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The main references are [12] and [10]. Parts of what is presented here can also be found in

[13]. An additional useful and accessible reference to the problem of robust estimation is [20,

Sections 3 and 4].

1 Basic concepts of robustness

We work in a probability space (Ω,A,P) where all random elements are defined. The set

of all Borel probability on a topological space X is denoted by P (X ), and X ∼ P ∈ P (X )

means that we have a random variable X with distribution P in X . Typical examples of X
are the real line R or the Euclidean spaces Rk with k ≥ 1. We will often work with weak

convergence of measures {Pn}∞n=1 ⊂ P (X ) towards P ∈ P (X ). We denote it by Pn
w−−−→

n→∞
P .

Weak convergence of measures is equivalent to the convergence of the corresponding random

variables Xn ∼ Pn in distribution to X ∼ P , we write Xn
d−−−→

n→∞
X. Of course, we know that

convergence in probability Xn
P−−−→

n→∞
X implies Xn

d−−−→
n→∞

X.

1.1 Main ideas and motivation

In standard, parametric statistics we assume that we are given a statistical model {Pθ : θ ∈ Θ} ⊂
P (X ), where θ is our parameter of interest (possibly including nuisance parameters) that lives

in the parameter space Θ. In most situations, Θ ⊆ Rp with p ≥ 1. We intend to estimate,

or test about, the unknown parameter θ. To do that, we are often given a random sam-

ple X1, . . . , Xn of independent variables, Xi ∼ PθX , where θX ∈ Θ is the true value of the

parameter θ. We construct estimators Tn = Tn(X1, . . . , Xn), find their (asymptotic) distribu-

tions when assuming Xi ∼ Pθ, and infer based on the assumption that each Xi had precisely

distribution Pθ.

We already know many optimal estimators and testing procedures. For example, the Rao-

Cramér bounds [19, Theorem 3 and 8] and the Lehmann-Scheffé theorems [19, Theorems 17

and 18] give several criteria for the optimality of unbiased estimators of θ. The Neyman-

Pearson theorem [19, Theorem 26] establishes the optimal testing procedure for H0 : θ = θ0

against H1 : θ = θ1, and the theory of maximum likelihood estimation [19, Section 2] gives

methods for asymptotically near-optimal inference.

All these tools are quite valuable, but they inherently rely on the assumption that the data

X1, . . . , Xn truly come from the ideal distribution Pθ. For all practical purposes, that is only a

mathematical model. It is certainly necessary to assume something about the data-generating

process to be able to say anything reasonable about θ. But, usually, it is also too idealistic

to suppose that the model is exactly true in practice. Take, for example, the exact t-test.
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There, we suppose that the data come from a normal distribution. In practice, we can never

be sure about this:

• What if the data really comes from a Student’s distribution?

• What if some rounding takes place that invalidates the assumption of normality?

• Can the true distribution fail to possess a second moment?

• What if some of the observations contain hidden measurement errors, and thus we deal

with a mixture of two random samples instead of just the normal one?
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Figure 1: The bivariate stars dataset contains four suspicious observations (red points in the

top left corner). With the data, we see the sample mean (orange point) and a

Mahalanobis ellipsoid based on the sample covariance matrix (orange curve) both for

the complete dataset (left panel) and the dataset without the suspicious observations

(right panel). The red points severely affect both the center and the shape of the

ellipsoid.

Example 1.1. To illustrate the problem with potential gross errors in data or suspicious (so-

called outlying) observations, consider the real starsCYG dataset from R package robustbase.

The bivariate data represent the Hertzsprung-Russell diagram of the star cluster CYG OB1,

which contains 47 stars in the direction of the constellation Cygnus. The first variable is the

logarithm of the effective temperature at the surface of the star and the second one is the

logarithm of its light intensity. In the scatterplot of these data points in Figure 1, two groups

of points are seen: the majority which tends to follow a bivariate normal distribution and
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four stars in the upper corner (red points in Figure 1). In astronomy, the 43 stars plotted in

black are said to lie on the main sequence and the four remaining stars are called “giants”.

To visualise the geometry of the data, we use the sample Mahalanobis ellipse given as{
x ∈ R2 : (x− µn)

TΣ−1
n (x− µn) ≤ c

}
,

where µn and Σn are the sample mean and the sample covariance matrix of the data, respec-

tively, and c > 0 is an appropriate constant. This ellipse is plotted in Figure 1 in orange. As

can be seen, the shape of the ellipse is affected profoundly by the four giant stars, and for full

data neither the shape nor the center of the ellipse represents the geometry of the data well

(left panel). When the giant stars are omitted, the same ellipse appears to capture the shape

of the data much better (right panel). △

The problem, of course, is how to detect deviating data such as the giants in this dataset?

Or even better, is it possible to devise statistical procedures that will be able to cope with the

presence of potentially outlying observations or departures from the assumed model without

a great loss in efficiency?

The main principle of robust statistics is to address these problems. It aims to study the

effect of deviations from the hypothetical model Pθ on statistical procedures, understand and

quantify it, and propose methods to deal with the potential problems. We do so not only

by studying the behaviour of the procedure Tn at the model Pθ, but also by considering

probability measures P ∈ P (X ) is a small neighbourhood Pε ⊆ P (X ) of Pθ, and examining

Tn(X1, . . . , Xn) in the case when X1, . . . , Xn ∼ P for P ∈ Pε. To put the idea simply, we will

search for and design procedures that will be not only (close to) optimal at the hypothetical

model Pθ, but also stable in the argument of P in neighbourhoods of Pθ. This approach

always involves a trade-off; we usually need to sacrifice a portion of optimality to achieve

robustness (that is, stability). An ideal output would be a procedure that is nearly optimal

at Pθ, and at the same time not easily disturbed by small deviations from the idealistic model.

Example 1.2. As another simple example take the average X̄n =
∑n

i=1Xi/n of a random

sample X1, . . . , Xn from a distribution Pθ ∈ P (R), whose expected value EX1 = θ is to be

estimated. We know that the sample average is the optimal estimator of the mean θ ∈ R in

the location model

F = {X1, . . . , Xn ∼ N(θ, 1) independent : θ ∈ R} .

We compare the sample mean with, e.g., the sample median Tn = med (X1, . . . , Xn). Both

X̄n and Tn estimate the same parameter θ in F , and they are both asymptotically normal.
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We have √
n
(
X̄n − θ

) d−−−→
n→∞

N(0, varX1),

√
n (Tn − θ)

d−−−→
n→∞

N

(
0,

1

4(fX1(θ))
2

)
,

(1)

where fX1 is the density of X1. We can compare the performance of the two estimators

by means of their asymptotic relative efficiency (ARE). This is defined as the ratio of the

asymptotic variances

ARE =
varX1

(fX1(θ))
−2 /4

=
4

2π
≈ 0.63. (2)

We obtain that at the model F , the sample average is almost twice more efficient than the

sample median.

Suppose now, however, that the data X1, . . . , Xn do not come exactly from the normal

distribution in F . Rather, assume that a small, ε-fraction of them comes from a different

distribution Q ∈ P (R), for ε > 0 close to zero. This can be described by a contamination

model, where the true distribution we sample from is a mixture of the ideal distribution P

and the contaminating one Q. We take ε ∈ (0, 1) small, and assign to the ideal distribution

P a weight (1− ε), and the contaminating distribution Q weight ε. We obtain a measure

Pε = (1− ε)P + εQ ∈ P (X ) for ε ∈ (0, 1), (3)

with X = R. The measure Pε is defined by

Pε(B) = (1− ε)P (B) + εQ(B) for each B ⊆ X Borel and ε ∈ (0, 1). (4)

Consider an experiment where the true value of θ is 0, and where an ε-fraction of the observa-

tions does not come from the ideal distribution P = N(0, 1), but rather from some Q ∈ P (R)
with density g. Writing φ(x) = (2π)−1/2 exp(−x2/2) for the density of N(0, 1), the density

of Pε is

fε(x) = (1− ε)φ(x) + ε g(x) for x ∈ R.

Observe that even if Q ̸= P is normal, Pε is not normal. Instead, it is a mixture of two

normals. That can be interpreted using the following sampling scheme:

• First, we take a Bernoulli random variable Y ∼ Bernoulli(ε) such that P(Y = 1) = ε;

and then

• we take X ∼ P = N(0, 1) if Y = 0, and X ∼ Q if Y = 1.

Thus, our random sample X1, . . . , Xn from Pε has approximately a fraction ε of observa-

tions sampled from Q. Those can be interpreted as data points containing measurement
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errors or simply observations not following the assumed model P (such as the giant stars in

Example 1.1).

If Q is a distribution without a finite second moment, with any ε > 0 we have

EPε X
2 = (1− ε)EP X

2 + εEQX
2 = ∞,

where EQX
2 =

∫
R x

2 dQ(x) etc. We see that for arbitrarily small contamination, var PεX =

∞ and the central limit theorem for the sample mean X̄n fails. Even worse, if Q does not

have even the first moment, E PεX is not defined, meaning that also E PεX̄n does not exist.

In words, arbitrarily small contamination can completely disrupt the behaviour of the sample

mean X̄n as an estimator of θ. The median of Pε changes much less. Even if the whole ε-mass

of Q is added strategically to one side of θ = 0, the median of Pε stays bounded as

med PεX ∈
[
Φ−1

(
1

2(1 + ε)

)
,Φ−1

(
1

2(1− ε)

)]
,

where we write medQX for the median of random variable X ∼ Q ∈ P (R), and Φ is the

distribution function of the standard normal distribution.

Let us, however, not consider only extreme contamination and take Q = N(0, 32), which is

a fairly tame distribution. We compute the asymptotic relative efficiency (2) of the sample

average and the sample mean in the model Pε, ε ∈ (0, 1). The central limit theorem now still

guarantees (1), only the asymptotic variances change appropriately. For the sample average

we get for X1 ∼ Pε that

varPε X1 = EPε X
2
1 − (EPε X1)

2 = 1 + 8 ε,

since

EPε X
s
1 = (1− ε)E Zs + εE (3Z)s = (1 + 8 ε)E Zs, for Z ∼ N(0, 1) and s ∈ R,

and for the sample median

1

4(fε(0))2
=

1

4((1− ε)φ(0) + ε 1
3φ(0))

2
=

9π

2(3− 2ε)2
.

As a function of the contamination level ε ∈ (0, 1), we now obtain

ARE(ε) =
varPε X1

(4(fε(0))2)−1
=

2(1 + 8 ε)(3− 2ε)2

9π
.

This function is displayed in the left-hand panel of Figure 2.

We already know that the sample average is the best possible estimator in a normal distri-

bution, which corresponds to both P0 = N(0, 1) and P1 = N(0, 32). This is reflected in

ARE(0) = ARE(1) =
4

2π
≈ 0.63.
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Figure 2: Example 1.2. Left panel: Asymptotic relative efficiency of the sample mean and the

sample median in a contamination model. For about ε = 0.15, the sample median

is more efficient than the sample mean, with ARE(0.15) ≈ 1.13. Right panel: The

density of P0 = N(0, 1) (blue curve) and the contaminated density of P0.15 with

Q = N(0, 32) (orange curve). The contamination is not easy to recognise from the

density of Pε.

As ε departs from 0 and 1, we no longer deal with a normal distribution and starting from

about ε ≈ 0.1 to ε ≈ 0.8, the sample median is more efficient.

It might seem that the level of contamination ε = 0.1 needed for the median to be more

efficient (corresponding to about 10% of bad observations) is high. Taking the contaminating

measure Q = P1 = N(0, 52) this threshold reduces already to ε ≈ 0.026, and as the variance

of Q goes to infinity it drops to ε→ 0 too. In the extreme case of Q without a second moment

(e.g., the Student distribution with two degrees of freedom), any contamination ε > 0 leads

to ARE(ε) = ∞; a single observation can break down the sample mean completely, for any

sample size n. △

An even more extreme example of the same phenomenon occurs when one estimates the

variance.

Example 1.3. Take a similar setup as in Example 1.2. We are interested in estimating σ > 0

in the model P = N(µ, σ2), with µ ∈ R unknown. In the early 20th century, there was a

dispute about whether a better estimator of σ is the square root of the sample variance

Sn =

√√√√ 1

n− 1

n∑
i=1

(
Xi − X̄n

)2
,

or an estimator coming from the mean absolute deviation

Dn =
1

n

n∑
i=1

∣∣Xi − X̄n

∣∣ .
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The estimator Sn was preferred by Fisher, a variant of Dn by Eddington. We intend to

compare the estimators in terms of their asymptotic relative efficiency again. Direct com-

putations are again possible, but already more complicated than in Example 1.2. First, one

needs to realise that to compare Sn with Dn, they need to estimate the same quantity con-

sistently. While, in our setup, Sn clearly estimates
√
varX1 = σ, the quantity Dn converges

in probability to

E |X1 − EX1| = σ E |Z| = σ

√
2

π
, where Z ∼ N(0, 1).

The estimators to compare are, therefore, Sn and D̃n =
√
π/2Dn. In the model given by

P = N(µ, σ2), it can be computed that ARE ≈ 0.876, and the Fisher’s estimator Sn is better.

However, taking into account possible contamination in model Pε as in (3) with Q = N(µ, 9σ2)

we obtain

ARE(ε) =

1
4

(
3(1+80ε)
(1+8ε)2

− 1
)

π(1+8ε)
2(1+2ε)2

− 1
.

This function is displayed in Figure 3. It grows quite fast: already at ε = 1.75 · 10−3, it

reaches above the threshold value 1. It grows with a maximum value greater than 2 at

around ε = 0.055.

0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

ARE of the two estimators of σ

Figure 3: Example 1.3: Asymptotic relative efficiency of the estimators Sn and D̃n of σ in a

contamination model.

The phenomenon we see is quite similar to that from Example 1.2, but much more pro-

nounced. Already for the simple contamination by another normal distribution, just 2 in

n = 1000 observations are enough to disrupt the estimator Sn so that it loses its edge of
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12.3% in terms of efficiency. Just 5% of contaminating observations make the Eddington

estimator D̃n twice more efficient than Sn. △

Our result in Example 1.3, of course, does not mean that Sn is a bad estimator of σ.

Also, we do not claim that D̃n should be preferred; there are certainly better estimators.

The example is only intended to illustrate that even very small departures from the ideal

distribution may cause the optimal statistical procedures to break down completely. It is the

objective of robust statistical methods to understand these issues, and to develop methods to

deal with them.

1.2 Statistical functionals

We need to study the continuity of statistical procedures in the argument of the under-

lying measures. Thus, for an appropriate mathematical formulation, we cannot avoid a

certain level of abstraction. The statistical procedure will be represented by a quantity

Tn = Tn(X1, . . . , Xn). This can be, for example, a point estimator or a test statistic. Further,

X1, . . . , Xn is typically a random sample from a measure P ∈ P (X ), and the space X can be

either R or Rk with k > 1. The random variable Tn(X1, . . . , Xn) estimates a quantity that de-

pends on the population distribution P , that is, the true distribution from which X1, . . . , Xn

was sampled.

To unify the exposition at the sample and the population level, we will not formally work

with the random sample X1, . . . , Xn itself, but rather represent it by its empirical measure

Pn =
1

n

n∑
i=1

δXi ∈ P (X ) . (5)

Here, δx ∈ P (X ) is the Dirac measure at the point x ∈ X , i.e.

δx(B) = I (x ∈ B) =

1 if x ∈ B,

0 if x /∈ B,
for all B ⊆ X Borel, (6)

and the algebraic operations in (5) are interpreted as a mixture (4). For the simple case

X = R we could also represent Pn by its distribution function

Fn(x) =
1

n

n∑
i=1

I (Xi ≤ x) for x ∈ R,

which is the empirical cumulative distribution function of our random sample, or equivalently

the distribution function of (5).

Remark 1. In what follows, for P ∈ P (X ) given, we will need to distinguish between usual

sequences of measures {Pn}∞n=1 ⊂ P (X ) (say, any sequences such that Pn
w−−−→

n→∞
P ), and
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the special sequence of empirical measures of random samples X1, . . . , Xn from P , defined as

in (5). For that, we will sometimes, for clarity, add to empirical measures Pn an argument

ω ∈ Ω, to emphasise that Pn = Pn(ω) ∈ P (X ) is, in fact, a random measure depending on

the random sample (and thus on the random element ω). In case when no confusion can arise

about whether we use an ordinary sequence of measures Pn or the empirical measures Pn(ω),

we will drop the argument ω from the latter; in that notation, we understand the empirical

measure Pn from (5) as a random measure in P (X ).

In addition, when working with measures P (or Pn) and their corresponding distribution

functions F (or Fn), we will frequently freely exchange P with F and Pn with Fn as they

both represent the same thing.

Representing the random sample X1, . . . , Xn by its empirical measure Pn from (5) is not

without loss of generality. In (5), we lose information about e.g. the order of the variables

X1, . . . , Xn in R. Thus, this representation is not appropriate in problems where X1, . . . , Xn

come from a time series or when Xi are not identically distributed. Under our assumption of

X1, . . . , Xn a random sample, however, the distribution of the random vector (X1, . . . , Xn)
T

is the same for any permutation of its elements Xi, i = 1, . . . , n. Thus, the random empirical

measure Pn (or Fn for k = 1) is a sufficient statistic in our model, and the Rao-Blackwell

theorem [19, Theorem 16] gives that we do not lose any Fisher information by considering

only inference based on Pn (or Fn).

Our statistical procedure will be formally represented as a statistical functional, in the

sense of the following definition.

Definition 1. A mapping T : P → Rp with P ⊆ P (X ) is called a statistical functional whose

domain is P.

In words, a statistical functional is any map from the space of measures, typically into the

parameter space Θ ⊆ Rp. For now, we do not require any measurability of T since, for that,

we would need to define a topology on P (X ). That will be discussed in Section 2. Simple

examples of statistical functionals are (for X = R)

• the mean T (P ) =
∫
R x dP (x) = EX with X ∼ P , defined for P ∈ P1(R). Here

Ps(X ) =

{
P ∈ P (X ) :

∫
X
∥x∥s dP (x) <∞

}
for s ∈ R, (7)

where we assume that X is a normed space with norm ∥·∥;

• the median T (P ) = inf {x ∈ R : F (x) ≥ 1/2} = med (X) defined for all P ∈ P (R),
where F is the distribution function of P ; or
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• the variance T (P ) =
∫
R x

2 dP (x)−
(∫

R x dP (x)
)2

= EX2− (EX)2 defined with X ∼ P

and for P ∈ P2(R) from (7).

• the Neyman-Pearson test statistic [19, Theorem 26], given for two densities p1, p2 : X →
[0,∞) by

T (P ) = EP log (p1(X)/p0(X)) .

• the maximum likelihood estimator T of θ ∈ Rp, defined as

T (P ) = argmaxθ∈ΘEθX log f(X, θ), (8)

withX ∼ PθX and the true parameter value θX ∈ Θ. The maximum likelihood estimator

can be defined also implicitly as the solution to the equation∫
X
ψ(x, θ) dP (x) = 0,

in θ, where

ψ(x, θ) =
∂

∂θ
log f(x, θ),

for {f(x, θ) : θ ∈ Θ} a system of densities of Pθ, θ ∈ Θ.

Observe that each of these functionals is well defined for empirical measures given by random

samples X1, . . . , Xn. For the mean functional, we get

T (Pn) =

∫
R
x dPn(x) =

∫
R
x d

(
1

n

n∑
i=1

δXi

)
(x) =

1

n

n∑
i=1

Xi = X̄n,

and its empirical version is the sample mean. For the median, we have

T (Pn) = inf {x ∈ R : Fn(x) ≥ 1/2} = med (X1, . . . , Xn),

the sample median. Finally, for the variance

T (Pn) =

∫
R
x2 dPn(x)−

(∫
R
x dPn(x)

)2

=
1

n

n∑
i=1

X2
i −

(
X̄n

)2
=

1

n

n∑
i=1

(Xi − X̄n)
2.

Remark 2. Throughout this text, we will always assume that statistical functionals T are

defined at least for all empirical measures Pn(ω), and for the true measure P ∈ P (X ) from

which we sample. This means we always assume that T (Pn) is a well-defined estimator of

T (P ) based on the random sample X1, . . . , Xn from P . In what follows, we often abuse the

notation and say simply that a statistical functional is a map T : P (X ) → Rp; by this, we

mean that the domain of T is an appropriate subset of all measures P (X ) that makes T (P )

well defined.
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Suppose now that we have a parametric model {Pθ : θ ∈ Θ} ⊂ P (X ). For a random sample

X1, . . . , Xn from some Pθ, we represent an estimator Tn = Tn(X1, . . . , Xn) of θ as a statistical

functional

Tn(X1, . . . , Xn) = T (Pn), (9)

for some choice of T . Of course, there is not a unique choice of T ; many different functionals

can represent the same estimators. The first requirement on T is that, if an empirical measure

Pn(ω) is replaced by the true distribution Pθ in (9) from which we sampled, we have that

T (P ) = θ. That means that we indeed estimate the quantity of interest.

Definition 2. In a parametric model {Pθ : θ ∈ Θ} ⊂ P (X ), a statistical functional T is said

to be Fisher consistent for θ if T (Pθ) = θ for all θ ∈ Θ.

The maximum likelihood estimator from (8) is Fisher consistent if the statistical model is

correctly specified (that is, if the true distribution PθX from which we sample is an element

of the statistical model).

Example 1.4. Let θX ∈ Θ be the true value of the parameter from which the random sample

X1, . . . , Xn is generated. Suppose that the support of f(x, θ) is the same for each θ ∈ Θ, as

is always assumed for maximum likelihood estimation. The true value θX is fixed. Thus, also

EθX log(f(X, θX)) is given and fixed, and we can write the maximum likelihood estimator as

argmaxθ∈Θ (EθX log(f(X, θ))) = argmaxθ∈Θ (EθX log(f(X, θ))− EθX log(f(X, θX)))

= argmaxθ∈Θ

(
EθX log

(
f(X, θ)

f(X, θX)

))
.

Then, for X the sample space of X and µ the σ-finite measure defining the densities f(·, θ),
Jensen’s inequality gives

EθX log

(
f(X, θ)

f(X, θX)

)
≤ log

(
EθX

f(X, θ)

f(X, θX)

)
= log

(∫
X

f(x, θ)

f(x, θX)
f(x, θX) dµ(x)

)
= log(1) = 0,

with equality if θ = θX . In particular, the maximum likelihood estimator is Fisher consistent,

at least if the true distribution P of X indeed lies in the assumed parametric model. △

If P does not correspond to any parameter θ ∈ Θ, there is an interesting connection of

maximum likelihood with the Kullback-Leibler divergence. For details see [21, Example 39].

The Fisher consistency is, strictly speaking, a property of the functional T , not a property

of the estimator Tn.

Example 1.5. The mean functional T (P ) =
∫
R x dP (x) is clearly Fisher consistent for

θ = EX, X ∼ P ∈ P1(R). The sample mean Tn(X1, . . . , Xn) can, however, be represented

13



also by the functional

T̃ (P ) =

X̄n if the measure P can be written as (5),

0 elsewhere.

More precisely, in the first case, we suppose that there exists n = 1, 2, . . . and points

x1, . . . , xn ∈ R such that P can be written using (5) with xi = Xi, and this n is the small-

est possible. The functional T̃ is defined for all P ∈ P (R). For any Pn empirical it takes

the value T̃ (Pn) = X̄n = T (Pn). Nevertheless, it is not Fisher consistent for θ = EX with

X ∼ P ∈ P1(R). △

1.3 Qualitative robustness

In our analysis, estimators Tn(X1, . . . , Xn) are replaced by some Fisher consistent statistical

functionals T . In that representation, robustness of our procedure at P ∈ P (X ) can be

interpreted as the stability, or continuity, of the functional T in some neighbourhood of P in

the space of probability measures P (X ).

To formulate what is meant by “continuity” of T , we need a topology in P (X ). A nat-

ural choice is the weak topology (also called weak-star topology in functional analysis [26,

Section 3.1.11]). Recall that a sequence of measures {Pn}∞n=1 ⊂ P (X ) converges weakly to

P ∈ P (X ) if for all bounded continuous functions f : X → R we have∫
X
f(x) dPn(x) −−−→

n→∞

∫
X
f(x) dP (x).

If this is true, we also write Pn
w−−−→

n→∞
P . This convergence is the same as the convergence in

distribution of Xn ∼ Pn towards X ∼ P , that is

Xn
d−−−→

n→∞
X if and only if Pn

w−−−→
n→∞

P.

One natural definition of robustness of a statistical functional T at a measure P ∈ P (X ) is

therefore the requirement of (weak) continuity of T at P

Pn
w−−−→

n→∞
P implies T (Pn) → T (P ) as n→ ∞. (10)

When working with statistical functionals defined on P (X ), we use “continuous” and “weakly

continuous” synonymously. The formal definition of qualitative robustness is, however, more

involved; we will want to ensure that the convergence in (10) is uniform. To formulate that,

we need, in addition, a metric on P (X ). Take for now any metric d∗ : P (X )×P (X ) → [0,∞)

that metrizes the weak topology in P (X ) (that, is d∗(Pn, P ) → 0 as n → ∞ if and only if

Pn
w−−−→

n→∞
P in P (X ); details will be given in Section 2).
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In the following definition, we write LP (f(X)) for the law (that is, the distribution) of the

random variable f(X) if X ∼ P . By LP (Tn) we mean the law of the estimator Tn(X1, . . . , Xn)

for X1, . . . , Xn sampled independently from P . Likewise, in the sequel, when we write

LP (f(Pn)) we mean the law of f(Pn) when Pn is an empirical measure (5) sampled from

P .

Definition 3 (Qualitative robustness). Let Tn = Tn(X1, . . . , Xn) ∈ Rp for n = 1, 2, . . . be

a sequence of estimators or test statistics based on a random sample X1, . . . , Xn from some

P ∈ P (X ). The sequence {Tn}∞n=1 is called qualitatively robust at P0 ∈ P (X ) if the sequence

of maps {ξn}∞n=1 defined by

ξn : P (X ) → P (Rp) : P 7→ LP (Tn) (11)

is asymptotically equicontinuous at P0. That means, for each ε > 0 there exists δ > 0 and

n0 ≥ 1 such that for all P ∈ P (X ) and n ≥ n0 we have

d∗(P0, P ) ≤ δ implies d∗(LP0(Tn),LP (Tn)) = d∗(ξn(P0), ξn(P )) ≤ ε. (12)

Definition 3 is very general. If each of the individual maps ξn is continuous, the definition of

qualitative robustness is, in fact, just the equicontinuity of the set of maps {ξn}∞n=1 from (11),

see [22, Definition 13.4.3]. Indeed, in that case, write (X1, d1) = (P (X ) , d∗) and (X2, d2) =

(P (Rp) , d∗) for the domain and the codomain metric spaces of ξn, respectively. The formula

(12) can then be rewritten as the requirement that for a point x ∈ X1 given (here, x = P0),

for each ε > 0 there exists δ > 0 such that

d1(x, y) ≤ δ implies sup
n=1,2,...

d2(ξn(x), ξn(y)) ≤ ε.

