Solving large sparse linear systems and least

squares

Miroslav Tuma

Faculty of Mathematics and Physics
Charles University

mirektuma@karlin.mff.cuni.cz

SNA’25, Ostrava, January 2025

1/174

0 Introduction

2/174

Introductory notes: resources / history

The main text resources are

@ Jennifer Scott and Miroslav Tama: Algorithms for sparse linear
systems, Birkhauser- Springer, 2023, open access.

@ Jennifer Scott and Miroslav Tima: Solving large sparse linear
least squares, Acta Numerica, 2025, to appear.

@ Further resources mentioned in these two texts

3/174

Our problems

Our two problems

@ Systems of linear algebraic equations
Ax =b, A € R

4/174

Our problems

Our two problems

@ Systems of linear algebraic equations
Ax =b, A € R

@ Solving the (overdetermined) linear least squares (LS) problems
| Given A ¢ R™*" of rank n, m > nand b ¢ Rm|
find = € R” that minimises ||b — Az||o.

Theorem

x is a solution of this least squares (LS) problem < x satisfies the
n X n normal equations

Cz=ATy, Cc=4T74

@ LS — one linear system. Enables to discuss LE and LS jointly
4/174

LE: two principially different classes of solution methods

@ |. Direct methods: heirs of Gaussian elimination, formulated as
a) factorization, b) solution by substitution steps
» a) Cholesky A — LL™T (A SPD), A — LU (A factorizable),
indefinite factorizations, QR.
» b) the factorized matrix used to find the solution (by
substitution)

@ Anexample: Az =b: A=LU,y=L"'b,x =U"1y

5/174

LE: two principially different classes of solution methods

o |. Direct methods: heirs of Gaussian elimination, formulated as
a) factorization, b) solution by substitution steps
» a) Cholesky A — LL™T (A SPD), A — LU (A factorizable),
indefinite factorizations, QR.
» b) the factorized matrix used to find the solution (by
substitution)

@ Anexample: Az =b: A=LU,y=L"'b,z =U"1y

@ |l. Iterative methods
@ Compute a sequence of approximations (%), z(D 2(2) . that
hopefully converges to the solution = of the linear system.

@ Various approaches

» Stationary iterative methods (linearly convergent)

» Krylov subspace methods (typically more efficient)

» (Some) convergence theory for both classes of methods

5/174

Direct methods and iterative methods once more

@ Direct methods

» Designed to solve the systems of equations.
» Properly implemented: they are robust, often predictable accuracy.
» They can be expensive, requiring large amounts of memory.

@ lterative methods

Designed to approximate (not solve)

This may be an advantage if only an approximate solution is needed
Can be terminated as soon as the required accuracy is achieved
But this may be also a disadvantage (if matrix properties prohibit
achieving the required accuracy, stopping iterations)

v

vV vy

6/174

Which approach is better? Complexity?

o First idea: operation counts
@ In direct methods it seems to us that most of the work is in the
factorization, less in the substitution steps.
» Fully populated A: n? entries
* 1/3n3 + O(n?) complexity of Cholesky
* 2/3n% + O(n?) complexity of LU (factorizable A)
» Substitution steps: only O(n?)

7/174

Which approach is better? Complexity?

@ First idea: operation counts
@ In direct methods it seems to us that most of the work is in the
factorization, less in the substitution steps.
» Fully populated A: n? entries
* 1/3n3 + O(n?) complexity of Cholesky
* 2/3n% + O(n?) complexity of LU (factorizable A)
» Substitution steps: only O(n?)

o In iterative methods this can be less. Like O(n°/?) in the
fully-populated model cases (that fulfill an assumption on the
convergence).

» The issue of convergence of iterative methods is much more
complicated, not discussed here

7/174

Which approach is better? Complexity?

@ The complexity issues are more involved: not only due to different
matrix properties, but also due to hardware for computation and
communication

» Nowadays, nearly nothing is really sequential

» CPU — a mixture of powerful processors, coprocessors,
cores, GPUs, and so on.

» Furthermore, arithmetic operations are much faster than
communication-based operations. And can be even
accelerated by less accurate computation.

8/174

Which approach is better? Complexity?

@ The complexity issues are more involved: not only due to different
matrix properties, but also due to hardware for computation and
communication

» Nowadays, nearly nothing is really sequential

» CPU — a mixture of powerful processors, coprocessors,
cores, GPUs, and so on.

» Furthermore, arithmetic operations are much faster than
communication-based operations. And can be even
accelerated by less accurate computation.

@ All of this helps to push the research on.
The question which class is better to solve our problems is ill-posed

8/174

Iterative methods complement approximate direct methods

@ Direct methods may provide a less accurate solution due to
possible relaxations.

@ Making solution more accurate: use preprocessing or
postprocessing by an auxiliary iterative method.

9/174

Iterative methods complement approximate direct methods
@ Direct methods may provide a less accurate solution due to
possible relaxations.
@ Making solution more accurate: use preprocessing or
postprocessing by an auxiliary iterative method.
Approximate direct methods complement iterative methods

@ Pure iterative methods converge typically poorly. Or may have a
low final attainable accuracy.

@ Should be accompanied by a problem transformation based on a
preconditioner. As:

MAz=Mb or AMy=0by= Mz
@ Preconditioner M may approximate A or A~1.

Borderline between the use of direct and iterative methods is fuzzy

9/174

What else? The structure

@ Matrix may contain a lot of zeros
@ Nonzeros in A (left) and its factors (right) look like:

o

» wle

= =

“ af,

%5) I

10/174

What else? The structure

@ Matrix may contain a lot of zeros.
@ Nonzeros in A (left).

@ Nonzeros in its factors (right) can look like much better if A was
preprocessed by a reordering: A — PAPT, A — PAQ.

11/174

Basic Terminology: sparsity

Sparsity: so let us define it

@ Ais a sparse matrix if many of its entries are zero.

.
0 5 10 15 20 25 30 35 40 45
nz = 400

The sparsity pattern: S{A} = {(¢,) | a;; #0, 1 <i,j < n}.

12/174

Basic Terminology: sparsity

Sparsity: more formally
@ Attempts to formalize the sparsity more precisely like:
Definition
Matrix A € R™*"™ is said to be sparse if it has O(min{m,n}) nonzero

entries. Another possibility: if A has row counts bounded by
Tmaz << n and/or column counts bounded by ¢4, << m.

Definition
Matrix A € R™*" is said to be sparse if its number of nonzero entries is
O(n'*7) for some v < 1.

v

13/174

Basic Terminology: sparsity

Sparsity: more formally
o Attempts to formalize the sparsity more precisely like:
Definition
Matrix A € R™*™ s said to be sparse if it has O(min{m,n}) nonzero

entries. Another possibility: if A has row counts bounded by
Tmaz << n and/or column counts bounded by ¢4, << m.

Definition
Matrix A € R™*" is said to be sparse if its number of nonzero entries is
O(n'*7) for some v < 1.

v

Definition

(pragmatic, application-based definition: J.H. Wilkinson) Matrix

A € R™ " is said to be sparse if the fact that a part of its entries is
equal to zero can be (algorithmically) exploited.

13717

Is the (sparsity) structure really so important?

@ Our claim is: yes, it is.
@ But, should be used jointly with other computational concepts.

@ Let us mention two new and interesting concepts: to show that the
importance of exploiting sparsity is not disappearing.

14/174

Is the (sparsity) structure really so important?

@ Our claim is: yes, it is.
@ But, should be used jointly with other computational concepts.

@ Let us mention two new and interesting concepts: to show that the
importance of exploiting sparsity is not disappearing.

Concept 1: low-rank approximation

@ Blocks expressed as products of matrices of low-rank:
B e RF*! » B = EFT with E € R¥*" and F € RI*"

@ The two factors of low rank a) may occupy less memory, b) may
be cheaper in matrix-matrix products (matvecs).

14/174

Accelerating by low-rank compression

@ Often implied by appplications

@ Like: panel clustering in BEM (Hackbusch, Nowak, 1989), the
multipole method (Greengard, Rokhlin, 1997), mosaic-skeleton
approximations (Tyrtyshnikov, 1996) etc.: an example of a
hierarchical (data-sparse) matrix:

15/174

Motivation

Accelerating by low-rank compression

@ Often implied by appplications

@ Like: panel clustering in BEM (Hackbusch, Nowak, 1989), the
multipole method (Greengard, Rokhlin, 1997), mosaic-skeleton
approximations (Tyrtyshnikov, 1996) etc.: an example of a
hierarchical (data-sparse) matrix:

15/174

Accelerating by low-rank compression

@ Often implied by appplications

@ Like: panel clustering in BEM (Hackbusch, Nowak, 1989), the
multipole method (Greengard, Rokhlin, 1997), mosaic-skeleton
approximations (Tyrtyshnikov, 1996) etc.: an example of a
hierarchical (data-sparse) matrix:

16/174

Accelerating by low-rank compression

@ Often implied by appplications

@ Like: panel clustering in BEM (Hackbusch, Nowak, 1989), the
multipole method (Greengard, Rokhlin, 1997), mosaic-skeleton
approximations (Tyrtyshnikov, 1996) etc.: an example of a
hierarchical (data-sparse) matrix:

17/174

Accelerating by low-rank compression

@ Often implied by appplications

@ Like: panel clustering in BEM (Hackbusch, Nowak, 1989), the
multipole method (Greengard, Rokhlin, 1997), mosaic-skeleton
approximations (Tyrtyshnikov, 1996) etc.: an example of a
hierarchical (data-sparse) matrix:

18/174

Accelerating by low-rank compression: sparsity still needed

19/174

Accelerating by low-rank compression: sparsity still needed

@ More complex applications: algebraic variations needed.

@ But then: generalized schemes need exploiting the classical
(blockwise) sparsity outside a specific hierarchical scheme.

19/174

Concept 2: Accelerating by low precision computation
@ Traditionally: single precision (fp32) and double precision (fp64)
@ Throughout 1990’s, fp32 was not much faster than fp64.

@ Real breakthrough: (SSE units, Intel, 1999): fp32 significantly
accelerated

@ Emergence of half precision (fp16) floating-point arithmetic: 2008
revision of the IEEE standard.

20/174

Concept 2: Accelerating by low precision computation

o fp16 started as storage format, but soon in GPU accelerators. See
discussions in Higham, 2017; Higham, Mary, 2022.

