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THE LIST OF SYMBOLS

aT the vector a transposed
a⊗2 aaT

∥a∥ the Euclidean norm of the vector a
P−→ convergence in probability

a.s.−→ convergence almost surely
d−→ convergence in distribution

𝑋 ∼ L 𝑋 has the exact distribution L
𝑋

as.∼ L 𝑋 has an asymptotic distribution L

𝛼 level of the test
𝛽𝑛 (𝐹 ), 𝛽𝑛 (𝜃 ) power of the test, powerfunction

𝛾3 skewness random variable
𝛾4 kurtosis random variable
𝛾4 empirical kurtosis
Θ parametric space
Θ0 null hypothesis
Θ1 alternative hypothesis
𝜆 Lebesgue measure on ℝ

𝜇𝑆 counting measure on a countable 𝑆
𝜇𝑘 𝑘-th central moment of the random random variable
𝜇𝑘 empirical odhad of the 𝑘-th central moment
𝜇′
𝑘 𝑘-tý moment random variable

𝜇′
𝑘 empirical odhad 𝑘-tého momentu

𝜎2𝑋 the variance of the random variable 𝑋
𝜎2𝑛 empirical estimator of variance
Σ̂𝑛 sample variance matrix
𝜑 the density of the standard normal distribution
Φ the cumulative distribution function of the standard normal distribution
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𝜒2𝑓 (𝛼) 𝛼-quantile of 𝜒2-distribution with 𝑓 degress of freedom

Ω the probability space

𝟙𝐵 the indicator of the set 𝐵
1𝑛 the column vector of ones of the length 𝑛

A 𝜎-algebra náhodných jevů na Ω

B0 Borel 𝜎-algebra on ℝ

B𝑛
0 Borel 𝜎-algebra on ℝ𝑛

C, C(𝛼) critical region of the test
𝑐𝐿 (𝛼), 𝑐𝑈 (𝛼) critical values

cov (𝑋1, 𝑋2) the covariance of the random variables 𝑋1 and 𝑋2
cov (X1,X2) the covariance matrix of the random vectorsX1 aX2

diag (a) diagonal matrix with the components of the vector a on the diagonal
E𝑋 expected value of the random variable (vector) 𝑋
F the model for the observed data
F0 distribution under the null hypothesis
F1 distribution under the alternative hypothesis
𝑓𝑋 density of the random variable (vector) 𝑋
𝐹𝑋 cumulative distribution function of the random variable (vector) 𝑋
𝐹 −1
𝑋 quantile function of the random variable 𝑋
𝐹𝑛 empirical cumulative distribuiton function

𝐹𝑚,𝑛 (𝛼) 𝛼-quantile distribution 𝐹𝑚,𝑛

𝐻0 null hypothesis
𝐻1 alternative hypothesis
𝕀𝑛 𝑛 × 𝑛 matrix of identity
L𝑝 the set of random varialbes on (Ω,A,P) with the finite 𝑝th

absolute moment
L2

+ the set of random varialbes on (Ω,A,P) with finite
and nonzero variance

L(𝑋 ) distribution random variable (vector) 𝑋
𝑚𝑋 median of the random variable 𝑋
𝑚𝑛 sample median

MSE mean squared error
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P probability
P𝑋 distribution random of the random variable 𝑋 , i.e. the measure induced by thi random variable on the sample space
P𝜃 distribution when the true value of the parameter is 𝜃

ℎ (𝔸) rank of matrix 𝔸
ℝ set of real numbers
𝑅𝑖 the rank of the 𝑖-th observation
SE standard error
𝑆2𝑛 sample variance
𝑆 𝑗𝑚 sample covariance of the 𝑗 th and the 𝑚th component of the random vector
𝑆𝑋 support of distribution of the random variable 𝑋

𝑡 𝑓 (𝛼) 𝛼-quantile of the distribution 𝑡 𝑓
tr (𝔸) trace of the matrix 𝔸
𝑢𝑋 (𝛼) 𝛼-quantile of the random variable 𝑋

𝑢𝛼 𝛼-quantile of the distribution N(0, 1)
𝑢𝑛 (𝛼) sample 𝛼-quantile
var𝑋 variance of the random variable 𝑋
varX variance matrix of the random vectorX

X sample space
𝑋 (𝑘 ) the 𝑘-th order statistics
𝑋 𝑛 sample mean of 𝑋1, . . . , 𝑋𝑛
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1. CLIPPINGS FROM THE ASYMPTOTIC
THEORY

1.1. THE CONVERGENCE OF RANDOM VECTORS

LetX be a 𝑘-dimensional random vector (with the cumulative distribution function
𝐹X) and {X𝑛}∞𝑛=1 be a sequence of 𝑘-dimensional random vectors (with the cumula-
tive distribution functions 𝐹X𝑛 ).

Definition 1.1 We say thatX𝑛
d−−−−→

𝑛→∞
X (i.e. X𝑛 converges in distribution toX), if

lim
𝑛→∞

𝐹X𝑛 (x) = 𝐹X (x)

for each point x of the continuity of 𝐹X .

Let 𝑑 be a metric in ℝ𝑘 , e.g. the Euclidean metric 𝑑 (x,y) =
√︃∑𝑘

𝑖=1(𝑥𝑖 − 𝑦𝑖 )2 .

Definition 1.2 We say that

• X𝑛
P−−−−→

𝑛→∞
X (i.e. X𝑛 converges in probability toX), if

∀𝜀 > 0 lim
𝑛→∞

P
[
𝜔 : 𝑑

(
X𝑛 (𝜔),X (𝜔)

)
> 𝜀

]
= 0;

• X𝑛
a.s.−−−−→
𝑛→∞

X (i.e. X𝑛 converges almost surely toX), if

P
[
𝜔 : lim

𝑛→∞
𝑑 (X𝑛 (𝜔),X (𝜔)) = 0

]
= 1.

Remark. For random vectors the convergence in probability and almost surely can
be defined also component-wise. That is letX𝑛 = (𝑋𝑛1, . . . , 𝑋𝑛𝑘 )T andX = (𝑋1, . . . , 𝑋𝑘 )T.
Then

X𝑛
P−−−−→

𝑛→∞
X (X𝑛

a.s.−−−−→
𝑛→∞

X) if 𝑋𝑛𝑗
P−−−−→

𝑛→∞
𝑋 𝑗 (𝑋𝑛𝑗

a.s.−−−−→
𝑛→∞

𝑋 𝑗 ), ∀𝑗 = 1, . . . , 𝑘 .

But this is not true for the convergence in distribution for which we have the Cramér-
Wold tvrz that states

X𝑛
d−−−−→

𝑛→∞
X ⇐⇒ λTX𝑛

d−−−−→
𝑛→∞

λTX , ∀λ ∈ ℝ𝑘 .
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1. Clippings from the asymptotic theory

Proposition 1.1 (Continuous Mapping Theorem, CMT) Let g : ℝ𝑘 → ℝ𝑚 be contin-
uous in each point of an open set 𝐶 ⊂ ℝ𝑘 such that P(X ∈ 𝐶 ) = 1. Then

1. X𝑛
a.s.−−−−→
𝑛→∞

X ⇒ g(X𝑛)
a.s.−−−−→
𝑛→∞

g(X);

2. X𝑛
P−−−−→

𝑛→∞
X ⇒ g(X𝑛)

P−−−−→
𝑛→∞

g(X);

3. X𝑛
d−−−−→

𝑛→∞
X ⇒ g(X𝑛)

d−−−−→
𝑛→∞

g(X).

Proposition 1.2 (Cramér-Slutsky, CS) LetX𝑛
d−−−−→

𝑛→∞
X, Y𝑛

P−−−−→
𝑛→∞

c, then

1. X𝑛 + Y𝑛
d−−−−→

𝑛→∞
X + c;

2. Y𝑛 X𝑛
d−−−−→

𝑛→∞
cX,

whereY𝑛 can be a sequence of random variables or vectors ormatrices of appropriate
dimensions (ℝ or ℝ𝑘 or ℝ𝑚×𝑘 ) and analogously c can be either a number or a vector
or a matrix of an appropriate dimension.

1.2. BASIC ASYMPTOTIC RESULTS

Proposition 1.3 (SLLN for i.id.) Let X1,X2, . . . be independent and identically dis-
tributed random vectors with a finite expectation EX𝑖 = µ. Then

X𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

X𝑖
a.s.−−−−→
𝑛→∞

µ.

Proposition 1.4 (CLT for i.id.) Let X1,X2, . . . be independent and identically dis-
tributed random with the expectation EX𝑖 = µ and a finite variance matrix varX𝑖 =

𝚺. Then √
𝑛

(
X𝑛 − µ

) d−−−−→
𝑛→∞

N𝑘 (0𝑘 ,𝚺).

1.3. Δ-METHOD

Let T𝑛 = (𝑇𝑛1, . . . ,𝑇𝑛𝑘 )T be an estimator of a 𝑘-dimensional parameterµ = (𝜇1, . . . , 𝜇𝑘 )T
and g = (𝑔1, . . . , 𝑔𝑚)T be a function from ℝ𝑘 → ℝ𝑚 . Denote the Jacobi matrix of the
function g at the point x as 𝔻g (x), i.e.

𝔻g (x) =
©«

∇𝑔1(x)
...

∇𝑔𝑚 (x)

ª®®¬ =

©«
𝜕𝑔1 (x)
𝜕𝑥1

. . .
𝜕𝑔1 (x)
𝜕𝑥𝑘

...
. . .

...
𝜕𝑔𝑚 (x)
𝜕𝑥1

. . .
𝜕𝑔𝑚 (x)
𝜕𝑥𝑘

ª®®®¬ .