This is precisely the equicontinuity of {ξn}∞n=1 at x ∈ X1. The additional requirement of

n ≥ n0 is in (12) only to allow some finite number of ξn not to be weakly continuous.

In the common situation when each Tn(X1, . . . , Xn) can be represented by a single statistical

functional, we will see in Section 2.3 that the definition of qualitative robustness simplifies

substantially. Essentially, it is simply the weak continuity of the underlying functional T . To

prove that, we however need some additional facts about the metrics d∗ that will be shown

in Section 2.

The condition in Definition 3 is called qualitative robustness because it asserts continuity

qualitatively, that is, without stating explicitly how much robust the estimators Tn are. The end of

lecture 1

(22.02.2024)

1.4 Quantitative robustness

The notion of qualitative robustness is useful as a minimal criterion of the robustness of a

functional — any reasonably robust method must be qualitatively robust. To determine the
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degree of robustness of a functional T , we need to introduce additional measures of stability

of T . Many numerical characteristics of robustness have been developed in the literature.

Possibly the simplest are the maximum bias and maximum variance.

Suppose that the estimators or test statistics Tn = Tn(X1, . . . , Xn) are obtained from

a single statistical functional T , and take values in R. A reasonable procedure should be

consistent, meaning

T (Pn)
P−−−→

n→∞
T (P )

for each P ∈ P (X ) on which T is defined, and Pn an empirical measure (5) sampled from P .

In addition, Tn is frequently asymptotically normal, meaning that

√
n (T (Pn)− T (P ))

d−−−→
n→∞

N(0, A(P, T )), (13)

with asymptotic variance A(P, T ) > 0.

To quantify the robustness of T at P0 ∈ P (X ) properly, we will consider the asymptotic

bias |T (P )− T (P0)| and asymptotic variance A(P, T ) when P ∈ P (X ) is taken from a small

neighbourhood of P0. A natural choice for such a neighbourhood would be using the weak

topology of the space of measures P (X ); this will be detailed in Section 2. An even simpler

idea is to consider the contamination neighbourhood of P0 defined for ε > 0 by

Pε(P0) = {P ∈ P (X ) : P = (1− ε)P0 + εQ, for any Q ∈ P (X )} . (14)

This set consists of all contaminated versions of the ideal measure P0 by other measures Q,

where the maximum contamination allowed is ε > 0. We already encountered this neighbour-

hood in Examples 1.2 and 1.3. Note that (14) is not a neighbourhood in the sense of the

weak topology on P (X ).

Definition 4. For a statistical functional T : P (X ) → R, a measure P0 ∈ P (X ) and some

system of neighbourhoods Pε(P0) of P0 with ε > 0 we define the maximum bias of T at P0 as

b(ε, P0, T ) = sup
P∈Pε(P0)

|T (P )− T (P0)| . (15)

The maximum variance of T satisfying (13) at P0 is

v(ε, P0, T ) = sup
P∈Pε(P0)

A(P, T ).

Of course, both suprema above are taken only over those P ∈ Pε(P0) such that T (P ) is

well-defined, if the domain of T is not the full space P (X ).

A good robust estimator Tn is expected to have low maximum bias and maximum variance.

Nevertheless, it is important to realise that both quantities in Definition 4 are asymptotic.
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They naturally deal with the functional T , and not with the finite sample situation and Tn.

Thus, for example, minimising the asymptotic bias, we handle an expression of the type

sup
P∈Pε(P0)

lim
n→∞

|T (Pn)− T (P0)|

with Pn the empirical measure (5) from P (supposing that T (Pn) is a consistent estimator of

T (P )). A more natural approach would be to control an expression of the type

lim
n→∞

sup
P∈Pε(P0)

|T (Pn)− T (P0)| . (16)

Since now we take the limit of the supremum, the quantity (16) is larger than b(ε, P0, T ). It

is, however, much more difficult to control (16) because it is necessarily random (it depends

on the empirical measure Pn = Pn(ω)). In our analysis, we therefore work with the indices

from Definition 4.

An interesting complementary characteristic of robustness is the smallest amount of con-

tamination ε > 0 in maximum bias that completely breaks the functional T down.

Definition 5. The asymptotic breakdown point of a statistical functional T : P (X ) → R at

P0 ∈ P (X ) is

ε∗(P0, T ) = sup

{
ε > 0: b(ε, P0, T ) < lim

t→∞
b(t, P0, T ) = sup

P∈P(X )
|T (P )− T (P0)|

}
.

For the contamination neighbourhood, note that for ε = 1 we get Pε(P0) = P (X ).1 Thus,

instead of t → ∞, only t = 1 can be taken in Definition 5 for the contamination neighbour-

hood.

The asymptotic breakdown point can be interpreted as the smallest amount of contamina-

tion of P0 that makes T differ from T (P0) as extremely as it does for an arbitrary measure

P .

Example 1.6. For T (P ) =
∫
R x dP (x) the mean functional and the contamination neigh-

bourhood (14), we have for any P0 ∈ P1(R) from (7) and Q ∈ P1(R) that (1− ε)P0 + εQ ∈
Pε(P0) and

T ((1− ε)P0 + εQ) = (1− ε)T (P0) + ε T (Q).

Since Q ∈ P1(R) can be arbitrary, we can take T (Q) to be arbitrarily large. For T the mean,

for any P0 ∈ P1(R) and ε > 0 we thus have

b(ε, P0, T ) = ∞ and ε∗(P0, T ) = 0.

1Observe the subtle difference in notation: P1(X ) for a normed space X is the set of P ∈ P (X ) such that∫
X ∥x∥ dP (x) < ∞, and P1(P0) is a 1-neighbourhood of P0 ∈ P (X ).

17



We again see that the mean is very non-robust, having an asymptotic breakdown point equal

to 0 and maximum bias equal to infinity for any ε > 0. △

As with the definition of the maximum bias, also ε∗(P0, T ) is an asymptotic quantity. It is,

however, possible to consider also directly the finite sample version of the breakdown point

from Definition 5. To avoid problems with the stochastic nature of the empirical measure (5),

in this setup, we consider a fixed random sample consisting of points x1, . . . , xn ∈ X . This

sample is contaminated by adding m ≥ 0 additional points y1, . . . , ym to the sample; the

amount of contamination is controlled by m/(m+ n) ≤ ε. The corresponding maximum bias

of T is the maximum deviation of T when applied to the contaminated dataset and compared

with the situation without contamination. The breakdown point is the smallest fraction ε

that causes T to break down completely.

Definition 6. Suppose we have a set X of points x1, . . . , xn ∈ X and ε ∈ (0, 1). Let {Tn}∞n=1

be a sequence of estimators represented by a statistical functional T . The finite sample

maximum bias of T at X is

b(ε,X, T ) = sup
y1,...,ym∈X

|Tn+m(x1, . . . , xn, y1, . . . , ym)− Tn(x1, . . . , xn)| , (17)

where m is any integer such that m/(m+ n) ≤ ε.

The finite sample breakdown point of T at X is

ε∗(X, T ) = inf {ε > 0: b(ε,X, T ) = ∞} . (18)

Naturally, if T takes values only in a bounded subset S of R, one modifies the definition

in (18) to the smallest ε-contamination of X that drags T to the boundary of S. In the

situation when T takes values in Rp or a general normed space X , one replaces the absolute

value in (17) by the (Euclidean) norm.

Very often, the (asymptotic or finite sample) breakdown point of T does not depend on X

or P0. Also, under natural conditions, it can be expected that if X is sampled from P , the

finite sample breakdown point of T converges to its asymptotic counterpart as n→ ∞.

The finite sample breakdown point of any “reasonable” functional T is naturally bounded

from above by ε∗(X, T ) ≤ 1/2. This can be seen directly because if ε > 1/2, then m > n,

and in the finite sample maximum bias (17) the contaminating observations y1, . . . , ym are

already the majority of the data. A formal justification for this phenomenon with additional

insights into the maximum finite sample breakdown point can be found in [6, 5].
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2 The space of measures and generalised derivatives

We work in the space of Borel probability measures P (X ), where X is typically the Euclidean

space Rk for some k ≥ 1. More generally, we could take X to be any Polish space, that is any

topological space X whose topology is metrizable by a metric d : X × X → [0,∞), such that

X is complete (that is, each Cauchy sequence in X has a limit in X ) and separable (that is,

the space X contains a countable dense subset).

The space P (X ) is equipped with the weak(-star) topology, that is the weakest topology

that makes the map

P (X ) → R : P 7→
∫
X
f(x) dP (x)

continuous for every bounded continuous function f : X → R. Convergence of measures in

the weak topology is precisely the weak convergence of measures: Pn
w−−−→

n→∞
P in P (X ) if and

only if ∫
X
f(x) dPn(x) −−−→

n→∞

∫
X
f(x) dP (x).

We already know a lot about the weak topology of measures:

• Weak convergence is characterised by the portmanteau theorem [16, Theorem 13.2];

• for X = R, weak convergence to P is equivalent to point-wise convergence of distri-

bution functions at each point of continuity of the distribution function F of P [16,

Theorem 13.12]; and

• by the Prokhorov theorem [16, Theorem 12.8], we know that a set of measures S ⊂ P (X )

contains a weakly convergent subsequence if and only if S is tight, meaning that for every

ε > 0 there exists a compact set K ⊂ X such that for all P ∈ S we have P (K) ≥ 1− ε.

To quantify the robustness of statistical functionals appropriately, we need a metric on

the space of measures, and the associated notion of a neighbourhood. Many metrics with

different properties have been defined in P (X ). For example, we are already familiar with

the Kolmogorov distance for X = R given by

dK(P,Q) = sup
x∈R

|F (x)−G(x)| , (19)

where F and G are the distribution functions of P and Q, respectively. The Kolmogorov

distance is, however, not compatible with weak convergence in P (R); for δ1/n the Dirac

measure at 1/n ∈ R, we have δ1/n
w−−−→

n→∞
δ0 in P (R), but dK(δ1/n, δ0) = 1 for each n =

1, 2, . . . .

We will work with two metrics that do metrize weak convergence: in X = R we introduce

the Lévy metric, and in a general Polish space X we use the Prokhorov metric.

19



Definition 7. The Lévy distance between P and Q in P (R) is

dL(P,Q) = inf {ε > 0: F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x ∈ R} , (20)

where F is the distribution function of P and G is the distribution function of Q.

As we explained in Remark 1, it will often be more convenient to write directly dL(F,G)

instead of dL(P,Q).

The Lévy distance dL is somewhat similar to the Kolmogorov distance dK . In dK in (19),

we evaluate the greatest difference between F and G in terms of their vertical distance. In

dL in (20), one measures the discrepancy between F and G in terms of both vertical and

horizontal shifts; see Figure 4.
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Figure 4: The Lévy metric: Two distribution functions in blue (left panel: a continuous

distribution, right panel: a discrete distribution) with their Lévy neighbourhoods

with boundaries in orange. The Lévy distance can be interpreted as drawing squares

of side length ε with one corner at each (x, F (x))T ∈ R2 (orange squares for x = 1

in both figures). The Lévy ε-neighbourhood of F is the region in R2 covered by the

union of all such squares; each distribution function G lying in this set completely

is of Lévy distance at most ε from F .

Theorem 1. The Lévy distance is a metric that metrizes the weak topology in P (R).

Proof. To show that dL is a metric, we need to establish that for all P,Q,R ∈ P (R):
(i) dL(P,Q) ≥ 0 and dL(P,Q) = 0 if and only if P = Q; (ii) dL(P,Q) = dL(Q,P ); and

(iii) dL(P,R) ≤ dL(P,Q)+ dL(Q,R). All these follow directly from the definition of the Lévy

distance (20).

Now we prove that dL metrizes the weak topology. To prove the first implication, assume

that dL(Fn, F ) → 0 as n → ∞, and take x ∈ R that is a point of continuity of F . Then

F (x+ ε) + ε→ F (x) and F (x− ε)− ε→ F (x) as ε→ 0 because of the continuity of F at x,

which means that in the definition of dL we get Fn(x) → F (x). This means that Pn
w−−−→

n→∞
P .
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For the other implication, suppose that Pn
w−−−→

n→∞
P , meaning that Fn(x) → F (x) as n→ ∞

for each continuity point x of F . Take ε > 0 and find a sequence x0 < x1 < · · · < xN of

continuity points of F such that F (x0) < ε/2, F (xN ) > 1 − ε/2, and xi+1 − xi < ε for each

i = 1, . . . , N . This is possible since any F is non-decreasing and thus has at most countably

many points of discontinuity. Take n0 ≥ 1 large enough so that for all i = 0, 1, . . . , N and

n ≥ n0 we have |Fn(xi)− F (xi)| < ε/2. For any x ∈ [xi−1, xi] we then have

Fn(x) ≤ Fn(xi) < F (xi) + ε/2 ≤ F (x+ ε) + ε.

The last inequality comes from xi ≤ x + ε, which is true because xi−1 ≤ x ≤ xi < xi−1 + ε.

For x < x0 we have similarly

Fn(x) ≤ Fn(x0) < F (x0) + ε/2 ≤ ε ≤ F (x+ ε) + ε,

and for x > xN

Fn(x) ≤ 1 < 1 + ε/2 < F (xN ) + ε ≤ F (x+ ε) + ε.

To get a bound on Fn(x) from below, we write analogously for x ∈ [xi−1, xi]

Fn(x) ≥ Fn(xi−1) ≥ F (xi−1)− ε/2 ≥ F (x− ε)− ε.

For x > xN we have

Fn(x) ≥ Fn(xN ) ≥ F (xN )− ε/2 ≥ 1− ε ≥ F (x− ε)− ε,

and finally for x < x0 we write

Fn(x) ≥ 0 ≥ F (x0)− ε ≥ F (x− ε)− ε.

Overall, we obtain that for any ε > 0 we can find n0 ≥ 1 such that for all n ≥ n0 we have

dL(Pn, P ) ≤ ε, as we wanted to show.

The Lévy distance is applicable only for X = R; the Prokhorov distance can be used in any

Polish space X . To define it, we need the concept of a δ-neighbourhood of a set A ⊆ X

Aδ =

{
x ∈ X : inf

y∈A
d(x, y) ≤ δ

}
.

The set Aδ is clearly always closed in X .

Definition 8. The Prokhorov distance between P and Q in P (X ) is

dP (P,Q) = inf {ε > 0: P (A) ≤ Q(Aε) + ε for all A ⊆ X Borel} . (21)
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Just as the Lévy metric in P (R), the Prokhorov metric metrizes the weak convergence in

P (X ). It even makes the space of measures P (X ) Polish.

Theorem 2. For any Polish space X , the Prokhorov distance is a metric that metrizes the

weak topology in P (X ). In addition, the space P (X ) equipped with weak topology is Polish.

Proof. The proof is not difficult. But it is somewhat technical and requires a certain amount of

topology. Thus, we omit it; it can be found in [12, Lemma 2.12, Theorems 2.14 and 2.15].

The following inequalities between probability metrics will be useful. A much more detailed

discussion on relations between metrics for probability measures can be found in [9].

Lemma 1. For any P,Q ∈ P (R) we have

dL(P,Q) ≤ dP (P,Q) and dL(P,Q) ≤ dK(P,Q).

Proof. The definition of the Lévy distance (20) is basically just the Prokhorov distance (21)

with sets A of the form (−∞, x] or [x,∞) with x ∈ R. We obtain that there will be more

constants ε > 0 satisfying the condition for dL than for dP , and consequently dL(P,Q) ≤
dP (P,Q). The inequality for dK follows directly from the definition or by inspecting Figure 4.

We have seen in Theorems 1 and 2 that both the Lévy and Prokhorov distance metrize the

weak topology in P (R). It means that dL(Pn, P ) → 0 if and only if dP (Pn, P ) → 0 as n→ ∞.

This, however, does not mean that the two metrics are equivalent in the sense that there exists

a constant c > 0 such that dP (P,Q) ≤ c dL(P,Q) for all P,Q ∈ P (R). In fact, a stronger

claim can be shown. It is possible to find two sequences of measures {Pn}∞n=1, {Qn}∞n=1 in

P (R) such that dL(Pn, Qn) → 0 as n→ ∞, but dP (Pn, Qn) ≥ 1/2 for all n = 1, 2, . . . , see [7,

Problem 8 in Section 11.3]. The end of

lecture 2

(29.02.2024)

2.1 Derivatives in the space of measures

The space of measures P (X ) is convex, but not linear: a convex combination Pt = t P +(1−
t)Q from (4) belongs to P (X ) for t ∈ [0, 1], but not for t < 0. When we need to impose a

linear structure on P (X ), we embed this space into the linear space of all signed measures on

X , defined precisely as the linear space generated by all finite linear combinations of elements

from P (X ). A signed measure can attain both positive and negative values. We write P ′ (X )

for the space of all signed measures on X .

We now explore the possibilities to define derivatives of functionals T from P (X ). For the

following definition, let d∗ be a metric on P (X ) that metrizes weak topology. We further
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require that d∗ is compatible with the affine structure on P (X ), meaning that for any Ft =

(1− t)F + tG, t ∈ [0, 1] it satisfies

d∗(Ft, Fs) ≤ |t− s| . (22)

For the Prokhorov metric, this is true since for any A ⊆ X Borel we have

|Ft(A)− Fs(A)| = |(1− t)F (A) + tG(A)− (1− s)F (A)− sG(A)|

= |t− s| |G(A)− F (A)| ≤ |t− s| ,

and immediately from (21) we get dP (Ft, Fs) ≤ |t− s|. The Lévy distance verifies (22) by

Lemma 1. Overall, for the metric d∗, we can take either dL or dP .

Definition 9 (Fréchet derivative). A statistical functional T : P (X ) → R is said to be Fréchet

differentiable (with respect to d∗) at P ∈ P (X ) if there exists a continuous linear functional

L = LP : P ′ (X ) → R (depending on P ) such that we can write

lim
d∗(P,Q)→0

|T (Q)− T (P )− L(Q− P )|
d∗(P,Q)

= 0, (23)

where the limit is taken over all (sequences of) measures Q ∈ P (X ) converging weakly to P .

The functional L = LP is called the Fréchet derivative of T at P .

Although this concept is customarily called the Fréchet derivative, it is, strictly speaking,

not precisely the Fréchet derivative in topological vector spaces known from functional analysis

[26, Section 7.1.1]. The reason is that in (23), we do not consider the limit in the linear space

of signed measures P ′ (X ). Instead, we approach P only in the space of probability measures

P (X ). This is obvious once one realises that the functional T is not even defined for general

signed measures on X . For this reason, one has to be careful with applying functional analytic

results to our concept of the Fréchet derivative.

It is important to note that different authors may define Fréchet derivatives slightly dif-

ferently. In [12, Section 2.5], for example, it is not assumed that the linear functional L

is continuous (or, equivalently, bounded, see [26, Theorem 1.1.28]). Note that in infinite-

dimensional spaces, such as P (X ) is, there exist discontinuous linear functionals. We follow

the convention from [27, Section 20.2] and [28, Section 3.9], and assume that L must also be

continuous, which then implies that if Fréchet derivative of T at P exists, then T must be

(weakly) continuous at P .

Theorem 3. Let T : P (X ) → R be a statistical functional that Fréchet differentiable at P .

Then

• T is (weakly) continuous in at P ∈ P (X ),
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• the Fréchet derivative L = LP of T at P can be represented as

LP (Q− P ) =

∫
X
ψP (x) dQ(x) (24)

with ψP : X → R bounded and continuous, and

•
∫
X ψP (x) dP (x) = LP (0) = 0.

Proof. Let F be the distribution function of P and G the distribution function of Q. First,

we prove that LP is essentially unique. Suppose that both L1 and L2 satisfy (23). Take

Ft = (1 − t)F + tG with t ∈ (0, 1). Then we have by (22) that d∗(Ft, F ) ≤ t, and we can

write

lim
t→0

|T (Ft)− T (F )− Li(Ft − F )|
d∗(Ft, F )

= 0 for i = 1, 2.

This gives

0 ≤ lim
t→0

|L1(Ft − F )− L2(Ft − F )|
d∗(Ft, F )

≤ lim
t→0

(
|T (Ft)− T (F )− L1(Ft − F )|

d∗(Ft, F )
+

|T (Ft)− T (F )− L2(Ft − F )|
d∗(Ft, F )

)
= 0,

but also Ft − F = t (G− F ), and by the linearity of Li we have

|L1(Ft − F )− L2(Ft − F )| = |t| |(L1 − L2)(G− F )| .

Together we get, using again (22), that

0 = lim
t→0

|t| |(L1 − L2)(G− F )|
d∗(Ft, F )

≥ lim
t→0

|t| |(L1 − L2)(G− F )|
t

= |(L1 − L2)(G− F )| ,

that is L1(G − F ) = L2(G − F ) for all G ∈ P (X ). This, of course, does not mean that

L1(G) = L2(G) for all G ∈ P (X ). But, since F is fixed we can standardise L by, say,

assuming L(F ) = 0, which then gives L1(G) = L1(G − F ) = L2(G − F ) = L2(G) for all

G ∈ P (X ) as we wanted to show. Thus, fixing L(F ) = 0, the linear functional L in (23) is

unique.

Next we show that T is continuous at P . To see that, let d∗(Qn, P ) → 0 as n → ∞. We

can write

0 ≤ lim supn→∞ |T (Qn)− T (P )| ≤ lim
d∗(Q,P )→0

d∗(Q,P )
|T (Q)− T (P )− L(Q− P ) + L(Q− P )|

d∗(Q,P )

≤ lim
d∗(Q,P )→0

d∗(Q,P )
|T (Q)− T (P )− L(Q− P )|

d∗(Q,P )
+ lim

d∗(Q,P )→0
|L(Q− P )| = 0,

because of the Fréchet differentiability (23) of T , and the continuity of the linear functional

L. We see that T must be continuous at P .

24



Now we want to show (24); we only sketch this part of the proof. The function ψP is at

x ∈ X defined by means of taking the Dirac measure δx ∈ P (X ), and setting

L(δx) = ψP (x) =

∫
X
ψP (y) d δx(y).

Because L is linear, for any measure Q =
∑m

i=1 αi δxi ∈ P (X ) with αi > 0, i = 1, . . . ,m,

supported in a finite number of points x1, . . . , xm ∈ X , we can extend the previous formula

to

L(Q) =
m∑
i=1

αi L(δxi) =
m∑
i=1

αi ψP (xi) =

∫
X
ψP (y) dQ(y).

The formula for a general measure Q ∈ P (X ) is obtained by approximating Q using finitely

supported measures, continuity of L, and weak continuity of T ; for details, see [12, Section 2.5].

For the final assertion, by (24) we have
∫
X ψP (x) dP (x) = LP (P − P ) = 0.

Remark 3. We saw in the proof above that the functional LP is defined uniquely up to the

(arbitrary) choice of LP (P ) ∈ R. From now on, we thus make a convention, and will always

consider functional derivatives LP that satisfy LP (P ) = 0, without loss of generality.

The concept of Fréchet differentiability of a statistical functional is very strong. Using

a Taylor expansion, it immediately gives an asymptotic normality result. In the proof of

this theorem, we will need the famous Varadarajan theorem that states that empirical mea-

sures Pn = Pn(ω) from (5) converge to the true sampling distribution P ∈ P (X ) weakly (as

measures in P (X )) almost surely (in the random element ω ∈ Ω). This is an interesting com-

plement to the Glivenko-Cantelli theorem (Theorem 6 below in Section 2.3). Varadarajan’s

theorem can be applied in any separable metric space X (in particular, it works in Polish

spaces X , as we assume throughout this text).

Theorem 4 (Varadarajan). Let P ∈ P (X ). Then the empirical measures Pn = Pn(ω) ∈
P (X ) from (5) converge to P weakly almost surely, that is

P
({
ω ∈ Ω: Pn(ω)

w−−−→
n→∞

P
})

= 1.

Proof. We give only a sketch of the proof. For any f : X → R bounded and continuous we

have ∫
X
f(x) dPn(x) =

1

n

n∑
i=1

f(Xi) → EP f(X1) =

∫
X
f(x) dP (x) almost surely, (25)

because of the usual law of large numbers. The proof is completed by observing that the

space of bounded continuous functions on a Polish space X is separable (with respect to an

appropriately chosen metric). We apply (25) to each element of a countable dense subset of

this space, and continuity of the functions f allows to expand (25) also to all other bounded

continuous functions. For details, we refer to [7, Theorem 11.4.1].
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Observe that as an immediate consequence of the Varadarajan theorem 4 we obtain that any

weakly continuous statistical functional T : P (X ) → Rp induces strongly consistent estimators

P
({
ω ∈ Ω: T (Pn(ω)) −−−→

n→∞
T (P )

})
= 1,

that is

T (Pn) → T (P ) almost surely as n→ ∞.

We are now ready to state a central limit theorem for Fréchet differentiable statistical

functionals. In this result, we use some basic stochastic O notation, see [20, Definition 1].

Theorem 5. Let Pn = Pn(ω) ∈ P (X ) be a sequence of empirical measures (5) corresponding

to X1, X2, . . . sampled independently from P ∈ P (X ). Let the metric d∗ satisfy

d∗(P, Pn) = OP(n
−1/2), (26)

meaning that the sequence of laws LP (
√
nd∗(P, Pn)) is tight. Suppose that a statistical func-

tional T has a Fréchet derivative (with respect to d∗) at P represented by a function ψP as

in Theorem 3. Then

√
n (T (Pn)− T (P )) =

1√
n

n∑
i=1

ψP (Xi) + oP(1), (27)

where oP(1) stands for a remainder term that vanishes in probability as n→ ∞.

If, in addition, A(P, T ) defined as A(P, T ) =
∫
X (ψP (x))

2 dP (x) is non-zero and finite, then

we can write
√
n (T (Pn)− T (P ))

d−−−→
n→∞

N(0, A(P, T )).

Proof. From (23) and Theorem 4 we have for (P-almost) any fixed ω ∈ Ω

lim
n→∞

|T (Pn(ω))− T (P )− L(Pn(ω)− P )|
d∗(P, Pn(ω))

= 0,

which means precisely

T (Pn(ω))− T (P )− L(Pn(ω)− P ) = o(d∗(P, Pn(ω))).