@ BUT: fp16: limited range (largest positive number is 6.55 x 10%);
also bfloat16 (Google, tensor processing units, larger range)

Table: Parameters for bfloat16, fp16, fp32, and fp64 arithmetic: the number of
bits, u, smallest positive (subnormal) number «? .., smallest normalized

positive number z,,;,, and largest finite number x4,

Signif. Exp. w Tonin Tmin Tmaz

fp16 11 5 488x107* 5.96x107% 6.10x107° 6.55 x 10*

fp32 24 8 596x107% 1.40x107% 1.18 x 1073 3.40 x 10°8

fp64 53 11 1.11 x 107'6 4.94 x 107324 2.22 x 1073%® 1.80 x 103°®
bfloat16 8 8 391x10* notused 1.18 x 10738 3.39 x 10*®

21/174

Concept 2: Accelerating by using low precision: Boeing/msc01050

@ Left: A in standard double precision (fp64)
@ Right: A in the half precision (fp16)

0 0

100 100

200 200
300 300
400 400
500 500
600 600
700 700
800 800
900 900

1000 1000

0 200 400 600 800 1000
nz = 13624

@ In fp16, we get only an approximation
22/174

Concept 2: Accelerating by using low precision: Boeing/msc01050

o Left: Cholesky factor L in standard double precision (fp64)

@ Right: Cholesky factor L in the hal

0

100

200

300

400

500

600

700

800

900

1000

N

kY
X
}
-
0 200

i

LY
kY L
Y &

400 600
nz = 30617

800

1000

100

200

300

400

500

600

700

800

900

1000

f precision (fp16)

\ %
X *
*

400 600
nz = 22864

o fp16: similar fill (ratio 2.247 versus 2.534 for fp16)
@ low precision, but sparsity factorization problems are still here:
they should be considered also here.

800 1000

23/174

Basic Terminology: sparsity

Rough comparison of extreme cases of dense and sparse A

Dense matrix Sparse matrix

dim |space |dec time (s)|| dim |space |dec time (s)
3000 | 4.5M 5.72 10000 | 40k 0.02
4000| 8M 14.1 90000 | 0.36M 0.5
5000 |12.5M 27.5 1M 4M 16.6
6000 | 18M 47.8 2M 8M 49.8

24/174

Basic Terminology: sparsity

Rough comparison of extreme cases of dense and sparse A

Dense matrix Sparse matrix

dim |space |dec time (s)|| dim |space |dec time (s)
3000 | 4.5M 5.72 10000 | 40k 0.02

4000 8M 14.1 90000 | 0.36M 0.5
5000 |12.5M 27.5 1M 4M 16.6
6000 | 18M 47.8 2M 8M 49.8

@ Recall the pragmatic definition.

@ The decision whether to use or not to use depends also on what
we know about the computation.

@ In sparse direct methods we know a lot.
@ Clearly, exploiting sparsity is a must. But, the question is how.

24/174

Basic Terminology: blocks

Blocks: why we like them

25/174

Basic Terminology: blocks

Blocks: why we like them

@ Contemporary terminology related to computations emphasizes
the most limiting factor.

@ Algorithms are compute-bound, memory-bound or latency-bound.

@ Most chips are designed such that dense matrix-matrix multiply,
which typically performs & operations on k? data can run at full
compute throughput

I
BLOCKS

@ We may use large (I.) or small (Il.) blocks

25/174

Basic Terminology: blocks

I. Large blocks

@ Connected to reducibility or input (application)
@ A e R™™is reducible, if it can be permuted as

A A12)
PTAP = ,
(Ao

A11 and Ags are square matrices of dimensions at least 1.
@ If Ais not reducible, it is called irreducible.
@ A reducible: block factorization/substitution (permutation omitted).

A A x b _ a
(h A;z> (-’E;) N (b;> = @3 = Agy b, w1 = Ay (b — Ava)

26/174

Basic Terminology: blocks

I. Large blocks

@ Connected to reducibility or input (application)
@ A e R™™is reducible, if it can be permuted as

A A12)
PTAP = ,
(Ao

A11 and Ags are square matrices of dimensions at least 1.
@ If Ais not reducible, it is called irreducible.
@ A reducible: block factorization/substitution (permutation omitted).

A A x b _ a
(h A;z> (w;) N (b;) = @3 = Agy b, w1 = Ay (b — Ava)

@ Large blocks can be also a result of a (saddle-point) input A, like:
B FE
4-(z o)
A lot of specialized approaches. Solving subproblems is not

principially different from standard sparse approaches. .

Basic Terminology: blocks

[I. small blocks (only symmetric variant mentioned)

°
A= (A, jb), A, jp € R 1< b, jb < nb,
that is,
Ain A oo A
an | A e
Anb,l Anb,Z Anb,nb

@ Assuming nonsingular square blocks Aj, ;; on the diagonal.

27/174

Basic Terminology: blocks

[I. small blocks (only symmetric variant mentioned)

°
A= (A, jb), A, jp € R 1< b, jb < nb,
that is,
An A - A
am| S
fqnhl f4nh2 o finhnb

@ Assuming nonsingular square blocks Aj, ;; on the diagonal.
Implications

@ Large blocks: as we have seen above: only an additional
hierarchical level.

@ Small blocks: Pointwise factorizations can be formulated
blockwise:

entries — submatrices. Here not reminded, but expected.
27/174

9 Factorizations

28/174

Factorizations

Introduction to factorizations

@ Traditional way: Gaussian elimination: systematic columnwise
annihilation of entries in the lower triangular part of A.

@ Formally a sequential multiplications by column elimination
matrices (A factorizable) getting the elimination sequence:

A(l) — A(2) = ClA(l) — A(3) = CQClA(l) = 000 =7 A(n) = Cn—l ce. ClA(l)
o Elementwise, (a11 = a{}) # 0), the first step C1 A1) = A®@) is

1 (1) (1) (1) (1) (1) (1)

iy Qig ... Gy @i’ @y ooo @i
—oai'/aly 1 o) o) .. af) 0 o ..
modlfa 1 o o oo =|0 @ . @),
—aff/aﬁ) 1 aibll) a;lz) T 0 a(ﬂzz) .. d®

29/174

Factorizations

Introduction to factorizations
@ The k-th partially eliminated matrix is A%,
@ The product of inverted column elimination matrices

1
as/al) 1
oy /afy @)/ 1
1
B/l o@/e@ g

@ That is, we have the LU factorlzatlon
A=AD =crloyt ..ot A = L.

@ There are more ways differing in relative order of elimination steps

that are the same even in finite precision arithmetic!
30/174

Factorizations

LU written in matrix/vector form: submatrix LU
@ The first step (K = 1):

_ 1 all u” _ [(an u”
ClA B (_v/all I) (v A2:n,2:n) N (A2:n,2:n - UUT/all) ’

v=(a21,.-~,an1)T7 (l21,~~,ln1)T=v/a11, u! = (ar2,...,a1n) .

@ The (n — 1) x (n — 1) active submatrix
A(z) =85= A2:n,2:n - UUT/all

is the Schur complement of A with respect to a;.

@ A s factorizable = S is factorizable, and the process can be
repeated.

31/174

Factorizations

Submatrix LU

@ The elimination: sequence of rank-one updates applied to the
Schur complements.

o After k —1steps (1 < k <n):

N —1 [lkj al(ci) S ai(c’;)
SO B g)= 2 = A
Qnk --- Gnn =1\l ag;c) .o d®

@ Schematically:

ol

32/174

Factorizations

Another relative order of operations: Column LU

@ Consider first j columns of A: they must satisfy

<A1:j—1,1:j—1 Al:j—1,j)_>(L1:j—1,1:j—1)(Ul:j—l,l:j—l Ul:j—l,j>
AL AT Linij1 Ljng Ujj

33/174

Factorizations

Another relative order of operations: Column LU

@ Consider first j columns of A: we must have
<A1:j—1,1:j—1 Al:j—l,j) (Ll:j—l,lzj—l > (Ul:j—l,l:j—l Ul:j—l,j>
_)
Ajmj—1 Ajmg Lintj—1 Ljng ug;

@ This implies conditions for the two phases of computation (column
of U and L):

—1
Urj—1; = Lij 1152141515, uj5 = aj; — Lji1Ur-1,
g = 1L iy o = (Alguitm g = Mg it g1 gl
@ The factors can be computed column by column:

1—=...j—=...n

@ Easy embedding of the row permutation: A — PA
@ Scheme by rows: computing columns of AT

34/174

Factorizations

Schemes described as a generic scheme of three nested loops

Algorithm (Generic LU factorization)

for ——do
for——do

1:

2

3 for—— do
4: lix = agl,z)a,:kl
5: a,gﬁl) = az(f) — lira, ;
6 end for

7 end for

8:

end for

(k)
kj

@ The crucial pointwise operation:

=il —
Aij = Qij = Qiklyy, Okj = Gij = Gij — lipag;

@ Schemes differ by treating sparsity, vectorization etc.

35/174

Factorizations

Cholesky factorization: also three basic ways
@ Left-looking schemes (second phase of the column LU)

@ Right-looking schemes (submatrix scheme that computes only
quantities in L)

@ But there is also the row scheme based on the first phase (solve)
of the column LU

36/174

Factorizations

Column (left-looking) Cholesky
Algorithm

Column Cholesky factorization: A — square-root factor L = (l;;)

1. forj =1:n do
2. Compute an auxiliary vectort;.,

i ajj lik
2l N DR (1)
- o (kLR 20} Lok

3. Get a column of L by scaling t;.,,
ljj . t
. = — . 2
: AR 2
Inj tn

ST

4. end j

Factorizations

Cholesky factorization: row scheme

@ But there is also the row scheme.

@ The row scheme is based on the first phase (solve) of the column
LU

@ Easy to implement column permutation A — AP.

38/174

Factorizations

Factorizations and sparsity

@ Factorizations of sparse matrices may create new nonzero entries
outside S{A} called fill/fill-in/filled entries

* % * ok * % * %
*

. - foxfof

* * * x f

@ Fill-in means more operations, more memory

39/174

Factorizations

Factorizations and sparsity

@ Can we expect that some nonzeros become zeros due to
cancellation?

40/174

Factorizations

Factorizations and sparsity

@ Can we expect that some nonzeros become zeros due to
cancellation?

@ Very rarely.

@ We assume non-cancellation: the result of adding, subtracting or
multiplying two nonzeros is nonzero again.

@ This implies:
S{A} CS{L+U}.