10



1. Clippings from the asymptotic theory

Proposition 1.5 (Δ-method) Let

√
𝑛 (T𝑛 − µ) d−−−−→

𝑛→∞
N𝑘

(
0𝑘 ,𝚺

)
,

Further let g : 𝐴 → ℝ𝑚 , where 𝐴 ⊂ ℝ𝑘 , µ is an interior point of 𝐴 and the first-order
partial derivatives of g are continuous in a neighbourhood of µ. Then

√
𝑛

(
g(T𝑛) − g(µ)

) d−−−−→
𝑛→∞

N𝑚

(
0𝑚 ,𝔻g (µ) 𝚺𝔻

T

g (µ)
)
.

Theorem 1.5 is most often applied for 𝑘 = 𝑚 = 1 and 𝑇𝑛 = 𝑋 𝑛 , where 𝑋1, . . . , 𝑋𝑛 are
i.i.d. random variables. Then by the central limit theorem

√
𝑛

(
𝑋 𝑛 − E𝑋𝑖

) d−−−−→
𝑛→∞

N
(
0, var (𝑋𝑖 )

)
.

So if the function 𝑔 : ℝ → ℝ has a continuous derivative in a neighbourhood of 𝜇 =

E𝑋𝑖 , then √
𝑛
(
𝑔 (𝑋 𝑛) − 𝑔 (𝜇)

) d−−−−→
𝑛→∞

N
(
0, [𝑔 ′(𝜇)]2 var (𝑋𝑖 )

)
. (1.1)

Sometimes instead of (1.1) we write shortly 𝑔 (𝑋 𝑛)
as≈ N

(
𝑔 (𝜇), [𝑔

′ (𝜇) ]2 var (𝑋𝑖 )
𝑛

)
. The

quantity [𝑔 ′ (𝜇) ]2 var (𝑋𝑖 )
𝑛

is then called the asymptotic variance of 𝑔 (𝑋 𝑛) and it is de-
noted as avar

(
𝑔 (𝑋 𝑛)

)
. Note that the asymptotic variance has to be understood as the

variance of the asymptotic distribution, but not as some kind of a limiting variance.
As the following examples show for a sequence of random variables {𝑌𝑛} the asymp-

totic variance avar (𝑌𝑛) may exist even if var (𝑌𝑛) does not exist for any 𝑛 ∈ ℕ. Further
even if var (𝑌𝑛) exists, then it does not hold that var (𝑌𝑛)/avar (𝑌𝑛) → 1 as 𝑛 → ∞.

Example. Let 𝑋 ∼ N(0, 1) and {𝜀𝑛} be a sequence of random variables independent
with 𝑋 such that

P(𝜀𝑛 = −
√
𝑛) = 1

2𝑛 , P(𝜀𝑛 = 0) = 1 − 1
𝑛
, P(𝜀𝑛 =

√
𝑛) = 1

2𝑛 .

Define 𝑌𝑛 = 𝑋 + 𝜀𝑛 and show that 𝑌𝑛
d−−−−→

𝑛→∞
N(0, 1). Thus avar (𝑌𝑛) = 1. On the other

hand var (𝑌𝑛) = 2 for each 𝑛 ∈ ℕ.

Example. Suppose you have a random sample 𝑋1, . . . , 𝑋𝑛 from a Bernoulli distribu-
tion with parameter 𝑝𝑋 and you are interested in estimating the logarithm of the
odd, i.e. 𝜃𝑋 = log

( 𝑝𝑋
1−𝑝𝑋

)
. Compare the variance and the asymptotic variance of

𝜃𝑋 = log
( 𝑋 𝑛

1−𝑋 𝑛

)
.
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2. RANDOM SAMPLE

2.1. DEFINITION OF A RANDOM SAMPLE

Let the probability space (Ω,A, 𝑃 ) be given.

Definition 2.1 The random sample from distribution 𝐹𝑋 is defined as the sequence of
X1,X2, . . . ,X𝑛 independent identically distributed random vectors defined on (Ω,A, 𝑃 )
such that each random vector has a cumulative distribution 𝐹𝑋 . The constant 𝑛 is
called the sample size.

The elements of random sample can be either real random variables or random
vectors (matrices and so on). We can call them “observations” or “data”. The whole
random sample will be denoted asX.

Remark. The true cumulative distribution function 𝐹𝑋 from which our observations
X1,X2, . . . ,X𝑛 comes are not known. We aim to use observations in order to learn
something about 𝐹𝑋 . We assume that the cumulative distribution 𝐹𝑋 belongs to a set
of distributions množiny distributions F , which we call the model.

Definition 2.2 The model for the random sample X1,X2, . . . ,X𝑛 is a given set dis-
tributions F such that we assume that 𝐹𝑋 ∈ F .

Remark. The distribution 𝐹𝑋 is unknown. Our goal is to use the observed dataX in
order to determine some characteristics of 𝐹𝑋 that we call parameters. Formally the
parameter is a constant (or a vector of constants) θ𝑋 ∈ ℝ𝑘 that could be calculated if
the distribution 𝐹𝑋 was known. The parameter of interest thus can be written in the
form θ𝑋 ≡ 𝑡 (𝐹𝑋 ), where 𝑡 is a given functional.

Examples (Types of models for real random variables).
1. The model F can be for instance the set of all distributions on ℝ with a finite
expectation (or a finite variance). The parameters of interest can be for instance
E𝑋𝑖 , var𝑋𝑖 , P[𝑋 ≤ 𝑥] ≡ 𝐹𝑋 (𝑥) or the quantile 𝐹 −1

𝑋
(𝛼). Such a model is called

non-parametric, as we cannot describe all the distributions in F with a finite
number of parameters. By Θ we denote the set of possible values of θ ≡ 𝑡 (𝐹 )
when 𝐹 ∈ F .

2. The model F can be the set of all distributions with densities (with respect to
𝜎-finite measure) of the form 𝑓 (x;θ) with θ ∈ Θ ⊆ ℝ𝑝 , where 𝑓 (·; ·) is a known
function and θ is an unknown constant (e.g. exponential distributions, normal
distributions, geometric distributions). These models are called parametric. In

12



2. Random sample

parametric models each parameter of interest 𝜃𝑋 = 𝑡 (𝐹𝑋 ) can be expressed as a
function of the finite-dimensional parameter θ.

Examples (Parametric models).
• F =

{
N(𝜇, 𝜎20 ), 𝜇 ∈ ℝ, 𝜎20 be given

}
; 𝜃 = 𝜇, Θ = ℝ.

• F =
{
N(𝜇, 𝜎2), 𝜇 ∈ ℝ, 𝜎2 ∈ ℝ+}; θ = (𝜇, 𝜎2)T, Θ = ℝ ×ℝ+.

• F =
{
Exp(𝜆), 𝜆 ∈ ℝ+}; 𝜃 = 𝜆, Θ = ℝ+.

• F =
{
Be(𝑝), 𝑝 ∈ (0, 1)

}
; 𝜃 = 𝑝 , Θ = (0, 1).

Remark. We choose the model F and the parameter of interest θ. The model repre-
sents our apriori knowledge (not affected by the observed data) about the distribu-
tions of the random variables. The choice of the parameter depends on the question
that we are trying answer by the statistical analysis. The choice of the model and pa-
rameter affects the choice of the method for the data analysis (as well as the obtained
results).

2.2. STATISTICS

During statistical analysis we that from the random sample we calculate variables,
that contain (summarize) information about the parameters of interests. These vari-
ables are called statistics. Consider the random sampleX = (X1,X2, . . . ,X𝑛).

Definition 2.3 We call a statistic an arbitrary measurable function S (X) of obser-
vations calculated from the random sample X. Statistic is a random variable (or a
random vector).

A statistic cannot depend on the values that we do not know or that we do not
observe. A statistic is a function of observed data (and known constants). The most
commonly used statistics are the sample mean and the sample variance. To define
them denoteX = (𝑋1, 𝑋2, . . . , 𝑋𝑛)T.

Definition 2.4
(i) A random variable 𝑋 𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 is called a sample mean of the random sample

X.
(ii) Pro 𝑛 ≥ 2 the random variable 𝑆2𝑛 = 1

𝑛−1
∑𝑛
𝑖=1(𝑋𝑖−𝑋 𝑛)2 is called a sample variance

of the random sampleX.

2.2.1. PROPERTIES OF THE SAMPLE MEAN

Consider the model F = L2. I.e. we work with the random sample X whose com-
ponents 𝑋𝑖 are independent random variables with an arbitrary distribution with a
finite second moment. Denote 𝜇 ≡ E𝑋𝑖 a 𝜎2 = var𝑋𝑖 .

13



2. Random sample

Lemma 2.1

𝑋 𝑛 = argmin
𝑐 ∈ℝ

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑐 )2.

Proof. Introduce the function 𝑓 (𝑐 ) = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑐 )2. The statement of the lemma fol-

lows from the fact that 𝑓 ′(𝑋 𝑛) = 0 and that 𝑓 ′′(𝑐 ) > 0 for each 𝑐 ∈ ℝ. □

Theorem 2.2 (Properties of the sample mean)
(i) E𝑋 𝑛 = 𝜇, var𝑋 𝑛 = 𝜎2

𝑛
;

(ii) 𝑋 𝑛
P−→ 𝜇 as 𝑛 → ∞;

(iii)
√
𝑛

(
𝑋 𝑛 − 𝜇) d−−−−→

𝑛→∞
N(0, 𝜎2), i.e. 𝑋 𝑛

as.∼ N
(
𝜇, 𝜎

2

𝑛

)
Proof. (i) follows by the straightforward calculation. (ii) follow from the law of large
numbers (Proposition 1.3 pro 𝑘 = 1) and (iii) from the central limit theorem (Propo-
sition 1.4 for 𝑘 = 1). □

Remark. Suppose that the random variables in our sample are normally distributed,
i.e. F =

{
N(𝜇, 𝜎2), 𝜇 ∈ ℝ, 𝜎2 ∈ ℝ+}. Then the statemetns (i) a (iii) of the previous

proposition can be strengthened to
√
𝑛

(
𝑋 𝑛 − 𝜇

)
∼ N(0, 𝜎2) i.e. 𝑋 𝑛 ∼ N

(
𝜇, 𝜎

2

𝑛

)
.

