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THE LIST OF SYMBOLS

aT the vector a transposed
a⊗2 aaT

‖a‖ the Euclidean norm of the vector a
P
−→ convergence in probability
a.s.
−→ convergence almost surely
d
−→ convergence in distribution

X ∼ L X has the exact distribution L
X

as.
∼ L X has an asymptotic distribution L

α level of the test
βn(F ), βn(θ) power of the test, powerfunction

γ3 skewness random variable
γ4 kurtosis random variable
γ̂4 empirical kurtosis
Θ parametric space
Θ0 null hypothesis
Θ1 alternative hypothesis
λ Lebesgue measure on R

µS counting measure on a countable S

µk k -th central moment of the random random variable
µ̂k empirical odhad of the k -th central moment
µ ′k k -tý moment random variable
µ̂ ′k empirical odhad k -tého momentu
σ2

X the variance of the random variable X

σ̂2
n empirical estimator of variance
Σ̂n sample variance matrix
ϕ the density of the standard normal distribution
Φ the cumulative distribution function of the standard normal distribution
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χ2
f (α) α-quantile of χ2-distribution with f degress of freedom
Ω the probability space

1B the indicator of the set B

1n the column vector of ones of the length n

A σ-algebra náhodných jevů na Ω
B0 Borel σ-algebra on R

Bn
0 Borel σ-algebra on Rn

C, C(α) critical region of the test
cL(α), cU (α) critical values
cov (X1,X2) the covariance of the random variables X1 and X2

cov (X1,X2) the covariance matrix of the random vectors X1 a X2
diag (a) diagonal matrix with the components of the vector a on the diagonal

EX expected value of the random variable (vector) X

F the model for the observed data
F0 distribution under the null hypothesis
F1 distribution under the alternative hypothesis
fX density of the random variable (vector) X

FX cumulative distribution function of the random variable (vector) X

F −1
X quantile function of the random variable X

F̂n empirical cumulative distribuiton function
Fm,n(α) α-quantile distribution Fm,n

H0 null hypothesis
H1 alternative hypothesis
In n × n matrix of identity
Lp the set of random varialbes on (Ω,A,P) with the finite pth

absolute moment
L2
+ the set of random varialbes on (Ω,A,P) with finite

and nonzero variance
L(X ) distribution random variable (vector) X

mX median of the random variable X

m̂n sample median
MSE mean squared error
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P probability
PX distribution random of the random variable X , i.e. the measure induced by thi random variable on the sample space
Pθ distribution when the true value of the parameter is θ

h(A) rank of matrix A

R set of real numbers
Ri the rank of the i -th observation
SE standard error
S2

n sample variance
S j m sample covariance of the j th and the mth component of the random vector

SX support of distribution of the random variable X

tf (α) α-quantile of the distribution tf

tr (A) trace of the matrix A

uX (α) α-quantile of the random variable X

uα α-quantile of the distribution N(0, 1)
ûn(α) sample α-quantile
var X variance of the random variable X

varX variance matrix of the random vector X
X sample space

X(k ) the k -th order statistics
X n sample mean of X1, . . . ,Xn
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1. CLIPPINGS FROM THE ASYMPTOTIC
THEORY

1.1. THE CONVERGENCE OF RANDOM VECTORS

Let X be a k -dimensional random vector (with the cumulative distribution function
FX) and {Xn}

∞
n=1 be a sequence of k -dimensional random vectors (with the cumula-

tive distribution functions FXn ).

Definition 1.1 We say that Xn
d
−−−−→
n→∞

X (i.e. Xn converges in distribution to X), if

lim
n→∞

FXn (x) = FX (x)

for each point x of the continuity of FX .

Let d be a metric in Rk , e.g. the Euclidean metric d(x,y) =
√∑k

i=1(xi − yi )
2 .

Definition 1.2 We say that

• Xn
P
−−−−→
n→∞

X (i.e. Xn converges in probability to X), if

∀ε > 0 lim
n→∞

P
[
ω : d

(
Xn(ω),X(ω)

)
> ε

]
= 0;

• Xn
a.s.
−−−−→
n→∞

X (i.e. Xn converges almost surely to X), if

P
[
ω : lim

n→∞
d(Xn(ω),X(ω)) = 0

]
= 1.

Remark. For random vectors the convergence in probability and almost surely can
be defined also component-wise. That is letXn = (Xn1, . . . ,Xnk )

T andX = (X1, . . . ,Xk )
T.

Then

Xn
P
−−−−→
n→∞

X (Xn
a.s.
−−−−→
n→∞

X) if Xnj
P
−−−−→
n→∞

X j (Xnj
a.s.
−−−−→
n→∞

X j ), ∀j = 1, . . . , k .

But this is not true for the convergence in distribution for which we have the Cramér-
Wold tvrz that states

Xn
d
−−−−→
n→∞

X ⇐⇒ λTXn
d
−−−−→
n→∞

λTX , ∀λ ∈ Rk .
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1. Clippings from the asymptotic theory

Proposition 1.1 (Continuous Mapping Theorem, CMT) Let g : Rk → Rm be contin-
uous in each point of an open set C ⊂ Rk such that P(X ∈ C ) = 1. Then

1. Xn
a.s.
−−−−→
n→∞

X ⇒ g(Xn)
a.s.
−−−−→
n→∞

g(X);

2. Xn
P
−−−−→
n→∞

X ⇒ g(Xn)
P
−−−−→
n→∞

g(X);

3. Xn
d
−−−−→
n→∞

X ⇒ g(Xn)
d
−−−−→
n→∞

g(X).

Proposition 1.2 (Cramér-Slutsky, CS) Let Xn
d
−−−−→
n→∞

X, Yn
P
−−−−→
n→∞

c, then

1. Xn + Yn
d
−−−−→
n→∞

X + c;

2. Yn Xn
d
−−−−→
n→∞

cX,

whereYn can be a sequence of random variables or vectors or matrices of appropriate
dimensions (R or Rk or Rm×k ) and analogously c can be either a number or a vector
or a matrix of an appropriate dimension.

1.2. BASIC ASYMPTOTIC RESULTS

Proposition 1.3 (SLLN for i.id.) Let X1,X2, . . . be independent and identically dis-
tributed random vectors with a finite expectation EXi = µ. Then

Xn =
1
n

n∑
i=1
Xi

a.s.
−−−−→
n→∞

µ.

Proposition 1.4 (CLT for i.id.) Let X1,X2, . . . be independent and identically dis-
tributed random with the expectation EXi = µ and a finite variance matrix varXi =

Σ. Then
√

n
(
Xn − µ

) d
−−−−→
n→∞

Nk (0k ,Σ).

1.3. ∆-METHOD

Let Tn = (Tn1, . . . ,Tnk )
T be an estimator of a k -dimensional parameterµ = (µ1, . . . , µk )

T

and g = (g1, . . . , gm)
T be a function from Rk → Rm . Denote the Jacobi matrix of the

function g at the point x as Dg(x), i.e.

Dg(x) =
©­­«
∇g1(x)

...
∇gm(x)

ª®®¬ =
©­­­«
∂g1(x)
∂x1

. . . ∂g1(x)
∂xk

... . . . ...
∂gm (x)
∂x1

. . . ∂gm (x)
∂xk

ª®®®¬ .
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1. Clippings from the asymptotic theory

Proposition 1.5 (∆-method) Let
√

n (Tn − µ)
d
−−−−→
n→∞

Nk
(
0k ,Σ

)
,

Further let g : A → Rm , where A ⊂ Rk , µ is an interior point of A and the first-order
partial derivatives of g are continuous in a neighbourhood of µ. Then

√
n

(
g(Tn) − g(µ)

) d
−−−−→
n→∞

Nm
(
0m ,Dg(µ)ΣD

T

g (µ)
)
.

Theorem 1.5 is most often applied for k = m = 1 and Tn = X n , where X1, . . . ,Xn are
i.i.d. random variables. Then by the central limit theorem

√
n

(
X n − EXi

) d
−−−−→
n→∞

N
(0, var (Xi )

)
.

So if the function g : R → R has a continuous derivative in a neighbourhood of µ =
EXi , then

√
n
(
g (X n) − g (µ)

) d
−−−−→
n→∞

N
(0, [g ′(µ)]2 var (Xi )

)
. (1.1)

Sometimes instead of (1.1) we write shortly g (X n)
as
≈ N

(
g (µ), [g

′(µ)]2 var (Xi )

n

) . The quan-
tity [g ′(µ)]2 var (Xi )

n is then called the asymptotic variance of g (X n) and it is denoted as
avar

(
g (X n)

) . Note that the asymptotic variance has to be understood as the variance
of the asymptotic distribution, but not as some kind of a limiting variance.

As the following examples show for a sequence of random variables {Yn} the asymp-
totic variance avar (Yn) may exist even if var (Yn) does not exist for any n ∈ N. Further
even if var (Yn) exists, then it does not hold that var (Yn)/avar (Yn) → 1 as n →∞.

Example. Let X ∼ N(0, 1) and {εn} be a sequence of random variables independent
with X such that

P(εn = −
√

n) = 1
2n , P(εn = 0) = 1 − 1

n , P(εn =
√

n) = 1
2n .

Define Yn = X + εn and show that Yn
d
−−−−→
n→∞

N(0, 1). Thus avar (Yn) = 1. On the other
hand var (Yn) = 2 for each n ∈ N.

Example. Suppose you have a random sample X1, . . . ,Xn from a Bernoulli distribu-
tion with parameter pX and you are interested in estimating the logarithm of the
odd, i.e. θX = log ( pX

1−pX

) . Compare the variance and the asymptotic variance of θ̂X =

log ( X n

1−X n

) .
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2. RANDOM SAMPLE

2.1. DEFINITION OF A RANDOM SAMPLE

Let the probability space (Ω,A,P ) be given.

Definition 2.1 The random sample from distribution FX is defined as the sequence of
X1,X2, . . . ,Xn independent identically distributed random vectors defined on (Ω,A,P )
such that each random vector has a cumulative distribution FX . The constant n is
called the sample size.

The elements of random sample can be either real random variables or random
vectors (matrices and so on). We can call them “observations” or “data”. The whole
random sample will be denoted as X.

Remark. The true cumulative distribution function FX from which our observations
X1,X2, . . . ,Xn comes are not known. We aim to use observations in order to learn
something about FX . We assume that the cumulative distribution FX belongs to a set
of distributions množiny distributions F , which we call the model.

Definition 2.2 The model for the random sample X1,X2, . . . ,Xn is a given set dis-
tributions F such that we assume that FX ∈ F .

Remark. The distribution FX is unknown. Our goal is to use the observed data X in
order to determine some characteristics of FX that we call parameters. Formally the
parameter is a constant (or a vector of constants) θX ∈ R

k that could be calculated if
the distribution FX was known. The parameter of interest thus can be written in the
form θX ≡ t (FX ), where t is a given functional.

Examples (Types of models for real random variables).
1. The model F can be for instance the set of all distributions on R with a finite

expectation (or a finite variance). The parameters of interest can be for instance
EXi , var Xi , P[X ≤ x] ≡ FX (x) or the quantile F −1

X (α). Such a model is called
non-parametric, as we cannot describe all the distributions in F with a finite
number of parameters. By Θ we denote the set of possible values of θ ≡ t (F )
when F ∈ F .

2. The model F can be the set of all distributions with densities (with respect to
σ-finite measure) of the form f (x;θ) with θ ∈ Θ ⊆ Rp , where f (·; ·) is a known
function and θ is an unknown constant (e.g. exponential distributions, normal
distributions, geometric distributions). These models are called parametric. In

9



2. Random sample

parametric models each parameter of interest θX = t (FX ) can be expressed as a
function of the finite-dimensional parameter θ.

Examples (Parametric models).
• F =

{
N(µ,σ2

0), µ ∈ R, σ2
0 be given

}
; θ = µ, Θ = R.

• F =
{
N(µ,σ2), µ ∈ R, σ2 ∈ R+

}
; θ = (µ,σ2)T, Θ = R ×R+.

• F =
{
Exp(λ), λ ∈ R+

}
; θ = λ, Θ = R+.

• F =
{
Alt(p), p ∈ (0, 1)

}
; θ = p, Θ = (0, 1).

Remark. We choose the model F and the parameter of interest θ. The model repre-
sents our apriori knowledge (not affected by the observed data) about the distribu-
tions of the random variables. The choice of the parameter depends on the question
that we are trying answer by the statistical analysis. The choice of the model and pa-
rameter affects the choice of the method for the data analysis (as well as the obtained
results).

