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Introductory notes: resources / history

The main text resources are

Jennifer Scott and Miroslav Tůma: Algorithms for sparse linear
systems, Birkhäuser- Springer, 2023, open access.

Jennifer Scott and Miroslav Tůma: Solving large sparse linear
least squares, Acta Numerica, 2025, to appear.

Further resources mentioned in these two texts
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Our problems

Our two problems

Systems of linear algebraic equations

Ax = b, A ∈ Rn×n

Solving the (overdetermined) linear least squares (LS) problems

Given A ∈ Rm×n of rank n, m ≥ n and b ∈ Rm

find x ∈ Rn that minimises ∥b−Ax∥2.

Theorem
x is a solution of this least squares (LS) problem⇐⇒ x satisfies the
n× n normal equations

Cx = AT b, C = ATA

LS −→ one linear system. Enables to discuss LE and LS jointly
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Motivation

LE: two principially different classes of solution methods

I. Direct methods: heirs of Gaussian elimination, formulated as
a) factorization, b) solution by substitution steps

▶ a) Cholesky A→ LLT (A SPD), A→ LU (A factorizable),
indefinite factorizations, QR.

▶ b) the factorized matrix used to find the solution (by
substitution)

An example: Ax = b: A = LU , y = L−1b, x = U−1y

II. Iterative methods
Compute a sequence of approximations x(0), x(1), x(2), . . . that
hopefully converges to the solution x of the linear system.
Various approaches

▶ Stationary iterative methods (linearly convergent)
▶ Krylov subspace methods (typically more efficient)
▶ (Some) convergence theory for both classes of methods

5 / 174
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Motivation

Direct methods and iterative methods once more

Direct methods
▶ Designed to solve the systems of equations.
▶ Properly implemented: they are robust, often predictable accuracy.
▶ They can be expensive, requiring large amounts of memory.

Iterative methods
▶ Designed to approximate (not solve)
▶ This may be an advantage if only an approximate solution is needed
▶ Can be terminated as soon as the required accuracy is achieved
▶ But this may be also a disadvantage (if matrix properties prohibit

achieving the required accuracy, stopping iterations)
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Motivation

Which approach is better? Complexity?

First idea: operation counts
In direct methods it seems to us that most of the work is in the
factorization, less in the substitution steps.

▶ Fully populated A: n2 entries
⋆ 1/3n3 +O(n2) complexity of Cholesky
⋆ 2/3n3 +O(n2) complexity of LU (factorizable A)
⋆ Substitution steps: only O(n2)

In iterative methods this can be less. Like O(n5/2) in the
fully-populated model cases (that fulfill an assumption on the
convergence).

▶ The issue of convergence of iterative methods is much more
complicated, not discussed here
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Motivation

Which approach is better? Complexity?

The complexity issues are more involved: not only due to different
matrix properties, but also due to hardware for computation and
communication

▶ Nowadays, nearly nothing is really sequential

▶ CPU→ a mixture of powerful processors, coprocessors,
cores, GPUs, and so on.

▶ Furthermore, arithmetic operations are much faster than
communication-based operations. And can be even
accelerated by less accurate computation.

All of this helps to push the research on.

The question which class is better to solve our problems is ill-posed
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Motivation

Iterative methods complement approximate direct methods

Direct methods may provide a less accurate solution due to
possible relaxations.

Making solution more accurate: use preprocessing or
postprocessing by an auxiliary iterative method.

Approximate direct methods complement iterative methods

Pure iterative methods converge typically poorly. Or may have a
low final attainable accuracy.

Should be accompanied by a problem transformation based on a
preconditioner. As:

MAx = Mb or AMy = b, y = Mx

Preconditioner M may approximate A or A−1.

Borderline between the use of direct and iterative methods is fuzzy
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Motivation

What else? The structure

Matrix may contain a lot of zeros
Nonzeros in A (left) and its factors (right) look like:
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Motivation

What else? The structure

Matrix may contain a lot of zeros.
Nonzeros in A (left).
Nonzeros in its factors (right) can look like much better if A was
preprocessed by a reordering: A→ PAP T , A→ PAQ.
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Basic Terminology: sparsity

Sparsity: so let us define it

A is a sparse matrix if many of its entries are zero.
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The sparsity pattern: S{A} = {(i, j) | aij ̸= 0, 1 ≤ i, j ≤ n}.
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Basic Terminology: sparsity

Sparsity: more formally

Attempts to formalize the sparsity more precisely like:

Definition
Matrix A ∈ Rm×n is said to be sparse if it has O(min{m,n}) nonzero
entries. Another possibility: if A has row counts bounded by
rmax << n and/or column counts bounded by cmax << m.

Definition
Matrix A ∈ Rm×n is said to be sparse if its number of nonzero entries is
O(n1+γ) for some γ < 1.

Definition
(pragmatic, application-based definition: J.H. Wilkinson) Matrix
A ∈ Rm×n is said to be sparse if the fact that a part of its entries is
equal to zero can be (algorithmically) exploited.
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Motivation

Is the (sparsity) structure really so important?

Our claim is: yes, it is.
But, should be used jointly with other computational concepts.
Let us mention two new and interesting concepts: to show that the
importance of exploiting sparsity is not disappearing.

Concept 1: low-rank approximation

Blocks expressed as products of matrices of low-rank:
B ∈ Rk×l → B = EF T with E ∈ Rk×r and F ∈ Rl×r

The two factors of low rank a) may occupy less memory, b) may
be cheaper in matrix-matrix products (matvecs).
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Motivation

Accelerating by low-rank compression

Often implied by appplications
Like: panel clustering in BEM (Hackbusch, Nowak, 1989), the
multipole method (Greengard, Rokhlin, 1997), mosaic-skeleton
approximations (Tyrtyshnikov, 1996) etc.: an example of a
hierarchical (data-sparse) matrix:
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Motivation

Accelerating by low-rank compression: sparsity still needed

More complex applications: algebraic variations needed.
But then: generalized schemes need exploiting the classical
(blockwise) sparsity outside a specific hierarchical scheme.
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Motivation

Concept 2: Accelerating by low precision computation

Traditionally: single precision (fp32) and double precision (fp64)

Throughout 1990’s, fp32 was not much faster than fp64.

Real breakthrough: (SSE units, Intel, 1999): fp32 significantly
accelerated

Emergence of half precision (fp16) floating-point arithmetic: 2008
revision of the IEEE standard.
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Motivation

Concept 2: Accelerating by low precision computation

fp16 started as storage format, but soon in GPU accelerators. See
discussions in Higham, 2017; Higham, Mary, 2022.
BUT: fp16: limited range (largest positive number is 6.55× 104);
also bfloat16 (Google, tensor processing units, larger range)

Table: Parameters for bfloat16, fp16, fp32, and fp64 arithmetic: the number of
bits, u, smallest positive (subnormal) number xs

min , smallest normalized
positive number xmin, and largest finite number xmax.

Signif. Exp. u xs
min xmin xmax

fp16 11 5 4.88× 10−4 5.96× 10−8 6.10× 10−5 6.55× 104

fp32 24 8 5.96× 10−8 1.40× 10−45 1.18× 10−38 3.40× 1038

fp64 53 11 1.11× 10−16 4.94× 10−324 2.22× 10−308 1.80× 10308

bfloat16 8 8 3.91× 10−3 not used 1.18× 10−38 3.39× 1038
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Motivation

Concept 2: Accelerating by using low precision: Boeing/msc01050

Left: A in standard double precision (fp64)
Right: A in the half precision (fp16)
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In fp16, we get only an approximation
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Motivation

Concept 2: Accelerating by using low precision: Boeing/msc01050

Left: Cholesky factor L in standard double precision (fp64)
Right: Cholesky factor L in the half precision (fp16)
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fp16: similar fill (ratio 2.247 versus 2.534 for fp16)
low precision, but sparsity factorization problems are still here:
they should be considered also here. 23 / 174
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Basic Terminology: sparsity

Rough comparison of extreme cases of dense and sparse A

Dense matrix
dim space dec time (s)

3000 4.5M 5.72
4000 8M 14.1
5000 12.5M 27.5
6000 18M 47.8

Sparse matrix
dim space dec time (s)

10000 40k 0.02
90000 0.36M 0.5

1M 4M 16.6
2M 8M 49.8

Recall the pragmatic definition.
The decision whether to use or not to use depends also on what
we know about the computation.
In sparse direct methods we know a lot.
Clearly, exploiting sparsity is a must. But, the question is how.
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Basic Terminology: blocks

Blocks: why we like them

Contemporary terminology related to computations emphasizes
the most limiting factor.

Algorithms are compute-bound, memory-bound or latency-bound.

Most chips are designed such that dense matrix-matrix multiply,
which typically performs k3 operations on k2 data can run at full
compute throughput

⇓
BLOCKS

We may use large (I.) or small (II.) blocks

25 / 174
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Basic Terminology: blocks

I. Large blocks

Connected to reducibility or input (application)
A ∈ Rn×n is reducible, if it can be permuted as

P TAP =

(
A11 A12

A22

)
,

A11 and A22 are square matrices of dimensions at least 1.
If A is not reducible, it is called irreducible.
A reducible: block factorization/substitution (permutation omitted).(

A11 A12

A22

)(
x1
x2

)
=

(
b1
b2

)
→ x2 = A−1

22 b2, x1 = A−1
11 (b1 −A12x2)

Large blocks can be also a result of a (saddle-point) input A, like:

A =

(
B E
F C

)
,

A lot of specialized approaches. Solving subproblems is not
principially different from standard sparse approaches.
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Basic Terminology: blocks

II. small blocks (only symmetric variant mentioned)

A = (Aib, jb), Aib, jb ∈ Rni×nj , 1 ≤ ib, jb ≤ nb,

that is,

A =


A1,1 A1,2 · · · A1,nb

A2,1 A2,2 · · · A2,nb
...

...
. . .

...
Anb,1 Anb,2 · · · Anb,nb

 .

Assuming nonsingular square blocks Ajb, jb on the diagonal.

Implications

Large blocks: as we have seen above: only an additional
hierarchical level.
Small blocks: Pointwise factorizations can be formulated
blockwise:
entries→ submatrices. Here not reminded, but expected.

27 / 174
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Factorizations

Introduction to factorizations

Traditional way: Gaussian elimination: systematic columnwise
annihilation of entries in the lower triangular part of A.
Formally a sequential multiplications by column elimination
matrices (A factorizable) getting the elimination sequence:

A(1) → A(2) = C1A
(1) → A(3) = C2C1A

(1) → . . .→ A(n) = Cn−1 . . . C1A
(1).

Elementwise, (a11 = a
(1)
11 ̸= 0), the first step C1A

(1) = A(2) is


1

−a
(1)
21 /a

(1)
11 1

−a
(1)
31 /a

(1)
11 1

... 1

−a
(1)
n1 /a

(1)
11 1





a
(1)
11 a

(1)
12 . . . a

(1)
1n

a
(1)
21 a

(1)
22 . . . a

(1)
2n

a
(1)
31 a

(1)
32 . . . a

(1)
3n

...
...

. . .
...

a
(1)
n1 a

(1)
n2 . . . a

(1)
nn


=



a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

0 a
(2)
32 . . . a

(2)
3n

...
...

. . .
...