Proof. From the assumptions it follows that the random vector Z =
(
𝑋1 − 𝜇, . . . , 𝑋𝑛 −

𝜇)T has independent components each of them having N(0, 𝜎2) distribution. By the
defition of the multivariate normal distribution it follows that Z ∼ N𝑛 (0, 𝜎2𝕀𝑛). De-
note c =

( 1√
𝑛
, . . . , 1√

𝑛

)T ∈ ℝ𝑛 . Now from the properties of the multivariate normal
distribution it follows that

cTZ =
√
𝑛 (𝑋 𝑛 − 𝜇) ∼ N(0, 𝜎2).

□

2.2.2. RELATIVE (EMPIRICAL) FREQUENCY

In applications often the random variable 𝑋𝑖 takes only two values usually denoted as
0 and 1. The number one thenmeans that in the 𝑖 th trial an event 𝐵 has occurred and
the number zero otherwise. Denote 𝑝 = P(𝑋𝑖 = 1). Then random variables 𝑋1, . . . , 𝑋𝑛
represent a random sample from the Bernoulli distribution Be(𝑝).
The sample mean 𝑋 𝑛 is now empirical (or relative) frequency of the event 𝐵 . Thus

Theorem 2.2 immediately implies.

Theorem 2.3 (Properties of empirical frequency)
(i) E𝑋 𝑛 = 𝑝 , var𝑋 𝑛 =

𝑝 (1−𝑝 )
𝑛

;
(ii) 𝑋 𝑛

P−−−−→
𝑛→∞

𝑝 ;

14



2. Random sample

(iii)
√
𝑛

(
𝑋 𝑛 − 𝑝

) d−−−−→
𝑛→∞

N
(
0, 𝑝 (1 − 𝑝)

)
(iv) 𝑛𝑋 𝑛 ∼ Bi(𝑛,𝑝), where Bi(𝑛,𝑝) stands for the binomial distribution with 𝑛 trials

and 𝑝 being the parameter of success.

Proof. (i), (ii) and (iii) follows directly from Theorem 2.2 together with E𝑋𝑖 = 𝑝 and
var𝑋𝑖 = 𝑝 (1 −𝑝). (iv) follows from the fact that 𝑛𝑋 𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 and from the definition

of the binomial distribution. □

Statement (ii) says that provided we have enough observations then we can find
the value 𝑝 with an arbitrary precision.

2.2.3. PROPERTIES OF THE SAMPLE VARIANCE

First consider the model F = L2. Denote 𝜇 = E𝑋𝑖 and 𝜎2 = var𝑋𝑖 . Sample variance
can be rewritten in several useful ways.

Theorem 2.4 (i)

𝑆2𝑛 =
𝑛

𝑛 − 1

(
1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖 − 𝑋 2

𝑛

)
. (2.1)

(ii) Let 1𝑛 be a column vector of 𝑛 ones. Denote 𝔸 = 𝕀𝑛 − 1
𝑛
1𝑛1

T
𝑛 (matrix 𝑛×𝑛). Then

𝑆2𝑛 =
1

𝑛 − 1X
T𝔸X =

1
𝑛 − 1Y

T𝔸Y , (2.2)

where Y = X − 𝑐1𝑛 for some 𝑐 ∈ ℝ.

Proof. Part (i):

𝑛−1
𝑛
𝑆2𝑛 =

1
𝑛

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑋 𝑛)2 =
1
𝑛

𝑛∑︁
𝑖=1

(
𝑋 2
𝑖 − 2𝑋𝑖𝑋 𝑛 + 𝑋 2

𝑛

)
=
1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖 − 2

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑋 𝑛 + 𝑋 2
𝑛

=
1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖 − 2𝑋 2

𝑛 + 𝑋 2
𝑛 =

1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖 − 𝑋 2

𝑛 .

Part (ii):

XT𝔸X = XT
(
𝕀𝑛 − 1

𝑛
1𝑛1

T
𝑛

)
X = XTX − 1

𝑛
XT1𝑛1

T
𝑛X

=

𝑛∑︁
𝑖=1

𝑋 2
𝑖 − 1

𝑛

( 𝑛∑︁
𝑖=1

𝑋𝑖

)2
=

𝑛∑︁
𝑖=1

𝑋 2
𝑖 − 𝑛𝑋 2

𝑛 = (𝑛 − 1)𝑆2𝑛 .

The last part of the proposition follows from the fact that

1T
𝑛𝔸 = 0 = 𝔸1𝑛 .

□
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Remark. Both formulas (2.1) and (2.2) are useful in particular in theoretical deriva-
tions. Formula (2.2) shows that 𝑆2𝑛 can be expressed in a quadratic form and shows
that 𝑆2𝑛 is location invariant.
Note that the matrix 𝔸 is idempotentní, i.e. 𝔸𝔸 = 𝔸. This will be used later on

when deriving the distribution of 𝑆2𝑛 (see Theorem 2.8 below).
We have a useful formula for calculating the expectations of the quadratic forms.

Lemma 2.5 Let Z be a random vector of length 𝑛 with the mean value µ and a finite
variance matrix Σ. Let 𝔹 be an arbitrary matrix 𝑛 × 𝑛. Then it holds that

EZT𝔹Z = µT𝔹µ + tr
(
𝔹Σ

)
.

Proof.

EZT𝔹Z = E tr
(
ZT𝔹Z

)
= E tr

(
𝔹ZZT

)
= tr

(
𝔹EZZT

)
= tr

(
𝔹
(
µµT + Σ

) )
= tr

(
𝔹µµT

)
+ tr

(
𝔹Σ

)
= µT𝔹µ + tr

(
𝔹Σ

)
,

where we make use of the fact that

Σ = E
(
Z − µ

) (
Z − µ

)T
= EZZT − µµT.

□

Theorem 2.6 (Properties sample variance)

(i) 𝑆2𝑛
P−−−−→

𝑛→∞
𝜎2.

(ii) E𝑆2𝑛 = 𝜎2.

(iii) If F = L4 (i.e. if the fourth moment of 𝑋𝑖 is finite), then

√
𝑛

(
𝑆2𝑛 − 𝜎2

) d−−−−→
𝑛→∞

N
(
0, 𝜎4(𝛾4 − 1)

)
,

where 𝛾4 = E (𝑋𝑖−𝜇)4
𝜎4

is the kurtosis of 𝑋𝑖 .

Proof. Part (i): With the help of Theorem 2.4(i) one can write

𝑆2𝑛 =
𝑛

𝑛 − 1

(
1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖 − 𝑋 2

𝑛

)
.

As 𝑛
𝑛−1 −−−−→

𝑛→∞
1, it is sufficient to show that

1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖 − 𝑋 2

𝑛

P−−−−→
𝑛→∞

𝜎2.
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By the law of large numbers (Proposition 1.3) it holds that(
𝑋 𝑛 ,

1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖

)T P−−−−→
𝑛→∞

(
E𝑋𝑖 ,E𝑋 2

𝑖

)T
.

Now the function 𝑔 (𝑦1, 𝑦2) = 𝑦2 − 𝑦 21 is continuous on ℝ2, i.e. it is continuous in (the
unknown point)

(
E𝑋𝑖 ,E𝑋 2

𝑖

)
, which is the support of the limit distribution. Now we

can use the Continuous Mapping Theorem (Proposition 1.1(ii)) a dostáváme

1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖 − 𝑋 2

𝑛

P−−−−→
𝑛→∞

E𝑋 2
𝑖 −

(
E𝑋𝑖

)2
= var𝑋𝑖 = 𝜎2,

which was to be proved.

Part (ii): Put Y = X−𝜇1𝑛 and note that EY = 0. Then according to Theorem 2.4(ii)
and Lemma 2.5 one can calculate

(𝑛 − 1)E𝑆2𝑛 = EY T𝔸Y = EY T𝔸EY + tr
(
𝔸𝜎2𝕀𝑛

)
= 0 + (𝑛 − 1)𝜎2,

as
tr

(
𝔸𝜎2𝕀𝑛

)
= 𝜎2

(
tr (𝕀𝑛) − 1

𝑛
tr (1𝑛1T

𝑛 )
)
= 𝜎2(𝑛 − 1).

Part (iii): First we rewrite the sample variance as

𝑆2𝑛 =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑋 𝑛)2 =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝜇)2 − 𝑛
𝑛−1 (𝑋 𝑛 − 𝜇)2.

And thus

√
𝑛

(
𝑆2𝑛 − 𝜎2

)
=

√
𝑛

𝑛 − 1

𝑛∑︁
𝑖=1

[
(𝑋𝑖 − 𝜇)2 − 𝜎2

]
+

√
𝑛

𝑛−1 𝜎
2 − 𝑛

𝑛−1
√
𝑛 (𝑋 𝑛 − 𝜇)2 𝑜𝑧𝑛.

