entry of largest absolute value in its column as the
next pivot.
If partial pivoting is used, it is straightforward to show that the
growth factor satisfies

ρgrowth ≤ 2n−1.

Can be achieved in nontrivial cases. But, generally pessimistic,
particularly when n is very large.
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Complete pivoting
A much smaller bound can be obtained if complete (or full)
pivoting is used: complete pivoting chooses the pivot to be the
largest entry (in absolute value) in the active submatrix,

That is, at stage k the pivot a(k)kk is chosen so that

max
i≥k,j≥k

|a(k)ij | ≤ |a
(k)
kk |.

Then
ρgrowth ≤ n1/2(2. 31/2. 41/3 . . . n1/(n−1))1/2. (54)

Can be expensive.
Relaxations in practice.
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Rook pivoting

Rook pivoting: more restrictive than. partial pivoting but cheaper
than complete pivoting
The pivot is chosen to be the largest entry in its row and its
column, that is,

max
i>k

( |a(k)ik |, |a
(k)
ki | ) ≤ |a

(k)
kk |.

In practice, the cost is usually a small multiple of the cost of partial
pivoting and significantly less than that of complete pivoting.
The growth factor for rook pivoting satisfies

ρgrowth ≤ 1.5n(3/4) logn .
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2× 2 pivoting

When the matrix A is symmetric but indefinite, it may not be
possible to select pivots from the diagonal (for example, if all the
diagonal entries of A are zero).
If rows of A are permuted (so that off-diagonal entries are
selected as pivots) then symmetry is destroyed, which means an
LU factorization must be performed and this essentially doubles
the cost of the factorization in terms of both storage and operation
counts.
Symmetry can be preserved by extending the notion of a pivot to
2× 2 blocks.
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Symmetric indefinite
Consider

A =

(
δ 1
1 0

)
.

If δ = 0, an LDLT factorization in which D is a diagonal matrix
does not exist.
If δ ≪ 1 then an LDLT factorization with D diagonal is not stable
because ρgrowth = 1/δ.
If the LDLT factorization is generalized to allow D to be a block
diagonal matrix with 1× 1 and 2× 2 blocks on the diagonal then a
factorization is obtained that preserves symmetry and is nearly as
stable as an LU factorization.

A =

1 1 0
1 1 1
0 1 0

 =

1 0 0
1 1 0
0 0 1

1 0 0
0 0 1
0 1 0

1 1 0
0 1 1
0 0 1

 = LDLT .

Here D has one 1× 1 block and one 2× 2 block. 375 / 609
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Symmetric indefinite

Rook pivoting can be extended to include 2× 2 pivots. At each
stage, an iterative procedure searches for an entry that is
simultaneously the largest in absolute value in row i and column j
of the active submatrix A(k).
This entry is used to build a symmetric 2× 2 pivot; the search
terminates prematurely if a suitable 1× 1 pivot is found, that is, a
pivot that satisfies a threshold test.
The standard choice for the threshold comes from requiring the
same potential maximal growth in the absolute values of the
entries of the partially eliminated matrix that results from either
two consecutive 1× 1 pivots or one 2× 2 pivot.
It can be shown that the appropriate choice is (1 +

√
17)/8.

ρgrowth < 3n
√
2 31/241/3 . . . n1/(n−1),
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Pivoting strategies for sparse matrices
Preserving sparsity needed.
Threshold partial pivoting: the pivot is chosen to satisfy

max
i>k
|a(k)ik | ≤ γ−1|a(k)kk |, (55)

where γ ∈ (0, 1] is a chosen threshold parameter.
It is straightforward to see that

max
i
|a(k)ij | ≤ (1 + γ−1)max

i
|a(k−1)

ij |,

and
max

i
|a(k)ij | ≤ (1 + γ−1)nzj max

i
|aij |,

where nzj is the number of off-diagonal entries in the j-th column
of the U factor. Furthermore,

ρgrowth ≤ (1 + γ−1)nzcmax ,

where nzcmax = maxj nzj ≤ n− 1.
377 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 391 — #391 i
i

i
i

i
i
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Pivoting strategies for sparse matrices

A threshold can also be incorporated into rook pivoting. The pivot
must then be at least γ times the absolute value of any other entry
in its row and column of the active submatrix.
In the symmetric case, if pivots are selected from the diagonal (to
preserve symmetry), threshold partial pivoting is the same as
threshold rook pivoting.
Threshold rook pivoting has the potential to limit growth more
successfully than threshold partial pivoting.
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Threshold 2× 2 pivoting and symmetry
If A is a symmetric matrix then standard fill-reducing ordering
algorithms (explained later) and the symbolic factorization phase
employ only the sparsity pattern of A.
In general, if A is indefinite, during the numerical factorization it is
necessary to modify the chosen elimination order to maintain
stability.
If symmetry is to be preserved, 1× 1 and 2× 2 pivots are needed,
resulting in an LDLT factorization in which D is a block diagonal
matrix with 1× 1 and 2× 2 blocks.
Limiting the size of the entries of L so that

|lij | ≤ γ−1 (56)

for all i, j, together with a backward stable scheme for solving
2× 2 linear systems, suffices to show backward stability for the
entire solution process.
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Threshold 2× 2 pivoting and symmetry
In the sparse symmetric indefinite case, the stability test for a
1× 1 pivot in column t of the active submatrix at stage k is the
following standard threshold test

max
i ̸=t, i≥k

|a(k)it | ≤ γ−1|a(k)tt |, (57)

where γ is the threshold parameter. For a 2× 2 pivot in rows and
columns s and t the corresponding test is∣∣∣∣∣∣

a
(k)
ss a

(k)
st

a
(k)
st a

(k)
tt

−1∣∣∣∣∣∣
maxi ̸=s,t;i≥k |a

(k)
is |

maxi ̸=s,t;i≥k |a
(k)
it |

 ≤ γ−1

(
1
1

)
, (58)

where the absolute value of the matrix is interpreted element-wise.
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Not only bounding pivots
In addition to bounding the size of the entries in L, the ability to
stably apply the inverse of D to a vector is required.
This is trivially the case for 1× 1 pivots, but for 2× 2 pivots it is
necessary to check that the determinant |a(k)ss a

(k)
tt − a

(k)
st a

(k)
st | is

sufficiently large.
A major difficulty when stability tests are incorporated into sparse
factorizations is that a pivot satisfying the stability criteria may not
exist.
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Stability and supernodes

Ldiag

Lrect

Figure: An illustration of a simple nodal matrix. Pivot candidates are restricted
to the square block Ldiag on the diagonal.

Pivots can only be chosen from the block Ldiag on the diagonal
(the block is square and symmetric)
Entries in the off-diagonal block Lrect are involved in the stability
tests.
Possibly delaying columns.
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Stability and supernodes
All the off-diagonal entries in a block column must be fully updated
before the block on the diagonal is factorized.
The factorize_block task and all the solve_block tasks for a block
column from the SPD case are combined into a single
factorize_column task.
Fewer but larger tasks – reducing the scope for parallelism.
Delayed pivots arises in the multifrontal method: Frontal matrix F
of order nF of the form

F =

(
F11 F T

21

F21 F22

)
, (59)

where F11 is a p× p matrix corresponding to the fully summed
variables.
Pivots can only be selected from F11 but the numerical values of
the entries in F21 must be taken into account when testing for
stability.
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Sparse indefinite factorization

Algorithm (Simple partial sparse indefinite factorization)
Input: Symmetric indefinite matrix F of order nF of the form (59) with F11 of order p; threshold
γ ∈ (0, 0.5].
Output: Updated F ; partial factors LF and DF and permutation PF .

1: q = 0, t = 0 ▷ q holds the sum of the sizes (1 or 2) of the pivots chosen so far
2: while q < p do
3: find_pivot (piv_size) ▷ See Algorithm 10.2
4: if (piv_size = 0) exit while loop ▷ Failed to find a pivot
5: q = q + piv_size
6: Update columns q + 1 to p of F ▷ Right-looking
7: end while
8: Apply updates to columns p+ 1 to nF of F ▷ Left-looking
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Algorithm (Find a pivot in F using threshold partial pivoting)
Input: F , LF , DF , PF , p, q, t, γ are accessed from the environment of the call.
Output: Pivot of size piv_size; columns q + 1 : q + piv_size of LF , DF , updated PF and t.

1: subroutine find_pivot (piv_size)
2: piv_size = 0

3: for test = 1 : p− q do
4: t = t+ 1; if (t > p) set t = q + 1 ▷ Column t is searched for a pivot

5: if (there is s such that q + 1 ≤ s ≤ t− 1 and

(
fss fst
fst ftt

)
passes 2× 2 pivot test) then

6: piv_size = 2

7: Symmetrically permute rows and columns q + 1 and s of F ▷ Update PF

8: Symmetrically permute rows and columns q + 2 and t of F ▷ Update PF

9: Compute columns q + 1 and q + 2 of DF and LF

10: return
11: else if (ftt passes 1× 1 pivot test) then
12: piv_size = 1

13: Symmetrically permute rows and columns q + 1 and t of F ▷ Update PF

14: Compute column q + 1 of DF and LF

15: return
16: end if
17: end for
18: end subroutine find_pivot
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Indefinite factorization: classical schemes

Algorithm

One step of full indefinite pivoting by Bunch and Parlett (1971)
Set α = (1 +

√
17)/8 ≈ 0.64

Find akk: diagonal entry of maximum size
Find aij : off-diagonal entry of maximum size (i < j)
if |akk| ≥ α|aij | then

use akk as 1× 1 pivot (ready for akk = 0)
else

use
(
aii aij
aji ajj

)
as 2× 2 pivot

end if

Full pivoting: choosing entries of largest magnitudes: can be
expensive.
But a growth factor bound can be derived (only a slightly worse
than for LU)
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Indefinite factorization: classical schemes

Algorithm

α = (1 +
√
17)/8 ≈ 0.64, i = 1 (possible an initial preprocessing)

Find j ̸= i such that aji = max{|aki|, k ̸= i} =: λ
if |aii| ≥ αλ then

use aii as 1× 1 pivot
else

σ = max{|akj |, k ̸= j}
if |aii|σ ≥ αλ2 then

use aii as 1× 1 pivot
else if |ajj | ≥ ασ then

use ajj as a 1× 1 pivot
else

use
(
aii aij
aji ajj

)
as 2× 2 pivot

end if
end if
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Indefinite factorization: classical schemes

This scheme shows why the previous algorithm
(Bunch-Kaufmann) is useful to factorize sparse matrices
The price for less searches expressed theoretically by large
growth factor bound



d . . λ . . .
. . . . . . .
. . . . . . .
λ . . c . σ .
. . . . . . .
. . . σ . . .
. . . . . . .


388 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 402 — #402 i
i

i
i

i
i

Stability and ill-conditioning

Indefinite factorization: classical schemes

What if only f is used to decide such that |f | ≥ τ |λ|?
Again weaker bounds
This can be practical if the processed matrix is not available in a
current step (this can happen in multifrontal approaches). Implies
rules like

Algorithm

if |d| ≥ α|λ| use d as 1× 1 pivot
if |dγ| ≥ α|λ|2: use d as 1× 1 pivot
if |e| ≥ α|γ|: use e as 1× 1 pivot
else
use

(
d f
f e

)
as 2× 2 pivot
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

d . f λ . . .
. . . . . . .
. . . . . . .
f . e . . γ .
λ . . . . . .
. . γ . . . .
. . . . . . .


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Relaxed and static pivoting
If pivots are delayed during the numerical factorization then the
data structures that were set up during the symbolic phase must
be modified. This significantly complicates the development of
general and symmetric indefinite sparse direct solvers.
If no candidate pivot satisfies the threshold test but the pivot that is
nearest to satisfying it would satisfy it with a threshold γ1 < γ, then
provided γ1 is at least some chosen minimum value, relaxed
pivoting accepts this pivot and reduces γ to γ1.
With relaxed pivoting, delayed pivots can still occur and it may not
be possible to use static data structures.
A standard technique is to employ regularization (modification of
A). This can avoid the need for an LDLT factorization in favour of a
stable Cholesky factorization.
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Special indefinite matrices that avoid pivoting
Symmetric saddle point matrices: indefinite matrices of the form

A =

(
G RT

R −B

)
, (60)

where G ∈ Rn1×n1 is a SPD matrix, B ∈ Rn2×n2 is a positive
semidefinite matrix (including B = 0), and R ∈ Rn2×n1 with
n1 + n2 = n.
Define the permutation matrix P to be

P = [e1, en1+1, e2, en1+2, . . . en1 , en, en2+1, . . . , en1 ]
T .

Then the permuted matrix PAP T has a block form in which each
entry Ai,j is a 2× 2 or 2× 1 or 1× 2 or 1× 1 block. In particular,

Ai,i =


(
gii rii

rii −bii

)
, 1 ≤ i ≤ n2

bii, n2 + 1 ≤ i ≤ n1.
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The following theorem shows that a 2× 2 pivot updated by the
Schur complement of a 1× 1 pivot is nonsingular and vice versa.

Theorem
Let A be the symmetric saddle point matrix. Assume R = (R1 R2) is of
full rank with R1 ∈ Rn2×n2 nonsingular. Let G ∈ Rn1×n1 be SPD and
partitioned conformally and let B ∈ Rn2×n2 be positive semidefinite
matrix. If A is permuted to the form G11 RT

1 G12

R1 −B R2

GT
12 RT

2 G22


then the Schur complement of the symmetric indefinite matrix(
G11 RT

1

R1 −B

)
and the Schur complement of the SPD matrix G22 are

nonsingular.
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Provided R is of full rank and R1 is nonsingular then the LDLT
factorization of PAP T exists, with 2× 2 pivots and 1× 1 pivots
chosen from the diagonal blocks of PAP T in any order.
Assume all the 2× 2 pivots are selected ahead of the 1× 1 pivots.
Then if B = 0 and |rii| ≥ maxi≤j≤n1 |rij | (1 ≤ i ≤ n2) then the
growth factor is bounded by 22n2 .
A potential difficulty is that permutation matrices Pr and Pc are
needed such that PrRPc = [R1 R2] with R1 nonsingular. If Pr and
Pc can be constructed so that

PrRPc =

(
R11 R12

R22

)
, (61)

where R11 is upper triangular with nonzero diagonal entries then
the permuted R is said to have a trapezoidal form.
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Special indefinite matrices that avoid pivoting

A simple case where R can be permuted this form is if it satisfies
the following one-degree principle. Let R be of full rank and let
Gb(R) = (Vrow,Vcol, E) be the bipartite graph of R (Section ??). R
can be permuted to trapezoidal form if, for k = 1, 2, . . . , n1 − 1, the
bipartite graph of R(k) has at least one vertex j′k ∈ Vcol of degree
one, where R(1) = R and R(k+1) is obtained by removing from R(k)

the column vertex j′k and its matched row index ik together with all
edges involving j′k or ik.
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To illustrate the above mentioned case: consider the 6× 8 matrix
R and its associated bipartite graph Gb(R).
The first column vertex with degree one is 2′; it is matched with
the row vertex 4. Deleting 2′ and 4 removes edges
{(4, 2′), (4, 3′), (4, 5′), (4, 6′), (4, 8′)}. Column vertex 3′ now has
degree one; it is matched with row vertex 6.
Repeating the process gives a perfect matching
M = {(4, 1′), (6, 3′), (1, 4′), (5, 5′), (2, 6′), (3, 8′)} together with row
and column matched vertex sets {4, 6, 1, 5, 2, 3} and
{2′, 3′, 4′, 5′, 1′, 6′}, respectively, and permutation matrices Pr and
Pc of order 6 and 8 can be defined to obtain the trapezoidal form
in Figure 45.
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R =



1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′

1 ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗ ∗

 PrRPc =



2′ 3′ 4′ 5′ 1′ 6′ 7′ 8′

4 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗
1 ∗
5 ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗



6

5

4

3

2

1

8′

7′

6′

5′

4′

3′

2′

1′

Figure: Illustration of permuting a full rank matrix to trapezoidal form using the
one-degree principle. The matrix R and its bipartite graph GB(R) are given.
The edges that belong to the perfect matching in Gb(R) found using the
one-degree principle are given by the dashed blue lines; the corresponding
matrix entries are in blue. The trapezoidal form comprises a 6× 6 upper
triangular matrix R1 and a 6× 2 rectangular matrix R2, where
Pr = [e4, e6, e1, e5, e2, e3]

T and Pc = [e2, e3, e4, e5, e1, e6, e7, e8] are the
row and column permutation matrices.
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If after k ≥ 1 steps all columns of the reduced matrix R(k) have
degree greater than 1, the permuted matrix has the form above,
where R11 is k × k upper triangular, R12 is k × (n1 − k) and the
(n2 − k)× (n1 − k) block R22 has columns of degree greater than
one.
n1 − k steps of Gaussian elimination (with partial pivoting) can be
applied to R22 to complete the transformation of R to trapezoidal
form.
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Solving ill-conditioned problems
Ill-conditioning is connected to the input data: a problem is
ill-conditioned if small changes in the data can lead to large
changes in the solution. Assume for the general linear system
Ax = b that A and b are perturbed by ∆A and ∆b, respectively,
and the corresponding perturbation of the solution x is ∆x, so that
the perturbed problem

(A+∆A)(x+∆x) = b+∆b (62)

has been solved. The perturbations in A and b may include both
data uncertainty and algorithmic errors. Rearranging (62), we
obtain

A∆x = ∆b−∆A−∆A∆x.
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Premultiplying by A−1 and considering any norm ∥.∥ and the
corresponding subordinate matrix norm yields

∥∆x∥ ≤ ∥A−1∥ (∥∆b∥+ ∥∆A∥ ∥x∥+ ∥∆A∥ ∥∆x∥).

It follows that

(1− ∥A−1∥ ∥∆A∥)∥∆x∥ ≤ ∥A−1∥ (∥∆b∥+ ∥∆A∥ ∥x∥)

and, provided ∥A−1∥ ∥∆A∥ < 1, this gives the following bound on
the absolute error

∥∆x∥ ≤ ∥A−1∥
∥A−1∥ ∥∆A∥

(∥∆b∥+ ∥∆A∥ ∥x∥).