2.2. STATISTICS

During statistical analysis we that from the random sample we calculate variables,
that contain (summarize) information about the parameters of interests. These vari-
ables are called statistics. Consider the random sample X = (X1,X2, . . . ,Xn).

Definition 2.3 We call a statistic an arbitrary measurable function S(X) of obser-
vations calculated from the random sample X. Statistic is a random variable (or a
random vector).

A statistic cannot depend on the values that we do not know or that we do not
observe. A statistic is a function of observed data (and known constants). The most
commonly used statistics are the sample mean and the sample variance. To define
them denote X = (X1,X2, . . . ,Xn)

T.

Definition 2.4
(i) A random variable X n =

1
n

∑n
i=1 Xi is called a sample mean of the random sample

X.
(ii) Pro n ≥ 2 the random variable S2

n =
1

n−1
∑n

i=1(Xi −X n)
2 is called a sample variance

of the random sample X.

2.2.1. PROPERTIES OF THE SAMPLE MEAN

Consider the model F = L2. I.e. we work with the random sample X whose com-
ponents Xi are independent random variables with an arbitrary distribution with a
finite second moment. Denote µ ≡ EXi a σ2 = var Xi .

10



2. Random sample

Lemma 2.1

X n = arg min
c ∈R

n∑
i=1
(Xi − c )2.

Proof. Introduce the function f (c ) =
∑n

i=1(Xi−c )2. The statement of the lemma follows
from the fact that f ′(X n) = 0 and that f ′′(c ) > 0 for each c ∈ R. �

Theorem 2.2 (Properties of the sample mean)
(i) EX n = µ, var X n =

σ2
n ;

(ii) X n
P
−→ µ as n →∞;

(iii) √n
(
X n − µ)

d
−−−−→
n→∞

N(0,σ2), i.e. X n
as.
∼ N

(
µ, σ

2
n

)
Proof. (i) follows by the straightforward calculation. (ii) follow from the law of large
numbers (Proposition 1.3 pro k = 1) and (iii) from the central limit theorem (Propo-
sition 1.4 for k = 1). �

Remark. Suppose that the random variables in our sample are normally distributed,
i.e. F =

{
N(µ,σ2), µ ∈ R, σ2 ∈ R+

}
. Then the statemetns (i) a (iii) of the previous

proposition can be strengthened to
√

n
(
X n − µ

)
∼ N(0,σ2) i.e. X n ∼ N

(
µ, σ

2
n

)
.

Proof. From the assumptions it follows that the random vectorZ = (
X1−µ, . . . ,Xn−µ)T

has independent components each of them having N(0,σ2) distribution. By the de-
fition of the multivariate normal distribution it follows that Z ∼ Nn(0,σ2In). Denote
c =

( 1√
n
, . . . , 1√

n

)T
∈ Rn . Now from the properties of the multivariate normal distribu-

tion it follows that
cTZ =

√
n (X n − µ) ∼ N(0,σ2).

�

2.2.2. RELATIVE (EMPIRICAL) FREQUENCY

In applications often the random variable Xi takes only two values usually denoted as
0 and 1. The number one then means that in the i th trial an event B has occurred and
the number zero otherwise. Denote p = P(Xi = 1). Then random variables X1, . . . ,Xn

represent a random sample from the Bernoulli distribution Be(p).
The sample mean X n is now empirical (or relative) frequency of the event B . Thus

Theorem 2.2 immediately implies.

Theorem 2.3 (Properties of empirical frequency)
(i) EX n = p, var X n =

p(1−p)
n ;

(ii) X n
P
−−−−→
n→∞

p;

(iii) √n
(
X n − p

) d
−−−−→
n→∞

N
(0, p(1 − p)

)
11



2. Random sample

(iv) nX n ∼ Bi(n, p), where Bi(n, p) stands for the binomial distribution with n trials
and p being the parameter of success.

Proof. (i), (ii) and (iii) follows directly from Theorem 2.2 together with EXi = p and
var Xi = p(1 − p). (iv) follows from the fact that nX n =

∑n
i=1 Xi and from the definition

of the binomial distribution. �

Statement (ii) says that provided we have enough observations then we can find
the value p with an arbitrary precision. The end of

lectures for

week 1

(3.10.-8.10.).
2.2.3. PROPERTIES OF THE SAMPLE VARIANCE

First consider the model F = L2. Denote µ = EXi and σ2 = var Xi . Sample variance
can be rewritten in several useful ways.

Theorem 2.4 (i)

S2
n =

n

n − 1

(
1
n

n∑
i=1

X 2
i − X

2
n

)
. (2.1)

(ii) Let 1n be a column vector of n ones. Denote A = In −
1
n1n1

T
n (matrix n ×n). Then

S2
n =

1
n − 1X

TAX =
1

n − 1Y
TAY , (2.2)

where Y =X − c1n for some c ∈ R.

Proof. Part (i):

n−1
n S2

n =
1
n

n∑
i=1
(Xi − X n)

2 =
1
n

n∑
i=1

(
X 2

i − 2Xi X n + X
2
n

)
=

1
n

n∑
i=1

X 2
i −

2
n

n∑
i=1

Xi X n + X
2
n

=
1
n

n∑
i=1

X 2
i − 2X

2
n + X

2
n =

1
n

n∑
i=1

X 2
i − X

2
n .

Part (ii):

XTAX =XT

(
In −

1
n
1n1

T
n

)
X =XTX −

1
n
XT1n1

T
nX

=

n∑
i=1

X 2
i −

1
n

( n∑
i=1

Xi

)2
=

n∑
i=1

X 2
i − nX

2
n = (n − 1)S2

n .

The last part of the proposition follows from the fact that

1Tn A = 0 = A1n .

�
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2. Random sample

Remark. Both formulas (2.1) and (2.2) are useful in particular in theoretical deriva-
tions. Formula (2.2) shows that S2

n can be expressed in a quadratic form and shows
that S2

n is location invariant.
Note that the matrix A is idempotentní, i.e. AA = A. This will be used later on

when deriving the distribution of S2
n (see Theorem 2.8 below).

We have a useful formula for calculating the expectations of the quadratic forms.

Lemma 2.5 Let Z be a random vector of length n with the mean value µ and a finite
variance matrix Σ. Let B be an arbitrary matrix n × n. Then it holds that

EZTBZ = µTBµ + tr
(
BΣ

)
.

Proof.

EZTBZ = E tr
(
ZTBZ

)
= E tr

(
BZZT

)
= tr

(
BEZZT

)
= tr

(
B
(
µµT + Σ

) )
= tr

(
BµµT

)
+ tr

(
BΣ

)
= µTBµ + tr

(
BΣ

)
,

where we make use of the fact that

Σ = E
(
Z − µ

) (
Z − µ

)T
= EZZT − µµT.

�

Theorem 2.6 (Properties sample variance)

(i) S2
n

P
−−−−→
n→∞

σ2.

(ii) ES2
n = σ

2.

(iii) If F = L4 (i.e. if the fourth moment of Xi is finite), then
√

n
(
S2

n − σ
2) d
−−−−→
n→∞

N
(0,σ4(γ4 − 1)) ,

where γ4 =
E (Xi−µ)4

σ4 is the kurtosis of Xi .

Proof. Part (i): With the help of Theorem 2.4(i) one can write

S2
n =

n

n − 1

(
1
n

n∑
i=1

X 2
i − X

2
n

)
.

As n
n−1 −−−−→n→∞

1, it is sufficient to show that

1
n

n∑
i=1

X 2
i − X

2
n

P
−−−−→
n→∞

σ2.

13



2. Random sample

By the law of large numbers (Proposition 1.3) it holds that(
X n ,

1
n

n∑
i=1

X 2
i

)T P
−−−−→
n→∞

(
EXi ,EX 2

i

)T
.

Now the function g (y1, y2) = y2 − y 2
1 is continuous on R2, i.e. it is continuous in (the

unknown point)
(
EXi ,EX 2

i

)
, which is the support of the limit distribution. Now we

can use the Continuous Mapping Theorem (Proposition 1.1(ii)) a dostáváme

1
n

n∑
i=1

X 2
i − X

2
n

P
−−−−→
n→∞

EX 2
i −

(
EXi

)2
= var Xi = σ

2,

which was to be proved.
Part (ii): Put Y =X−µ1n and note that EY = 0. Then according to Theorem 2.4(ii)

and Lemma 2.5 one can calculate

(n − 1)ES2
n = EY TAY = EY TAEY + tr

(
Aσ2In

)
= 0 + (n − 1)σ2,

as
tr

(
Aσ2In

)
= σ2

(
tr (In) −

1
n tr (1n1

T
n )

)
= σ2(n − 1).

Part (iii): First we rewrite the sample variance as

S2
n =

1
n − 1

n∑
i=1
(Xi − X n)

2 =
1

n − 1
n∑

i=1
(Xi − µ)2 − n

n−1 (X n − µ)2.

And thus

√
n

(
S2

n − σ
2) = √n

n − 1
n∑

i=1

[
(Xi − µ)2 − σ2] + √n

n−1 σ
2 − n

n−1
√

n (X n − µ)2
ozn.
= An + Bn +Cn ,

where An , Bn and Cn denotes the corresponding terms on the right-hand side of the
above equation. Obviously

Bn =
√

n
n−1 σ

2 −−−−→
n→∞

0.

Further
Cn =

n
n−1
√

n (X n − µ)2 = n
n−1
√

n (X n − µ) (X n − µ)
P
−−−−→
n→∞

0,

where we make use of the fact that

n
n−1 −−−−→n→∞

1, √
n (X n − µ)

d
−−−−→
n→∞

N(0,σ2), X n − µ
P
−−−−→
n→∞

0

and Cramér-Slucky theorem (Proposition 1.2).
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2. Random sample

Thus it is sufficient to deal with the term An . For i ∈ {1, . . . ,n} denote Yi = (Xi − µ)2.
Then with the help of the central limit theorem for the random variables Yi (Proposi-
tion 1.4) a Cramér-Slucky theorem (Proposition 1.2)

An =

√
n

n − 1
n∑

i=1

[
(Xi − µ)2 − σ2] = n

n − 1
1
√

n

n∑
i=1

[
(Xi − µ)2 − σ2]

=
n

n − 1
1
√

n

n∑
i=1

[
Yi − EYi

] d
−−−−→
n→∞

N
(0, var (Yi )

)
.

Now it remains to calculate

var (Yi ) = var
(
(Xi − µ)2

)
= E (Xi − µ)4 −

(
σ2)2

= σ4 [
E

(Xi−µ
σ )

4 − 1
]
= σ4 [

γ4 − 1
]
.

�

Remark.
• Theorem 2.6(iii) says, that the asymptotic variance of the sample variance de-

pends on the kurtosis.

Remark. Alternativaly one can prove Theorem 2.6(ii) (i.e. unbiasedness of the sam-
ple variance) by the following straightforward calculation

ES2
n =

1
n − 1

(
n∑

i=1
EX 2

i − n EX
2
n

)
=

1
n − 1

(
n EX 2

1 − n var
(
X n

)
− n

(
EX n

)2)
=

1
n − 1

(
n(σ2 + µ2) − n σ2

n − n µ2
)
=

1
n − 1

(
nσ2 − σ2

)
= σ2,

where we make us of the fact EX 2
1 = var (X1)+

(
EX1

)2 and analogously also of E (
X n

)2
=

var
(
X n

)
+

(
EX n

)2.

Exercise. Prove that, when Xi are zero-one variables then S2
n =

n
n−1 X n(1 − X n). Hint:

Use the fact that X 2
i = Xi .

Now we add the assumption of the normal distribution, e.g. we are going to work
in the smaller model F =

{
N(µ,σ2), µ ∈ R, σ2 ∈ R+

}
. Thus we have a random sam-

ple X = (X1,X2, . . . ,Xn)
T, with Xi being independent with the distribution N(µ,σ2).

Thanks to the independence it holds that X ∼ Nn(µ1n ,σ2In).
First we give two results that hold for random vectors with (arbitrary) normal dis-

tributions.

Lemma 2.7 Let X ∼ Nn(µ, Σ) a A be a positive semidefinit matrix of the dimension
n × n.

(i) Let B be a matrix of dimension m × n such that BΣA = 0m×n . Then the random
variable XTAX and the random vector BX are independent.