= 𝐴𝑛 + 𝐵𝑛 +𝐶𝑛 ,

where 𝐴𝑛 , 𝐵𝑛 and 𝐶𝑛 denotes the corresponding terms on the right-hand side of the
above equation. Obviously

𝐵𝑛 =
√
𝑛

𝑛−1 𝜎
2 −−−−→

𝑛→∞
0.

Further
𝐶𝑛 = 𝑛

𝑛−1
√
𝑛 (𝑋 𝑛 − 𝜇)2 = 𝑛

𝑛−1
√
𝑛 (𝑋 𝑛 − 𝜇) (𝑋 𝑛 − 𝜇) P−−−−→

𝑛→∞
0,

where we make use of the fact that

𝑛
𝑛−1 −−−−→

𝑛→∞
1,

√
𝑛 (𝑋 𝑛 − 𝜇) d−−−−→

𝑛→∞
N(0, 𝜎2), 𝑋 𝑛 − 𝜇 P−−−−→

𝑛→∞
0

and Cramér-Slucky theorem (Proposition 1.2).
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Thus it is sufficient to deal with the term 𝐴𝑛 . For 𝑖 ∈ {1, . . . , 𝑛} denote𝑌𝑖 = (𝑋𝑖 −𝜇)2.
Then with the help of the central limit theorem for the random variables 𝑌𝑖 (Propo-
sition 1.4) a Cramér-Slucky theorem (Proposition 1.2)

𝐴𝑛 =

√
𝑛

𝑛 − 1

𝑛∑︁
𝑖=1

[
(𝑋𝑖 − 𝜇)2 − 𝜎2

]
=

𝑛

𝑛 − 1
1
√
𝑛

𝑛∑︁
𝑖=1

[
(𝑋𝑖 − 𝜇)2 − 𝜎2

]
=

𝑛

𝑛 − 1
1
√
𝑛

𝑛∑︁
𝑖=1

[
𝑌𝑖 − E𝑌𝑖

] d−−−−→
𝑛→∞

N
(
0, var (𝑌𝑖 )

)
.

Now it remains to calculate

var (𝑌𝑖 ) = var
(
(𝑋𝑖 − 𝜇)2

)
= E (𝑋𝑖 − 𝜇)4 −

(
𝜎2

)2
= 𝜎4

[
E

(𝑋𝑖−𝜇
𝜎

)4 − 1
]
= 𝜎4

[
𝛾4 − 1

]
.

□

Remark.
• Theorem 2.6(iii) says, that the asymptotic variance of the sample variance de-
pends on the kurtosis.

Remark. Alternativaly one can prove Theorem 2.6(ii) (i.e. unbiasedness of the sam-
ple variance) by the following straightforward calculation

E𝑆2𝑛 =
1

𝑛 − 1

(
𝑛∑︁
𝑖=1

E𝑋 2
𝑖 − 𝑛 E𝑋

2
𝑛

)
=

1
𝑛 − 1

(
𝑛 E𝑋 2

1 − 𝑛 var
(
𝑋 𝑛

)
− 𝑛

(
E𝑋 𝑛

)2)
=

1
𝑛 − 1

(
𝑛 (𝜎2 + 𝜇2) − 𝑛 𝜎2

𝑛
− 𝑛 𝜇2

)
=

1
𝑛 − 1

(
𝑛𝜎2 − 𝜎2

)
= 𝜎2,

where wemake us of the fact E𝑋 2
1 = var (𝑋1)+

(
E𝑋1

)2 and analogously also of E (
𝑋 𝑛

)2
=

var
(
𝑋 𝑛

)
+

(
E𝑋 𝑛

)2.
Exercise. Prove that, when 𝑋𝑖 are zero-one variables then 𝑆2𝑛 = 𝑛

𝑛−1 𝑋 𝑛 (1 − 𝑋 𝑛). Hint:
Use the fact that 𝑋 2

𝑖
= 𝑋𝑖 .

Nowwe add the assumption of the normal distribution, e.g. we are going to work
in the smaller model F =

{
N(𝜇, 𝜎2), 𝜇 ∈ ℝ, 𝜎2 ∈ ℝ+}. Thus we have a random sam-

ple X = (𝑋1, 𝑋2, . . . , 𝑋𝑛)T, with 𝑋𝑖 being independent with the distribution N(𝜇, 𝜎2).
Thanks to the independence it holds thatX ∼ N𝑛 (𝜇1𝑛 , 𝜎2𝕀𝑛).
First we give two results that hold for random vectors with (arbitrary) normal dis-

tributions.

Lemma 2.7 Let X ∼ N𝑛 (µ, Σ) a 𝔸 be a positive semidefinit matrix of the dimension
𝑛 × 𝑛.

(i) Let 𝔹 be a matrix of dimension 𝑚 × 𝑛 such that 𝔹Σ𝔸 = 𝟘𝑚×𝑛 . Then the random
variableXT𝔸X and the random vector 𝔹X are independent.
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(ii) Let 𝔹 be a positive semidefinite matrix of dimension 𝑛×𝑛 which satisfies 𝔹Σ𝔸 =

𝟘𝑛×𝑛 . Then the random variablesXT𝔸X andXT𝔹X are independent.

Proof. Part (i). As the matrix 𝔸 is positive semidefinite there exists an ortonormal
matrix 𝕌 such that

𝔸 = 𝕌𝔻𝕌T

where 𝔻 = diag (𝜆1, . . . , 𝜆𝑛) is a diagonal with eigenvalues of the matrix 𝔸 on the di-
agonal. Note that these eigenvalues are non-negative.
Further from the assumptions of lemma we have

𝟘𝑚×𝑛 = 𝔹Σ𝔸 = 𝔹Σ𝕌𝔻𝕌T.

Denote by 𝔻−1/2 the diagonal matrix with the 𝑖 th diagonal element 𝑖 given by 1√
𝜆𝑖
if 𝜆𝑖

is positive and zero otherwise. Multiplying the above equation with thematrix𝕌𝔻−1/2

from the right we get
𝟘𝑚×𝑛 = 𝔹 Σ𝕌𝔻1/2.

Thus random vectors 𝔹X and 𝔻1/2𝕌TX are not correlated as

cov
(
𝔹X ,𝔻1/2𝕌TX

)
= 𝔹 Σ𝕌𝔻1/2 = 𝟘𝑚×𝑛 .

Now from the definition multivariate normal distribution it follows that random vec-
tors has the joint normal distribution as we can write(

𝔹X

𝔻1/2𝕌TX

)
=

(
𝔹

𝔻1/2𝕌T

)
X .

Now the joint normality and the fact the random vectors are not correlated imply the
independence of the random vectors 𝔹X and 𝔻1/2𝕌TX (P.6.2(ii)). Thus also 𝔹X and
XT𝕌𝔻1/2𝔻1/2𝕌TX = XT𝔸X are independent.

Part (ii). Analogously as above using the spectral decompositions one gets

𝔸 = 𝕌𝐴 𝔻𝐴 𝕌
T
𝐴 and 𝔹 = 𝕌𝐵 𝔻𝐵 𝕌

T
𝐵 ,

where 𝕌𝐴 , 𝕌𝐵 is ortonormal matrix and 𝔻𝐴 , 𝔻𝐵 is diagonal matrix with non-negative
elements on diagonals.
Further from the assumption of the lemmat

𝟘𝑛×𝑛 = 𝔹Σ𝔸 = 𝕌𝐵𝔻𝐵𝕌
T
𝐵 Σ𝕌𝐴𝔻𝐴𝕌

T
𝐴

Let 𝔻−1/2
𝐴

and 𝔻
−1/2
𝐵

are as the matrix 𝔻−1/2 above. Then multiplying the above equa-
tion with the matrix 𝕌𝐴 𝔻

−1/2
𝐴

from the rate and with the matrix 𝔻−1/2
𝐵

𝕌T
𝐵
from the left

we get
𝟘𝑛×𝑛 = 𝔻

1/2
𝐵

𝕌T
𝐵 Σ𝕌𝐴𝔻

1/2
𝐴
.
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2. Random sample

Thus similarly as in part (i) we get that the random vectors 𝔻1/2
𝐵

𝕌T
𝐵
X a 𝔻

1/2
𝐴

𝕌T
𝐴
X are

independent. Thus also

XT𝕌𝐵𝔻
1/2
𝐵

𝔻
1/2
𝐵

𝕌T
𝐵X = XT𝔹X

and
XT𝕌𝐴𝔻

1/2
𝐴

𝔻
1/2
𝐴

𝕌T
𝐴X = XT𝔸X .

are independent.
□

Theorem 2.8 (Properties sample variance za normality) Let 𝑋𝑖 ∼ N(𝜇, 𝜎2), 𝑖 = 1, . . . , 𝑛
be independent. Then it holds

(i)
(𝑛 − 1)𝑆2𝑛

𝜎2
∼ 𝜒2𝑛−1.

∗ (2.3)

(ii) 𝑋 𝑛 and 𝑆2𝑛 are independent random variables.