Rearranging the terms in the previous formula and using L(P ) = 0 gives

√
n (T (Pn(ω))− T (P )) =

√
nL(Pn(ω)) + o(

√
nd∗(P, Pn(ω)))

=

√
n

n

n∑
i=1

L(δXi(ω)) + o(
√
nd∗(P, Pn(ω)))

=
1√
n

n∑
i=1

ψP (Xi(ω)) + o(
√
nd∗(P, Pn(ω))).

26



We used Pn(ω) =
∑n

i=1 δXi(ω)/n which follows from the definition of an empirical measure (5),

and (24). Dropping ω ∈ Ω and considering Pn as a random measure again, this can be

rewritten to
√
n (T (Pn)− T (P )) =

1√
n

n∑
i=1

ψP (Xi) + o(1)OP(1),

where we used our assumption that
√
nd∗(P, Pn(ω)) = OP(1). Finally, using o(1)OP(1) =

oP(1) [20, Remark 3], we obtain the first part of our theorem.

For our second claim, note that ψP (X1), ψP (X2), . . . is a sequence of independent identically

distributed random variables with

E ψP (X1) =

∫
X
ψP (x) dP (x) = L(P ) = 0

using Theorem 3. Thus, we can use the ordinary central limit theorem on the right-hand side

of (27) with

var ψP (X1) = E (ψP (X1))
2 = A(P, T ),

as we wanted to show.

Theorem 5 says that, if T is Fréchet differentiable and if the metric d∗ is chosen well so

that (26) is true, we obtain an immediate asymptotic normality result. The condition (26)

is not terribly strict (at least if X = R). It is true for, e.g., the Kolmogorov distance dK

from (19) in X = R, as for dK the condition (26) follows from an asymptotic normality result

for the Kolmogorov-Smirnov test statistic [15, Theorem 5.2]

√
ndK(P, Pn) =

√
n sup

x∈R
|Fn(x)− F (x)| d−−−→

n→∞
Z,

for Z with the Kolmogorov distribution. Lemma 1 then gives (26) also for the Lévy metric. It

is also interesting to note that (26) does not hold true for X = R and the Prokhorov metric;

for details see [12, page 40] and the references therein.

The difficult part of applying Theorem 5 is the requirement of Fréchet differentiability of T ,

which may be hard to verify. As argued in [8, Example 2.3.2], already functionals T assigning

to P its quantiles fail to be Fréchet differentiable. Several other types of functionals have

been found to be Fréchet differentiable, under various technical conditions. For an overview

of some of these results see [3].

There exist concepts of differentiability in P (X ) that are weaker than the Fréchet derivative.

The weakest one is the Gâteaux differentiation, which is simply the directional derivative along

a line segment.
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Definition 10 (Gâteaux derivative). A statistical functional T : P (X ) → R is said to be

Gâteau differentiable at P ∈ P (X ) if there exists a measurable function ψP : X → R satisfying∫
X ψP (x) dP (x) = 0 such that for all Q ∈ P (X ) we can write

lim
t→0

T (Pt)− T (P )

t
=

∫
X
ψP (x) dQ(x), (28)

where Pt = (1− t)P + tQ for t ∈ [0, 1]. The linear functional

LP : Q 7→
∫
X
ψP (x) dQ(x)

is called the Gâteaux derivative of the functional T at P .

Observe that in Definition 10, we assume that the linear functional LP can be represented

by a function ψP ; for Fréchet derivatives, this was not assumed but was proved to be true in

Theorem 3. For Gâteaux derivatives, this assumption must be made. The difference between

Gâteaux and Fréchet derivatives is similar to the difference between directional derivatives

and the total differential for functions from Rk [22, Section 11.1]. In particular, if the Fréchet

derivative exists, then so does the Gâteaux derivative, and the two derivatives are equal. On

the other hand, unlike the Fréchet differentiability, the Gâteaux differentiability of T at P

does not guarantee weak continuity of T at P ; see [26, Remark 7.1.2(c)] for an example in

R2.

Note that on the left-hand side of (28), we have simply the standard derivative of a real

function t 7→ T (Pt) defined in [0, 1] ⊂ R. Its value can therefore be interpreted as the

directional derivative of T at P in direction Q.

The notion of Gâteaux differentiability is sufficient for our purposes, but it is too weak to

be used as a derivative in, for example, asymptotic expansions of functionals. Results such

as our Theorem 5 are not valid under Gâteaux differentiability. On the other hand, estab-

lishing Fréchet differentiability of functionals is very technical and usually complicated. As a

compromise, another notion of a derivative, called Hadamard (or compact) differentiability,

is often useful.

Definition 11 (Hadamard derivative). A statistical functional T : P (X ) → R is said to be

Hadamard differentiable at P ∈ P (X ) if there exists a continuous linear functional L =

LP : P ′ (X ) → R (depending on P ) such that

lim
tn→0

lim
Qn

w−−−→
n→∞

Q

T (P + tnQn)− T (P )

tn
= L(Q− P ), (29)

where the limit is taken for any sequences tn → 0 andQn
w−−−→

n→∞
Q in P (X ), for anyQ ∈ P (X )

given. The linear functional L = LP is called the Hadamard derivative of the functional T at

P .
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If in the limit (29) we require only Q,Qn ∈ P0(X ) for each n for some subset P0(X ) of

P0(X ), then we say that T is Hadamard differentiable at P tangentially to P0(X ).

The difference between the Gâteaux and Hadamard differentiability is that for the Gâteaux

derivative, in (28) we approach P only from the fixed direction of Q. On the other hand, for

the Hadamard differentiability, we require the limit to be valid also if the directions of Qn

change, and only converge to Q. Finally, for the Fréchet derivative, we require the convergence

to be also uniform inQn andQ, with respect to the metric d∗. Thus, roughly speaking, Fréchet

=⇒ Hadamard =⇒ Gâteaux differentiability. To sum things up, it is useful to interpret

the three notions of differentiability in a single framework. For L : P ′ (X ) → R a continuous

linear functional, define a remainder of a functional T : P (X ) → R at Q ∈ P (X ) as

R(P + tQ) = T (P + tQ)− T (P )− L(tQ) for t ≥ 0,

and suppose that
R(P + tQ)

t
→ 0 as t→ 0. (30)

Then we say that

• T is Gâteaux differentiable at P if (30) is true for each Q ∈ P (X ),

• T is Hadamard differentiable at P if (30) is true uniformly in Q in any compact subset

of P (X ), and

• T is Fréchet differentiable at P if (30) is true uniformly in Q in any bounded subset of

P (X ).

In any of these situations, we then say that L is the respective derivative of T at P .

In a finite-dimensional space, a bounded closed set is compact. Thus, in finite-dimensional

spaces, Hadamard and Fréchet differentiability are the same. In our setup of an infinite-

dimensional space P (X ), this is not true. It turns out that Hadamard differentiability is

easier to prove, holds true for large classes of common statistical functionals, and is enough

for asymptotic expansions of T and inference. The notion of tangential Hadamard derivative

makes this even easier, as under some conditions, we are allowed to prove differentiability

only in subspaces P0(X ) of P (X ). For those reasons, Hadamard differentiability proved to

be quite useful in asymptotic statistics. For some applications such as the delta method for

statistical functionals see [27, Section 20.2] and [28, Section 3.9]. As we will see, however, for

(most of) our purposes, the Gâteaux differentiability will be sufficient.
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2.2 Influence function

The simplest Gâteaux derivative is obtained when Q is taken to be the Dirac measure δx ∈
P (X ). In the limit in (28), we obtain the important influence function introduced by Hampel.

Definition 12 (Influence function). The influence function of a statistical functional T : P (X ) →
R at P ∈ P (X ) is defined as

IF(x, P, T ) = lim
s→0

T ((1− s)P + s δx)− T (P )

s
. (31)

The existence of the influence function of T is even weaker than the existence of the Gâteaux

derivative of T ; it only concerns specific directions from P to δx. But, again — if the Gâteaux

derivative of T at P exists, then (28) must be true also for Q = δx, and we obtain

IF(x, P, T ) =

∫
X
ψP (y) d δx(y) = ψP (x) for all x ∈ X . (32)

Thus, the influence function does determine the Gâteaux derivative uniquely. In turn, if the

Fréchet derivative (or the Hadamard derivative) of T at P exists, it must also be equal to

LP (Q) =

∫
X
ψP (x) dQ(x) =

∫
X
IF(x, P, T ) dQ(x) (33)

by Theorem 3. In particular, we can rewrite the claim of Theorem 5 into

√
n (T (Pn)− T (P )) =

1√
n

n∑
i=1

IF(Xi, P, T ) + oP(1). (34)

The expression above can be found in, e.g., [20, Section 4]. Even if the Fréchet differentiability

of T is not true, or is hard to prove, formula (34) provides a useful heuristic on how can

the asymptotic expansion of a statistical functional look like. In particular, (34) gives an

impression of the importance of the influence function in what follows.

Let us compute the influence functions of several simple statistical functionals.

Example 2.1. Take A ⊂ X a fixed measurable set and let T (P ) = P (A). Then for Pt =

(1− t)P + tQ we have

T (Pt) = (1− t)P (A) + tQ(A),

and

lim
t→0

T (Pt)− T (P )

t
= T (Q)− T (P ) =

∫
X
(I (x ∈ A)− T (P )) dQ(x).

We have ψP (x) = I (x ∈ A)− P (A) for x ∈ X , and the corresponding influence function is

IF(x, P, T ) = I (x ∈ A)− P (A).
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Theorem 5 gives

√
n (T (Pn)− T (P )) =

1√
n

n∑
i=1

(I (Xi ∈ A)− P (A)) + oP(1),

which is true even without the remainder term oP(1), and

√
n (T (Pn)− T (P ))

d−−−→
n→∞

N(0, A(P, T ))

with A(P, T ) = E (IF(X1, P, T ))
2 = P (A)(1−P (A)). This is also true due to the central limit

theorem. △

Example 2.2. Let T (P ) =
∫
X x dP (x) be the mean functional defined on P1(X ). We have

for Pt = (1− t)P + tQ that

T (Pt) =

∫
X
x d ((1− t)P + tQ)(x) = (1− t)T (P ) + t T (Q).

We get

lim
t→0

T (Pt)− T (P )

t
= T (Q)− T (P ) =

∫
X
(x− T (P )) dQ(x),

that is ψP (x) = x −
∫
X y dP (y) for all x ∈ X , and T is differentiable at any P and in all

directions Q ∈ P1(X ) where T is defined. For Q = δx we obtain the influence function of the

mean

IF(x, P, T ) = x−
∫
X
y dP (y) = x− EP X. (35)

Theorem 5 gives

√
n (T (Pn)− T (P )) =

1√
n

n∑
i=1

(Xi − EXi) + oP(1),

which is always trivially true even without the remainder term oP(1), and

√
n (T (Pn)− T (P ))

d−−−→
n→∞

N(0, A(P, T ))

with A(P, T ) = E (IF(X1, P, T ))
2 = varX1. This is the usual central limit theorem for sam-

ple averages. Note, however, that the Fréchet differentiability of T is not true and strictly

speaking, Theorem 5 cannot be applied directly in our situation. △

Example 2.3. Let

T (P ) = varX =

∫
R
x2 dP (x)−

(∫
R
x dP (x)

)2
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with X ∼ P ∈ P2(R). Then, for Pt as in Example 2.2 we have

T (Pt) =

∫
R
x2 d ((1− t)P + tQ)(x)−

(∫
R
x d ((1− t)P + tQ)(x)

)2

= (1− t)

∫
R
x2 dP (x) + t

∫
R
x2 dQ(x)− (1− t)2

(∫
R
x dP (x)

)2

− t2
(∫

R
x dQ(x)

)2

− 2 (1− t) t

∫
R
x dP (x)

∫
R
x dQ(x)

= (1− t)EP X
2 + tEQX

2 − (1− t)2 (EP X)2 − t2 (EQX)2

− 2 t (1− t)EP X EQX,

where by EQX we mean
∫
R x dQ(x). A simple computation gives

lim
t→0

T (Pt)− T (P )

t
= EQX

2 − EP X
2 − 2EP X EQX + 2 (EP X)2 .

For Q = δx we get the influence function of the variance

IF(x, P, T ) = x2 − EP X
2 − 2xEP X + 2 (EP X)2 = (x− EP X)2 − varP X. (36)

Theorem 5 now gives that for

S2
n = T (Pn) =

1

n

n∑
i=1

(
Xi − X̄n

)2
we can write

√
n
(
S2
n − varP X

)
=

1√
n

n∑
i=1

(
(Xi − EP X)2 − varP X

)
+ oP(1),

and the central limit theorem holds true

√
n
(
S2
n − varP X

) d−−−→
n→∞

N(0, A(P, T ))

with

A(P, T ) = EP (IF(X1, P, T ))
2 = EP

(
(Xi − EP X)2 − varP X

)2
= EP (Xi − EP X)4 + (varP X)2 − 2 (varP X)EP (Xi − EP X)2

= EP (Xi − EP X)4 − (varP X)2.

This is the same result as [15, Theorem 2.6]. △

The influence function has an interesting heuristic interpretation. It can be seen as the

infinitesimal effect of adding a single new observation at x ∈ X to a very large random sample

from P on the estimator T . For the sample mean and the sample variance in Examples 2.2

and 2.3 we see that the influence functions IF(x, P, T ) are unbounded in x. This means that
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by adding a single contaminating observation x ∈ X far away from EP X (see (35) and (36)),

the functional T will change its value drastically. In other words, we see again that neither

the sample mean nor the sample variance are robust estimators.

As a quantitative measure of robustness based on the influence function, Hampel suggests

the following.

Definition 13. For a statistical functional T : P (X ) → R with influence function IF(·, P, T ),
the gross error sensitivity of T at P ∈ P (X ) is

γ∗(P, T ) = sup
x∈X

|IF(x, P, T )| . (37)

The gross error sensitivity is, in a way, an approach similar to the maximum bias from

Definition 4. Using (28) and (32) we have the approximate relation

T (Pt)− T (P ) ≈ t

∫
X
IF(x, P, T ) dQ(x) (38)

for any Q ∈ P (X ) and Pt = (1− t)P + tQ, at least if the Gâteaux derivative of T at P exists.

Consider now the contamination neighbourhood (14) of P in the definition of maximum

bias. Then a distribution Q ∈ Pε(P ) that maximises the difference |T (P )− T (Q)| is by (38)

approximately the one that maximises
∣∣∫

X IF(x, P, T ) dQ(x)
∣∣ over Q ∈ P (X ). We also have∣∣∣∣∫

X
IF(x, P, T ) dQ(x)

∣∣∣∣ ≤ sup
x∈X

|IF(x, P, T )| ,

with equality attained (in an appropriate limit if necessary) by using Q = δy for some y ∈ X
at the argument of maxima on the right hand side above. Thus, we may hope that

b(ε, P, T ) = sup
Q∈Pε(P )

|T (Q)− T (P )| ≈ ε sup
x∈X

|IF(x, P, T )| = ε γ∗(P, T ). (39)

While this is true under additional conditions, there are examples of functionals T that are

robust only either in maximum bias, or only in terms of their gross error sensitivity. We will

see several examples later in the course.

Further, note that formula (38) is quite interesting also on its own, as it quantifies the

approximate difference of T when applied to P and Q (with t = 1).

Compared to the other quantities used for assessment robustness like the maximum bias or

maximum variance from Definition 4 in Section 1.4, the influence function — being a derivative

itself — does not consider ε-neighbourhoods of the true (ideal, or assumed) distribution P

as we did with e.g. the maximum variance. It is possible to search for estimators and

tests that minimise, say, the asymptotic variance under the condition of bounded gross error

sensitivity (37). But, that approach is inherently infinitesimal and different from optimality

criteria based on the quantitative robustness from Section 1.4.
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We conclude this section by a visual approximation to the influence function based on a

random sample of points.

Definition 14. For a set X of points x1, . . . , xn ∈ X corresponding to an empirical measure

Pn and a statistical functional T : P (X ) → R, the sensitivity curve of T at X is

SCn(x,X, T ) =
T
(

n
n+1Pn + 1

n+1δx

)
− T (Pn)

1/(n+ 1)

= (n+ 1) (Tn+1 (x1, . . . , xn, x)− Tn(x1, . . . , xn)) for x ∈ X .

(40)

The sensitivity curve is an empirical version of the influence function. It is obtained by

replacing P in (31) by its empirical counterpart Pn and taking s = 1/(n+ 1). As n → ∞, it

can be expected that under reasonable conditions,

SCn(x,X, T )
P−−−→

n→∞
IF(x, P, T ),

if X corresponds to a random sample from P .

The sensitivity curve can also be used for visualisation. For a random sample X of points

X1, . . . , X10 from N(0, 1), the sensitivity curves of the two estimators of the centre of symmetry

from Example 1.2 and the two estimators of the standard deviation from Example 1.3 are

displayed in Figure 5.
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SC10(x) of the two estimators of θ
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SC10(x) of the two estimators of σ

Figure 5: The sensitivity curves (40) for X a random sample from N(0, 1). Left: The sample

mean X̄10 (blue) and the sample median med (X1, . . . , X10) (orange) from Exam-

ple 1.2; right: the square-root of the sample variance (blue) and the Eddington’s

estimator D̃n (orange) from Example 1.3.

2.3 Hampel’s theorem

In this section we show that the somewhat complicated notion of qualitative robustness of a

sequence of estimators from Definition 3 simplifies substantially if one can assume that all Tn
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come from a single statistical functional. We will show that for {Tn}∞n=1 to be qualitatively

robust at P ∈ P (R), it is necessary only that T is continuous in the weak topology at P .

The main reason why the standard (weak) continuity of T is enough to obtain the asymptotic

equicontinuity result in Definition 3 is the Glivenko-Cantelli theorem.

Theorem 6 (Glivenko-Cantelli). For P ∈ P (R) denote by Pn = Pn(ω) ∈ P (R) an empirical

measure (5) based on a random sample X1, . . . , Xn from P . Then for every ε > 0 and δ > 0

there exists n0 ≥ 1 such that for all n ≥ n0

sup
P∈P(R)

PP ({ω ∈ Ω: dK(P, Pn(ω)) ≤ δ}) ≥ 1− ε. (41)

Proof. The standard Glivenko-Cantelli theorem without the supremum in (41) of the form

P ({ω ∈ Ω: dK(P, Pn(ω)) → 0 as n→ ∞}) = 1

is similar to, e.g., the Varadarajan Theorem 4. See also [15, Theorem 3.3(v)]. Its uniform

extension from (41) can be found in [28, Section 2.8.1].

We are now ready to prove our main result on qualitative robustness.

Theorem 7 (Hampel). Assume that the sequence of estimators {Tn}∞n=1 is represented by a

single statistical functional T : P (R) → Rp. If T is continuous at P0 ∈ P (R), then {Tn}∞n=1

is qualitatively robust at P0.

Proof. Suppose that T is continuous at P0. We take ε > 0 and want to prove (12), i.e. that

there exists δ > 0 and n0 ≥ 1 such that for all P ∈ P (X ) and n ≥ n0 we have

dL(P0, P ) ≤ δ implies dP (LP0(Tn),LP (Tn)) ≤ ε. (42)

By the triangle inequality for dP from Theorem 2 we have

dP (LP0(Tn),LP (Tn)) ≤ dP (LP0(Tn), δT (P0)) + dP (δT (P0),LP (Tn)).

Here, δT (P0) is the Dirac measure (6) concentrated at the point T (P0) ∈ Rp. To prove (42),

it is enough to show that there exist δ > 0 and n0 ≥ 1 such that dL(P0, P ) ≤ δ implies

dP (δT (P0),LP (Tn)) = dP (δT (P0),LP (T (Pn))) ≤ ε/2 for all n ≥ n0. (43)

Here, of course, LP (T (Pn)) stands for the law of T (Pn) with Pn = Pn(ω) an empirical measure

drawn from P . We obtain the bound (43) on the Prokhorov distance by showing

PP (d(T (P0), T (Pn)) ≤ ε/2) ≥ 1− ε/2. (44)
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Then for any fixed random element ω ∈ Ω we can write for any A ⊆ Rp Borel that T (P0) ∈ A

implies that either T (Pn(ω)) ∈ Aε/2 or d(T (P0), T (Pn(ω))) > ε/2, meaning that, using (44),

we get

PP (T (P0) ∈ A) ≤ PP

(
T (Pn) ∈ Aε/2 or d(T (P0), T (Pn)) > ε/2

)
≤ PP

(
T (Pn) ∈ Aε/2

)
+ PP (d(T (P0), T (Pn)) > ε/2)

≤ PP

(
T (Pn) ∈ Aε/2

)
+ ε/2,

which is precisely the definition of the Prokhorov distance in (43).

Now we want to show (44). Because T is continuous at P0, we know that for our ε > 0

there exists δ > 0 such that dL(P0, P ) ≤ 2 δ implies d(T (P0), T (P )) ≤ ε/2. We get

PP (dL(P0, Pn) ≤ 2 δ) ≤ PP (d(T (P0), T (Pn)) ≤ ε/2) ,

and we obtain (44) by showing that

PP (dL(P0, Pn) ≤ 2 δ) ≥ 1− ε/2.

For any P ∈ P (R) we have dL(P0, Pn) ≤ dL(P0, P ) + dL(Pn, P ) by Theorem 1. If also

dL(P0, P ) ≤ δ, then we can write

PP (dL(P0, Pn) ≤ 2 δ) ≥ PP (dL(P0, P ) + dL(Pn, P ) ≤ 2 δ) ≥ PP (dL(Pn, P ) ≤ δ) ,

and the Glivenko-Cantelli Theorem 6 now gives that for our ε > 0 and δ > 0 there exists

n0 ≥ 1 such that for all n ≥ n0 we can write

PP (dL(Pn, P ) ≤ δ) ≥ PP (dK(Pn, P ) ≤ δ) ≥ 1− ε/2,

uniformly in all P ∈ P (R). In the last formula, we used the inequality between dL and dK

from Lemma 1.

In [12, Theorem 2.21] also a converse to Theorem 7 is shown: If the estimators Tn and

consistent in a neighbourhood of P0 and {Tn}∞n=1 is qualitatively robust, then T already must

be continuous. It is, of course, possible to prove more general versions of Theorem 7, not only

for T defined on P (R) but more generally on P (X ); one such statement can be found in [18].

3 Families of estimators and their robustness

With respect to their statistical properties, there are three major types of statistical estimators

that have been extensively covered in robust statistics. They are:

• The M-estimators obtained by minimisation of an objective function; a prime example

is the collection of estimators based on maximum likelihood;
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• The L-estimators formed as linear combinations of order statistics; and

• The R-estimators based on ranks, and derived from the nonparametric theory of rank

tests.

To a certain extent, each of these classes can be studied together. We will see that each

collection contains both robust and non-robust estimators. We will derive the basic robustness

characteristics for these estimators, and state properties that pertain to their robustness and

optimality.

In the present section we deal with the situation of p = 1, that is, a one-dimensional

parameter of interest without nuisance. Estimation in more complex models will be considered

separately.

In addition to M, L, and R-estimators, many other classes of estimators have been proposed

in the literature; for a brief overview see [10, Section 2.3d]. We will, however, see that our

three seminal groups of estimators already do cover a majority of commonly used procedures.

3.1 M-estimators: Minimising an objective function

We are given a random sample X1, . . . , Xn from a distribution P ∈ P (X ), which depends on

a parameter of interest θ ∈ Θ ⊆ R.
The collection of M-estimators is obtained by minimising an objective function of the form

n∑
i=1

ρ(Xi, Tn) (45)

in the argument Tn ∈ Θ, that is

Tn(X1, . . . , Xn) = argmint∈Θ

n∑
i=1

ρ(Xi, t). (46)

In these formulas, ρ : X × Θ → R can be any function; if ρ has a partial derivative in its

second argument

ψ(x, t) =
∂

∂t
ρ(x, t) for all x ∈ X ,

one can also define an M-estimator as a solution (in Tn ∈ Θ) to the equation

n∑
i=1

ψ(Xi, Tn) = 0. (47)

An estimator of the type (47) is in [20] called a Z-estimator. Of course, the problems of

minimising (45) and solving (47) are not always equivalent. It is, however, convenient to

consider these two types of estimators together.
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Example 3.1. Take a parametric model F = {Pθ : θ ∈ Θ} ⊂ P (X ) with Θ ⊆ R such that

each Pθ has a density f(·, θ) with respect to a given σ-finite measure µ in X . Setting

ρ(x, θ) = − log(f(x, θ)),

or, provided that f(x, θ) is differentiable in θ,

ψ(x, θ) =
∂

∂θ
log(f(x, θ)),

we obtain the maximum likelihood estimators as a special collection of M-estimators. In

particular, the sample mean X̄n is an M-estimator in the model {N(θ, 1) : θ ∈ R}. △

Example 3.2. For X = R, each sample α-quantile with α ∈ (0, 1) is an M-estimator if one

considers

ρα(x, t) = ξα(x− t)

with the “check function”

ξα(u) = u (α− I (u < 0)), (48)

see Figure 6 and [15, Lemma 3.4]. The function ξα fails to be differentiable at u = 0, but

elsewhere its derivative is

ψα(x, t) =
∂

∂t
ρα(x, t) =

−α for x > t,

1− α for x < t.

For α = 1/2 and the sample median we obtain ξ1/2(u) = |u| /2. △
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Figure 6: The “check function” from (48) for the α-quantile with α = 1/2 (blue), α = 1/5

(orange), and α = 9/10 (green).

M-estimators can be easily represented by a statistical functional. A natural population

analogue of (46) is the functional

T (P ) = argmint∈Θ

∫
X
ρ(x, t) dP (x).
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For an empirical measure Pn ∈ P (X ) we recover (46) with a factor 1/n in front of the objective

function ρ, but this does not affect the estimator Tn. A statistical estimator representing the

Z-estimators from (47) is T (P ) defined implicitly as a solution to∫
X
ψ(x, T (P )) dP (x) = 0. (49)

Example 3.3. Returning to Example 3.2, a statistical functional representing the sample

median is

T̃ (P ) = argmint∈R

∫
R
|x− t| dP (x). (50)

The objective function of T̃ is, however, finite only if P ∈ P1(R). Using (50), the median

could not be defined if P does not possess the first moment. The problem (50) is however

equivalent to

argmint∈R

∫
R
(|x− t| − |x|) dP (x) = argmint∈R

∫
R
|x− t| dP (x)−

∫
R
|x| dP (x)

whenever P ∈ P1(R). At the same time, for any P ∈ P (R),

0 ≤
∣∣∣∣∫

R
(|x− t| − |x|) dP (x)

∣∣∣∣ ≤ ∫
R
||x− t| − |x|| dP (x) ≤

∫
R
|t| dP (x) = |t| ,

where we used Jensen’s inequality and the reverse triangle inequality. This shows that if we

re-define the statistical functional (50) to

T (P ) = argmint∈R

∫
R
(|x− t| − |x|) dP (x), (51)

we obtain a (different) statistical functional representing the sample median, this time well-

defined for all P ∈ P (R). Interestingly, we see that T̃ from (50) fails to be Fisher consistent

for θ the median of P ∈ P (R), but T from (51) is Fisher consistent. △

We saw in Example 3.2 that the sample median (or empirical α-quantiles) can be repre-

sented as M-estimators. They can also be represented as Z-estimators (47).