0 a
(2)
n2 . . . a

(2)
nn


,
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Factorizations

Introduction to factorizations
The k-th partially eliminated matrix is A(k).
The product of inverted column elimination matrices

1

a
(1)
21 /a

(1)
11 1

a
(1)
31 /a

(1)
11 a

(2)
32 /a

(2)
22 1

...
...

... 1

a
(1)
n1 /a

(1)
11 a

(2)
n2 /a

(2)
22

...
... 1


That is, we have the LU factorization

A = A(1) = C−1
1 C−1

2 . . . C−1
n−1A

(n) = LU.

There are more ways differing in relative order of elimination steps
that are the same even in finite precision arithmetic!
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Factorizations

LU written in matrix/vector form: submatrix LU

The first step (k = 1):

C1A =

(
1

−v/a11 I

)(
a11 uT

v A2:n,2:n

)
=

(
a11 uT

A2:n,2:n − vuT /a11

)
,

v =
(
a21, . . . , an1

)T
,

(
l21, . . . , ln1

)T
= v/a11, uT =

(
a12, . . . , a1n

)
.

The (n− 1)× (n− 1) active submatrix

A(2) = S = A2:n,2:n − vuT /a11

is the Schur complement of A with respect to a11.
A is factorizable⇒ S is factorizable, and the process can be
repeated.
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Factorizations

Submatrix LU

The elimination: sequence of rank-one updates applied to the
Schur complements.
After k − 1 steps (1 < k ≤ n):

S(k) =

akk . . . akn
...

. . .
...

ank . . . ann

− k−1∑
j=1

lkj
...
lnj

(
ujk . . . ujn

)
=

a
(k)
kk . . . a

(k)
kn

...
. . .

...
a
(k)
nk . . . a

(k)
nn

 = A
(k)
k:n,k:n.

Schematically:

32 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 46 — #46 i
i

i
i

i
i

Factorizations

Another relative order of operations: Column LU

Consider first j columns of A: they must satisfy(
A1:j−1,1:j−1 A1:j−1,j

Aj:n,1:j−1 Aj:n,j

)
→

(
L1:j−1,1:j−1

Lj:n,1:j−1 Lj:n,j

)(
U1:j−1,1:j−1 U1:j−1,j

ujj

)
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Factorizations

Another relative order of operations: Column LU

Consider first j columns of A: we must have(
A1:j−1,1:j−1 A1:j−1,j

Aj:n,1:j−1 Aj:n,j

)
→

(
L1:j−1,1:j−1

Lj:n,1:j−1 Lj:n,j

)(
U1:j−1,1:j−1 U1:j−1,j

ujj

)

This implies conditions for the two phases of computation (column
of U and L):

U1:j−1,j = L−1
1:j−1,1:j−1A1:j−1,j , ujj = ajj − Lj,1:j−1U1:j−1,j ,

ljj = 1, Lj+1:n,j = (Aj+1:n,j − Lj+1:n,1:j−1U1:j−1,j)/ujj .

The factors can be computed column by column:

1→ . . . j → . . . n

Easy embedding of the row permutation: A→ PA

Scheme by rows: computing columns of AT
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Factorizations

Schemes described as a generic scheme of three nested loops

Algorithm (Generic LU factorization)

1: for ————– do
2: for ————– do
3: for ————– do
4: lik = a

(k)
ik a−1

kk

5: a
(k+1)
ij = a

(k)
ij − lika

(k)
kj

6: end for
7: end for
8: end for

The crucial pointwise operation:

aij = aij − aika
−1
kk akj ≡ aij = aij − likakj

Schemes differ by treating sparsity, vectorization etc.
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Factorizations

Cholesky factorization: also three basic ways

Left-looking schemes (second phase of the column LU)

Right-looking schemes (submatrix scheme that computes only
quantities in L)

But there is also the row scheme based on the first phase (solve)
of the column LU
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Factorizations

Column (left-looking) Cholesky

Algorithm

Column Cholesky factorization: A→ square-root factor L = (lij)
1. for j = 1 : n do
2. Compute an auxiliary vector tj:ntj

...
tn

 =

ajj

...
anj

−
∑

{k|ljk ̸=0}

ljk

ljk
...

lnk

 (1)

3. Get a column of L by scaling tj:nljj
...
lnj

 =
1√
tj

tj
...
tn

 (2)

4. end j
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Factorizations

Cholesky factorization: row scheme

But there is also the row scheme.

The row scheme is based on the first phase (solve) of the column
LU

Easy to implement column permutation A→ AP .
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Factorizations

Factorizations and sparsity

Factorizations of sparse matrices may create new nonzero entries
outside S{A} called fill/fill-in/filled entries

∗ ∗ ∗ ∗
∗

∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 →


∗ ∗ ∗ ∗
∗

∗ f ∗ f f
∗ ∗ ∗ f
∗ f ∗ f ∗


Fill-in means more operations, more memory

39 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 53 — #53 i
i

i
i

i
i

Factorizations

Factorizations and sparsity

Can we expect that some nonzeros become zeros due to
cancellation?

Very rarely.

We assume non-cancellation: the result of adding, subtracting or
multiplying two nonzeros is nonzero again.

This implies:
S{A} ⊆ S{L+ U}.

Non-cancellation implies a possibility to deal with the structure
only using graphs to determine the fill-in (if factorizability
guaranteed ©)

Let us go to see the fill-in results
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Factorizations

Factorizations and sparsity

Can we expect that some nonzeros become zeros due to
cancellation?

Very rarely.

We assume non-cancellation: the result of adding, subtracting or
multiplying two nonzeros is nonzero again.

This implies:
S{A} ⊆ S{L+ U}.

Non-cancellation implies a possibility to deal with the structure
only using graphs to determine the fill-in (if factorizability
guaranteed ©)

Let us go to see the fill-in results
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Factorizations

Simple fill-in results: one step of factorization



k j

k ∗ ∗
∗

i ∗ ∗
∗
∗

 →



k j

k ∗ ∗
∗

i ∗ ∗ f
∗
∗


Summarized as the fill-in lemma: one step of the fill-in

Lemma
Let i, j, k ∈ {1, . . . , n}, step k < min{i, j} ≤ n. Then

a
(k)
ij ̸= 0⇐⇒ a

(k−1)
ij ̸= 0 ∨ (a

(k−1)
ik ̸= 0 ∧ a

(k−1)
kj ̸= 0)
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Fill-in during the factorization: more steps
But we have the sequence (of Schur complements)

S(1) → S(2) → S(3) → . . .→ S(n) = a(n−1)
nn .

With sparsity structures S(S(i)) representing the elimination
graphs

G1 ≡ G(A),G2, . . . ,Gn,Gk = (Vk, Ek)

The fill-in in the sequence is described by the Parter’s rule:

To obtain the elimination graph Gk+1 from Gk, delete vertex k and

add all edges (i
Gk+1

−−−→ j) such that (i Gk

−→ k) and (k
Gk

−→ j).

Vk+1 = Vk \ {k}, Ek+1 = Ek ∪ {(i, j) | i, j ∈ adjGk{k}} \ {(i, k) | i ∈ adjGk{k}}.

The reason that graphs can be used: the non-cancellation
assumption: once created fill-in remains ©
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Factorizations

Fill-in during the factorization: more steps
But we have the sequence (of Schur complements)

S(1) → S(2) → S(3) → . . .→ S(n) = a(n−1)
nn .

With sparsity structures S(S(i)) representing the elimination
graphs

G1 ≡ G(A),G2, . . . ,Gn,Gk = (Vk, Ek)

The fill-in in the sequence is described by the Parter’s rule:

To obtain the elimination graph Gk+1 from Gk, delete vertex k and

add all edges (i
Gk+1

−−−→ j) such that (i Gk

−→ k) and (k
Gk

−→ j).

Vk+1 = Vk \ {k}, Ek+1 = Ek ∪ {(i, j) | i, j ∈ adjGk{k}} \ {(i, k) | i ∈ adjGk{k}}.

The reason that graphs can be used: the non-cancellation
assumption: once created fill-in remains ©
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Factorizations

A (nonsymmetric) example



1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ f ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



2

6

3 4 5

1

2

6

3 4 5

Figure: The original digraph G = G1 (left) and the directed elimination graph G2 (right). The red
dashed lines denote fill edges.
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Factorizations

S(A) symmetric: the adjacency set of vertex k forms a clique.



1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ f ∗ f ∗
4 ∗ ∗ f ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



2

6

3 4 5

1

2

6

3 4 5

Figure: The original undirected graph G = G1 (left) and the obtained graph G2 (right). The red
dashed lines denote fill edges. The vertices {2, 3, 4} become a clique.
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Factorizations

From the Parter’s rule for factors to fill paths in G(A)

But the Parter’s rule is only a local rule. The following theorem
fully characterizes the fill-in in the factors.

Theorem
Let A = LU . Then S(L+ U)ij ̸= 0 if and only if there is a fill-path

i
G(A)

=====⇒
min

j. The fill-paths may not be unique.

Demonstrate this: starting with a path (i, p1, p2, p3, p4, j) in G(A)

i

p1

p2 p3

p4

j

p2 < p3 < p1 < p4 < min(i, j)
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Factorizations

From the Parter’s rule for factors to fill paths in G(A)

But the Parter’s rule is only a local rule. The following theorem
fully characterizes the fill-in in the factors.

Theorem
Let A = LU . Then S(L+ U)ij ̸= 0 if and only if there is a fill-path

i
G(A)

=====⇒
min

j. The fill-paths may not be unique.

Demonstrate this: starting with a path (i, p1, p2, p3, p4, j) in G(A)

i

p1

p3

p4

j

p2 < p3 < p1 < p4 < min(i, j)
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Factorizations

From the Parter’s rule for factors to fill paths in G(A)

But the Parter’s rule is only a local rule. The following theorem
fully characterizes the fill-in in the factors.

Theorem
Let A = LU . Then S(L+ U)ij ̸= 0 if and only if there is a fill-path

i
G(A)

=====⇒
min

j. The fill-paths may not be unique.

Demonstrate this: starting with a path (i, p1, p2, p3, p4, j) in G(A)

i

p1 p4

j

p2 < p3 < p1 < p4 < min(i, j)
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Factorizations

From the Parter’s rule for factors to fill paths in G(A)

But the Parter’s rule is only a local rule. The following theorem
fully characterizes the fill-in in the factors.

Theorem
Let A = LU . Then S(L+ U)ij ̸= 0 if and only if there is a fill-path

i
G(A)

=====⇒
min

j. The fill-paths may not be unique.

Demonstrate this: starting with a path (i, p1, p2, p3, p4, j) in G(A)

i

p4

j

p2 < p3 < p1 < p4 < min(i, j)
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Factorizations

From the Parter’s rule for factors to fill paths in G(A)

But the Parter’s rule is only a local rule. The following theorem
fully characterizes the fill-in in the factors.

Theorem
Let A = LU . Then S(L+ U)ij ̸= 0 if and only if there is a fill-path

i
G(A)

=====⇒
min

j. The fill-paths may not be unique.

Demonstrate this: starting with a path (i, p1, p2, p3, p4, j) in G(A)

i j

p2 < p3 < p1 < p4 < min(i, j)
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Factorizations

From the Parter’s rule for factors to fill paths in G(A)

Symmetric S{A}: a filled entry in position (8, 6) of L because of

the fill-path 8
G(A)⇐====⇒
min

6: 8←→ 2←→ 5←→ 1←→ 6.