@ Non-cancellation implies a possibility to deal with the structure
only using graphs to determine the fill-in (if factorizability
guaranteed @)

@ Let us go to see the fill-in results

40/174

Factorizations

Simple fill-in results: one step of factorization

J
k [* * s

S
*
*
*
S
*
*
*

@ Summarized as the fill-in lemma: one step of the fill-in

Lemma
Leti,j,k € {1,...,n}, step k < min{i,j} <n. Then

Wto=al V2oV @V £0AalY £0)

41/174

Factorizations

Fill-in during the factorization: more steps
@ But we have the sequence (of Schur complements)
SW 5 5@ 5 g 5 | 5 = gn=1),
@ With sparsity structures S(S*)) representing the elimination
graphs
g' =G(4),6%...,G",G" = (VF, &%)

42/174

Factorizations

Fill-in during the factorization: more steps
@ But we have the sequence (of Schur complements)
S 5 5@ 5 56) g = g(n=1),
@ With sparsity structures S(S*)) representing the elimination
graphs
G'=G(4),6...,G",G" = (V" %)
@ Thefill-in in the sequence is described by the Parter’s rule:
To obtain the elimination graph G**! from G*, delete vertex k and
add all edges (i £ j) such that (i < k) and (k <5).
VR = VE\ (R}, €5 = €5 U{(3,4) 4,5 € adjgr{k}} \ {5, k) | i € adjgr{k}}.

@ The reason that graphs can be used: the non-cancellation
assumption: once created fill-in remains ©

42/174

Factorizations

@ A (nonsymmetric) example

1 2 3 4 5 6 1 2 3 4 5 6
1 /% 1 /% *
2 * ok * * 2 E T *
3 | % * * 3| % * *
4 | * % * % 41« * f x *
5 * ok 5 * %
6 * ok * 6 * *

Figure: The original digraph G = G* (left) and the directed elimination graph G (right). The red
dashed lines denote fill edges.
43/174

Factorizations

@ S(A) symmetric: the adjacency set of vertex k forms a clique.

1 2 3 4 5 6 1 2 3 4 5 6
1 * ok ok ok 1 % % % ox
2 | x * * * 2 |« x f =% *
3| % * * 3% f x f *
4 | % % * % 4 1« x f *x x
5 * % 5 * %k
6 * ok * 6 * *

e!:‘o ®

Figure: The original undirected graph G = G* (left) and the obtained graph G? (right). The red
dashed lines denote fill edges. The vertices {2, 3,4} become a clique.

44/174

Factorizations

From the Parter’s rule for factors to fill paths in G(A)

@ But the Parter’s rule is only a local rule. The following theorem
fully characterizes the fill-in in the factors.

Theorem

Let A= LU. ThenS(L + U);; # 0 if and only if there is a fill-path

i % j- The fill-paths may not be unique.

man

@ Demonstrate this: starting with a path (¢, p1, p2, p3, p4,7) in G(A)

p2 < p3 < p1 < pg < min(i, j) 45/174

Factorizations

From the Parter’s rule for factors to fill paths in G(A)

@ But the Parter’s rule is only a local rule. The following theorem
fully characterizes the fill-in in the factors.

Theorem

Let A= LU. ThenS(L + U);; # 0 if and only if there is a fill-path

i % j- The fill-paths may not be unique.

man

@ Demonstrate this: starting with a path (¢, p1, p2, p3, p4,7) in G(A)

p2 < p3 < p1 < pg < min(i, j) 46/174

Factorizations

From the Parter’s rule for factors to fill paths in G(A)

@ But the Parter’s rule is only a local rule. The following theorem
fully characterizes the fill-in in the factors.

Theorem

Let A= LU. ThenS(L +U);; # 0 if and only if there is a fill-path

i Lﬁ)f j. The fill-paths may not be unique.

man

@ Demonstrate this: starting with a path (¢, p1, p2, p3, p4,7) in G(A)

p2 < ps < p1 < ps < min(i,)

47/174

Factorizations

From the Parter’s rule for factors to fill paths in G(A)

@ But the Parter’s rule is only a local rule. The following theorem
fully characterizes the fill-in in the factors.

Theorem

Let A= LU. ThenS(L +U);; # 0 if and only if there is a fill-path

i Lﬁ)f j. The fill-paths may not be unique.

man

@ Demonstrate this: starting with a path (¢, p1, p2, p3, p4,7) in G(A)

p2 < ps < p1 < ps < min(i,)

48/174

Factorizations

From the Parter’s rule for factors to fill paths in G(A)

@ But the Parter’s rule is only a local rule. The following theorem
fully characterizes the fill-in in the factors.

Theorem

Let A= LU. ThenS(L + U);; # 0 if and only if there is a fill-path

% j. The fill-paths may not be unique.

@ Demonstrate this: starting with a path (i, p1, p2, p3, pa, j) in G(A)
® @

p2 < p3 < p1 < pa < min(i, j)

49/174

Factorizations

From the Parter’s rule for factors to fill paths in G(A)

@ Symmetric S{A}: afilled entry in position (8, 6) of L because of

thefill-path8<%6 8324516

1 2 3 456 78 1 23 4 5 6 7 8
1 /=% * 1 /=% * ok
2 * EES * 2 * ko *
3 * % * 3 * ok *
4 k k% 4 * % % f f
5 | % * * 5 | % * f = f f
6 | * * 6 | * f = f
7 * ok 7 * %
8 * ok * % 8 * x f f f % =

50/174

Factorizations

So far, only implicit results on the fill-in

51/174

Factorizations

So far, only implicit results on the fill-in

@ Too complicated to be exploited algorithmically

51/174

Factorizations

So far, only implicit results on the fill-in

@ Too complicated to be exploited algorithmically

@ Something that is even simpler than the fill paths needed.

51/174

Factorizations

So far, only implicit results on the fill-in

@ Too complicated to be exploited algorithmically
@ Something that is even simpler than the fill paths needed.

@ The symmetric case: SPD matrix is always factorizable — using
graphs to model A = LL".

@ The dependence: replication of entries among columns.

51/174

e Symbolic Cholesky factorization

52/174

Symbolic Cholesky

Column replication: as a sequence

1 2 3 45 6 7 8
1 * * %
2 * *
3 *
4 *
5| % *
6 | * *
7| * *
8 \ * *

@ Nonzero entries of the lower triangular part

53/174

Symbolic Cholesky

Column replication: as a sequence

1 2 3 4 5 6 7 8
1 * *
2 * ff
3 *
4 *
51« f *
6| f *
7T * * *
8 \ x *

@ Nonzero entries of the lower triangular part

54/174

Symbolic Cholesky

Column replication: as a sequence

1 2 3 45 6 7 8
1 * *x ok ok
2 * f f * =
I
4 *

T I
6= f f *
Tlx x f *
8 \x x f *

@ Nonzero entries of the lower triangular part

55/174

Symbolic Cholesky

Column replication formally
@ First observation:
» Foranyi > j > 1suchthatl;; #0
This is called the column replication principle.

1 2 3 4 5 6 7 8
1 /% x * *
2 * ff *
3 *
4 *
5% f *
6| f *
7 * * *
8 \ x * *

56/174

Symbolic Cholesky

Column replication: as a sequence

1 2 3 45 6 7 8
1 /x x * k%
2| x % * ff * =
3| o« s fFf T
4 *
5| £ 1
6= f f *
Tlx = f *
8 \x * f *

@ First row entries of L' are sufficient to guarantee the replication.

57/174

Symbolic Cholesky

Column replication: as a sequence

1 2 3 45 6 7 8
1 /% = * k%
2| x % * ff * =
3 kK rrrf
4 *
51« f f *
6= f f *
Tlx = f *
8 \x * f *

@ First row entries of L' are sufficient to guarantee the replication.
@ They represent a directed acyclic graph (DAG) T (A) C G(LT).

@ T(A): a special case of the transitive reduction of G(L”) (simplest
DAG that preserves paths in G(L™).

57/174

Symbolic Cholesky

Column replication: as a sequence

1 2 3 45 6 7 8
1 /% = * ok ok
2 % % % ff * =
3 B rrrf
4 *
51« f f *
6= f f *
Tlx = f *
8 \x * f *

@ First row entries of L' are sufficient to guarantee the replication.
@ They represent a directed acyclic graph (DAG) 7(A) C G(L™).

@ T(A): a special case of the transitive reduction of G(L”) (simplest
DAG that preserves paths in G(L™).

@ Equivalently: edges of 7(A) « first subdiagonal entries of L,
denoted parent(j): parent(j) = min{i | ¢ > j, {;; # 0}.
57/174

Symbolic Cholesky

Replication of column structures once more

58/174

Symbolic Cholesky

That DAG is a tree or forest, called the elimination tree

5 6 7 8 e
* x %

—
%)
w
W~

1

2 * * % *

oo ONNO
oo Tl (5

7 *

@ Subtree 7(5) includes vertices 1,2,3,4,5; |T(5)| = 5;

59/174

Symbolic Cholesky

That DAG is a tree or forest, called the elimination tree

1

2 * * ok *

|, ORNO
oo Tl O

7 *

@ No need to use arrows.

60/174

Symbolic Cholesky

Side-effect of column replication: row replication

cre (8)
* * %

—
o
w
~
o3

1

2 * * % *

| oo, ONNO
gi*f}f§ ©

@ ag3#0 =134 #0=1g57# 0and soon
@ This is equivalent to passing row fill up the tree due to ag 3 # 0.

61/174

Symbolic Cholesky

Side-effect of column replication: row replication: shown again

i
parent(

paren?(j

parenlc_l(i

parent ()= i o—0-0-—--0

@ Replication of columns = replication in a particular row.

62/174

Symbolic Cholesky

Side-effect of column replication: row replication: shown again

i
parent(j

parent’-(j

parenlc_l(i

parent ()= i o—0-0-—--0

@ Replication of columns = replication in a particular row.
@ When such row replication starts? If the first entry belongs to A!

62/174

Symbolic Cholesky

Necessary and sufficient condition for a fill-in entry
@ No k > 1 with a;; # 0, no replication of nonzeros in row ¢ can start.

63/174

Symbolic Cholesky

Necessary and sufficient condition for a fill-in entry

@ No k > 1 with a;; # 0, no replication of nonzeros in row ¢ can start.
@ Otherwise, there is a nonzero in A;, that starts the row replication.

63/174

Symbolic Cholesky

Necessary and sufficient condition for a fill-in entry

@ No k > 1 with a;; # 0, no replication of nonzeros in row ¢ can start.
@ Otherwise, there is a nonzero in A;, that starts the row replication.