15



2. Random sample

(ii) Let B be a positive semidefinite matrix of dimension n×n which satisfies BΣA =
0n×n . Then the random variables XTAX and XTBX are independent.

Proof. Part (i). As the matrix A is positive semidefinite there exists an ortonormal
matrix U such that

A = UDUT

where D = diag (λ1, . . . , λn) is a diagonal with eigenvalues of the matrix A on the diag-
onal. Note that these eigenvalues are non-negative.

Further from the assumptions of lemma we have

0m×n = BΣA = BΣUDUT.

Denote by D−1/2 the diagonal matrix with the i th diagonal element i given by 1√
λi

if λi

is positive and zero otherwise. Multiplying the above equation with the matrix UD−1/2

from the right we get
0m×n = B ΣUD1/2.

Thus random vectors BX and D1/2UTX are not correlated as

cov
(
BX ,D1/2UTX

)
= B ΣUD1/2 = 0m×n .

Now from the definition multivariate normal distribution it follows that random vec-
tors has the joint normal distribution as we can write(

BX

D1/2UTX

)
=

(
B

D1/2UT

)
X .

Now the joint normality and the fact the random vectors are not correlated imply the
independence of the random vectors BX and D1/2UTX (P.6.2(ii)). Thus also BX and
XTUD1/2D1/2UTX =XTAX are independent.

Part (ii). Analogously as above using the spectral decompositions one gets

A = UA DA U
T
A and B = UB DB UT

B ,

where UA , UB is ortonormal matrix and DA , DB is diagonal matrix with non-negative
elements on diagonals.

Further from the assumption of the lemmat

0n×n = BΣA = UBDBU
T
B ΣUADAU

T
A

Let D−1/2
A and D

−1/2
B are as the matrix D−1/2 above. Then multiplying the above equa-

tion with the matrix UA D
−1/2
A from the rate and with the matrix D

−1/2
B UT

B from the left
we get

0n×n = D
1/2
B UT

B ΣUAD
1/2
A .

16



2. Random sample

Thus similarly as in part (i) we get that the random vectors D
1/2
B UT

BX a D
1/2
A UT

AX are
independent. Thus also

XTUBD
1/2
B D

1/2
B UT

BX =X
TBX

and
XTUAD

1/2
A D

1/2
A UT

AX =X
TAX .

are independent.
�

Theorem 2.8 (Properties sample variance za normality) Let Xi ∼ N(µ,σ2), i = 1, . . . ,n
be independent. Then it holds

(i)
(n − 1)S2

n

σ2 ∼ χ2
n−1.* (2.3)

(ii) X n and S2
n are independent random variables.

Proof. Part (i). Using Theorem 2.4 one can rewrite

(n − 1)S2
n

σ2 = Y TAY ,

where
Y =

(X1−µ
σ , . . . , Xn−µ

σ

)T
∼ Nn

(
0, In

)
and A = In −

1
n1n1

T
n . As matrix A is idempotentní with the rank n − 1, then the state-

ment of the proposition follows from lemma A.1 (where Σ = In).
Part (ii) Note that one can write

X n =
1
n
BX , S2

n =
1

n − 1X
TAX ,

where B = 1Tn a A = In −
1
n1n1

T
n . Further X ∼ Nn

(
µ1n ,σ2In

) and thus proposition
follows from lemma 2.7(i) as

BΣA = 1Tnσ
2In

(
In −

1
n1n1

T
n

)
= σ2 (1Tn − 1

n n1Tn
)
= 0Tn .

�

Remark. From the definition of χ2 distributions we know that random variable with
χ2

n−1 distribution can be represented as ∑n−1
i=1 Y 2

i , where Y1, . . . ,Yn−1 are independent
and identically distributed random variables with N(0, 1) distribution. From the cen-
tral limit theorem and (2.3) it follows that

(n−1)S2
n

σ2 − (n − 1)
√

n − 1
d
−−−−→
n→∞

N(0, 2)

* Viz definice A.1.
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2. Random sample

and thus √
n−1

n

√
n

(
S2

n − σ
2) as.
∼ N(0, 2σ4).

Taking into consideration that the skewness of normal distribution is 3, we see that
statement (i) of Theorem 2.8 is in agreement with the asymptoic result of Theorem 2.6(iii).
Theorem 2.8(i) now gives the exact distribution of S2

n for random sample from the
normal distribution, while Theorem 2.6(iii) gives the asymptotic distribution S2

n for
random sample from an aribtrary distribution that has the finite fourth moment.

Remark. One can remember the statement (i) of Theorem 2.8(i) as follows. Note that

(n − 1)S2
n

σ2 =

n∑
i=1

(
Xi − X n

σ

)2
.

If one uses the true expectation µ instead of X n in the above formula, then ∑n
i=1

(Xi−µ
σ

)2
∼

χ2
n . By replacing the unknown expectation µ with its estimator X n we loose one de-

grees of freedom (as we estimate one parametr).

Remark. Theorem 2.8(ii) says, that when the random sample comes from the normal
distribution, then X n and S2

n are independent for each finite n > 1.

Theorem 2.9 (limitní Theorem o Tn) Let X1, . . . ,Xn be a random sample from an ar-
bitrary distribution with the expectation µ and with the finite and non-zero variance
σ2. Then

Tn =

√
n

(
X n − µ

)
Sn

d
−−−−→
n→∞

N(0, 1).

Proof. The random variable Tn can be now rewritten in the form

Tn =

√
n

(
X n − µ

)
σ

σ

Sn
.

By the central limit theorem (Proposition 1.4, pro k = 1) one has that
√

n
(
X n − µ

)
σ

d
−−−−→
n→∞

N(0, 1).

Further z S2
n

P
−−−−→
n→∞

σ2 (Theorem 2.6(i)) and byt the continuous mapping theorem
(Proposition 1.1(ii)) for g (y ) = σ/

√
y one gets

σ

Sn

P
−−−−→
n→∞

1.

The statement now follows from Cramér-Slucky věty (Proposition 1.2). �

Now we again add the assumption of normal distribution.
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2. Random sample

Theorem 2.10 Let X1, . . . ,Xn be a random sample from the distribution N(µ,σ2). Then

Tn =

√
n

(
X n − µ

)
Sn

∼ tn−1 .*

Proof. The random variable Tn can now be rewritten as

Tn =

√
n (X n−µ)

σ√
(n−1)S2

n

σ2 /(n − 1)
. (2.4)

From the remark below Theorem 2.2 we know that √n X n−µ
σ ∼ N(0, 1). Further (n−1)S2

n

σ2 ∼

χ2
n−1 (Theorem 2.8(i)), and at the same time the numerator and the denominator in

fraction (2.4) are independent (Theorem 2.8(ii)). The statement now follows from the
definition of the t -distributions (see Definition A.2). �

Remark. Theorem 2.10 gives the exact distribution of Tn for normally distributed data
while Theorem 2.9 gives the asymptotic distribution of Tn for random sample from an
arbitrary distribution with the finite and non-zero variance. Note that for n →∞ the
distribution tn−1 converges in distribution to N(0, 1).

* Viz definice A.2.
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3. PARAMETER ESTIMATION

We are given a random sampleX = (X1,X2, . . . ,Xn), a model F and a parameter θ =
t (F ) ∈ Rp for F ∈ F , which we need to estimate. Let FX ∈ F be the true distribution
of the random vector Xi and let θX ≡ t (FX ) be the true value of θ.

3.1. POINT ESTIMATION

Definition 3.1 An estimator of θX ≡ t (FX ) ∈ R
p is a p-dimensional random vector θ̂n

which is given as θ̂n = Tn(X) ≡ Tn(X1, . . . ,Xn), where Tn is some Borel measurable
function of data.

Remark. An estimator is a statistic in sense of definition 2.3. It cannot depend on
unknown parameters.

Definition 3.2 (Unbiasedness and consistency) Let us suppose that we are given a
random sample X = (X1,X2, . . . ,Xn) from distribution FX ∈ F and an estimator
θ̂n ≡ Tn(X) of a parameter θX ≡ t (FX ).

(i) θ̂n is said to be an unbiased estimator of the parameter θX in the model F if and
only if E θ̂n = θX for every n (for which the estimator is well-defined) and for
every distribution FX ∈ F .

(ii) θ̂n is said to be a consistent estimator of the parameter θX in the model F if and
only if θ̂n

P
−→ θX as n →∞ for every distribution FX ∈ F .

Remark.
• Properties of a given estimator must be studied in context of the given model.

It can easily happen that an estimator θ̂n is unbiased and consistent in some
model F , while in a different model F ′ it does not retain these properties.

• Unbiasedness is supposed to hold for each number of observations n for which
the estimator is defined (e.g. in case of the sample variance for n ≥ 2). Un-
biasedness, however, does not guarantee that the estimator will approach the
true value of the parameter being estimated as the sample size n increases. For
some models there are no reasonable (or even none at all) unbiased estimators.

• Consistency is an asymptotic property, which does not say anything about be-
haviour of an estimator for finite n. (e.g. θ̂n = 21 for n ≤ 1010, θ̂n = X n for
n > 1010 is a consistent estimator of θX = EXi .)
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3. Parameter Estimation

• The aforementioned notion of consistency is sometimes called weak consis-
tency. In addition, an estimator is said to be strongly consistent if and only if
θ̂n

a.s.
−−−−→
n→∞

θX .
• In statistics, estimators which are consistent, albeit not unbiased, are commonly

used. On the other hand, estimators which are not consistent are typically un-
used because they either estimate “something different” or they do not get more
accurate as the sample size increases.

Examples.

1. Estimation of parameter θX = EXi in model F = L1:
• The sample mean X n is an unbiased and consistent estimator of θX [follows

from theorem 2.2, (i) a (ii)].
• The estimator θ̂n = X1 is an unbiased estimator of θX , but it is not consis-

tent.

2. Estimation of parameter θX = var Xi in model F = L2:
• The sample variance S2

n is an unbiased and consistent estimator of θX [fol-
lows from theorem 2.6, (i) a (ii)].

• The estimator σ̂2
n =

1
n

∑n
i=1

(
Xi − X n

)2 is a consistent estimator of θX , but it
is not unbiased.

3. Estimation of parameter θX = P[Xi = 0] in model F =
{
Po(λ), λ > 0

}
:

• The estimator θ̂n =
1
n

∑n
i=1 1{0}(Xi ) is an unbiased and also consistent esti-

mator of θX (unbiasedness and consistency of θ̂n are preserved even in the
model of all discrete distributions).

• The estimator θ̃n =
( n−1

n

)∑n
i=1 Xi is also an unbiased and consistent estimator

of θX (in model F but not in the model of all discrete distributions).

4. Estimation of parameter θX = e−2λX in model F =
{
Po(λ), λ > 0

}
for n = 1:

The only unbiased estimator is θ̂ = (−1)X1 and the only 2 values which this esti-
mator attains are −1 and 1. However, e−2λX only attains values from the interval
(0, 1).

Definition 3.3 (Bias) Let us suppose that the estimator θ̂n ≡ Tn(X) of a parameter θX

has finite expectation. Then the difference E (θ̂n − θX ) is called bias of the estimator
θ̂n .

Definition 3.4 Let us suppose that the estimator θ̂n ≡ Tn(X) of a parameter θX ∈ R

has finite variance.

(i) Expression
MSE(

θ̂n
)
= E

(
θ̂n − θX

)2

is called mean squared error of the estimator θ̂n .
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3. Parameter Estimation

(ii) Expression
SE(θ̂n) =

√
var

(
θ̂n

)
is called standard error of the estimator θ̂n .

Remark.
• Beware of subtle differences in terminology. The term standard deviation (SD)

usually refers to the square root of the variance of one random observation i.e.
√
var Xi . The term standard error (SE) usually refers to the square root of the

variance of some estimator calculated from the whole random sample. Some
authors, however, use the term standard error when they want to refer to

SE(θ̂n) =

√
v̂ar

(
θ̂n

)
,

where v̂ar
(
θ̂n

) is an estimator of var (θ̂n
)

• Both the mean squared error and the standard error are measures of estimation
accuracy. Furthermore, while the standard error disregards the bias, the mean
squared error does not.

• It holds that the mean squared error can be decomposed as a sum of variance
and bias squared:

MSE(θ̂n) = var
(
θ̂n

)
+ [E (θ̂n − θX )]

2.