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗ ∗





1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗



6

1

345
2

78 6

1

345
2

78
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Factorizations

So far, only implicit results on the fill-in

Too complicated to be exploited algorithmically

Something that is even simpler than the fill paths needed.

The symmetric case: SPD matrix is always factorizable→ using
graphs to model A = LLT .

The dependence: replication of entries among columns.
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Factorizations

So far, only implicit results on the fill-in

Too complicated to be exploited algorithmically

Something that is even simpler than the fill paths needed.

The symmetric case: SPD matrix is always factorizable→ using
graphs to model A = LLT .

The dependence: replication of entries among columns.
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Factorizations

So far, only implicit results on the fill-in

Too complicated to be exploited algorithmically

Something that is even simpler than the fill paths needed.

The symmetric case: SPD matrix is always factorizable→ using
graphs to model A = LLT .

The dependence: replication of entries among columns.
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Factorizations

So far, only implicit results on the fill-in

Too complicated to be exploited algorithmically

Something that is even simpler than the fill paths needed.

The symmetric case: SPD matrix is always factorizable→ using
graphs to model A = LLT .

The dependence: replication of entries among columns.
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Outline

1 Introduction

2 Factorizations

3 Symbolic Cholesky factorization

4 Sparse matrices and data structures

5 (Numerical) Cholesky factorization

6 Sparse LU factorization

7 Stability, ill-conditioning, indefiniteness

8 Symmetric indefinite factorization

9 Sparse Least Squares and factorizations

10 Reorderings

11 Algebraic preconditioning
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Symbolic Cholesky

Column replication: as a sequence



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗
8 ∗ ∗ ∗



Nonzero entries of the lower triangular part
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Symbolic Cholesky

Column replication: as a sequence

f
f



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ f f ∗ ∗
3 ∗ ∗
4 ∗
5 ∗ f ∗
6 ∗ f ∗
7 ∗ ∗ ∗
8 ∗ ∗ ∗



Nonzero entries of the lower triangular part
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Symbolic Cholesky

Column replication: as a sequence

f
f

f
f
f
f



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ f f ∗ ∗
3 ∗ ∗ f f f f
4 ∗
5 ∗ f f ∗
6 ∗ f f ∗
7 ∗ ∗ f ∗
8 ∗ ∗ f ∗



Nonzero entries of the lower triangular part
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Symbolic Cholesky

Column replication formally
First observation:

▶ For any i > j ≥ 1 such that lij ̸= 0

S{Li:n,j} ⊆ S{Li:n,i}. (3)

This is called the column replication principle.

f
f

j i



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ f f ∗ ∗
3 ∗ ∗
4 ∗
5 ∗ f ∗
6 ∗ f ∗
7 ∗ ∗ ∗
8 ∗ ∗ ∗



Nonzero entries of the lower triangular part
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Symbolic Cholesky

Column replication: as a sequence

f
f

f
f
f
f



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ f f ∗ ∗
3 ∗ ∗ f f f f
4 ∗
5 ∗ f f ∗
6 ∗ f f ∗
7 ∗ ∗ f ∗
8 ∗ ∗ f ∗


First row entries of LT are sufficient to guarantee the replication.

They represent a directed acyclic graph (DAG) T (A) ⊆ G(LT ).

T (A): a special case of the transitive reduction of G(LT ) (simplest
DAG that preserves paths in G(LT ).

Equivalently: edges of T (A)↔ first subdiagonal entries of L,
denoted parent(j): parent(j) = min{i | i > j, lij ̸= 0}.
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Symbolic Cholesky

Column replication: as a sequence

f
f

f
f
f
f



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ f f ∗ ∗
3 ∗ ∗ f f f f
4 ∗
5 ∗ f f ∗
6 ∗ f f ∗
7 ∗ ∗ f ∗
8 ∗ ∗ f ∗


First row entries of LT are sufficient to guarantee the replication.

They represent a directed acyclic graph (DAG) T (A) ⊆ G(LT ).

T (A): a special case of the transitive reduction of G(LT ) (simplest
DAG that preserves paths in G(LT ).

Equivalently: edges of T (A)↔ first subdiagonal entries of L,
denoted parent(j): parent(j) = min{i | i > j, lij ̸= 0}.
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Symbolic Cholesky

Column replication: as a sequence

f
f

f
f
f
f



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ f f ∗ ∗
3 ∗ ∗ f f f f
4 ∗
5 ∗ f f ∗
6 ∗ f f ∗
7 ∗ ∗ f ∗
8 ∗ ∗ f ∗


First row entries of LT are sufficient to guarantee the replication.

They represent a directed acyclic graph (DAG) T (A) ⊆ G(LT ).

T (A): a special case of the transitive reduction of G(LT ) (simplest
DAG that preserves paths in G(LT ).

Equivalently: edges of T (A)↔ first subdiagonal entries of L,
denoted parent(j): parent(j) = min{i | i > j, lij ̸= 0}.
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Symbolic Cholesky

Replication of column structures once more

j

i

parent(j)

parent(j)

(a)

j

i

parent(j)

parent(j)

(b)

parent(j)

parent (j)2

parent (j)2

j

i

parent(j)

(c)

parent (j)2

parent (j)2

j

i

parent(j)

parent(j)

(d)

58 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 79 — #79 i
i

i
i

i
i

Symbolic Cholesky

That DAG is a tree or forest, called the elimination tree



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗


1

5

4

2 3

6 7

8

Subtree T (5) includes vertices 1, 2, 3, 4, 5; |T (5)| = 5;
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Symbolic Cholesky

That DAG is a tree or forest, called the elimination tree



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗


1

5

4

2 3

6 7

8

No need to use arrows.
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Symbolic Cholesky

Side-effect of column replication: row replication



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗


1

5

4

2 3

6 7

8

a8,3 ̸= 0⇒ l8,4 ̸= 0⇒ l8,5 ̸= 0 and so on
This is equivalent to passing row fill up the tree due to a8,3 ̸= 0.
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Symbolic Cholesky

Side-effect of column replication: row replication: shown again

parent   (j)parent   (j)

2

parent (j)

parent (j)

j

i

parent(j)

parent(j)

parent (j)

2

l−1l−1

l =

Replication of columns⇒ replication in a particular row.

When such row replication starts? If the first entry belongs to A!
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Symbolic Cholesky

Side-effect of column replication: row replication: shown again

parent   (j)parent   (j)

2

parent (j)

parent (j)

j

i

parent(j)

parent(j)

parent (j)

2

l−1l−1

l =

Replication of columns⇒ replication in a particular row.
When such row replication starts? If the first entry belongs to A!
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Symbolic Cholesky

Necessary and sufficient condition for a fill-in entry

No k ≥ 1 with aik ̸= 0, no replication of nonzeros in row i can start.

Otherwise, there is a nonzero in Ai∗ that starts the row replication.

i

k

j

Theorem
Let A be SPD and let L be its Cholesky factor. If aij = 0 for some
1 ≤ j < i ≤ n then there is a filled entry lij ̸= 0 if and only if there
exists k < j and t ≥ 1 such that aik ̸= 0 and parentt(k) = j.
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Symbolic Cholesky

Necessary and sufficient condition for a fill-in entry

No k ≥ 1 with aik ̸= 0, no replication of nonzeros in row i can start.
Otherwise, there is a nonzero in Ai∗ that starts the row replication.

i

k

j

Theorem
Let A be SPD and let L be its Cholesky factor. If aij = 0 for some
1 ≤ j < i ≤ n then there is a filled entry lij ̸= 0 if and only if there
exists k < j and t ≥ 1 such that aik ̸= 0 and parentt(k) = j.
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Symbolic Cholesky

Necessary and sufficient condition for a fill-in entry

No k ≥ 1 with aik ̸= 0, no replication of nonzeros in row i can start.
Otherwise, there is a nonzero in Ai∗ that starts the row replication.

i

k

j

Theorem
Let A be SPD and let L be its Cholesky factor. If aij = 0 for some
1 ≤ j < i ≤ n then there is a filled entry lij ̸= 0 if and only if there
exists k < j and t ≥ 1 such that aik ̸= 0 and parentt(k) = j.
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Symbolic Cholesky

Taking all replications in row i, we have its structure in L.

i

k k’ k’’

k’’’

The subgraph of T (A) determines it
▶ Detached by k, k′, k′′ and k′′′ from below (corresponding to

nonzeros ai,k, ai,k′ , ai,k′′ and ai,k′′′), by i from above.
▶ called the i-th row subtree of T (A).

Its vertices precisely determine nonzeros in the i-th row of L.
But, for factorization we may prefer to know column structure of L

64 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 88 — #88 i
i

i
i

i
i

Symbolic Cholesky

It would be nice to know column sparsity patterns of L as well

Repetition: Row structures: going up T (A) from nonzeros of A
(k, k′, k′′ and k′′′).



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗


1

5

4

2 3

6 7

8

Column structures: merging column lists: colL{j} = adjG(A){T (j)}
e.g., colL{5} = adjG(A)(1) ∪ adjG(A)(2) ∪ adjG(A)(3) ∪ adjG(A)(5)

Up the tree. This is clear, but implementation may be funny.
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Symbolic Cholesky

It would be nice to know column sparsity patterns of L as well

Repetition: Row structures: going up T (A) from nonzeros of A
(k, k′, k′′ and k′′′).



1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗


1

5

4

2 3

6 7

8

Column structures: merging column lists: colL{j} = adjG(A){T (j)}
e.g., colL{5} = adjG(A)(1) ∪ adjG(A)(2) ∪ adjG(A)(3) ∪ adjG(A)(5)

Up the tree. This is clear, but implementation may be funny.
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Symbolic Cholesky

Getting column structures more efficiently

First define: A labeling of the vertices of a tree (and, more
generally, in a DAG) is a topological ordering if, for all i and j,
j ∈ descT {i} implies j < i

3

4 1

25

6

7

1

2 3

45

6

7

Apparently, the second labeling is better.
Why? It localizes. →
S(L) by columns is obtained by merging columns, the merged
columns should not wait too long to be merged again, in order to
use small intermediate memory.
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Symbolic Cholesky

Getting column structures more efficiently

First define: A labeling of the vertices of a tree (and, more
generally, in a DAG) is a topological ordering if, for all i and j,
j ∈ descT {i} implies j < i

3

4 1

25

6

7

1

2 3

45

6

7

Apparently, the second labeling is better.
Why? It localizes. →
S(L) by columns is obtained by merging columns, the merged
columns should not wait too long to be merged again, in order to
use small intermediate memory.
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Symbolic Cholesky

All topological orderings are nice

Sparsity patterns of the Cholesky factors of A and PAP T can be
different, but the amount of fill-in is the same.

Theorem
Let S{A} be symmetric. If P is the permutation matrix corresponding
to a topological reordering of the elimination tree T of A then the filled
graphs of A and PAP T are isomorphic.

Topological orderings do not change fill-in size
In the other words, the amount of fill-in is invariant under the class
of topological reorderings of the elimination tree.
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Symbolic Cholesky

... are nice. But, some topological orderings are nicer: postordering

A topological ordering of T is a postordering if the vertex set of
any subtree T (i) (i = 1, . . . , n) is a contiguous sublist of 1, . . . , n.

1

2 3

54

6

7

3

4 2

15

6

7

Postordering is even more localizing labeling.
Needed in fast algorithms.
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Symbolic Cholesky

Ooops. We still do not have the elimination tree. How to get it?