Theorem

Let A be SPD and let L be its Cholesky factor. If a;; = 0 for some
1 < j <i<nthenthereis a filled entry l;; # 0 if and only if there
exists k < j andt > 1 such that a;, # 0 and parent'(k) = j.

63,17

Symbolic Cholesky

Taking all replications in row ¢, we have its structure in L.

o
B

k @K

@ The subgraph of 7(A) determines it
» Detached by k, &/, k¥’ and k"’ from below (corresponding to
NONZeros a; i, a; k, a; x» and a; i), by i from above.
» called the i-th row subtree of 7(A).
@ lIts vertices precisely determine nonzeros in the i-th row of L.

@ But, for factorization we may prefer to know column structure of L
64/174

Symbolic Cholesky

It would be nice to know column sparsity patterns of L as well

@ Repetition: Row structures: going up 7 (A) from nonzeros of A

(k, k', K" and E"").

1 2 3

00~ O U WN

*

*

*
*

4

A

* % o

e

6 7 8
*

f
! !
& f
fo*x =

65/174

Symbolic Cholesky

It would be nice to know column sparsity patterns of L as well

@ Repetition: Row structures: going up 7 (A) from nonzeros of A

(k, k', K" and E"").

1 2
*
*

*
*

00~ O U WN
*

3

4

A

5
*
*

e

6 7 8
*

*

.
* Ok HHh ¥ X

% %

—

@ Column structures: merging column lists: colz{j} = adjg) {T (j)}
e.g., col {5} = adjg(4)(1) U adjg(4)(2) U adjg () (3)Uadjg()()
@ Up the tree. This is clear, but implementation may be funny.

65/174

Symbolic Cholesky

Getting column structures more efficiently

o First define: A labeling of the vertices of a tree (and, more
generally, in a DAG) is a topological ordering if, for all < and j,
j € descr{i} implies j < i

66/174

Symbolic Cholesky

Getting column structures more efficiently

o First define: A labeling of the vertices of a tree (and, more
generally, in a DAG) is a topological ordering if, for all < and j,
j € descr{i} implies j < i

@ @
(e) (6)
(s) (@ (s) (&)
(o) @ (2) (3)
(3) @
@ Apparently, the second labeling is better.

@ Why? It localizes. —

@ S(L) by columns is obtained by merging columns, the merged
columns should not wait too long to be merged again, in order to
use small intermediate memory.

66/174

Symbolic Cholesky

All topological orderings are nice

Sparsity patterns of the Cholesky factors of A and PAPT can be
different, but the amount of fill-in is the same.

Theorem

Let S{A} be symmetric. If P is the permutation matrix corresponding
to a topological reordering of the elimination tree T of A then the filled
graphs of A and PAPT are isomorphic.

@ Topological orderings do not change fill-in size

@ In the other words, the amount of fill-in is invariant under the class
of topological reorderings of the elimination tree.

67/174

Symbolic Cholesky

... are nice. But, some topological orderings are nicer: postordering

@ A topological ordering of T is a postordering if the vertex set of
any subtree 7 (i) (i = 1,...,n) is a contiguous sublist of 1,..., n.

@ Postordering is even more localizing labeling.
@ Needed in fast algorithms.

68/174

Symbolic Cholesky

Ooops. We still do not have the elimination tree. How to get it?

@ To find 7 (A), we just mimick the row replication: scan A by rows
fori=1,...,n — 1 and go up the constructed part of 7(A) to
attach i as a temporary root.

@ During the search if the i-th row, vertex i is either put on the top of
the current structure or added as an isolated vertex if not
connected to the rest of T(A) yet.

69/174

Symbolic Cholesky

Constructing elimination tree: complexity

@ A complexity problem

* ok kK kK * 0k k x ok ok

EIE * x f f f f

* * « f x f f f

* * « f f = f f

* * « f f f % f

* * « f f f f =
@ T(A): parent(6) = 0; parent(i) =i+ 1,i=1,...,5.

@ For each i we start from a;; and attach ¢ at the top of the partial 7:
O(n?) complexity

@ But, improvements lead to the nearly linear complexity of getting
T(A).

70/174

Symbolic Cholesky

What else: blocks

@ They look like this. In L! They are called the supernodes.

S *x

* %

* % %
SH—T * * %

* Kk k k
* %k %

* %k % %
* % % %

@ Replication principle increases their probability.

71/174

Symbolic Cholesky

Supernodes and efficient computation

@ the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)

@ parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)

A

1

72/174

Symbolic Cholesky

Supernodes: block-based elimination

@ Supernodes imply the supernodal elimination (assembly) tree.

1 2 3 45 6 7

8 9

: (o) 5:{6,7.8,9)

* * %
2| * * ok ‘
3 * ok * o
4 * ok * % o 3;{4,7,8}
5 * %
p A NORORORETEL: ‘ 15{1,2,8,9}
7 * f = f = .
... SR EORONO 2(3.4,8)
9 \x EE T

@ Their important type can be found in a nearly linear complexity.

73/174

Symbolic Cholesky

Independence of subtrees: parallelism at hand

Theorem

Consider the elimination tree T and the Cholesky factor L of A. Let
T (i) and T (j) be two vertex-disjoint subtrees of T. Then for all
s€ T (i) andt € T(j) the entryls of L is zero.

o Of course, I;; = 0. Otherwise ¢ would have to be ancestor of s or
vice versa.

@ Column structures and columns can be merged independently.
Contradiction with row replication.

74/174

e Sparse matrices and data structures

75/174

Sparse vectors and matrices in a computer

Sparse data (matrix/row/column) in a computer: |. dynamic formats

@ a) Coordinate (or triplet format for data: individual entries of A
held as triplets (i, j, a;;), where i is the row index and j is the
column index of the entry a;; # 0; similar for vectors

@ b) Linked list - based format: stores data as linked items

l

bl | [kl] [aks[] [els] | [7]3] |

@ Linked lists can be cyclic, one-way, two-way, etc., can be
embedded into a larger array: emulated dynamic behavior

76/174

Sparse vectors and matrices in a computer

Sparse matrix storage: Il. static formats

@ CSR (Compressed Sparse Row) static format. The column
indices compressed in the array colindA by rows. Sorted or
unsorted. CSC: variant by columns.

1 2 3 4 5

1/ 3. —2. Indices 1 2 3 45 6 7 8 9 10
; | b 3 ;1 ‘rowptrA 1 3 5 8 9 11

4 1. colindA1 4 2 51 3 5 425

5 7. 6./ valA 3.-2.1.4 -1.3. 1.1. 7. 6.

o If A is symmetric, only the lower (or upper) triangular part stored.
@ Possible to store only S{A} and not numerical values.
@ Useful: static, theory helps to use them efficiently

771174

Sparse vectors and matrices in a computer

Sparse matrix storage: static versus dynamic formats

@ dynamic data structures:
» —more flexible but this flexibility might not be needed
» — difficult to vectorize
» — difficult to keep spatial locality of rows and columns
» — used preferably for storing vectors

@ static data structures:

» — ad-hoc insertions/deletions should be avoided (better
algorithms)

» —much simpler to vectorize / utilize cache
» — efficient access to rows/columns

78/174

Sparse vectors and matrices in a computer

Simulating dynamic storage formats by static ones

@ Dynamic storage formats can be simulated by

» adding to CSR/CSC an elbow space for fill-in entries

113.]7. 2 |-2.|-5. 4 |-8. 615.|4. 7 (3. (1.

» A mechanism to compress/extend such structure needed.
» Useful for approximate factorization with limited fill-in.

79/174

e (Numerical) Cholesky factorization

80/174

Cholesky Factorization

Sparse Cholesky factorization: conceptual comments
o Efficient symbolic phase based on 7 explained:
» Row/column counts of L known — storage can be allocated
» Postordering enables a lot of other efficient algorithms

» Blocks: supernodes

» Technical tricks as splitting large supernodes into smaller
panels to embed them into computer caches

@ Numerical factorization: new important feature — more
communication: this is described by a communication graph: DAG
(directed acyclic)

81/174

Cholesky Factorization

Numerical Cholesky factorization: from operations to tasks

a) b) c)
@ cdiv(k): scaling column k by the square root of the diagonal entry

@ cmod(j, k): column j modified by a multiple of column &

Algorithm

Sparse column (left-looking) Cholesky
1: forj =1:n do

2: fork € Struct(L;.) do > All of them 11111
3: cmod(j, k)

4 end for

5: cdiv(j)

6: end for

82/174

Cholesky Factorization

Numerical Cholesky factorization: from operations to tasks

a) b) c)
@ cdiv(k): scaling column k by the square root of the diagonal entry

@ cmod(j, k): column j modified by a multiple of column &

Algorithm

Sparse submatrix (right-looking) Cholesky
1: fork=1:n do

2: cdiv(k)

3: forj € Struct(L.;) do
4 cmod(j, k)

5 end for

6: end for

83/174

Cholesky Factorization

Splitting Cholesky factorization into tasks

a) b) c)

o cdiv(k): scaling column k by the square root of the diagonal entry
@ cmod(j, k): column j modified by a multiple of column &

\ cmod(k+1,k) \ \ cmod(k+2,k) \

cdiv(k)

\ cmod(k,1) \ \ cmod(k,2)) \ cmod(k,k-1)

84/174

Cholesky Factorization

Large-grain column (left-looking) communication model

3

4

6

1
e 2 *
3 * ok *
4 * ok I
n o 51 % * *
6 * f *
Tcol(6) m
‘ cmod(6,5) ‘ cmod(6,4) ‘ cmod(6,3)
T
cdiv(5)
Tcol(5)
‘clﬂnod(5,1) \cmod(s,:t) Teol(4)
cdiv(1) cdiv(4)
Tcol(1)
[cmod(4,2) [cmod(4,3)
cdiv(2) cdiv(3)
Tcol(2) Tceol(3)

85/174

Cholesky Factorization

Large-grain submatrix (right-looking) communication model

e 123 45 6

1 /= *
e 2 * *
3 * *
4 * % x % f
OO o
6 e Fon
Tsub(5) /L’Cdi—stub(G)
Tsub(4)
emod(5,1) [emod(5,4) [omod(6,4)
Tsub(1) [cmod(4,2) [cmod(4,3) [cmod(6,3)
Tsub(2) Tsub(3)

86/174

Cholesky Factorization

Using supernodes: enhancing parallel processing

@ Arithmetic of dense trapezoidal matrices. Sophisticated mappings
among them.

@ Dependencies captured by the communication (dependency)
DAG.

@ The tree parallelism.
@ Block arithmetic.