Dividing by ∥x∥ and using ∥b∥ ≤ ∥A∥ ∥x∥, yields the relative error
bound

∥∆x∥/∥x∥ ≤ κ(A)

1− κ(A)∥∆A∥/∥A∥
(∥∆A∥/∥A∥+ ∥∆b∥/∥b∥) . (63)
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Solving ill-conditioned problems
Here

κ(A) = ∥A∥ ∥A−1∥ (64)

is the condition number of the matrix A.
The inequality shows that the condition number is a relative error
magnification factor. If we have a stable algorithm then a
neighbouring problem has been solved, that is,

∥∆A∥/∥A∥+ ∥∆b∥/∥b∥
is small. This ensures an accurate solution if κ(A) is small. A
large condition number means that A is close to being singular
(κ(A) tends to infinity as A tends to singularity).
Observe that the condition number is very dependent on the
scaling of A. Furthermore, κ(A) takes no account of the
right-hand side vector b or the fact that small entries of A
(including zeros) may be known within much smaller tolerances
than larger entries.
If the matrix norm is that induced by the Euclidean norm (that is,
the 2-norm ∥.∥2) and A is symmetric then (64) becomes

κ(A) = λmax(A)/λmin(A), (65)

where λmax(A) and λmin(A) are eigenvalues of A of largest and
smallest absolute values, respectively. This is called the spectral
condition number of A.
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Iterative refinement
Iterative refinement can be used to overcome matrix
ill-conditioning and improve the accuracy of the computed
solution. It may also be used after relaxed or static pivoting.

Algorithm (Iterative refinement of the computed solution of
Ax = b)
Input: The vector b and matrix A.
Output: A sequence of approximate solutions x(0), x(1), . . ..

1: Solve Ax(0) = b ▷ x(0) is the initial computed solution
2: for k = 0, 1, . . . do
3: Compute r(k) = b−Ax(k) ▷ Residual on iteration k

4: Solve Aδx(k) = r(k) ▷ Solve correction equation
5: x(k+1) = x(k) + δx(k)

6: end for
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Iterative refinement
Iterative refinement terminates when either the norm of the
residual vector r(k) is sufficiently close to zero that the
corresponding correction δx(k) is very small or the chosen
maximum number of iterations is reached.
A possible approach is to switch to using the computed factors as
a preconditioner for a Krylov subspace solver.
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Iterative refinement
In fixed precision refinement, all computations use the same
precision. In mixed precision iterative refinement, the most
expensive parts of the computation (the LU factorization of A and
solving the correction equation) are performed in single precision
and the residual computation in double precision.
Holding the factors in single precision substantially reduces the
memory required and the amount of data movement. The use of
half precision (16 bit) arithmetic is also a possibility, assuming it is
considerably faster than single precision, with a proportional
saving in energy consumption.

Theorem
One step of single precision iterative refinement enough for obtaining
componentwise relative backward error to the order of O(ϵ) under
weaker assumptions.
Strong bound for the error norm using double precision iterative
refinement. 404 / 609
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Scaling to reduce ill-conditioning
An important way to decrease the condition number is by scaling
A before the numerical factorization begins.
Consider two nonsingular n× n diagonal matrices Sr and Sc.
Diagonal scaling of the system Ax = b transforms it to

Sr ASc y = Sr b, y = S−1
c x. (66)

Theorem
Let the matrix A be SPD and let DA be the diagonal matrix with entries
aii (1 ≤ i ≤ n). Then for all diagonal matrices D with positive entries

κ(D
−1/2
A AD

−1/2
A ) ≤ nzrmax κ(D

−1/2AD−1/2),

where nzrmax is the maximum number of entries in a row of A.
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Equilibration scaling
Finding an appropriate scaling is an open question, but a number
of heuristics have been proposed.
An obvious choice is to seek to balance entries of the scaled
matrix SrASc to have approximately equal absolute values. This is
called (approximate) equilibration scaling.
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Algorithm 10.7 presents an iterative procedure for computing such a
scaling.

Algorithm (Equilibration scaling in the infinity norm)
Input: The matrix A and convergence tolerance δ > 0.
Output: Diagonal scaling matrices Sr and Sc.

1: B(1) = A, D(1) = I, E(1) = I

2: for k = 1, 2, . . . do
3: Compute ∥B(k)

i,1:n∥∞ and ∥B(k)
1:n,i∥∞, 1 ≤ i ≤ n ▷ i-th row and column of B(k)

4: if maxi

{
|1− ∥B(k)

i,1:n∥∞|
}

≤ δ and maxi

{
|1− ∥B(k)

1:n,i∥∞|
}

≤ δ exit for loop

5: R = diag

(√
∥B(k)

i,1:n∥∞
)

and C = diag

(√
∥B(k)

1:n,i∥∞
)

6: B(k+1) = R−1B(k) C−1, D(k+1) = D(k) R−1, E(k+1) = E(k) C−1

7: end for
8: Sr = D(k+1) and Sc = E(k+1)
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Our equilibration scaling preserves symmetry. In the
nonsymmetric case, Algorithm yields the same results when
applied to A and AT in the sense that the scaled matrix obtained
for AT is the transpose of that for A.
The infinity norm may be replaced by the 1-norm, resulting in a
matrix whose row and column sums are exactly one (this is
sometimes called a doubly stochastic matrix).
It can be advantageous to combine the use of the infinity and one
norms.
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Matching-based scalings
Recall the problem of finding a permutation vector q that
maximizes the product

n∏
i=1

|aiqi |.

The dual variables ui and vj computed by the MC64 algorithm that
seeks to compute q can be used:
Define the diagonal scaling matrices Sr and Sc to have entries

(Sr)ii = exp(ui), (Sc)jj = exp(vj − log(max
i
|aij |)), 1 ≤ i, j ≤ n.

The entries of the scaled matrix SrASc satisfy

|(SrASc)ij |

{
= 1, if (i, j) ∈M,

≤ 1, otherwise,

whereM is the maximum weighted matching computed by the
MC64 algorithm.
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Combining matching-based scalings and orderings
The matching-based ordering and scaling can be used
independently but they can also be combined.
After scaling, if the matched entries are non symmetrically
permuted onto the diagonal then because they are large, they
provide good pivot candidates for an LU factorization.
This approach is commonly used alongside static pivoting to
obtain a factorization of a perturbed matrix, followed by iterative
refinement to recover the solution to the original system.
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In the symmetric indefinite case, symmetry needs to maintained
and so the objective is to symmetrically permute a large
off-diagonal entry aij onto the subdiagonal to give a 2× 2 block(
aii aij
aij ajj

)
that is potentially a good 2× 2 candidate pivot.

Assume that a matchingM has been computed using the MC64
algorithm and let q be the corresponding permutation vector.
Any diagonal entries that are in the matching are immediately
considered as potential 1× 1 pivots and are held in a setM1.
A setM2 of potential 2× 2 pivots is then built by expressing q in
terms of its component cycles. A cycle of length 1 corresponds to
aii in the matching. A cycle of length 2 corresponds to i and j,
where aij and aji are both in the matching. k potential 2× 2 pivots
can be extracted from even cycles of length 2k or from odd cycles
of length 2k + 1.
In practice, most cycles in q are of length 1 or 2.
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Example for based on matching from MC64:
M = {(1, 2), (2, 5), (3, 1), (4, 4), (5, 3)}, which is nonsymmetric. q
has one cycle of length 4 (1→ 2→ 5→ 3→ 1) and one of length
1, givingM1 = {(4, 4)} andM2 = {(1, 2), (2, 1), (3, 5), (5, 3)}.


∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗

∗ ∗ ∗




∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

∗ ∗ ∗

 →

∗ ∗ ∗
∗ ∗
∗ ∗



Figure: An illustration of a symmetric matching for a symmetric indefinite
matrix. On the left is the matchingM returned by the MC64 algorithm and in
the centre is a symmetric matchingMs obtained fromM. Entries in the
matching are in blue. The pairs (i, j) = (1, 2) and (3, 5) are possible 2× 2
pivot candidates. On the right is the compressed matrix that results from
combining rows and columns 1 and 2 and rows and columns 3 and 5.
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Complexity of factorizations

Starting by showing complexity of LU and Cholesky
The complexity of the most critical steps in the factorization is
highly dependent on the amount of fill-in, as can be seen from the
following observation.

Observation

The operations to perform the sparse LU factorization A = LU and the
sparse Cholesky factorization A = LLT are
O(
∑n

j=1 | colL{j}| | rowU{j}| ) and O(
∑n

j=1 | colL{j}|2 ) respectively,
where | rowU{j}| and | colL{j}| are the number of off-diagonal entries
in row j of U and column j of L, respectively.
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Minimizing the fill-in: reorderings

Key problem: minimizing the fill-in
Our tools: permutations.
The problem of finding a permutation to minimize fill-in is NP
complete. Thus heuristics are used to determine orderings that
limit the amount of fill-in; we refer to these as fill-reducing
orderings.
Frequently, this is done using the sparsity pattern S{A} alone,
If the matrix is not SPD, additional permutations of A may be
needed to make the matrix factorizable.

415 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 429 — #429 i
i

i
i

i
i

Reorderings

Minimizing the fill-in: reorderings
Two main classes of reorderings that work with S{A} are commonly
used.
Local orderings attempt to limit fill-in by repeated local decisions

based on G(A) (or a relevant quotient graph).
Global orderings consider the whole sparsity pattern of A and seek to

find a permutation using a divide-and-conquer approach.
Such methods are normally used in conjunction with a
local fill-reducing ordering, as the latter generally works
well for problems that are not really large.
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Minimizing the fill-in: reorderings

Assumed that A is irreducible. If not,
▶ If S{A} is symmetric, the algorithms are applied to each component

of G(A) independently and n is then the number of vertices in the
component.

▶ If S{A} is nonsymmetric, we assume that A is in block triangular
form and the algorithms are used on the graph of each block on the
diagonal.

We also assume that A has no rows or columns that are (almost)
dense. If so, such rows and/or columns should be treated
independently.
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Minimizing the fill-in: reorderings

Historically, ordering the matrix A before using a direct solver to
factorize it was generally cheap compared to the numerical
factorization cost.
It is not the case nowadays due to the development of the
computational tools.
In the symmetric case, the diagonal entries of A are required to be
present in S{A} (thus zeros on the diagonal are included in the
sparsity structure). The aim is to limit fill-in in the L factor of an
LLT (or LDLT ) factorization of A.
Two greedy heuristics are the minimum degree (MD) criterion and
the local minimum fill (MF) criterion.
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Minimum fill-in (MF) criterion

One way to reduce fill-in is to use a local minimum fill-in (MF)
criterion:

▶ Select as the next variable in the ordering one that will introduce the
least fill-in in the factor at that step.

This is sometimes called the minimum deficiency approach.
MF can produce good orderings, its cost is often considered to be
prohibitive.
An approximate variant (AMF).
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Basic minimum degree (MD) algorithm
The best-known and most widely-used greedy heuristic for limiting
fill-in.
It seeks to find a permutation such that at each step of the
factorization the number of entries in the corresponding column of
L is approximately minimized.
Less expensive to compute compared to that used by the
minimum fill-in criterion.
The MD algorithm can be implemented using G(A) and it can
predict the required factor storage without generating the structure
of L.
At step k, the number of off-diagonal nonzeros in a row or column
of the active submatrix is the current degree of the corresponding
vertex in the elimination graph Gk. The algorithm selects a vertex
of minimum current degree in Gk and labels it vk, i.e., next for
elimination.
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Minimum degree algorithm

Algorithm ( Basic minimum degree (MD) algorithm)
Input: Graph G of a symmetrically structured matrix.
Output: A permutation vector p that defines a new labelling of the vertices of G.

1: Set G1 = G and compute the degree degG1(u) of all u ∈ V(G1)
2: for k = 1 : n− 1 do
3: Compute mdeg = min{degGk (u) |u ∈ V(Gk)} ▷ mdeg is the current minimum

degree
4: Choose vk ∈ V(Gk) such that degGk (vk) = mdeg

5: p(k) = vk ▷ vk is the next vertex in the elimination order
6: Construct Gk+1 and update the current degrees of its vertices
7: end for
8: p(n) = vn where vn is the only vertex in Gn
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Minimum degree algorithm

The set of vertices adjacent to vk in G(A) is Reach(vk,Vk), where
Vk is the set of k − 1 vertices that have already been eliminated.
If u ∈ Reach(vk,Vk), u ̸= vk, then its updated current degree is
|Reach(u,Vk+1)|, where Vk+1 = Vk ∪ vk.
A tie-breaking strategy is needed when there is more than one
vertex of current minimum degree.
It is possible to construct artificial matrices showing that some
systematic tie-breaking choices can lead to a large amount of
fill-in but such behaviour is not typical.
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Minimum degree algorithm

2

13

4 5
6

13

4 5
6

1

4 5
6

4 5
6

Figure: An illustration of three steps of the MD algorithm. The original graph G
and the elimination graphs G2, G3 and G4 that result from eliminating vertex 2,
then vertex 3 and then vertex 1. The red dashed lines denote fill edges.
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Minimum degree algorithm

The construction of each elimination graph Gk+1 is central to the
implementation.
Because eliminating a vertex potentially creates fill-in, an efficient
representation is needed.
Moreover, recalculating the current degrees is time consuming.
Using supervariables is a must.
Gv denotes the elimination graph obtained from G when vertex
v ∈ V(G) is eliminated.
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Indistinguishability (reminder)

Definition

Two different vertices u and v of G are called indistinguishable if

AdjG(u) ∪ {u} = AdjG(v) ∪ {v}. (67)

u v u v

G G_v
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Indistinguishability

Theorem
Let u and w be indistinguishable vertices in G. If v ∈ V(G) with
v ̸= u,w, then u and w are indistinguishable in Gv.

Proof.
Two cases must be considered. First, let u ̸∈ adjG{v}. Then w ̸∈ adjG{v} and if v is eliminated,

the adjacency sets of u and w are unchanged and they remain indistinguishable in the resulting

elimination graph Gv . Second, let u,w ∈ adjG{v}. When v is eliminated, because u and w are

indistinguishable in G, their adjacency sets in Gv will be modified in the same way, by adding the

entries of adjG{v} that are not already in adjG{u} and adjG{w}. Consequently, u and w are

indistinguishable in Gv . □
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Indistinguishability
Figure demonstrates the two cases in the proof of Theorem above.
Here, u and w are indistinguishable vertices in G. Setting v ≡ v′

illustrates u ̸∈ adjG{v}. If v′ is eliminated then the adjacency sets of u
and w are clearly unchanged. Setting v ≡ v′′ illustrates u,w ∈ adjG{v}.
In this case, if v′′ is eliminated then vertices s and t are added to both
adjG{u} and adjG{w}.

u

w

v′′ r

s

t

v′

Figure: An example to illustrate the Theorem. u and w are indistinguishable
vertices in G; adjG{u} = {r, w, v′′} and adjG{w} = {r, u, v′′}.
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Indistinguishability

Theorem
Let u and w be indistinguishable vertices in G. If w is of minimum
degree in G then u is of minimum degree in Gw.

Proof.
Let degG(w) = mdeg. Then degG(u) = mdeg. Indistinguishable vertices are always neighbours.

Eliminating w gives degGw (u) = mdeg − 1 because w is removed from the adjacency set of u

and there is no neighbour of u in Gw that was not its neighbour in G. If x ̸= w and x ∈ adjG{u}
then the number of neighbours of x in Gw is at least mdeg− 1. Otherwise, if x ̸∈ adjG{u} then its

adjacency set in Gw is the same as in G and is of the size at least mdeg. The result follows. □
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Indistinguishability
Theorem above is illustrated in Figure.

u w

s t

r v

Figure: An illustration of Theorem. Vertices u and w are of minimum degree
(with degree mdeg = 3) and are indistinguishable in G. After elimination of w,
the current degree of u is mdeg − 1 and the current degree of each of the
other vertices is at most mdeg − 1. Therefore, u is of current minimum degree
in Gw. Note that vertices r and v are also of minimum degree and
indistinguishable in G; they are not neighbours of w and their degrees do not
change when w is eliminated. 429 / 609
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Indistinguishability

The results can be extended to more than two indistinguishable
vertices, which allows indistinguishable vertices to be selected
one after another in the MD ordering.
This is referred to as mass elimination.
Treating indistinguishable vertices as a single supervariable cuts
the number of vertices and edges in the elimination graphs, which
reduces the work needed for degree updates.
The external degree of a vertex is the number of vertices adjacent
to it that are not indistinguishable from it. Using this leads to
algorithmic efficiency.
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Degree outmatching

A concept that is closely related to that of indistinguishable
vertices is degree outmatching.
This avoids computing the degrees of vertices that are known not
to be of current minimum degree.
Vertex w is said to be outmatched by vertex u if

adjG{u} ∪ {u} ⊆ adjG{w} ∪ {w}.

It follows that degG(u) ≤ degG(w).
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Degree outmatching

u

w

v′′ v′′′

v′

Figure: An example G in which vertex w is outmatched by vertex u. v′ is not a
neighbour of u or w; vertex v′′ is a neighbour of both u and w; v′′′ is a
neighbour of w but not of u.

432 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 446 — #446 i
i

i
i

i
i

Reorderings

Degree outmatching

Importantly, degree outmatching is preserved when vertex v ∈ G
of minimum degree is eliminated, as stated in the following result.

Theorem
In the graph G let vertex w be outmatched by vertex u and vertex v
(v ̸= u,w) be of minimum degree. Then w is outmatched in Gv by u.

Proof.
Three cases must be considered. First, if u /∈ adjG{v} and w /∈ adjG{v} then the adjacency sets

of u and w in Gv are the same as in G. Second, if v is a neighbour of both u and w in G then any

neighbours of v that were not neighbours of u and w are added to their adjacency sets in Gv .