To find T (A), we just mimick the row replication: scan A by rows
for i = 1, . . . , n− 1 and go up the constructed part of T (A) to
attach i as a temporary root.

i

k k’ k’’

k’’’

During the search if the i-th row, vertex i is either put on the top of
the current structure or added as an isolated vertex if not
connected to the rest of T (A) yet.
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Symbolic Cholesky

Constructing elimination tree: complexity

A complexity problem
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗




∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ f f f f
∗ f ∗ f f f
∗ f f ∗ f f
∗ f f f ∗ f
∗ f f f f ∗


T (A): parent(6) = 0; parent(i) = i+ 1, i = 1, . . . , 5.
For each i we start from ai1 and attach i at the top of the partial T :
O(n2) complexity
But, improvements lead to the nearly linear complexity of getting
T (A).
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Symbolic Cholesky

What else: blocks

They look like this. In L! They are called the supernodes.

* * * *
* * * *
* * * *
* * * *

*
*

*
*

*
*
*

*
* *s+t−1

s

Replication principle increases their probability.
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Symbolic Cholesky

Supernodes and efficient computation
the loop over columns of the updating supernode can be unrolled
to save memory references (dense BLAS2)
parts of the updating supernode can be used for blocks of
updated supernode (dense BLAS3)
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Symbolic Cholesky

Supernodes: block-based elimination

Supernodes imply the supernodal elimination (assembly) tree.



1 2 3 4 5 6 7 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗
7 ∗ ∗ f ∗ f ∗
8 ∗ ∗ ∗ ∗ ∗ f ∗ f
9 ∗ ∗ ∗ ∗ f ∗

 1

2

3 5

4 6

7

8

9

4; {5, 7, 8}

2; {3, 4, 8}

1; {1, 2, 8, 9}

3; {4, 7, 8}

5; {6, 7, 8, 9}

Their important type can be found in a nearly linear complexity.
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Symbolic Cholesky

Independence of subtrees: parallelism at hand

Theorem
Consider the elimination tree T and the Cholesky factor L of A. Let
T (i) and T (j) be two vertex-disjoint subtrees of T . Then for all
s ∈ T (i) and t ∈ T (j) the entry lst of L is zero.

t

s

Of course, lst = 0. Otherwise t would have to be ancestor of s or
vice versa.

Column structures and columns can be merged independently.
Contradiction with row replication.
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Outline

1 Introduction

2 Factorizations

3 Symbolic Cholesky factorization

4 Sparse matrices and data structures

5 (Numerical) Cholesky factorization

6 Sparse LU factorization

7 Stability, ill-conditioning, indefiniteness

8 Symmetric indefinite factorization

9 Sparse Least Squares and factorizations

10 Reorderings

11 Algebraic preconditioning
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Sparse vectors and matrices in a computer

Sparse data (matrix/row/column) in a computer: I. dynamic formats

a) Coordinate (or triplet format for data: individual entries of A
held as triplets (i, j, aij), where i is the row index and j is the
column index of the entry aij ̸= 0; similar for vectors

b) Linked list - based format: stores data as linked items

1 1. 2 -2. 4 -3. 6 5. 7 3.

Linked lists can be cyclic, one-way, two-way, etc., can be
embedded into a larger array: emulated dynamic behavior
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Sparse vectors and matrices in a computer

Sparse matrix storage: II. static formats

CSR (Compressed Sparse Row) static format. The column
indices compressed in the array colindA by rows. Sorted or
unsorted. CSC: variant by columns.



1 2 3 4 5

1 3. −2.
2 1. 4.
3 −1. 3. 1.
4 1.
5 7. 6.

.
Indices 1 2 3 4 5 6 7 8 9 10

rowptrA 1 3 5 8 9 11
colindA 1 4 2 5 1 3 5 4 2 5
valA 3. -2. 1. 4. -1. 3. 1. 1. 7. 6.

If A is symmetric, only the lower (or upper) triangular part stored.
Possible to store only S{A} and not numerical values.
Useful: static, theory helps to use them efficiently
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Sparse vectors and matrices in a computer

Sparse matrix storage: static versus dynamic formats

dynamic data structures:
▶ – more flexible but this flexibility might not be needed
▶ – difficult to vectorize
▶ – difficult to keep spatial locality of rows and columns
▶ – used preferably for storing vectors

static data structures:
▶ – ad-hoc insertions/deletions should be avoided (better

algorithms)
▶ – much simpler to vectorize / utilize cache
▶ – efficient access to rows/columns
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Sparse vectors and matrices in a computer

Simulating dynamic storage formats by static ones

Dynamic storage formats can be simulated by

▶ adding to CSR/CSC an elbow space for fill-in entries

1 3. 7. 2 -2. -5. 4 -3. 6 5. 4. 7 3. 1.

▶ A mechanism to compress/extend such structure needed.
▶ Useful for approximate factorization with limited fill-in.
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Outline

1 Introduction

2 Factorizations

3 Symbolic Cholesky factorization

4 Sparse matrices and data structures

5 (Numerical) Cholesky factorization

6 Sparse LU factorization

7 Stability, ill-conditioning, indefiniteness
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Cholesky Factorization

Sparse Cholesky factorization: conceptual comments

Efficient symbolic phase based on T : explained:
▶ Row/column counts of L known→ storage can be allocated

▶ Postordering enables a lot of other efficient algorithms

▶ Blocks: supernodes
▶ Technical tricks as splitting large supernodes into smaller

panels to embed them into computer caches

Numerical factorization: new important feature→ more
communication: this is described by a communication graph: DAG
(directed acyclic)
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Cholesky Factorization

Numerical Cholesky factorization: from operations to tasks

a) b) c)

cdiv(k): scaling column k by the square root of the diagonal entry
cmod(j, k): column j modified by a multiple of column k

Algorithm
Sparse column (left-looking) Cholesky
1: for j = 1 : n do
2: for k ∈ Struct(Lj∗) do ▷ All of them !!!!!!!
3: cmod(j, k)
4: end for
5: cdiv(j)
6: end for

82 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 108 — #108 i
i

i
i

i
i

Cholesky Factorization

Numerical Cholesky factorization: from operations to tasks

a) b) c)

cdiv(k): scaling column k by the square root of the diagonal entry
cmod(j, k): column j modified by a multiple of column k

Algorithm
Sparse submatrix (right-looking) Cholesky
1: for k = 1 : n do
2: cdiv(k)
3: for j ∈ Struct(L∗k) do
4: cmod(j, k)
5: end for
6: end for
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Cholesky Factorization

Splitting Cholesky factorization into tasks

a) b) c)

cdiv(k): scaling column k by the square root of the diagonal entry
cmod(j, k): column j modified by a multiple of column k

cmod(k,1) cmod(k,2)) . . . cmod(k,k-1)

cdiv(k)

cmod(k+1,k) cmod(k+2,k) . . . cmod(n,k)

84 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 110 — #110 i
i

i
i

i
i

Cholesky Factorization

Large-grain column (left-looking) communication model

1

2 3

4

5

6 

1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ f
5 ∗ ∗ ∗ ∗
6 ∗ f ∗ ∗



cdiv(2) cdiv(3)

cmod(4,2) cmod(4,3)

cdiv(1) cdiv(4)

cmod(5,1) cmod(5,4)

cdiv(5)

cmod(6,5) cmod(6,4) cmod(6,3)

cdiv(6)

Tcol(1)

Tcol(2) Tcol(3)

Tcol(5)

Tcol(4)

Tcol(6)
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Cholesky Factorization

Large-grain submatrix (right-looking) communication model

1

2 3

4

5

6 

1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ f
5 ∗ ∗ ∗ ∗
6 ∗ f ∗ ∗



cdiv(2) cdiv(3)

cmod(4,2) cmod(4,3) cmod(6,3)Tsub(1)

Tsub(2) Tsub(3)

Tsub(4)

Tsub(5) Tsub(6)

cdiv(1) cdiv(4)

cmod(5,1) cmod(5,4) cmod(6,4)

cdiv(5)

cmod(6,5)

cdiv(6)
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Cholesky Factorization

Using supernodes: enhancing parallel processing

Arithmetic of dense trapezoidal matrices. Sophisticated mappings
among them.

Dependencies captured by the communication (dependency)
DAG.
The tree parallelism.
Block arithmetic.
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Cholesky Factorization

Variations of the Cholesky factorization: sparsity and supernodes

Left-looking approach:
▶ Dependency DAG
▶ Block arithmetic.

Right-looking approach:
▶ Dependency DAG
▶ A specific popular approach: uses the supernodal elimination

tree for dependencies: the multifrontal method
▶ High level of memory efficiency due to computational locality:

contributions to the Schur complement kept aside in a stack
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Cholesky Factorization

Multifrontal method: just sketching: updates put on a stack



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗

 10

108

8

10

108

8

1

8

10

1 8 10

stack

stack
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Cholesky Factorization

Multifrontal method: just sketching: updates put on a stack



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8
10

102

2

10

10

10

10

stack

stack
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Cholesky Factorization

Multifrontal method: just sketching: updates put on a stack



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

10

7

7

10

10

stack

stack

10
10

3

3

7

7
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Direct methods: Multifrontal method

Multifrontal method: just sketching: updates put on a stack



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

7
7

7
7

stack

stack

10

4

4

7

7
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Cholesky Factorization

Multifrontal method: just sketching: updates put on a stack



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

6

6 9

9

6

6 9

9
stack

stack

10

7
7

5

5 6

6

9

9
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Cholesky Factorization

Multifrontal method: just sketching: updates put on a stack



∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ f ∗

∗ ∗ ∗ ∗ f
∗ ∗ ∗

∗ f ∗ ∗ f
∗ ∗ ∗ ∗ f ∗ f ∗



10

108

8

10

10

7

7

10

6

6 9

9

6

6 9

9

10

109

9

10

109

9

stack

10

7
7

+

stack

6

6 10

10
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Cholesky Factorization

Multifrontal method: another example matrix



1 2 3 4 5 6 7 8

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗
6 ∗ ∗ f ∗ ∗
7 ∗ f f f ∗
8 ∗ ∗ ∗ ∗


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Cholesky Factorization

Multifrontal method: details

6, 7, 8

3, 4

1 2

5

a66 + v
(3)
66

v
(3)
76 a77 + v

(3)
77

a86 a87 a88 + v
(5)
88

l66
l76 l77
l86 l87 l88

a33 + v
(1)
33

a43 a44 + v
(2)
44

v
(1)
63 a64 + v

(2)
64 v

(1)
66 + v

(2)
66

v
(1)
73 v

(1)
76 v

(1)
77

l33

l43 l44

l63 l64 v
(3)
66

l73 l74 v
(3)
76 v

(3)
77

a11
a31 0
a61 0 0
a71 0 0 0

l11

l31 v
(1)
33

l61 v
(1)
63 v

(1)
66

l71 v
(1)
73 v

(1)
76 v

(1)
77

a22
a42 0
a62 0 0

l22

l42 v
(2)
44

l62 v
(2)
64 v

(2)
66

a55
a85 0

l55
l85 v

(5)
88
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Cholesky Factorization

Sparse Cholesky factorizations: up-looking factorization

An alternative for sparse matrices is to compute L one row at a
time. This is sometimes called an up-looking factorization.
Asymptotically optimal, but difficult to incorporate high level BLAS.
Also an efficient symbolic phase possible.
High potential for approximate factorizations

97 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 123 — #123 i
i

i
i

i
i

Outline

1 Introduction

2 Factorizations

3 Symbolic Cholesky factorization

4 Sparse matrices and data structures

5 (Numerical) Cholesky factorization

6 Sparse LU factorization

7 Stability, ill-conditioning, indefiniteness

8 Symmetric indefinite factorization

9 Sparse Least Squares and factorizations

10 Reorderings

11 Algebraic preconditioning

98 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 124 — #124 i
i

i
i

i
i

Sparse LU: models and methods

LU factorization and graphs and methods

Differences with respect to Cholesky (roughly):

▶ Two factors: more general graph models (directed, bipartite)
needed to describe A and the factors

▶ Problems with factorizability: symbolic and numerical steps
cannot be always separated

▶ Due to this, sometimes stronger assumptions needed,
sometimes on-the-fly changes: pivoting
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Sparse LU factorization of generally nonsymmetric
matrices

LU factorization: first symbolic model: DAGs



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ f
5 ∗ f ∗
6 ∗ ∗ f f f ∗


Directed acyclic graphs for the factors capture their structure. We use
G(LT ) (L by columns, left) and G(U) (U by rows, right).