87/174

Cholesky Factorization

Variations of the Cholesky factorization: sparsity and supernodes

@ Left-looking approach:

» Dependency DAG
» Block arithmetic.

@ Right-looking approach:
» Dependency DAG
» A specific popular approach: uses the supernodal elimination
tree for dependencies: the multifrontal method

» High level of memory efficiency due to computational locality:
contributions to the Schur complement kept aside in a stack

88/174

Cholesky Factorization

Multifrontal method: just sketching: updates put on a stack

* *
*
*
*
*
o
* % * x f
* * *

89/174

Cholesky Factorization

Multifrontal method: just sketching: updates put on a stack

* *k stack
- 8 10
* 2 .
% 10 0
* 10
. l ol
Iox 10
x ok * x f |
* * *

90/174

Cholesky Factorization

Multifrontal method: just sketching: updates put on a stack

* *
*
*
*
*
o
* % * x f
* * *

3 7 10 stack

B
|

|
b

91/174

Direct methods: Multifrontal method

Multifrontal method: just sketching: updates put on a stack

* * 4 7 stack
4 8 10
* , 8
* 10
- 10
1
: l g
7
[o* 7 7
* ok * x f ‘M 10
7
* * * e

stack

92/174

Cholesky Factorization

Multifrontal method: just sketching: updates put on a stack

* *
*
*
*
*
o
ok * x f
* * *

stack

stack

93/174

Cholesky Factorization

Multifrontal method: just sketching: updates put on a stack

* * * 6 9 stack
6 8 10
| I N
* * * 10
* * + 10
& 1
* 6
7 10
10
¥ .\
* ok * x f 10
7
* * *

stack

H

6 9
B
9

9 10
i
0

94/174

Cholesky Factorization

Multifrontal method: another example matrix

1 2 3 4 5 6 7 8

*

*
*

W~ O O Wi
*

*

- =

&H
* = ¥

95/174

Cholesky Factorization

Multifrontal method: details

ags + vé‘? I66
W@ arr + v lrg 77
a6 asr ass +v§? lse ls7
as3 + U%) e o8
o @ Uﬁ) l43 lyg
i 3
W oot o) oy o) T ol o
3) @3
oD o) D I73 b4 vy 03 ags 0 |1
l11 I
o) 22
az; 0 lar 'ugs) o l
ag 0 0 — ot vé? Uéé) 342 1 l42
ap 00U ENORES, - i
ln vy vig vrg

96/174

Cholesky Factorization

Sparse Cholesky factorizations: up-looking factorization

@ An alternative for sparse matrices is to compute L one row at a
time. This is sometimes called an up-looking factorization.

@ Asymptotically optimal, but difficult to incorporate high level BLAS.
@ Also an efficient symbolic phase possible.
@ High potential for approximate factorizations

97/174

e Sparse LU factorization

98/174

Sparse LU: models and methods

LU factorization and graphs and methods
o Differences with respect to Cholesky (roughly):

» Two factors: more general graph models (directed, bipartite)
needed to describe A and the factors

» Problems with factorizability: symbolic and numerical steps
cannot be always separated

» Due to this, sometimes stronger assumptions needed,
sometimes on-the-fly changes: pivoting

99/174

Sparse LU factorization of generally nonsymmetric

matrices

LU factorization: first symbolic model: DAGs

1 2 3 45 6 1 2 3 4 5 6
1 /% * * 1 /% * *
21 x =x * % 21 % x f * ok
3 E 3 * %
4| * E 4| * * % f
5 * * 5 * f x
6\ *x x * 6\x x f f f =

o Directed acyclic graphs for the factors capture their structure. We use
G(L") (L by columns, left) and G(U) (U by rows, right).

7

100/174

Sparse LU: models and methods

LU factorization and DAGs: alternating replications

1 2 3 45 6 7 1 2 3 45 6 7 1 2 4 5 6 7
1 * % 1 * ok 1 * ok
2 ko ok ok * 2 ko k ok * 2 B *
3| * * * 3| x f = * 3| f *x f = f
4 | = * 4| = f * 4 | =« f f = f
5 * * 5 * * 5 * *
6 * % % *x | 6 * x * x| 6 * ok ok %
7 * */ 7T \x f *) 7T \x f f f *

@ Alternating column and row replication (in the submatrix model).

o Left: A. Centre: showing one column replication. Right: also a row
replication.

101/174

Sparse LU: models and methods

Recursive alternating replications

@ Symmetric factorization: the recursive replications driven by the
parents, subgraph of G(LT).

@ In LU it is more interesting ©:
» for columns of L: directed paths in U are used

» for rows of U: directed paths in G(LT).

102/174

Sparse LU: models and methods

Column replication in LU: example

103/174

Sparse LU: models and methods

Column replication in LU: example

e o
e) 9)
) (6} o f @
) e f
e)
e e) e o @
® e f

103/174

Sparse LU: models and methods

Column replication in LU: example

° ®
°)))
) (6} o f @
° e f
®)
e o)))
) e f
°
))
e f f o e f f o
e f e f
®)
))))
e f f e f f

103/174

Sparse LU: models and methods

Sparse LU: replications: funny game to detect paths

@ Thepathl -3 —5— 6in G(U). It implies the fill-in in L, first in
column 3, then in columns 5 and 6.
02—-4—5—=6inG(LT) = fill-in at (4,7), (5,7) and (6,7) in U.

1 2 3 45 6 7 1 2 3 4 5 6 7
* *

* * *

* * 0k

f
f * ok
!

104/174

Sparse LU: models and methods

Something other than bothering with paths needed

@ To employ G(LT) and G(U) in efficient algorithms, they need to be
simplified.

@ They must be sparser and preserve reachability (transitive
reduction adds also the edge set minimality condition).

@ Remind: the elimination tree 7 is a transitive reduction of G(L™).

@ In LU, the analogy are transitive reductions G(L*) and G(U).

105/174

Sparse LU factorization of generally nonsymmetric

matrices

Transitive reductions of G(L™) and G(U)

1 2 3 45 6 1 2 3 4 5 6

(2)
L
Q/A\\

1 A

* * *
* f * ok
* *

SRS IO R
—

* f
* f f

®
®

106/174

Sparse LU: models and methods

Transitive reduction may be expensive to obtain

@ Obtaining exact transitive reductions of G(L”) and G(U) can be
expensive on-the-fly due to the mutual dependency of the DAGs.

107/174

Sparse LU: models and methods

Transitive reduction may be expensive to obtain

@ Obtaining exact transitive reductions of G(L”) and G(U) can be
expensive on-the-fly due to the mutual dependency of the DAGs.

@ Instead, approximate reductions without the minimality condition
may be computed. additional nonzeros do not make harm.

@ We will call them equireachable DAGs (not fully transitively
reduced DAGs).

107/174

Sparse LU: models and methods

Equireachability: example

Figure depicts G(U) and G’(U) for the matrix in Figure above.

o o
G0 @ TG

Lo

Figure: The DAG G(U) (left) and G’ (U) which is equireachable with G(U)
(right).

@ The edge (3,6) is not in the transitive reduction.

108/174

Sparse LU: models and methods

Column sparsity patterns (for L)
@ Schur complement description

S{Ljn;} =S{Ams} | S{Ljmi}, 1<i<n
k<j,u;7#0
@ As in the symmetric case where the patterns are merged up 7(A),
not all the terms in this union are needed to get S{L;.,. ; }.
Theorem shows this merging formally:
Theorem

IfG'(U) is equireachable with G(U) then

S{Ljinj} = S{Ajin;} U S{Ljmx}, 1<j<n
(k—j)e&(G'(U))

@ Those in an equireachable graph are sufficient.

@ Similarly for sparsity patterns of the rows of U.
109/174

Sparse LU: models and methods

Getting an equireachable DAG: pruning of the elimination DAGs

Theorem

If for some j < s both l; # 0 and u;s # 0, then there are no edges
(j — k) with k > s in the transitive reductions of G(U) and G(LT).

—

@ Pruning in G(L™): green and blue nodes represent edges.

@ l;; #0and uj, # 0 imply I, # 0: K — s = The green ones can be
removed.

110/174

Sparse LU: models and methods

Another graph model: column elimination tree

@ An attractive idea for constructing S{L + U} is based on using the
column elimination tree 7 (AT A).

Theorem

Assume all the diagonal entries of A are nonzero and let LLT be the

Cholesky factorization of AT A. Then for any row permutation matrix P
such that PA = LU

S{L+U}CS{L+1"}.

@ Very strong result (theoretically).

111/174

Sparse LU: models and methods

The column elimination tree
@ A potential problem with the column elimination tree is that:

@ S{AT A} can have significantly more nonzero entries than
S{L+U}.

112/174

Sparse LU: models and methods

The column elimination tree
@ A potential problem with the column elimination tree is that:

@ S{AT A} can have significantly more nonzero entries than
S{L+U}.

@ An extreme example is when A has one or more dense rows
because A’ A is then fully dense.

@ So, using it or not using it, it depends.

112/174

Sparse LU: models and methods

Column elimination tree: example

@ Standard elimination tree T (A).

._.
N
w
S
3
(=}
~

S

1

3 * *

4 | % * f %

5 f

6 L ONN©),
7\ % ETE S S

113/174

Sparse LU: models and methods

@ The elimination tree 7 (AT A): much more dependencies, much
less parallelism.

123 45 67)

1 * * %k *

2 * k% k% ok % e

3 * % f % % x e

4 * f x x f x

) * ok ok k k% o

6 * ok f ok ok % 9

T*x *x * * * *x 9
®

114/174

Sparse LU: models and methods

Other related issues: similar to Cholesky

@ We can define supernodes (supernodal structure in L and U).
Some compatibility between the factors is needed. Not mentioning
the danger of pivoting.

@ We can use a modified multifrontal method

@ Typically distinguishing A with a nearly symmetric pattern from
other situations.

@ Note that the factorizability is not generally guaranteed.

115/174

Sparse LU: preprocessing to get full transversal

Preprocessing for LU

@ There exist preprocessing techniques that may alleviate problem
of expensive LU.

I. Permuting nonzeros to the diagonal of A

@ This can be achieved by a nonsymmetric permutation like
A— AQ

@ Terminology: The set of the diagonal entries of A is called the
transversal.

@ If A is nonsingular (even structurally only) then it can be
nonsymmetrically permuted to have the full transversal.