Proof of the aforementioned assertion is a direct calculation:

MSE(θ̂n) = E
(
θ̂n − E θ̂n + E θ̂n − θX

)2

= E
(
θ̂n − E θ̂n

)2
+ 2E (

θ̂n − E θ̂n
)
E

(
θ̂n − θX

)
+ [E (θ̂n − θX )]

2

= var
(
θ̂n

)
+ 0 + [E (θ̂n − θX )]

2.

• The mean squared error is one of the most appropriate criteria for comparison
of estimators. If we have several different estimators of the same parameter in
the same model, we try to find the one with the smallest MSE. Thus, in the case
of unbiased estimators, we select the one with the smallest variance.

• MSE often cannot be calculated analytically. In many cases, however, one can
decide on the basis of asymptotic variances of estimators. Assume that we have
2 estimators θ̂n and θ̃n , which satisfy

√
n

(
θ̂n − θX

) d
−−−−→
n→∞

N
(0,σ2

1
)
,

√
n

(
θ̃n − θX

) d
−−−−→
n→∞

N
(0,σ2

2
)
.

Then (for large sample sizes) estimator θ̂n is preferred if σ2
1 < σ

2
2. Conversely, if

σ2
1 > σ

2
2, then estimator θ̃n is preferred.

Example. Estimation of parameter σ2
X = var Xi in model F =

{
N(µ,σ2), µ ∈ R,σ2 >

0
}
. Show that MSE(S2

n) > MSE(σ̂2
n).

22



3. Parameter Estimation

Theorem 3.1 Let θ̂n be an estimator of a parameter θX ∈ R for which it holds that
E θ̂n −−−−→

n→∞
θX (bias converges to zero) and var

(
θ̂n

)
−−−−→
n→∞

0, for each FX ∈ F . Then θ̂n

is a consistent estimator of θX .

Proof. Let ε > 0. Then from Markov’s inequality (theorem P.2.6) it follows that:

P
(��θ̂n − θX

�� > ε) ≤ MSE(θ̂n)

ε2 =
var (θ̂n)

ε2 +

(
E θ̂n − θX

)2

ε2 .

Now, both terms on the right-hand side converge to zero because thanks to the as-
sumptions of the theorem var

(
θ̂n

)
→ 0 and E θ̂n → θX as n →∞. �

Remark.
• The opposite implication is not true. There exist consistent estimators which

satisfy that E
��θ̂n

�� = ∞ for every finite n.
• Theorem 3.1 is useful in situations when the bias and the variance of the esti-

mator θ̂n are available (or can be easily calculated). If, however, it is possible to
express θ̂n as θ̂n = g

( 1
n

∑n
i=1Xi

) (i.e. as a transformation of the sample mean),
then it is easier to study consistency of θ̂n using the law of large numbers (the-
orem 1.3) in combination with the continuous mapping theorem (theorem 1.1).

Example. Let X1, . . . ,Xn be a random sample from the alternative distribution Alt(pX ).
Consider θ̂n =

1
X n

as an estimator of θX =
1

pX
. Show that although it holds that

E θ̂n = ∞, it also holds that θ̂n
P
−−−−→
n→∞

θX .

3.2. CHOICE OF THE PARAMETER OF INTEREST

The parameter θ = t (F ) which we are trying to estimate can be in principle anything.
Not all parameters, however, make sense in context of the practical problem we are
solving. Therefore, we must distinguish for which parameters it is reasonable to esti-
mate them and for which it is not. This depends on the meaning of the values of the
measured quantities, on the procedure by which they were obtained, processed, etc.
The statistical methods that will be introduced, will be divided according to the type
of measurements for which they are intended. We will consider the following data
types or measurement scales.

3.2.1. QUANTITATIVE DATA

A random variable X will be called quantitative if its values have some specific nu-
merical meaning (e.g. number, percentage, length, volume, weight, interest rate, con-
centration, temperature, duration, angle, latitude, calendar year). For quantitative
data there exists a meaningful ordering of their values (temperature 10 ◦C is higher
than −11,4 ◦C). Furthermore, differences of these values are interpretable. Quantita-
tive random variables can be both discrete and continuous.
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3. Parameter Estimation

Quantitative variables can be further subdivided into two subgroups: interval and
ratio. Ratio variables are typically non-negative with a clearly defined zero value
and interpretable ratios. For example, the weight 0 kg has a clear interpretation and
an object whose weight is 20 kg is 4 times heavier than 5 kg. Examples of ratio vari-
ables are number, length, volume, weight, interest rate, concentration, time duration,
temperature measured in kelvins. Interval variables are quantitative variables which
do not follow properties of ratio variables, i.e. they do not have a fixed zero value or
ratios of their values are not interpretable. For instance, direction given by azimuth
is an interval quantity because azimuth 360° is not six times greater than 60°. Simi-
larly, temperature measured in ◦C is an interval quantity because the temperature of
16 ◦C is not four times higher than the temperature of 4 ◦C. Calendar year is also an
interval quantity, because it does not make sense to calculate the ratio of this year
and the year of your birth.

3.2.2. CATEGORICAL DATA

A random variable X is called categorical if its values encode affiliation (or classifica-
tion) of an object with a certain category, or with one of several disjoint sets. Cate-
gorical variables are always discrete and have a finite number K of possible values,
usually 1, . . . ,K or 0, . . . ,K −1. Values of categorical variables do not have a direct nu-
merical interpretation. Their sole purpose is to distinguish possible states. Individual
states are called levels or categories.

We further subdivide categorical variables into nominal and ordinal. For nominal
variables there is no ordering of their categories - it cannot be said that some cate-
gory j precedes the category j + 1. An example of a nominal variable is, for instance,
residence categorised in terms of regions (1 = Prague, 2 = Central Bohemian, . . . , 14
= Moravian-Silesian) or social status (1 = underage; 2 = student; 3 = employee; 4 =
self-employed ; 5 = unemployed ; 6 = pensioner). Categories of ordinal variables are
in some sense ordered. Thus, it is possible to claim that category j precedes category
j + 1 or that it is smaller, worse, etc. An example of an ordinal variable may be an an-
swer to a question with options 1 = strongly disagree, 2 = rather disagree, 3 = do not
know, 4 = rather agree, 5 = totally agree. A different example is a variable encoding
the highest attained level of education as 1 = primary education; 2 = lower secondary
education; 3 = upper secondary education; 4 = post-secondary non-tertiary educa-
tion; 5 = short-cycle tertiary education; 6 = bachelor’s or equivalent; 7 = master’s or
equivalent; 8 = doctorate or equivalent.

3.2.3. BINARY DATA

Binary variables are a special case of categorical variables when K = 2. Hence, they
classify observations into one of two possible states. Their values are typically chosen
as 0 vs. 1 or, alternatively, 1 vs. 2. An example of a binary variable is the truth value
of some statement (0 = false, 1 = true), realisation of a random phenomenon (0 = did
not occur/failure, 1 = occurred/success) or sex (1 = male, 2 = female).
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3. Parameter Estimation

3.2.4. CHOICE OF THE PARAMETER ACCORDING TO THE TYPE OF DATA

In general, for nominal quantities it does not make sense to consider parameters such
as EX , var X , cumulative distribution function, quantiles, covariance and correlation,
in short, no characteristics that depend on encoding and ordering of individual cate-
gories. Although these parameters are properly defined, they have no practical inter-
pretation. The only parameters which in case of nominal variables do have an inter-
pretation are probabilities of individual categories, i.e. p j = P[X = j ] for all admissible
values of j .

One exception are binary variables. If value 0 encodes failure and value 1 encodes
success, then EX = P[X = 1], i.e. expectation and probability of success are equal.
For ordinal variables, thanks to natural ordering of their categories, it makes sense to
consider their cumulative distribution functions. It is often possible to attach to them
the interval interpretation (doctoral education is two levels higher than bachelor),
however, it is not usually feasible to afford them ratio interpretation (we cannot say
that bachelor’s education is 2 times higher than upper secondary education). Ordinal
variables are sometimes assigned non-integer values, so-called scores. For example
we can create an ordinal variable in a way that we take some quantitative variable Z
and categorise it according to some chosen partition, e.g. X = 1 if Z ∈ 〈0, 5), X = 2
if Z ∈ 〈5, 20), X = 3 if Z ∈ 〈20, 100) and X = 4 if Z ≥ 100. Such quantities usually
arise in questionnaires, when respondents are supposed to choose one of four op-
tions instead of writing down the exact number. The resulting variable X is obviously
ordinal. Perhaps, instead of the values 1, . . . , 4 we could choose, as the values of X ,
midpoints of the intervals which were used to define X , i.e. 2,5; 12,5 a 60 for the first
three intervals. There is clearly a problem with the last one since it does not have
the right endpoint - thus, we would somehow need to add the last score (for exam-
ple take 150). Variables encoded in this way are not only ordinal, but they also retain
some properties of quantitative variables.

Ordinal variables can always be analysed as if they were nominal but it is often
possible to also apply methods originally devised for quantitative variables, estimate
their expectation or calculate their differences. Moreover, there exist special methods
designed specifically for the ordinal data, but we will not encounter them for a while.

Our explanation of statistical methods (starting with chapter 4) will distinguish be-
tween methods for quantitative data, where we will work with characteristics such
as expectation, variance, median, cumulative distribution function, covariance, etc.,
and methods for nominal data, where we will work with probabilities of individual
categories.

3.3. METHOD OF MOMENTS

The method of moments belongs, together with the method of maximum likelihood,
to basic methods of parameter estimation.

Let us consider a parametric model: we are given a random sample X1, . . . ,Xn from
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a distribution with a probability density function f (x ;θX ) with respect to some σ-
finite measure µ, where the form of the function f (·; ·) is known and θX is an unknown
(vector-valued) parameter, which belongs to some space of parametersΘ ⊆ Rd , d ≥ 1.
Thus, we are working with the following model:

F =
{

distributions with density f (x ;θ), θ ∈ Θ ⊆ Rd
}

The goal is to estimate the parameter θX . We will take advantage of the fact that
we have at our disposal consistent estimators of moments and that we can usually
express moments of Xi as functions of unknown parameters. We will assume that
E |Xi |

d < ∞.
Consider first d = 1. Let us assume that EXi = τ(θX ), where τ : Θ → R. Since X n

is a consistent estimator, it is reasonable to try to find the moment estimator θ̂n as a
solution of the estimating equation:

X n = τ
(
θ̂n

)
. (3.1)

If the function τ is strictly monotone, it is possible to express the estimator as θ̂n =

τ−1(X n) and the estimated parameter as θX = τ
−1(EXi ).

Properties of the estimator θ̂n :
• If τ−1 is continuous at EXi , then θ̂n

P
−−−−→
n→∞

θX (theorem 1.1).
• If τ−1 has a continuous derivative on some neighbourhood of EXi , then thanks

to the ∆-method (theorem ??)
√

n
(
θ̂n − θX

) d
−−−−→
n→∞

N
(0,V (θX )

)
,

where

V (θX ) =
{[
τ−1(EXi )

] ′}2
var Xi =

var Xi[
τ′

(
τ−1(EXi )

) ]2 =
var Xi[
τ′(θX )

]2 . (3.2)

Note that in the expression of the asymptotic variance (last equality) we do not
need to know the explicit formula for τ−1. This formula is therefore useful if τ−1

is given only implicitly and the estimate θ̂n is being searched for using numeri-
cal methods as a solution of the estimating equation (3.1).
In applications, the asymptotic variance V (θX ) is estimated by

V̂n =
{[
τ−1(X n)

] ′}2
S2

n =
S2

n[
τ′

(
θ̂n

) ]2 .

The last expression is again suitable especially when we do not have the explicit
formula for τ−1.

Examples.
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1. X1, . . . ,Xn is a random sample from Po(λX ) distribution, EXi = λX . The moment
estimator of λX is θ̂n = X n .

2. X1, . . . ,Xn is a random sample from Geo(pX ) distribution, EXi =
1−pX

pX
and var Xi =

1−pX

p2
X

. Thus, τ(x) = 1−x
x and τ−1(x) = 1

1+x . The moment estimator of pX is p̂n =

1
1+X n

. Further,
√

n
(
p̂n − pX

) d
−−−−→
n→∞

N
(0, p2

X (1 − pX )
)
,

where the asymptotic variance p2
X (1 − pX ) follows either from the first equality

in (3.2)

V (pX ) =

{
−1

(1 + EXi )
2

}2

var Xi = p4
X

1 − pX

p2
X

or, alternatively, also from the third equality in (3.2)

V (pX ) =
var Xi{
− 1

p2
X

}2 =

1−pX

p2
X

1
p4

X

.