Example 3.4. The problem with the objective function ρα(x, t) = ξα(x − t) from (48) is

that it fails to be differentiable at t = x. Consider, for simplicity, only the case of the median

α = 1/2. We have

∂

∂t
ρ1/2(x, t) =

−1/2 for t < x,

1/2 for t > x,

and the derivative does not exist at t = x. This suggests that one could take ψ(x, t) =

− sign(x− t) in (47) to get the median. Selecting this function, we solve in (49) the equation

0 = −
∫
R
sign(x− t) dP (x) =

∫
(−∞,t)

1 dP (x)−
∫
(t,∞)

1 dP (x)

= P ((−∞, t))− P ((t,∞)) ,
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which gives T (P ) such that

P ((−∞, T (P ))) = P ((T (P ),∞)) . (52)

If P ({T (P )}) = 0, the previous formula defines t as the median of P . This is, however, not

necessarily true if P can put positive mass on T (P ). Take, for example, P ∈ P (R) supported
in three points P ({−1}) = 0.4, P ({0}) = 0.4, and P ({1}) = 0.3. Certainly, the median of P

is at t = 0, but (52) is not valid. In fact, it is easy to see that no point t ∈ R satisfies (49) for

our P and ψ(x, t) = sign(x− t), so the corresponding Z-estimator does not exist.

At least for P ∈ P (R) with continuous distribution function, the median (or more generally

α-quantiles) can be represented as Z-estimators with

ψα(x, t) =

1− α for x ≤ t,

−α for x > t.
(53)

△

3.1.1 Influence function of M-estimators

The computation of the influence function of M-estimators is straightforward. In the state-

ment of the following theorem, we do not specifically give a list of the needed regularity

conditions. They are all quite mild, and obviously follow from the consecutive proof. They

all involve statements such as the possibility to interchange derivatives and integrals, the fact

that all denominators must be non-zero, or the existence of appropriate derivatives.

Theorem 8. Under mild regularity conditions, the statistical functional T defined by (49)

has at P ∈ P (X ) a directional (Gâteaux) derivative (28) of the form

LP : Q 7→ −
∫
X ψ(x, T (P )) dQ(x)∫
X ψ

′(x, T (P )) dP (x)
,

where

ψ′(x, s) =
∂

∂s
ψ(x, s). (54)

The influence function of T is

IF(x, P, T ) = − ψ(x, T (P ))∫
X ψ

′(y, T (P )) dP (y)
for x ∈ X .

Proof. Take Q ∈ P (X ) and Pt = (1−t)P+tQ. We first differentiate the defining formula (49)
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applied to Pt in t ∈ (0, 1) to get

0 =
∂

∂t

(∫
X
ψ(x, T (Pt)) dPt(x)

)
=

∂

∂t

(
(1− t)

∫
X
ψ(x, T (Pt)) dP (x) + t

∫
X
ψ(x, T (Pt)) dQ(x)

)
= −

∫
X
ψ(x, T (Pt)) dP (x) + (1− t)

(
∂

∂t
T (Pt)

)∫
X

∂

∂s
[ψ(x, s)]s=T (Pt)

dP (x)

+

∫
X
ψ(x, T (Pt)) dQ(x) + t

(
∂

∂t
T (Pt)

)∫
X

∂

∂s
[ψ(x, s)]s=T (Pt)

dQ(x).

(55)

Here and elsewhere in the text, we write

∂

∂y
[f(x, y)]y=0

for the partial derivative of the function f(x, y) in y evaluated at the point y = 0. To obtain

a directional (Gâteaux) derivative of T we need to take t→ 0 in the previous formula. That

gives

0 =

∫
X
ψ(x, T (P )) d (Q(x)− P (x)) +

(
∂

∂t
[T (Pt)]t=0

)∫
X

∂

∂s
[ψ(x, s)]s=T (P ) dP (x),

and
∂

∂t
[T (Pt)]t=0 =

∫
X ψ(x, T (P )) d (P (x)−Q(x))∫
X

∂
∂s [ψ(x, s)]s=T (P ) dP (x)

.

This expression still simplifies. By (49) we know that∫
X
ψ(x, T (P )) dP (x) = 0,

and using (54), we reduce the previous expression to

∂

∂t
[T (Pt)]t=0 = −

∫
X ψ(x, T (P )) dQ(x)∫
X ψ

′(x, T (P )) dP (x)
.

This gives the expression for the Gâteaux derivative of T in direction Q. The influence

function (31) is obtained by taking Q = δx for x ∈ X

IF(x, P, T ) = − ψ(x, T (P ))∫
X ψ

′(y, T (P )) dP (y)
.

As an illustration, we compute the influence function of the maximum likelihood estimators

introduced in Example 3.1.
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Example 3.5. For the maximum likelihood estimators in a parametric model F = {Pθ : θ ∈ Θ}
with Θ ⊆ R we have

ψ(x, θ) =
∂

∂θ
log(f(x, θ)).

First note that under the standard regularity conditions on maximum likelihood estimation

[19, Theorem 23], the M-functional corresponding to the maximum likelihood estimator is

Fisher consistent for θ. We saw this already in Example 1.4, but it can also be seen as

follows. Writing

f ′(x, θ) =
∂

∂θ
f(x, θ)

and M = {x ∈ X : f(x, θ) > 0} for the common support of all densities f(x, θ) with respect

to a σ-finite measure µ on X , we have∫
X
ψ(x, θ) dPθ(x) =

∫
M
ψ(x, θ) dPθ(x) =

∫
M

f ′(x, θ)

f(x, θ)
f(x, θ) dµ(x)

=

∫
M
f ′(x, θ) dµ(x) = 0,

the last equality following by the requirement from [19, Definition 4]. Thus θ = T (Pθ)

solves (49), and T is Fisher consistent.

For the influence function of the induced functional T we have, by Theorem 8,

IF(x, Pθ, T ) = − ψ(x, T (Pθ))∫
X

∂2

∂θ2
log(f(y, T (Pθ)) dPθ(y)

= − ψ(x, θ)∫
X

∂2

∂θ2
log(f(y, θ)) dPθ(y)

=
ψ(x, θ)

J(θ)
,

where J(θ) is the Fisher information in θ; we used [19, Theorem 1]. We see that the robustness

of a maximum likelihood estimator depends on the score function ψ(x, θ); if the score function

is bounded, the gross error sensitivity of a maximum likelihood estimator is bounded too.

The asymptotic normality result from Theorem 5 now gives

√
n(T (Pn)− T (Pθ))

d−−−→
n→∞

N(0, A(Pθ, T )),

where Pn ∈ P (X ) is the empirical distribution sampled from Pθ, and

A(Pθ, T ) =

∫
X
(IF(x, Pθ, T ))

2 dPθ(x) =
1

(J(θ))2

∫
X

(
f ′(x, θ)

f(x, θ)

)2

dPθ(x) =
1

J(θ)
. (56)

This is in accordance with [19, Theorem 23]. △

Example 3.6. The function ψα(x, t) for the α-quantile from Example 3.4 fails to be differ-

entiable at x = t. Thus, one cannot apply Theorem 8 immediately. Nevertheless, returning
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to the proof of Theorem 8, we can see that the differentiability of ψ was used only for con-

venience. Modifying the proof slightly, also for our function ψα, we can obtain the influence

function. Indeed, in formula (55), we used that the partial derivative ∂/(∂t) can be exchanged

with the integral. Not doing this simplification, we would obtain in the right-hand side in (55)

instead of ∫
X

∂

∂s
[ψ(x, s)]s=T (Pt)

dP (x)

the expression
∂

∂s

[∫
X
ψ(x, s) dP (x)

]
s=T (Pt)

.

The latter expression can be evaluated for ψ(x, t) = ψα(x, t) from (53). We get, for P with a

continuous distribution function F ,∫
R
ψα(x, t) dP (x) = (1− α)

∫ t

−∞
1 dP (x)− α

∫ ∞

t
1 dP (x) = (1− α)F (t)− α(1− F (t)).

Taking a derivative of this in t and writing f for the density of P with respect to the Lebesgue

measure in R we get

∂

∂t

[∫
R
ψα(x, t) dP (x)

]
t=Tα(P )

= f(Tα(P )) = f(F−1(α)).

Plugging this expression into the proof of Theorem 8, we obtain the influence function of the

α-quantile Tα of P

IF(x, Tα, P ) = −ψα(x, F
−1(α))

f(F−1(α))
=


α−1

f(F−1(α))
if x ≤ F−1(α),

α
f(F−1(α))

if x > F−1(α),
for x ∈ R. (57)

The discontinuity of the influence function at x = F−1(α) makes sense — if we contaminate

the distribution F by a point on the right in R from F−1(α), we perturb the α-quantile to

the positive side, which corresponds to the positive influence with numerator α > 0. If we

add a point x smaller than F−1(α), we increase the distribution function in a neighbourhood

of F−1(α), meaning that the new α-quantile will be lower. This corresponds to the negative

influence and numerator α − 1 < 0. Note that the influence function of the α-quantile

functional can also be computed directly, without using Theorem 8. That is performed in

[12, Section 3.3.1].

We found that the influence function of the α-quantile Tα is (57). If T is Fréchet differen-

tiable, Theorem 5 would give for Tα that

√
n (Tα(Pn)− Tα(P ))

d−−−→
n→∞

N(0, A(P, Tα(P ))),
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where

A(P, Tα) =

∫
R
(IF(x, P, Tα))

2 dP (x)

=

∫ F−1(α)

−∞

(
α− 1

f(F−1(α))

)2

dP (x) +

∫ ∞

F−1(α)

(
α

f(F−1(α))

)2

dP (x)

=
1

(f(F−1(α)))2

(
(α− 1)2

∫ F−1(α)

−∞
1 dP (x) + α2

∫ ∞

F−1(α)
1 dP (x)

)
=

1

(f(F−1(α)))2
(
(α− 1)2F (F−1(α)) + α2(1− F (F−1(α)))

)
=

1

(f(F−1(α)))2
(
(α− 1)2α+ α2(1− α))

)
=

α(1− α)

(f(F−1(α)))2
.

This result is true; it can be shown for any P ∈ P (R) that has a density f (with respect to

the Lebesgue measure) in a neighbourhood of F−1(α) such that f is positive and continuous

at F−1(α), see [25, Corollary B in Section 2.3.3]. In particular, for α = 1/2 and the median

functional, we obtain the asymptotic result (1) that we used in our motivating Example 1.2.

△

3.1.2 Distributional properties of M-estimators

A relatively simple situation arises in the common setup when the function ψ(x, t) in (49)

is monotone in t. We assume that ψ is non-increasing in t for each x ∈ X , and takes both

positive and negative values. We do not assume the continuity of ψ. Each ψ(Xi, t) in (47)

is then a non-increasing function in t, and so is
∑n

i=1 ψ(Xi, t). Naturally, the estimator Tn

solving (47) can then be taken as (any) number in the interval [T ∗
n , T

∗∗
n ] ⊂ R, where

T ∗
n = sup

{
t ∈ R :

n∑
i=1

ψ(Xi, t) > 0

}
,

T ∗∗
n = inf

{
t ∈ R :

n∑
i=1

ψ(Xi, t) < 0

}
.

(58)

Strictly speaking, since ψ can be discontinuous, it is not necessarily true that Tn then

solves (47), see Figure 7. However, because
∑n

i=1 ψ(Xi, t) is a non-increasing function,

it is natural to consider this minor modification to (49) in what follows. We thus, for ψ

monotone as above, define the statistical functional T implicitly as any value in the interval

[T ∗(P ), T ∗∗(P )], where

T ∗(P ) = sup

{
t ∈ R :

∫
X
ψ(x, t) dP (x) > 0

}
,

T ∗∗(P ) = inf

{
t ∈ R :

∫
X
ψ(x, t) dP (x) < 0

}
.

(59)
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Certainly, for any P ∈ P (X ) we have −∞ < T ∗(P ) ≤ T ∗∗(P ) <∞, and our choice of T ∗
n and

T ∗∗
n is consistent with this.
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Figure 7: The function t 7→
∑n

i=1 ψ(Xi, t) for ψ(x, t) = sign(x − t) with n = 5 (in blue) and

n = 6 (in orange). This corresponds to T the median from Example 3.4. The unique

median for n = 5 is θ ≈ −0.49, but because ψ is discontinuous in θ, this value does

not solve (47). For n = 6, we have T ∗
n ≈ −0.21 and T ∗∗

n ≈ 0.42; the whole interval

[T ∗
n , T

∗∗
n ] is a solution to (47).

Immediately from (58) we see that if T ∗
n < t, then

∑n
i=1 ψ(Xi, t) ≤ 0, which in turn implies

T ∗
n ≤ t. We get that, in terms of random events, we can write

[T ∗
n < t] ⊆

[
n∑

i=1

ψ(Xi, t) ≤ 0

]
⊆ [T ∗

n ≤ t] ,

[T ∗∗
n < t] ⊆

[
n∑

i=1

ψ(Xi, t) < 0

]
⊆ [T ∗∗

n ≤ t] ,

(60)

for any t ∈ R. This gives

P (T ∗
n < t) ≤ P

(
n∑

i=1

ψ(Xi, t) ≤ 0

)
≤ P (T ∗

n ≤ t) ,

P (T ∗∗
n < t) ≤ P

(
n∑

i=1

ψ(Xi, t) < 0

)
≤ P (T ∗∗

n ≤ t) .

At each continuity point t ∈ R, we can express the distribution functions of both T ∗
n and T ∗∗

n

directly in terms of the distribution of
∑n

i=1 ψ(Xi, t).

The easiest way to select a unique estimator Tn from the interval [T ∗
n , T

∗∗
n ] is to take Tn

at random, either T ∗
n or T ∗∗

n with equal probabilities. This gives a simple expression for the

exact distribution of Tn given by

P (Tn ≤ t) =
1

2
P

(
n∑

i=1

ψ(Xi, t) ≤ 0

)
+

1

2
P

(
n∑

i=1

ψ(Xi, t) < 0

)
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for any t ∈ R where this distribution function is continuous. Interestingly, this gives the exact

distribution of Tn only in terms of the convolution powers of the random variable ψ(X1, t).

The latter convolution powers are, however, usually not very easy to compute.

From our analysis, we obtain a very simple sample consistency result for M-estimators.

Theorem 9. Suppose that ψ(x, t) is non-increasing and taking both positive and negative

values in t ∈ R for each x ∈ X . Let P ∈ P (X ) be such that T ∗(P ) = T ∗∗(P ) in (59). Then

all T ∗
n , T

∗∗
n , and Tn converge to T (P ) = T ∗(P ) = T ∗∗(P ) in probability as n→ ∞.

Proof. We prove the result for T ∗
n ; the other two estimators are treated analogously. Take

any ε > 0 and bound, using (58) and (60),

P (|T ∗
n − T (P )| ≥ ε) ≤ P (T ∗

n ≥ T (P ) + ε) + P (T ∗
n < T (P )− ε/2)

≤ P

(
n∑

i=1

ψ(Xi, T (P ) + ε/2) > 0

)
+ P

(
n∑

i=1

ψ(Xi, T (P )− ε/2) ≤ 0

)

= P

(
1

n

n∑
i=1

ψ(Xi, T (P ) + ε/2) > 0

)
+ P

(
1

n

n∑
i=1

ψ(Xi, T (P )− ε/2) ≤ 0

)
.

(61)

On the right-hand side, we have two averages of independent identically distributed random

variables with expectations

E ψ(X1, T (P ) + ε/2) =

∫
R
ψ(x, T (P ) + ε/2) dP (x) < 0

and

E ψ(X1, T (P )− ε/2) =

∫
R
ψ(x, T (P )− ε/2) dP (x) > 0,

respectively. We used the assumption that T (P ) = T ∗(P ) = T ∗∗(P ). The law of large

numbers thus gives that the right-hand side of (61) vanishes as n→ ∞.

If T (P ) is not defined uniquely, one cannot expect the sample M-estimators to be consistent.

Example 3.7. Take X = R and let P ∈ P (R) be a distribution with density f(x) =

I (x ∈ [−2,−1] ∪ [1, 2]) /2. The median T (P ) can be any point in the interval between T ∗(P ) =

−1 and T ∗∗(P ) = 1. For X1, . . . , Xn a random sample from P with n odd, there will be at

least n/2 observations either in the interval [−2,−1], or in the interval [1, 2]. In the first case,

the sample median Tn is in the interval [−2,−1]; in the second case, it falls into [1, 2]. As

n→ ∞, both situations occur infinitely many times, almost surely. Thus, the sample median

Tn does not converge to any point, almost surely. △

M-estimators can also be proved to be asymptotically normal under reasonably mild as-

sumptions. Such a result can be found in, e.g., [20, Sections 3.2 and 3.4]. In fact, under a
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collection of technical assumptions, in [1, 2, 3] it is proved that M-estimators are Fréchet dif-

ferentiable statistical functionals. In particular, our stochastic representation from Theorem 5

applies, and using Theorem 8 we get

√
n (T (Pn)− T (P ))

d−−−→
n→∞

N(0, A(P, T ))

where

A(P, T ) =

∫
X ψ(x, T (P ))

2 dP (x)(∫
X ψ

′(y, T (P )) dP (y)
)2 .

3.1.3 Robustness of M-estimators of location

From the expression for the influence function of an M-estimator in Theorem 8 we see that

the gross error sensitivity (37) of an M-estimator is

γ∗(P, T ) =
supx∈X |ψ(x, T (P ))|∣∣∫
X ψ

′(y, T (P )) dP (y)
∣∣ .

It is proportional to the supremum norm of the function ψ(x, T (P )). Thus, bounded functions

ψ give robust estimators in the sense of having finite gross error sensitivity.

We now explore the maximum bias (15) of M-estimators in the case of a location parameter.

Recall that X = R, X ∼ P ∈ P (R) and Y = X + c ∼ Q ∈ P (R) with c ∈ R, we say that a

parameter T = T (P ) is a location parameter of P if

T (Q) = T (P ) + c for all c ∈ R. (62)

For estimating a location parameter, we thus suppose that X = R and ψ(x, t) = ψ0(x−t) with
a monotone non-decreasing function ψ0 : R → R. This corresponds to our assumptions from

Section 3.1.2, as ψ(x, t) is now non-increasing in t for each x ∈ R. In the maximum bias (15)

we consider the neighbourhoods Pε(P0) of P0 in P (R) induced by the Lévy distance (20).

The function ψ is chosen so that the statistical functional T in (49) is translation equivariant,

meaning that for any X ∼ P ∈ P (R) and Y = X + c ∼ Q ∈ P (R) with c ∈ R, we have∫
R
ψ0(x− t) dP (x) =

∫
R
ψ0(x+ c− (t+ c)) dP (x) =

∫
R
ψ0(y − (t+ c)) dQ(y), (63)

that is (62) is true for T . Thus, without loss of generality, we can suppose that T (P0) = 0;

otherwise, we would just use the distribution of the random variable X − T (P0) instead of

X ∼ P0 in our analysis.

The maximum bias of T can be written as

b(ε, P0, T ) = max {b+(ε),−b−(ε)} , (64)
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where
b+(ε) = sup {T (P ) : dL(P0, P ) ≤ ε} ,

b−(ε) = inf {T (P ) : dL(P0, P ) ≤ ε} .
(65)

Denote

λ(t, P ) =

∫
R
ψ0(x− t) dP (x). (66)

As in (59), we see that λ is a non-increasing function in t ∈ R, and T (P ) is a solution to

λ(T (P ), P ) = 0. Any such solution lies in the interval [T ∗(P ), T ∗∗(P )] from (59). In the

argument of P ∈ P (R), the function (66) is non-decreasing in the sense of stochastic ordering

in P (R). For that, recall the following defintion.

Definition 15 (stochastic ordering). If F and G are distribution functions of P and Q ∈
P (R), respectively, such that F (x) ≤ G(x) for all x ∈ R, then we say that P is stochastically

larger than Q.

Lemma 2. For any t ∈ R is the function (66) non-decreasing in P ∈ P (R) in the sense of

stochastic ordering.

Proof. We have distribution functions F and G of P and Q ∈ P (R), respectively, such that

F (x) ≤ G(x) for all x ∈ R. We want to show that λ(t, P ) ≥ λ(t, Q). First, note that

ξ(x) = ψ0(x − t) is a non-decreasing function of x ∈ R. We approximate ξ by a sequence of

non-decreasing step functions ξn(x) = bn +
∑n

j=1 cj,n I (x ∈ (aj,n,∞)) for cj,n ≥ 0, bn ∈ R,
and ajn ∈ R. The term bn ∈ R is included because ξ may also take negative values. For each

function ξn we have∫
R
ξn(x) dP (x) = bn +

n∑
j=1

cj,nP ((aj,n,∞)) = bn +
n∑

j=1

cj,n(1− F (aj,n))

≥ bn +
n∑

j=1

cj,n(1−G(aj,n)) =

∫
R
ξn(x) dG(x).

Since this is true for each such sequence of functions, taking the appropriate limit ξn → ξ as

n→ ∞ guarantees that the inequality must be true also for ξ.

Thanks to Lemma 2, if we find a distribution P ∈ Pε(P0) that is stochastically larger

than any other Q ∈ Pε(P0), the function (66) will be maximised in P for all t ∈ R. The

stochastically largest element in Pε(P0) is clearly the point-wise minimum function inside the

neighbourhood band around the distribution function F0 of P0 depicted in Figure 4. To make

this function a distribution function, we must also bound it from below by zero; we get the

function

F1(x) = max {0, F0(x− ε)− ε} for x ∈ R.
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Figure 8: The stochastically largest element of the Lévy neighbourhood of F0 (blue line) is

the function F1 in thick red. It corresponds to an improper distribution giving mass

ε > 0 to a point in positive infinity.

This function is displayed in Figure 8; it can also be written as

F1(x) =

0 for x < x0 + ε,

F0(x− ε)− ε for x ≥ x0 + ε,
(67)

where x0 = F−1
0 (ε) is the ε-quantile of P0. Function F1 does not correspond to a proper distri-

bution, as such distribution would give mass ε to a point in the positive infinity. Nevertheless,

clearly F1 can be approximated (from above) by proper distribution functions point-wise, and

we can treat F1 as the limit case for distributions given by

F1,n(x) = F1(x) + ε I (x ≥ n) . (68)

in the neighbourhood Pε(P0).

Lemma 2 now gives that (interchanging the notation for the (improper) distribution with

its distribution function freely)

λ(t, F ) ≤ λ(t, F1) =

∫
R
ψ0(x− t) dF1(x) =

∫ ∞

x0

ψ0(x+ ε− t) dF0(x) + εψ(∞), (69)

where ψ0(∞) = limt→∞ ψ0(t) and the last expression follows from a change of variables

and the properties of the Stieltjes integral.2 The last result is easiest to see when using

an approximation argument, considering instead of the improper distribution function F1 a

2Recall that [7, Note § 3.2], in analogy with the Riemann integral, the Riemann-Stieltjes integral∫ b

a
g(x) dF (x) can be defined as the limit of sums

∑n
i=1 g(yi)(F (xi) − F (xi−1)) over all partitions

a = x0 ≤ y1 ≤ x1 ≤ y2 ≤ · · · ≤ xn = b as maxi(xi − xi−1) → 0 with n → ∞.
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sequence of proper distribution functions (68). Indeed

λ(t, F1,n) =

∫
R
ψ0(x− t) d (F1(x) + ε I (x ≥ n))

=

∫ ∞

x0+ε
ψ0(x− t) dF0(x− ε) +

∫ ∞

x0+ε
ψ0(x− t) d (−ε+ ε I (x ≥ n))

=

∫ ∞

x0

ψ0(s+ ε− t) dF0(s) + εψ0(n− t).

(70)

In the last equation, we substituted s = x− ε and used that the function −ε+ ε I (x ≥ n) is

constant, except for the single jump of size ε at x = n. Taking the limit as n→ ∞ gives (69).

The function t 7→ λ(t, P ) is maximal for each t when P is F1. Therefore, T ∗∗(F1) is the

maximum positive bias of T in the ε-neighbourhood of P0, and

b+(ε) = inf {t ∈ R : λ(t, F1) < 0} . (71)

Analogously, b−(ε) is obtained from the “upper envelope” of the band in Figure 8 given by

F2(x) = min {1, F0(x+ ε) + ε} for x ∈ R,

and

b−(ε) = sup {t ∈ R : λ(t, F2) > 0} .

Combining our formulas for b+(ε) and b−(ε) with (64), we obtain the exact expression for the

maximum bias of any location M-estimator in R with a monotone function ψ.

Let us now find the asymptotic breakdown point of T from Definition 5. For simplicity,

suppose that F0 is continuous, strictly increasing and symmetric around the origin (that is,

F0(x) = 1 − F0(−x) for all x ∈ R); the general case is completely analogous, yet a bit more

cumbersome to write explicitly. From (69) we get that if ψ0(∞) = ∞, λ(t, F1) = ∞ for

all ε > 0, and T breaks down immediately. Using our symmetry considerations, the same

happens if ψ0(−∞) = −∞ for ψ0(−∞) = limt→−∞ ψ0(t). Thus, a necessary condition for a

positive asymptotic breakdown point of T is the boundedness of ψ0. Now, suppose that ψ0 is

bounded. Formulas (69) and (71) give that T breaks down also if λ(t, F1) ≥ 0 for all t ∈ R.
To prevent this, it must be that as t → ∞, the right-hand side of (69) is negative. That is,

it must be that

0 > lim
t→∞

∫ ∞

x0

ψ0(x+ ε− t) dF0(x) + εψ0(∞)

=

∫ ∞

x0

lim
t→∞

ψ0(x+ ε− t) dF0(x) + εψ0(∞)

= ψ0(−∞)

∫ ∞

x0

1 dF0(x) + εψ0(∞) = ψ0(−∞)(1− F0(x0)) + εψ0(∞)

= ψ0(−∞)(1− ε) + εψ0(∞),
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where we used that x0 = F−1
0 (ε). We get that for ε∗(P0, T ) to reach ε > 0, it must be that

ε

1− ε
< −ψ0(−∞)

ψ0(∞)
.