1

3

2

4 5

6

1

3

2

4
5

6
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Sparse LU: models and methods

LU factorization and DAGs: alternating replications



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗





1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ f ∗ ∗
4 ∗ f ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ f ∗





1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ f ∗ f ∗ f
4 ∗ f f ∗ f
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ f f f ∗



Alternating column and row replication (in the submatrix model).
Left: A. Centre: showing one column replication. Right: also a row
replication.
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Sparse LU: models and methods

Recursive alternating replications

Symmetric factorization: the recursive replications driven by the
parents, subgraph of G(LT ).

In LU it is more interesting ©:

▶ for columns of L: directed paths in U are used

▶ for rows of U : directed paths in G(LT ).
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Sparse LU: models and methods

Column replication in LU: example

f
f

f

f
f

f

f

f

f
f

f

f

f

Nonzero entries of the lower triangular part
Nonzero entries of the strict upper triangular part
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Sparse LU: models and methods

Column replication in LU: example

f
f

f

f
f

f

f

f

f
f

f

f

f

Nonzero entries of the lower triangular part
Nonzero entries of the strict upper triangular part
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Sparse LU: models and methods

Column replication in LU: example

f
f

f

f
f

f

f

f

f
f

f

f

f

Nonzero entries of the lower triangular part
Nonzero entries of the strict upper triangular part
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Sparse LU: models and methods

Sparse LU: replications: funny game to detect paths

The path 1→ 3→ 5→ 6 in G(U). It implies the fill-in in L, first in
column 3, then in columns 5 and 6.
2→ 4→ 5→ 6 in G(LT )⇒ fill-in at (4, 7), (5, 7) and (6, 7) in U .



1 2 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗





1 2 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ f
5 ∗ ∗ f f ∗ ∗ f
6 ∗ f ∗ ∗ f
7 ∗ f f f ∗



1

2

3

4

5
6

7

1

2

3

4

5
6

7

1

2

3

4

5
6

7
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Sparse LU: models and methods

Something other than bothering with paths needed

To employ G(LT ) and G(U) in efficient algorithms, they need to be
simplified.

They must be sparser and preserve reachability (transitive
reduction adds also the edge set minimality condition).

Remind: the elimination tree T is a transitive reduction of G(LT ).

In LU, the analogy are transitive reductions G(LT ) and G(U).
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Sparse LU factorization of generally nonsymmetric
matrices

Transitive reductions of G(LT ) and G(U)



1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗





1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ f
5 ∗ f ∗
6 ∗ ∗ f f f ∗



1

3

2

4 5

6

1

3

2

4
5

6

1

3

2

4 5

6

1

3

2

4
5

6
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Sparse LU: models and methods

Transitive reduction may be expensive to obtain

Obtaining exact transitive reductions of G(LT ) and G(U) can be
expensive on-the-fly due to the mutual dependency of the DAGs.

Instead, approximate reductions without the minimality condition
may be computed. additional nonzeros do not make harm.

We will call them equireachable DAGs (not fully transitively
reduced DAGs).
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Sparse LU: models and methods

Transitive reduction may be expensive to obtain

Obtaining exact transitive reductions of G(LT ) and G(U) can be
expensive on-the-fly due to the mutual dependency of the DAGs.

Instead, approximate reductions without the minimality condition
may be computed. additional nonzeros do not make harm.

We will call them equireachable DAGs (not fully transitively
reduced DAGs).
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Sparse LU: models and methods

Equireachability: example

Figure depicts G(U) and G′(U) for the matrix in Figure above.

1 5

3

6 1 5

3

6

2 7

4

2 7

4

Figure: The DAG G(U) (left) and G′(U) which is equireachable with G(U)
(right).

The edge (3, 6) is not in the transitive reduction.
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Sparse LU: models and methods

Column sparsity patterns (for L)

Schur complement description

S{Lj:n,j} = S{Aj:n,j}
⋃

k<j,ukj ̸=0

S{Lj:n,k}, 1 ≤ j ≤ n.

As in the symmetric case where the patterns are merged up T (A),
not all the terms in this union are needed to get S{Lj:n,j}.
Theorem shows this merging formally:

Theorem
If G′(U) is equireachable with G(U) then

S{Lj:n,j} = S{Aj:n,j}
⋃

(k→j)∈E(G′(U))

S{Lj:n,k}, 1 ≤ j ≤ n.

Those in an equireachable graph are sufficient.
Similarly for sparsity patterns of the rows of U .
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Sparse LU: models and methods

Getting an equireachable DAG: pruning of the elimination DAGs

Theorem
If for some j < s both lsj ̸= 0 and ujs ̸= 0, then there are no edges
(j → k) with k > s in the transitive reductions of G(U) and G(LT ).

−→

Pruning in G(LT ): green and blue nodes represent edges.
lkj ̸= 0 and ujs ̸= 0 imply lks ̸= 0: k → s⇒ The green ones can be
removed.
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Sparse LU: models and methods

Another graph model: column elimination tree

An attractive idea for constructing S{L+ U} is based on using the
column elimination tree T (ATA).

Theorem

Assume all the diagonal entries of A are nonzero and let L̂L̂T be the
Cholesky factorization of ATA. Then for any row permutation matrix P
such that PA = LU

S{L+ U} ⊆ S{L̂+ L̂T }.

Very strong result (theoretically).
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Sparse LU: models and methods

The column elimination tree

A potential problem with the column elimination tree is that:

S{ATA} can have significantly more nonzero entries than
S{L+ U}.

An extreme example is when A has one or more dense rows
because ATA is then fully dense.

So, using it or not using it, it depends.
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Sparse LU: models and methods

The column elimination tree

A potential problem with the column elimination tree is that:

S{ATA} can have significantly more nonzero entries than
S{L+ U}.

An extreme example is when A has one or more dense rows
because ATA is then fully dense.

So, using it or not using it, it depends.
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Sparse LU: models and methods

Column elimination tree: example

Standard elimination tree T (A).



1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ f ∗
3 ∗ ∗
4 ∗ ∗ ∗ f ∗
5 ∗ ∗ f ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗ f ∗


1 2

34

5 6

7
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Sparse LU: models and methods

The elimination tree T (ATA): much more dependencies, much
less parallelism.



1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ f ∗ ∗ ∗
4 ∗ ∗ f ∗ ∗ f ∗
5 ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗ ∗ ∗


1

2

3

4

5

6

7
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Sparse LU: models and methods

Other related issues: similar to Cholesky

We can define supernodes (supernodal structure in L and U ).
Some compatibility between the factors is needed. Not mentioning
the danger of pivoting.

We can use a modified multifrontal method

Typically distinguishing A with a nearly symmetric pattern from
other situations.

Note that the factorizability is not generally guaranteed.
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Sparse LU: preprocessing to get full transversal

Preprocessing for LU

There exist preprocessing techniques that may alleviate problem
of expensive LU.

I. Permuting nonzeros to the diagonal of A

This can be achieved by a nonsymmetric permutation like
A→ AQ

Terminology: The set of the diagonal entries of A is called the
transversal.

If A is nonsingular (even structurally only) then it can be
nonsymmetrically permuted to have the full transversal.
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Sparse LU: preprocessing to get full transversal

Preprocessing for LU: I. getting full transversal



1′ 2′ 3′ 4′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

2′

4′

1′

3′

Just a column (or row) permutation is needed.
An algorithm to be used: bipartite graph matching
It can consider also sizes of nonzero values: still cheap.
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Sparse LU: preprocessing to get full transversal

Preprocessing for LU: I. getting full transversal



1′ 2′ 3′ 4′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

2′

4′

1′

3′

Just a column (or row) permutation is needed.
An algorithm to be used: bipartite graph matching
It can consider also sizes of nonzero values: still cheap.
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Sparse LU: preprocessing to get full transversal

Preprocessing for LU: I. getting full transversal



1′ 2′ 3′ 4′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗



6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

2′

4′

1′

3′

Just a column (or row) permutation is needed.
An algorithm to be used: bipartite graph matching
It can consider also sizes of nonzero values: still cheap.
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Another preprocessing step: II. get a BTF shape

Preprocessing for LU: II. block triangular form

When we can do this? If A is reducible.
Remind that A is said to be reducible if there is a permutation
matrix P such that

PAP T =

(
Ap1,p1 Ap1,p2

0 Ap2,p2

)
,

where Ap1,p1 and Ap2,p2 are non trivial square matrices (that is,
they are of order at least 1).

Why do we do this? To be more happy ©:
factorize only diagonal blocks⇒ do solves only with blocks.
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Another preprocessing step: II. get a BTF shape

Preprocessing for LU: II. block triangular form

When we can do this? If A is reducible.
Remind that A is said to be reducible if there is a permutation
matrix P such that

PAP T =

(
Ap1,p1 Ap1,p2

0 Ap2,p2

)
,

where Ap1,p1 and Ap2,p2 are non trivial square matrices (that is,
they are of order at least 1).
Why do we do this? To be more happy ©:
factorize only diagonal blocks⇒ do solves only with blocks.
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Sparse LU: preprocessing to get BTF shape

Permutation to BTF: getting strong components
An example of five SCCs: {p, q, r}, {s, t, u}, {v}, {w}, {x}.

u w

t

s

v

q

r

p

x

s5

s4

s3

s1

s2

Shrinking the strong components: DAG. And the DAG can be
always ordered to provide a block upper triangular matrix (blocks
correspond to the strong components)
The transformation is a vertex relabelling. This is a symmetric
permutation A→ PAP T .
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Stability and ill-conditioning

Backward stability and ill-conditioning: standard points

Consider getting factors as (L,U) = g(A). Two different notions.

Backward stable algorithm: the computed factors (L̂, Û) are the
exact solution of (L̂, Û) = g(A+∆A) and ∆A (the backward error)
is “small” for all possible inputs A.
The problem (L,U) = g(A) is ill-conditioned if small perturbations
in A can lead to large changes in (L̂, Û). The condition number
then measures sensitivity of the output to the function input.

Observation
Backward stability is a property of the computational algorithm. To
compute solutions with a small backward error we need to consider
stable algorithms. Ill-conditioning is a property of input problem data.
To suppress the ill-conditioning, we need to transform the problem (a
priori or a posteriori)
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Stability and ill-conditioning

Backward stability and ill-conditioning: standard points

Consider getting factors as (L,U) = g(A). Two different notions.
Backward stable algorithm: the computed factors (L̂, Û) are the
exact solution of (L̂, Û) = g(A+∆A) and ∆A (the backward error)
is “small” for all possible inputs A.

