List of Publications
- Wynne, G., and Nagy, S. (2025). Statistical depth meets Machine Learning: Kernel Mean Embeddings and depth in functional data analysis. International Statistical Review. To appear.
- Mendroš, E., and Nagy, S. (2025). k-hull depth: In between simplicial and halfspace depth. Statistical Papers. To appear.
- Elías, A., and Nagy, S. (2024). Statistical properties of partially observed integrated functional depths. TEST. To appear.
- Mendroš, E., and Nagy, S. (2025). Explicit bivariate simplicial depth. Journal of Multivariate Analysis, 205, 105375.
- Liu, X., Liu, Y., Laketa, P., Nagy, S., and Chen Y. (2024). Exact and approximate computation of the scatter halfspace depth. Computational Statistics, 40, 547-572.
- Nagy, S., and Laketa, P. (2025). Theoretical properties of angular halfspace depth. Bernoulli 31(2), 1007-1031.
- Bočinec, F., and Nagy, S. (2024). Conditions for equality in Anderson's theorem. Statistics & Probability Letters, 209, 110094.
- Nagy, S., Demni, H., Buttarazzi, D., and Porzio, G. C. (2023). Theory of angular depth for classification of directional data. Advances in Data Analysis and Classification, 18, 627-662.
- Fojtík, V., Laketa, P., Mozharovskyi, P., and Nagy, S. (2023). On exact computation of Tukey depth central regions. Journal of Computational and Graphical Statistics, 33(2), 699-713.
- Pokorný, D., Laketa, P., and Nagy, S. (2024). Another look at halfspace depth: Flag halfspaces with applications. Journal of Nonparametric Statistics, 36(1), 165-181.
- Nagy, S. (2023). Simplicial depth and its median: Selected properties and limitations. Statistical Analysis and Data Mining, 16(4), 374-390.
- Laketa, P., and Nagy, S. (2023). Simplicial depth: Characterisation and reconstruction. Statistical Analysis and Data Mining, 16(4), 358-373.
- Laketa, P., Pokorný, D., and Nagy, S. (2022). Simple halfspace depth. Electronic Communications in Probability, 27, 1-12.
- Hendrych, F., and Nagy, S. (2022). A note on the convergence of lift zonoids of measures. Stat, 11(1), e453.
- Ferraty, F., and Nagy. S. (2022). Scalar-on-function local linear regression and beyond. Biometrika, 109(2), 439-455.
- Laketa, P. and Nagy, S. (2022). Halfspace depth for general measures: The ray basis theorem and its consequences. Statistical Papers, 63, 849-883.
- Helander, S., Laketa, P., Ilmonen, P., Nagy, S., Van Bever, G., and Viitasaari, L. (2022). Integrated shape-sensitive functional metrics. Journal of Multivariate Analysis, 189, 104880.
- Laketa, P., and Nagy, S. (2021). Reconstruction of atomic measures from their halfspace depth. Journal of Multivariate Analysis, 183, 104727.
- Dyckerhoff, R., and Mozharovskyi, P., and Nagy, S. (2021). Approximate computation of projection depths. Computational Statistics & Data Analysis, 157, 107166.
- Nagy, S., Helander, S., Van Bever, G., Viitasaari, L., and Ilmonen, P. (2021). Flexible integrated functional depths. Bernoulli, 27(1), 673-701.
- Nagy, S., Dyckerhoff, R., and Mozharovskyi, P. (2020). Uniform convergence rates for the approximated halfspace and projection depth. Electronic Journal of Statistics, 14 (2), 3939-3975.
- Dvořák, J., Hudecová, Š., and Nagy, S. (2020). Clover plot: Versatile visualisation in nonparametric classification. Statistical Analysis and Data Mining, 13, 548-564.
- Nagy, S. and Dvořák, J. (2021). Illumination depth. Journal of Computational and Graphical Statistics, 30 (1), 78-90.
- Nagy, S. (2021). Halfspace depth does not characterize probability distributions. Statistical Papers, 62, 1135-1139.