116/174

Sparse LU: preprocessing to get full transversal

Preprocessing for LU: I. getting full transversal

1 2 3 4 5 6

* *
* * *
* ok
* *
* *
* ok *

S O

117/174

Sparse LU: preprocessing to get full transversal

Preprocessing for LU: I. getting full transversal

S O

117/174

Sparse LU: preprocessing to get full transversal

Preprocessing for LU: I. getting full transversal

S O

@ Just a column (or row) permutation is needed.
@ An algorithm to be used: bipartite graph matching
@ |t can consider also sizes of nonzero values: still cheap.

117/174

Another preprocessing step: Il. get a BTF shape

Preprocessing for LU: II. block triangular form

@ When we can do this? If A is reducible.

@ Remind that A is said to be reducible if there is a permutation
matrix P such that

PAPT — (Aphpl Aphpz))
0 Ap2’p2

where A, ,,, and A,, ,, are non trivial square matrices (that is,
they are of order at least 1).

118/174

Another preprocessing step: Il. get a BTF shape

Preprocessing for LU: II. block triangular form

@ When we can do this? If A is reducible.

@ Remind that A is said to be reducible if there is a permutation
matrix P such that

PAPT — (Aphpl Apl,pz)
O Ap2’p2

where A, ,,, and A,, ,, are non trivial square matrices (that is,
they are of order at least 1).

@ Why do we do this? To be more happy ©:
factorize only diagonal blocks = do solves only with blocks.

118/174

Sparse LU: preprocessing to get BTF shape

Permutation to BTF: getting strong components
An example of five SCCs: {p, q,7}, {s,t,u}, {v}, {w}, {z}.

CRON

@ Shrinking the strong components: DAG. And the DAG can be
always ordered to provide a block upper triangular matrix (blocks
correspond to the strong components)

@ The transformation is a vertex relabelling. This is a symmetric
permutation A — PAPT.

119/174

@ Stability, ill-conditioning, indefiniteness

120/174

Stability and ill-conditioning

Backward stability and ill-conditioning: standard points

@ Consider getting factors as (L,U) = g(A). Two different notions.

121/174

Stability and ill-conditioning

Backward stability and ill-conditioning: standard points

@ Consider getting factors as (L,U) = g(A). Two different notions.

@ Backward stable algorithm: the computed factors (L,U) are the
exact solution of (L,U) = g(A+ AA) and AA (the backward error)
is “small” for all possible inputs A.

121/174

Stability and ill-conditioning

Backward stability and ill-conditioning: standard points

@ Consider getting factors as (L, U) = g(A). Two different notions.

o Backward stable algorithm: the computed factors (L, U') are the
exact solution of (L,U) = g(A+ AA) and AA (the backward error)
is “small” for all possible inputs A.

@ The problem (L,U) = g(A) is ill-conditioned if small perturbations
in A can lead to large changes in (L, U). The condition number
then measures sensitivity of the output to the function input.

121/174

Stability and ill-conditioning

Backward stability and ill-conditioning: standard points

@ Consider getting factors as (L, U) = g(A). Two different notions.

o Backward stable algorithm: the computed factors (L, U') are the
exact solution of (L,U) = g(A+ AA) and AA (the backward error)
is “small” for all possible inputs A.

@ The problem (L,U) = g(A) is ill-conditioned if small perturbations
in A can lead to large changes in (L, U). The condition number
then measures sensitivity of the output to the function input.

Observation

Backward stability is a property of the computational algorithm. To
compute solutions with a small backward error we need to consider
stable algorithms. Ill-conditioning is a property of input problem data.
To suppress the ill-conditioning, we need to transform the problem (a
priori or a posteriori)

.

121/174

Stability and ill-conditioning

Sidestep: using the inverse instead of factorization

@ No stability results (in contrast to factorization and solve): The
computed inverse is typically not the exact inverse of a nearby
matrix A + A A for any small perturbation AA.

@ Impractical to compute and store A~!, regardless of how sparse A
is: see below: the matrix sparsity strikes back.

122/174

Stability and ill-conditioning

Sidestep: using the inverse instead of factorization

@ No stability results (in contrast to factorization and solve): The
computed inverse is typically not the exact inverse of a nearby
matrix A + A A for any small perturbation AA.

@ Impractical to compute and store A~!, regardless of how sparse A
is: see below: the matrix sparsity strikes back.

Theorem
A irreducible = the sparsity pattern S{A~1} is fully dense. J

@ This is the reason why inverses of A are not much used.

122/174

Stability and ill-conditioning

Improving the backward stability (and forcing factorizability)

o At step k of LU, the computed a,(jc) (pivot) (1 < k < n) should be
nonzero (to keep factorizability) and not of a small magnitude (to
keep the growth in factors small).

@ The growth can be measured by the growth factor:
— 0 7 e 4
Pgrowth I}l]a]z((|aij | /aij|)- (4)
@ Simple row interchanges: A — P A called partial pivoting ensures
(k) (k)
ik <1 = I¥1>a]§<|aik | < lag |-

@ Partial pivoting may not be sufficient. Complete pivoting is better,
but it has much smaller potential for parallelization.

123/174

Stability and ill-conditioning

Pivoting possibilities
@ Partial pivoting:
Pgrowth < 2n—1.
@ Complete pivoting choosing the pivot as an entry of the largest
magnitude in the Schur complement.
Parowth < n1/2(2. 31/2 41/3 “nl/(n—l))l/Z'

@ Rook pivoting: the largest magnitude in its row and its column:

Pgrowth < 1.5 n(3/4)logn

@ Taking sparsity into account: threshold partial pivoting
(k) ~1y,,(k)
I?>a,§|aik | <9 gl

where v € (0, 1] is a chosen threshold parameter.
@ Even complete pivoting can be mixed with sparsity considerations:

Markowitz pivoting
124/174

e Symmetric indefinite factorization

125/174

Stability and ill-conditioning

Symmetric indefinite matrix: example

0 1
()
@ 6 = 0 = LDLT with D diagonal does not exist.

@ 6 < 1 = LDLT with D diagonal is not stable since pg;owtr, = 1/06.

@ LDLT factorization generalized to allow D with 1 x 1 and 2 x 2 =
blocks. It preserves symmetry and is nearly as stable as the LU
factorization.

110 1 00\ /1 00\ /110
A=1|11 1]l=(1 1 0)(lo 0o 1)|o 1 1]=LDL".
010 001/ \o 10/ \0o 01

Here D has one 1 x 1 block and one 2 x 2 block.

@ Consider

126/174

Stability and ill-conditioning

Symmetric indefinite: balancing 1 x 1 pivots and 2 x 2 pivots

@ Small growth for 1 x 1 pivot if |axk| (a diagonal entry) is large.
@ If such pivot not found, consider large off-diagonals
@ Consider the inverse of the 2 x 2 block

a b\ ' 1 d —b

b d Cad—b2\-b a
@ = if |a|, |d| small with respect to |b], 2 x 2 pivot may be used.
@ The standard rule balancing the pivots: based on requiring the

same potential maximal growth in a 2 x 2 pivot versus two
consecutive 1 x 1 pivots.

@ This implies an appropriate parameter (1 + 1/17)/8 to choose
between the pivots (see the next slide)

)

Pgrowth < 3n\/2 31/241/3 nl/(n—l)7

127/174

Stability and ill-conditioning

Indefinite factorization: full pivoting

Algorithm (One step of full indefinite pivoting)

s Seta = (1+/17)/8 =~ 0.64

: Find ayi: diagonal entry of maximum size
: Find a;;: off-diagonal entry of maximum size (i < j)

o if|ark| > olai;| then

: else

use [4 4
Qji Qjj
: end if

use axx as 1 x 1 pivot (ready for ax, = 0)

> as 2 x 2 the pivot

@ But sparsity must be also considered!

Stability and ill-conditioning

Indefinite factorization: classical scheme of symmetric partial pivoting

@ The following scheme shows entries sufficient to be checked

d . . A
A c o
o

@)\, 0: maximum absolute value in its row and column, respectively.
@ That is: only two rows and columns of A searched.

@ Less searches: slightly larger growth factor bound than in LU

@ There are stable schemes and threshold extensions.

129/174

Stability and ill-conditioning

Solving ill-conditioned problems
@ a) Preprocessing by diagonal scaling:

S.AS.y=S,b, y=2S "tz

Theorem

Let the matrix A be SPD and let D 4 be the diagonal matrix with entries a;;
(1 <i < n). Then for all diagonal matrices D with positive entries

K(D3Y? AD?) < nzpman (D2 AD™V/2),

where nz,mq. IS the maximum number of entries in a row of A.

130/174

Stability and ill-conditioning

Solving ill-conditioned problems
@ a) Preprocessing by diagonal scaling:

S.AS.y=S,b, y=5 "tz

Theorem

Let the matrix A be SPD and let D 4 be the diagonal matrix with entries a;;
(1 <i < n). Then for all diagonal matrices D with positive entries

K(D3Y? AD?) < nzpman (D2 AD™V/2),

where nz,mq. is the maximum number of entries in a row of A.
@ b) postprocessing: various iterative refinements (IR) like

Algorithm (IR of the solution = of Az = b)

1: Solve Az©® =p > z(© js the initial computed solution
2: fork=0,1,... do

3. Compute r®) =p— Az® > Residual on iteration k
4: Solve Asz®) = (k) > Solve correction equation: using a factorization
5: p*+D) = (k) 4 5z (k)

6: end for

130/174

e Sparse Least Squares and factorizations

131/174

Sparse Least Squares and factorizations

Least squares: factorizations

o Direct methods are relevant even for LS: regular LS: normal
equations: Cholesky

@ Another formulation for LS:

@ The normal equations are equivalent to the linear equations
ATr =0, and r = b — Az that can be expressed as the
(m +n) x (m + n) augmented system (z = r and ¢ = 0).

K()=() wn x=(ar o).

132/174

Sparse Least Squares and factorizations

Least squares: factorizations

o Direct methods are relevant even for LS: regular LS: normal
equations: Cholesky

@ Another formulation for LS:

@ The normal equations are equivalent to the linear equations
ATr =0, and r = b — Az that can be expressed as the
(m +n) x (m + n) augmented system (z = r and ¢ = 0).

£(0)=() W x=(ar).

@ The symmetric indefinite matrix K is non singular if and only if
rank(A) = n: general indefinite solvers

132/174

Sparse Least Squares and factorizations

Least squares: factorizations

@ Direct methods are relevant even for LS: regular LS: normal
equations: Cholesky

@ Another formulation for LS:

@ The normal equations are equivalent to the linear equations
ATr =0, and r = b — Az that can be expressed as the
(m +n) x (m + n) augmented system (z = r and ¢ = 0).