Third, if u /∈ adjG{v} and w ∈ adjG{v} then the adjacency set of u in Gv is the same as in G but

any neighbours of v that were not neighbours of w are added to the adjacency set of w in Gv . In

all three cases, w is still outmatched by u in Gv . □
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Degree outmatching

The three possible cases for v in the proof of Theorem are
illustrated in Figure above by setting v ≡ v′, v′′ and v′′′,
respectively.
If w is outmatched by u then it is not necessary to consider w as a
candidate for elimination and
all updates to the data structures related to w can be postponed
until u has been eliminated.
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Cliques and quotient graphs

From Parter’s rule, if vertex v is selected at step k then the
elimination matrix that corresponds to Gk+1 contains a dense
submatrix of size equal to the number of off-diagonal entries in
row and column v in the matrix that corresponds to Gk.
For large matrices, creating and explicitly storing the edges in the
sequence of elimination graphs is impractical and a more compact
and efficient representation is needed.
Each elimination graph can be interpreted as a collection of
cliques, including the original graph G, which can be regarded as
having |E| cliques, each consisting of two vertices (or, equivalently,
an edge).
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Cliques and quotient graphs
Let {V1,V2, . . . ,Vq} be the set of cliques for the current graph and
let v be a vertex of current minimum degree that is selected for
elimination. Let {Vs1 ,Vs2 , . . . ,Vst} be the subset of cliques to
which v belongs. Two steps are then required.

1 Remove the cliques {Vs1 ,Vs2 , . . . ,Vst} from {V1,V2, . . . ,Vq}.
2 Add the new clique Vv = {Vs1 ∪ . . . ∪ Vst} \ {v} into the set of

cliques.
Hence

degG(v) = |Vv| <
t∑

i=1

|Vsi |,

and because {Vs1 ,Vs2 , . . . ,Vst} can now be discarded, the storage
required for the representation of the sequence of elimination
graphs never exceeds that needed for G(A).
The storage to compute an MD ordering is therefore known
beforehand in spite of the rather dynamic nature of the elimination
process.
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Cliques and quotient graphs
The index of the eliminated vertex can be used as the index of the
new clique. This is called an element or enode (the terminology
comes from finite-element methods), to distinguish it from an
uneliminated vertex, which is termed an snode.
A sequence of special quotient graphs G[1] = G(A),G[2], . . . ,G[n]
with the two types of vertices is generated in place of the
elimination graphs.
Each G[k] has n vertices that satisfy

V(G) = Vsnodes ∪ Venodes, Vsnodes ∩ Venodes = ∅,

where Vsnodes and Venodes are the sets of snodes and enodes,
respectively.
When v is eliminated, any enodes adjacent to it are no longer
required to represent the sparsity pattern of the corresponding
active submatrix and so they can be removed. This is called
element absorption.
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Cliques and quotient graphs

Working with the special quotient graphs can be demonstrated by
considering the computation of the vertex degrees.
To compute the degree of an uneliminated vertex, the set of
neighbouring snodes is counted.
Then, if a neighbour of one of these snodes is an enode, its
neighbours are also counted (avoiding double counting).
More formally, if v ∈ Vsnodes then the adjacency set of v is the
union of its neighbours in Vsnodes and the vertices reachable from
v via its neighbours in Venodes.
In this way, vertex degrees are computed by considering fill-paths
Amalgamation improves this strategy: mass elimination.
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Cliques and quotient graphs: mass elimination model

Definition
Mass elimination graph Γ of the graph G = (V,E) is a ordered triple

(S, E , E), where S ∪ E = V,S ∩ E = ∅ and E ⊆
(
S
2

)
∪
(
E(Γ)
2

)
are its

edges.

Edge set E captures eliminated vertices.
Edge set S captures non-eliminated vertices.
Neighbors of non-eliminated vertices are found as reachability
sets.
Search through the reachability sets can be pruned: →
approximate minimum degree (AMD) algorithm.
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Cliques and quotient graphs
After elimination of 1, a new edge is added, getting a clique. The
elimination of 2 creates no additional fill and G3 represents the
sparsity structure of the corresponding active submatrix A(3).
Then, 1 is an enode, the fill edge is represented implicitly. After
the second step, the enodes 1 and 2 can be amalgamated as well
as snodes 3 and 4 being indistinguishable.

1

2

3

4
5

2

3

4
5

3

4
5

1

2

3

4
5 1, 2 3, 4 5

Figure: The top line shows G = G1, G2 and G3. The bottom line shows the
quotient graphs G[2] and G[3] after the first and second elimination steps. 440 / 609
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Multiple minimum degree (MMD) algorithm

The multiple minimum degree (MMD) algorithm aims to improve
efficiency by processing several independent vertices that are
each of minimum current degree together in the same step, before
the degree updates are performed.
At each outer loop, t ≥ 1 denotes the number of vertices of
minimum current degree that are mutually non-adjacent and so
can be put into the elimination order one after another.
An example follows.
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Figure: The red (corner) vertices of G are each of degree 2 and are ordered
consecutively during the first step of Algorithm 11.2.

442 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 456 — #456 i
i

i
i

i
i

Reorderings

Multiple minimum degree (MMD) algorithm

Algorithm ( Basic multiple minimum degree (MMD) algorithm)
Input: Graph G of a symmetrically structured matrix.
Output: A permutation vector p that defines a new labelling of the vertices of G.

1: Set k = 1, G1 = G and compute the degree degG1 (u) of all u ∈ V(G1)

2: while k ≤ n do
3: Compute mdeg = min{degGk (u) |u ∈ V(Gk)}
4: Find all mutually non-adjacent vj ∈ V(Gk), j = 1, . . . , t with degGk (vj) = mdeg

5: for j = 1 : t do
6: p(k) = vj ▷ Vertex vj is the next vertex in the elimination order
7: k = k + 1

8: end for
9: if k < n then
10: Construct Gk+1 and update the current degrees of its vertices
11: end if
12: end while
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MD and MMD: complexity

The complexity of the MD and MMD algorithms is O(nz(A)n2) but
because for MMD the outer loop of the algorithm update is
performed fewer times, it can be significantly faster then MD.
MMD orderings can also lead to less fill-in, possibly a
consequence of introducing some kind of regularity into the
ordering sequence.
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Approximate minimum degree (AMD) algorithm

The idea behind the widely-used approximate minimum degree
(AMD) algorithm is to inexpensively compute an upper bound on a
vertex degree in place of the degree, and to use this bound as an
approximation to the external degree.
The quality of the orderings obtained using the AMD algorithm are
competitive with those computed using the MD algorithm and can
surpass them.
The complexity of AMD is O(nz(A)n) and, in practice, its runtime
is typically significantly less than that of the MD and MMD
approaches.
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Minimizing the bandwidth and profile

An alternative way of reducing the fill-in locally is to add another
criterion to the relabelling of the vertices, such as restricting the
nonzeros of the permuted matrix to specific positions.
The most popular approach is to force them to lie close to the
main diagonal.
All fill-in then takes place between the first entry of a row and the
diagonal or between the first entry of a column and the diagonal.
This allows straightforward implementations of Gaussian
elimination that employ static data structures.
Here we again consider symmetric S{A}; generalizations are
possible.
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The band and envelope of a matrix
Denote:

ηi(A) = min{j | 1 ≤ i ≤ j, with aij ̸= 0}, 1 ≤ i ≤ n, (68)

that is, ηi(A) is the column index of the first entry in the i-th row of A.
Define

βi(A) = i− ηi(A), 1 ≤ i ≤ n.

The semibandwidth of A is

max{βi(A)| 1 ≤ i ≤ n},

and the bandwidth is

β(A) = 2 ∗max{βi(A) | 1 ≤ i ≤ n}+ 1.

The band of A is the following set of index pairs in A

band(A) = {(i, j) | 0 < i− j ≤ β(A)}.
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The band and envelope of a matrix

The envelope is the set of index pairs that lie between the first
entry in each row and the diagonal:

env(A) = {(i, j) | 0 < i− j ≤ βi(A)}.

Note that the band and envelope of a sparse symmetrically
structured matrix A include only entries of the strict lower
triangular part of A.
The envelope is easily visualized: picture the lower triangular part
of A, and remove the diagonal and the leading zero entries in
each row. The remaining entries (whether nonzero or zero)
comprise the envelope of A.
The profile of A is defined to be the number of entries in the
envelope (the envelope size) plus n.
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The band and envelope of a matrix: shape pushers

* ** * * * * * * * *

* * * * * * *

* * * *
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* *
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The band and envelope of a matrix
An illustrative example: Here η1(A) = 1, β1(A) = 0, η2(A) = 1,
β2(A) = 1, η3(A) = 2, β3(A) = 1, and so on.


∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗

∗ ∗




∗ ∗ ∗
⊛ ∗ ∗ ∗
⊛ ⊛ ∗ ∗ ∗

⊛ ⊛ ∗ ∗ ∗
⊛ ⊛ ∗ ∗ ∗

⊛ ⊛ ∗ ∗
⊛ ⊛ ∗




∗ ∗
⊛ ∗ ∗ ∗

⊛ ∗ ∗
⊛ ⊛ ∗ ∗

∗ ∗
⊛ ⊛ ∗ ∗

⊛ ∗


Figure: Illustration of the band and envelope of a matrix A whose sparsity
pattern is on the left. In the centre, the positions of band(A) are circled and on
the right, the positions of env(A) are circled. The bandwidth is 5 and the
envelope size and the profile are 7 and 14, respectively.
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The band and envelope of a matrix
Static structures!

Theorem
If L is the Cholesky factor of A then

env(A) = env(L).

Proof.
The proof uses mathematical induction on the principal leading submatrices of A of order k. The
result is clearly true for k = 1 and k = 2. Assume it holds for 2 ≤ k < n and consider the block
factorization (

A1:k,1:k u1:k

uT
1:k α

)
=

(
L1:k,1:k 0
vT1:k β

)(
LT
1:k,1:k v1:k
0 β

)
,

where α and β are scalars. Equating the left and right sides, L1:k,1:kv1:k = u1:k. Because

uj = 0 for j < ηk+1(A) and uηk+1 ̸= 0, it follows that vj = 0 for j < ηk+1(A) and vηk+1 ̸= 0.

This proves the induction step. □

A straightforward corollary is that band(A) = band(L).
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The band and envelope of a matrix

Finding a permutation P to minimize the band or profile of PAP T

is again combinatorially hard and again heuristics are used to
efficiently find an acceptable P .
The popular Cuthill McKee (CM) approach chooses a suitable
starting vertex s and labels it 1.
Then, for i = 1, 2, . . . , n− 1, all vertices adjacent to vertex i that
are still unlabelled are labelled successively in order of increasing
degree, as described in Algorithm below.
A very important variation is the Reverse Cuthill McKee (RCM)
algorithm, which incorporates a final step in which the CM
ordering is reversed.
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Level-based orderings

Algorithm (CM and RCM algorithms for band and profile
reduction)
Input: Graph G of a symmetrically structured matrix and a starting vertex s.
Output: Permutation vectors pcm and prcm that define new labellings of the vertices of G(A).

1: label(1 : n) = false

2: Compute adjG{u} and degG(u) for all u ∈ V(G)
3: k = 1, v1 = s, pcm(1) = v1, label(v1) = true

4: for i = 1 : n− 1 do
5: for w ∈ adjG{vi} with label(w) = false in order of increasing degree do
6: k = k + 1, vk = w, pcm(k) = vk, label(vk) = true

7: end for
8: end for
9: For the RCM ordering, prcm(i) = pcm(n− i+ 1), i = 1, 2, . . . , n.
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The CM- and RCM-permuted matrices have the same bandwidth
but the latter can decrease the envelope.

5

41

2 6

7

3



1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗


,



3 7 1 5 2 4 6

3 ∗ ∗
7 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
6 ∗ ∗


,



6 4 2 5 1 7 3

6 ∗ ∗
4 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
7 ∗ ∗ ∗
3 ∗ ∗


,
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Level-based orderings
The importance of the CM and RCM orderings is also expressed by:

Theorem
Let A be symmetrically structured and irreducible. If P corresponds to
the CM labelling obtained from Algorithm and L is the Cholesky factor
of P TAP then env(L) is full, that is, all entries of the envelope are
nonzero.

The full envelope of the Cholesky factor of the permuted matrix
implies cache efficiency when performing the triangular solves
once the factorization is complete.
A crucial difference between profile reduction ordering algorithms
and minimum degree strategies is that the former is based solely
on G: the costly construction of quotient graphs is not needed.
However, unless the profile after reordering is very small, there
can be significantly more fill-in in the factor.
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Level-based orderings

Key to the success is the choice of the starting vertex s.
A good candidate is a vertex for which the maximum distance
between it and some other vertex in G is large.
Formally, the eccentricity ϵ(u) of the vertex u in the connected
undirected graph G is defined to be

ϵ(u) = max
v∈V

d(u, v),

where d(u, v) is the distance between the vertices u and v (the
length of the shortest path between these vertices).
The maximum eccentricity taken over all the vertices is the
diameter of G (that is, the maximum distance between any pair of
vertices). The endpoints of a diameter (also termed peripheral
vertices) provide good starting vertices.
The complexity of finding a diameter is O(n3): approximation
(pseudo-preferal vertices) are needed.
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Level-based orderings

A heuristic algorithm is used to find pseudo-peripheral vertices. A
commonly-used approach is based on level sets. A level structure
rooted at a vertex r is defined as the partitioning of V into disjoint
levels L1(r),L2(r), . . . ,Lh(r) such that

(i) L1(r) = {r} and
(ii) for 1 < i ≤ h, Li(r) is the set of all vertices that
are adjacent to vertices in Li−1(r) but are not in
L1(r),L2(r), . . . ,Li−1(r).

The level structure rooted at r may be expressed as the set
L(r) = {L1(r),L2(r), . . . ,Lh(r)}, where h is the total number of
levels and is termed the depth.
The level sets can be found using a breadth-first search that starts
at the root r.
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Level-based orderings: GPS

Algorithm ( GPS algorithm to find pseudo-peripheral vertices)

1: Construct L(r) and set flag = false

2: while flag = false do
3: flag = true

4: for i = 1 : |L(r)| do
5: wi ∈ L(r) ▷ Select vertex wi from last level set
6: if flag = true then
7: Construct L(wi)

8: if depth(L(wi)) > depth(L(r)) then
9: flag = false ▷ Flag that wi will be used as new initial vertex
10: end if
11: end if
12: end for
13: if flag = true then
14: s = r and t = wi ▷ s has been chosen; while loop will terminate algorithm
15: else
16: r = wi

17: end if
18: end while 458 / 609
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Level-based orderings

A simple example: starting with r = 2, after two passes through the
while loop, the GPS algorithm returns s = 8 and t = 1 as
pseudo-peripheral vertices.

1 2 3 4

5 6 7 8

Figure: An example to illustrate Algorithm 11.4 for finding pseudo-peripheral
vertices. With root vertex r = 2, the first level set structure is
L(2) = {{2}, {1, 3}, {4, 5, 7}, {6, 8}}. Setting r = 8 at Step 16, the second level
set structure is L(8) = {{8}, {4, 7}, {3, 6}, {2, 5}, {1}} and the algorithm
terminates with s = 8 and t = 1.
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Spectral orderings

The spectral algorithm associates a positive semidefinite
Laplacian matrix Lp with the symmetric matrix A as follows:

(Lp)ij =


−1 if i ̸= j and aij ̸= 0,

degG(i) if i = j,

0 otherwise.

An eigenvector corresponding to the smallest positive eigenvalue
of the Laplacian matrix is called a Fiedler vector. If G is connected,
Lp is irreducible and the second smallest eigenvalue is positive.
The vertices of G are ordered by sorting the entries of the Fiedler
vector into monotonic order. Applying the permutation
symmetrically to A yields the spectral ordering.
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Spectral orderings
The use of the Fiedler vector for reordering A comes from
considering the matrix envelope with the size

|env(A)| =
n∑

i=1

βi =

n∑
i=1

max
k<i

(k,i)∈G

(i− k).

The asymptotic upper bound on the operation count for the
factorization based on env(A) is

workenv =

n∑
i=1

β2
i =

n∑
i=1

max
k<i

(k,i)∈G

(i− k)2.

Ordering the vertices using the Fiedler vector is closely related to
minimizing weightenv over all possible vertex reorderings, where

weightenv =
n∑

i=1

∑
k<i

(k,i)∈G

(i− k)2.
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Spectral orderings

Thus, while minimizing the profile and envelope is related to the
infinity norm, minimizing weightenv is related to the Euclidean
norm of the distance between graph vertices.
Although computing the Fiedler vector can be computationally
expensive it does have the advantage of easy vectorization and
parallelization and the resulting ordering can give small profiles
and low operation counts.
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Local fill-reducing orderings for nonsymmetric S{A}

If S{A} is nonsymmetric then an often-used strategy is to apply
the minimum degree algorithm (or one of its variants) or a band or
profile-reducing ordering to the undirected graph G(A+AT ).
This can work well if the symmetry index s(A) is close to 1. But if
A is highly nonsymmetric, another approach is required.
Markowitz pivoting generalizes the MD algorithm by choosing the
pivot entry based on vertex degrees computed directly from the
nonsymmetric S{A}; the result is a nonsymmetric permutation.
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Markowitz pivoting

At step k of the LU factorization, consider the
(n− k + 1)× (n− k + 1) active submatrix, that is, the Schur
complement S(k). Let nz(rowi) and nz(colj) denote the number of
entries in row i and column j of S(k) (1 ≤ i, j ≤ n− k + 1).
Markowitz pivoting selects as the k-th pivot the entry of S(k) that
minimizes the Markowitz count given by the product

(nz(rowi)− 1)(nz(colj)− 1).

It can be described using a sequence of bipartite graphs of the
active submatrices but here we use a matrix-based description
that permutes A on the fly.
Markowitz pivoting is generally incorporated into the numerical
factorization phase of an LU solver, rather than being used to
derive an initial reordering of A.
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Markowitz pivoting
Implementation of the algorithm requires access to the rows and the
columns of the matrix.