Proof. Part (i). Using Theorem 2.4 one can rewrite

(𝑛 − 1)𝑆2𝑛
𝜎2

= Y T𝔸Y ,

where
Y =

(𝑋1−𝜇
𝜎

, . . . ,
𝑋𝑛−𝜇
𝜎

)T ∼ ℕ𝑛
(
0, 𝕀𝑛

)
and 𝔸 = 𝕀𝑛 − 1

𝑛
1𝑛1

T
𝑛 . As matrix 𝔸 is idempotentní with the rank 𝑛 − 1, then the state-

ment of the proposition follows from lemma A.1 (where Σ = 𝕀𝑛).
Part (ii) Note that one can write

𝑋 𝑛 =
1
𝑛
𝔹X , 𝑆2𝑛 =

1
𝑛 − 1X

T𝔸X ,

where 𝔹 = 1T
𝑛 a 𝔸 = 𝕀𝑛 − 1

𝑛
1𝑛1

T
𝑛 . Further X ∼ ℕ𝑛

(
𝜇1𝑛 , 𝜎

2𝕀𝑛
)
and thus proposition

follows from lemma 2.7(i) as

𝔹Σ𝔸 = 1T
𝑛𝜎

2𝕀𝑛
(
𝕀𝑛 − 1

𝑛
1𝑛1

T
𝑛

)
= 𝜎2

(
1T
𝑛 − 1

𝑛
𝑛1T

𝑛

)
= 0T

𝑛 .

□

Remark. From the definition of 𝜒2 distributions we know that random variable with
𝜒2
𝑛−1 distribution can be represented as

∑𝑛−1
𝑖=1 𝑌

2
𝑖
, where 𝑌1, . . . ,𝑌𝑛−1 are independent

and identically distributed random variables with N(0, 1) distribution. From the cen-
tral limit theorem and (2.3) it follows that

(𝑛−1)𝑆2𝑛
𝜎2

− (𝑛 − 1)
√
𝑛 − 1

d−−−−→
𝑛→∞

N(0, 2)

∗ Viz Definition A.1.
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2. Random sample

and thus √︃
𝑛−1
𝑛

√
𝑛

(
𝑆2𝑛 − 𝜎2

) as.∼ N(0, 2𝜎4).

Taking into consideration that the skewness of normal distribution is 3, we see that
statement (i) of Theorem 2.8 is in agreement with the asymptoic result of Theorem 2.6(iii).
Theorem 2.8(i) now gives the exact distribution of 𝑆2𝑛 for random sample from the
normal distribution, while Theorem 2.6(iii) gives the asymptotic distribution 𝑆2𝑛 for
random sample from an aribtrary distribution that has the finite fourth moment.

Remark. One can remember the statement (i) of Theorem 2.8(i) as follows. Note that

(𝑛 − 1)𝑆2𝑛
𝜎2

=

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋 𝑛

𝜎

)2
.

If one uses the true expectation𝜇 instead of 𝑋 𝑛 in the above formula, then
∑𝑛
𝑖=1

(𝑋𝑖−𝜇
𝜎

)2 ∼
𝜒2𝑛 . By replacing the unknown expectation 𝜇 with its estimator 𝑋 𝑛 we loose one de-
grees of freedom (as we estimate one parametr).

Remark. Theorem 2.8(ii) says, that when the random sample comes from the normal
distribution, then 𝑋 𝑛 and 𝑆2𝑛 are independent for each finite 𝑛 > 1.

Theorem 2.9 (limitní Theorem o 𝑇𝑛) Let 𝑋1, . . . , 𝑋𝑛 be a random sample from an ar-
bitrary distribution with the expectation 𝜇 and with the finite and non-zero variance
𝜎2. Then

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜇

)
𝑆𝑛

d−−−−→
𝑛→∞

N(0, 1).

Proof. The random variable 𝑇𝑛 can be now rewritten in the form

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜇

)
𝜎

𝜎

𝑆𝑛
.

By the central limit theorem (Proposition 1.4, pro 𝑘 = 1) one has that
√
𝑛

(
𝑋 𝑛 − 𝜇

)
𝜎

d−−−−→
𝑛→∞

N(0, 1).

Further z 𝑆2𝑛
P−−−−→

𝑛→∞
𝜎2 (Theorem 2.6(i)) and byt the continuous mapping theorem

(Proposition 1.1(ii)) for 𝑔 (𝑦 ) = 𝜎/√𝑦 one gets

𝜎

𝑆𝑛

P−−−−→
𝑛→∞

1.

The statement now follows from Cramér-Slucky věty (Proposition 1.2). □

Now we again add the assumption of normal distribution.
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Theorem2.10 Let 𝑋1, . . . , 𝑋𝑛 be a random sample from the distributionN(𝜇, 𝜎2). Then

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜇

)
𝑆𝑛

∼ 𝑡𝑛−1 .∗

Proof. The random variable 𝑇𝑛 can now be rewritten as

𝑇𝑛 =

√
𝑛 (𝑋 𝑛−𝜇)

𝜎√︃
(𝑛−1)𝑆2𝑛

𝜎2
/(𝑛 − 1)

. (2.4)

From the remark below Theorem 2.2 we know that
√
𝑛

𝑋 𝑛−𝜇
𝜎

∼ N(0, 1). Further (𝑛−1)𝑆2𝑛
𝜎2

∼
𝜒2
𝑛−1 (Theorem 2.8(i)), and at the same time the numerator and the denominator in
fraction (2.4) are independent (Theorem 2.8(ii)). The statement now follows from the
definition of the 𝑡 -distributions (see Definition A.2). □

Remark. Theorem 2.10 gives the exact distribution of𝑇𝑛 for normally distributed data
while Theorem 2.9 gives the asymptotic distribution of𝑇𝑛 for random sample from an
arbitrary distribution with the finite and non-zero variance. Note that for 𝑛 → ∞ the
distribution 𝑡𝑛−1 converges in distribution to N(0, 1).

Now we will consider two random samples from the normal distributions.

Definition 2.5 (𝐹 -distribution) Let 𝑋 ∼ 𝜒2𝑛 and 𝑌 ∼ 𝜒2𝑚 be independent. Then the
distributions of the random variables

𝑍 =
𝑋 /𝑛
𝑌 /𝑚

is called [Fisher-Snedecor] 𝐹 -distribution with 𝑛 and𝑚 degrees of freedom. This dis-
tribution is denoted as 𝐹𝑛,𝑚 .

Theorem 2.11 (Theorem about F statistic) Let 𝑋1, . . . , 𝑋𝑛 be a random sample from
the normal distribution N(𝜇𝑋 , 𝜎2𝑋 ) and 𝑌1, . . . ,𝑌𝑚 be a random sample from the nor-
mal distribution N(𝜇𝑌 , 𝜎2𝑌 ). Let the random vectors (𝑋1, . . . , 𝑋𝑛)T and (𝑌1, . . . ,𝑌𝑚)T be
independent. Denote the sample means as 𝑋 𝑛 , 𝑌 𝑚 and the sample variances as

𝑆2𝑋 =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑋 𝑛)2 a 𝑆2𝑌 =
1

𝑚 − 1

𝑚∑︁
𝑗=1

(𝑌𝑗 −𝑌 𝑚)2.

Then it holds that
𝑆2
𝑋
/𝜎2

𝑋

𝑆2
𝑌
/𝜎2

𝑌

∼ 𝐹𝑛−1,𝑚−1.

∗ Viz Definition A.2.
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Proof. The statistics can be rewritten as

𝑆2
𝑋
/𝜎2

𝑋

𝑆2
𝑌
/𝜎2

𝑌

=

(𝑛−1)𝑆2
𝑋

𝜎2
𝑋

/
(𝑛 − 1)

(𝑚−1)𝑆2
𝑌

𝜎2
𝑌

/
(𝑚 − 1)

.

Further (𝑛−1)𝑆2
𝑋

𝜎2
𝑋

∼ 𝜒2
𝑛−1 and

(𝑚−1)𝑆2
𝑌

𝜎2
𝑌

∼ 𝜒2
𝑚−1 (Theorem 2.8(ii)). Moreover these ran-

dom variables are independent. The statement of the theorem now follows from the
definition of 𝐹 -distribution (Definition 2.5). □

2.3. ORDERED RANDOM SAMPLE

Suppose that hte random sample 𝑋1, . . . , 𝑋𝑛 is from the one-dimensional distribu-
tion with the cumulative distribution function 𝐹 and density 𝑓 with respect to the
Lebesgue measure. Let 𝑛 ≥ 2. Using the fact that 𝑋1, . . . , 𝑋𝑛 are independent and
have continuous distributions implies

P
(
𝑋𝑖 = 𝑋 𝑗 for some 𝑖 , 𝑗 ∈ {1, . . . , 𝑛}

)
= 0.

Definition 2.6 (The ordered random sample and ranks)

(i) By ordering the random variables 𝑋1, . . . , 𝑋𝑛 from the smallest to the largest we
get ordered random sample

𝑋 (1) < 𝑋 (2) < · · · < 𝑋 (𝑛−1) < 𝑋 (𝑛 ) .

With the symbol 𝑋 (𝑘 ) we understand the 𝑘 th smallest value among the observa-
tions 𝑋1, . . . , 𝑋𝑛 and we call it the 𝑘 th order statistic.

(ii) By the rank of the random variables 𝑋𝑖 in the random sample 𝑋1, . . . , 𝑋𝑛 we un-
derestand the number 𝑅𝑖 ∈ {1, . . . , 𝑛} such that 𝑋𝑖 = 𝑋 (𝑅𝑖 ) .

The whole ordered random sample will be denoted asX( ·) , i.e.

X( ·) =
(
𝑋 (1) , . . . , 𝑋 (𝑛 )

)T
.

Analogously denote
R = (𝑅1, . . . , 𝑅𝑛)T.

Remark.
1. The original sample values 𝑋1, . . . , 𝑋𝑛 can be reconstructed fromX( ·) and R.
2. The first order statistic is the minimum of the variables in the random sample.

Analogously the 𝑛th order statistic is the maximum.
3. Platí 𝑅𝑖 =

∑𝑛
𝑗=1 𝟙{𝑋𝑖 ≥ 𝑋 𝑗

}
= 1 + ∑𝑛

𝑗=1 𝟙{𝑋𝑖 > 𝑋 𝑗
}
.
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2. Random sample

4. Order statistics and ranks are random variables and at the same time statistics
in the sense Definition 2.3.

By P𝑛 denote set of all permutations of the sequence of numbers (1, . . . , 𝑛). The
number of the elements of this set is 𝑛!.