3. X1, . . . ,Xn is a random sample from R(0, θX ) distribution, EXi = θX /2. The mo-
ment estimator of θX is θ̂n = 2X n . It holds that √n

(
θ̂n − θX

) d
−−−−→
n→∞

N
(0, θ2

X /3
)
.

d = 1, but a different moment than EXi

Sometimes it can happen that EXi = 0 for every θX ∈ Θ. For example, this is true for
distributions with finite expectations which are symmetric around zero. Then we can
consider the second moment, i.e. EX 2

i = τ(θX ) and the estimator θ̂n will be acquired
as a solution of the equation

1
n

n∑
i=1

X 2
i = τ(θ̂n).

Generally, we can consider some suitable (measurable) function t such that E |t (Xi )| <

∞ and E t (Xi ) = τ(θX ). The estimator θ̂n will be obtained as a solution of the equation

1
n

n∑
i=1

t (Xi ) = τ(θ̂n).

Now we will generalise the method for d > 1.
The most straightforward method is to consider the first d-moments, i.e. we will

calculate
EXi = τ1(θX ),EX 2

i = τ2(θX ), . . . ,EX d
i = τd (θX ),

27
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and thus, we will obtain mappings τ1, . . . , τd : Θ→ R. The estimator of the parameter
θ̂n is then obtained as a solution of the following system of d equations with d un-
knowns:

1
n

n∑
i=1

Xi = τ1(θ̂n),
1
n

n∑
i=1

X 2
i = τ2(θ̂n), . . . ,

1
n

n∑
i=1

X d
i = τd (θ̂n).

Once we define mapping τ = (τ1, . . . , τd )
T : Θ → Rd , then under the assumption of

existence of τ−1 we can write

θ̂n = τ
−1

( 1
n

n∑
i=1
Zi

)
, where Zi =

(
Xi ,X 2

i , . . . ,X d
i

)T.
From this expression, similarly as in the case of d = 1, we can derive consistency and
the asymptotic normality of the estimator θ̂n .
Special case d = 2

Suppose that (EXi , var Xi )
T = τ (θX ), where τ : Θ→ R2. Then it is reasonable to try

to find the estimator of θX as a solution of the system of estimating equations (more
precisely 2 equations with 2 unknowns)(

X n ,S2
n

)T
= τ

(
θ̂X

)
.

If the function τ is injective, then we can express the estimator as θ̂X = τ
−1 (X n ,S2

n

)
and the estimated parameter as θX = τ

−1(EXi , var Xi ).
Properties of the estimator θ̂n :

• We know that X n and S2
n are consistent estimators of EXi and var Xi . Hence, if

the function τ−1 is continuous at (EXi , var Xi ), then θ̂n
P
−−−−→
n→∞

θX .

• From theorem 2.6, part (iv) we know that if EX 4
i < ∞, then X n and S2

n are jointly
asymptotically normal. If τ−1 has a continuous derivative, then according to the
∆-method also θ̂n has jointly asymptotically normal distribution with variance
matrix which can be calculated using theorem 2.6 and the ∆-method.

Examples.

4. X1, . . . ,Xn is a random sample from gamma distribution with density f (x ; a , p) =
a p

Γ(p) x p−1e−ax1{x > 0}. Then EXi =
p
a and var Xi =

p
a2 (see chapter 8.2.6 of Kulich,

2018). The moment method yields consistent and asymptotically normal esti-
mators

ân =
X n

S2
n

and p̂n =
X

2
n

S2
n

.

5. X1, . . . ,Xn is a random sample from R(θ1, θ2) distribution. We know that

EXi =
θ1 + θ2

2 and var Xi =
(θ2 − θ1)2

12 .
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In this case, the system of estimating equations is of the form

X n =
θ̂1n + θ̂2n

2 , var Xi =
(θ̂2n − θ̂1n)

2

12 .

By solving this system we get

θ̂1n = X n −

√
3S2

n and θ̂2n = X n +

√
3S2

n .

Since from theorem 2.6 we know that
√

n

[(
X n

S2
n

)
−

(
µ
σ2

)]
d
−−−−→
n→∞

N2
(
0, Σ

)
,

where Σ =
(
σ2 σ3γ3
σ3γ3 σ4(γ4 − 1)

)
and γ3 =

E (Xi−µ)3

σ3 , then using the ∆-method it is
possible to show that

√
n

[(
θ̂1n

θ̂2n

)
−

(
θ1
θ2

)]
d
−−−−→
n→∞

N2
(
0,DΣDT

)
,

where D denotes the Jacobian matrix of the mapping τ−1(x1, x2) =
(
x1−
√3x2, x1+

√3x2) at point (EXi , var Xi ). Therefore, the estimator θ̂n =
(
θ̂1n , θ̂2n

) is asymptot-
ically normal (and according to theorem ?? also consistent).

6. X1, . . . ,Xn is a random sample from B(α, β) distribution (see for instance chap-
ter 8.2.7 Kulich, 2018), i.e. EXi =

α
α+β and var Xi =

αβ

(α+β)2(α+β+1) . By the moment
method we get consistent and asymptotically normal estimators

α̂n = X n

(
X n(1 − X n)

S2
n

− 1
)

and β̂n = (1 − X n)

(
X n(1 − X n)

S2
n

− 1
)

(estimators are meaningful only if S2
n < X n(1 − X n)

) .
Remark.

• Estimators obtained by the method of moments tend to have larger asymptotic
variance compared to the estimators obtained by the method of maximum like-
lihood. Maximum likelihood theory will be discussed in detail in Mathematical
Statistics 2.

• Using the implicit function theorem it can be proved that it is sufficient that τ
has continuous derivative on some neighbourhood of (EXi , var Xi ).

3.4. INTERVAL ESTIMATION

We are given a random sampleX = (X1,X2, . . . ,Xn), a model F and a parameter θ =
t (F ) ∈ R for F ∈ F , which we need to estimate. Let FX ∈ F be the true distribution of
some random vector Xi and θX ≡ t (FX ) be the true value of the estimated parameter.
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3.4.1. DEFINITIONS

Definition 3.5 An interval Bn = Bn(X) ⊂ R is called a confidence interval for param-
eter θX ∈ R with confidence level 1 − α in model F if and only if

P[ω ∈ Ω : Bn(ω) 3 θX ] = 1 − α, for every distribution FX ∈ F .

An interval Bn is called an asymptotic confidence interval for parameter θX ∈ R with
(asymptotic) confidence level 1 − α in model F if and only if

P[ω ∈ Ω : Bn(ω) 3 θX ] −−−−→
n→∞

1 − α for every distribution FX ∈ F .

Remark.
• Interval Bn is random (calculated from the data) while the parameter θX is not.

Expression Bn 3 θX is read as “interval Bn covers (the true value of) θX ”.
• Number α ∈ (0, 1) is preselected; usually α = 0,05 is chosen, which leads to con-

fidence intervals with confidence levels of 0,95. However, we can also encounter
intervals whose confidence levels are 0,90 or 0,99.

• It is not always possible or appropriate to calculate confidence intervals with
exact prescribed coverage. We are often satisfied with asymptotic confidence
intervals whose coverage converges to the prescribed level as the sample size
increases.

• We defined confidence intervals only for real parameters. Nevertheless, similar
concept can also be introduced for vector parameters: we need to find some
random set Bn which covers the true value of the parameter with specified prob-
ability. This set is then called the confidence set. The shape of the set Bn , how-
ever, can be chosen in many different ways.

Remark. We distinguish between two-sided and one-sided confidence intervals (lower
and upper).

• An interval of the form (
ηL(X), ηU (X)

) , where ηL(X) and ηU (X) are two random
variables satisfying P

[
ηL(X) < ηU (X)

]
= 1, ηL(X) > −∞ and ηU (X) < ∞ a.s., is

called two-sided confidence interval. Usually we construct it so that it holds (at
least asymptotically) that

P
[
θX ≤ ηL(X)

]
=
α

2 , P
[
θX ≥ ηU (X)

]
=
α

2 .

• An interval of the form (
ηL(X),∞

) is called lower one-sided confidence interval.
We have that P

[
ηL(X) < θX

]
= 1 − α.

• An interval of the form (
−∞, ηU (X)

) is called upper one-sided confidence inter-
val. We have that P

[
θX < ηU (X)

]
= 1 − α.

Example (expectation in normal model with known variance). Consider the problem
of interval estimation of the expected value for normally distributed data with known
variance.
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Data: X1, . . . ,Xn ∼ FX

Model: FX ∈ F =
{
N(µ,σ2

X ), µ ∈ R,σ2
X known

}
Estimated parameter: θX = EXi ≡ µX

Procedure:

1. We have an unbiased and consistent estimator of the parameter µX - the sample
mean X n . We know that X n ∼ N(µX ,σ2

X /n). Thus
√

n
(
X n − µX

)
σX

∼ N(0, 1).

2. We will use the equality

P

[
u α

2
<

√
n

(
X n − µX

)
σX

< u1−α/2

]
= 1 − α,

where uα = Φ
−1(α) is α-quantile of the standard normal distribution and af-

ter several manipulations of the expression (using symmetry of the density of
N(0, 1) distribution around 0) we will arrive at

P

[
X n − u1−α/2

σX
√

n
< µX < X n + u1−α/2

σX
√

n

]
= 1 − α.

3. We obtained a two-sided confidence interval (ηL , ηU ). Its endpoints are

ηL(X) = X n − u1−α/2
σX
√

n
, ηU (X) = X n + u1−α/2

σX
√

n
.

Quantiles of the standard normal distribution which are needed for the con-
struction of the confidence interval are listed in Table 3.1.
For α = 0,05 we take quantile u0,975 � 1,96 and obtain 95% two-sided confidence
interval. This means that the interval covers the true value µX with probability
0,95.

4. One-sided interval would be obtained by a small modification of step 2. Lower
one-sided confidence interval will be given as(

ηL(X),∞
)
, where ηL(X) = X n − u1−α

σX
√

n
.

Upper one-sided confidence interval will be of the form(
−∞, ηU (X)

)
, where ηU (X) = X n + u1−α

σX
√

n
.

Table 3.1.: Some values of quantiles of the standard normal distribution.

κ 0,9 0,95 0,975 0,99 0,995
uκ = Φ

−1(κ) 1,282 1,645 1,960 2,326 2,576
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One-sided confidence intervals differ from two-sided by the value of the nor-
mal quantile (u1−α quantile is used instead of u1−α/2). For a 95% one-sided con-
fidence interval we would take u0,95 � 1,645.

Remark. Length of the confidence interval:
• decreases with increasing number of observations n,
• increases with increasing data variance σ2

X ,
• increases with increasing confidence level 1 − α.

Example. Let X1, . . . ,Xn be a random sample from N(µX ,σ2
X ) distribution, the vari-

ance σ2
X is known. How many observations do we need so that the length of the

two-sided confidence interval for the expected value µX does not exceed the spec-
ified limit d > 0?

We have that 2u1−α/2 σX /
√

n ≤ d . Therefore we need at least 4u 2
1−α/2 σ

2
X /d

2 obser-
vations. It is worth noting that if we want to halve the confidence interval, then we
need to increase the sample size 4 times.

Lemma 3.2 (confidence interval after parameter transformation) If (ηL , ηU ) is a(n)
(asymptotic) confidence interval for parameter θX with the confidence level of 1 − α
and if ψ is an increasing continuous real-valued function on the space of parameters
Θ =

{
t (F ), F ∈ F

}
⊆ R, then (

ψ(ηL),ψ(ηU )
) is a(n) (asymptotic) confidence interval for

parameter ψ(θX ) with the confidence level of 1 − α.

Proof. From the assumptions of the lemma we have that for a confidence interval
with exact coverage it holds that

1 − α = P
[
ηL(X) < θX < ηU (X)

]
= P

[
ψ
(
ηL(X)

)
< ψ(θX ) < ψ

(
ηU (X)

) ]
.

Analogously for asymptotic confidence intervals. �

Example. Let X1, . . . ,Xn be a random sample from Po(λ) distribution. Then according
to the example on page ?? we know that

√
n

(
2
√

X n − 2
√
λX

)
d
−−−−→
n→∞

N(0, 1).