Algorithm ( Markowitz pivoting)
Input: Matrix A with a nonsymmetric sparsity pattern.
Output: A′ = PAQ, where P and Q are permutation matrices chosen to limit fill in.

1: Set S(1) = A and A′ = A

2: for k = 1 : n− 1 do
3: Compute nz(rowi) and nz(colj) (1 ≤ i, j ≤ n− k + 1)
4: Find an entry s

(k)
ij of S(k) that minimizes (nz(rowi)− 1)(nz(colj)− 1)

5: Permute the rows and columns so that s(k)ij is the (1, 1) entry of the permuted S(k)

6: Compute Schur complement S(k+1) of the permuted S(k) with respect to its (1, 1) entry
7: end for
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Markowitz pivoting
Example: the first pivot is a24 with Markowitz count 1; it does not cause
fill-in. The second pivot has Markowitz count 2 in S(2); it results in one
filled entry.



1 2 3 4 5

1 ∗ ∗ ∗ ∗
2 ∗ ⊛
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗




4 1 2 3 5

2 ∗ ∗
1 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ⊛ ∗
5 ∗ ∗ ∗




4 2 1 3 5

2 ∗ ∗
4 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
5 ∗ ∗ f ∗


Figure: Illustration of Markowitz pivoting. The first and second pivots are
circled. The sparsity pattern of A = S(1) is on the left. In the centre is the
sparsity pattern after permuting the pivot in position (2, 4) to the (1, 1) position
of S(1). There is no fill-in after the first factorization step. On the right is the
sparsity pattern after selecting the second pivot that has the original position
(4, 2) and permuting it to the (1, 1) position of S(2). The resulting filled entry is
denoted by f . Note that the nonsymmetric permutations transform the
originally irreducible matrix into a reducible one. 466 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 480 — #480 i
i

i
i

i
i

Reorderings

Local fill-reducing orderings for nonsymmetric S{A}

Markowitz pivoting as described here only considers the sparsity
of A and the subsequent Schur complements.
In practice, small pivots should be avoided.
Practical implementations: relaxations: restriction to a limited
number of rows and columns.
Dynamic sparse formats like DS needed.
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Global nested dissection orderings

Nested dissection (ND) is the most important and widely-used
global ordering strategy for direct methods when S{A} is
symmetric; it is particularly effective for ordering very large
matrices.
Identifying a small set of vertices VS (known as a vertex separator)
If removed separates the graph into two disjoint subgraphs
described by the vertex subsets B andW.
The rows and columns belonging to B are labelled first, then those
belonging toW and finally those in VS . The reordered matrix has
the form  AB,B 0 AB,VS

0 AW,W AW,VS

AT
B,VS

AT
W,VS

AVS ,VS

 . (69)
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Global nested dissection orderings

Definition

Vertex separator of an undirected G = (V,E) is subset S of its
vertices such that the subgraph induced by V \ S has more
components than G.

Induced reordering

A =

A11 0 AT
31

0 A22 AT
32

A31 A32 A33

 (70)
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Global nested dissection orderings

1 7 4 43 22 28 25

3 8 6 44 24 29 27

2 9 5 45 23 30 36

19 20 21 46 40 41 42

10 16 13 47 31 37 34

1712 15 48 33 38 36

11 18 14 49 32 39 35
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Global nested dissection orderings

1 2

3

4 5

6

7

8

9

10 11 13 14

12 15

16

17

18
19

20

21

22 23

24

25 26

27

28

29

30

31 32

33

34 35

36

37

38

39
40

41

42

43

44

45

46

47

48

49
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Global nested dissection orderings
1
2
3
4
5
6
7
8
9
10
11
12
13



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗



1

2

3

4

5

6

7

8

9

10

11

12

13

B VS W 472 / 609
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Global nested dissection orderings

1
2
3
4
5
9
10
11
12
13
6
7
8



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


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Global nested dissection orderings

Provided the variables are eliminated in the permuted order, no fill
occurs within the zero off-diagonal blocks.
If |VS | is small and |B| and |W| are similar, these zero blocks
account for approximately half the possible entries in the matrix.
The reordering can be applied recursively to the submatrices AB,B
and AW,W until the vertex subsets are of size less than some
prescribed threshold.
Combinations with local reorderings.
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Global nested dissection orderings

Algorithm (Nested dissection algorithm)
Input: Graph G of a symmetrically structured matrix A and a partitioning algorithm PartitionAlg.
Output: A permutation vector p that defines a new labelling of the vertices of G.

1: recursive function (p = nested_dissection(A, PartitionAlg))
2: if dissection has terminated then ▷ Vertex subsets are smaller than some threshold
3: p = AMD(V, E) ▷ Compute an AMD ordering
4: else
5: Use PartitionAlg(V, E) to obtain the vertex partitioning (B,W,VS)

6: pB = nested_dissection(AB,B, PartitionAlg)
7: pW = nested_dissection(AW,W , PartitionAlg)
8: pVS

is an ordering of VS

9: Set p =

 pB
pW
pVS


10: end if
11: end recursive function
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Bordered forms
The matrix (69) is an example of a doubly bordered block diagonal
(DBBD) form. More generally, a matrix is said in DBBD form if it
has the block structure

ADB =


A1,1 C1

A2,2 C2

... .
ANb,Nb CNb

R1 R2 ... RNb B

 , (71)

The blocks can have very different sizes. A nested dissection
ordering can be used to permute a symmetrically structured matrix
A to a symmetrically structured DBBD form (S{Ri} = S{CT

i }).
If S{A} is close to symmetric then nested dissection can be
applied to S{A+AT }. In finite-element applications, the DBBD
form corresponds to partitioning the underlying finite-element
domain into non-overlapping subdomains.
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Bordered forms

Coarse-grained parallel approaches aim to factorize the Alb,lb

blocks in parallel before solving the interface problem that
connects the blocks.
The block factorization of ADB is

ADB =


L1

L2

...
LNb

R̂1 R̂2 ... R̂Nb LS



U1 Ĉ1

U2 Ĉ2

... .

UNb ĈNb

US

 ,

where

R̂lb = RlbU
−1
lb , Ĉlb = L−1

lb Clb (1 ≤ lb ≤ Nb), LSUS = B−
Nb∑
lb=1

R̂lbĈlb.

Here, for simplicity, no permutations emphasized.
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Bordered forms

Algorithm (Coarse-grained parallel LU factorization using DBBD
form)
Input: Matrix ADB in DBBD form (71).
Output: Block LU factorization.

1: Initialise S = B

2: for lb = 1 : Nb do
3: Alb,lb = LlbUlb ▷ LU factorization of square block on diagonal
4: R̂lb = RlbU

−1
lb ▷ Triangular solve for bottom-border blocks

5: Ĉlb = L−1
lb Clb ▷ Triangular solve for right-border blocks

6: end for
7: S = S −

∑Nb
lb=1 R̂lbĈlb ▷ Assemble updates to interface block

8: S = LSUS ▷ Factorize updated interface block (Schur complement)
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Bordered forms

Factorization of each individual Alb,lb and solve steps can be
parallelized.
The assembly of the interface block S and its LU can be partially
parallelized.
S is generally significantly denser than the other blocks.
If A is not SPD then factorizing the Alb,lb blocks without
considering the entries in the border can potentially lead to
stability problems. Consider the first step in factorizing Alb,lb and
the threshold pivoting test for a sparse LU factorization. The pivot
candidate (Alb,lb)11 must satisfy

max{max
i>1
|(Alb,lb)i1|,max

k
|(Rlb)k1|} ≤ γ−1|(Alb,lb)11|,

where γ ∈ (0, 1] is the threshold parameter.
Large entries in the row border matrix Rlb can prevent pivots being
selected within Alb,lb.
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Singly bordered form
Singly bordered block diagonal (SBBD) form

ASB =


A1,1 C1

A2,2 C2

. . . .
ANb,Nb CNb

 ,

Alb,lb are rectangular mlb × nlb. The linear system becomes
A1,1 C1

A2,2 C2

. . . .
ANb,Nb CNb




x1
...

xNb

xI

 =


b1
b2
...

bNb

 , (72)

xlb is of length nlb, xI is a vector of length nI of interface variables,
and the right-hand side vectors blb are of length mlb, such that(

Alb,lb Clb

)(xlb
xI

)
= blb, 1 ≤ lb ≤ Nb.
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Singly bordered form

A partial factorization of each block matrix is performed, that is,

(
Alb,lb Clb

)
= Plb

(
Llb

L̄lb I

)(
Ulb Ūlb

Slb

)
Qlb, (73)

Pivots can only be chosen from the columns of Alb,lb because the
columns of Clb have entries in at least one other border block Cjb

(jb ̸= lb).
The pivot candidate (Alb,lb)11 at the first elimination step must
satisfy

max
i>1
|(Alb,lb)i1| ≤ γ−1|(Alb,lb)11|,
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Singly bordered form

Algorithm (Coarse-grained parallel LU factorization and solve
using SBBD form)
Input: Linear system in SBBD form (72).
Output: Block LU factorization and computed solution x.

1: S = 0 and zI = 0

2: for lb = 1 : Nb do
3: Perform a partial LU factorization (73) of (Alb,lb, Clb).

4: Solve Plb

(
Llb

L̄lb I

)(
ylb
ȳlb

)
= blb

5: S = S + Slb and zI = zI + ȳlb ▷ Assemble S and zI
6: end for
7: S = PsLsUsQs ▷ Ps and Qs are permutation matrices
8: Solve PsLs yI = zI and then UsQs xI = yI ▷ Forward then back substitution
9: for lb = 1 : Nb do
10: Solve Ulb Qlb xlb = ylb − Ūlb Qlb xI

11: end for
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Ordering to singly bordered form

The objective is to permute A to an SBBD form with a narrow
column border.
One way to do this is to choose the number Nb > 1 of required
blocks and use ND to compute a vertex separator VS of
G(A+AT ) such that removing VS and its incident edges splits
G(A+AT ) into Nb components.
Then initialise the set SC of border columns to VS and let
V1b,V2b, . . . ,VNb be the subsets of column indices of A that
correspond to the Nb components and let ni,kb be the number of
column indices in row i that belong to Vkb. If
lb = argmax1≤kb≤Nb |ni,kb| then row i is assigned to partition lb. All
column indices in row i that do not belong to Vlb are moved into SC .
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Ordering to singly bordered form

Algorithm (SBBD ordering of a general matrix)
Input: Matrix A, the number Nb > 1 of blocks, vertex separator VS of G(A+AT ).
Output: Vector block such that block(i) denotes the partition in the SBBD form to which row i is
assigned (1 ≤ i ≤ n) and SC is the set of border columns.

1: Initialise SC = VS and block(1 : n) = 0

2: Initialise Vkb to hold the column indices of A that correspond to component kb of G(A+AT )

after the removal of VS , 1 ≤ kb ≤ Nb

3: for each row i do
4: Add up the number ni,kb of column indices belonging to Vkb, 1 ≤ kb ≤ Nb

5: Find lb = argmax1≤kb≤Nb ni,kb

6: block(i) = lb

7: for each column index j in row i do
8: if j ∈ Vkb and kb ̸= lb then
9: Remove j from Vkb and add to SC
10: end if
11: end for
12: end for
13: Assign the rows i for which block(i) = 0 equally between the Nb partitions.
14: If some column j ∈ SC has nonzero entries only in rows belonging to partition kb then

remove j from SC and add to Vkb
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Reorderings

Complexity

Overall time dominated by time for the factorization
General dense matrices

▶ Space: O(n2)
▶ Time: O(n3)

General sparse matrices
▶ Space: η(L) = n+

∑n−1
i=1 (η(L∗i)− 1)

▶ Time in the i-th step: η(L∗i)− 1 divisions, 1/2(η(L∗i)− 1)η(L∗i)
multiple-add pairs

▶ Time totally: 1/2
∑n−1

i=1 (η(L∗i)− 1)(η(L∗i) + 2)
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Reorderings

Complexity

Band schemes (β << n)
▶ Space: O(βn)
▶ Time: O(β2n)

Band
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Reorderings

Complexity

Profile/envelope schemes
▶ Space:

∑n
i=1 βi

▶ Frontwidth: ωi(A) = |{k|k > i ∧ akl ̸= 0 for some l ≤ i}|
▶ Time: 1/2

∑n−1
i=1 ωi(A)(ωi(A) + 3)

Profile (Envelope)
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From direct to iterative methods

Complexity

General sparse schemes can be analyzed in some cases
▶ Nested dissection

1 7 4 43 22 28 25

3 8 6 44 24 29 27

2 9 5 45 23 30 36

19 20 21 46 40 41 42

10 16 13 47 31 37 34

1712 15 48 33 38 36

11 18 14 49 32 39 35

Definition
(α, σ) separation of a graph with n vertices: each its subgraph can be
separated by a vertex separator S such that its size is of the order
O(nσ) and the separated subgraphs components have sizes
≤ αn,1/2 ≤ α < 1.
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From direct to iterative methods

Complexity: Generalized nested dissection

Vertex separator

C_1 C_2

S

Planar graphs, 2D finite element graphs (bounded degree)
▶ σ = 1/2, α = 2/3
▶ Space: O(n log n)
▶ Time: O(n3/2)

3D Finite element graphs
▶ σ = 2/3
▶ Space: O(n4/3)
▶ Time: O(n2)

Lipton, Rose, Tarjan (1979), Teng (1997).
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Outline
1 Introduction
2 Introductory notation and terminology
3 Sparse matrices and data structures
4 Graphs and sparse matrices
5 Factorizations
6 Reducibility and blocks
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Reorderings
12 Algebraic preconditioning
13 Incomplete factorizations
14 Sparse approximate inverses
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Algebraic preconditioning

Algebraic preconditioning

Finite precision arithmetic: computed factors are not exact.
Moreover, the effort to obtain more accurate results can lead to
complex coding and unavoidable inefficiencies magnified by
modern computer architectures.
Potential solution: intentionally relaxing the required accuracy of
the computed factors.
Simpler, cheaper, sparser approximate factorization of A (or of
A−1): preconditioners.
Using the preconditioner in combination with an iterative solver.
an approximate factorization called an incomplete factorization to
distinguish it from a complete factorization of a direct method.
Used with iterative methods for solving Ax = b from their two main
classes: stationary (relaxation) iterative methods and Krylov
subspace methods.
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Algebraic preconditioning

Stationary iterative methods

Stationary iterative methods work by splitting A as follows:

A = M −N,

The matrix M is chosen to be nonsingular and easy to invert. An
initial guess x(0), the iterations are then given by

x(k+1) = M−1Nx(k) +M−1b, k = 0, 1, . . . (74)

This can be rewritten as

x(k+1) = x(k) +M−1(b−Ax(k)) = x(k) +M−1 r(k), k = 0, 1, . . .
(75)

where the vector r(k) = b−Ax(k) is the residual on the k-th
iteration.
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Algebraic preconditioning

Stationary iterative methods

By substituting b = r(k) +Ax(k) into x = A−1 b, we obtain

x = A−1(r(k) +Ax(k)) = x(k) +A−1 r(k).

If M is used to approximate A, we again get the iteration above.
Further

r(k+1) = b−A(x(k)+M−1 r(k)) = (I−AM−1) r(k) = . . . = (I−AM−1)k+1 r(0),
(76)

and if e(k) = x− x(k) is the error vector on iteration k then

e(k+1) = M−1N e(k) = . . . = (M−1N)k+1 e(0) = (I−M−1A)k+1 e(0).
(77)

The matrix I −M−1A or I −AM−1 is called the iteration matrix.
In general, monitoring residuals is more practical.
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Algebraic preconditioning

Stationary iterative methods

Theorem
For any initial x(0) and vector b, the stationary iteration converges if
and only if the spectral radius of (I −M−1A) is less than unity.

Proof.
The spectral radius of an n× n matrix C with eigenvalues λ1, λ2, . . . , λn is defined to be

ρ(C) = max{|λi| | 1 ≤ i ≤ n}. (78)

Furthermore, the sequence of matrix powers Ck, k = 0, 1, . . . , converges to zero if and only if
ρ(C) < 1. It follows from (77) that if the spectral radius of (I −M−1A) is less than unity then the
iteration (74) converges for any x(0) and b. Conversely, the relation

x(k+1) − x(k) = (I −M−1N)(x(k) − x(k−1)) = . . . = (I −M−1N)kM−1(b−Ax(0))

shows that if the iteration converges for any x(0) and b then (I −M−1N)kv converges to zero

for any v. Consequently, ρ(I −M−1A) must be less than unity, and the result follows. □
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Algebraic preconditioning

Stationary iterative methods

Generally impractical to compute the spectral radius and sufficient
conditions that guarantee convergence are used.
A sufficient condition for convergence is ∥I −M−1A∥ < 1.
Consider splitting (diagonal, strict lower triangular, strict upper
triangular)

A = DA + LA + UA. (79)

For ω > 0 is a scalar parameter, classical methods include:
▶ Richardson method: M = ω−1I,
▶ Jacobi and damped Jacobi methods: M = DA and M = ω−1DA,
▶ Gauss-Seidel and SOR methods: M = DA + LA and

M = ω−1DA + LA.
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Algebraic preconditioning

Stationary iterative methods

Theorem
If A ∈ Rn×n is strongly diagonally dominant then Jacobi method and
Gauss-Seidel method are convergent.

Theorem
If A ∈ Rn×n is symmetric with positive diagonal DA then the Jacobi
method is convergent iff A and 2DA −A are positive definite.

Theorem
If A ∈ Rn×n is symmetric and positive definite then the Gauss-Seidel
method is convergent.
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Algebraic preconditioning

Krylov subspace methods
Non-stationary iterative methods are of the form

x(k+1) = x(k) + ω(k)M−1 r(k), k = 0, 1, . . . .

where the ω(k) are scalars.
In this class, Krylov subspace methods are the most effective.
Given a vector y, the k-th Krylov subspace K(k)(A, y) generated
by A from the vector y is defined to be

K(k)(A, y) = span(y,Ay, . . . , Ak−1 y).