The problem (L,U) = g(A) is ill-conditioned if small perturbations
in A can lead to large changes in (L̂, Û). The condition number
then measures sensitivity of the output to the function input.

Observation
Backward stability is a property of the computational algorithm. To
compute solutions with a small backward error we need to consider
stable algorithms. Ill-conditioning is a property of input problem data.
To suppress the ill-conditioning, we need to transform the problem (a
priori or a posteriori)
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Stability and ill-conditioning

Backward stability and ill-conditioning: standard points

Consider getting factors as (L,U) = g(A). Two different notions.
Backward stable algorithm: the computed factors (L̂, Û) are the
exact solution of (L̂, Û) = g(A+∆A) and ∆A (the backward error)
is “small” for all possible inputs A.
The problem (L,U) = g(A) is ill-conditioned if small perturbations
in A can lead to large changes in (L̂, Û). The condition number
then measures sensitivity of the output to the function input.

Observation
Backward stability is a property of the computational algorithm. To
compute solutions with a small backward error we need to consider
stable algorithms. Ill-conditioning is a property of input problem data.
To suppress the ill-conditioning, we need to transform the problem (a
priori or a posteriori)
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Stability and ill-conditioning

Backward stability and ill-conditioning: standard points

Consider getting factors as (L,U) = g(A). Two different notions.
Backward stable algorithm: the computed factors (L̂, Û) are the
exact solution of (L̂, Û) = g(A+∆A) and ∆A (the backward error)
is “small” for all possible inputs A.
The problem (L,U) = g(A) is ill-conditioned if small perturbations
in A can lead to large changes in (L̂, Û). The condition number
then measures sensitivity of the output to the function input.

Observation
Backward stability is a property of the computational algorithm. To
compute solutions with a small backward error we need to consider
stable algorithms. Ill-conditioning is a property of input problem data.
To suppress the ill-conditioning, we need to transform the problem (a
priori or a posteriori)
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Stability and ill-conditioning

Sidestep: using the inverse instead of factorization

No stability results (in contrast to factorization and solve): The
computed inverse is typically not the exact inverse of a nearby
matrix A+∆A for any small perturbation ∆A.
Impractical to compute and store A−1, regardless of how sparse A
is: see below: the matrix sparsity strikes back.

Theorem
A irreducible⇒ the sparsity pattern S{A−1} is fully dense.

This is the reason why inverses of A are not much used.
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Stability and ill-conditioning

Sidestep: using the inverse instead of factorization

No stability results (in contrast to factorization and solve): The
computed inverse is typically not the exact inverse of a nearby
matrix A+∆A for any small perturbation ∆A.
Impractical to compute and store A−1, regardless of how sparse A
is: see below: the matrix sparsity strikes back.

Theorem
A irreducible⇒ the sparsity pattern S{A−1} is fully dense.

This is the reason why inverses of A are not much used.
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Stability and ill-conditioning

Improving the backward stability (and forcing factorizability)

At step k of LU, the computed a
(k)
kk (pivot) (1 ≤ k < n) should be

nonzero (to keep factorizability) and not of a small magnitude (to
keep the growth in factors small).
The growth can be measured by the growth factor:

ρgrowth = max
i,j,k

( |a(k)ij | / |aij | ). (4)

Simple row interchanges: A→ PA called partial pivoting ensures

|lik| ≤ 1 =⇒ max
i>k
|a(k)ik | ≤ |a

(k)
kk |.

Partial pivoting may not be sufficient. Complete pivoting is better,
but it has much smaller potential for parallelization.
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Stability and ill-conditioning

Pivoting possibilities

Partial pivoting:
ρgrowth ≤ 2n−1.

Complete pivoting choosing the pivot as an entry of the largest
magnitude in the Schur complement.

ρgrowth ≤ n1/2(2. 31/2. 41/3 . . . n1/(n−1))1/2.

Rook pivoting: the largest magnitude in its row and its column:

ρgrowth ≤ 1.5n(3/4) logn .

Taking sparsity into account: threshold partial pivoting

max
i>k
|a(k)ik | ≤ γ−1|a(k)kk |,

where γ ∈ (0, 1] is a chosen threshold parameter.
Even complete pivoting can be mixed with sparsity considerations:
Markowitz pivoting
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Stability and ill-conditioning

Symmetric indefinite matrix: example

Consider

A =

(
δ 1
1 0

)
.

δ = 0⇒ LDLT with D diagonal does not exist.
δ ≪ 1⇒ LDLT with D diagonal is not stable since ρgrowth = 1/δ.
LDLT factorization generalized to allow D with 1× 1 and 2× 2⇒
blocks. It preserves symmetry and is nearly as stable as the LU
factorization.

A =

1 1 0
1 1 1
0 1 0

 =

1 0 0
1 1 0
0 0 1

1 0 0
0 0 1
0 1 0

1 1 0
0 1 1
0 0 1

 = LDLT .

Here D has one 1× 1 block and one 2× 2 block.
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Stability and ill-conditioning

Symmetric indefinite: balancing 1× 1 pivots and 2× 2 pivots

Small growth for 1× 1 pivot if |akk| (a diagonal entry) is large.
If such pivot not found, consider large off-diagonals
Consider the inverse of the 2× 2 block(

a b
b d

)−1

=
1

ad− b2

(
d −b
−b a

)
⇒ if |a|, |d| small with respect to |b|, 2× 2 pivot may be used.
The standard rule balancing the pivots: based on requiring the
same potential maximal growth in a 2× 2 pivot versus two
consecutive 1× 1 pivots.
This implies an appropriate parameter (1 +

√
17)/8 to choose

between the pivots (see the next slide)

ρgrowth < 3n
√
2 31/241/3 . . . n1/(n−1),
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Stability and ill-conditioning

Indefinite factorization: full pivoting

Algorithm (One step of full indefinite pivoting )

1: Set α = (1 +
√
17)/8 ≈ 0.64

2: Find akk: diagonal entry of maximum size
3: Find aij : off-diagonal entry of maximum size (i < j)
4: if |akk| ≥ α|aij | then
5: use akk as 1× 1 pivot (ready for akk = 0)
6: else

7: use

(
aii aij

aji ajj

)
as 2× 2 the pivot

8: end if

But sparsity must be also considered!

128 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 165 — #165 i
i

i
i

i
i

Stability and ill-conditioning

Indefinite factorization: classical scheme of symmetric partial pivoting

The following scheme shows entries sufficient to be checked

d . . λ . . .
. . . . . . .
. . . . . . .
λ . . c . σ .
. . . . . . .
. . . σ . . .
. . . . . . .


λ, σ: maximum absolute value in its row and column, respectively.
That is: only two rows and columns of A searched.
Less searches: slightly larger growth factor bound than in LU
There are stable schemes and threshold extensions.
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Stability and ill-conditioning

Solving ill-conditioned problems
a) Preprocessing by diagonal scaling:

Sr ASc y = Sr b, y = S−1
c x.

Theorem
Let the matrix A be SPD and let DA be the diagonal matrix with entries aii
(1 ≤ i ≤ n). Then for all diagonal matrices D with positive entries

κ(D
−1/2
A AD

−1/2
A ) ≤ nzrmax κ(D

−1/2AD−1/2),

where nzrmax is the maximum number of entries in a row of A.

b) postprocessing: various iterative refinements (IR) like
Algorithm (IR of the solution x of Ax = b)

1: Solve Ax(0) = b ▷ x(0) is the initial computed solution
2: for k = 0, 1, . . . do
3: Compute r(k) = b−Ax(k) ▷ Residual on iteration k

4: Solve Aδx(k) = r(k) ▷ Solve correction equation: using a factorization
5: x(k+1) = x(k) + δx(k)

6: end for
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Stability and ill-conditioning

Solving ill-conditioned problems
a) Preprocessing by diagonal scaling:

Sr ASc y = Sr b, y = S−1
c x.

Theorem
Let the matrix A be SPD and let DA be the diagonal matrix with entries aii
(1 ≤ i ≤ n). Then for all diagonal matrices D with positive entries

κ(D
−1/2
A AD

−1/2
A ) ≤ nzrmax κ(D

−1/2AD−1/2),

where nzrmax is the maximum number of entries in a row of A.

b) postprocessing: various iterative refinements (IR) like
Algorithm (IR of the solution x of Ax = b)

1: Solve Ax(0) = b ▷ x(0) is the initial computed solution
2: for k = 0, 1, . . . do
3: Compute r(k) = b−Ax(k) ▷ Residual on iteration k

4: Solve Aδx(k) = r(k) ▷ Solve correction equation: using a factorization
5: x(k+1) = x(k) + δx(k)
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Sparse Least Squares and factorizations

Least squares: factorizations

Direct methods are relevant even for LS: regular LS: normal
equations: Cholesky

Another formulation for LS:

The normal equations are equivalent to the linear equations
AT r = 0, and r = b−Ax that can be expressed as the
(m+ n)× (m+ n) augmented system (z = r and c = 0).

K

(
z
x

)
=

(
b
c

)
with K =

(
I A
AT 0

)
,

The symmetric indefinite matrix K is non singular if and only if
rank(A) = n: general indefinite solvers

To be more general, consider the regularized LS

min
x∈Rn

(∥b−Ax∥22 + γ2 ∥x∥22) = min
x∈Rn

∥∥∥(b
0

)
−

(
A
γ I

)
x
∥∥∥
2
.
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Sparse Least Squares and factorizations

Least squares: factorizations

Direct methods are relevant even for LS: regular LS: normal
equations: Cholesky

Another formulation for LS:

The normal equations are equivalent to the linear equations
AT r = 0, and r = b−Ax that can be expressed as the
(m+ n)× (m+ n) augmented system (z = r and c = 0).

K

(
z
x

)
=

(
b
c

)
with K =

(
I A
AT 0

)
,

The symmetric indefinite matrix K is non singular if and only if
rank(A) = n: general indefinite solvers

To be more general, consider the regularized LS

min
x∈Rn

(∥b−Ax∥22 + γ2 ∥x∥22) = min
x∈Rn

∥∥∥(b
0

)
−

(
A
γ I

)
x
∥∥∥
2
.
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Sparse Least Squares and factorizations

Least squares: factorizations

Direct methods are relevant even for LS: regular LS: normal
equations: Cholesky

Another formulation for LS:

The normal equations are equivalent to the linear equations
AT r = 0, and r = b−Ax that can be expressed as the
(m+ n)× (m+ n) augmented system (z = r and c = 0).

K

(
z
x

)
=

(
b
c

)
with K =

(
I A
AT 0

)
,

The symmetric indefinite matrix K is non singular if and only if
rank(A) = n: general indefinite solvers

To be more general, consider the regularized LS

min
x∈Rn

(∥b−Ax∥22 + γ2 ∥x∥22) = min
x∈Rn

∥∥∥(b
0

)
−
(
A
γ I

)
x
∥∥∥
2
.
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Sparse Least Squares and QR factorization

Least squares: two solution approaches so far

1. SPD (Cholesky) factorization of ATA

If γ > σmin(A), we have κ(ATA+ γ2I) ≈ (∥A∥2/γ)2

Not a big progress since γ should be kept small.