From this result we can easily deduce that the asymptotic confidence interval for√λX

is given as (√
X n −

u1−α/2
2√n

,
√

X n +
u1−α/2
2√n

)
.

And thus the confidence interval for λX is given as( [
max

{√
X n −

u1−α/2
2√n

, 0
}]2

,
[√

X n +
u1−α/2
2√n

]2)
.
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3.4.2. CONSTRUCTION OF CONFIDENCE INTERVALS

Let X = (X1, . . . ,Xn), where X1,X2, . . . ,Xn is a random sample from some distribu-
tion FX ∈ F . We need to estimate parameter θX = t (FX ) ∈ R. Let us briefly describe
the general procedure for construction of two-sided confidence intervals for θX .

1. We will find a function ϕ(x, θX ) satisfying that for every x fixed it is, as a function
of θX , injective and continuous and that the distribution of the random variable
Zn ≡ ϕ(X , θX ) is known at least asymptotically (it depends neither on θX nor on
any other unknown parameters) and is non-degenerate. This random variable
Zn is called pivotal. For the construction of function ϕ it may be useful to start
by calculating a point estimator of θX , whose distribution is usually known (at
least asymptotically). Let us denote by FZ the (exact or asymptotic) cumulative
distribution function of Zn and let cα = F −1

Z (α) be α-quantile of the distribution
given by FZ .

2. We will use the formula

P
(
cα/2 < ϕ(X , θX ) < c1−α/2

)
= 1 − α (or → 1 − α)

and we will “isolate” θX . In order to do that, it is needed to invert ϕ(x, θ) as a
function of θ (for x fixed). Let ϕ̄(x, t ) be a function such that

ϕ
(
x, ϕ̄(x, t )

)
= t and ϕ̄

(
x, ϕ(x, θ)

)
= θ

for every x, t and θ. Since function ϕ̄(x, t ) is normally decreasing in t , we get
that

P
(
ϕ̄(X , c1−α/2) < θX < ϕ̄(X , cα/2)

)
= 1 − α.

3. We obtained (asymptotic) confidence interval (
ηL(X), ηU (X)

) with confidence
level of 1 − α, where ηL(X) = ϕ̄(X , c1−α/2) and ηU (X) = ϕ̄(X , cα/2).

Example (variance and standard deviation of the normal distribution). Consider the
problem of constructing a confidence interval for the standard deviation of the nor-
mal distribution.
Data: X1, . . . ,Xn ∼ FX

Model: FX ∈ F =
{
N(µ,σ2), µ ∈ R,σ2 > 0

}
Estimated parameter: σX =

√
var Xi

Procedure:

Let us first consider variance σ2
X . Its unbiased and consistent estimator is S2

n . Ac-
cording to theorem 2.8, part (i), we know that

(n − 1)S2
n

σ2
X

∼ χ2
n−1.

Thus, we will choose Zn = (n − 1)S2
n/σ

2
X , FZ = χ2

n−1 and cα = χ2
n−1(α), i.e. α-quantile of

χ2
n−1 distribution (Table 3.2).
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We will use the equality

P

[
χ2

n−1(α/2) <
(n − 1)S2

n

σ2
X

< χ2
n−1(1 − α/2)

]
= 1 − α

and after several manipulations of the expression we will arrive at

P

[
(n − 1)S2

n

χ2
n−1(1 − α/2)

< σ2
X <

(n − 1)S2
n

χ2
n−1(α/2)

]
= 1 − α.

We obtained a confidence interval(
(n − 1)S2

n

χ2
n−1(1 − α/2)

,
(n − 1)S2

n

χ2
n−1(α/2)

)
(3.3)

for the variance σ2
X whose confidence level is 1 − α.

Confidence interval for the standard deviation σX will be obtained by application
of square root to both endpoints of the confidence interval for the variance

©­­«
√

n − 1 Sn√
χ2

n−1(1 − α/2)
,
√

n − 1 Sn√
χ2

n−1(α/2)

ª®®¬ ,
see also Lemma 3.2 (square root is an increasing and continuous function on (0,∞)).

Example (expectation of the normal distribution with unknown variance). Consider
the problem of constructing a confidence interval for the expectation of the normal
distribution with unknown variance.
Data: X1, . . . ,Xn ∼ FX

Table 3.2.: Some values of quantiles χ2
f (κ) of χ2 distribution with f degrees of free-

dom.

κ

f 0,01 0,025 0,05 0,1 0,9 0,95 0,975 0,99
5 0,554 0,831 1,145 1,610 9,236 11,070 12,833 15,086

10 2,558 3,247 3,940 4,865 15,987 18,307 20,483 23,209
15 5,229 6,262 7,261 8,547 22,307 24,996 27,488 30,578
25 11,524 13,120 14,611 16,473 34,382 37,652 40,646 44,314

100 70,065 74,222 77,929 82,358 118,498 124,342 129,561 135,807
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Table 3.3.: Some values of tf (κ) quantiles of t distribution with f degrees of freedom.

κ

f 0,9 0,95 0,975 0,99 0,995
5 1,476 2,015 2,571 3,365 4,032

10 1,372 1,812 2,228 2,764 3,169
15 1,341 1,753 2,131 2,602 2,947
25 1,316 1,708 2,060 2,485 2,787

100 1,290 1,660 1,984 2,364 2,626
∞ 1,282 1,645 1,960 2,326 2,576

Model: FX ∈ F =
{
N(µ,σ2), µ ∈ R,σ2 > 0}

Estimated parameter: θX = EXi ≡ µX

Procedure:

The estimator X n is unbiased and consistent for the parameter µX . Furthermore,
S2

n is an unbiased and consistent estimator of σ2
X ≡ var Xi . From theorem 2.10 we know

that
Tn =

√
n

(
X n − µX

)
Sn

∼ tn−1.

Hence, we can take Tn as our pivotal random variable, FZ will be cumulative distri-
bution function of tn−1 distribution and cα = tn−1(α) (α-quantile of tn−1 distribution).
Some quantiles of t -distribution are listed in Table 3.3. Clearly, already for n − 1 = 25
they are only slightly larger than the corresponding quantiles of the standard normal
distribution, to which they converge as the number of degrees of freedom increases
above all bounds. Larger values of t -quantiles compared to the quantiles of the stan-
dard normal distribution, which were used in the introductory example, reflect in-
creased variability of the pivotal random variable, which is caused by ignorance of
the true variance.

We will use the equality

P
[
tn−1

(
α
2
)
<

√
n(X n − µX )

Sn
< tn−1

(1 − α
2
) ]
= 1 − α

and by the same procedure as in the case of the normal distribution with known vari-
ance we will arrive at the required confidence interval(

X n − tn−1
(1 − α

2
) Sn
√

n
, X n + tn−1

(1 − α
2
) Sn
√

n

)
, (3.4)

whose confidence level is exactly 1 − α.
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Example (expected value of an arbitrary distribution with finite variance). Consider
the problem of constructing a confidence interval for the expectation without the
assumption of normality.
Data: X1, . . . ,Xn ∼ FX

Model: FX ∈ F = L
2
+ (all distributions with finite non-zero variance)

Estimated parameter: θX = EXi ≡ µX

Procedure: The estimator X n is unbiased and consistent for the parameter µX . Fur-
thermore, S2

n is an unbiased and consistent estimator of σ2
X ≡ var Xi . From theo-

rem 2.9 we know that
Tn =

√
n

(
X n − µX

)
Sn

d
−−−−→
n→∞

N(0, 1).

We can thus choose Tn as our pivotal random variable.
We will use the following relation (which holds because Tn converges in distribu-

tion to the standard normal distribution)

P
[
u α

2
<

√
n

(
X n − µX

)
Sn

< u1−α/2
]
−−−−→
n→∞

1 − α.

Thus, one possible asymptotic confidence interval would be(
X n − u1−α/2

Sn
√

n
, X n + u1−α/2

Sn
√

n

)
. (3.5)

Since for n →∞ quantile tn−1(α) converges to uα (for arbitrary 0 < α < 1), it holds that
interval (3.4), which was exact confidence interval for µX in case of a random sample
from the normal distribution, is also a valid asymptotic confidence interval for µX for
data coming from an arbitrary distribution with finite non-zero variance.

Note that |tn−1(α)| > |uα | for every n ≥ 2, therefore interval (3.4) is longer than
interval (3.5). For caution, it is therefore recommended to use interval (3.4).

Example (alternative distribution). Let us now present one possible way to construct
an asymptotic confidence interval for the probability of success in the alternative dis-
tribution. (We will show several more confidence intervals related to this problem
later.)
Data: X1, . . . ,Xn ∼ FX

Model: FX ∈ F =
{
Alt(p), p ∈ (0, 1)

}
Estimated parameter: pX = EXi = P[Xi = 1]
Procedure:

Since we are estimating probability of an event, we will start by considering em-
pirical relative frequency p̂n = X n , which is an unbiased and consistent estimator
of p (theorem 2.3). From the central limit theorem (theorem P.7.11) we know that
√

n
(
p̂n − pX

) d
−−−−→
n→∞

N
(0, pX (1 − pX )

) . Thus,
√

n
(
p̂n − pX

)√
pX (1 − pX )

d
−−−−→
n→∞

N(0, 1).
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Left-hand side is a non-linear function of pX , but our situation can be simplified.
From the consistency of p̂n and the continuous mapping theorem (theorem P.7.3) it
follows that √

p̂n(1 − p̂n)
P
−−−−→
n→∞

√
pX (1 − pX ).

From Slutsky’s theorem (theorem P.7.6) we obtain that
√

n
(
p̂n − pX

)√
p̂n(1 − p̂n)

=

√
n

(
p̂n − pX

)√
pX (1 − pX )

√
pX (1 − pX )√
p̂n(1 − p̂n)

d
−−−−→
n→∞

N(0, 1). (3.6)

Therefore, we can take Zn =
√

n (p̂n−pX )√
p̂n (1−p̂n )

, FZ = Φ and cα = uα (α-quantile of the stan-
dard normal distribution).

From the following relation

P

[
−u1−α/2 <

√
n

(
p̂n − pX

)√
p̂n(1 − p̂n)

< u1−α/2

]
−−−−→
n→∞

1 − α

we get that

P

[
p̂n − u1−α/2

√
p̂n(1 − p̂n)
√

n
< pX < p̂n + u1−α/2

√
p̂n(1 − p̂n)
√

n

]
−−−−→
n→∞

1 − α.

We obtained an asymptotic confidence interval(
p̂n − u1−α/2

√
p̂n(1 − p̂n)
√

n
, p̂n + u1−α/2

√
p̂n(1 − p̂n)
√

n

)
,

whose coverage probability converges to 1 − α as n →∞.

3.5. EMPIRICAL ESTIMATORS

Consider a random sample X1,X2, . . . ,Xn from a distribution FX . We will present how
to estimate some characteristics of the distribution FX .

3.5.1. EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION

Let us first focus on estimation of the whole distribution function FX (x) for x ∈ R.
We consider a model that includes all distributions on R, i.e. we do not impose any
conditions at all on the distribution function FX .

Definition 3.6 Function F̂n(x)
df
= 1

n

∑n
i=1 1{Xi ≤ x} is called the empirical distribution

function of the random sample X1,X2, . . . ,Xn .
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Remark. The value of F̂n at some point x is equal to the number of observations that
do not exceed x which is then divided by the total number of observations. Function
F̂n is non-decreasing, right-continuous, piecewise constant with jumps in observed
values of random variables Xi , the magnitude of the jump at a point x is given by the
number observations which are equal to x which is then divided by the total number
of observations. Empirical distribution function has all the properties of a cumulative
distribution function of some discrete distribution.

For some x fixed, is the value F̂n(x) actually equal to the relative frequency of the
event [Xi ≤ x] calculated from n observations, while the probability of this event is
equal to FX (x). From theorem 2.3 we immediately obtain the most important prop-
erties of empirical distribution functions.

Theorem 3.3 (properties of empirical distribution functions) For an arbitrary x ∈ R
it holds that:

(i) E F̂n(x) = FX (x) (unbiasedness), var (F̂n(x)
)
=

FX (x)[1−FX (x)]
n ;

(ii) F̂n(x)
P
−−−−→
n→∞

FX (x) (pointwise consistency);

(iii) √n
[
F̂n(x) − FX (x)

] d
−−−−→
n→∞

N
(0, FX (x)[1 − FX (x)]

) (asymptotic normality);
(iv) nF̂n(x) ∼ Bi

(
n, FX (x)

) ;
(v) supx ∈R

��F̂n(x) − FX (x)
�� P
−−−−→
n→∞

0 (uniform consistency).