Generate a sequence of approximate solutions
x(k) ∈ x(0) +K(k)(A, r(0)) such that the norm of the corresponding
residuals r(k) ∈ K(k+1)(A, r(0)) converge to zero.
SPD systems the conjugate gradient method (CG); nonsymmetric
systems: GMRES, BiCG, no single method of choice.
At each iteration only matrix-vector products with A (and possibly
with AT ) required.
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Algebraic preconditioning

Krylov subspace methods

Powerful, if (and only if) combined with a preconditioner: the most
widely-used class of preconditioned iterative methods.
Unfortunately, for a given A, b and x(0), it is usually not possible to
predict the rate of convergence.
If A is a SPD matrix then for CG

∥x− x(k)∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

∥x− x(0)∥A,

where κ(A) is the spectral condition number.
Can be highly pessimistic. Does not show the potential for CG to
converge superlinearly or that the rate of convergence depends
on the distribution of all the eigenvalues of A.
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Algebraic preconditioning

Krylov subspace methods

For non-SPD matrices, less is known. Like to emphasize
favourable properties: the minimal residual method (MINRES) for
solving symmetric indefinite systems in exact arithmetic, has the
norm of the residual monotonically decreasing.
No general descriptive convergence theory is available for Krylov
subspace methods for nonsymmetric systems (including GMRES).

499 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 513 — #513 i
i

i
i

i
i

Algebraic preconditioning

Krylov subspace methods

Preconditioning corresponds to the application of a matrix (or
linear operator) to the original linear system to yield a different
linear system that has more favourable properties. Consider the
preconditioned linear system

M−1Ax = M−1 b. (80)

Here M−1 is applied to A from the left. We say that A is
preconditioned from the left and M is a left preconditioner.
Analogously, the linear system can be preconditioned from the
right

AM−1 y = b, x = M−1 y. (81)
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Algebraic preconditioning

Krylov subspace methods
The following result states that it is not possible to determine a priori
which variant is the best.

Theorem
Let δ and ∆ be positive numbers. Then for any n ≥ 3 there exist
nonsingular n× n matrices A and M such that all the entries of
M−1A− I have absolute value less than δ and all the entries of
AM−1 − I have absolute values greater than ∆.

The choice between left and right preconditioning may be based
on properties of the coupling of the preconditioner with the
iterative method or on the distribution of the eigenvalues of A.
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Algebraic preconditioning

Krylov subspace methods

The computed quantities readily available during a preconditioned
iterative method depend on how the preconditioner is applied and
this may influence the choice. These quantities may be used, for
example, to decide when to terminate the iterations.
An obvious advantage of right preconditioning is that in exact
arithmetic, the residuals for the right preconditioned system are
identical to the true residuals, enabling convergence to be
monitored accurately.
In some cases, the numerical properties of an implementation
and/or the computer architecture may also play a part.
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Algebraic preconditioning

Krylov subspace methods

For M in factorized form M = M1M2, two-sided (or split)
preconditioning is an option. The iterative method then solves the
transformed system

M−1
1 AM−1

2 y = M−1
1 b, x = M−1

2 y. (82)

If A and M are SPD matrices then we would like the
preconditioned matrix M−1

1 AM−T
1 to be SPD. However, it is not

necessary to use a two-sided transformation with the
preconditioned conjugate gradient (PCG) method because it can
be formulated using the M -inner product in which the matrix
M−1A is self-adjoint.
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Algebraic preconditioning

Krylov subspace methods

Theorem
Let A and M be SPD matrices. Then M−1A is self-adjoint in the
M -inner product.

Proof.
Self-adjointness is implied by the following chain of equivalences.

⟨M−1Ax, y⟩M = ⟨Ax, y⟩ = ⟨x,Ay⟩ = ⟨x,MM−1Ay⟩ = ⟨Mx,M−1Ay⟩ = ⟨x,M−1Ay⟩M .

□

Left preconditioned CG with the M -inner product is
mathematically equivalent to right preconditioned CG with the
M−1-inner product.
If A is symmetric but not PD, the PCG method can breakcdown
(division by a zero quantity).
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Algebraic preconditioning

Krylov subspace methods
An obvious goal: to achieve rapid convergence.
The preconditioner should aim to reduce the condition number,
but this is not necessarily sufficient to give fast convergence.
For general matrices, despite the lack of theoretical guarantees
regarding convergence, many useful preconditioners motivated by
bounding the condition number of the preconditioned matrix.
Choosing a preconditioner is often based on how costly it is to
compute and on some indicators that potentially reflect its quality.
In particular, the accuracy of a preconditioner M can be assessed
using the norm of the error matrix

∥E∥ = ∥M −A∥,
and its stability can be measured using

∥M−1E∥ = ∥I −M−1A∥ or ∥EM−1∥ = ∥I −AM−1∥.
In some cases, the inverse M−1 is computed directly. In this case
we have an approximate inverse preconditioner. 505 / 609
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Algebraic preconditioning

Simple preconditioners
The simplest preconditioner consists of the diagonal of the matrix
M = DA. This is known as the (point) Jacobi preconditioner.
Block versions can be derived by partitioning V = {1, 2, . . . , n} into
mutually disjoint subsets V1, . . . ,Vl and then setting

mij =

{
aij if i and j belong to the same subset Vk for some k, 1 ≤ k ≤ l,

0 otherwise.

The SSOR preconditioner, like the Jacobi preconditioner, can be
derived from A without any work. If A is symmetric then using the
notation (79), the SSOR preconditioner is defined to be

M = (DA + LA)D
−1
A (DA + LA)

T , (83)

or, using a parameter 0 < ω < 2, as

M =
1

2− ω
(
1

ω
DA + LA)(

1

ω
DA)

−1(
1

ω
DA + LA)

T .

Finding optimal value of ω typically expensive.
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Algebraic preconditioning

The Eisenstat trick
Generally cheaper to apply M−1 and A separately,
But: consider the matrix splitting (79) and let M be given by

M = (D + LA) [D
−1(D + UA)] = M1M2, (84)

where D is a nonsingular diagonal matrix.
The SSOR matrix is one example in the symmetric case but more
generally D ̸= DA.
Using two-sided preconditioning, (82) becomes

A′y = M−1
1 AM−1

2 y = (D+LA)
−1A[D−1(D+UA)]

−1 y = (D+LA)
−1b.

(85)
Setting

L̄ = D−1LA, Ū = D−1UA, Ā = D−1A, and b̄ = (I + L̄)−1D−1 b,

we obtain
A′ = (D + LA)−1A[D−1(D + UA)]−1 = [(D + LA)−1D]D−1A[D−1(D + UA)]−1

= [D−1(D + LA)]−1D−1A(I +D−1UA)−1 = (I + L̄)−1Ā(I + Ū)−1.
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Algebraic preconditioning

The Eisenstat trick
That is, the system becomes

A′y = (I + L̄)−1Ā(I + Ū)−1 y = (I + L̄)−1D−1 b = b̄. (86)

If y solves (86) then the solution x of (I + Ū)x = y solves Ax = b.
Further

A′ = (I + L̄)−1 (I + L̄+D−1DA − 2I + I + Ū)(I + Ū)−1

= (I + L̄)−1 [(I + L̄)(I + Ū)−1 + (D−1DA − 2I)(I + Ū)−1 + I]

= (I + Ū)−1 + (I + L̄)−1 [(D−1DA − 2I)(I + Ū)−1 + I].

Thus to compute z = A′w = (I + L̄)−1Ā(I + Ū)−1w for a given w,
it is necessary only to solve two triangular systems

(I + Ū) z1 = w followed by (I + L̄) z2 = (D−1DA − 2I) z1 + w,

and then set z = z1 + z2.
This trick is not a preconditioner: it is a way of applying the
preconditioner of special shape. 508 / 609
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Algebraic preconditioning

Some special classes of matrices
The development of algebraic preconditioners has been closely
connected to solving linear systems from the discretization of
PDEs.
Two-dimensional Poisson problem, discretized using a uniform
regular grid, finite differences, zero Dirichlet conditions on the
boundary, natural ordering.

A =



4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4


. (87)

If the spatial discretization on the domain is characterized by the
mesh parameter h then the size of A is inversely proportional to h.
κ(A) depends asymptotically on h−2.
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Algebraic preconditioning

Some special classes of matrices

Matrices with similar banded sparsity patterns with nonzeros on
only a small number of subdiagonals arise from simple finite
difference or finite element discretizations of other partial
differential equations.
Particular cases of special classes of matrices help to describe
the theoretical background behind the discretized systems.
Let the off-diagonal entries of the nonsingular matrix A be
nonpositive (that is, aij ≤ 0 for all i ̸= j). Then A is a (nonsingular)
M-matrix if one of the following holds:

▶ A+D is nonsingular for any diagonal matrix D with nonnegative
entries;

▶ all the entries of A−1 are nonnegative;
▶ all principal minors of A are positive.

The matrix above is an example of an M-matrix. A symmetric
M-matrix is known as a Stieltjes matrix, and such a matrix is
positive definite.
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Algebraic preconditioning

Some special classes of matrices

The class of nonsingular H-matrices includes matrices coming
from simple discretizations of convection-diffusion problems. The
comparison matrix C(A) of A is defined to have entries

C(A)ij =

{
−|aij |, i ̸= j,

|aij |, i = j.

If C(A) is a nonsingular M-matrix then A is a nonsingular H-matrix.
A is diagonally dominant by rows if

n∑
j=1, j ̸=i

|aij | ≤ |aii|, 1 ≤ i ≤ n. (88)

A is strictly diagonally dominant by rows if strict inequality holds
for all i. A is (strictly) diagonally dominant by columns if AT is
(strictly) diagonally dominant by rows.
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Algebraic preconditioning

Some special classes of matrices

A is said to be irreducibly diagonally dominant if it is irreducible
and the inequalities are satisfied with strict inequality for at least
one row i. If A is strictly diagonally dominant by rows or columns
or is irreducibly diagonally dominant then it is nonsingular and
factorizable.
The class of diagonally dominant matrices is closely connected to
that of nonsingular H-matrices. For example, the property that
there exists a diagonal matrix D with positive entries such that AD
is strictly diagonally dominant is equivalent to A being a
nonsingular H-matrix.
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Algebraic preconditioning

Some special classes of matrices: once more

Still theoretical assumptions are rather strong.
Concept of special matrices

Theorem
Matrix A is called a regular M-matrix if aij ≤ 0, i ̸= j, is regular and
A−1 ≥ 0.

Theorem
A is a H-matrix if B = |DA| − |A−DA| is an M -matrix.

Many equivalent definitions
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Algebraic preconditioning

Introduction to incomplete factorizations

Incomplete factorizations fall into three main classes:
▶ Threshold-based methods: locations of permissible fill-in are

determined in conjunction with the numerical factorization of A;
entries of the computed factors of absolute value greater than a
prescribed threshold τ > 0 are dropped.

▶ Memory-based methods in which the amount of memory available
for the incomplete factorization is prescribed and only the largest
entries in each row (or column) are retained.

▶ Structure-based methods: an initial symbolic factorization phase
determines the location of permissible entries using only S{A}.
This allows the memory requirements to be determined before an
incomplete numerical factorization is performed. The specified set
of positions is called the target sparsity pattern.
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Algebraic preconditioning

Introduction to incomplete factorizations
The basic dropping approaches can be combined and employed
in conjunction with sparsifying A before the factorization
commences.
Sparsification of A after permuting reveals a block structure.



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗ ∗
3 ∗ f ∗ f f f
4 ∗ f ∗ ∗ ∗
5 ∗ f ∗ ∗ ∗
6 ∗ f ∗ ∗ ∗





2 4 1 3 5 6

2 ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ f ∗ ∗
1 ∗ f ∗ ∗ f f
3 ∗ ∗ f f
5 ∗ ∗ f f ∗ ∗
6 ∗ ∗ f f ∗ ∗





2 4 1 3 5 6

2 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
1 ∗ ∗
3 ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗



Figure: Illustration of matrix sparsification. f denotes filled entries in the
factors. On the left is the original matrix A with its filled entries; in the centre
is the permuted matrix with its filled entries; on the right is the sparsified
permuted matrix after dropping the entries of A in positions (1, 3) and (3, 1) (it
has no filled entries).
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Algebraic preconditioning

Incomplete factorization breakdown

Dropping entries can lead to breakdown of the incomplete
factorization, that is, a zero pivot may be encountered during the
factorization (or a non positive pivot in the Cholesky case).
It is only possible to predict when this will happen in special cases,
as stated in the following theorem, which is a consequence of the
fact that being an M-matrix or an H-matrix is preserved in the
sequence of the Schur complements during the factorization.

Theorem
Let A be a nonsingular M-matrix or H-matrix. If the target sparsity
pattern of the incomplete factors contains the positions of the diagonal
entries then the incomplete factorization of A does not break down.
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Algebraic preconditioning

Incomplete factorization breakdown

To illustrate the error accumulation in the incomplete factorization
of an M-matrix using dropping, consider the following example.
Let E be the error matrix. E is initialised to zero and at each stage
of the factorization the dropped entries are added into it.
After one step of the complete factorization of A the partially
eliminated matrix A(2) is

A(2) =



4 −1 −1
3.75 −1 −0.25 −1
−1 4 −1
−0.25 3.75 −1 −1
−1 −1 4 −1 −1

−1 −1 4 −1
−1 4 −1

−1 −1 4 −1
−1 −1 4


.
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Algebraic preconditioning

Incomplete factorization breakdown
Suppose the filled entries −0.25 in positions (2, 4) and (4, 2) are
dropped. Then the values of the corresponding diagonal entries in
the subsequent elimination matrices are larger than they would
have been without any dropping.
Furthermore, as all the off-diagonal nonzero entries are negative,
for any target sparsity pattern the dropped entries are negative.
The M-matrix property applies to all subsequent Schur
complements, which implies that all the entries added into E are
negative and so the absolute values of the entries in E grow as
the factorization proceeds (the contributions can never cancel
each other out).
Thus, although the factorization does not break down, the growth
in the error is potentially a problem for the accuracy of an
incomplete factorization of an M-matrix.
Modifying the diagonal entries of A is a common approach to
avoid breakdown in an incomplete factorization.
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Algebraic preconditioning

Incomplete factorization breakdown

A =

 3 −2 2
−2 3 −2

−2 3 −2
2 −2 8

 , L =

 1
−2/3 1

−6/5 1
2/3 4/5 −2/3 1

 , D =

3
5/3

3/5
16/3

 .

L̃ =

 1
−2/3 1

−6/5 1
2/3 −10/3 1

 , D̃ =

3
5/3

3/5
0

 .

Figure: An example to illustrate breakdown. The matrix A and its square-root
free factors are given together with the incomplete factors L̃ and D̃ that result
from dropping the entry l24 during the factorization. d̃44 = 0 means the
incomplete factorization has broken down.

Remedy: perturb the diagonal value causing the breakdown.
Practice of making simple ad hoc modifications not very positive.
If breakdown (or near-breakdown) occurs, it may be too late. 519 / 609
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Algebraic preconditioning

Incomplete factorization breakdown

An alternative and more effective strategy to avoid breakdown is
to modify all the diagonal entries of A a priori and then compute
an incomplete factorization of A+ αI, where the shift α > 0 is a
scalar parameter.
It is always possible to find α such that A+ αI is nonsingular and
diagonally dominant and is thus an H-matrix.
However, being an H-matrix is not a necessary condition for a
matrix to be factorizable and, in practice, much smaller values of α
can provide incomplete factorizations for which ∥E∥ is small.
A simple trial-and-error procedure for choosing a shift is given
below.
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Algebraic preconditioning

Incomplete factorization breakdown

Algorithm (Trial-and-error global shifted incomplete factorization)
Input: Matrix A, incomplete factorization algorithm, initial shift α(0)

Output: Shift α such that A+ αI ≈ L̃Ũ .

1: for k = 0, 1, 2, . . . do
2: A+ α(k)I ≈ L̃Ũ ▷ Perform incomplete factorization
3: If successful, α = α(k) and return
4: α(k+1) = 2α(k)

5: end for
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Algebraic preconditioning

Incomplete factorization breakdown

An alternative approach to avoid small pivots:to follow what is
done in sparse direct solvers and incorporate partial or threshold
pivoting within the incomplete factorization algorithm:
preprocessing by reordering, scaling etc.
One way to attempt to minimize the norm of the error matrix E is
to select the pivot candidate to minimize the sum of the absolute
values of the dropped (discarded) entries. However, this minimum
discarded fill ordering is typically too expensive to be useful in
practice.
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Algebraic preconditioning

Factorizations as preconditioner components

Sometimes (incomplete) factorizations are employed as
components in the construction of more complex preconditioners.
Here some possible approaches are briefly discussed.
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Algebraic preconditioning

Incomplete factorization breakdown
Polynomial preconditioning

Polynomial preconditioning selects a polynomial ϕ and applies a
Krylov subspace method to solve either

ϕ(A)Ax = ϕ(A) b

(left preconditioning) or

Aϕ(A) y = b, x = ϕ(A) y

(right preconditioning). ϕ should be of small degree and chosen to
enhance convergence.
Consider the characteristic polynomial ϕn(µ) = det(A− µI) of A
(det denotes the determinant).
The Cayley-Hamilton theorem states that A satisfies its own
characteristic equation so that

ϕn(A) =

n∑
j=0

βj A
j = 0,

where βj (0 ≤ j ≤ n) are the coefficients of the characteristic
polynomial (βn = 1, β0 = (−1)n det(A)).
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Algebraic preconditioning

Polynomial preconditioning

Provided A is nonsingular,

A−1 = (−1)n+1 1

det(A)

n∑
j=1

βj A
j−1.

A preconditioner can be constructed by taking the first k terms,
possibly weighted by some suitable scalar coefficients, that is,

M−1 =

k∑
j=0

γj A
k.