- Nagy, S. (2020). Scatter halfspace depth: Geometric insights. Applications of Mathematics, 65, 287–298.
- Nagy, S., Schütt, C., and Werner, E. (2019). Halfspace depth and floating body. Statistics Surveys, 13, 52-118.
- Nagy, S. (2019). Scatter halfspace depth for K-symmetric distributions. Statistics & Probability Letters, 149, 171-177.
- Nagy, S. and Ferraty, F. (2018). Data depth for measurable noisy random functions. Journal of Multivariate Analysis, 170, 95-114.
- Gijbels, I. and Nagy, S. (2017). On a general definition of depth for functional data. Statistical Science, 32 (4), 630-639.
- Nagy, S., Gijbels, I., and Hlubinka, D. (2017). Depth-based recognition of shape outlying functions. Journal of Computational and Graphical Statistics, 26 (4), 883-893.
- Nagy, S. and Gijbels, I. (2017). Law of large numbers for discretely observed random functions. Journal of the Korean Statistical Society, 46 (4), 562-572.
- Nagy, S. (2017). Monotonicity properties of spatial depth. Statistics & Probability Letters, 129, 373-378.
- Nagy, S. (2017). Integrated depth for measurable functions and sets. Statistics & Probability Letters, 123, 165-170.
- Nagy, S., Gijbels, I., Omelka, M., and Hlubinka, D. (2016). Integrated depth for functional data: statistical properties and consistency. ESAIM: Probability and Statistics, 20, 95-130.
- Nagy, S., Gijbels, I., and Hlubinka, D. (2016). Weak convergence of discretely observed functional data with applications. Journal of Multivariate Analysis, 146, 46-62.
- Gijbels, I. and Nagy, S. (2016). On smoothness of Tukey depth contours. Statistics, 50 (5), 1075-1085.
- Nagy, S. (2015). Consistency of h-mode depth. Journal of Statistical Planning and Inference, 165, 91-103.
- Gijbels, I. and Nagy, S. (2015). Consistency of non-integrated depths for functional data. Journal of Multivariate Analysis, 140, 259-282.
- Hlubinka, D., Gijbels, I., Omelka, M., and Nagy, S. (2015). Integrated data depth for smooth functions and its application in supervised classification. Computational Statistics, 30 (4), 1011-1031.
Chapters in Books
- Hernández, N. and Nagy, S. (2025). The common support function with applications. In: Bongiorno, E., Goia, A., Aneiros G., Hušková M. (eds) New Trends in Functional Statistics and Related Fields. IWFOS 2025. To appear.
- Bočinec, F., Mendroš, E., and Nagy, S. (2025). A comparison of band-based approaches to functional depth. In: Bongiorno, E., Goia, A., Aneiros G., Hušková M. (eds) New Trends in Functional Statistics and Related Fields. IWFOS 2025. To appear.
- Nagy, S. (2025). Interpretable functional boxplots. In: Bongiorno, E., Goia, A., Aneiros G., Hušková M. (eds) New Trends in Functional Statistics and Related Fields. IWFOS 2025. To appear.
- Mendroš, E. and Nagy, S. (2025). The spherical depth for functional data. In: Bongiorno, E., Goia, A., Aneiros G., Hušková M. (eds) New Trends in Functional Statistics and Related Fields. IWFOS 2025. To appear.
- Laketa, P. and Nagy, S. (2023). Partial reconstruction of measures from halfspace depth. In: Grilli, L., Lupparelli, M., Rampichini, C., Rocco, E., Vichi, M., editors, Statistical Models and Methods for Data Science. CLADAG 2021. Studies in Classification, Data Analysis, and Knowledge Organization, pages 93-105. Springer, Cham.
- Nagy, S., Laketa, P., and Dyckerhoff, R. (2021). Angular halfspace depth: computation. In Giovanni C. Porzio, Carla Rampichini, and Chiara Bocci, editors, CLADAG 2021. Book of Abstracts and Short Papers, pages 169-172. Firenze University Press.