Remark.
• Point (iii) of the previous theorem can be used to construct an asymptotic con-

fidence interval for FX (x) in the same way as in the case of the parameter in the
alternative distribution (see page 36).

• Point (v) is sometimes called the Glivenko-Cantelli theorem. It cannot be de-
duced from theorem 2.3 or from other results that are currently available. It will
be proved in one of the more advanced lectures on the probability theory.

3.5.2. IDEA BEHIND EMPIRICAL ESTIMATORS

Estimators of many basic characteristics of the distribution FX can be derived from
the empirical distribution function. Let θX = t (FX ) be the parameter of interest. If
it can be calculated from the true cumulative distribution function FX , then it can
also be calculated from the empirical distribution function F̂n in the same way. Thus,
we obtain the estimator θ̂n

df
= t

(
F̂n

) . These types of estimators are called empirical
estimators. We will see that empirical estimators often have reasonable properties.

Let us first demonstrate this procedure on the example of the empirical estimator
of expectation. We have that

EXi =

∫ ∞

−∞

x dFX (x).
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The empirical estimator of expectation is obtained by using F̂n instead of the un-
known FX . We will get∫ ∞

−∞

x dF̂n(x) =

∫ ∞

−∞

x d

( 1
n

n∑
i=1

1{Xi ≤ x}

)
=

1
n

n∑
i=1

∫ ∞

−∞

x d 1{Xi ≤ x} =
1
n

n∑
i=1

Xi ,

where we used the fact that G (x) = 1{Xi ≤ x} is for fixed Xi actually the cumulative
distribution function of a random variable that is equal to Xi with probability 1. We
have, therefore, reached the conclusion that the empirical estimator of expectation
is the sample mean, which we already know to be unbiased and consistent.

Remark. Let us fix ω ∈ Ω and denote the observed realisations of random variables
as x1 = X1(ω), . . . , xn = Xn(ω). Then F̂n satisfies all the properties of a cumulative
distribution function. If Y is some random variable whose cumulative distribution
function is F̂n , then the integral

∫ ∞
−∞

x dF̂n(x) is equal to the expectation of Y . Since
the distribution given by F̂n is discrete and satisfies that P(Y = xi ) =

1
n for every i =

1, . . . ,n, then it holds that

EY =
n∑

i=1
xi P(Y = xi ) =

1
n

n∑
i=1

xi =
1
n

n∑
i=1

Xi (ω).

3.5.3. EMPIRICAL MOMENT ESTIMATORS

Let X1,X2, . . . ,Xn be a random sample from a distribution FX and h be a measurable
real-valued function such that E |h(Xi )| < ∞. It is easy to verify that the empirical
estimator of the parameter Eh(Xi ) is the sample mean of the observed values h(Xi ),
i.e. 1

n

∑n
i=1 h(Xi ). This estimator is unbiased and consistent.

Let us derive the empirical estimator of the variance σ2
X = EX 2

i − (EXi )
2. We know

that the empirical estimator of EXi is X n and that the empirical estimator of EX 2
i is

1
n

∑n
i=1 X 2

i . The empirical estimator of the variance is, therefore, given as

σ̂2
n =

1
n

n∑
i=1

X 2
i − X

2
n =

1
n

n∑
i=1

(
Xi − X n

)2.

Remark. It holds that

S2
n =

1
n − 1

n∑
i=1

(
Xi − X n

)2
=

n

n − 1 σ̂
2
n .

For n sufficiently large is the difference between σ̂2
n and S2

n small, because thanks to
theorem 2.6(i)

σ̂2
n − S2

n = −
S2

n

n

P
−−−−→
n→∞

0.

It follows from theorem 2.6 that the sample variance S2
n is an unbiased and consistent

estimator of σ2
X . The empirical estimator of the variance σ̂2

n is consistent, however,
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it is not unbiased. On the other hand, from the example on page 22 we know that in
model F =

{
N(µ,σ2), µ ∈ R,σ2 > 0

}
it holds that MSE(

σ̂2
n

)
< MSE(S2

n).
Similarly, we can derive empirical estimators for higher order moments. Empirical

estimators of non-central moments µ ′k = EX k
i are

µ̂ ′k =
1
n

n∑
i=1

X k
i .

Empirical estimators of central moments µk = E (Xi − EXi )
k are

µ̂k =
1
n

n∑
i=1
(Xi − X n)

k .

Empirical estimators of non-central moments are evidently unbiased as well as
consistent. Empirical estimators of central moments are consistent. In general, how-
ever, they are not unbiased.

The empirical estimator of the skewness is

γ̂3 =
µ̂3
(σ̂2

n)
3/2 ,

The empirical estimator of the kurtosis is

γ̂4 =
µ̂4
σ̂4

n

.

Both of them are consistent (according to the continuous mapping theorem, theorem
P.7.3).

Exercise. Prove that if E |Xi |
k < ∞, then µ̂k

P
−−−−→
n→∞

µk .
Hint:

µ̂k =
1
n

n∑
i=1

k∑
j=0

(
j

k

)
X k

i

(
− X n

)k−j
=

k∑
j=0

(
j

k

) ( 1
n

n∑
i=1

X k
i

) (
− X n

)k−j .

3.5.4. EMPIRICAL (SAMPLE) QUANTILES

Let α be a preselected number from the interval (0, 1). The quantile function of a
given distribution FX is defined as

F −1
X (α) = inf

{
x : FX (x) ≥ α

}
.

Then, α-quantile of distribution FX is defined as uX (α) = F −1
X (α). For α-quantile it

holds that
FX

(
uX (α)

)
≥ α and FX

(
uX (α) − h

)
< α for ∀h > 0.

As an empirical estimator, we use the value of α-quantile of the empirical distribu-
tion function, i.e.

F̂ −1
n (α) = inf

{
x : F̂n(x) ≥ α

}
.
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Definition 3.7 (Empirical quantile) For α ∈ (0, 1) we define the empirical (sample)
α-quantile as ûn(α) = F̂ −1

n (α).
Remark.

• Recall that the empirical distribution function is piecewise constant with jumps
at points X(1),X(2), . . . ,X(n). Therefore, the empirical quantile will be (according
to our definition) an appropriately chosen order statistic. Since it holds that

F̂n
(
X(k )

)
≥

k

n
and F̂n

(
X(k ) − h

)
<

k

n
for ∀h > 0,

the empirical quantile will satisfy that

ûn(α) = X(kα), where kα =

{
nα for (nα) ∈ N,
bnαc + 1 for (nα) < N.

Since we do not assume continuity of the distribution, the order statistics X(kα)
must be understood in terms of the note on page ??.

• For α = 0,5 we get the sample median: m̂n = X( n+1
2 )

for n odd and m̂n = X( n
2 )

for n
even.

• The empirical α-quantile satisfies inequalities
F̂n

(
ûn(α)

)
≥ α and lim

h↘0
F̂n

(
ûn(α) − h

)
< α,

i.e. at least nα observations are less than or equal to ûn(α) and, simultaneously,
for every h > 0 at least n(1−α) observation are greater than or equal to ûn(α)−h.

• There are many different definitions of the empirical α-quantile (typically some
linear interpolation between points X(kα−1), X(kα) and X(kα+1)). For example for n
even is the sample median often defined as

m̂n =
X( n

2 )
+ X( n

2+1)
2 .

The following lemma characterises the empirical quantile as a solution of some
minimization problem (compare with lemma 2.1).
Lemma 3.4 Let α ∈ (0, 1). For the empirical α-quantile ûn(α) it holds that

ûn(α) = arg min
c ∈R

n∑
i=1

%α(Xi − c ),

where %α(u) = αu1{u ≥ 0} + (1 − α)(−u)1{u < 0}.
Note that for α = 1

2 we obtain that %1/2(u) = 1
2 |u |. Since the constant 1

2 is for the
optimization irrelevant, it holds that the sample median satisfies

m̂n = arg min
c ∈R

n∑
i=1

��Xi − c
��,

i.e. m̂n minimizes the sum of absolute deviations.
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Remark. The minimization problem from part (ii) can be formulated as a problem
of linear programming in the form

arg min
c ∈R

[
−(1 − α)

∑
i :Xi<c

(
Xi − c

)
+ α

∑
i :Xi ≥c

(
Xi − c

) ]
.

If we introduce the notation Ui = (Xi − c )1(Xi ≥ c ), Vi = −(Xi − c )1(Xi < c ), U =

(U1, . . . ,Un)
T, V = (V1, . . . ,Vn)

T, X = (X1, . . . ,Xn)
T, our problem can be reformulated

as an optimization problem of linear programming in (2n + 1)-dimensional space

min
U ,V ,c

α1TnU + (1 − α)1TnV

subject to
c1n +U − V =X , U ≥ 0, V ≥ 0.

Naturally, this minimization problem does not have to have a unique solution. The
minimum can be attained at every point from some interval.

Properties of empirical quantiles will be studied (proved) only in continuous dis-
tributions with increasing cumulative distribution functions FX and densities fX .

Theorem 3.5 Let α ∈ (0, 1). Let X1, . . . ,Xn be a random sample from a distribution
whose cumulative distribution function FX is continuous and increasing on some
neighbourhood of uX (α).

(i) Then ûn(α)
P
−−−−→
n→∞

uX (α).
(ii) Additionally, if there exists density fX , which is continuous and non-zero at uX (α),

then
√

n
[
ûn(α) − uX (α)

] d
−−−−→
n→∞

N
(0,V (α)) , where V (α) =

α(1 − α)
f 2

X (uX (α))
.

Proof. Part (i): Let ε > 0. We need to prove that

P
(
|ûn(α) − uX (α)| > ε

)
−−−−→
n→∞

0.

In order to do that, it is sufficient to show that

P
(
ûn(α) < uX (α) − ε

)
−−−−→
n→∞

0 and P
(
ûn(α) > uX (α) + ε

)
−−−−→
n→∞

0.

So let us calculate

P
(
ûn(α) < uX (α) − ε

)
= P

(
X(kα) < uX (α) − ε

)
= P

( ∑n
i=1 1

{
Xi < uX (α) − ε

}
≥ kα

)
≤ P

(
F̂n

(
uX (α) − ε

)
− FX

(
uX (α) − ε

)
≥

kα
n − FX

(
uX (α) − ε

) )
. (3.7)
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From theorem 3.3 it follows that

F̂n
(
uX (α) − ε

)
− FX

(
uX (α) − ε

) P
−−−−→
n→∞

0, (3.8)

and from the assumptions of this theorem we have that
kα
n − FX

(
uX (α) − ε

)
−−−−→
n→∞

α − FX
(
uX (α) − ε

)
> 0. (3.9)

By combining (3.8) and (3.9) we obtain that the right-hand side of equality (3.7) con-
verges to zero, thus we have proved that P(

ûn(α) < uX (α) − ε
)
−−−−→
n→∞

0.
Similarly

P
(
ûn(α) > uX (α) + ε

)
= P

( ∑n
i=1 1

{
Xi ≤ uX (α) + ε

}
< kα

)
≤ P

(
F̂n

(
uX (α) + ε

)
− FX

(
uX (α) + ε

)
< kα

n − FX
(
uX (α) + ε

) )
. (3.10)

From theorem 3.3 it follows that

F̂n
(
uX (α) + ε

)
− FX

(
uX (α) + ε

) P
−−−−→
n→∞

0, (3.11)

and from the assumptions of this theorem we have that
kα
n − FX

(
uX (α) + ε

)
−−−−→
n→∞

α − FX
(
uX (α) + ε

)
< 0. (3.12)

By combining (3.11) and (3.12) we obtain that the right-hand side of equality (3.10)
converges to zero, thus we have proved that P(

ûn(α) > uX (α) + ε
)
−−−−→
n→∞

0.

Part (ii): * Similarly as in the part (i) let us calculate

P
(√

n
[
ûn(α) − uX (α)

]
≤ x

)
= P

(
ûn(α) ≤ uX (α) +

x√
n

)
= P

(
F̂n

(
uX (α) +

x√
n

)
− FX

(
uX (α) +

x√
n

)
≥

kα
n − FX

(
uX (α) +

x√
n

) )
.