525 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 539 — #539 i
i

i
i

i
i

Algebraic preconditioning

Polynomial preconditioning
An important question is why such a preconditioner can help in the
presence of the optimality properties of Krylov subspace methods.
For example, at iteration k + 1 of the CG method, x(k+1) satisfies

x(k+1) = x(0) + ϕk(A) r(0), k = 0, 1, . . . ,

where ϕk is a monic polynomial of degree k. This polynomial is
optimal in the sense that x(k+1) minimizes

∥x− x(k+1)∥2A. (89)

A preconditioner that is a polynomial in A cannot speed the
convergence because the resulting iteration again forms the new
x(k+1) as x(0) plus a polynomial in A times r(0), and thus the same
or a higher degree polynomial is needed to achieve the same
value of the A-norm of the error.
Consequently, the number of matrix-vector multiplications cannot
decrease.
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Algebraic preconditioning

Polynomial preconditioning

Nevertheless, polynomial preconditioning can be useful for a
number of reasons.

▶ The polynomial can improve the eigenvalue distribution of the
preconditioned matrix and result in a reduction in the number
of iterations required for convergence (even though the
overall complexity may increase).

▶ It requires very little memory and its implementation can be
straightforward.

▶ It can decrease the number of synchronization points in
iterative methods as represented by inner products. This is
potentially important for message-passing parallel
architectures.
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Algebraic preconditioning

Polynomial preconditioning
Even if only a small number of terms are used in approximating
A−1, a crucial issue is getting γ0, . . . , γk.
A straightforward way of doing this: based on the Neumann series
of a matrix C given by

∑+∞
j=0 C

j , which is convergent if and only if
ρ(C) < 1.

In this case,

(I − C)−1 =

+∞∑
j=0

Cj . (90)

Now let M̄ be a nonsingular matrix and ω > 0 a scalar such that
the matrix C = I − ωM̄−1A satisfies ρ(C) < 1.
Using (90),

A−1 = ω(ωM̄−1A)−1M̄−1 = ω (I − C)−1M̄−1 = ω

+∞∑
j=0

Cj

 M̄−1.

528 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 542 — #542 i
i

i
i

i
i

Algebraic preconditioning

Polynomial preconditioning
Truncating the summation gives as a possible preconditioner

M−1 = ω

 k∑
j=0

Cj

 M̄−1.

Observe that

I−M−1A = I−ω

 k∑
j=0

Cj

 M̄−1A = I−

 k∑
j=0

Cj

 (I−C) = Ck+1,

which shows the positive effect of increasing k. If A and M̄ are
SPD matrices then M can be used with the CG method
preconditioned from the left because M−1A is self-adjoint in the
M̄ -inner product.
Generalizations of the approach weight the powers of C in M−1

using additional scalars. The choice of M̄ is crucial for the
effectiveness of the approach.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Sparse matrices and data structures
4 Graphs and sparse matrices
5 Factorizations
6 Reducibility and blocks
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Reorderings
12 Algebraic preconditioning
13 Incomplete factorizations
14 Sparse approximate inverses
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Incomplete factorizations

World of incomplete factorizations

Direct factorizations may not be feasible (data structures and
pivoting, operation counts, stability)
Even by direct factorizations improving solution when using less
accurate arithmetic (smaller ϵ) may be needed.
The incomplete factors denoted here by L̃ and Ũ ;
SPD case: Ũ = L̃T .
We assume that the sparsity patterns of A and its incomplete
factors always include the positions of the diagonal entries.
Notation (other mentioned later): ILU(0) factorization (or an IC(0)
factorization if A is SPD): S{L̃+ Ũ} = S{A}.
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Incomplete factorizations

Exactness within the target sparsity pattern

Theorem

Consider the incomplete LU factorization A+ E = L̃Ũ with sparsity
pattern S{L̃+ Ũ}. The entries of the error matrix E are zero at
positions (i, j) ∈ S{L̃+ Ũ}.

Proof.
The result clearly holds for j = 1. Let (i, j) ∈ S{L̃+ Ũ} and assume without loss of generality
that i > j > 1. The (i, j) entry of L̃ is computed as

l̃ij =

aij −
j−1∑
k=1

l̃ik ũkj

 /ũjj

with the sums over k implying (i, k) ∈ S{L̃+ Ũ} and (k, j) ∈ S{L̃+ Ũ}. This gives

aij = L̃i,1:j−1Ũ1:j−1,j + l̃ij ũjj = L̃i,1:jŨ1:j,j = Li,1:jU1:j,j ,

and the corresponding entry of E is zero. □ 532 / 609
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Incomplete factorizations

Incomplete factorizations and patterns

Theorem⇒ extending S{L̃+ Ũ} gives a larger set of entries of A
for which (E)ij = 0.
In some situations, there are straightforward ways to extend
S{L̃+ Ũ}. In simple discretizations of a PDE may be a natural
choice is to allow S{L̃+ Ũ} to include fill-in along a few additional
diagonals within the band.

A =



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗
8 ∗ ∗ ∗


1 2 3 4

5 6 7 8
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Incomplete factorizations

Incomplete factorizations and patterns

∗ ∗ ∗
∗ ∗ ∗ f ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ f ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗


→



∗ ∗ ∗
∗ ∗ ∗ f ∗

∗ ∗ ∗ f f ∗
∗ ∗ ∗

∗ f f ∗ ∗
∗ f ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗


→



∗ ∗ ∗
∗ ∗ ∗ f ∗

∗ ∗ ∗ f f ∗
∗ ∗ f f f ∗

∗ f f f ∗ ∗ f
∗ f f ∗ ∗ ∗

∗ f f ∗ ∗ ∗
∗ ∗ ∗


Figure: An 8× 8 banded sparse SPD matrix A and its graph G(A). The first
three steps of a Cholesky factorization are shown. Filled entries are denoted
by f .
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Incomplete factorizations

Crout incomplete factorizations
The Crout variant: computes Ũ (by rows) and L̃ (by columns).

Algorithm (Crout incomplete LU factorization)
Input: Matrix A and, optionally, a target sparsity pattern S{L̃+ Ũ}.
Output: Incomplete LU factorization A ≈ L̃Ũ .

1: for j = 1 : n do
2: l̃jj = 1, L̃j+1:n,j = Aj+1:n,j

3: Ũj,j:n = Aj,j:n

4: for k = 1 : j − 1 such that (j, k) ∈ S{L̃} do
5: Ũj,j:n = Ũj,j:n − l̃jk Ũk,j:n ▷ Sparse linear combination
6: end for
7: Sparsify Ũj,j+1:n ▷ Drop entries from row j of Ũ
8: for k = 1 : j − 1 such that (k, j) ∈ S{Ũ} do
9: L̃j+1:n,j = L̃j+1:n,j − ũkj L̃j+1:n,k ▷ Sparse linear combination
10: end for
11: Sparsify L̃j+1:n,j ▷ Drop entries from column j of L̃
12: L̃j+1:n,j = L̃j+1:n,j/ũjj

13: end for
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Incomplete factorizations

Row incomplete factorizations

Algorithm (Row incomplete LU factorization)
Input: Matrix A and, optionally, a target sparsity pattern S{L̃+ Ũ}.
Output: Incomplete LU factorization A ≈ L̃Ũ .

1: for i = 1 : n do
2: l̃ii = 1, L̃i,1:i−1 = Ai,1:i−1

3: Ũi,i:n = Ai,i:n

4: Sparsify L̃1,1:i−1 and Ũi,i+1:n

5: for k = 1 : i− 1 such that (i, k) ∈ S{L̃} do
6: l̃ik = l̃ik/ũkk

7: L̃i,k+1:i−1 = L̃i,k+1:i−1 − l̃ik Ũk,k+1:i−1

8: Sparsify L̃i,k+1:i−1

9: Ũi,i:n = Ũi,i:n − l̃ik Ũk,i:n

10: Sparsify Ũi,i+1:n

11: end for
12: end for
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Incomplete factorizations

Incomplete factorizations based on shortest fill-paths

Entries of the factors that correspond to nonzero entries of A are
assigned the level 0 while each potential filled entry in position
(i, j) is assigned a level as follows:

level(i, j) = min
1≤k<min{i,j}

(level(i, k) + level(k, j) + 1). (91)

Given ℓ ≥ 0, during the factorization a filled entry is permitted at
position (i, j) provided level(i, j) ≤ ℓ.
The resulting level-based incomplete factorization is denoted by
ILU(ℓ) (or IC(ℓ)); the basic row variant is given below.

537 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 551 — #551 i
i

i
i

i
i

Incomplete factorizations

Algorithm (Level-based incomplete LU factorization)

1: Initialise level to 0 for nonzeros and diagonal entries of A and to n+ 1 otherwise
2: for i = 1 : n do ▷ Loop over rows
3: l̃ii = 1, L̃i,1:i−1 = Ai,1:i−1 and Ũi,i:n = Ai,i:n ▷ Initialise row i of L̃ and Ũ

4: for k = 1 : i− 1 such that level(i, k) ≤ ℓ do
5: l̃ik = l̃ik/ũkk

6: for j = k + 1 : i− 1 do
7: l̃ij = l̃ij − l̃ik ũkj and update level(i, j)

8: end for
9: for j = i : n do
10: ũij = ũij − l̃ik ũkj and update level(i, j)

11: end for
12: end for
13: for k = 1 : i− 1 do ▷ Drop factor entries in row i for which level is too high
14: if level(i, k) > ℓ then l̃ik = 0

15: end for
16: for k = i : n do
17: if level(i, k) > ℓ then ũik = 0

18: end for
19: end for
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Incomplete factorizations

Incomplete factorizations based on shortest fill-paths

Figure depicts S{L̃+ L̃T } for the IC(ℓ) factorization of A from the
discretized Laplace equation on a square grid and for a matrix
with a more general symmetric sparsity structure.
The fill-in is typically generated irregularly throughout the
factorization: initially few updates are needed but later steps
involve many updates, leading to large amounts of dropping.
The amount of fill-in can grow quickly with increasing ℓ and, as a
result, l is typically small.
Level-based dropping is often combined with threshold-based
dropping or with sparsifying A before the factorization
commences.
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Incomplete factorizations

Incomplete factorizations based on shortest fill-paths

IC(0) IC(2) IC(4)

IC(0) IC(2) IC(4)

Figure: The sparsity patterns of the IC(ℓ) factors of A from the discretized
Laplace equation on a square grid (top) and a more general symmetric
sparse matrix (bottom).
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Incomplete factorizations

Incomplete factorizations based on shortest fill-paths

The level-based strategy comes from observing that in practical
examples the absolute values of the entries in the factors in
positions for which level is large are often small. This is the case
for model problems arising from discretized PDEs.
Theoretical understanding follows.

Theorem
Consider the ILU(ℓ) factorization of A. level(i, j) = k for some k ≤ ℓ if
and only if there is a shortest fill path i =⇒ j of length k + 1 in the
adjacency graph G(A).
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Incomplete factorizations

Incomplete factorizations based on shortest fill-paths

Algorithm (Find the sparsity pattern of row i of the ILU(ℓ) factor
Ũ of A: breadth first search)

1: S{Ũi,i:n} = {i}, Q = {i} ▷ Queue holds i initially
2: length(i) = 0

3: visited(i) = i

4: while Q is not empty do
5: pop(Q, k) ▷ Take k from the queue
6: for j ∈ adjG(A)(k) with visited(j) ̸= i do
7: visited(j) = i

8: if j < i and length(k) < ℓ then
9: append(Q, j) ▷ Add j to the queue
10: length(j) = length(k) + 1

11: else if j > i then
12: S{Ũi,i:n} = S{Ũi,i:n} ∪ {j} ▷ Add j to the sparsity pattern of row i of Ũ
13: end if
14: end for
15: end while

542 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 556 — #556 i
i

i
i

i
i

Incomplete factorizations

Modifications based on maintaining row sums

Assume that the target sparsity pattern S{L̃+ Ũ} contains S{A}.
Modified incomplete factorizations (MILU or MIC in the SPD case)
seek to maintain equality between the row sums of A and L̃Ũ , that
is, L̃Ũe = Ae (e is the vector of all ones).
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Incomplete factorizations
Algorithm (Modified incomplete factorization (MILU))

1: Initialise l̃ij = (I + LA)ij for all (i, j) ∈ S(L̃) ▷ S(LA) ⊆ S(L̃)
2: Initialise ũij = (DA + UA)ij for all (i, j) ∈ S(Ũ) ▷ S(UA) ⊆ S(Ũ)

3: for k = 1 : n− 1 do
4: for i = k + 1 : n such that (i, k) ∈ S{L̃} do
5: l̃ik = l̃ik/ũkk ▷ Check that ũkk is nonzero
6: for j = i : n such that (k, j) ∈ S{Ũ} do
7: if (i, j) ∈ S{Ũ} then
8: ũij = ũij − l̃ik ũkj

9: else
10: ũii = ũii − l̃ik ũkj ▷ Modify diagonal instead of creating fill-in
11: end if
12: end for
13: for j = k + 1 : i− 1 such that (k, j) ∈ S{Ũ} do
14: if (i, j) ∈ S{L̃} then
15: l̃ij = l̃ij − l̃ik ũkj

16: else
17: ũii = ũii − l̃ik ũkj ▷ Modify diagonal instead of creating fill-in
18: end if
19: end for
20: end for
21: end for
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Incomplete factorizations

Modifications based on maintaining row sums
Equality of row sums: If all the filled entries are retained (that is,
S{L̃+ Ũ} = S{L+ U}) then the claim holds trivially.
Otherwise, if an entry in column j of row i of A belongs to the
target sparsity pattern then its value is modified in Step 8 if i ≤ j
or in Step 15 if i > j. Otherwise, the i-th diagonal entry of Ũ is
modified (Step 10 or Step 17). In each case, l̃ik ũkj is subtracted
from entries of the i-th row of the incomplete factors.
Consider row i of L̃Ũ . This product is given by
i−1∑
j=1

l̃ij

n∑
k=j

ũjk =

i−1∑
j=1

l̃ij ũjj +

i−1∑
j=1

l̃ij

n∑
k=j+1

ũjk +
n∑

k=i

ũik =

=

i−1∑
j=1

aij −
j−1∑
k=1

l̃ikũkj

+

i−1∑
j=1

l̃ij

n∑
k=j+1

ũjk +
n∑

k=i

aik −
i−1∑
j=1

l̃ij ũjk


=

n∑
j=1

aij +

i−1∑
j=1

l̃ij

n∑
k=j+1

ũjk −

i−1∑
j=1

j−1∑
k=1

l̃ikũkj +

n∑
k=i

i−1∑
j=1

l̃ij ũjk

 .
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Incomplete factorizations

Modifications based on maintaining row sums

Rearranging the indices in the double summations, the last three
sums cancel out.
Moreover, the added double summation is the sum of all the
modification terms l̃ik ũkj in the MILU Algorithm, and the sum of
the two subtracted double summations also comprises all the
modification terms.
Consequently, the row sums of A are preserved in the product of
the incomplete factors.
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Incomplete factorizations

Modifications based on maintaining row sums

Theorem above provides motivation for maintaining constant row
sums in the case of a model PDE problem.
The result is also valid for Neumann or mixed boundary
conditions, and there are extensions to three-dimensional
problems and MIC(ℓ) with ℓ > 0. However, although Theorem
holds for MILU factorizations, the approach may not be useful for
general A.

Theorem
Let A come from a discretized Poisson problem on a uniform
two-dimensional rectangular grid with Dirichlet boundary conditions
and discretization parameter h. Then the condition number
κ((L̃Ũ)−1A) for the level-based MIC(0) preconditioner is O(h−1).
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Incomplete factorizations

Modifications based on maintaining row sums

RILU/RIC: the update term l̃ik ũkj may be multiplied by a
parameter θ (0 < θ < 1) before it is subtracted from the diagonal
entry ũii.
This is a practical way to extend MILU to linear systems not
coming from discretized PDEs. Clearly, using θ < 1 reduces the
amount by which the diagonal entries are modified.
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Incomplete factorizations

Dynamic compensation

Instead of accepting a filled entry in position (i, j), the idea is to
add a (weighted) multiple of its absolute value to the
corresponding diagonal entries ũii and ũjj .
Provided the number of modifications is small, this can be useful if
A is diagonally dominant and scaled so that its diagonal entries
are nonnegative.
The parameter ω controls the amount by which the diagonal
entries of Ũ are modified but if ω < 1 then breakdown can still
occur.
Dynamic compensation can be successful when incorporated into
an IC factorization of a SPD matrix A because the resulting local
modifications correspond to adding positive semidefinite matrices
to A.
In practice, the behaviour of the resulting preconditioner can be
very different from that computed using the MIC approach.
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Incomplete factorizations
Algorithm (ILU factorization with dynamic compensation)

1: l̃ij = (I + LA)ij for all (i, j) ∈ S(L̃)
2: ũij = (DA + UA)ij for all (i, j) ∈ S(Ũ)

3: for k = 1 : n− 1 do
4: for i = k + 1 : n such that (i, k) ∈ S{L̃} do
5: l̃ik = l̃ik/ũkk

6: for j = i : n such that (k, j) ∈ S{Ũ} do
7: if (i, j) ∈ S{Ũ} then
8: ũij = ũij − l̃ik ũkj

9: else
10: ρij = (ũii/ũjj)

1/2

11: ũii = ũii + ωρij |l̃ik ũkj |, ũjj = ũjj + ω|l̃ik ũkj | /ρij , ũij = 0.
12: end if
13: end for
14: for j = k + 1 : i− 1 such that (k, j) ∈ S{Ũ} do
15: if (i, j) ∈ S{L̃} then
16: l̃ij = l̃ij − l̃ik ũkj

17: else
18: ρij = (ũii/ũjj)

1/2

19: ũii = ũii + ωρij |l̃ik ũkj |, ũjj = ũjj + ω|l̃ik ũkj | /ρij , l̃ij = 0.
20: end if
21: end for
22: end for
23: end for
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Incomplete factorizations

Dynamic compensation: getting closer to special matrices

A related scheme, called diagonally compensated reduction,
modifies A before the factorization begins by adding the values of
all of its positive off-diagonal entries to the corresponding diagonal
entries and then setting these off-diagonal entries to zero.
If A is SPD then the resulting matrix is a symmetric M-matrix and
the incomplete factorization of an M-matrix is breakdown-free.
However, the modified matrix may be too far from A for its
incomplete factors to be useful.
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Incomplete factorizations

Memory-limited incomplete factorizations

A be SPD, consider the decomposition

A = (L̃+ R̃) (L̃+ R̃)T − E.