An analogous analysis of b−(ε) gives the second necessary condition

ε

1− ε
< − ψ0(∞)

ψ0(−∞)
,

which together gives the asymptotic breakdown point of T to be

ε∗(P0, T ) =
η

1 + η
, where η = min

{
−ψ0(−∞)

ψ0(∞)
,− ψ0(∞)

ψ0(−∞)

}
. (72)

Since η ∈ (0, 1], we have that ε∗(P0, T ) is maximised if η = 1 (that is, −ψ0(−∞) = ψ0(∞) <

∞) and takes its maximum value ε∗(P0, T ) = 1/2. If ψ0 is unbounded, we have ε∗(P0, T ) = 0.

Finally, from (69) we also get for any F in Pε(F0)∫
R
ψ0(x− t) dF (x) = λ(t, F ) ≤

∫ ∞

x0

ψ0(x− (t− ε)) dF0(x) + εψ0(∞).

Because ψ0 is non-decreasing, we have using x0 = F−1
0 (ε) that we can write∫ x0

−∞
ψ0(−∞) dF0(x) = ψ0(−∞)

∫ x0

−∞
1 dF0(x) = εψ0(−∞) ≤

∫ x0

−∞
ψ0(x− (t− ε)) dF0(x).

Putting the last two formulas together, we obtain

λ(t, F ) ≤
∫
R
ψ0(x− (t− ε)) dF0(x)− εψ0(−∞) + εψ0(∞) = λ(t− ε, F0) + ε ∥ψ0∥ ,

where we denoted ∥ψ0∥ = ψ0(∞)− ψ0(−∞). An analogous formula holds true also with the

other inequality, giving for any F ∈ Pε(F0)

λ(t+ ε, F0)− ε ∥ψ0∥ ≤ λ(t, F ) ≤ λ(t− ε, F0) + ε ∥ψ0∥ .

Observe the similarity of this expression with the band for the neighbourhood of F0 in the

Lévy distance from Figure 4. It follows that if T (P0) is unique, necessarily, T (P ) → T (P0)

as ε → 0. We get that if ψ0 is bounded and T (P0) is uniquely defined, the M-estimator

T is weakly continuous at P0. In view of Hampel’s Theorem 7, this guarantees qualitative

robustness of T .

If ψ0 is not bounded, we see already from (69) that T does not have to be weakly continuous

at any P0. At the same time, even if ψ0 is bounded but if T (P0) is not uniquely defined, T

also fails to be weakly continuous. That can be seen, e.g., in Example 3.7. The next theorem

summarises our findings.
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Theorem 10. Let ψ0 : R → R be a non-decreasing, but not necessarily continuous, function

that takes values of both signs. Then the M-estimator of location T , defined by
∫
R ψ0(x −

T (P )) dP (x) = 0, is translation equivariant. It is weakly continuous and qualitatively robust

at P0 ∈ P (R) if and only if ψ0 is bounded and T (P0) is unique. The asymptotic breakdown

point of T is given by (72). It takes the maximum value ε∗(P0, T ) = 1/2 if and only if

−ψ0(−∞) = ψ0(∞) <∞.

Example 3.8. The mean functional T (P ) =
∫
R x dP (x) is an M-estimator of location given

by ψ0(x) = x. Theorem 10 gives that T fails to be weakly continuous or qualitatively robust,

and its asymptotic breakdown point is the minimum possible value ε∗(P0, T ) = 0 at any

P0. △

Example 3.9. The α-quantile functional T from Examples 3.2, 3.4 and 3.6 can be represented

as an M-estimator with the function ψ of the form (53). Theorem 10 gives that T is weakly

continuous and qualitatively robust at any P0 ∈ P (R) with a uniquely defined T (P0), which

is true if the distribution function F0 is strictly increasing at F−1
0 (α). In particular, if the

support of P0 is connected, the α-quantile is qualitatively robust for any α ∈ (0, 1). The

asymptotic breakdown point of T is ε∗(P0, T ) = min {α, 1− α}. For α = 1/2, we obtain the

median functional with an asymptotic breakdown point equal to 1/2. △

More generally, if ψ0 is bounded and strictly monotone, the corresponding M-estimator T is

always uniquely defined, and Theorem 10 gives that T is then everywhere weakly continuous

and qualitatively robust. If ψ0 is also odd, the asymptotic breakdown point of T is the

maximum possible value 1/2.

Example 3.10. Consider the maximum likelihood estimation from Example 3.1 in the con-

text of location M-estimators. In this case, one takes a distribution function F0 : R → [0, 1]

with density f0, and introduces a location parameter θ ∈ R by taking Fθ(x) = F0(x− θ) for

x ∈ R. The density of Fθ is then fθ(x) = f0(x − θ), x ∈ R. The parameter θ is estimated

using a location M-estimator with

ψ(x, t) = − ∂

∂t
log f0(x− t).

The robustness of such an estimator thus depends on the shape of this (negative) score

function. For F0 the standard normal distribution, we get ψ0(x, t) = x − t; this, of course,

corresponds to the non-robust mean functional. For F0 the standard Cauchy distribution we

have

ψ(x, t) =
2(x− t)

1 + (x− t)2
for x, t ∈ R.
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This function is bounded and odd in x for each t ∈ R given, but it is not monotone. Theo-

rem 10 thus cannot be applied blindly, but it can be shown that the associatedM -estimator is

translation equivariant, with bounded influence function, and robust with asymptotic break-

down point 1/2. However, it does not have to be defined uniquely.

For F0 the Laplace distribution

F0(x) =

1− exp(−x)/2 for x ≥ 0,

exp(x)/2 for x < 0,
(73)

we get ψ(x, t) = ψ1/2(x, t) from (53), and the M-estimator is the median functional. For a

plot of all these three score functions see Figure 9. △
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Figure 9: (Negative) score functions ψ(x, 0) for the location M-estimators from Example 3.10:

F0 standard normal (orange), F0 standard Cauchy (blue), and F0 Laplace (green).

The latter two M-functionals are robust, the first one is not.

3.1.4 Robustness of M-estimators of scale

We now briefly deal also with the M-estimation of a scale parameter. Similarly to the location

parameter defined in (62), we say that for X = R, X ∼ P ∈ P (R) and Y = aX ∼ Q ∈ P (R)
with a > 0, a parameter S = S(P ) is a scale parameter of P if

S(Q) = aS(P ) for all a > 0. (74)

A statistical functional S is said to be scale equivariant for P if (74) holds true.

M-estimators of scale are naturally defined by the equation∫
R
ψ1

(
x

S(P )

)
dP (x) = 0 (75)
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that is solved in S(P ) ∈ (0,∞). The function ψ(x, t) = ψ1(x/t) is now chosen so that the

resulting M-estimator S(P ) is scale equivariant, as can be easily seen by verifying (74)

EQ ψ1

(
Y

S(Q)

)
= EP ψ1

(
aX

S(Q)

)
= EP ψ1

(
aX

aS(P )

)
=

∫
R
ψ1

(
x

S(P )

)
dP (x) = 0.

Example 3.11. As for the location case from Example 3.10, also in the scale situation,

the simplest M-estimators are the maximum likelihood estimators. Take the scale family of

distribution functions Fσ(x) = F1(x/σ) for σ > 0, for F1 : R → [0, 1] given. If the density of

F1 is f1 and the derivative of f1 is denoted by f ′1, we get

ψ(x, s) = − ∂

∂s
log

(
1

s
f1

(x
s

))
=

1

s
+
f ′1(x/s)

f1(x/s)

x

s2
.

In particular, for F1 the distribution function of the standard Gaussian distribution N(0, 1)

we get

ψ(x, s) =
1

s

(
1− x2

s2

)
, or alternatively ψ1(x) = 1− x2,

leading to the functional S(P ) =
√

EP X2 and the estimator

S(Pn) =

√√√√ 1

n

n∑
i=1

X2
i .

This is equivalent to taking the even function

ψ1(x) = x2 − 1 for x ∈ R

in the estimating equation (75). △

Similarly as in the example above, the function ψ1 is usually taken to be even (ψ1(−x) =
ψ1(x) for all x ∈ R) and non-decreasing on [0,∞). For the functional (74) to be well defined,

it is also required that ψ1(0) < 0 and ψ1(∞) = limx→∞ ψ1(x) > 0. We also assume that ψ1

is continuous at 0 to avoid trivial degeneracy issues.

The influence function of a scale M-functional S follows directly from Theorem 8. We have

ψ′(y, s) =
∂

∂s
ψ1

(y
s

)
= −ψ′

1

(y
s

) y

s2
,

for ψ′
1 the derivative of ψ1, and thus

IF(x, P, S) =
ψ1

(
x
s

)∫
R ψ

′
1

(y
s

) y
s2

dP (y)
=

ψ1

(
x
s

)∫
R ψ

′
1 (y) y dP (y)

.

In particular, again, the influence function is bounded if and only if both ψ1(0) > −∞ and

ψ1(∞) <∞.
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Example 3.12. An obvious robust choice of a function ψ1 for scale M-estimation is

ψ1(x) = sign (|x| − 1) =


−1 for |x| < 1,

0 for |x| = 1,

1 for |x| > 1.

This gives the functional S given as the solution to

0 =

∫
R
ψ1

(x
s

)
dP (x) = EP sign (|X| − 1) = −P (|X| < s) + P (|X| > s) ,

which is solved by s = S(P ) = med (|X|). This is a functional called the median absolute

deviation from 0. △

The robustness of scale M-functionals can be explored similarly as for the location M-

functionals. Here, we only treat the breakdown point of S(P0). For simplicity, consider the

breakdown point given by the contamination neighbourhood Pε(P0) from (14). Writing

λ(s, P ) =

∫
R
ψ1

(x
s

)
dP (x)

for the left hand side of (75), the functional S breaks down if • λ(s, P ) > 0 for all s ∈ R, or
• λ(s, P ) < 0 for all s ∈ R, for some P = (1− ε)P0 + εQ. We have

λ(s, P ) =

∫
R

(
ψ1

(x
s

)
− ψ1(0)

)
dP (x) + ψ1(0)

= (1− ε)

∫
R

(
ψ1

(x
s

)
− ψ1(0)

)
dP0(x) + ε

∫
R

(
ψ1

(x
s

)
− ψ1(0)

)
dQ(x) + ψ1(0).

The first two summands are always non-negative because ψ1 is minimised at 0. The last term

ψ1(0) is negative. Thus, in the first case λ(s, P ) > 0, we want to find Q ∈ P (R) so that∫
R

(
ψ1

(x
s

)
− ψ1(0)

)
dQ(x)

is as large as possible, which is obviously true if Q is a “mass at infinity”, as we also had in

the location case in (70), and the maximum value is

sup
Q∈P(R)

∫
R

(
ψ1

(x
s

)
− ψ1(0)

)
dQ(x) = ψ1(∞)− ψ1(0).

To make λ(s, P ) > 0 for all s ∈ (0,∞), we thus need

ε > − ψ1(0)

ψ1(∞)− ψ1(0)
.

On the other hand, for any ε > 0 smaller than this constant, we have only that

ε sup
Q∈P(R)

∫
R

(
ψ1

(x
s

)
− ψ1(0)

)
dQ(x) + ψ1(0) = ε(ψ1(∞)− ψ1(0)) + ψ1(0) < 0, (76)
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which means that taking s > 0 finite but large enough in λ(s, P ), the first term

(1− ε)

∫
R

(
ψ1

(x
s

)
− ψ1(0)

)
dP0(x)

can be made arbitrarily small (but still positive), and eventually smaller than the negative

constant from (76). Observe that in the last argument, we used that ψ1 is continuous at 0.

In conclusion, for S(P0) to break down “to infinity”, we need contamination exactly

ε = − ψ1(0)

ψ1(∞)− ψ1(0)
.

In the second breakdown event of λ(s, P ) < 0, a similar argument shows that

inf
Q∈P(R)

∫
R

(
ψ1

(x
s

)
− ψ1(0)

)
dQ(x) = 0,

and this is attained if Q = δ0 ∈ P (R). For S(P ) to break down, we thus need

(1− ε) sup
s>0

∫
R

(
ψ1

(x
s

)
− ψ1(0)

)
dP0(x) + ψ1(0) = (1− ε) (ψ1 (∞)− ψ1(0)) + ψ1(0) < 0,

which is equivalent with

ε > 1 +
ψ1(0)

ψ1(∞)− ψ1(0)
.

In this case, an “implosion” of S(P ) to 0 will happen, which also counts as a breakdown. We

have found the following result.

Theorem 11. Let ψ1 : R → R be an even function that is non-decreasing on [0,∞), contin-

uous at 0, and such that ψ1(0) < 0, ψ1(∞) > 0. Then the M-estimator of scale S, defined by∫
R ψ1(x/S(P )) dP (x) = 0, is scale equivariant. The asymptotic breakdown point of S at any

P ∈ P (R) with respect to the contamination neighbourhood is

ε∗(P, S) = min

{
− ψ1(0)

ψ1(∞)− ψ1(0)
, 1 +

ψ1(0)

ψ1(∞)− ψ1(0)

}
.

It takes the maximum value ε∗(P0, T ) = 1/2 if and only if ψ(∞) = −ψ(0) <∞.

It is not hard to observe that if we consider neighbourhoods given by the Prokhorov dis-

tance, the breakdown point in the previous theorem remains the same. However, for neigh-

bourhoods given by the Lévy (or Kolmogorov) distance, the breakdown point halves to

ε∗(P, S) =
1

2
min

{
− ψ1(0)

ψ1(∞)− ψ1(0)
, 1 +

ψ1(0)

ψ1(∞)− ψ1(0)

}
.

This is because in the Lévy contamination model, dislocating from P0 mass ε/2 to −∞ and

mass ε/2 to +∞, the Lévy distance between P0 and the contaminated distribution is only

ε/2, while for the Prokhorov distance it would be ε.
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3.2 L-estimators: Linear combinations of order statistics

We are given a random sample X1, . . . , Xn from P ∈ P (R) in the space X = R, and consider

the corresponding ordered sample X(1) ≤ X(2) ≤ · · · ≤ X(n). L-estimators are defined as

linear combinations of (a function h : R → R of) order statistics

Tn(X1, . . . , Xn) =

n∑
i=1

an,i h(X(i)). (77)

To couple these estimators with a statistical functional T , we assume that the coefficients

an,i ∈ R take a specific form

an,i =M

((
i− 1

n
,
i

n

])
,

for a given signed measure M on [0, 1]. The measure M is usually absolutely continuous with

a density m : [0, 1] → R with respect to the Lebesgue measure. In that case,

an,i =

∫ i/n

(i−1)/n
m(x) dx,

or, if m is continuous, one can also define an,i = m((i− 1/2)/n)/n.

The statistical functional T corresponding to (77) is taken to be

T (P ) =

∫ 1

0
h
(
F−1(s)

)
dM(s), (78)

where

F−1(s) = inf {x ∈ R : F (x) ≥ s} for s ∈ [0, 1]

is the quantile function associated with the distribution function F of P ∈ P (R). For Fn the

empirical distribution function of the sample X1, . . . , Xn we have

F−1
n (s) =

−∞ for s = 0,

X(j) for s ∈
(
j−1
n , jn

]
with j = 1, 2, . . . , n.

Thus, the empirical version of (78) is

T (Fn) =

∫ 1

0
h
(
F−1
n (s)

)
dM(s)

= h(−∞)M({0}) +
n∑

i=1

∫
((i−1)/n,i/n]

h(X(i)) dM(s)

= h(−∞)M({0}) +
n∑

i=1

M

((
i− 1

n
,
i

n

])
h(X(i)),

which coincides with (77) if h(−∞) = limt→−∞ h(t) is finite and M({0}) = 0. The last

condition, M({0}) = 0, will always be assumed in the section, as otherwise, the associated

L-functional faces degeneracy problems.
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Example 3.13. Two natural L-estimators of location are

• the α-quantiles obtained from (78) by considering M = δα the Dirac measure at α ∈
(0, 1) and h(x) = x; or

• the α-trimmed mean with α ∈ (0, 1/2) obtained via the density

m(x) =
1

1− 2α
I (x ∈ (α, 1− α)) (79)

of M and h(x) = x. The L-estimator customarily associated with the α-trimmed mean

is

Tn(X1, . . . , Xn) =
1

n− 2 ⌊αn⌋

n−⌊αn⌋∑
i=⌊αn⌋+1

X(i), (80)

where ⌊x⌋ is the floor function, that is the largest integer y that satisfies y ≤ x. Note,

however, that the trimmed mean estimator (80) does not equal T (Pn) exactly if αn is

not an integer. Indeed then, in T (Pn), we need to weight the order statistics slightly dif-

ferently. We would need to down-weight the extreme statisticsX(⌊αn⌋+1) andX(n−⌊αn⌋).

The two estimators T (Pn) and (80) are, nevertheless, asymptotically equivalent.

Among L-estimators, we also find well-known estimators of scale, such as the inter-quartile

range obtained using h(x) = x and M = δ3/4 − δ1/4. For the inter-quartile range, M is a

proper signed measure. △

3.2.1 Influence function of L-estimators

For the influence function IF(x, P, T ) of the L-functional (78), we need to take Pt = (1−t)P +

t δx, plug its distribution function Ft into (78), and compute the difference

IF(x, P, T ) = lim
t→0

T (Pt)− T (P )

t
=

∫ 1

0
lim
t→0

h
(
F−1
t (s)

)
− h

(
F−1(s)

)
t

dM(s)

=

∫ 1

0
IF(x, P, h(Ts)) dM(s),

(81)

supposing that the limit and the integral can be interchanged, where we denote by Ts the

statistical functional that assigns to F ∈ P (R) the s-quantile F−1(s).

We thus need to find the influence function of the functional h(Ts) for s ∈ (0, 1). Since

the influence function is just a derivative of a real function, we can use the chain rule for

derivatives. We get that, for h differentiable with derivative h′,

IF(x, P, h(Ts)) = lim
t→0

h(Ts(Pt))− h(Ts(P ))

t
= h′(Ts(P )) IF(x, P, Ts). (82)
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It remains to use the expression for the influence function of the s-quantile functional Ts

from Example 3.6. To get the final influence function of L-estimators, we put together our

formulas (81), (82), and (57). The final expression is given in the following theorem; as for

the M-estimators, we gloss over the obvious mild technical conditions in the statement of the

theorem.

Theorem 12. Under mild regularity conditions, the influence function of an L-functional T

given by (78) is

IF(x, P, T ) =

∫ 1

0
IF(x, P, h(Ts)) dM(s)

=

∫ 1

0

s h′(F−1(s))

f(F−1(s))
dM(s)−

∫ ∞

F (x)

h′(F−1(s))

f(F−1(s))
dM(s).

(83)

Proof. The proof follows directly from (81), (82), and (57). It is enough to realise that

x > F−1(s) if and only if F (x) > s.

In the common situation when the signed measure M has a density m, we can simplify the

influence function in (83) by making a substitution y = F−1(s) to

IF(x, P, T ) =

∫ 1

0

s h′(F−1(s))

f(F−1(s))
m(s) d s−

∫ ∞

F (x)

h′(F−1(s))

f(F−1(s))
m(s) d s

=

∫
R

F (y)h′(y)

f(y)
m(F (y))f(y) d y −

∫ ∞

x

h′(y)

f(y)
m(F (y))f(y) d y

=

∫
R
F (y)h′(y)m(F (y)) d y −

∫ ∞

x
h′(y)m(F (y)) d y

=

∫ x

−∞
h′(y)m(F (y)) d y −

∫
R
(1− F (y))h′(y)m(F (y)) d y.

(84)

The second summand is just a constant in x ∈ R; the influence function is, therefore, relatively

simple when written in terms of its derivative

∂

∂x
IF(x, P, T ) = h′(x)m(F (x)). (85)

Example 3.14. For T the α-trimmed mean from Example 3.13 with α ∈ (0, 1/2) we have

h(x) = x and m of the form (79). Applying this to (85) we get that IF(x, P, T ) is constant

for x /∈ [F−1(α), F−1(1− α)], and for x ∈ [F−1(α), F−1(1− α)] we have

IF(x, P, T ) =
x

1− 2α
+ c

for an appropriate constant c ∈ R. The exact expression for the influence function of T can

be computed from (84), but it is somewhat cumbersome. We perform the computation for

F such that F−1 does not have discontinuities at α and 1 − α. That will allow us to write
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F (F−1(α)) = α and F (F−1(1−α)) = 1−α. We begin by computing the second term on the

right-hand side of (84). We integrate by parts the Stieltjes integral3 [23, Theorem 16.4] to

get

(1− 2α)

∫
R
(1− F (y))m(F (y)) d y =

∫ F−1(1−α)

F−1(α)
(1− F (y)) d y

= F−1(1− α)(1− (1− α))− F−1(α)(1− α) +

∫ F−1(1−α)

F−1(α)
y dF (y)

= αF−1(1− α) + (α− 1)F−1(α) +

∫ 1−α

α
F−1(s) d s.

The quantity on the right-hand side is interesting; it can be written asW (P )−F−1(α), where

W (P ) =

∫ 1−α

α
F−1(s) d s+ α

(
F−1(α) + F−1(1− α)

)
(86)

is another well-known L-functional called the α-Windsorized mean of P ∈ P (R) with distri-

bution function F .

Returning to the influence function of the α-trimmed mean, consider now also the first

term in (84). It takes the form∫ x

−∞
m(F (y)) d y =

1

1− 2α

∫ x

−∞
I
(
F−1(α) < y < F−1(1− α)

)
d y

which is zero if x ≤ F−1(α). For x ∈ (F−1(α), F−1(1− α)) we get∫ x

−∞
I
(
F−1(α) < y < F−1(1− α)

)
d y = x− F−1(α),

and finally for x ≥ F−1(1− α)∫ x

−∞
I
(
F−1(α) < y < F−1(1− α)

)
d y = F−1(1− α)− F−1(α).

Putting all these results together, the influence function of the α-trimmed mean is

IF(x, P, T ) =


1

1−2α

(
F−1(α)−W (P )

)
for x ≤ F−1(α),

1
1−2α (x−W (P )) for x ∈ (F−1(α), F−1(1− α)),

1
1−2α

(
F−1(1− α)−W (P )

)
for x ≥ F−1(1− α).

(87)

We see that the influence function is continuous, piecewise linear, and the gross error sensi-

tivity of the α-trimmed mean is bounded. For F symmetric in the sense F (−x) = 1 − F (x)

for all x ∈ R we certainly have W (P ) = 0 and

γ∗(P, T ) =
F−1(1− α)

1− 2α
.

△
3For F,G : R → [0, 1] continuous distribution functions and a < b we have F (b)G(b) − F (a)G(a) =∫ b

a
F (x) dG(x) +

∫ b

a
G(x) dF (x).
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Example 3.15. The α-Windsorized mean W (P ) from (86) follows an idea similar to the

trimmed mean. In the computation of the trimmed mean in (80), we “throw away” all

extreme observations X(1) ≤ · · · ≤ X(⌊αn⌋) and X(n−⌊αn⌋+1) ≤ · · · ≤ X(n). In contrast, in the

Windsorized mean, we rather replace all the leftmost observations X(i), i = 1, . . . , ⌊αn⌋, by
the boundary order statistic X(⌊αn⌋+1), and all the rightmost X(i), i = (n− ⌊αn⌋+ 1), . . . , n

by X(n−⌊αn⌋). Then we take the usual average of these modified n data points.

The influence function of the Windsorized mean can be computed directly. Because

W (P ) = (1− 2α)T (P ) + α (Tα(P ) + T1−α(P ))

for T the α-trimmed mean and Tα the α-quantile functionals, we immediately get that

IF(x,W,P ) = (1− 2α) IF(x, T, P ) + α (IF(x, Tα, P ) + IF(x, T1−α, P )) .

It remains to plug in the expressions for the influence function of the trimmed mean from (87),

and the influence function of the quantiles from (57). In Figure 10 we see that the influence

function of W is discontinuous at the boundary points x = F−1(α) and x = F−1(1−α). This
is because of the mass that the measure M puts in the functional W to the two quantiles at

values α and 1−α. We saw the same phenomenon already in the expression for the influence

function of the α-quantile in (57).

-3 -2 -1 1 2 3

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 10: The influence function of the α-trimmed mean (blue) and the α-Windsorized mean

(dashed orange) for α = 0.2 and P the standard normal distribution.

△

3.2.2 Robustness of L-estimators

We consider the common situation when h(x) = x is the identity function and M is a (non-

negative) measure of total mass 1. In this case, we obtain an L-estimator (78) that is both
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translation and scale equivariant. It means that for any X ∼ P ∈ P (R) with distribution

function F0 and Y = aX + b ∼ Q ∈ P (R) with distribution function Fa,b with a > 0 and

b ∈ R, we have

Fa,b(x) = P (aX + b ≤ x) = F0

(
x− b

a

)
for all x ∈ R,

and thus also

F−1
a,b (α) = aF−1

0 (α) + b for all α ∈ (0, 1), (88)

and

T (Q) =

∫ 1

0
F−1
a,b (s) dM(s) = a

∫ 1

0
F−1
0 (s) dM(s) + b = a T (P ) + b. (89)

Consider first the situation when the support of M contains one of the endpoints of [0, 1],

say 0. ThenM([0, 1/n)) > 0 for all n = 1, 2, . . . , and it is not difficult to see that the resulting

L-functional cannot be weakly continuous. This is shown in the next example.

Example 3.16. Take P ∈ P (R) the uniform distribution on [−1, 1]. Contaminate P by an

appropriate Dirac measure, defining a sequence

Pn =

(
1− 1

n

)
P +

1

n
δxn for n = 1, 2, . . . ,

where xn = min{−n,−n/(M [0, 1/n))}. For Fn the distribution function of Pn we have

Fn(xn) = Pn((−∞, xn]) ≥
1

n
δxn((−∞, xn]) =

1

n
,

which gives

F−1
n (s) ≤ 1 for all s ∈ (0, 1),

F−1
n (1/n) ≤ xn.

Altogether, we have Pn
w−−−→

n→∞
P and T (P ) ∈ [−1, 1], but

T (Pn) =

∫ 1

0
F−1
n (s) dM(s) ≤ xnM([0, 1/n)) + 1M([1/n, 1]) ≤ −n+ 1,

and naturally T (Pn) does not converge to T (P ). △

Defining α ∈ [0, 1/2] the largest number such that the interval [α, 1−α] contains the support
of M , Example 3.16 shows that if α = 0, the L-functional (78) cannot be weakly continuous.