Theorem 2.12 The joint density of the random vector X( ·) = (𝑋 (1) , . . . , 𝑋 (𝑛 ) )T with
respect to the Lebesgue measure is

𝑝 (𝑦1, . . . , 𝑦𝑛) =
{
𝑛! 𝑓 (𝑦1) 𝑓 (𝑦2) · · · 𝑓 (𝑦𝑛) pokud 𝑦1 < · · · < 𝑦𝑛 ,

0 jinak.

Remark. Random variables 𝑋 (1) , . . . , 𝑋 (𝑛 ) are independent. Analogously also random
variables 𝑅1, . . . , 𝑅𝑛 (i.e. the ranks of 𝑋1, . . . , 𝑋𝑛) are not independent.

Theorem 2.13 The cumulative distribution function of the 𝑘 th order statistic is given
by

𝐹 (𝑘 ) (𝑥) = P
(
𝑋 (𝑘 ) ≤ 𝑥

) (𝑖 )
=

𝑛∑︁
𝑗=𝑘

(
𝑛

𝑗

)
𝐹 𝑗 (𝑥)

(
1 − 𝐹 (𝑥)

)𝑛−𝑗
=

1
𝐵 (𝑘, 𝑛 − 𝑘 + 1)

∫ 𝐹 (𝑥 )

0
𝑡 𝑘−1(1 − 𝑡 )𝑛−𝑘𝑑𝑡 ,

where 𝐵 (·, ·) denotes Beta function (see Appendix A.4).

Proof. We will show only the inequality (i). Denote 𝑍𝑖 = 𝟙
{
𝑋𝑖 ≤ 𝑥

}
. Then 𝑌𝑛 =

∑𝑛
𝑖=1 𝑍𝑖

is the number of the random variables that are less or equal to 𝑥 . Moreover 𝑌𝑛 ∼
Bi

(
𝑛, 𝐹 (𝑥)

)
. Thus

P
(
𝑋 (𝑘 ) ≤ 𝑥

)
= P

(
𝑌𝑛 ≥ 𝑘

)
=

𝑛∑︁
𝑗=𝑘

P
(
𝑌𝑛 = 𝑗

)
=

𝑛∑︁
𝑗=𝑘

(
𝑛

𝑗

)
𝐹 𝑗 (𝑥)

(
1 − 𝐹 (𝑥)

)𝑛−𝑗
.

□

Consequences.
1. Let 𝑋𝑖 follows a uniform distribution on the interval (0, 1), then the random
variable 𝑋 (𝑘 ) follows the distributions with the density 𝑓 (𝑥) = 1

𝐵 (𝑘,𝑛−𝑘+1) 𝑥
𝑘−1(1−

𝑥)𝑛−𝑘𝟙{𝑥 ∈ (0, 1)}, i.e. Beta distributionB(𝑘, 𝑛−𝑘+1). From that it follows among
others that

E𝑋 (𝑘 ) =
𝑘

𝑛 + 1 , var
(
𝑋 (𝑘 )

)
=

𝑘 (𝑛 − 𝑘 + 1)
(𝑛 + 2) (𝑛 + 1)2

.

2. Let 𝑋𝑖 is a continuous random variable with the increasing cumulative distribu-
tion function 𝐹 . Then 𝐹 (𝑋 (𝑘 ) ) ∼ B(𝑘 , 𝑛 − 𝑘 + 1).
On the other hand let 𝑍 ∼ B(𝑘 , 𝑛 − 𝑘 + 1). Then

P[𝑋 (𝑘 ) ≤ 𝑥] = P[𝐹 (𝑋 (𝑘 ) ) ≤ 𝐹 (𝑥)] = P[𝑍 ≤ 𝐹 (𝑥)] = P[𝐹 −1(𝑍 ) ≤ 𝑥],

i.e. 𝑋 (𝑘 ) has the same distribution as 𝐹 −1(𝑍 ).

24



2. Random sample

Theorem 2.14 The density of 𝑘 th order statistic with respect to Lebesgue measure is

𝑓 (𝑘 ) (𝑥) = 𝑛
(
𝑛 − 1
𝑘 − 1

)
𝑓 (𝑥)𝐹 𝑘−1(𝑥) [1 − 𝐹 (𝑥)]𝑛−𝑘 .

Proof. With the help of Theorem 2.13

𝑓 (𝑘 ) (𝑥) = 𝐹 ′
(𝑘 ) (𝑥) =

1
𝐵 (𝑘 , 𝑛 − 𝑘 + 1) 𝑓 (𝑥)𝐹

𝑘−1(𝑥)
(
1 − 𝐹 (𝑥)

)𝑛−𝑘
and the statement of the theorem follows from the fact that

1
𝐵 (𝑘 , 𝑛 − 𝑘 + 1)

(A.1)
=

Γ(𝑛 + 1)
Γ(𝑘 )Γ(𝑛 − 𝑘 + 1) =

𝑛!
(𝑘 − 1)!(𝑛 − 𝑘 )! =

𝑛 (𝑛 − 1)!
(𝑘 − 1)!(𝑛 − 𝑘 )! = 𝑛

(
𝑛 − 1
𝑘 − 1

)
.

□

Theorem 2.15 The random vector R = (𝑅1, . . . , 𝑅𝑛)T takes values in the set P𝑛 and
each element of this set has the the same probability 1/𝑛!.

Theorem 2.16 It holds that
(i) P

(
𝑅𝑖 = 𝑘

)
= 1

𝑛
for each 𝑖 , 𝑘 ∈ {1, . . . , 𝑛}.

(ii) P
(
𝑅𝑖 = 𝑘,𝑅 𝑗 = 𝑚

)
= 1

𝑛 (𝑛−1) for each 𝑖 ≠ 𝑗 , 𝑘 ≠ 𝑚 ∈ {1, . . . , 𝑛}.
(iii) E𝑅𝑖 = 𝑛+1

2 , var𝑅𝑖 = 𝑛2−1
12 for each 𝑖 ∈ {1, . . . , 𝑛}.

(iv) cov (𝑅𝑖 , 𝑅 𝑗 ) = −𝑛+1
12 for each 𝑖 ≠ 𝑗 ∈ {1, . . . , 𝑛}.

Proof. Part (i). Without loss of generality one can assume that 𝑖 = 𝑛. Further let the
set P𝑘

𝑛−1 contains the elements of P𝑛 , which have the number 𝑘 as the last compo-
nent. Now

P
(
𝑅𝑛 = 𝑘

)
=

∑︁
r∈P𝑘

𝑛−1

P
(
R = r

)
= (𝑛 − 1)! 1

𝑛!
=
1
𝑛
,

where we make use of Theorem 2.15 and that the set P𝑘
𝑛−1 has (𝑛 − 1)! elements.

Part (ii). Without loss of generality we can assume that 𝑖 = 𝑛 − 1 and 𝑗 = 𝑛. Further
let P𝑘 ,𝑚

𝑛−2 contain the elements P𝑛 , that have the number 𝑚 as the last element and
the number 𝑘 as the second to the last element. Then

P
(
𝑅𝑛−1 = 𝑘,𝑅𝑛 = 𝑚

)
=

∑︁
r∈P𝑘,𝑚

𝑛−2

P
(
R = r

)
= (𝑛 − 2)! 1

𝑛!
=

1
𝑛 (𝑛 − 1) ,

where we make use of Theorem 2.15 and that the set P𝑘,𝑚
𝑛−2 have (𝑛 − 2)! elements.

Part (iii). Wit the help of statement (i):

E𝑅𝑖 =
𝑛∑︁
𝑘=1

𝑘 P
(
𝑅𝑖 = 𝑘

)
=

𝑛∑︁
𝑘=1

𝑘
1
𝑛

=
1
𝑛

𝑛 (𝑛 + 1)
2

=
𝑛 + 1
2

.
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Analogously

var𝑅𝑖 = E𝑅2𝑖 −
(
E𝑅𝑖

)2
=

𝑛∑︁
𝑘=1

𝑘2
1
𝑛
−

(
𝑛 + 1
2

)2
=
𝑛 (𝑛 + 1) (2𝑛 + 1)

6𝑛
− (𝑛 + 1)2

4

=
𝑛 + 1
12

(
4𝑛 + 2 − 3𝑛 − 3

)
=

(𝑛 + 1) (𝑛 − 1)
12

.

Part (iv).

cov (𝑅𝑖 , 𝑅 𝑗 ) = E𝑅𝑖𝑅 𝑗 − E𝑅𝑖 E𝑅 𝑗 =
𝑛∑︁
𝑘=1

𝑛∑︁
𝑚=1,𝑚≠𝑘

𝑘𝑚
1

𝑛 (𝑛 − 1) −
(
𝑛 + 1
2

)2
=

1
𝑛 (𝑛 − 1)

[ 𝑛∑︁
𝑘=1

𝑘

𝑛∑︁
𝑚=1

𝑚 −
𝑛∑︁
𝑘=1

𝑘2
]
−

(
𝑛 + 1
2

)2
=

1
𝑛 (𝑛 − 1)

[(
𝑛 (𝑛 + 1)

2

)2
− 𝑛 (𝑛 + 1) (2𝑛 + 1)

6

]
−

(
𝑛 + 1
2

)2
=
𝑛 (𝑛 + 1)2
4(𝑛 − 1) − (𝑛 + 1) (2𝑛 + 1)

6(𝑛 − 1) − (𝑛 + 1)2
4

=
(𝑛 + 1)

12(𝑛 − 1)

[
3𝑛 (𝑛 + 1) − 2(2𝑛 + 1) − 3(𝑛 + 1) (𝑛 − 1)

]
=

(𝑛 + 1)
12(𝑛 − 1) (1 − 𝑛) = − (𝑛 + 1)

12
.