£(0)=() W x=(ar).

@ The symmetric indefinite matrix K is non singular if and only if
rank(A) = n: general indefinite solvers

@ To be more general, consider the regularized LS

(6)= (1)

132/174

. h— A 2 2 2 _ .
min (| zllz + 7 lzllz) = min

Sparse Least Squares and QR factorization

Least squares: two solution approaches so far
@ 1. SPD (Cholesky) factorization of A” A
0 If v > gpnin(A), we have k(AT A ++21) ~ (|| All2/7)?

@ Not a big progress since « should be kept small.

133/174

Sparse Least Squares and QR factorization

Least squares: two solution approaches so far
@ 1. SPD (Cholesky) factorization of A” A
0 If v > gpnin(A), we have k(AT A ++21) ~ (|| All2/7)?

@ Not a big progress since « should be kept small.

@ 2. Symmetric indefinite factorization of K
I A b b I A
(4 220) (2)= @) = (2) = (0) 2= G) r=

0 If v > 0min(A), we have x(K,) = || A|l2/7.

@ Seems to be better, but indefiniteness.

133/174

Sparse Least Squares and QR factorization

Least squares: an additional solution approach

@ Another solution strategy: using another (QR) factorization.

A= @ @) () - @R

@ Q= (Q1 Q2)isorthogonal, R € R™*™ is upper triangular.

134/174

Sparse Least Squares and QR factorization

Least squares: an additional solution approach

@ Another solution strategy: using another (QR) factorization.

A= @ @) () - @R

@ @ = (Q1 Q2)isorthogonal, R € R™*" is upper triangular.

@ There are more ways to orthogonalize A
» Givens rotations

» Householder reflections
» Gram-Schmidt orthogonalization

@ All of them should get the same @ (modulo signs of the diagonal
entries of R)

@ Let us proceed to a sparse A, to see that the fill-in can be

overestimated.
134/174

Sparse Least Squares and QR factorization

Contemporary sparse QR: symbolic phase

@ Consider a symbolic phase predicting R or Q.
@ A Givens rotation G(i, j) applied to 4; ;., and A, ;.,, of A:

cC —S Ai,i:n _ A;,i:n [
(S C) (Aj,i:n) - (A;,zn) ’ Aj’i -0

@ An example that emphasizes sparsity patterns:

Aiin\ _ (* * * * *
Ajin) \x * '

Applying G(i, j) gives

c —s\ (Aiin\ _ [(* * * * % *
s c Aiin) * % * % *

(52)
A;,i:n .

135/174

Sparse Least Squares and QR factorization

Contemporary sparse QR: symbolic phase

cC —S Ai,i:n [k Kk WA *\ A;,i:n
s ¢) \Ajin/) * ok ok ok x) \Al.)

@ The (1,1) entry A} ; seems to remain nonzero (it is the Euclidean

norm of the vector (A;; A;;)T) and the sparsity patterns of
columns 2 to n satisfy

S(Afi11m) = S(Aiir1n) US(Aji11m), 1 <i<n—1.

@ This is the row merge rule. Apparently, significantly more fill-in
than in LU/LL"

136/174

Sparse Least Squares and QR factorization

Contemporary sparse QR: symbolic phase
@ However, the fill-in can be overestimated. Consider a,b # 0

x a b x cca ccb
* *x x| — sa sb x %
* * ok s'ca s'cb x x

* a b
— d'sa —s"s'ca 'sb—s"s'cb x x|.

s"sa+ cd"s'ca §"sb+c's'ch x o«

o Steps: apply G(2,1) with ¢, s to eliminate the (2, 1) entry;apply
G(3,1) with ¢, s’ to eliminate the (3, 1) entry; eliminate the fill-in at
(3,2) by rotation with ¢, s”.

@ We have s"sa + ’s'ca = 0.

@ But this a nonzero multiple of the entry s”sb + ¢”’s'cb at (3, 3).

@ The row merge rule is not able to predict that the (3, 3) entry also

always becomes zero.
137/174

Sparse Least Squares and QR factorization

Contemporary sparse QR: another possibility for symbolic QR

Lemma

S(R) C {prediction of S(R) based on row merge rule } C {prediction
of S(R) based on AT A}.

@ This surprising behavior can be suppressed by considering
structural properties of A, this is not a problem.

@ But still, the QR may not be a progress, structurally. To feel this,
consider

A=QR= ATA=R"Q"TQR=R'R
@ And we have Cholesky of A” A. See our concerns above.
@ As for the Lemma, a practical sparse QR solver may be based on
the pattern of AT A.

@ For example, the multifrontal method that uses C = AT A implicitly.
138/174

Sparse Least Squares and QR factorization

Contemporary sparse QR: multifrontal QR factorization

C86 €88
Co7 C98 Te6 T67 7168
T‘(3) T(S) — T77 T78
36 37
®3) 788
Ta7
€10,3 €10,4
733 T34 T36 T37
C54 C56
T T T
T(l) 7‘(1) 7‘(1) 44 T46 T47
23 26 T27 |4 3) (3)
1 (1) T36 T37
Te6 T67 3)
@ @ ri7 15 crs rss rss |
P
44 Ti6
— Tin T3 Tie "7
8 @ .1 @) C32 C34 C36 T22 T24 T2
co1 co7 |—f Tog Ta6 Tor o5 cas (e
C61 €66 (1 (D) a0 Taa T
Te6 67

139/174

@ Reorderings

140/174

Minimizing the fill-in: reorderings

@ Key problem of factorizations: minimizing the fill-in. Remind:

1 2 3 4 5 1 2 3 4 5
1 /% * * * * 1 /% *
2 [x =% 2 * *
3 * * — 3 * *
4 | = * 4 * ok
5 \x * 5 *x % *x x x

@ Our tools: symmetric permutations: A —+ PAPT

@ Finding a permutation minimizing fill-in is NP complete: heuristics
called fill-reducing orderings.

@ No stability concerns: only sparsity pattern S{A} needed

@ Otherwise: further permutations of A to force factorizability
needed.

141/174

A. Local (greedy) reorderings

@ Two basic greedy heuristics are the minimum degree (MD)
criterion and the minimum fill (MF) criteria.

A.l. Minimum fill-in (MF) criterion
@ Select as the next vertex of G(A) the one that introduce the least
fill-in in G*. Or do it approximatively (AMF).

@ High quality, but the cost of MF can be prohibitive: needed to
check neighbors of neighbors.

A.ll. Minimum degree (MD) criterion

@ Select as the next vertex a vertex of minimum degree in G*. Or do
it approximatively (AMD).

@ MD is the most widely-used local heuristic. Less expensive than
MF.

142/174

Reorderings

A. Local (greedy) reorderings: MD algorithm example

Figure: An illustration of three steps of the MD algorithm. Elimination order:
G?, G* and G*.

143/174

A. Local reorderings: storing and using the fill-in

@ A clique with m vertices has m(m — 1)/2 edges. This cannot be
stored explicitly in the initial space!. G, must be stored implicitly.

@ 4 vertices instead of 6 edges if the clique stored implicitly

@ The cliques stored as lists of neighbors. As the elimination
process progresses, cliques grow and can be merged.

@ If vertices not merged (as blocks) = & (changed according to the
Parter’s rule) expressed as reachable sets in modified elimination
graphs.

144/174

A. Local reorderings: From Parter’s rule to reachable sets

@ Figure: graph G(A). The adjacency sets of the vertices in G* that
result from eliminating vertices V* = {1,2,3} are
adjgi{4} = Reach(4,V*) = {5},

adjge{5} = Reach(5,V*) = {4,6,7},
adjgi{6} = Reach(6,V*) = {5, 7},
adjge{7} = Reach(7,V*) = {5,6,8},
adjgi{8} = Reach(8,V*) = {7}.

Figure: 1, 2, and 3 eliminated in the first three elimination steps (V* = {1, 2, 3}).

145/174

A. Local reorderings: tricks

@ The construction of G¥*1 needs some tricks to make it cheaper.

@ Replication = accumulation of information:
finding and exploiting analogies to the supernodes needed

@ In fact, we must find supernodes without the efficient tools like the
elimination tree.

146/174

A. The first acceleration trick: indistinuishability
Definition
Two different vertices u and v of G are called indistinguishable if
Adje(u) U {u} = Adjc(v) U {v}. (5)
G GV

@ Correspond to supernodes: can be eliminated in any mutual orgtg/q.74

A. Second acceleration trick: degree outmatching

@ Vertex w is said to be outmatched by vertex w if

adjg{u} U{u} C adjg{w} U {w}.

o It follows: degg(u) < degg(w), preserved in G, for v, v # u, w

Figure: An example G in which vertex w is outmatched by vertex u.

148/174

A. Third acceleration trick: Multiple minimum degree (MMD)

T
l

M)

I

@ The mutually non-adjacent can be eliminated at the same time.

149/174

A. Local reorderings: complexity

@ The complexity of the MD algorithms is O(nz(A)n?).
@ The tricks do not change the worst-case bound.

@ Additional trick: limit the search length in reachable sets: AMD
(approximate minimum degree).

@ The complexity of AMD is O(nz(A)n).

@ In practice, runtime of AMD is typically significantly smaller than
that of the MD and MMD approaches.

150/174

B. Global (nested dissection) orderings
o |dentify a small subset of vertices: vertex separator
Definition

Vertex separator of an undirected G = (V, E) is subset S of its
vertices such that the subgraph induced by V' \ S has more

components than G.

@ Order it last, then the separated parts.

» Induced reordering
A 0 AL
A= 0 Ay AL (6)

Asgp Ay Asz
@ Do it recursively

151/174

Initial reordering

B. Global (nested dissection) orderings

@9@
(3] (8} (&)
BIoE
19 @9 2]
10 [16] @3
2] (@) 15
1) (18] a4

® &R G ® G

®B®EFEORE
SIGISISIBIOIS)

®BR®BG®R®

152/174

Initial reordering

B. Global (nested dissection) orderings

)

@)
@)
)
@)

153/174

C. Minimizing fill-in + getting a favourable shape
LI_L L
N i

Band Profile (Envelope)

Frontal method : moving window determines ordering

154/174

C. Minimizing fill-in + getting a favourable shape

@ Why do we do this?
@ Static structures! Motivated by the following theorem:

Theorem
If L is the Cholesky factor of A then

envelope(A) = envelope(L), band(A) = band(L).