We thus focus on α ∈ (0, 1/2]. In the definition (78) of T (P ), we consider only the s-

quantiles of P with s ∈ [α, 1 − α]. We already saw in Example 3.9 that the asymptotic

breakdown point of each such quantile is at least α, for α ≤ 1/2. At the same time, (a direct

modification of) the previous Example 3.16 also shows that ε∗(P, T ) ≤ α, and in particular

ε∗(P, T ) = α. It is actually easy to see more. Just as for the M-functionals in Section 3.1.3,

also the L-functional T is non-decreasing in the sense of stochastic ordering, see Lemma 2.
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Lemma 3. LetM be a probability measure on [0, 1], and denote by F the distribution function

of P ∈ P (R). Then the L-functional T (P ) =
∫ 1
0 F

−1(s) dM(s) is non-decreasing in P in the

sense of stochastic ordering.

Proof. Let P ∈ P (R) with distribution function F be stochastically larger than Q ∈ P (R)
with distribution function G. That means F (x) ≤ G(x) for all x ∈ R. For any s ∈ [0, 1] fixed

we thus have that F (x) ≥ s implies G(x) ≥ s, which gives

F−1(s) = inf {x ∈ R : F (x) ≥ s} ≥ inf {x ∈ R : G(x) ≥ s} = G−1(s).

This allows us to write

T (P ) =

∫ 1

0
F−1(s) dM(s) ≥

∫ 1

0
G−1(s) dM(s) = T (Q),

as we needed to show.

Thanks to Lemma 3, the maximum positive bias b+(ε) and the minimum negative bias

b−(ε) from (65) of an L-estimator T at P0 ∈ P (R) such that T (P0) = 0 (this assumption is

without loss of generality, due to (89)) is given by

b+(ε) = T (F1) and b−(ε) = T (F2)

with F1 and F2 precisely as in Section 3.1.3. To compute T (F1), we need the expression for

the s-quantiles of

F1(x) =

0 if x < F−1
0 (ε) + ε,

F0(x− ε)− ε if x ≥ F−1
0 (ε) + ε,

see (67). Here, F0 is the distribution function of P0. For s ∈ (0, 1) we get

F−1
1 (s) = inf {x ∈ R : F0(x− ε)− ε ≥ s}

= inf {y + ε ∈ R : F0(y) ≥ s+ ε} = ε+ F−1
0 (s+ ε).

(90)

If s > 1− ε, we obtain

F−1
1 (s) = ∞,

as expected by considering Figure 8. Thus, if the upper endpoint of the support of M is

larger than 1 − ε (which corresponds to α < ε), we have T (F1) = ∞. In the other situation

(ε < α) we get

b+(ε) = T (F1) = ε+

∫ 1−α

α
F−1
0 (s+ ε) dM(s),

b−(ε) = T (F2) = −ε+
∫ 1−α

α
F−1
0 (s− ε) dM(s).

(91)

63



From Example 3.9 we know that the s-quantile functional with s ∈ (0, 1) is weakly continuous

at F0 if and only if F−1
0 is continuous at s. If each s ∈ (0, 1) is a point of continuity of F−1

0 ,

we have

F−1
0 (s+ ε) → F−1

0 (s) as ε→ 0, (92)

and we get with ε→ 0 that

T (F1) = ε+

∫ 1−α

α
F−1
0 (s+ ε) dM(s) →

∫ 1−α

α
F−1
0 (s) dM(s) = T (F0). (93)

Suppose now that F−1
0 has points of discontinuity and let M be absolutely continuous with

density m. Since F−1
0 is non-decreasing, there are only (at most) finitely many points of

discontinuity of F−1
0 . Thus, for M -almost all s ∈ (α, 1− α) we still have (92). Consequently,

we can interchange the limit and the integral and write (93). It turns out that the only

situation when points of discontinuity of F−1
0 pose a problem for L-estimators is when F−1

0

and the distribution function of M both share the same points of discontinuity. This is

exactly what happens when the s-quantile functional happens to be weakly discontinuous,

see Example 3.7.

Overall, we have found that as ε → 0, both b+(ε) and b−(ε) go to zero if F−1
0 and the

distribution function of M do not have common discontinuity points in the interval [α, 1−α].
Under that assumption, the L-functional T is weakly continuous. We can now summarise all

our observations.

Theorem 13. Let M be a (non-negative) measure on [0, 1], and let T be the L-functional

defined by T (F ) =
∫ 1
0 F

−1(s) dM(s). Let α ≥ 0 be the largest number such that the interval

[α, 1 − α] contains the support of M . Then T is weakly continuous at F0 if and only if

(i) α > 0, and (ii) F−1
0 does not share a point of discontinuity with the distribution function

of M in [α, 1− α]. In addition, ε∗(P, T ) = α for any P ∈ P (R).

If the measure M is signed, one obtains a result similar to Theorem 13 by decomposing M

intoM+−M−, with bothM+ andM− (non-negative) measures in [0, 1]. Even though we do

not prove the Fréchet differentiability of the L-functionals, the asymptotic representation and

the asymptotic normality result from Theorem 5 hold true, under reasonable assumptions.

One such result can be found in, e.g., [12, Theorem 3.8].

3.3 R-estimators: Rank-based estimation

The R-estimators are constructed by inverting rank tests. Take the two-sample Wilcoxon test

[15, Section 6.4]. We have two independent random samples X1, . . . , Xn from P ∈ P (R), and
Y1, . . . , Ym from Q ∈ P (R), where the distributions of P and Q are the same, but possibly
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shifted by a constant δ ∈ R. We want to test whether δ = 0, meaning that P = Q. To

do that, we first pool both random samples into a single vector Z = (Z1, . . . , Zn+m)T =

(X1, . . . , Xn, Y1, . . . , Ym)T and then consider T defined as the sum of the ranks

Rj =
n+m∑
i=1

I (Zi ≤ Zj) (94)

corresponding to the points Xj from the first random sample, i.e. T =
∑n

j=1Rj . Take, for

simplicity, the case when n = m. Then, we cannot reject the null hypothesis of δ = 0 if T is

close to (
2n∑
i=1

i

)
/2 = 2n(2n+ 1)/4 = n(n+ 1/2) =

n∑
i=1

(1/2 + n).

That is equivalent with

0 = 2n2
1

n

n∑
i=1

Ri − 1/2− n

2n
,

or, dividing by 2n2, also

0 =
1

n

n∑
i=1

Ri − 1/2− n

2n
=

1

n

n∑
i=1

(
Ri − 1/2

2n
− 1

2

)
whose right-hand side can be written as

1

n

n∑
i=1

(
Ri − 1/2

2n
− 1/2

)
=

1

n

n∑
i=1

a(Ri). (95)

Here, we denote

a(t) =
t− 1/2

2n
− 1/2 = 2n

∫ t/(2n)

(t−1)/(2n)
J(s) d s,

for

J(s) = s− 1/2 for s ∈ [0, 1]. (96)

The rank (94) of Xi can be written as the value of the empirical distribution function of Z

at the point Xi, multiplied by 2n. If we denote by Fn and Gn the empirical distribution

functions of X1, . . . , Xn and Y1, . . . , Yn, respectively, we get

Rj

2n
=

1

2
(Fn(Xj) +Gn(Xj)) for j = 1, . . . , n.

The functional analogue to the rank statistic (95) is therefore∫
R
J

(
1

2
(F (x) +G(x))

)
dF (x) (97)

for F and G the distribution functions of P and Q, respectively. If the true shift δ is zero, the

integral in (97) should be (close to) zero too. Note, however, that (97) does not correspond
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to the statistic (95) precisely. If we apply the empirical distributions Fn and Gn to (97) we

get ∫
R
J

(
1

2
(Fn(x) +Gn(x))

)
dFn(x) =

1

n

n∑
j=1

J

(
1

2
(Fn(Xj) +Gn(Xj))

)

=
1

n

n∑
j=1

J

(
Rj

2n

)
=

1

n

n∑
j=1

(
Rj

2n
− 1

2

)
.

The last expression differs from (95) by 1/(4n), which is, however, asymptotically negligible.

To estimate the location shift δ ∈ R between P and Q, one can now invert the rank test

based on the statistic (95) or the expression (97). The idea is to consider different shifts of

the second random sample Y1, . . . , Yn by various δ ∈ R. To use the test above, we thus first

modify all Yi to Yi + δ, and build Z = (X1, . . . , Xn, Y1 + δ, . . . , Yn + δ)T. For this sample,

the standard ranks (94) are computed, and the statistic (95) is used. The corresponding

functional (97) is ∫
R
J

(
1

2
(F (x) +G(x− δ))

)
dF (x). (98)

If the true shift between P and Q is δ0, one then expects that as a function of δ ∈ R, the
expression (98) will be equal to zero for δ = δ0.

We now use this idea to construct an estimator in the situation when only a single sample

X1, . . . , Xn is at our disposal. One can replace the second sample with the mirror images of

Xi around δ

Yi = δ − (Xi − δ) = 2 δ −Xi for i = 1, . . . , n.

The distribution function G of Yi is then

G(x) = P (2 δ −X1 ≤ x) = P (2 δ − x ≤ X1) = 1− F (2 δ − x)

if F is continuous. The expression (98) changes to∫
R
J

(
1

2
(F (x) + 1− F (2 δ − x))

)
dF (x), (99)

and once again, one searches for δ ∈ R that makes this expression equal to zero. This defines

the (one-sample) R-functional as a solution T (P ) = T (F ) ∈ R to the equation∫
R
J

(
1

2
(F (x) + 1− F (2T (F )− x))

)
dF (x) = 0. (100)

The function J in (100) and (108), of course, does not have to be only of the form (96). In

general, it is assumed that J : [0, 1] → R has the property∫ 1

0
J(s) d s = 0, (101)
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which corresponds to the fact that the expected value of the test statistic (95) under the null

hypothesis is zero. Indeed, if the distribution function F is symmetric around, say, the origin

δ = 0, we then obtain in (99)∫
R
J

(
1

2
(F (x) + 1− F (−x))

)
dF (x) =

∫
R
J (F (x)) dF (x) =

∫ 1

0
J(s) d s = 0, (102)

as we wanted.

Example 3.17. The simplest reasonable choice of the function J is

J(s) =


−1 for s ∈ [0, 1/2),

0 for s = 1/2,

1 for s ∈ (1/2, 1].

Then, in formula (99) with F replaced by the empirical distribution function Fn ofX1, . . . , Xn,

we identify that
1

2
(Fn(Xi) + 1− Fn(2 δ −Xi))

is the rank of Xi in the pooled sample X(δ) = (X1, . . . , Xn, 2 δ −X1, . . . , 2 δ −Xn)
T divided

by (2n). Certainly, the median of the pooled sample X(δ) is δ. Thus, the sample version of

formula (99) counts the number of Xi, i = 1, . . . , n that lie below δ with a minus sign, and

the number of Xi, i = 1, . . . , n that lie above δ with a plus sign. This sum equals zero if

δ is the median of X1, . . . , Xn, and we obtain the median functional from Example 3.4 as a

special case of an R-estimator. △

Example 3.18. Taking J from (96), we obtain an R-estimator that corresponds to the

Wilcoxon test. The sample version of this R-estimator is the Hodges-Lehmann estimator,

given as the median of the set of n2 points (Xi + Xj)/2, i, j = 1, . . . , n. To see this,4 note

that T (F ) is defined as the solution to (100), giving

0 =

∫
R

(
1

2
(F (x) + 1− F (2T (F )− x))− 1

2

)
dF (x).

That is equivalent with ∫
R
F (x) dF (x) =

∫
R
F (2T (F )− x) dF (x), (103)

with the left-hand side equal to∫
R
F (x) dF (x) =

∫ 1

0
sd s = 1/2.

4Derivation thanks to F. Bočinec.
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Figure 11: Three commonly used functions J for R-estimators: the Hodges-Lehmann func-

tion (96) (blue), the function giving the median from Example 3.17 (green), and

the normal scores function J = Φ−1 (orange).

Now, plug the empirical distribution function Fn(x) of X1, . . . , Xn into the right-hand side

of (103) instead of F . We get

1

2
=

∫
R
Fn(2T (Fn)− x) dFn(x) =

1

n

n∑
i=1

Fn(2T (Fn)−Xi)

=
1

n

n∑
i=1

1

n

n∑
j=1

I (Xj ≤ 2T (Fn)−Xi) =
1

n2

n∑
i=1

n∑
j=1

I
(
Xj +Xi

2
≤ T (Fn)

)
.

Here, the right-hand side expression can be seen as the empirical distribution function Gn2

of the n2 values Yi,j = (Xi +Xj)/2 for i, j = 1, . . . , n at the point T (Fn). The value of this

distribution function Gn2 equals 1/2 at T (Fn) if T (Fn) is (close to) the median all the values

Yi,j , i, j = 1, . . . , n. The sample version of the R-estimator that corresponds to the Wilcoxon

test is thus indeed the Hodges-Lehmann estimator (sometimes also called the pseudo-median,

see, e.g. [15, Section 5.4]). △

Example 3.19. Other choices of J have been considered in the literature. Typically, it is

assumed that J is symmetric in the sense that

J(1− t) = −J(t) for all t ∈ [0, 1], (104)

A common choice is J = Φ−1, which gives the so-called normal scores R-estimator of location.

For a plot of commonly used functions J see Figure 11. △

3.3.1 Influence function of R-estimators

The influence function of a general R-estimator can be computed by replacing F by Ft =

(1− t)F + t δx in the formula (100) with x ∈ R, differentiating with respect to t, and setting
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t = 0 in the resulting derivative. The computation is, however, rather tedious, and we do not

perform it. Under the condition (104) of symmetry of J , it is shown in [12, Section 3.4.1] that

IF(x, P, T ) =
U(x)−

∫
R U(y) f(y) d y∫

R U
′(y) f(y) d y

=
U(x)−

∫
R U(y) dF (y)∫

R U
′(y) dF (y)

. (105)

Here, U is the primitive function of

U ′(x) = J ′
(
1

2
(F (x) + 1− F (2T (F )− x))

)
f(2T (F )− x),

J ′ is the derivative of J , and f is the density of F . The formula (105) simplifies if F is

symmetric, i.e. if F (−x) = 1 − F (x) for all x ∈ R. In that situation, we have by (101)

and (102) that T (F ) = 0. That gives

U ′(x) = J ′
(
1

2
(F (x) + 1− F (2T (F )− x))

)
f(2T (F )− x) = J ′(F (x)) f(x),

whose primitive function is simply

U(x) = J(F (x)),

Further, ∫
R
J(F (y)) f(y) d y =

∫
R
J(F (x)) dF (x) =

∫ 1

0
J(s) d s = 0.

We get that for F symmetric, we can simplify

IF(x, P, T ) =
J(F (x))−

∫
R J(F (y)) f(y) d y∫

R J
′(F (y)) (f(y))2 d y

=
J(F (x))∫

R J
′(F (y)) (f(y))2 d y

. (106)

Example 3.20. The Hodges-Lehmann estimator T (P ) = T (F ) from Example 3.18 solves

the equation

0 =

∫
R

(
1

2
(F (x) + 1− F (2T (F )− x))− 1

2

)
dF (x)

=

∫
R

F (x)

2
dF (x)−

∫
R

F (2T (F )− x)

2
dF (x)

=

∫ 1

0

s

2
d s−

∫
R

F (2T (F )− x)

2
dF (x)

=
1

4
−
∫
R

F (2T (F )− x)

2
dF (x).

(107)

We have J ′(s) = 1 for all s ∈ (0, 1), which gives

U(x) = −F (2T (F )− x) for x ∈ R,

and the influence function takes the form

IF(x, P, T ) =
−F (2T (F )− x) +

∫
R F (2T (F )− y) f(y) d y∫

R f(2T (F )− y) f(y) d y

=
1/2− F (2T (F )− x)∫

R f(2T (F )− y) f(y) d y
.
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where the second equality follows from (107). For F symmetric this simplifies to

IF(x, P, T ) =
F (x)− 1/2∫
R(f(y))

2 d y
.

Theorem 5 now suggests that for F symmetric, the asymptotic normality result

√
n(T (Pn)− T (P ))

d−−−→
n→∞

N(0, A(P, T ))

might be true for Pn empirical measure sampled from P , where

A(P, T ) =

∫
R
(IF(x, P, T ))2 dP (x) =

∫
R(F (x)− 1/2)2 dF (x)(∫

R(f(y))
2 d y

)2
=

∫ 1
0 (s− 1/2)2 d s(∫
R(f(y))

2 d y
)2 =

1

12
(∫

R(f(y))
2 d y

)2 .
This result is, indeed, true. Both the asymptotic variance and the influence function sug-

gest that from the viewpoint of infinitesimal robustness, the Hodges-Lehmann estimator is

surprisingly non-robust since the integral in the denominator can be arbitrarily small. For

example, for f the density of the uniform distribution on the interval [−M,M ] for M > 0

we have
∫
R(f(y))

2 d y = 1/(2M), and as M → ∞ we get γ∗(P, T ) → ∞. We saw the same

problem with the influence function of the quantiles in (57). △

3.3.2 Robustness of R-estimators

In what follows, it turns out that the R-functional given by (100) is more convenient to work

with if we substitute F (x) = s in (100). That gives an alternative expression for T (F ) in the

form ∫ 1

0
J

(
1

2

(
s+ 1− F (2T (F )− F−1(s))

))
d s = 0. (108)

Expressions (100) and (108) are equivalent only if the distribution function F is continuous

and strictly increasing; the difference is however asymptotically negligible as n→ ∞.

We assume that J is non-decreasing and symmetric as in (104). Under our assumption of

integrability of J following from (101), the function

λ(t, P ) = λ(t, F ) =

∫ 1

0
J

(
1

2

(
s+ 1− F (2 t− F−1(s))

))
d s (109)

is well-defined. It is also monotone in both t ∈ R and P ∈ P (R), similarly as the function (66)

defining the M-estimators, see Lemma 2.

Lemma 4. The function (109) is

• non-increasing in t ∈ R, and
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• non-decreasing in P ∈ P (R) in the sense of stochastic ordering.

Proof. Take any t1 < t2 and fix F . Then F (2 t1−F−1(s)) ≤ F (2 t2−F−1(s)) for all s ∈ [0, 1],

and consequently the integrand in (109) is non-increasing in t for each s ∈ [0, 1]. Naturally,

also λ(t1, F ) ≤ λ(t2, F ).

Now, let t ∈ R be fixed, and take F2 stochastically larger than F1, i.e. F2(x) ≤ F1(x) for

all x ∈ R. Then F−1
1 (s) ≤ F−1

2 (s) for all s ∈ [0, 1] as in the proof of Lemma 3, and

F2(2 t− F−1
2 (s)) ≤ F2(2 t− F−1

1 (s)) ≤ F1(2 t− F−1
1 (s)) for all s ∈ [0, 1].

Using the same argument as before, we get λ(t, F2) ≥ λ(t, F1).

Observing that for any P ∈ P (R) is (109) non-increasing in t ∈ R, we see that we are in a

situation quite similar to that for M-estimators from Section 3.1. In particular, the solution

of λ(t, P ) = 0 in t does not have to be unique, and if J is discontinuous, it does not even have

to exist. We could, however, adapt the same approach as for M-estimators in Section 3.1.2

and define the statistical functional T (P ) as any value in the interval [T ∗(P ), T ∗∗(P )], where

T ∗(P ) = sup {t ∈ R : λ(t, P ) > 0} ,

T ∗∗(P ) = inf {t ∈ R : λ(t, P ) < 0} .

Exactly the same argumentation as we used in Section 3.1.3 for M-functionals gives that

the maximum positive ε-bias b+(ε) in the Lévy metric dL of an R-functional is attained at

the improper density F1 from (67), see also Figure 8. Thus, we must establish λ(t, F1) for

F1(x) =

0 for x < x0 + ε,

F0(x− ε)− ε for x ≥ x0 + ε,

where x0 = F−1
0 (ε).

First, we know from (90) that the quantiles of F1 take the form

F−1
1 (s) = inf {x ∈ R : F1(x) ≥ s} = inf {y + ε ∈ R : F0(y) ≥ s+ ε}

=

F
−1
0 (s+ ε) + ε if s ∈ [0, 1− ε],

∞ if s ∈ (1− ε, 1].

Now, if both s ≤ 1− ε and

2 t− F−1
1 (s) ≥ x0 + ε, (110)

we have that in the integrand of (109) we can write

F1(2 t− F−1
1 (s)) = F0(2 t− F−1

1 (s)− ε)− ε = F0(2 t− (F−1
0 (s+ ε) + ε)− ε)− ε

= F0(2 (t− ε)− F−1
0 (s+ ε))− ε.
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If s > 1− ε, we have F−1
1 (s) = ∞, and

F1(2 t− F−1
1 (s)) = 0. (111)

If (110) is not true, then (111) is also valid. It remains to realise that (110) is equivalent with

2 t− x0 − ε ≥ F−1
1 (s) = F−1

0 (s+ ε) + ε,

that is (assuming, for simplicity, that F0 is strictly increasing everywhere)

s ≤ F0(2 t− x0 − 2 ε)− ε.

Since this condition already implies s ≤ 1− ε, we can put all our formulas together and write

λ(t, F1) =

∫ s0

0
J

(
1

2

(
s+ 1 + ε− F0(2 (t− ε)− F−1

0 (s+ ε))
))

d s

+

∫ 1

s0

J

(
1

2
(s+ 1)

)
d s,

(112)

where s0 = max {0, F0(2 t− x0 − 2 ε)− ε}. Using the same argument as for M-estimators in

Section 3.1.3, we get

b+(ε) = inf {t ∈ R : λ(t, F1) < 0} ,

and for F0 symmetric, this is also the maximum bias b(ε, F0, T ).

To find the asymptotic breakdown point of T we need to find limt→∞ λ(t, F1). We see

in (112) that as t→ ∞, then s0 → 1− ε. Further,

lim
t→∞

λ(t, F1) =

∫ 1−ε

0
J

(
1

2
(s+ 1 + ε− 1)

)
d s+

∫ 1

1−ε
J

(
1

2
(s+ 1)

)
d s

= 2

(∫ 1/2

ε/2
J(s) d s+

∫ 1

1−ε/2
J(s) d s

)
.

We now use the symmetry of J from (104) to finalise

lim
t→∞

λ(t, F1) = 2

(∫ 1

1−ε/2
J(s) d s−

∫ 1−ε/2

1/2
J(s) d s

)
.

We know that T breaks down at F1 if and only if limt→∞ λ(t, F1) > 0. This means that the

asymptotic breakdown point of T must be ε∗ = ε∗(F0, T ) defined by∫ 1

1−ε∗/2
J(s) d s =

∫ 1−ε∗/2

1/2
J(s) d s. (113)

Example 3.21. For the Hodges-Lehmann estimator T from Example 3.18 we have for x ∈
(1/2, 1] ∫ x

1/2
J(s) d s =

(1− 2x)2

8
,
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which equals 1/16 = (
∫ 1
1/2 J(s) d s)/2 if x = 1− ε∗/2 = (2 +

√
2)/4, which gives

ε∗(F0, T ) = 1− 1√
2
≈ 0.293

for any symmetric distribution F0. This should be compared with the influence function of T ,

which was shown to be unbounded from above in Example 3.20 if all symmetric distributions

are considered. Thus, even though the Hodges-Lehmann estimator is not robust in the sense

of its influence function, it possesses a rather high positive breakdown point. △

It remains to inspect the qualitative robustness, or weak continuity, of the R-functionals.

We do it again as for L-functionals in Section 3.2.2, and study the maximum bias determined

by (112) as ε → 0. The constant x0 = F−1
0 (ε) converges, as ε → 0, to the lower endpoint

ℓ of the support of F0. Then, s0 converges to 1 if either ℓ = −∞, or if F0 is symmetric.

Similarly as we argued for L-estimators, both F0 and F−1
0 have at most countably many

points of discontinuity because they are monotone. At the same time, we assumed that also

J is monotone, meaning that it also has at most countably many discontinuity points. That

means that the integrand function from the integral in (112)

J

(
1

2

(
s+ 1 + ε− F0(2 (t− ε)− F−1

0 (s+ ε))
))

converges to

J

(
1

2

(
s+ 1− F0(2 t− F−1

0 (s))
))

for almost all points s ∈ R, for any t ∈ R, as ε → 0. The limit function is the integrand of

λ(t, F0). By Lemma 4 we also know that this convergence is monotone decreasing as ε → 0.

Thus, the monotone convergence theorem [23, Theorem 4.7] gives that also the integrals

converge as ε→ 0, provided that t ∈ R is a continuity point of λ(·, F0).

We obtain that the sequence of monotone non-increasing (in t) functions g(t, ε) = λ(t, F1)

converge to g(t, 0) = λ(t, F0) as ε → 0 at all continuity points t of g(t, 0). We ask if this is

enough for the sequence of roots of g(t, ε) to converge to the root of g(t, 0). Following the

same argumentation as for the weak convergence of measures and the corresponding weak

continuity of quantiles (see Example 3.9) we get that the R-functionals are weakly continuous

at F0 if and only if T (F0) is uniquely defined, meaning that T (F0) is the unique point t ∈ R
such that λ(t, F0) = 0.

We can now summarise all our findings in a theorem.

Theorem 14. Let J : [0, 1] → R be non-decreasing, symmetric as in (104) and satisfying the

integrability condition (101). Suppose that F corresponding to P ∈ P (R) is either symmetric

or supported in R. If the R-functional T (P ) given as a solution to (108) is uniquely defined,

then T is weakly continuous at P . The asymptotic breakdown point ε∗ = ε∗(P, T ) of T is

given by (113).
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3.4 Asymptotic efficiency of estimators

Suppose that we have a parametric model F = {Pθ : θ ∈ Θ} with Θ ⊆ R. We are given

a statistical functional T that is Fréchet differentiable and Fisher consistent for F . Using

Theorem 5, we know that under certain conditions, the estimator Tn = T (Pn) based on an

empirical measure Pn ∈ P (X ) sampled from Pθ is asymptotically normal. We can express

√
n (T (Pn)− T (Pθ))

d−−−→
n→∞

N(0, A(Pθ, T )), (114)

where, by (32), we have

A(Pθ, T ) =

∫
X
(IF(x, Pθ, T ))

2 dPθ(x).