2. Symmetric indefinite factorization of K(
I A
AT −γ2I

)(
r
x

)
=

(
b
0

)
or Kγ

(
s
x

)
=

(
b
0

)
, Kγ =

(
γI A
AT −γI

)
, r = γs.

If γ > σmin(A), we have κ(Kγ) ≈ ∥A∥2/γ.

Seems to be better, but indefiniteness.
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Sparse Least Squares and QR factorization

Least squares: two solution approaches so far

1. SPD (Cholesky) factorization of ATA

If γ > σmin(A), we have κ(ATA+ γ2I) ≈ (∥A∥2/γ)2

Not a big progress since γ should be kept small.

2. Symmetric indefinite factorization of K(
I A
AT −γ2I

)(
r
x

)
=

(
b
0

)
or Kγ

(
s
x

)
=

(
b
0

)
, Kγ =

(
γI A
AT −γI

)
, r = γs.

If γ > σmin(A), we have κ(Kγ) ≈ ∥A∥2/γ.

Seems to be better, but indefiniteness.
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Sparse Least Squares and QR factorization

Least squares: an additional solution approach

Another solution strategy: using another (QR) factorization.

A = (Q1 Q2)

(
R
0

)
= Q1R,

Q = (Q1 Q2) is orthogonal, R ∈ Rm×n is upper triangular.

There are more ways to orthogonalize A

▶ Givens rotations
▶ Householder reflections
▶ Gram-Schmidt orthogonalization

All of them should get the same Q (modulo signs of the diagonal
entries of R)

Let us proceed to a sparse A, to see that the fill-in can be
overestimated.
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Sparse Least Squares and QR factorization

Least squares: an additional solution approach

Another solution strategy: using another (QR) factorization.

A = (Q1 Q2)

(
R
0

)
= Q1R,

Q = (Q1 Q2) is orthogonal, R ∈ Rm×n is upper triangular.

There are more ways to orthogonalize A

▶ Givens rotations
▶ Householder reflections
▶ Gram-Schmidt orthogonalization

All of them should get the same Q (modulo signs of the diagonal
entries of R)

Let us proceed to a sparse A, to see that the fill-in can be
overestimated.
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Sparse Least Squares and QR factorization

Contemporary sparse QR: symbolic phase

Consider a symbolic phase predicting R or Q.
A Givens rotation G(i, j) applied to Ai,i:n and Aj,i:n of A:(

c −s
s c

)(
Ai,i:n

Aj,i:n

)
=

(
A′

i,i:n

A′
j,i:n

)
, A′

j,i = 0.

An example that emphasizes sparsity patterns:(
Ai,i:n

Aj,i:n

)
=

(
∗ ∗ ∗ ∗ ∗
∗ ∗

)
.

Applying G(i, j) gives(
c −s
s c

)(
Ai,i:n

Aj,i:n

)
=

(
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

)
=

(
A′

i,i:n

A′
j,i:n

)
.
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Sparse Least Squares and QR factorization

Contemporary sparse QR: symbolic phase

(
c −s
s c

)(
Ai,i:n

Aj,i:n

)
=

(
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

)
=

(
A′

i,i:n

A′
j,i:n

)
.

The (1, 1) entry A′
i,i seems to remain nonzero (it is the Euclidean

norm of the vector (Aii Aji)
T ) and the sparsity patterns of

columns 2 to n satisfy

S(A′
i,i+1:n) = S(Ai,i+1:n) ∪ S(Aj,i+1:n), 1 ≤ i ≤ n− 1.

This is the row merge rule. Apparently, significantly more fill-in
than in LU /LLT
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Sparse Least Squares and QR factorization

Contemporary sparse QR: symbolic phase

However, the fill-in can be overestimated. Consider a, b ̸= 0∗ a b
∗ ∗ ∗
∗ ∗ ∗

→
∗ c′ca c′cb

sa sb ∗ ∗
s′ca s′cb ∗ ∗


→

∗ a b
c′′sa− s′′s′ca c′′sb− s′′s′cb ∗ ∗
s′′sa+ c′′s′ca s′′sb+ c′′s′cb ∗ ∗

 .

Steps: apply G(2, 1) with c, s to eliminate the (2, 1) entry;apply
G(3, 1) with c′, s′ to eliminate the (3, 1) entry; eliminate the fill-in at
(3, 2) by rotation with c′′, s′′.
We have s′′sa+ c′′s′ca = 0.
But this a nonzero multiple of the entry s′′sb+ c′′s′cb at (3, 3).
The row merge rule is not able to predict that the (3, 3) entry also
always becomes zero.
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Sparse Least Squares and QR factorization

Contemporary sparse QR: another possibility for symbolic QR

Lemma

S(R) ⊆ {prediction of S(R) based on row merge rule } ⊆ {prediction
of S(R) based on ATA}.

This surprising behavior can be suppressed by considering
structural properties of A, this is not a problem.
But still, the QR may not be a progress, structurally. To feel this,
consider

A = QR⇒ ATA = RTQTQR = RTR

And we have Cholesky of ATA. See our concerns above.
As for the Lemma, a practical sparse QR solver may be based on
the pattern of ATA.
For example, the multifrontal method that uses C = ATA implicitly.
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Sparse Least Squares and QR factorization

Contemporary sparse QR: multifrontal QR factorization

6, 7, 8

3, 4

1 2

5

c86 c88
c97 c98

r
(3)
36 r

(3)
37

r
(3)
47

r66 r67 r68
r77 r78

r88

c10,3 c10,4

c54 c56

r
(1)
23 r

(1)
26 r

(1)
27

r
(1)
66 r

(1)
67

r
(2)
44 r

(2)
46

r33 r34 r36 r37

r44 r46 r47

r
(3)
36 r

(3)
37

r
(3)
47

c11 c13
c21 c27
c61 c66

r11 r13 r16 r17

r
(1)
23 r

(1)
26 r

(1)
27

r
(1)
66 r

(1)
67

c32 c34 c36
c42 c46

r22 r24 r26

r
(2)
44 r

(2)
46

c75 c78 r55 r58
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Outline

1 Introduction

2 Factorizations

3 Symbolic Cholesky factorization

4 Sparse matrices and data structures

5 (Numerical) Cholesky factorization

6 Sparse LU factorization

7 Stability, ill-conditioning, indefiniteness

8 Symmetric indefinite factorization

9 Sparse Least Squares and factorizations

10 Reorderings

11 Algebraic preconditioning
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Reorderings

Minimizing the fill-in: reorderings

Key problem of factorizations: minimizing the fill-in. Remind:


1 2 3 4 5

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗

 →


1 2 3 4 5

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗ ∗


Our tools: symmetric permutations: A→ PAP T

Finding a permutation minimizing fill-in is NP complete: heuristics
called fill-reducing orderings.
No stability concerns: only sparsity pattern S{A} needed
Otherwise: further permutations of A to force factorizability
needed.
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Reorderings

A. Local (greedy) reorderings

Two basic greedy heuristics are the minimum degree (MD)
criterion and the minimum fill (MF) criteria.

A.I. Minimum fill-in (MF) criterion

Select as the next vertex of G(A) the one that introduce the least
fill-in in Gk. Or do it approximatively (AMF).
High quality, but the cost of MF can be prohibitive: needed to
check neighbors of neighbors.

A.II. Minimum degree (MD) criterion
Select as the next vertex a vertex of minimum degree in Gk. Or do
it approximatively (AMD).
MD is the most widely-used local heuristic. Less expensive than
MF.
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Reorderings

A. Local (greedy) reorderings: MD algorithm example

2

13

4 5
6

13

4 5
6

1

4 5
6

4 5
6

Figure: An illustration of three steps of the MD algorithm. Elimination order:
G2, G3 and G4.
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Reorderings

A. Local reorderings: storing and using the fill-in

A clique with m vertices has m(m− 1)/2 edges. This cannot be
stored explicitly in the initial space!. Gk must be stored implicitly.

1

2

3

4

5

4 vertices instead of 6 edges if the clique stored implicitly

The cliques stored as lists of neighbors. As the elimination
process progresses, cliques grow and can be merged.

If vertices not merged (as blocks)⇒ Ek (changed according to the
Parter’s rule) expressed as reachable sets in modified elimination
graphs.
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Reorderings

A. Local reorderings: From Parter’s rule to reachable sets

Figure: graph G(A). The adjacency sets of the vertices in G4 that
result from eliminating vertices V4 = {1, 2, 3} are
adjG4{4} = Reach(4,V4) = {5},
adjG4{5} = Reach(5,V4) = {4, 6, 7},
adjG4{6} = Reach(6,V4) = {5, 7},
adjG4{7} = Reach(7,V4) = {5, 6, 8},
adjG4{8} = Reach(8,V4) = {7}.

4 1 5 2

6 7 3

8

Figure: 1, 2, and 3 eliminated in the first three elimination steps (V4 = {1, 2, 3}).
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Reorderings

A. Local reorderings: tricks

The construction of Gk+1 needs some tricks to make it cheaper.

Replication⇒ accumulation of information:
finding and exploiting analogies to the supernodes needed

In fact, we must find supernodes without the efficient tools like the
elimination tree.
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Reorderings

A. The first acceleration trick: indistinuishability

Definition

Two different vertices u and v of G are called indistinguishable if

AdjG(u) ∪ {u} = AdjG(v) ∪ {v}. (5)

u v u v

G G_v

Correspond to supernodes: can be eliminated in any mutual order.
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Reorderings

A. Second acceleration trick: degree outmatching

Vertex w is said to be outmatched by vertex u if

adjG{u} ∪ {u} ⊆ adjG{w} ∪ {w}.

It follows: degG(u) ≤ degG(w), preserved in Gv for v, v ̸= u,w

u

w

v′′ v′′′

v′

Figure: An example G in which vertex w is outmatched by vertex u.
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Reorderings

A. Third acceleration trick: Multiple minimum degree (MMD)

The mutually non-adjacent can be eliminated at the same time.
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Reorderings

A. Local reorderings: complexity

The complexity of the MD algorithms is O(nz(A)n2).
The tricks do not change the worst-case bound.
Additional trick: limit the search length in reachable sets: AMD
(approximate minimum degree).
The complexity of AMD is O(nz(A)n).
In practice, runtime of AMD is typically significantly smaller than
that of the MD and MMD approaches.
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Reorderings

B. Global (nested dissection) orderings

Identify a small subset of vertices: vertex separator

Definition

Vertex separator of an undirected G = (V,E) is subset S of its
vertices such that the subgraph induced by V \ S has more
components than G.

Order it last, then the separated parts.
▶ Induced reordering

A =

A11 0 AT
31

0 A22 AT
32

A31 A32 A33

 (6)

Do it recursively
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Initial reordering

B. Global (nested dissection) orderings

1 7 4 43 22 28 25

3 8 6 44 24 29 27

2 9 5 45 23 30 36

19 20 21 46 40 41 42

10 16 13 47 31 37 34

1712 15 48 33 38 36

11 18 14 49 32 39 35
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Initial reordering

B. Global (nested dissection) orderings

1 2

3

4 5

6

7

8

9

10 11 13 14

12 15

16

17

18
19

20

21

22 23

24

25 26

27

28

29

30

31 32

33

34 35

36

37

38

39
40

41

42

43

44

45

46

47

48

49
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Reorderings

C. Minimizing fill-in + getting a favourable shape

Band Profile (Envelope)

Frontal method : moving window determines ordering
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Reorderings

C. Minimizing fill-in + getting a favourable shape

Why do we do this?
Static structures! Motivated by the following theorem:

Theorem
If L is the Cholesky factor of A then

envelope(A) = envelope(L), band(A) = band(L).