@ How to get such shape? Finding a permutation!
» In advance: band, profile (envelope) methods

» On-the fly: frontal method

155/174

C. Minimizing fill-in + getting a favourable shape

@ Getting the permutation in advance: a modified breadth-first
search called CM and RCM (CM plus reversing the permutation).
Both: the same bandwidth, RCM can decrease the envelope.

(200
00
Q6

12 3 45 67 3 715 2 46 6 4 25 17 3
1 * ok * ok 3 * ok 6 * *
2 * ok * * 7 * ok ok 4 * ok ok ok
3 * * 1 * % * % 2 % *x x *
4| x = * ok 5 kK * 5 * * ok
5 * * ok 2 * * ok ok 1 * ok ok k%
6 * * 4 * ok x % 7 * k%
7 * * * 6 * * 3 ko k

156/174

C. Minimizing fill-in + getting a favourable shape

@ Getting the permutation in advance: a modified breadth-first
search called CM and RCM (CM plus reversing the permutation).
Both: the same bandwidth, RCM can decrease the envelope.

(200
00
Q6

12 3 45 67 3 715 2 46 6 4 25 17 3
1 /% * * ok 3 /% 6 /* *
2 | x x * * T * % % 4 * ok ok ok
3 * * 1 %k x % ok 2 % *x x *
4| x = * ok 5 kK * 5 * * ok
5 | % * ok 2 * * ok ok 1 * ok ok k%
6 * * 4 * ok x % 7 * k%
7 * * * 6 * * 3 ko k

157/174

C. Minimizing fill-in + getting a favourable shape

@ Getting the permutation in advance: a modified breadth-first
search called CM and RCM (CM plus reversing the permutation).
Both: the same bandwidth, RCM can decrease the envelope.

(200
00
®

12 3 45 67 3 715 2 46 6 4 25 17 3
1 * ok * ok 3 * ok 6 * *
2 * ok * * 7 * ok ok 4 * ok ok ok
3 * * 1 %k x % ok 2 % *x x *
4| x = * ok 5 kK * 5 * * ok
5 * * ok 2 * * ok ok 1 * ok ok k%
6 * * 4 * ok x % 7 * k%
7 * * * 6 * * 3 ko k

158/174

C. Minimizing fill-in + getting a favourable shape

@ Getting the permutation in advance: a modified breadth-first
search called CM and RCM (CM plus reversing the permutation).
Both: the same bandwidth, RCM can decrease the envelope.

o

o
6,

12 3 45 67 3 715 2 46 6 4 25 17 3
1 * ok * ok 3 * ok 6 * *
2 * ok * * 7 * ok ok 4 * ok ok ok
3 * * 1 %k x % ok 2 % *x x *
4| x = * ok 5 kK * 5 * * ok
5 * * ok 2 * * ok ok 1 * ok ok k%
6 * * 4 * ok x % 7 * k%
7 * * * 6 * * 3 ko k

159/174

Factorization: complexity

Complexity of (some) factorizations

@ Sequential complexity dominated by the factorization, but see our
comments on parallel costs
@ General dense matrices
» Space: O(n?)
» Time: O(n?)
@ General sparse matrices
> Space: n(L) = n+ Y15 (L) — 1)
» The i-th step: n(L.;) — 1 div, 1/2(n(L+;) — 1)n(L+;) multiple-add
> Time totally: 1/2 377 (7(Lwi) — 1) (n(Lui) + 2)

160/174

Complexity

Complexity
@ Band schemes (8 << n)
» Space: O(pn)
» Time: O(3%n)
Band

161/174

Factorization: complexity

Complexity of (some) factorizations

@ Profile/envelope schemes
» Space:), b
» f;: lengths of row segments containing their nonzeros
» Complexity can expressed similarly.

?

Profile (Envelope)

162/174

Factorization: complexity

Complexity of (some) factorizations

@ Nested dissection
@ Planar graphs, 2D finite element graphs (bounded degree)
» Space: O(nlogn)
» Time: O(n?/?)
@ 3D Finite element graphs
» Space: O(n*/?)
» Time: O(n?)

163/174

Q Algebraic preconditioning

164/174

Algebraic preconditioning

Algebraic preconditioning

@ Finite precision fp64 arithmetic: computed factors are not exact.
@ Lower precision arithmetic: even less accuracy

@ Parallelism: sometimes hard to get complete factorization, the
effort to obtain more accurate results can lead to complex coding
and unavoidable inefficiencies: further approximation

@ What about even a stronger relaxation: intentional relaxation of
factorizations

165/174

Algebraic preconditioning

Two basic possibilities
@ Approximate factorizing of A can be interpreted as a splitting of A

A=M—E,

166/174

Algebraic preconditioning

Two basic possibilities
@ Approximate factorizing of A can be interpreted as a splitting of A
A=M-E,

@ The matrix M nonsingular and (easy to invert, we like to invert ©);
E is the error matrix. The iterations are then

c®) — M1Ee® 4+ M1 k=0,1,...: provided z(©

This can be rewritten as
» stationary iterations

2+ = g0 M1 (h— Az®) = 2B (1B =0,1,...

» considered as system transformation, often used with Krylov
space methods

x(approx) — x(app?"o:c) + M—l(b - Ax(approx)).

166/174

Algebraic preconditioning

Splitting rewritten as stationary iterations

Theorem

For any initial () and vector b, the stationary iteration converges if
and only if the spectral radius of (I — M~'A) is less than unity.

@ A= Dy + L+ Uyu: more classical choices for M
» Richardson method: M = w11,
» Jacobi and damped Jacobi methods: M = D 4 and
M = w_lDA,
» Gauss-Seidel and SOR methods: M = D4 + L4 and
M=w"lDy+ Ly (w>0).
» Linear convergence, its guarantees.

167/174

Algebraic preconditioning

Splitting rewritten as stationary iterations: convergence: just reminder

Theorem

If A € R™ " js strongly diagonally dominant then Jacobi method and
Gauss-Seidel method are convergent.

Theorem

If A € R™*"™ js symmetric with positive diagonal D 4 then the Jacobi
method is convergent iff A and 2D 4 — A are positive definite.

Theorem

If A € R™*"™ js symmetric and positive definite then the Gauss-Seidel
method is convergent.

168/174

Algebraic preconditioning

Preconditioning as a system transformation
@ Consider the preconditioned linear system
M Az =M1

Here M~ is applied to A from the left.
@ The linear system can be also preconditioned from the right

AM™ 'y =, z=M"y.

169/174

Algebraic preconditioning

Preconditioning as a system transformation
@ Consider the preconditioned linear system
M YAz = M.
Here M~ is applied to A from the left.
@ The linear system can be also preconditioned from the right
AM~ 1ty =b, r=M1y.
@ Is one of them better? No.

Theorem

Let s and A be positive numbers. Then for any n > 3 there exist
nonsingular n. x n. matrices A and M such that all the entries of
M~'A — I have absolute value less than § and all the entries of
AM~' — I have absolute values greater than A.

169/174

Algebraic preconditioning

Preconditioning as a system transformation
@ Consider the preconditioned linear system
M YAz = M.
Here M~ is applied to A from the left.
@ The linear system can be also preconditioned from the right
AM~ 1ty =b, r=M1y.
@ Is one of them better? No.

Theorem

Let s and A be positive numbers. Then for any n > 3 there exist
nonsingular n. x n. matrices A and M such that all the entries of
M~'A — I have absolute value less than § and all the entries of
AM~' — I have absolute values greater than A.

@ Left/right: to be compatible with the Krylov space accelerator ©
@ Generally cheaper to apply M ~! and A separately.

169/174

Algebraic preconditioning

From direct methods to preconditioning

@ Zoological garden of approaches: structure-based,
threshold-based, memory-based. Algorithms may modify the
standard LU/LDL" scheme.

170/174

Algebraic preconditioning

From direct methods to preconditioning

@ Zoological garden of approaches: structure-based,
threshold-based, memory-based. Algorithms may modify the
standard LU/LDL" scheme.

@ Holy grail for prescribing S(A)?
Theorem

Consider the incomplete LU factorization A + E = LU with sparsity
pattern S{L + U}. The entries of the error matrix E are zero at
positions (i, j) € S{L + U}.

170/174

Algebraic preconditioning

From direct methods to preconditioning

@ Zoological garden of approaches: structure-based,
threshold-based, memory-based. Algorithms may modify the
standard LU/LDL" scheme.

@ Holy grail for prescribing S(A)?
Theorem

Consider the incomplete LU factorization A + E = LU with sparsity
pattern S{L + U}. The entries of the error matrix E are zero at
positions (i, j) € S{L + U}.

@ No. Improvement from an increase of S{L + U} are typically very
slow.

@ So, what to do?

170/174

Algebraic preconditioning

From direct methods to preconditioning

@ Two general theoretical directions
» |. Avoiding breakdowns, possible for special matrices like:

(M-matrix)
4 -1 =1l
-1 4 -1 -1
-1 4 =il
-1 4 -1 -1
A= =il -1 4 -1 -1
-1 -1 4 -1
-1 4 -1
=1l -1 4 -1
-1 -1 4

171/174

Algebraic preconditioning

I. Avoiding breakdowns
@ But factorization may breakdown even in case of Cholesky and/or

low precision
3 -2 2 1 3
-2 3 -2 -2/3 1 5/3
A= S5 o) L= / —6/5 1 » D= / 3/5 :
2 -2 8 2/3 4/5 —2/3 1 16/3
1 3
~ [-2/3 1 = 5/3
L= 65 1 » D= 3/5
2/3 —10/3 1 0

Algorithm (Trial-and-error global shifted incomplete factorization)

fork=0,1,2,...do

1:
2: A+a®I~TLU > Perform incomplete factorization
3: Ifsuccessful, o« = a¥) and return

4 oD —on(k)

5:

end for

y

172/174

Incomplete factorizations

Il. Increasing hope for fast convergence.

@ II. Such hope indicated for model problems by x(M~1A)
» For example, it is possible to go from O(h=2) to O(h~!) by
special constructions and/or reorderings
» For model problems ©

@ Generally, no royal way to efficient preconditioning based on
relaxed factorizations

@ But, still a field with great potential for research.

173/174

Incomplete factorizations

Thank you for your attention!

174/174

	Introduction
	Factorizations
	Symbolic Cholesky factorization
	Sparse matrices and data structures
	(Numerical) Cholesky factorization
	Sparse LU factorization
	Stability, ill-conditioning, indefiniteness
	Symmetric indefinite factorization
	Sparse Least Squares and factorizations
	Reorderings
	Algebraic preconditioning