In [19, Theorem 3], we studied the Rao-Cramér bound, giving a lower estimate for the variance

of an unbiased estimator. We have shown that no (regular enough) unbiased estimator of θ can

have a variance lower than the inverse Fisher information of θ. As we show in the following

theorem, a similar bound also applies to the asymptotic variance A(Pθ, T ) of a statistical

functional.

Theorem 15. Suppose that F = {Pθ : θ ∈ Θ} is a parametric model with Θ ⊆ R, and let T

be a statistical functional. Suppose that the following conditions are true for every θ ∈ Θ

(C1) The functional T is Fréchet differentiable (with respect to the Prokhorov metric) at Pθ.

(C2) The functional T is Fisher consistent for θ, i.e. T (Pθ) = θ.

(C3) dP (Pθ, Pθ+δ) = O(δ) as δ → 0.

(C4) The model F corresponds to a regular system of densities {f(·, θ) : θ ∈ Θ} with respect

to a σ-finite measure µ on X . The common support of all these densities is denoted by

M = {x ∈ X : f(x, θ) > 0}, and the Fisher information of the system F is denoted by

J(θ) ∈ (0,∞) for θ ∈ Θ.

(C5) We can write

lim
δ→0

∫
X
IF(x, Pθ, T )

(
f(x, θ + δ)− f(x, θ)

δ

)
dµ(x) =

∫
X
IF(x, Pθ, T )

∂

∂θ
f(x, θ) dµ(x).

Then the asymptotic variance A(Pθ, T ) from (114) satisfies

A(Pθ, T ) ≥
1

J(θ)
for all θ ∈ Θ, (115)

with equality if and only if for µ-almost all x ∈ X

IF(x, Pθ, T ) =
1

J(θ)

∂

∂θ
log(f(x, θ)). (116)
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Proof. By the definition (23) of the Fréchet derivative L at Pθ we have as δ → 0

T (Pθ+δ)− T (Pθ)− L(Pθ+δ − Pθ) = o(dP (Pθ+δ, Pθ)). (117)

The Fréchet derivative L can be expressed using Theorem 3 and (33) as

L(Pθ+δ − Pθ) =

∫
X
IF(x, Pθ, T ) d (Pθ+δ − Pθ)(x)

=

∫
X
IF(x, Pθ, T ) (f(x, θ + δ)− f(x, θ)) dµ(x).

We plug this into (117) and use conditions (C2) and (C3) to get

o(δ) = δ −
∫
X
IF(x, Pθ, T ) (f(x, θ + δ)− f(x, θ)) dµ(x)

= δ −
∫
M

IF(x, Pθ, T ) (f(x, θ + δ)− f(x, θ)) dµ(x).

Divide both sides by δ > 0 to get∫
M

IF(x, Pθ, T )
f(x, θ + δ)− f(x, θ)

δ f(x, θ)
f(x, θ) dµ(x) = 1 + o(δ)/δ.

Now, take δ → 0 and apply condition (C5) to obtain

1 =

∫
M

IF(x, Pθ, T )

(
∂

∂θ
log(f(x, θ))

)
f(x, θ) dµ(x)

=

∫
X
IF(x, Pθ, T )

(
∂

∂θ
log(f(x, θ))

)
f(x, θ) dµ(x).

It remains to use the Cauchy-Schwarz inequality [7, Corollary 5.1.4] in the L2-Hilbert space

given by the measure f(x, θ) dµ(x) to get

1 ≤

(∫
X
(IF(x, Pθ, T ))

2 f(x, θ) dµ(x)

∫
X

(
∂

∂θ
log(f(x, θ))

)2

f(x, θ) dµ(x)

)1/2

=
√
A(Pθ, T ) J(θ)

as we wanted to prove. In the Cauchy-Schwarz lemma, we reach equality if and only if the

two functions are linearly dependent, meaning that there exists a constant c(θ) > 0 such that

IF(x, Pθ, T ) = c(θ)
∂

∂θ
log(f(x, θ)) for µ-almost all x ∈ X . (118)

We take a square of the previous formula and integrate both sides with respect to the measure

f(x, θ) dµ(x) to get

A(Pθ, T ) = c(θ)2J(θ).

In the case of equality in (115), the left-hand side equals 1/J(θ), which gives c(θ) = 1/J(θ)

in (118).
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The conditions of Theorem 15 are quite natural. Condition (C3) gives a connection between

the chosen topology on the space of measures and the parametrisation of the model F . Note

that if X = R, we could equally use the Lévy distance instead of the Prokhorov distance in

both (C1) and (C3). Condition (C4) only requires that the Fisher information is well-defined,

and the technical condition (C5) concerns the possibility of interchanging a limit with an

integral.

Together with Theorem 5, the inequality in Theorem 15 is quite strong. As a special

case, it guarantees the asymptotic optimality of the maximum likelihood estimators from

Examples 3.1 and 3.5. For them, we know that the optimal bound in (115) is attained

by [19, Theorem 23], or our formula (56). More generally, Theorem 15 should be seen as

complementary to the standard Rao-Cramér bound from [19, Theorem 3] — even if the

estimator Tn fails to be unbiased, under mild conditions its (asymptotic) variance cannot be

lower than the Rao-Cramér bound (115).

Theorem 15 does not, however, say that only maximum likelihood estimators are asymp-

totically efficient. It can be applied to any (Fréchet differentiable) statistical functional T .

Formula (116) can be then used to design estimators that are asymptotically optimal at a

given parametric model. We apply these results to M, L, and R-estimators:

• M-estimators: A general solution to (116) is the M-estimator given by the maximum

likelihood equations, that is the M-estimator (49) with

ψ(x, θ) =
∂

∂θ
log(f(x, θ)).

We already saw this in Example 3.5.

• L-estimators: We consider only the location model F defined by a system of densities

{f(·, θ) = f0(· − θ) : θ ∈ R} for f0 given, and the identity function h(x) = x in the L-

functional (78). From the expression (85) for the influence function of T we get

∂

∂x
IF(x, Pθ, T ) = m(Fθ(x)),

plugging this into (116) we get

m(Fθ(x)) =
1

J(θ)

∂2

∂θ∂x
log(f0(x− θ)) = − 1

J(θ)

∂2

∂t2
[log(f0(t))]t=x−θ ,

that is

m(F0(x)) = − 1

J(0)

∂2

∂x2
log(f0(x)). (119)
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We used that Fθ(x) = F0(x− θ) for all x ∈ R and θ ∈ R, and

J(θ) =

∫
R

(
∂

∂θ
log(f0(x− θ))

)2

f0(x− θ) dµ(x)

=

∫
R

(
∂

∂t
[log(f0(t))]t=x−θ

)2

f0(x− θ) dµ(x)

=

∫
R

(
∂

∂t
[log(f0(t))]t=x

)2

f0(x) dµ(x) = J(0),

which is true in location models F .

• R-estimators: Consider again only the location model F as for the L-estimators, and

take only F0 symmetric with density f0. In that case we have by (106)

IF(x, Pθ, T ) =
J(Fθ(x))∫

R J
′(Fθ(y)) (fθ(y))2 d y

.

The denominator is a constant in x ∈ R, meaning that if (116) is to be true, we should

have

J(F0(x)) = c
∂

∂x
log(f0(x))

for some constant c ̸= 0.

We conclude by giving asymptotically optimal M, L, and R-estimators in several important

location models.

Example 3.22. For the location model F = {N(θ, 1) : θ ∈ R} we have

f0(x) =
1√
2π

exp(−x2/2),

and the distribution function F0 = Φ, which gives the optimal estimators corresponding to

• M-estimators:

ψ(x, θ) = x− θ,

which is the mean M-functional;

• L-estimators:

m(Φ(x)) = 1 for x ∈ R,

that is m(s) = 1 for s ∈ [0, 1], and we again get the mean as an L-functional;

• R-estimators:

J(Φ(x− θ)) = x− θ for x ∈ R,

that is J(s) = Φ−1(s) for s ∈ [0, 1]. This R-estimator T corresponds to the normal scores

R-estimator from Example 3.19. Unlike the M and L-estimators for the normal model,
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this optimal R-estimator is robust. Indeed, applying Theorem 14 and (113), we will

calculate in Example 3.25 below that T has a strictly positive asymptotic breakdown

point ε∗(F, T ) = 2Φ(−
√

log(4)) ≈ 0.239 for any F symmetric.

△

Example 3.23. Take the location model F = {F0(· − θ) : θ ∈ R} with the logistic distribution

given by its distribution function

F0(x) =
1

1 + exp(−x)
for x ∈ R.

Its inverse is

F−1
0 (s) = log

(
s

1− s

)
for s ∈ (0, 1).

The density of F0 is

f0(x) =
exp(−x)

(1 + exp(−x))2
for x ∈ R,

and its log-derivatives are for x ∈ R

∂

∂x
log(f0(x)) =

1− exp(x)

1 + exp(x)
,

∂2

∂x2
log(f0(x)) =

−2 exp(x)

(1 + exp(x))2
.

(120)

The optimal estimators are then given by

• M-estimators:

ψ(x, θ) =
1− exp(x− θ)

1 + exp(x− θ)
,

which gives a robust M-estimator of location. By Theorem 10 this estimator is always

uniquely defined, weakly continuous, and its asymptotic breakdown point is ε∗(P, T ) =

1/2 for each P ∈ P (R).

• L-estimators: We have the Fisher information J(0) = 1/3 and

m(F0(x)) = 3
2 exp(x)

(1 + exp(x))2
for x ∈ R,

that is

m(s) = 6 s (1− s) for s ∈ [0, 1].

This generates an L-functional that is not qualitatively robust, by Theorem 13.

• R-estimators: For the function J defining an R-functional (100) we have the condition

J(F0(x)) =
1− exp(x)

1 + exp(x)
for x ∈ R,
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which gives J(s) = 2 s−1 for s ∈ [0, 1]. After appropriate scaling so that the assumptions

of Theorem 14 are met, we obtain

J(s) = s− 1/2 for s ∈ [0, 1].

That is the Hodges-Lehmann estimator from Example 3.18.

△

Example 3.24. Take the location model F = {F0(· − θ) : θ ∈ R} with the Laplace distribu-

tion function (73) and density

f0(x) = exp(− |x|)/2 for x ∈ R.

Its log-derivative is
∂

∂x
log(f0(x)) = − sign(x) for x ̸= 0,

and is undefined for x = 0. The asymptotically efficient estimators are

• M-estimators: ψ(x, θ) = − sign(x− θ), which gives the median functional.

• L-estimators: The efficient L-functional cannot be defined directly by formula (119)

because the second log-derivative of f0 is constant zero.

• R-estimators: J(F0(x)) = − sign(x) for x ̸= 0, which gives the score-generating func-

tion J as in Example 3.17, and leads again to the median functional.

△

It is interesting to compare two of the estimators derived above in the following examples.

Example 3.25. By the expression for influence functions of R-estimators from (106) we

have for P standard normal that IF(x, P, T ) is proportional to J(Φ(x)) = Φ−1(Φ(x)) = x for

x ∈ R, and γ∗(P, T ) = ∞ because the influence function is unbounded. Let us now compute

the asymptotic breakdown point of T . By the expression for the asymptotic breakdown point

of R-estimators (113) and Theorem 14 we have that 1 − ε∗(P, T )/2 = 1 − ε∗/2 is given as a

solution x ∈ [1/2, 1] to the equation∫ x

1/2
J(s) d s =

∫ 1

x
J(s) d s,

which is in our situation ∫ x

1/2
Φ−1(s) d s =

∫ 1

x
Φ−1(s) d s.
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To get this, we need to find

ξ(x) =

∫ x

1/2
Φ−1(s) d s for x ∈ [1/2, 1].

First, one passes from the integral of an inverse function Φ−1(s) to the integral of Φ(s) using

the Laisant formula.5 Then, integration by parts gives

ξ(x) =
1− exp

(
−(Φ−1(x))2/2

)
√
2π

for x ∈ [1/2, 1].

We have Φ−1(1) = ∞, giving ξ(1) = (2π)−1/2 and solving

ξ(1− ε∗/2) =
1

2
√
2π

gives the asymptotic breakdown point

ε∗(P, T ) = 2Φ
(
−
√
log(4)

)
≈ 0.239.

This result is surprising; even though for the gross error sensitivity we have γ∗(P, T ) =

∞, for the asymptotic breakdown point we found ε∗(P, T ) ≈ 0.239. That seems counter-

intuitive because of formula (39) and Definition 5 of the asymptotic breakdown point. This

example emphasises the inherent difference between infinitesimal robustness and robustness

in neighbourhoods. △

In the next example, we show it is also possible to have a functional that is infinitesimally

robust, but not robust in a neighbourhood of P .

Example 3.26. Take the efficient L-estimator for P the logistic distribution. By formula (85),

its influence function is proportional to the derivative of the log-density f0 from (120), which

is
1− exp(x)

1 + exp(x)
for x ∈ R.

This function is bounded in x, and thus γ∗(P, T ) is finite. On the other hand, the support

of the measure M defining T is the whole interval [0, 1], and thus the asymptotic breakdown

point of T is zero, because of Theorem 13. △

4 Minimax optimal estimation of location

There are two major approaches to the construction of optimal robust estimators:

5https://en.wikipedia.org/wiki/Integral_of_inverse_functions
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• Hampel’s approach based on the concept of infinitesimal robustness, and the influence

function from Section 2.2. This approach intends to find functionals T that, for a

given distribution P0 ∈ P (X ), minimise the asymptotic variance A(P0, T ), under the

condition that their gross error sensitivity (that is, the maximum absolute value of

their influence function) γ∗(P0, T ) is bounded. The bound on the gross error sensitivity

corresponds to imposing robustness on T . Originally, this idea was pursued by Hampel;

in detail, it is treated in [10].

• Huber’s approach that takes a fixed distribution P0 ∈ P (X ) and an appropriate

neighbourhood Pε(P0) of P0 in P (X ). The task is to find a functional T (and the

corresponding estimators) that minimises either the maximum bias b(ε, P0, T ), or the

maximum variance v(ε, P0, T ) = supP∈Pε(P0)A(P, T ) introduced in Definition 4 over all

(regular enough) estimators T .

We already saw that the two paradigms do share similarities, but are inherently different.

The advantage of Huber’s approach is that we indeed seek for robustness guaranteed in

full neighbourhoods of our target measure P0. As we will see, its disadvantages are the

mathematical complexity, and the fact that we are able to obtain explicit solutions only in

relatively simple models. Hampel’s approach applies to much more general situations, and is

somewhat easier to handle, but deals only with the infinitesimal robustness of T .

In the present section we introduce the basics of Huber’s approach in the special situation

of location estimation in R. We suppose that we are given a random sample X1, . . . , Xn from

an (assumed, ideal) distribution P0 ∈ P (R) with distribution function F0, and we intend

to estimate the location parameter θ ∈ R given by the parametric model F of distribution

functions

F = {F0(· − θ) : θ ∈ R} . (121)

In this model, if X is a random variable with distribution F0 we clearly have that

P(X + θ ≤ x) = P(X ≤ x− θ) = F0(x− θ) for all x ∈ R,

meaning that the random variable corresponding to F0(· − θ) is, in fact, just X shifted by a

constant θ ∈ R. For that reason, it is natural to impose that for any functional T = T (X) =

T (F ) estimating θ in a location model we have

T (X + θ) = T (X) + θ for all θ ∈ R. (122)

This is precisely the translation equivariance of T that we observed to be true for (i) M-estima-

tors of location in Section 3.1.3; (ii) L-estimators of location in Section 3.2.2; and (iii) R-esti-

mators in Section 3.3.2. From now on, we therefore assume in this section that the functional

T satisfies (122).
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We begin by discussing the Huber’s approach to the minimax bias estimation in Section 4.1.

Then, in Section 4.2 we treat the more challenging situation of minimising maximum asymp-

totic variance of T .

4.1 Minimax bias estimation

We want to estimate a location parameter, where the model is given by F = {F0(· − θ) : θ ∈ R}.
To have the location of F0 well defined, we assume that F0 is symmetric in the sense

F0(−x) = 1 − F0(x) for all x ∈ R, with a unimodal density f0. The latter means that

f0(x) is non-increasing in x ≥ 0. Under these conditions, the origin is certainly the most

reasonable choice for the parameter θ.

We will minimise the maximum bias of a location equivariant functional T in the contam-

ination neighbourhood

Pε(P0) = {(1− ε)P0 + εQ : Q ∈ P (R)} , (123)

where P0 ∈ P (R) is the measure corresponding to F0. Just as we saw in Section 3.2.2

for general L-estimators, the maximum positive bias of the median functional Tmed in the

neighbourhood Pε(P0) must be caused by placing the whole ε-mass of Q to the point at

positive infinity. By symmetry, the maximum absolute bias of Tmed is the solution x0 = x0(ε)

to the equation

(1− ε)F0(x0) = 1/2,

that is

x0(ε) = F−1
0

(
1

2(1− ε)

)
. (124)

Note that because of our assumption of the existence of unimodal density of F0, the distribu-

tion function F0 is strictly increasing on its support, and applying F−1
0 is legitimate for any

ε ∈ (0, 1/2).

Consider now the function

f+(x) =

(1− ε) f0(x) for x ≤ x0(ε),

(1− ε) f0(x− 2x0(ε)) for x > x0(ε).

First, we verify that f+ is a density that corresponds to a distribution function F+ ∈ Pε(P0).
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To do that, compute∫
R
f+(x) dx = (1− ε)

(∫ x0(ε)

−∞
f0(x) dx+

∫ ∞

x0(ε)
f0(x− 2x0(ε)) dx

)

= (1− ε)

(
F0(x0(ε)) +

∫ ∞

−x0(ε)
f0(x) dx

)
= (1− ε) (F0(x0(ε)) + 1− F0(−x0(ε))) = 2 (1− ε)F0(x0(ε))

= 2 (1− ε)
1

2(1− ε)
= 1.

We used the symmetry of F0 and (124). It remains to verify that F+(x) =
∫ x
−∞ f+(s) d s is

an element of Pε(F0). For that we have

f+(x)− (1− ε) f0(x) =

0 for x ≤ x0(ε),

(1− ε) (f0(x− 2x0(ε))− f0(x)) for x > x0(ε).

This difference has a total mass∫
R
(f+(x)− (1− ε) f0(x)) dx = 1− (1− ε) = ε.

We obtain that F+ can indeed be written as (1− ε)F0 + εG with G a distribution function

supported in the interval [x0(ε),∞). The situation is visualised in Figure 12. Because of the

symmetry of f0 around the origin, the density f+ is symmetric around x0(ε).

Take now the distribution F+ ∈ Pε(F0) and its version F− shifted to the left

F−(x) = F+(x+ 2x0(ε)) for x ∈ R.

By obvious symmetry considerations, also F− ∈ Pε(F0). Take now any translation equivariant

functional T . Since F+ is a translation of F− by 2x0(ε), we get that

T (F+) = T (F−) + 2x0(ε).

Therefore, no matter what value does T (F0) take, one of the numbers T (F−) or T (F+) must be

at least x0(ε)-far from T (F0). In particular, the maximum bias of any translation equivariant

functional in Pε(F0) cannot be lower than x0(ε), which is the maximum bias of Tmed . We

obtain the following theorem.

Theorem 16. In a location model F = {F0(· − θ) : θ ∈ R} with F0 symmetric with unimodal

density and the contamination neighbourhood (123), the smallest maximum bias b(ε, F0, T )

among all location equivariant functionals T is equal to (124). This maximum bias is attained

by the median functional Tmed .
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Figure 12: The density f+ (blue) constructed in Section 4.1 for F0 the standard normal distri-

bution and ε = 0.2. The density is symmetric around x0(ε) (thick orange vertical

line) and bimodal with modes at x = 0 and x = 2x0(ε) (thin vertical dashed line).

The mixture distribution G corresponds to the excess mass above the dashed part

of the bell curve in the interval [x0(ε),∞).

In Theorem 16, we deal with contamination neighbourhoods. The same approach, however,

works also for the Lévy neighbourhood of F0, with the only exception that by (91) with

M = δ1/2 we know that

x0(ε) = F−1
0 (1/2 + ε) + ε.

We see that minimising the maximum bias (in location models) is simple; the median func-

tional is always the optimal choice. This, of course, means only that the median is optimal

in terms of its maximum bias. Still, it must be considered that the (asymptotic) variance of

the median might be too high for the estimator to be useful in practice.

4.2 Minimax variance estimation

Our task is to minimise the asymptotic maximum variance v(ε,G, T ) from Definition 4 in the

contamination neighbourhood (123) around a fixed distribution G ∈ P (R). We are in the

location model (121) with F0 = G, and we search for the optimal robust functional T along

the M-functionals from Section 3.1.

An M-functional T (P ) is given as a solution to∫
R
ψ(x− T (P )) dP (x) = 0, (125)
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see formula (49). By Theorems 8 and 5, under appropriate conditions, its asymptotic variance

is

A(P, T ) =

∫
R(ψ(x− T (P )))2 dP (x)(∫
R ψ

′(y − T (P ) dP (y)
)2 =

EP (ψ(X − T (P )))2

(EP ψ′(X − T (P )))2
.

Theorem 15 says that for any F ∈ P (R) with density f , the asymptotic variance A(F, T )

is the smallest for T based on the maximum likelihood estimator given by

ψ(x) =
∂

∂x
log(f(x)) for x ∈ R,

and for the asymptotic variance of this M-estimator we have

A(F, T ) = 1/J(F )

for J the Fisher information of F . If we now find the element F0 ∈ Pε(G) which minimises

the Fisher information, we obtain a lower bound in our problem — no estimator can then

have minimax variance lower than 1/J(F0).

In the first step, let us thus find the distribution F0 that minimises the Fisher information

in an ε-contamination neighbourhood of G given by

P(G) = {(1− ε)G+ εH : H ∈ P (R)} . (126)

In our notation we now suppress ε since it is fixed, and for now, do not assume G to be

symmetric.

As we will see, it will turn out that the maximum likelihood M-estimator corresponding to

F0 is the solution to our problem of minimax variance estimation in a neighbourhood of G.

We will prove that in the second step of our endeavour.

4.2.1 Step 1: Distribution minimising Fisher information

We need to find F0 ∈ P(G) from (126) that minimises the Fisher information. Our first

observation is the following simple lemma.

Lemma 5. Let u, v : [0, 1] → R be linear functions such that v(t) > 0 for all t ∈ [0, 1]. Then

w(t) = u(t)2/v(t) is convex in [0, 1].

Proof. We need to verify that the second derivative of w is non-negative. Using u′′(t) =

v′′(t) = 0 and denoting u′(t) = a, v′(t) = b for all t ∈ [0, 1], it is easy to compute

w′′(t) =
2(u(t) b− v(t) a)2

v(t)3
≥ 0

for all t ∈ [0, 1], as we wanted to show.
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Take now the Fisher information

J(F ) =

∫
R

(
f ′(x)

f(x)

)2

f(x) dx =

∫
R

(f ′(x))2

f(x)
dx.

Here, we write f is the density of F , and similarly we will denote f0 the density of F0 etc.

Denoting Ft = (1− t)F0 + t F1, and writing ft for its density, we get that

J(Ft) =

∫
R

(f ′t(x))
2

ft(x)
dx.

Now, as a function of t ∈ [0, 1], both

u(t) = f ′t(x) and v(t) = ft(x)

are linear functions for each x ∈ R, and v(t) > 0 on the support of Ft. Applying Lemma 5

we get that the integrand in the Fisher information is convex, and thus also J(Ft) must be a

convex function in t ∈ [0, 1]. For a slightly stronger result see [4].

Knowing that the Fisher information is convex, we can find its minimum over the convex

set (126) by considering its directional (Gâteaux) derivatives. The directional derivative of

the functional J at measure F0 in direction F1 ∈ P(G) is given by

∂

∂t
J(Ft) =

∫
R

∂

∂t

(f ′t(x))
2

ft(x)
dx =

∫
R

∂

∂t

((1− t) f ′0(x) + t f ′1(x))
2

(1− t) f0(x) + t f1(x)
dx

=

∫
R

1

(ft(x))2

(
2 (f ′t(x))(f

′
1(x)− f ′0(x))ft(x)− (f ′t(x))

2(f1(x)− f0(x))
)
dx

which simplifies for t = 0 to

∂

∂t
[J(Ft)]t=0 =

∫
R
2
f ′0(x)

f0(x)
(f ′1(x)− f ′0(x))−

(
f ′0(x)

f0(x)

)2

(f1(x)− f0(x)) dx.

Denoting ψ(x) = −f ′0(x)/f0(x), we can rewrite this to

∂

∂t
[J(Ft)]t=0 =

∫
R
−2ψ(x)(f ′1(x)− f ′0(x))− (ψ(x))2 (f1(x)− f0(x)) dx

=

∫
R

(
2ψ′(x)− (ψ(x))2

)
(f1(x)− f0(x)) dx,

(127)

where in the second equality we integrated by parts. We get that a distribution F0 ∈ P(G)

that minimises the Fisher information must satisfy∫
R

(
2ψ′(x)− (ψ(x))2

)
(f1(x)− f0(x)) dx ≥ 0

for any density f1 of F1 ∈ P(G). We obtain the following result.
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Theorem 17. A distribution F0 ∈ P(G) minimises the Fisher information over all distribu-

tions in P(G) if and only if∫
R

(
2ψ′(x)− (ψ(x))2

)
d (F1 − F0)(x) ≥ 0

for all F1 ∈ P(G), where ψ(x) = −f ′0(x)/f0(x) and f0 is the density of F0.

To find an optimum in Theorem 17 is a task of analysis of variations. We must effectively

optimise over an infinite-dimensional space of densities to get F1. This is not easy, and there

are no simple solutions. One usually has to proceed using heuristic arguments, and employ

some guesswork to find F0. We give one important example where the solution in Theorem 17

can be found explicitly. Additional explicit solutions for different neighbourhoods and setups

can be found in [12].

Theorem 18. Let G ∈ P (R) be a log-concave distribution, meaning that G has a twice

differentiable density g : R → [0,∞) such that − log(g) is a convex function on the support of

G. Then the minimum Fisher information in the neighbourhood

P(G) = {(1− ε)G+ εH : H ∈ P (R)}

is attained at the density

f0(x) =


(1− ε) g(x0) exp(k(x− x0)) for x ≤ x0,

(1− ε) g(x) for x ∈ [x0, x1],

(1− ε) g(x1) exp(−k(x− x1)) for x ≥ x1.

(128)

Here, x0 ≤ x1 are the (possibly infinite) endpoints of the interval where |g′/g| ≤ k, and k ≥ 0

is given by ∫ x1

x0

g(x) dx+
g(x0) + g(x1)

k
=

1

1− ε
.