= P
(
Zn ≥ xn

)
,

where

Zn =

√
n
[
F̂n

(
uX (α) +

x√
n

)
− FX

(
uX (α) +

x√
n

) ]√
α(1 − α)

and

xn =

√
n
[ kα

n − FX
(
uX (α) −

x√
n

) ]√
α(1 − α)

.

* This part of the proof was not done in the lecture.
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From the central limit theorem for triangular arrays (e.g. Theorem 16.4 Lachout, 2004)
it follows that Zn

d
−−−−→
n→∞

Z , where Z ∼ N(0, 1). Furthermore, from the assumptions of

the theorem we get that xn −−−−→
n→∞

−x fX

(
uX (α)

)
√
α(1−α)

. So in total we have that

P
(√

n
[
ûn(α) − uX (α)

]
≤ x

)
−−−−→
n→∞

P
(
Z ≥

−x fX

(
uX (α)

)
√
α(1−α)

)
= P

(
Z ≤

x fX

(
uX (α)

)
√
α(1−α)

)
,

which (together with the definition of convergence in distribution) implies the state-
ment of the theorem. �

The asymptotic variance V (α) of the empirical quantile is difficult to estimate be-
cause we do not have a universally applicable and reliable estimator of the density.
Under the assumption that FX is continuous at uX (α), it is possible to use order statis-
tics to construct a confidence interval.

For example two-sided confidence interval for uX (α) with confidence level of 1 −
β can be found in the form of (

X(kL ),X(kU )

) . To determine numbers kL and kU let us
observe that

P
(
X(kL ) ≥ uX (α)

)
= P

( n∑
i=1

1
{

Xi < uX (α)
}
≤ kL − 1

)
= P

(
Bi(n, α) ≤ kL − 1

)
,

P
(
X(kU ) ≤ uX (α)

)
= P

( n∑
i=1

1
{

Xi ≤ uX (α)
}
≥ kU

)
= P

(
Bi

(
n, α

)
≥ kU

)
.

Therefore, numbers kL and kU can be found using the binomial distribution as the
largest and smallest natural numbers such that

P
(
Bi(n, α) ≤ kL − 1

)
≤

β
2 , P

(
Bi

(
n, α

)
≥ kU

)
≤

β
2 .

If it is not feasible to work directly with the binomial distribution, we can approx-
imate it by the normal distribution. In this case it is good to notice that

P
(
Bi(n, α) ≤ kL − 1

)
= P

(
Bi(n, α) < kL

)
and P

(
Bi

(
n, α

)
≥ kU

)
= P

(
Bi

(
n, α

)
> kU − 1

)
.

Therefore, as a “compromise” before the normal approximation, we proceed from the
following equations

P
(
X(kL ) ≥ uX (α)

)
= P

(
Bi(n, α) < kL −

1
2

)
, P

(
X(kU ) ≤ uX (α)

)
= P

(
Bi

(
n, α

)
> kU −

1
2

)
.

Now, using the normal approximation

P
(
Bi(n, α) < kL −

1
2

)
= P

(
Bi(n,α)−nα√

nα(1−α)
<

kL−
1
2−nα

√
nα(1−α)

)
� Φ

(
kL−

1
2−nα

√
nα(1−α)

)
,

P
(
Bi(n, α) > kU −

1
2

)
= P

(
Bi(n,α)−nα√

nα(1−α)
>

kU−
1
2−nα

√
nα(1−α)

)
� 1 − Φ

(
kU−

1
2−nα

√
nα(1−α)

)
.

44



3. Parameter Estimation

From here we can already express the approximate values kL a kU

kL =
⌊

1
2 + nα − u1− β

2

√
nα(1 − α)

⌋
, kU =

⌈
1
2 + nα + u1− β

2

√
nα(1 − α)

⌉
.

The aforementioned “compromise” is usually called the continuity correction. The
purpose of this “correction”, however, is not to make something continuous out of
something discontinuous. It is a certain caution in case that a discrete distribution
(in our case binomial) is approximated by a continuous one (in our case normal).
Remark. For small sample sizes n and α close to zero or one it can happen that either
P
(
Bi(n, α) = 0)

>
β
2 or P(

Bi(n, α) = n
)
>

β
2 . In that case we choose the lower (or the

upper) bound of our confidence interval to be equal to −∞ (or +∞).
Exercise. Show that if we omit the assumption of continuity of the cumulative distri-
bution function at the estimated quantile uX (α), then the closed interval 〈X(kL ),X(kU )〉

will have (for n sufficiently large) probability of coverage at least 1 − β.

3.5.5. EMPIRICAL ESTIMATORS FOR RANDOM VECTORS

Empirical estimators of first two moments can be easily generalised to random vec-
tors. LetX1, . . . ,Xn be a random sample of independent k -dimensional random vec-
tors from a distribution FX . Individual components of the vector Xi will be denoted
by Xi j , i = 1, . . . ,n, j ∈ {1, . . . ,k }. Further, let us denote

µ = EXi , Σ = varXi .

The empirical estimator of µ is apparently the vector of empirical estimators of its
individual components, i.e. k -dimensional sample mean

Xn =
1
n

n∑
i=1
Xi .

The empirical estimator of the variance matrix Σ can be obtained from the follow-
ing representation

Σ = E
(
Xi − EXi

) (
Xi − EXi

)T
= EXiX

T

i − (EXi )(EXi )
T = EX ⊗2

i − (EXi )
⊗2

if we replace the expected values by their empirical estimators (i.e. sample means).
Thus, we obtain

Σ̂n =
1
n

n∑
i=1
X ⊗2

i −X
⊗2
n =

1
n

n∑
i=1

(
Xi −Xn

) (
Xi −Xn

)T.
Nevertheless, usually so called sample covariation matrix is used. It is defined as a
multidimensional analogy of the sample variance S2

n :

S2
n =

1
n − 1

n∑
i=1

(
Xi −Xn

) (
Xi −Xn

)T.
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3. Parameter Estimation

Remark.
• Diagonal elements of S2

n are sample variances of individual components, i.e.

S2
j =

1
n − 1

n∑
i=1
(Xi j − X j )

2,

for j ∈ {1, . . . , k }, where X j =
1
n

∑n
i=1 Xi j .

• Element (j,m) of the matrix S2
n is given by the expression

S j m =
1

n − 1
n∑

i=1
(Xi j − X j )(Xim − X m)

for j ∈ {1, . . . , k } and m ∈ {1, . . . ,k }, j , m. This random variable estimates the
covariance cov (Xi j ,Xim) between j -th a m-th component of Xi . It is called the
sample covariance.

• S2
n is positive semi-definite and it holds that

S2
n =

n

n − 1 Σ̂n =
n

n − 1
( 1

n

n∑
i=1
X ⊗2

i −X
⊗2
n

)
.

The following assertion shows that both Xn and S2
n are unbiased and consistent

estimators.
Proposition 3.6

(i) If E
��Xi j

�� < ∞ for every j ∈ {1, . . . , k }, then EXn = µ and Xn
P
−−−−→
n→∞

µ.

(ii) If var (Xi j ) < ∞ for every j ∈ {1, . . . , k }, then ES2
n = Σ and S2

n
P
−−−−→
n→∞

Σ.

Proof. Part (i): Follows directly from theorem 2.2, which we use componentwise.
Part (ii): Consistency of S2

n can be proved analogously as in the case of S2
n (see theo-

rem 2.6(i)).
Unbiasedness can be proved in the following way:

ES2
n =

n

n − 1

[
1
n

n∑
i=1

EX ⊗2
i − E

( 1
n

n∑
i=1
Xi

) ⊗2]
=

n

n − 1

(
EX ⊗2

i −
1

n2

n∑
i=1

n∑
j=1

EXiX
T

j

)
=

n

n − 1

(
EX ⊗2

i −
1

n2

n∑
i=1

EX ⊗2
i −

1
n2

n∑
i=1

n∑
j=1,j,i

EXiX
T

j

)
=

n

n − 1

[
EX ⊗2

i

(
1 − 1

n

)
−

n − 1
n

(
EXi

) ⊗2
]
= Σ.

�
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3. Parameter Estimation

*Recall the definition of the correlation coefficient of the random variables Xi j and
Xim :

%(Xi j ,Xim) =
cov (Xi j ,Xim)√
var Xi j var Xim

.

It is logical to define the sample correlation coefficient as the empirical estimator of
this parameter, composed of empirical estimators of individual components.

Definition 3.8 The sample correlation coefficient %̂j m of variables Xi j and Xim , j ∈
{1, . . . , k } and m ∈ {1, . . . , k }, j , m, is defined as

%̂j m =
S j m

S j Sm
=

∑n
i=1(Xi j − X j )(Xim − X m)√∑n

i=1(Xi j − X j )
2 ∑n

i=1(Xim − X m)
2
.

Remark.
• −1 ≤ %̂j m ≤ 1 (see the Cauchy-Schwarz inequality).
• %̂j m = 1 (or −1) if and only if there exist constants a ∈ R and b > 0 (or b < 0)

such that Xi j = a + bXim for every i = 1, . . . ,n.
• %̂j m is a consistent estimator of the correlation coefficient %(Xi j ,Xim) (this fol-

lows from consistency of S2
n and theorem 1.1). But it is not unbiased.

Exercise. Prove that %̂j m
P
−−−−→
n→∞

%(Xi j ,Xim).

* The rest of the chapter was not lectured in 2020/21.
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3. Parameter Estimation

Sample examples for the preparation for the exam.

1. Consider a random sample X1, . . . ,Xn from a distribution given by the density
f (x ; δ) = e−x/δ

δ 1{x > 0}, where δ > 0 is an unknown parameter. Consider the
estimator δ̂n = X n . Show that it is an unbiased estimator of δX . Further, consider
the estimator δ̃n(a) = a X n , where a is a constant. Find a which minimizes the
mean squared error of δ̃n(a).

2. Consider a random sample X1, . . . ,Xn from the alternative distribution with some
parameter pX . Estimate the parameter pX by the method of moments and then
transform this estimator to create an estimator of θX = pX (1 − pX ). Examine the
unbiasedness and consistency of this new estimator of the variance. How is it
different from the ordinary sample variance?

3. Consider a random sample X1, . . . ,Xn from the alternative distribution with some
parameter pX . From the example on page 36 we know that an asymptotic con-
fidence interval for the parameter pX whose confidence level is 1 − α is(

p̂n − u1−α/2

√
p̂n (1−p̂n )
√

n
, p̂n + u1−α/2

√
p̂n (1−p̂n )
√

n

)
.

Using this information derive a confidence interval for the parameter θX = pX (1−
pX ).
Suppose that the confidence interval for the parameter pX was calculated from
the data. Interval (0.35, 0.55) was obtained. In that case, how does the confi-
dence interval for the parameter θX = pX (1 − pX ) look?

4. Let X1, . . . ,Xn be a random sample from N(µX , 9) distribution. How many obser-
vations do we need so that the length of the confidence interval for µX with the
confidence level of 0,90 is at most 0,25?

5. Let X n be the sample mean of a random sample X1, . . . ,Xn from Po(λX ) distribu-
tion. Determine the asymptotic distribution of the sample mean X n and based
on this distribution construct an asymptotic confidence interval for the param-
eter θX = exp{−λX }.

6. Let X1, . . . ,Xn be a random sample from the uniform distribution R(0, 1). Let
kn =

⌈√
n

⌉
. Prove that X(kn )

P
−−−−→
n→∞

0.
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A. APPENDIX

A.1. χ2 AND t DISTRIBUTION

Definition A.1 (χ2-distribution) Let Y = X1, . . . ,Xk be independent and identically
distributed random variables with distribution N(0, 1). Then the distribution of the
random variable ∑k

i=1 X 2
i is the χ2-distribution of k degrees of freedom. We write that

Y ∼ χ2
k .

Definition A.2 (t -distribution) Let X ∼ N(0, 1) and Z ∼ χ2
k be independent. Then

the distribution of the random variable T
df
= X√

Z /k
is called the [Student] t distribution

with k degrees of freedom. We write T ∼ tk .

A.2. IDEMPOTENTNÍ MATICE

Definition A.3 The squared matrix A (of dimension n×n) is idempotent, when AA =

A.

Lemma A.1 Let X ∼ Nn(0, Σ) and A be a positively semidefinite matrix of dimension
n × n such that AΣ is non-null and idempotent. Then

XTAX ∼ χ2
tr (AΣ).
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