How to get such shape? Finding a permutation!
▶ In advance: band, profile (envelope) methods
▶ On-the fly: frontal method

155 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 197 — #197 i
i

i
i

i
i

Reorderings

C. Minimizing fill-in + getting a favourable shape

Getting the permutation in advance: a modified breadth-first
search called CM and RCM (CM plus reversing the permutation).
Both: the same bandwidth, RCM can decrease the envelope.

5

41

2 6

7

3



1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗


,



3 7 1 5 2 4 6

3 ∗ ∗
7 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
6 ∗ ∗


,



6 4 2 5 1 7 3

6 ∗ ∗
4 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
7 ∗ ∗ ∗
3 ∗ ∗


,
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Reorderings

C. Minimizing fill-in + getting a favourable shape

Getting the permutation in advance: a modified breadth-first
search called CM and RCM (CM plus reversing the permutation).
Both: the same bandwidth, RCM can decrease the envelope.

5

41

2 6

7

3



1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗


,



3 7 1 5 2 4 6

3 ∗ ∗
7 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
6 ∗ ∗


,



6 4 2 5 1 7 3

6 ∗ ∗
4 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
7 ∗ ∗ ∗
3 ∗ ∗


,

157 / 174



i
i

“tuma_2025_SNA” — 2025/1/20 — 9:39 — page 199 — #199 i
i

i
i

i
i

Reorderings

C. Minimizing fill-in + getting a favourable shape

Getting the permutation in advance: a modified breadth-first
search called CM and RCM (CM plus reversing the permutation).
Both: the same bandwidth, RCM can decrease the envelope.

5

41

2 6

7

3



1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗


,



3 7 1 5 2 4 6

3 ∗ ∗
7 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
6 ∗ ∗


,



6 4 2 5 1 7 3

6 ∗ ∗
4 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
7 ∗ ∗ ∗
3 ∗ ∗


,
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Reorderings

C. Minimizing fill-in + getting a favourable shape

Getting the permutation in advance: a modified breadth-first
search called CM and RCM (CM plus reversing the permutation).
Both: the same bandwidth, RCM can decrease the envelope.

5

41

2 6

7

3



1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗


,



3 7 1 5 2 4 6

3 ∗ ∗
7 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
6 ∗ ∗


,



6 4 2 5 1 7 3

6 ∗ ∗
4 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
7 ∗ ∗ ∗
3 ∗ ∗


,
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Factorization: complexity

Complexity of (some) factorizations

Sequential complexity dominated by the factorization, but see our
comments on parallel costs
General dense matrices

▶ Space: O(n2)
▶ Time: O(n3)

General sparse matrices
▶ Space: η(L) = n+

∑n−1
i=1 (η(L∗i)− 1)

▶ The i-th step: η(L∗i)− 1 div, 1/2(η(L∗i)− 1)η(L∗i) multiple-add
▶ Time totally: 1/2

∑n−1
i=1 (η(L∗i)− 1)(η(L∗i) + 2)
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Complexity

Complexity

Band schemes (β << n)
▶ Space: O(βn)
▶ Time: O(β2n)

Band
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Factorization: complexity

Complexity of (some) factorizations

Profile/envelope schemes
▶ Space:

∑n
i=1 βi

▶ βi: lengths of row segments containing their nonzeros
▶ Complexity can expressed similarly.

Profile (Envelope)
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Factorization: complexity

Complexity of (some) factorizations

Nested dissection
Planar graphs, 2D finite element graphs (bounded degree)

▶ Space: O(n log n)
▶ Time: O(n3/2)

3D Finite element graphs
▶ Space: O(n4/3)
▶ Time: O(n2)
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Algebraic preconditioning

Algebraic preconditioning

Finite precision fp64 arithmetic: computed factors are not exact.

Lower precision arithmetic: even less accuracy

Parallelism: sometimes hard to get complete factorization, the
effort to obtain more accurate results can lead to complex coding
and unavoidable inefficiencies: further approximation

What about even a stronger relaxation: intentional relaxation of
factorizations
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Algebraic preconditioning

Two basic possibilities

Approximate factorizing of A can be interpreted as a splitting of A

A = M − E,

The matrix M nonsingular and (easy to invert, we like to invert ©);
E is the error matrix. The iterations are then

x(k+1) = M−1Ex(k) +M−1b, k = 0, 1, . . . ; provided x(0)

This can be rewritten as
▶ stationary iterations

x(k+1) = x(k)+M−1(b−Ax(k)) = x(k)+M−1 r(k), k = 0, 1, . . .

▶ considered as system transformation, often used with Krylov
space methods

x(approx) = x(approx) +M−1(b−Ax(approx)).
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Algebraic preconditioning

Two basic possibilities

Approximate factorizing of A can be interpreted as a splitting of A

A = M − E,

The matrix M nonsingular and (easy to invert, we like to invert ©);
E is the error matrix. The iterations are then

x(k+1) = M−1Ex(k) +M−1b, k = 0, 1, . . . ; provided x(0)

This can be rewritten as
▶ stationary iterations

x(k+1) = x(k)+M−1(b−Ax(k)) = x(k)+M−1 r(k), k = 0, 1, . . .

▶ considered as system transformation, often used with Krylov
space methods

x(approx) = x(approx) +M−1(b−Ax(approx)).
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Algebraic preconditioning

Splitting rewritten as stationary iterations

Theorem
For any initial x(0) and vector b, the stationary iteration converges if
and only if the spectral radius of (I −M−1A) is less than unity.

A = DA + LA + UA: more classical choices for M
▶ Richardson method: M = ω−1I,
▶ Jacobi and damped Jacobi methods: M = DA and
M = ω−1DA,

▶ Gauss-Seidel and SOR methods: M = DA + LA and
M = ω−1DA + LA (ω > 0).

▶ Linear convergence, its guarantees.
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Algebraic preconditioning

Splitting rewritten as stationary iterations: convergence: just reminder

Theorem
If A ∈ Rn×n is strongly diagonally dominant then Jacobi method and
Gauss-Seidel method are convergent.

Theorem
If A ∈ Rn×n is symmetric with positive diagonal DA then the Jacobi
method is convergent iff A and 2DA −A are positive definite.

Theorem
If A ∈ Rn×n is symmetric and positive definite then the Gauss-Seidel
method is convergent.
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Algebraic preconditioning

Preconditioning as a system transformation

Consider the preconditioned linear system

M−1Ax = M−1 b.

Here M−1 is applied to A from the left.
The linear system can be also preconditioned from the right

AM−1 y = b, x = M−1 y.

Is one of them better? No.

Theorem
Let δ and ∆ be positive numbers. Then for any n ≥ 3 there exist
nonsingular n× n matrices A and M such that all the entries of
M−1A− I have absolute value less than δ and all the entries of
AM−1 − I have absolute values greater than ∆.

Left/right: to be compatible with the Krylov space accelerator ©
Generally cheaper to apply M−1 and A separately.
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Algebraic preconditioning

Preconditioning as a system transformation

Consider the preconditioned linear system

M−1Ax = M−1 b.

Here M−1 is applied to A from the left.
The linear system can be also preconditioned from the right

AM−1 y = b, x = M−1 y.

Is one of them better? No.

Theorem
Let δ and ∆ be positive numbers. Then for any n ≥ 3 there exist
nonsingular n× n matrices A and M such that all the entries of
M−1A− I have absolute value less than δ and all the entries of
AM−1 − I have absolute values greater than ∆.

Left/right: to be compatible with the Krylov space accelerator ©
Generally cheaper to apply M−1 and A separately.
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Algebraic preconditioning

Preconditioning as a system transformation

Consider the preconditioned linear system

M−1Ax = M−1 b.

Here M−1 is applied to A from the left.
The linear system can be also preconditioned from the right

AM−1 y = b, x = M−1 y.

Is one of them better? No.

Theorem
Let δ and ∆ be positive numbers. Then for any n ≥ 3 there exist
nonsingular n× n matrices A and M such that all the entries of
M−1A− I have absolute value less than δ and all the entries of
AM−1 − I have absolute values greater than ∆.

Left/right: to be compatible with the Krylov space accelerator ©
Generally cheaper to apply M−1 and A separately.
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Algebraic preconditioning

From direct methods to preconditioning

Zoological garden of approaches: structure-based,
threshold-based, memory-based. Algorithms may modify the
standard LU/LDLT scheme.

Holy grail for prescribing S(A)?

Theorem

Consider the incomplete LU factorization A+ E = L̃Ũ with sparsity
pattern S{L̃+ Ũ}. The entries of the error matrix E are zero at
positions (i, j) ∈ S{L̃+ Ũ}.

No. Improvement from an increase of S{L̃+ Ũ} are typically very
slow.
So, what to do?
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Algebraic preconditioning

From direct methods to preconditioning

Zoological garden of approaches: structure-based,
threshold-based, memory-based. Algorithms may modify the
standard LU/LDLT scheme.
Holy grail for prescribing S(A)?

Theorem

Consider the incomplete LU factorization A+ E = L̃Ũ with sparsity
pattern S{L̃+ Ũ}. The entries of the error matrix E are zero at
positions (i, j) ∈ S{L̃+ Ũ}.

No. Improvement from an increase of S{L̃+ Ũ} are typically very
slow.
So, what to do?
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Algebraic preconditioning

From direct methods to preconditioning

Zoological garden of approaches: structure-based,
threshold-based, memory-based. Algorithms may modify the
standard LU/LDLT scheme.
Holy grail for prescribing S(A)?

Theorem

Consider the incomplete LU factorization A+ E = L̃Ũ with sparsity
pattern S{L̃+ Ũ}. The entries of the error matrix E are zero at
positions (i, j) ∈ S{L̃+ Ũ}.

No. Improvement from an increase of S{L̃+ Ũ} are typically very
slow.
So, what to do?
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Algebraic preconditioning

From direct methods to preconditioning

Two general theoretical directions
▶ I. Avoiding breakdowns, possible for special matrices like:

(M-matrix)

A =



4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4


.
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Algebraic preconditioning

I. Avoiding breakdowns

But factorization may breakdown even in case of Cholesky and/or
low precision

A =

 3 −2 2
−2 3 −2

−2 3 −2
2 −2 8

 , L =

 1
−2/3 1

−6/5 1
2/3 4/5 −2/3 1

 , D =

3
5/3

3/5
16/3

 .

L̃ =

 1
−2/3 1

−6/5 1
2/3 −10/3 1

 , D̃ =

3
5/3

3/5
0

 .

Algorithm (Trial-and-error global shifted incomplete factorization)

1: for k = 0, 1, 2, . . . do
2: A+ α(k)I ≈ L̃Ũ ▷ Perform incomplete factorization
3: If successful, α = α(k) and return
4: α(k+1) = 2α(k)

5: end for
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Incomplete factorizations

II. Increasing hope for fast convergence.

II. Such hope indicated for model problems by κ(M−1A)

▶ For example, it is possible to go from O(h−2) to O(h−1) by
special constructions and/or reorderings

▶ For model problems©
Generally, no royal way to efficient preconditioning based on
relaxed factorizations
But, still a field with great potential for research.
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Incomplete factorizations

Thank you for your attention!
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