The error matrix E is E = R̃R̃T .

On step j of the incomplete factorization, the first column of the
Schur complement S(j) is split into the sum

L̃j:n,j + R̃j:n,j ,

where L̃j:n,j contains the entries that are retained in column j of
the final incomplete factorization and R̃jj = 0 and R̃j+1:n,j

contains the entries that are discarded.
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Incomplete factorizations

Memory-limited incomplete factorizations

If a complete factorization was being computed then the Schur
complement would be updated by subtracting

(L̃j+1:n,j + R̃j+1:n,j) (L̃j+1:n,j + R̃j+1:n,j)
T .

However, the incomplete factorization discards the term

E(j) = R̃j+1:n,j R̃
T
j+1:n,j .

Thus, E(j) is implicitly added to A and because E(j) is positive
semidefinite, the approach is naturally breakdown-free.
The obvious choice for R̃j+1:n,j is the smallest off-diagonal entries
in the column.
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Incomplete factorizations

Memory-limited incomplete factorizations

Figure depicts the first step of this approach. In the first row and
column, ∗ and δ denote the entries of L̃1:n,1 and R̃1:n,1,
respectively.
Standard sparsification scheme: no fill (left)
Using intermediate memory: right.


∗ ∗ ∗ δ δ
∗ f f
∗ f f
δ
δ



∗ ∗ ∗ δ δ
∗ f f f f
∗ f f f f
δ f f
δ f f



Figure: An illustration of the fill-in in a standard sparsification-based IC
factorization (left) and in the approach that uses intermediate memory (right)
after one step of the factorization. Entries with small absolute value in row
and column 1 are denoted by δ. The filled entries are denoted by f .
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Incomplete factorizations

Memory-limited incomplete factorizations

Enables the structure of the complete factorization to be followed
more closely than is possible using a standard approach. If the
small entries at positions (1, 3) and (3, 1) are not discarded then
there is a filled entry in position (3, 2) and this allows the
incomplete factorization using intermediate memory to involve the
(large) off-diagonal entries in positions (5, 2) and (6, 2) in the
second step of the IC factorization.


∗ ∗ δ
∗ ∗ ∗ ∗
δ ∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗ ∗




∗
∗ ∗

∗
∗ ∗

∗ ∗
∗ ∗ ∗




∗
∗ ∗
δ f ∗

∗ ∗
∗ ∗
∗ ∗ ∗


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Incomplete factorizations

Memory-limited incomplete factorizations

Unfortunately, because the column R̃j+1:n,j must be retained to
perform the updates on the next step, the total memory
requirements are essentially as for a complete factorization.
Relaxations are needed: e.g., introducing two drop tolerances so
that only entries of absolute value at least τ1 are kept in L̃ and
entries smaller than τ2 are dropped from R̃.
Or, limiting the fill-in.
But, then, no longer breakdown-free approach.
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Incomplete factorizations

Algorithm (Crout memory-limited IC factorization)

1: w(1 : n) = 0

2: for j = 1 : n do
3: for i = j : n such that aij ̸= 0 do
4: wi = aij ▷ w is a vector of length n

5: end for
6: for k < j such that l̃jk ̸= 0 do
7: for i = j : n such that l̃ik ̸= 0 do
8: wi = wi − l̃ik l̃jk
9: end for
10: for i = j : n such that r̃ik ̸= 0 do
11: wi = wi − r̃ik l̃jk
12: end for
13: end for
14: for k < j such that r̃jk ̸= 0 do
15: for i = j : n such that l̃ik ̸= 0 do
16: wi = wi − l̃ik r̃jk
17: end for
18: end for
19: Copy into L̃j:n,j the lsize+ nz(Aj:n,j) entries of w of largest absolute value
20: Copy into R̃j+1:n,j the rsize entries of w that are the next largest in absolute value
21: Scale l̃jj = (wj)

1/2, L̃j+1:n,j = L̃j+1:n,j /l̃jj , R̃j+1:n,j = R̃j+1:n,j /l̃jj
22: Reset entries of w to zero.
23: end for
24: Optionally discard R̃ ▷ R̃ is often only used in the construction of L̃
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Incomplete factorizations

Fixed-point iterations for computing ILU factorizations

Given the target sparsity pattern S{L̃+ Ũ}, the goal is to
iteratively generate incomplete factors fulfilling the ILU property

(L̃Ũ)ij = aij , (i, j) ∈ S{L̃+ Ũ}

Parallel computation using the constraints

min(i,j)∑
k=1

(i,k),(k,j)∈S{L̃+Ũ}

l̃ik ũkj = aij , (i, j) ∈ S{L̃+ Ũ},

and the normalization l̃ii = 1.
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Incomplete factorizations

Fixed-point iterations for computing ILU factorizations

Using the relations

l̃ij =

(
aij −

j−1∑
k=1

l̃ik ũkj

)
/ ũjj , i > j, (92)

ũij = aij −
i−1∑
k=1

l̃ik ũkj , i ≤ j, (93)

the approach can be formulated as a fixed-point iteration method
of the form wk+1 = f(wk), k = 0, 1, . . ., where w is a vector
containing the unknowns l̃ij and ũij . Each fixed-point iteration is
called a sweep.
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Incomplete factorizations

Fixed-point iterations for computing ILU factorizations

Algorithm (Fixed-point ILU factorization)
Input: Matrix A, the target sparsity pattern S{L̃+ Ũ}, and initial incomplete factors L̃ and Ũ .
Output: Updated incomplete factors.

1: Set l̃ij and ũij to initial values
2: for sweep = 1, 2, . . . do
3: for (i, j) ∈ S{L̃+ Ũ} do
4: if i > j then
5: Compute l̃ij using (92)
6: else
7: Compute ũij using (93)
8: end if
9: end for
10: end for
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Incomplete factorizations

Ordering in incomplete factorizations

Can have a positive effect on the robustness and performance of
preconditioned Krylov subspace methods.
The best choice of ordering for an incomplete factorization
preconditioner may not be the same as for a complete
factorization.
When the natural (lexicographic) ordering is used, the incomplete
triangular factors resulting from a no-fill ILU factorization can be
highly ill-conditioned, even if the matrix A is well conditioned.
Allowing more fill-in in the factors, for example, using ILU(1)
instead of ILU(0), may solve the problem but it is not guaranteed.
Minimum degree orderings: the rows (and columns) of the
permuted matrix can have significantly different counts.
A strategy is to specify that the permitted fill-in is proportional to
the row/column counts of the complete factorization.
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Incomplete factorizations

Ordering in incomplete factorizations

Global orderings cut local connections within the graph of A.
When used with incomplete factorizations, can lead to poor quality
preconditioners.
A global ordering that specifically targets incomplete factorizations
is a red-black (or checker board) ordering.
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Incomplete factorizations

Ordering in incomplete factorizations

1 2 3

4 5 6

7 8 9



1 2 3 4 5 6 7 8 9

1 4 −1 −1
2 −1 4 −1 −1
3 −1 4 −1
4 −1 4 −1
5 −1 −1 4 −1 −1
6 −1 −1 4 −1
7 −1 4 −1
8 −1 −1 4 −1
9 −1 −1 4





1 3 5 7 9 2 4 6 8

1 4 −1 −1
3 4 −1 −1
5 4 −1 −1 −1 −1
7 4 −1 −1
9 4 −1 −1
2 −1 −1 −1 4
4 −1 −1 −1 4
6 −1 −1 −1 4
8 −1 −1 −1 4



Figure: A model problem to illustrate a red-black ordering.
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Incomplete factorizations

Exploiting block structure

Blocking methods for complete factorizations can be adapted to
incomplete factorizations. The aim is to speed up the computation
of the factors and to obtain more effective preconditioners.
In a block factorization, scalar operations of the form

l̃ik = aik/ũkk

are replaced by matrix operations

L̃ib,kb = Aib,kbŨ
−1
kb,kb,

and scalar multiplications of entries of the factors are replaced by
matrix-matrix products. When dropping entries, instead of
considering the absolute values, simple norms of the block entries
(such as the one-norm, max-norm or Frobenius norm) are used.
An incomplete factorization can start with the supernodal structure
of the complete factors.
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Outline
1 Introduction
2 Introductory notation and terminology
3 Sparse matrices and data structures
4 Graphs and sparse matrices
5 Factorizations
6 Reducibility and blocks
7 Symbolic Cholesky factorization
8 Cholesky factorization
9 Sparse LU factorization

10 Stability, ill-conditioning, indefiniteness
11 Reorderings
12 Algebraic preconditioning
13 Incomplete factorizations
14 Sparse approximate inverses
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Sparse approximate inverses

Approximate inverse preconditioners

Standard solves by substitution steps can present a computational
bottleneck. In particular, in parallel computational environment.

But it is M−1, which represents an approximation of A−1, that is
applied by performing forward and back substitution steps

Therefore, an alternative strategy to standard (incomplete )
factorizations is to directly approximate A−1 by explicitly
computing M−1.
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Sparse approximate inverses

Approximate inverse preconditioners

But, there is a problem: The sparsity pattern of the inverse of an
irreducible matrix A is dense, even when A is sparse.
But, perhaps there is a way ...: although A−1 is fully dense, the
following result shows this is not the case for the factors of
factorized inverses.

Theorem
Assume the matrix A is SPD and let L be its Cholesky factor. Then
S{L−1} is the union of all entries (i, j) such that i is an ancestor of j in
the elimination tree T (A).

A consequence of this result is that L−1 need not be fully dense.
Algorithmically, if A is SPD it may be advantageous to preorder A
to limit the number of ancestors of vertices in T (A).
For example, by ND applied to S{A} or to S{A+AT }.
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Sparse approximate inverses

Basic approaches

An obvious way: to compute an incomplete LU factorization of A
and then perform an approximate inversion of the incomplete
factors.
But, two levels of approximation.
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Sparse approximate inverses

Basic approaches
Another straightforward approach is based on bordering.
Let Aj = A1:j,1:j and its inverse factorization

A−1
j = WjD

−1
j ZT

j

is known (Wj and Zj are unit upper triangular matrices and Dj is
a diagonal matrix).(

ZT
j 0

zTj+1 1

)(
Aj A1:j,j+1

Aj+1,1:j aj+1,j+1

)(
Wj wj+1

0 1

)
=

(
Dj 0
0 dj+1,j+1

)
,

where for 1 ≤ j < n

wj+1 = −WjD
−1
j ZT

j A1:j,j+1, zj+1 = −ZjD
−1
j W T

j AT
j+1,1:j ,

dj+1,j+1 = aj+1,j+1 + zTj+1Ajwj+1 +Aj+1,1:jwj+1 + zTj+1A1:j,j+1.

Starting from j = 1, this suggests a procedure for computing the
inverse factors of A. Sparsity can be preserved by dropping.
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Approximate factorizations

Approximate inverse by bordering

Algorithm (Nonsymmetric inverse bordering algorithm)
Input: Generally nonsymmetric A.
Output: A unit upper triangular matrix Z̃ and diagonal matrix D̃ such that A−1 ≈ Z̃T D̃−1W̃T .

1: Set Z̃1 = (1), W̃1 = (1), D̃1 = (a11).
2: for j = 2 : n do
3: Set z̃j = −Z̃1:j−1,1:j−1D̃

−1
1:j−1,1:j−1W̃

T
1:j−1,1:j−1A1:j−1,j

4: Set w̃j = −W̃1:j−1,1:j−1D̃
−1
1:j−1,1:j−1Z̃

T
1:j−1,1:j−1A

T
j,1:j−1

5: Set d̃j = Ajj +AT
1:j−1,jw̃j +Aj,1:j−1z̃j + w̃T

j Aj−1z̃j

6: Set Z̃j =

(
Z̃1:j−1,1:j−1 z̃j

0 1

)
7: Set W̃j =

(
W̃1:j−1,1:j−1 w̃j

0 1

)
8: end for
9: Set Z̃ = Z̃n, W̃ = W̃n, D̃ = D̃n
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Sparse approximate inverses

Inverse by bordering: notes

If A is symmetric, W = Z and the required work is halved.
Furthermore, if A is SPD then it can be shown that, in exact
arithmetic, djj > 0 for all j and the process does not break down.
The computation of Z and W are tightly coupled restricting the
potential to exploit parallelism.
This implies a potential problem with efficient implementation.
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Sparse approximate inverses

Frobenius norm minimization: SPAI
Denote K = M−1.
Use minimization of

∥I −AM−1∥2F = ∥I −AK∥2F =

n∑
j=1

∥ej −Akj∥22, (94)

over all K with pattern S.
A left approximate inverse can be computed by solving a
minimization problem for ∥I −KA∥F = ∥I −ATKT ∥F .
The problem reduces to least squares problems for the columns of
K that can be computed independently and, if required, in parallel.
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Sparse approximate inverses

Frobenius norm minimization: SPAI

These least squares (LS) problems are all of small dimension
when S is chosen to ensure K is sparse.
Let J = {i | kj(i) ̸= 0} be the set of indices of the nonzero entries
in column kj . Further, denote I = {m |Am,J ̸= 0}.
Let êj = ej(I) be the vector of length |I| that is obtained by taking
the entries of ej with row indices belonging to I.
To solve the LS problem for kj , construct the |I| × |J | matrix
Â = AI,J and solve

min
k̂j

∥êj − Â k̂j∥22. (95)

This can be done using QR factorization of Â. Extending k̂j to
have length n by zeros gives kj .
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Sparse approximate inverses

SPAI algorithm

Construction: starting with a chosen column sparsity pattern J for
kj , construct Â, solve (95) for k̂j , set kj(J ) = k̂j and define the
residual vector

rj = ej −A1:n,J k̂j .

If ∥rj∥2 ̸= 0 then kj is not equal to the j-th column of A−1 and a
better approximation can be derived by augmenting J .
Augmentation: let L = {l | rj(l) ̸= 0} and define

J̃ = {i |AL,i ̸= 0} \ J . (96)

One or more candidate indices that can be added to J can be
chosen. For example, such that most effectively reduce ∥rj∥2.
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Sparse approximate inverses

SPAI algorithm

A possible heuristic is to solve for each i ∈ J̃ the minimization
problem

min
µi

||rj − µiAei∥22.

This has the solution µi = rTj Aei/∥Aei∥22 with residual
∥rj∥2 − (rTj Aei)

2/∥Aei∥22.

Indices i ∈ J̃ for which this is small are appended to J .
The process can be repeated until either the required accuracy is
attained or the maximum number of allowed entries in J is
reached.
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Sparse approximate inverses

SPAI algorithm

Solving the unconstrained LS problem after extending Â to
AI∪I′,J∪J ′ is typically performed by updating the previous
problems.
Assume the QR factorization of Â is

Â = AI,J = Q

(
R
0

)
=
(
Q1 Q2

)(R
0

)
,

where Q1 is |I| × |J |.
The QR factorization of the extended matrix is

AI∪I′,J∪J ′ =

(
Â AI,J ′

AI′,J ′

)
=

(
Q

I

)R QT
1 AI,J ′

QT
2 AI,J ′

AI′,J ′



=

(
Q

I

)(
I

Q′

)R QT
1 AI,J ′

R′

0

 .
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Sparse approximate inverses

SPAI algorithm

Q′ and R′ are from the QR factorization of the
(|I ′|+ |I| − |J |)× |J ′| matrix(

QT
2 AI,J ′

AI′,J ′

)
.

Factorizing this matrix and updating the trailing QR factorization to
get the new k̂j is much more efficient than computing the QR
factorization of the extended matrix from scratch.
Many variations of the basic approach.
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Sparse approximate inverses

SPAI algorithm

Algorithm (SPAI preconditioner (right-looking approach))
Input: Nonsymmetric matrix A, a convergence tolerance η > 0, an initial sparsity pattern Jj and
the maximum number nzj of permitted entries for column j of K (1 ≤ j ≤ n).
Output: K ≈ A−1 with columns kj (1 ≤ j ≤ n).

1: for j = 1 : n do ▷ The columns may be computed in parallel
2: Set J = Jj and I = {m |A(m,J ) ̸= 0}, ∥rj∥2 = ∞
3: Construct Â = AI,J and solve (95) for k̂j
4: rj = ej −A1:n,J k̂j

5: while |J | < nzj and ∥rj∥2 > η do
6: Construct J̃ given by (96) ▷ J̃ is the candidate set
7: Determine new indices J ′ ⊂ J̃ to add to J
8: I′ = {m |Am,J ′ ̸= 0} \ I
9: I = I ∪ I′ and J = J ∪ J ′ ▷ Augment the sparsity pattern
10: Construct new Â = AI,J and new k̂j ▷ Update the QR factorization
11: rj = ej −A1:n,J k̂j

12: end while
13: kj(J ) = k̂j ▷ Extend k̂j to kj by setting entries not in J to zero.
14: end for
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Sparse approximate inverses

SPAI algorithm
The example: The algorithm starts with J1 = {1, 2}.

A =


10 −2
−1 10 −2

−1 10 −2
−1 10 −2

−1 10

 , Â =

10 −2
−1 10

−1

 , k̂1 =

(
0.1020
0.0101

)
, r1 =


1.00× 10−4

1.00× 10−3

1.01× 10−2

0
0

 .

Â =


10 −2
−1 10 −2

−1 10
−1

 , k̂1 =

0.1021
0.0104
0.0010

 , r1 =


1.0× 10−5

1.1× 10−4

1.1× 10−3

1.0× 10−2

0

 , k1 =


0.1021
0.0104
0.0010

0
0

 .