□

Remark. When the random sample does not come from the continuous distribu-
tion or they contain ties because of rounding then it still makes sense to define the
ordered random sample as

𝑋 (1) ≤ 𝑋 (2) ≤ · · · ≤ 𝑋 (𝑛−1) ≤ 𝑋 (𝑛 ) ,

where the 𝑘 th order statistic 𝑋 (𝑘 ) is still well defined and the statement of Theo-
rem 2.13 still holds.
But ranks cannot be uniquely defined. In practice we usually use average ranks,

which can be calculated as

𝑅𝑖 = 1 +
𝑛∑︁
𝑗=1

𝟙{𝑋𝑖 > 𝑋 𝑗
}
+ 1
2

𝑛∑︁
𝑗=1,𝑗≠𝑖

𝟙{𝑋𝑖 = 𝑋 𝑗
}
.

For ranks defined in this was it holds that E𝑅𝑖 = 𝑛+1
2 (see Theorem 2.16(iii)). But all

the other above statements are not true.
Alternatively one can assign the ranks to the tied observations randomly. For such

randomized ranks Theorem 2.15 holds true and thus also Theorem 2.16. The disad-
vantage of this approach is that this approach introduce additional variability into
our inference.
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2. Random sample

2.4. TRANSFORMATION IN STATISTICS

2.4.1. TRANSFORMATION OF THE OBSERVATIONS AND ITS IMPACT ON THE
PARAMETERS OF INTEREST

Let 𝑋1, . . . , 𝑋𝑛 be a random sample from the distribution with the cumulative distribu-
tion function 𝐹𝑋 . The corresponding density denote as 𝑓𝑋 and the support as 𝑆𝑋 . Con-
sider the strictly monotone ∗ differentiable function 𝑔 : 𝑆𝑋 → ℝ and define𝑌𝑖 = 𝑔 (𝑋𝑖 ).
Then𝑌1, . . . ,𝑌𝑛 be a random sample from the distribution with the density 𝑓𝑌 that can
be calculated with the help of the theorem about the density of transformed random
variables.
Transformation of the observations is used in statistics quite often. The usual rea-

son is that the original random sample 𝑋1, . . . , 𝑋𝑛 (obviously) does not meet assump-
tions of the methods that we intend to use (for instance normality, symmetry of the
density, . . . ). Thus we choose an appropriate function 𝑔 such that𝑌𝑖 = 𝑔 (𝑋𝑖 ) seems to
satisfy assumption of the intendedmethods and then we work with the random sam-
ple 𝑌1, . . . ,𝑌𝑛 instead of the original random sample 𝑋1, . . . , 𝑋𝑛 . The most widely used
transformations of the positive random variables are 𝑔 (𝑥) = log 𝑥 and 𝑔 (𝑥) =

√
𝑥 .

Example. Let 𝑋𝑖 have logaritmic-normal distribution LN(𝜇, 𝜎2). Then log(𝑋𝑖 ) follows
normal distribution N(𝜇, 𝜎2)

When using transformation one has to keep in mind that some parameters of the
distribution 𝐹𝑋 of the original random sample will be affected with the transfor-
mation in such a way that we will be not able to identify them.
For instance the expected values 𝜇𝑋 = E𝑋𝑖 changes to 𝜇𝑌 = E 𝑔 (𝑋𝑖 ). Thus if we do

not know the distribution 𝑋𝑖 , then it is in general impossible (unless 𝑔 is linear) to
calculate the value 𝜇𝑋 from 𝜇𝑌 . Let 𝑔 be a continuous and strictly concave function,
then with the help of Jensen inequality it holds tha 𝜇𝑌 < 𝑔 (𝜇𝑋 ). Thus 𝑔 −1(𝜇𝑌 ) < 𝜇𝑋 .
Thus the sample𝑌 𝑛 from the transformed converges in probability (see Theorem 2.2(ii))

to 𝜇𝑌 . Thus 𝑔 −1(𝑌 𝑛) converges in probability to 𝑔 −1(𝜇𝑌 ) ≠ 𝜇𝑋 . In general it is impos-
sible to find a function ℎ such that ℎ (𝑌 𝑛) converges to 𝜇𝑋 . When we are interested in
𝜇𝑋 then we have to work with the original data. Analogously when we are interested
for instance in variance.

Example. Let 𝑋𝑖 ∼ LN(𝜇, 𝜎2). Then for 𝑔 (𝑥) = log 𝑥 it holds that𝑌𝑖 = 𝑔 (𝑋𝑖 ) ∼ N(𝜇, 𝜎2).
Thus

𝑔 −1 (𝑌 𝑛

) P−−−−→
𝑛→∞

eE𝑌𝑖 = e𝜇 < e𝜇+𝜎2/2 = E𝑋𝑖 .

Some parameters do not have these difficulties. For instance median (or any other
quantile) can be easily calculated with the help of 𝑔 −1. Let 𝑚𝑋 be medianof 𝑋𝑖 and
𝑚𝑌 be median of 𝑌𝑖 . Further let 𝑔 be an increasing function. Then it holds that𝑚𝑌 =

𝑔 (𝑚𝑋 ) and 𝑚𝑋 can be identified as 𝜇𝑋 = 𝑔 −1(𝑚𝑌 ).
∗ We are usually avoiding non-monotone transformations as they imply that some of the information
is lost.
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2. Random sample

Ranks are invariantní with respect to increasing transformations. This implies that
also values of the statistics calculated only from the ranks are the same for the original
as well as transformed random sample.

2.4.2. ASYMPTOTIC VARIANCE-STABILISATING TRANSFORMATIONS

Another motivation for transforming some statistics is to stabilize (asymptotic) vari-
ance. Let the sequence of random variables {𝑇𝑛} satisfy

√
𝑛

(
𝑇𝑛 − 𝜇

) d−−−−→
𝑛→∞

N
(
0, 𝜎2(𝜇)

)
.

The variance 𝜎2(𝜇) of the asymptotic normal distribution is called also the asymp-
totic variance of

√
𝑛
(
𝑇𝑛 − 𝜇

)
.

As we see later for inference (testing and confidence intervals) about parameter 𝜇
it is good that the asymptotic variance of the used random variable does not depend
on parameter 𝜇.
Let 𝑔 be a real function that is defined and differentiable in the neighbourhood

of 𝜇. Then with the help of Δ-method (Proposition 1.5) we get that
√
𝑛

(
𝑔 (𝑇𝑛) − 𝑔 (𝜇)

) d−−−−→
𝑛→∞

N
(
0,

[
𝑔 ′(𝜇)

]2
𝜎2(𝜇)

)
.

Thus with the help of the choice

𝑔 (𝑥) = 𝑐
∫

1
𝜎 (𝑥) 𝑑𝑥, (2.5)

one gets 𝑔 ′(𝜇) = 𝑐
𝜎 (𝜇) , which implies that

√
𝑛

(
𝑔 (𝑇𝑛) − 𝑔 (𝜇)

) d−−−−→
𝑛→∞

N
(
0, 𝑐2

)
and the influence of 𝜇 on the asymptotic variance will be eliminated.

Example. Let 𝑋1, . . . , 𝑋𝑛 be a random sample from Poisson distribution Po(𝜆). Then
the statistic 𝑇𝑛 = 𝑋 𝑛 with the help of the central limit theorem (Proposition 1.4) satis-
fies √

𝑛
(
𝑋 𝑛 − 𝜆

) d−−−−→
𝑛→∞

N(0, 𝜆).

Thus 𝜎 (𝑥) =
√
𝑥 and one gets 𝑔 (𝑥) =

∫ 1
𝜎 (𝑥 ) 𝑑𝑥 =

∫
𝑥−1/2 𝑑𝑥 = 2

√
𝑥 . Thus

√
𝑛

(
2
√︃
𝑋 𝑛 − 2

√
𝜆
) d−−−−→

𝑛→∞
N(0, 1).

Remark. An analogous idea is sometimes used for individual random variables 𝑋𝑖 .
Let E𝑋𝑖 = 𝜆 and var𝑋𝑖 = 𝜎2(𝜆). Then we hope that using the transformation 𝑌𝑖 =

𝑔 (𝑋𝑖 ), where 𝑔 is calculated with the help of (2.5), we get the observation𝑌𝑖 that has a
distribution that is closer to the normal distribution. For instance when one assumes
that 𝑋𝑖 ∼ Po(𝜆) than often in analysis one works with 𝑌𝑖 =

√
𝑋𝑖 .
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2. Random sample

Exercise. Let {𝑌𝑛} be a sequence of random variables such that 𝑌𝑛 ∼ Po(𝑛𝜆). Show
that

√
𝑌𝑛 −

√
𝑛 𝜆

d−−−−→
𝑛→∞

N(0, 14 ).
Hint: Note that 𝑌𝑛 can be respresented as

∑𝑛
𝑖=1 𝑋𝑖 , where 𝑋1, . . . , 𝑋𝑛 is a random sample

from Po(𝜆).

2.4.3. STANDARDIZATION

A special type of transformation is standardization. Suppose we have a random sam-
ple 𝑋1, . . . , 𝑋𝑛 andwe calculate 𝑋 𝑛 and 𝑆2𝑛 . Then define the random variables 𝑍1, . . . , 𝑍𝑛
as

𝑍𝑖 =
𝑋𝑖 − 𝑋 𝑛

𝑆𝑛
.