- Demni, H., Buttarazzi, D., Nagy, S., and Porzio, G. C. (2021). Angular halfspace depth: classification using spherical bagdistances. In Giovanni C. Porzio, Carla Rampichini, and Chiara Bocci, editors, CLADAG 2021. Book of Abstracts and Short Papers, pages 316-319. Firenze University Press.
- Laketa, P. and Nagy, S. (2021). Angular halfspace depth: central regions. In Giovanni C. Porzio, Carla Rampichini, and Chiara Bocci, editors, CLADAG 2021. Book of Abstracts and Short Papers, pages 356-359. Firenze University Press.
- Nagy, S. and Dvořák, J. (2020). Robust depth-based inference in elliptical models. In: Balzano S., Porzio G. C., Salvatore R., Vistocco D., Vichi M. (eds) Statistical Learning and Modeling in Data Analysis - Methods and Applications. To appear. Studies in Classification, Data Analysis and Knowledge Organization. Springer.
- Nagy, S. (2020). Depth in infinite-dimensional spaces. In: Aneiros G., Horová I., Hušková M., Vieu P. (eds) Functional and High-Dimensional Statistics and Related Fields. IWFOS 2020, pages 187-195. Contributions to Statistics. Springer, Cham
- Nagy, S. (2020). The halfspace depth characterization problem. In La Rocca M., Liseo B., Salmaso L., editors, Nonparametric Statistics. ISNPS 2018, 379-389. Springer Proceedings in Mathematics & Statistics, vol 339. Springer, Cham. With supplementary material.
- Nagy, S. and Dvořák, J. (2019). Illumination in depth analysis. In Giovanni C. Porzio, Francesca Greselin, and Simona Balzano, editors, CLADAG 2019. Book of Short Papers, pages 353-356. Università di Cassino e del Lazio Meridionale.
- Nagy, S. (2017). An overview of consistency results for depth functionals. In Germán Aneiros, Enea G. Bongiorno, Ricardo Cao, and Philippe Vieu, editors, Functional statistics and related fields, pages 189-196. Springer.
- Nagy, S., Gijbels, I., Hlubinka, D., and Omelka, M. (2016). Functional data depth. Oberwolfach Report No. 12/2016, pages 24-26.
- Nagy, S. (2014). On the consistency of depth functionals. In Enea G. Bongiorno, Ernesto Salinelli, Aldo Goia, and Philippe Vieu, editors, Contributions in infinite-dimensional statistics and related topics, pages 197-202. Società Editrice Esculapio.
- Nagy, S. (2013). Coordinatewise characteristics of functional data. In Hana Vojáčková, editor, Proceedings 31th Int. Conf. Mathematical Methods in Economics 2013, Jihlava, Czech Republic, pages 655-660 (Part II.). College of Polytechnics Jihlava.
- Nagy, S. (2013). Depth for vector-valued functions. In J. Šafránková and J. Pavlů, editors, WDS'13 Proceedings of Contributed Papers, pages 85-90 (Part I.). Prague, Matfyzpress.
- Nagy, S. (2012). Nonparametric classification of noisy functions. In Arnošt Komárek and Stanislav Nagy, editors, Proceedings of the 27th International Workshop on Statistical Modelling, pages 234-239 (Part I.).
Books as Editor
- Nagy, S., editor (2015). Proceedings of the 19th European Young Statisticians Meeting, Prague.
- Komárek, A. and Nagy, S., editors (2012). Proceedings of the 27th International Workshop on Statistical Modelling, Vol. 1, Vol. 2, Prague.
Software
- Pokotylo, O., Mozharovskyi, P., Dyckerhoff, R., and Nagy, S. (2017). ddalpha: Depth-Based Classification and Calculation of Data Depth. R package version 1.3.1. Available at CRAN
Copyright (c) 2023 Stanislav Nagy. All rights reserved.