Figure: An illustration of computing the first column of a sparse approximate
inverse using the SPAI algorithm with nz1 = 3. On the top line is the initial
tridiagonal matrix A followed by the matrix Â and the vectors k̂1 and r1 on the
first loop of Algorithm. The bottom line presents the updated matrix Â that is
obtained on the second loop by adding the third row and column of A and the
corresponding vectors k̂1 and r1 and, finally, k1.
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Sparse approximate inverses

SPAI algorithm

When A is symmetric, there is no guarantee that the computed K
will be symmetric. One possibility is to use (K +KT )/2 to
approximate A−1.
The SPAI preconditioner is not sensitive to reorderings of A. This
has the advantage that A can be partitioned and reordered in
whatever way is convenient, for instance to better suit the needs of
a distributed implementation.
The disadvantage is that orderings cannot be used to reduce fill-in
and/or improve the quality of the approximate inverse.
For instance, if A−1 has no small entries, SPAI will not find a
sparse K, and because the inverse of a permutation of A is just a
permutation of A−1, no permutation of A will change this.

580 / 609



i
i

“mrm_slides_2022” — 2022/11/1 — 13:03 — page 594 — #594 i
i

i
i

i
i

Sparse approximate inverses

FSAI preconditioner: SPD case

The factorized sparse approximate inverse (FSAI) preconditioner
for an SPD matrix A is defined as the product

M−1 = GTG,

where the sparse lower triangular matrix G is an approximation of
the inverse of the (complete) Cholesky factor L of A.
Theoretically, a FSAI preconditioner is computed by choosing a
lower triangular sparsity pattern SL and minimizing

∥I −GL∥2F = tr
[
(I −GL)T (I −GL)

]
(97)

over all G with sparsity pattern SL.
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Sparse approximate inverses

FSAI preconditioner: SPD case

Differentiating the formula with respect to the entries of G and
setting to zero yields

(GLLT )ij = (GA)ij = (LT )ij for all (i, j) ∈ SL. (98)

Because LT is an upper triangular matrix while SL is a lower
triangular pattern, the matrix equation (98) can be rewritten as

(GA)ij =

{
0 i ̸= j, (i, j) ∈ SL
lii i = j.

(99)
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Sparse approximate inverses

FSAI preconditioner: SPD case

G is not available directly because L is unknown. Instead, G is
computed such that

(GA)ij = δi,j for all (i, j) ∈ SL, (100)

where δi,j is the Kronecker delta function (δi,j = 1 if i = j and is
equal to 0, otherwise).
The FSAI factor G is then obtained by setting

G = DG,

where D is a diagonal scaling matrix.
An appropriate choice for D is

D = [diag(G)]−1/2, (101)

so that
(GAGT )ii = 1, 1 ≤ i ≤ n.
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Sparse approximate inverses

FSAI preconditioner: SPD case

Theorem
Assume A is SPD. If the lower triangular sparsity pattern SL includes
all diagonal positions then G exists and is unique.

Proof.
Set Ii = {j | (i, j) ∈ SL} and let AIi, Ii

denote the submatrix of order nzi = |Ii| of entries akl
such that k, l ∈ Ii. Let ḡi and gi be dense vectors containing the nonzero coefficients in row i of
G and G, respectively. Using this notation, solving (100) decouples into solving n independent
SPD linear systems

AIi, Ii
ḡi = enzi , 1 ≤ i ≤ n,

where the unit vectors are of length nzi. Moreover,

(GAG
T
)ii =

∑
j∈Ii

δi,jGij = Gii = (A−1
Ii,Ii

)ii.

This implies that the diagonal entries of D given by (101) are nonzero. Consequently, the

computed rows of G exist and provide a unique solution. □
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Sparse approximate inverses

FSAI preconditioner: SPD case

Algorithm (FSAI preconditioner)
Input: SPD matrix A and lower triangular sparsity pattern SL that includes all diagonal positions.
Output: Lower triangular matrix G such that A−1 ≈ GGT .

1: for i = 1 : n do
2: Construct Ii = {j | (i, j) ∈ SL}, AIi,Ii

and set nzi = |Ii|
3: Solve AIi,Ii

ḡi = enzi

4: Scale gi = diiḡi with dii = (ḡi,nzi )
−1/2 ▷ ḡi,nzi is the last component of ḡi

5: Extend gi to the row Gi,1:i by setting entries that are not in Ii to zero
6: end for
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Sparse approximate inverses

FSAI preconditioner: SPD case

Monotonicity property.

Theorem
Let L be the Cholesky factor of the SPD matrix A. Given the lower
triangular sparsity pattern SL that includes all diagonal positions, let G
be the FSAI preconditioner computed using Algorithm above. Then
any lower triangular matrix G1 with its sparsity pattern is contained in
SL a (G1AG

T
1 )ii = 1 (1 ≤ i ≤ n) satisfies

||I −GL||F ≤ ||I −G1L||F .
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Sparse approximate inverses

FSAI preconditioner: SPD case

The performance is highly dependent on the choice of SL.

Theorem
Let L be the Cholesky factor of the SPD matrix A. Given the lower
triangular sparsity patterns SL1 and SL2 that include all diagonal
positions, let the corresponding FSAI preconditioners computed using
Algorithm 14.3 be G1 and G2, respectively. If SL1 ⊆ SL2 then

||I −G2L||F ≤ ||I −G1L||F .
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Sparse approximate inverses

FSAI preconditioner: general case

The FSAI algorithm can be extended to a general matrix A. Two
input sparsity patterns are required.
First, lower and upper triangular matrices GL and GU are
computed such that

(GLA)ij = δi,j for all (i, j) ∈ SL,

(AGU )ij = δi,j for all (i, j) ∈ SU .
Then D is obtained as the inverse of the diagonal of the matrix
GLAGU , and the final nonsymmetric FSAI factors are given by
GL = GL and GU = GUD. The computation of the two
approximate factors can be performed independently.
This generalization is well defined if, for example, A is
nonsymmetric positive definite. There is also theory that extends
existence to special classes of matrices, including M- and
H-matrices.
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Sparse approximate inverses

Determining a good sparsity pattern

Input pattern is expected to filter out entries of A−1 that contribute
little to the quality of the preconditioner.
For instance, it might be appropriate to ignore entries with a small
absolute value, while retaining the largest ones. But, locations of
large entries in A−1 are generally unknown, and this makes the a
priori sparsity choice difficult.
A a banded SPD matrix: the entries of A−1 are bounded in an
exponentially decaying manner along each row or column: there
exist 0 < ρ < 1 and a constant c such that for all i, j

|(A−1)ij | ≤ cρ|i−j|.

The scalars ρ and c depend on the bandwidth and κ(A).
A common choice for a general A is SL + SU = S{A}, .
An alternative strategy uses the Neumann series expansion of
A−1: using the pattern of a small power of A, i.e., S{A2} or S{A3}.
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Sparse approximate inverses

Factorized approximate inverses based on incomplete conjugation
An alternative way: using incomplete conjugation
(A-orthogonalization) in the SPD case and on incomplete
A-biconjugation in the general case. For SPD matrices, the
approach represents an approximate Gram-Schmidt
orthogonalization that uses the A-inner product ⟨., .⟩A.
Sparsity pattern not needed in advance.
When A is a SPD matrix the AINV preconditioner is defined in the
form

A−1 ≈M−1 = ZD−1ZT ,

Z is unit upper triangular, D is a diagonal matrix with positive
entries.
Practical implementations need to employ sparse matrix
techniques. The left-looking scheme computes the j-th column zj
of Z as a sparse linear combination of the previous columns
z1, . . . , zj−1. The key is determining which multipliers (the α’s in
Steps 4 and 5 of the two algorithms, respectively) are nonzero and
need to computed.
The DS storage format can be used to store the partially
computed Z.
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Sparse approximate inverses

Factorized approximate inverses based on incomplete conjugation

Algorithm (AINV preconditioner (left-looking approach))
Input: SPD matrix A and sparsifying rule.
Output: A−1 ≈ ZD−1ZT with Z a unit upper triangular matrix and D a diagonal matrix with
positive diagonal entries.

1: [z
(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en] ▷ Initialise Z to hold the columns of the identity matrix

2: for j = 1 : n do

3: for k = 1 : j − 1 do

4: α = Ak,1:n z
(k−1)
j /dkk

5: z
(k)
j = z

(k−1)
j − αz

(k−1)
k

6: Sparsify z
(k)
j ▷ Drop entries from z

(k)
j

7: end for

8: djj = Aj,1:n z
(j−1)
j

9: end for

10: Z = [z
(0)
1 , . . . , z

(n−1)
n ]
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Sparse approximate inverses

Factorized approximate inverses based on incomplete conjugation

Algorithm (AINV preconditioner (right-looking approach))
Input: SPD matrix A and sparsifying rule.
Output: A−1 ≈ ZD−1ZT with Z a unit upper triangular matrix and D a diagonal matrix with
positive diagonal entries.

1: [z
(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en] ▷ Initialise Z to hold the columns of the identity matrix

2: for j = 1 : n do

3: djj = Aj,1:n z
(j−1)
j

4: for k = j + 1 : n do

5: α = Aj,1:n z
(j−1)
k /djj

6: z
(j)
k = z

(j−1)
k − αz

(j−1)
j

7: Sparsify z
(j)
k ▷ Drop entries from z

(j)
k

8: end for

9: end for

10: Z = [z
(0)
1 , . . . , z

(n−1)
n ]
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Sparse approximate inverses

AINV preconditioner: general case

In the general case, the AINV preconditioner is given by an
approximate inverse factorization of the form

A−1 ≈M−1 = WD−1ZT ,

where Z and W are unit upper triangular matrix and D is a
diagonal matrix.
Z and W are sparse approximations of the inverses of the LT and
U factors in the LDU factorization of A, respectively.
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Sparse approximate inverses

AINV preconditioner: general case

Algorithm (Nonsymmetric AINV preconditioner (right-looking
approach))

1: [z
(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en] and [w

(0)
1 , . . . , w

(0)
n ] = [e1, . . . , en]

2: for j = 1 : n do

3: djj = (A1:n,j)
T z

(j−1)
j or djj = Aj,1:n w

(j−1)
j

4: for k = j + 1 : n do

5: α = (A1:n,j)
T z

(j−1)
k /djj

6: z
(j)
k = z

(j−1)
k − αz

(j−1)
j

7: Sparsify z
(j)
k ▷ Drop entries from z

(j)
k

8: β = Aj,1:n w
(j−1)
k /djj

9: w
(j)
k = w

(j−1)
k − βw

(j−1)
j

10: Sparsify w
(j)
k ▷ Drop entries from w

(j)
k

11: end for

12: end for

13: Z = [z
(0)
1 , . . . , z

(n−1)
n ] and W = [w

(0)
1 , . . . , w

(n−1)
n ]
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Sparse approximate inverses

AINV preconditioner

Matrix A, AINV preconditioner
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Sparse approximate inverses

AINV preconditioner

ILUT, inverse ILUT
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Sparse approximate inverses

SAINV: stabilization of the AINV method

The following result is analogous to the SPD case.

Theorem
If A is a nonsingular M- or H-matrix then the AINV factorization of A
does not break down.

For more general matrices breakdown can happen because of the
occurrence of zero djj or, in the SPD case, negative djj .
In practice, exact zeros are unlikely but very small djj can occur
(near breakdown), which may lead to uncontrolled growth in the
size of entries in the incomplete factors and, because such entries
are not dropped when using a threshold parameter, a large
amount of fill-in.
The next theorem indicates how breakdown can be prevented
when A is SPD through reformulating the A-orthogonalization.
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Sparse approximate inverses

SAINV: stabilization of the AINV method

Theorem
Consider AINV algorithm with no sparsification (Step 7 is removed).
The following holds

Aj,1:n z
(j−1)
k ≡ eTj Az

(j−1)
k = ⟨z(j−1)

j , z
(j−1)
k ⟩A, 1 ≤ j ≤ k ≤ n.

Proof.
Because AZ = Z−TD and Z−TD is lower triangular, entries 1 to j − 1 of the vector Az

(j−1)
k

are equal to zero. Z is unit upper triangular so entries j + 1 to n of its j-th column z
(j−1)
j are

also equal to zero. Thus, z(j−1)
j can be written as the sum z + ej , where entries j to n of th

vector z are zero. The result follows. □
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Sparse approximate inverses

SAINV: stabilization of the AINV method

Algorithm (SAINV preconditioner (right-looking approach))
Input: SPD matrix A and sparsifying rule.
Output: A−1 ≈ ZD−1ZT with Z a unit upper triangular matrix and D a diagonal matrix with
positive diagonal entries.

1: [z
(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en]

2: for j = 1 : n do

3: djj = ⟨z(j−1)
j , z

(j−1)
j ⟩A

4: for k = j + 1 : n do

5: α = ⟨z(j−1)
k , z

(j−1)
j ⟩A/djj

6: z
(j)
k = z

(j−1)
k − αz

(j−1)
j

7: Sparsify z
(j)
k ▷ Drop entries from z

(j)
k

8: end for

9: end for

10: Z = [z
(0)
1 , . . . , z

(n−1)
n ]
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Sparse approximate inverses

From AINV to Cholesky

The factors Z and D obtained with no sparsification can be used
to compute the square root-free Cholesky factorization of A.
The L factor of A and the inverse factor Z computed using AINV
Algorithm without sparsification satisfy

AZ = LD or L = AZD−1.

Using djj = ⟨z(j−1)
j , z

(j−1)
j ⟩A, and equating corresponding entries

of AZD−1 and L gives

lij =
⟨z(j−1)

j , z
(j−1)
i ⟩A

⟨z(j−1)
j , z

(j−1)
j ⟩A

, 1 ≤ j ≤ i ≤ n.

Thus, the SAINV algorithm generates the L factor of the square
root-free Cholesky factorization of A as a by-product of
orthogonalization in the inner product ⟨. , .⟩A at no extra cost and
without breakdown.
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Sparse approximate inverses

Stabilization-like for general A

The stabilization strategy can be extended to the nonsymmetric
AINV algorithm using the following result.

Theorem
Consider nonsymmetric AINV Algorithm with no sparsification (Steps 7
and 10 removed). The following identities hold:

Aj,1:n z
(j−1)
k ≡ eTj Az

(j−1)
k = ⟨w(j−1)

j , z
(j−1)
k ⟩A,

(A1:n,j)
Tw

(j−1)
k ≡ eTj A

Tw
(j−1)
k = ⟨z(j−1)

j , w
(j−1)
k ⟩A, 1 ≤ j ≤ k ≤ n.

The nonsymmetric SAINV algorithm obtained using this
reformulation can improve the preconditioner quality but it is not
guaranteed to be breakdown free.
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Approximate factorizations

Approximate inverse by global iterations
Consider one-dimensional Newton-Raphson iterations to find a scalar
value p which is the root of a given function f , that is

f(p) = 0.

The method approaches p by a sequence of approximations p0, p1, . . ..
Consider a tangent of f at pk for some integer k ≥ 0 in the following
form

y = f ′(pk)pk + b. (102)

The tangent crosses (pk, f(pk)) and this can be put down as

f(pk) = f ′(pk)pk + b. (103)

This implies
b = f(pk)− f ′(pk)pk (104)

and we get a function of x given by

y = f ′(x)x+ f(pk)− f ′(pk)pk. (105)
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Approximate factorizations, splitting and
preconditioning

Assume that the root is achieved at pk+1. Then

0 = f ′(pk+1)pk+1 + f(pk)− f ′(pk)pk (106)

and therefore
pk+1 = pk −

f(pk)

f ′(pk)
. (107)

For f beeing the function of the inverse given by

f(x) = 1/x− a

we have
pk+1 = pk −

1/pk − a

−1/p2k
= pk(2− apk). (108)

Finding the matrix inverse in case it is well-defined:

Gi+1 = Gi(2I −AGi), i = 1, . . .

for the sequence of non-factorized approximate inverses G0, . . .. The
main problem: G is for irreducible A fully dense.
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Approximate factorizations, splitting and
preconditioning

Consider the computation of the j-th diagonal entry and assume the
exactly computed quantities. The computation from the formula

dj = Ajj +AT
1:j−1,jwj +Aj,1:j−1zj + wT

j Aj−1zj (109)

can be easily replaced by the mathematically equivalent formula which
we used in the algorithms using biconjugation computation:

dj = Aj,1:j−1zj or dj = AT
1:j−1,jwj . (110)
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Notes on parallel approaches

1. Shared memory computers

1st level of parallelism: tree structure of the decomposition.
2nd level of parallelism: local node parallel enhancements.

Both may/should be coordinated.
Tree parallelism potential decreases towards its root.
Potential for the local parallelism (larger dense matrices)
increases towards the root.
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Decomposition and computer architectures: 1st level
of parallelism

Two basic possibilities for the tree parallelism
Dynamic task scheduling on shared memory computers
Direct static mapping: subtree to subcube

1. Dynamic task scheduling on shared memory computers

Dynamic scheduling of the tasks
Each processor selects a task
Again, problem of elimination tree reordering
Not easy to optimize memory, e.g., in the multifrontal method
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Decomposition and computer architectures: 1st level
of parallelism: II

2. Direct static mapping: subtree to subcube
Recursively map processors to the tree parts from the top
Various ways of mapping.
Note: In the SPD (non-pivoting) case the arithmetic work can be
computed and considered
Localized communication
More difficult to share the work among processors in more
complex models

1,2,3,4

1,2,3,4

1,2

1,2

3,4

3,4
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Decomposition and computer architectures: 2nd level
of parallelism

Block Cholesky/LU factorization
BLAS / parallel BLAS operations

1D partitioning

2D partitioning

1D and 2D block cyclic distribution

(Only illustrative figures for the talk!)
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Decomposition and computer architectures:
Distributed memory parallelism

Basic classical parallelization approaches (consider Cholesky)

Fan-in approach
▶ Demand-driven column-based algorithm
▶ Required data are aggregated updates asked from previous

columns
bf Fan-out approach

▶ Data-driven column-based algorithm
▶ Updates are broadcasted once computed and aggregated
▶ Historically the first approach; greater interprocessor

communication than fan-in
Multifrontal approach

▶ Example: MUMPS
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