Proof. First we show that f0 is indeed a density. It is certainly non-negative. Its integral is

1

1− ε

∫
R
f0(x) dx

=

∫ x0

−∞
g(x0) exp(k(x− x0)) dx+

∫ x1

x0

g(x) dx+

∫ ∞

x1

g(x1) exp(−k(x− x1)) dx

=
g(x0) + g(x1)

k
+

∫ x1

x0

g(x) dx,
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meaning that f0 indeed integrates to 1. Next, we prove that f0 lies in the neighbourhood

P(G). To do that, we consider

h(x) =
f0(x)− (1− ε) g(x)

ε

=


1−ε
ε (g(x0) exp(k(x− x0))− g(x)) for x ≤ x0,

0 for x ∈ [x0, x1],

1−ε
ε (g(x1) exp(−k(x− x1))− g(x)) for x ≥ x1,

and show that h is a density of some H ∈ P (R). The integral of h is 1 because both g and

f0 also integrate to 1; it remains to show that h is non-negative. First, note that because

ξ = − log(g) is convex, its derivative ξ′ = −g′/g is non-decreasing [22, Section 5.4], and by

the way we defined k we have that |g′(x0)/g(x0)| ≥ k and |g′(x1)/g(x1)| ≥ k. We want to

show

g(x1) exp(−k(x− x1)) ≥ g(x) for x ≥ x1,

which is equivalent with

ξ(x1) + k(x− x1) ≤ ξ(x) for x ≥ x1,

where ξ = − log(g) is convex. This, however, follows from the fact that ξ′(x1) = |g′(x1)/g(x1)| ≥
k and the fact that any convex function must lie above its tangent at any point [22, Lemma 5.4.9

and Example 5.5.15], that is

ξ(y) + ξ′(y)(x− y) ≤ ξ(x) for all x, y ∈ R.

The analogous inequality for x ≤ x0 follows in the same way. We have shown that f0 is a

density from P(G).

Denote ψ(x) = −f ′0(x)/f0(x). Then we can write

ψ(x) =


−k for x ≤ x0,

−g′(x)/g(x) for x ∈ (x0, x1),

k for x ≥ x1.

We now verify that f0 satisfies the condition from Theorem 17. Because − log(g) is convex,

its derivative −g′/g is non-decreasing. Thus, for any x ∈ (x0, x1) we get

2ψ′(x)− (ψ(x))2 = 2
∂

∂x

(
−g

′(x)

g(x)

)
−
(
g′(x)

g(x)

)2

≥ 0− k2 = −k2,

and hence also
2ψ′(x)− (ψ(x))2 ≥ −k2 for x ∈ (x0, x1),

2ψ′(x)− (ψ(x))2 = −k2 for x /∈ (x0, x1).
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We can now evaluate for any distribution F1∫
R

(
2ψ′(x)− (ψ(x))2

)
d (F1 − F0)(x)

=

∫
R

(
2ψ′(x)− (ψ(x))2 + k2

)
d (F1 − F0)(x)−

∫
R
k2 d (F1 − F0)(x)

=

∫ x1

x0

(
2ψ′(x)− (ψ(x))2 + k2

)
d (F1 − F0)(x)−

∫
R
k2 d (F1 − F0)(x).

Now, surely
∫
R k

2 d (F1 − F0)(x) = 0. In addition, for the density f1 of F1 we must have

f1(x) = (1− ε) g(x) + ε h(x) ≥ (1− ε) g(x) = f0(x) for h the density of H for all x ∈ (x0, x1).

The last inequality (1− ε) g(x) = f0(x) holds because of (128). Thus, also the first term on

the right-hand side above must be non-negative, as we wanted to prove.

The result of Theorem 18 is surprising. The least informative density in the neighbourhood

of G has tails that are quite light; they decrease only exponentially as x → ∞. A very

important special case is obtained for G = Φ the standard normal distribution.

Example 4.1. For G = Φ ∈ P (R) and g = φ = Φ′ we have in Theorem 18 that g′(x)/g(x) =

x for x ∈ R and −x0 = x1 = k. The constant k ≥ 0 is determined by the normalising

condition
1

1− ε
= 2Φ(k)− 1 +

2φ(k)

k
.

We cannot express k explicitly, but it is determined uniquely. To see that, it remains to take

the derivative of the right-hand side of this formula and conclude that the function is strictly

monotone in k ∈ R. The least informative density in the ε-contamination neighbourhood of

Φ is thus

f0(x) =

(1− ε)φ(x) for |x| ≤ k,

1−ε√
2π

exp
(
−k2/2− k |x|

)
for |x| > k.

The corresponding score function ψ(x) = −f ′0(x)/f0(x) takes a quite simple form

ψ(x) = min {k,max {−k, x}} =


−k for x < −k,

x for x ∈ [−k, k],

k for x > k.

(129)

The density f0 and its score function ψ are visualised in Figure 13.

△
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Figure 13: Example 4.1. Left panel: The density of the standard normal distribution φ

(blue) and the least informative density f0 for ε = 1/10 (orange). In the interval

x ∈ [−k, k] attains the density f0 the lowest value (1− ε)φ(x) that a density from

P(Φ) can get. Right panel: The score function −φ′(x)/φ(x) = x for the standard

normal distribution (blue) and the score function ψ for the distribution given by

f0 (orange). The vertical dashed lines in both plots are the cut-off values −k and

k. For ε = 1/10 we have k ≈ 1.140.

4.2.2 Step 2: Optimality of the M-estimator

Let f0 be the density of the distribution F0 that minimises the Fisher information in P(G),

and let

ψ(x) = −f
′
0(x)

f0(x)
for x ∈ R

be the score function that defines the asymptotically efficient M-estimator T from (125) for

F0. For the asymptotic variance A(F, T ) of T at F we have by Theorem 5 and 8

A(F, T ) =

∫
R ψ(x− T (F ))2 dF (x)(∫
R ψ

′(x− T (F )) dF (x)
)2 . (130)

At this point, we encounter a fundamental difficulty with the expression T (F ) in the right-

hand side of (130). This term makes optimising the supremum of A(F, T ) cumbersome. To

get away with this term, we must restrict our problem further. We will not consider all

distributions in the neighbourhood P(G) from (126), but only distributions in its subset

P0(G) = {F ∈ P(G) : T (F ) = 0} .

This reduced neighbourhood is still very rich; it contains all symmetric distributions F ∈ P(G)

from (126).

We know that the estimator T is asymptotically efficient for F0. Thus, we have by Theo-

rem 15 that A(F0, T ) = (J(F0))
−1. We will show the following result.
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Theorem 19. Let G ∈ P (R) be a symmetric distribution and let F0 ∈ P0(G) be the distribu-

tion that minimises the Fisher information in P0(G). Denote by T be asymptotically efficient

M-estimator of location (125) corresponding to F0 given by

ψ(x) = −f
′
0(x)

f0(x)
for x ∈ R,

where f0 is the density of F0. Then

A(F, T ) ≤ A(F0, T ) =
1

J(F0)
for all F ∈ P0(G). (131)

In particular, the M-estimator T is a minimax variance optimal estimator of location in the

neighbourhood P0(G).

Proof. We only need to prove the inequality in (131); the optimality of T then follows from

the fact that by Theorem 15, no M-estimator S of location can have supF∈P0(G)A(F, S) lower

than A(F0, T ) = 1/J(F0).

To prove (131), we first observe that just like the Fisher information, also the inverse of

the asymptotic variance functional (130) given by

1

A(F, T )
=

(∫
R ψ

′(x) dF (x)
)2∫

R ψ(x)
2 dF (x)

(132)

is convex in F ∈ P0(G). This follows from Lemma 5, because∫
R
h(x) dFt(x) =

∫
R
h(x) dF0(x) + t

∫
R
h(x) d (F1 − F0)(x)

is certainly linear in t ∈ [0, 1] for any h : R → R.
We now compute the directional derivative of the functional 1/A(·, T ) at F0 in direction

F1 ∈ P0(G); we want to find that 1/A(F, T ) is minimised in F = F0. For Ft = (1− t)F0+ t F1

and any h : R → R we have

∂

∂t

[∫
R
h(x) dFt(x)

]
t=0

=

∫
R
h(x) d (F1 − F0)(x).
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We use this to obtain

∂

∂t

[
1

A(Ft, T )

]
t=0

=
∂

∂t

[(∫
R ψ

′(x) dFt(x)
)2∫

R ψ(x)
2 dFt(x)

]
t=0

=
2
(∫

R ψ
′(x) dF0(x)

) (∫
R ψ

′(x) d (F1 − F0)(x)
) (∫

R ψ(x)
2 dF0(x)

)(∫
R ψ(x)

2 dF0(x)
)2

−
(∫

R ψ
′(x) dF0(x)

)2 (∫
R ψ(x)

2 d (F1 − F0)(x)
)(∫

R ψ(x)
2 dF0(x)

)2
= 2

(∫
R
ψ′(x) d (F1 − F0)(x)

) ∫
R ψ

′(x) dF0(x)∫
R ψ(x)

2 dF0(x)

−
(∫

R
ψ(x)2 d (F1 − F0)(x)

)( ∫
R ψ

′(x) dF0(x)∫
R ψ(x)

2 dF0(x)

)2

=

∫
R

(
2ψ′(x)− ψ(x)2

)
d (F1 − F0)(x),

where the last equality follows from∫
R
ψ′(x) dF0(x) = −

∫
R

∂2

∂x2
log(f0(x)) dF0(x) = J(F0),∫

R
ψ(x)2 dF0(x) =

∫
R

(
− ∂

∂x
log(f0(x))

)2

dF0(x) = J(F0),

see, e.g., [19, Theorem 1]. Compare our result with (127) that we used to prove Theorem 17.

We see that
∂

∂t

[
1

A(Ft, T )

]
t=0

=
∂

∂t
[J(Ft)]t=0 ,

where we saw that the right-hand side is for F0 minimising the Fisher information always

non-negative. We get that 1/A(Ft, T ) is a convex function in t whose derivative in t at t = 0

is non-negative. Necessarily, t = 0 (or equivalently F0) must be the measure that minimises

1/A(Ft, T ). Since F1 ∈ P0(G) was chosen arbitrarily, that gives

A(F0, T ) ≥ A(F, T ) for all F ∈ P0(G),

as we wanted to prove.

Example 4.2. We have found that the M-estimator from Example 4.1 is minimax optimal

in the contamination neighbourhood of the normal distribution. This important estimator

is sometimes called the Huber estimator of location. It does not take an explicit form; for a

random sample X1, . . . , Xn it is computed as the solution in t ∈ R to

n∑
i=1

ψ(Xi − t) = 0
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with ψ from (129), or equivalently as t ∈ R that minimises the Huber loss

n∑
i=1

ρ(Xi − t),

where

ρ(x) =


x2

2 for |x| ≤ k,

k |x| − k2

2 for x > k.
(133)

Observe that as k → ∞ we get the squared loss function, and the estimator is just the sample

average. As k → 0, which corresponds to the amount of contamination ε → 1, we approach

the absolute loss and get the sample median. The Huber estimator can therefore be considered

to be a compromise between the median and the mean, optimised in the sense of being robust

and at the same time not losing much efficiency at the normal distribution. △

4.3 Minimax optimality: Additional remarks

Returning to the optimal Huber estimator of location T from Example 4.1, we see that in

view of Theorem 10, this estimator is qualitatively robust and possesses asymptotic breakdown

point ε∗(P, T ) = 1/2 for any P ∈ P (R). Looking at its influence function in Theorem 8, we

see that the effect of extremely large observations is bounded by the constant k > 0. This

means that the estimator down-weights the effect of the outliers, but they still do contribute

to the resulting estimator.

A way to approach this phenomenon might be to consider M-estimators whose influence

function is restricted to be zero outside the interval [−k, k]. Such estimators are called re-

descending M-estimators. They correspond to searching for score functions ψ that minimise

maximum asymptotic variance, under the additional condition ψ(x) = 0 for x /∈ [−k, k]. It

is not difficult to apply this restriction to the theory of minimax estimation devised in the

previous section. For the ε-contamination neighbourhood of the normal distribution, one gets

the odd function

ψ(x) = −ψ(−x) =


x for x ∈ [0, a],

b tanh(b(c− x)/2) for x ∈ (a, c],

0 for x > c,

for appropriate constants a, b, c > 0 that depend on ε. This function is displayed in the top

left panel of Figure 14.

Since the shape of the optimal redescending function ψ is somewhat cumbersome, several

authors have suggested simpler alternatives. Popular choices are the Hampel piecewise linear
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function

ψ(x) = −ψ(−x) =



x for x ∈ [0, a),

a for x ∈ [a, b),

c−x
c−b a for x ∈ [b, c),

0 for x ≥ c,

the Andrews sine wave function

ψ(x) =

sin(x) for x ∈ [−π, π],

0 otherwise,

or the Tukey biweight function

ψ(x) =

x2(1− x2)2 for x ∈ [−1, 1],

0 otherwise.

These functions are all alike the optimal redescending score function; they are not optimal at

the normal distribution, but produce similar, very robust estimators. All these four functions

are drawn in Figure 14.

In this section we treated only minimax optimality for M-estimators. The situation with

minimax optimal L, or R-estimators is more complicated. The main problem stems from the

fact that the inverse asymptotic variance 1/A(F, T ) from (132) is no longer convex in F , and

thus the claim of Theorem 19 does not have to be true. In particular, the asymptotically

efficient estimators at the least informative distributions do not have to be minimax optimal.

In particular cases, one can still derive various optimality results. As argued in [12, Sec-

tion 4.7], for the ε-contaminated normal distribution, the minimax optimal L-estimator can

be shown to be the trimmed mean from Example 3.13.

5 Further topics in robustness

In our treatment, we primarily considered only the one-dimensional situation, and developed

the theory of minimax optimal robustness only in the case of a location parameter (121). Of

course, much more can be done, and the general principles of robustness also apply in many

different settings. In the present section, we outline the very basics of some of these ideas

and give references.

5.1 Equivariance of robust location estimators

Recall that we say that a (location) functional T : P (R) → R is translation and scale equiv-

ariant if for all X ∼ P ∈ P (R) and Y = aX + b ∼ Q ∈ P (R) with a > 0 and b ∈ R, we
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Figure 14: The four redescending score functions that generate robust location estimators: the

minimax optimal one (top left), the Hampel piecewise linear function (top right),

the Andrews sine wave (bottom left), and the Tukey biweight function (bottom

right).
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have

T (Q) = a T (P ) + b. (134)

We have shown in (89) that this property is satisfied for common L-functionals of location.

Using (88) in the defining formula of R-functionals (108), it is easy to see that the same is

true also for R-functionals. In contrast, for M-functionals of location, we have shown in (63)

only translation equivariance, that is the special case of (134) with a = 1. In general, there

is no reason for M-functionals to be scale equivariant, since substituting aXi + b instead of

Xi and a Tn + b instead of Tn in the formula

n∑
i=1

ψ(Xi − Tn) = 0 (135)

for a location Z-estimator, see (47), we get only

n∑
i=1

ψ(aXi + b− (a Tn + b)) =

n∑
i=1

ψ(a(Xi − Tn)).

There is no reason why the factor a > 0 should disappear in the last formula. This lack

of equivariance might be troubling because the resulting M-estimator of location is then

dependent on the unknown scale (dispersion) of the data. To solve this problem, it is possible

to input the scale correction into the estimating formula (135) manually. Take S : P (R) →
[0,∞] a scale functional, meaning that S verifies

S(Q) = aS(P ) for all a > 0 and b ∈ R, (136)

where P andQ are as in (134). Plug S into (135) to automatically account for scale differences,

and define Tn = T (Pn) as a solution to

n∑
i=1

ψ

(
Xi − Tn
S(Pn)

)
= 0. (137)

Now, substituting Xi by aXi + b and Tn by a Tn + b in the previous formula, we see that not

only b, but also a cancels out. We thus obtain an M-estimator Tn that is both location and

scale equivariant.

It can be shown that if ψ is odd and bounded and if S verifies (136), the asymptotic

breakdown point of Tn is equal to the asymptotic breakdown value of S(Pn). A good choice

for the scale estimator S is the median absolute deviation (also called simply MAD)

S(Pn) = med (|X1 −med (Pn)| , . . . , |Xn −med (Pn)|) . (138)

The asymptotic breakdown point of MAD is 1/2, and it is easy to see that this estimator

is a scale functional verifying (136). When used in conjunction with the Huber estimator of
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location from Example 4.2, it is even better to scale S to be a Fisher consistent estimator of

the standard deviation σ in the Gaussian model P = N(µ, σ2). That is achieved by considering

S(Pn) =
med (|X1 −med (Pn)| , . . . , |Xn −med (Pn)|)

Φ−1(3/4)

≈ 1.4826med (|X1 −med (Pn)| , . . . , |Xn −med (Pn)|) .

This improved version of the Huber location estimator is the one typically used in standard

statistical software, e.g. in function huber in R package MASS, or in huberM in R package

robustbase.

5.2 Computation of M-estimators of location

Solving equations defining M, or R-estimators does not have to be straightforward. The case

of location M-estimators and equations (135) or (137) is, however, easy to solve iteratively.

We consider (137) and the scale equivariant M-estimator of location. Defining

W (x) =

ψ(x)/x for x ̸= 0,

ψ′(0) for x = 0,

we can write Tn from (137) as a solution to

n∑
i=1

(
Xi − Tn
S(Pn)

)
·W

(
Xi − Tn
S(Pn)

)
= 0.

Considering that S(Pn) is fixed and positive and interpreting

wi =W

(
Xi − Tn
S(Pn)

)
as weights, this gives that Tn can be written as a weighted mean

Tn =

∑n
i=1wiXi∑n
j=1wj

.

This is, of course, not precise because the weights wi still depend on the unknown Tn. But,

it suggests the following simple iterative procedure:

1. Compute s = S(Pn), set k = 0 and t0 = med (Pn),

2. Increase k by one and compute the weights

wk,i =W

(
Xi − tk−1

s

)
.

3. Set

tk =

∑n
i=1wk,iXi∑n
j=1wk,j

. (139)
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4. If |tk − tk−1| < 10−6 s, then stop and return Tn = tk; otherwise return to step (2).

The constant 10−6 in step (4) was taken as an arbitrary small number; we use it to signal

whether the weighted mean tk still changes. Because the weighted mean in (139) is a special

case of weighted least squares, the procedure above is called iteratively reweighted least squares

(IRLS). If the function W is bounded, symmetric, and non-increasing for x > 0, the sequence

{tk}∞k=0 is bound to converge to a solution to (137).

5.3 Estimation of location and scale

Consider the two-parameter location-scale model given by the system of distributions

F =

{
F0

(
· − θ

σ

)
: θ ∈ R and σ > 0

}
,

where F0 is a distribution function with density f0. One starts with the maximum likelihood

estimators, which maximise the log-likelihood function

n∑
i=1

log

(
1

σ
f0

(
xi − θ

σ

))
= −n log(σ) +

n∑
i=1

log

(
f0

(
xi − θ

σ

))
in θ and σ. This is solved by considering the likelihood equations

0 =

n∑
i=1

ψ

(
xi − θ

σ

)
,

0 =

n∑
i=1

(
ψ

(
xi − θ

σ

)
xi − θ

σ
− 1

)
,

(140)

where we denoted by ψ(x) = −f ′0(x)/f0(x) the negative score function of F0. Generalising this

system of equations, one can define M-estimators of location and scale as a pair of estimators

(Tn, Sn) that satisfy the system

0 =

n∑
i=1

ψ

(
xi − Tn
Sn

)
,

0 =

n∑
i=1

χ

(
xi − Tn
Sn

)
.

Here, ψ and χ are appropriate functions. In most cases, in analogy with (140) for f0 symmetric

around the origin, ψ is taken to be an odd function and χ is even. For F0 = Φ the standard

normal distribution, we get ψ(x) = x and χ(x) = x2 − 1. The M-functionals corresponding

to Tn and Sn are naturally T and S given by

0 =

∫
R
ψ

(
x− T

S

)
dP (x),

0 =

∫
R
χ

(
x− T

S

)
dP (x).

(141)
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A theory of M-estimators that is more complicated, but similar to what we proved in Sec-

tions 3.1 and 4, can also be developed for the pair (T, S), and for more general multi-

dimensional M-estimators [12, Chapter 6].

An estimator of scale S analogous to the median T (F ) = med (F ) is the defined by solv-

ing (141) for

ψ(x) = sign(x),

χ(x) = sign (|x| − 1) .

One obtains a pair of estimators (T, S) with T (Fn) = med (X1, . . . , Xn) and S(Fn) the MAD

from (138).

It is not hard to see that the asymptotic breakdown point of S is 1/2, the maximum possible

(sensible) value.

The scale equivalent to the Huber estimator from Examples 4.1 and 4.2 is the Huber M-

estimator of scale S obtained by taking in (141) the functions

ψ(x) = min {k,max {−k, x}} ,

χ(x) = ψ(x)2 − β(k).

Here ψ is the same as in (129), and β(k) is chosen appropriately so that for F the standard

normal distribution, the functional S is Fisher consistent.

5.4 Robustness in multidimensional spaces

Principles of robustness nicely expand also to multidimensional data from Rd. The location

parameter of P ∈ P
(
Rd
)
is now a vector θ ∈ Rd, and the role of a scale parameter is played

by a positive definite matrix Σ ∈ Rd×d. In multi-dimensional spaces, there is no natural

ordering of the observations, so L-estimators and R-estimators cannot be considered directly.

As for the M-estimators, one can begin from the maximum likelihood approach for systems of

elliptically symmetric densities. Such densities f : Rd → [0,∞) are characterised by assuming

the general form

f(x,θ,Σ) =
∣∣∣det(Σ−1/2

)∣∣∣ g ((x− θ)TΣ−1(x− θ)
)

for x ∈ Rd,

where g : [0,∞) → [0,∞) is a univariate function, and det is the determinant of a matrix. We

can again approach the problem from the angle of maximum likelihood estimation. One can

express the likelihood equations corresponding to f as in (140), and generalise M-estimators

to the multivariate situation. In taking the derivatives with respect to the vector (or matrix)

parameters θ and Σ, one however has to use some matrix differential calculus. This theory is

expounded in, e.g., [12, Chapter 8].
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5.5 Robustness in regression

A major topic which we did not cover is the problem of robust estimation of regression

parameters. Here, we are given independent observations (Xi, Yi)
T ∈ Rd ×R for i = 1, . . . , n

that take the form

Yi = XT
i β + εi,

where εi is a sequence of independent (unobserved) errors with distribution symmetric around

zero, and β ∈ Rd is the unknown parameter of interest. The standard least squares estimator

[14, Section 2] is the minimiser of the sum of squares

n∑
i=1

(
Yi −XT

i b
)2

(142)

in b ∈ Rd. It corresponds to the maximum likelihood estimator of β if the conditional

distribution of Yi given Xi is normal. Just as the sample mean (the maximum likelihood

estimator in a normal location model, see Example 1.2), the least squares model is also very

non-robust. It is easy to see that the least squares estimator collapses completely by taking a

single observation Yi far away from the rest of the data. In terms of robustness, its asymptotic

breakdown point is thus zero.

There are many approaches towards robustifying the least squares estimator. A straight-

forward idea is to replace the (non-robust) square function in (142) with a function that does

not grow so fast at infinity. That would be analogous to our approach from M-estimation of

location. We thus want to minimise the function

b 7→
n∑

i=1

ρ
(
Yi −XT

i b
)
, (143)

for ρ : R → R given, and take its argument of minima as the estimator of β. This is precisely in

line with our treatment of M-estimators from Section 3.1. We can thus call such an estimator

a regression M-estimator. Its functional counterpart is the minimiser of the integral

b 7→
∫
Rd+1

ρ(y − xTb) dPX,Y (x, y)

where PX,Y is the joint distribution of the random vector (X1, Y1)
T ∈ Rd+1. In the special

case of ρ(x) = |x| being the absolute value function, we obtain the famous least absolute

deviations estimator treated in [21, Section 3]. Another sensible choice could be to employ

the Huber loss function (133) in (143).

One particular property of regression M-estimators from (143) is that they are typically

robust only with respect to changes in the response Yi. If, however, the regressors Xi are

taken to the extreme, the estimators still break down easily. This is known as the problem of
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leverage points [14, Chapter 11]. It can be resolved by modifying (143), introducing another

weight function w into the formula

b 7→
n∑

i=1

w(Xi) · ρ
(
Yi −XT

i b
)

with w that does not grow fast as its argument x drifts away.

A detailed treatment of all these topics can be found in [12, Chapter 7] or [24]. There

are also notions of L and R-like estimators for regression problems. An L-estimator is, for

example, given by the concept of regression quantiles [21, Section 5].

5.6 Final comments

The problem of robustness of estimation has now already been thoroughly studied in many

setups. For robust estimation in mixed and generalised linear models, longitudinal data

analysis, and survival data, one can see [11]. Robust methods in time series analysis are

treated in [17]. Glimpses of robust testing procedures and robust Bayesian analysis can be

found in [12, Chapters 13 and 15] and [10].
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Probab. Theory Relat. Fields, 73(2):197–209, 1986.

[3] Brenton R. Clarke. Robustness theory and application. Wiley Series in Probability and

Statistics. John Wiley & Sons, Inc., Hoboken, NJ, 2018.

[4] M. Cohen. The Fisher information and convexity (corresp.). IEEE Transactions on

Information Theory, 14(4):591–592, 1968.

[5] P. L. Davies and U. Gather. The breakdown point—examples and counterexamples.

REVSTAT, 5(1):1–17, 2007.

[6] P. Laurie Davies and Ursula Gather. Breakdown and groups. Ann. Statist., 33(3):977–

1035, 2005.

[7] R. M. Dudley. Real analysis and probability, volume 74 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989

original.

101



[8] Luisa Turrin Fernholz. von Mises calculus for statistical functionals, volume 19 of Lecture

Notes in Statistics. Springer-Verlag, New York, 1983.

[9] Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics.

Int. Stat. Rev., 70(3):419–435, 2002.

[10] Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and Werner A. Stahel.

Robust statistics: The approach based on influence functions. Wiley Series in Probability

and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley &

Sons, Inc., New York, 1986.

[11] Stephane Heritier, Eva Cantoni, Samuel Copt, and Maria-Pia Victoria-Feser. Robust

methods in biostatistics. Wiley Series in Probability and Statistics. John Wiley & Sons,

Ltd., Chichester, 2009.

[12] Peter J. Huber and Elvezio M. Ronchetti. Robust statistics. Wiley Series in Probability

and Statistics. John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2009.
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karlin.mff.cuni.cz/~pick/analyza.pdf, 2022. Accessed: 2023-02-12.
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