These variables has the sample mean 0 and the sample variance 1. But 𝑍1, . . . , 𝑍𝑛 do
not form a random sample as there are not independent. Nevertheless using the facts
that 𝑋 𝑛

P−→ E𝑋𝑖 and 𝑆𝑛
P−→

√
var𝑋𝑖 as 𝑛 → ∞, then for large sample sizes 𝑍1, . . . , 𝑍𝑛

behave almost independent variables with zero expectation and unit variance. Often
it can be proved that the dependence induced by the fact that the unknown E𝑋𝑖 and√

var𝑋𝑖 are replaced with its sample analogs (i.e. 𝑋 𝑛 and 𝑆𝑛) can be safely ignored.
Standardization is used when we want to get rid off the first two moments as we

are interested in other aspects of the distribution 𝐹𝑋 (see for instance the sample
correlation coefficient in the last chapter).
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2. Random sample

Sample examples for the preparation for the exam.

1. Let 𝑋1 a 𝑋2 be independent random variables with the uniform distribution on
the interval (0, 1). Calculate E

𝑋 2
1
𝑋2

and E
𝑋 2
(1)

𝑋 (2)
.

2. Let 𝑋1, . . . , 𝑋4 be independent and identically distributed random variables with
the density 𝑓 with respect to Lebesguemeasure. Find the probability P(𝑅1+𝑅2 =
5).

3. Let 𝑋1, . . . , 𝑋𝑛 be independent and identically distributed random variables with
the density 𝑓 with respect to Lebesgue measure. Calculate E 𝑅1

𝑅2
and then also

lim𝑛→∞ E 𝑅1
𝑅2
.
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3. PARAMETER ESTIMATION

We are given a random sampleX = (X1,X2, . . . ,X𝑛), a model F and a parameter θ =

𝑡 (𝐹 ) ∈ ℝ𝑝 for 𝐹 ∈ F , which we need to estimate. Let 𝐹𝑋 ∈ F be the true distribution
of the random vectorX𝑖 and let θ𝑋 ≡ 𝑡 (𝐹𝑋 ) be the true value of θ.

3.1. POINT ESTIMATION

Definition 3.1 An estimator of θ𝑋 ≡ 𝑡 (𝐹𝑋 ) ∈ ℝ𝑝 is a 𝑝-dimensional random vector θ̂𝑛
which is given as θ̂𝑛 = 𝑇𝑛 (X) ≡ 𝑇𝑛 (X1, . . . ,X𝑛), where 𝑇𝑛 is some Borel measurable
function of data.

Remark. An estimator is a statistic in sense of definition 2.3. It cannot depend on
unknown parameters.

Definition 3.2 (Unbiasedness and consistency) Let us suppose that we are given a
random sample X = (X1,X2, . . . ,X𝑛) from distribution 𝐹𝑋 ∈ F and an estimator
θ̂𝑛 ≡ 𝑇𝑛 (X) of a parameter θ𝑋 ≡ 𝑡 (𝐹𝑋 ).

(i) θ̂𝑛 is said to be an unbiased estimator of the parameter θ𝑋 in the model F if
and only if E θ̂𝑛 = θ𝑋 for every 𝑛 (for which the estimator is well-defined) and
for every distribution 𝐹𝑋 ∈ F .

(ii) θ̂𝑛 is said to be a consistent estimator of the parameter θ𝑋 in the model F if and
only if θ̂𝑛

P−→ θ𝑋 as 𝑛 → ∞ for every distribution 𝐹𝑋 ∈ F .

Remark.
• Properties of a given estimator must be studied in context of the given model.
It can easily happen that an estimator θ̂𝑛 is unbiased and consistent in some
model F , while in a different model F ′ it does not retain these properties.

• Unbiasedness is supposed to hold for each number of observations 𝑛 for which
the estimator is defined (e.g. in case of the sample variance for 𝑛 ≥ 2). Un-
biasedness, however, does not guarantee that the estimator will approach the
true value of the parameter being estimated as the sample size 𝑛 increases. For
somemodels there are no reasonable (or even none at all) unbiased estimators.

• Consistency is an asymptotic property, which does not say anything about be-
haviour of an estimator for finite 𝑛. (e.g. 𝜃𝑛 = 21 for 𝑛 ≤ 1010, 𝜃𝑛 = 𝑋 𝑛 for
𝑛 > 1010 is a consistent estimator of 𝜃𝑋 = E𝑋𝑖 .)
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3. Parameter Estimation

• The aforementioned notion of consistency is sometimes called weak consis-
tency. In addition, an estimator is said to be strongly consistent if and only if
𝜃𝑛

a.s.−−−−→
𝑛→∞

𝜃𝑋 .
• In statistics, estimators which are consistent, albeit not unbiased, are commonly
used. On the other hand, estimators which are not consistent are typically un-
used because they either estimate “something different” or they do not getmore
accurate as the sample size increases.

Examples.

1. Estimation of parameter 𝜃𝑋 = E𝑋𝑖 in model F = L1:
• The sample mean 𝑋 𝑛 is an unbiased and consistent estimator of 𝜃𝑋 [fol-
lows from theorem 2.2, (i) a (ii)].

• The estimator 𝜃𝑛 = 𝑋1 is an unbiased estimator of 𝜃𝑋 , but it is not consis-
tent.

2. Estimation of parameter 𝜃𝑋 = var𝑋𝑖 in model F = L2:
• The sample variance 𝑆2𝑛 is an unbiased and consistent estimator of 𝜃𝑋 [fol-
lows from theorem 2.6, (i) a (ii)].

• The estimator 𝜎2𝑛 = 1
𝑛

∑𝑛
𝑖=1

(
𝑋𝑖 − 𝑋 𝑛

)2 is a consistent estimator of 𝜃𝑋 , but it
is not unbiased.

3. Estimation of parameter 𝜃𝑋 = P[𝑋𝑖 = 0] in model F =
{
Po(𝜆), 𝜆 > 0

}
:

• The estimator 𝜃𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝟙{0} (𝑋𝑖 ) is an unbiased and also consistent esti-

mator of 𝜃𝑋 (unbiasedness and consistency of 𝜃𝑛 are preserved even in the
model of all discrete distributions).

• The estimator 𝜃𝑛 =
(
𝑛−1
𝑛

)∑𝑛
𝑖=1 𝑋𝑖 is also an unbiased and consistent estimator

of 𝜃𝑋 (in model F but not in the model of all discrete distributions).

4. Estimation of parameter 𝜃𝑋 = e−2𝜆𝑋 in model F =
{
Po(𝜆), 𝜆 > 0

}
for 𝑛 = 1:

The only unbiased estimator is 𝜃 = (−1)𝑋1 and the only 2 values which this esti-
mator attains are −1 and 1. However, e−2𝜆𝑋 only attains values from the interval
(0, 1).

Definition 3.3 (Bias) Let us suppose that the estimator θ̂𝑛 ≡ 𝑇𝑛 (X) of a parameter θ𝑋
has finite expectation. Then the difference E (θ̂𝑛 − θ𝑋 ) is called bias of the estimator
θ̂𝑛 .

Definition 3.4 Let us suppose that the estimator 𝜃𝑛 ≡ 𝑇𝑛 (X) of a parameter 𝜃𝑋 ∈ ℝ

has finite variance.

(i) Expression
MSE

(
𝜃𝑛

)
= E

(
𝜃𝑛 − 𝜃𝑋

)2
is calledmean squared error of the estimator 𝜃𝑛 .
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(ii) Expression

SE(𝜃𝑛) =
√︃

var
(
𝜃𝑛

)
is called standard error of the estimator 𝜃𝑛 .

Remark.
• Beware of subtle differences in terminology. The term standard deviation (SD)
usually refers to the square root of the variance of one random observation i.e.√

var𝑋𝑖 . The term standard error (SE) usually refers to the square root of the
variance of some estimator calculated from the whole random sample. Some
authors, however, use the term standard error when they want to refer to

SE(𝜃𝑛) =
√︃

v̂ar
(
𝜃𝑛

)
,

where v̂ar
(
𝜃𝑛

)
is an estimator of var

(
𝜃𝑛

)
• Both the mean squared error and the standard error are measures of estimation
accuracy. Furthermore, while the standard error disregards the bias, the mean
squared error does not.

• It holds that the mean squared error can be decomposed as a sum of variance
and bias squared:

MSE(𝜃𝑛) = var
(
𝜃𝑛

)
+ [E (𝜃𝑛 − 𝜃𝑋 )]2.

Proof of the aforementioned assertion is a direct calculation:

MSE(𝜃𝑛) = E
(
𝜃𝑛 − E 𝜃𝑛 + E 𝜃𝑛 − 𝜃𝑋

)2
= E

(
𝜃𝑛 − E 𝜃𝑛

)2 + 2E
(
𝜃𝑛 − E 𝜃𝑛

)
E

(
𝜃𝑛 − 𝜃𝑋

)
+ [E (𝜃𝑛 − 𝜃𝑋 )]2

= var
(
𝜃𝑛

)
+ 0 + [E (𝜃𝑛 − 𝜃𝑋 )]2.

• The mean squared error is one of the most appropriate criteria for comparison
of estimators. If we have several different estimators of the same parameter in
the same model, we try to find the one with the smallest MSE. Thus, in the case
of unbiased estimators, we select the one with the smallest variance.

• MSE often cannot be calculated analytically. In many cases, however, one can
decide on the basis of asymptotic variances of estimators. Assume that we have
2 estimators 𝜃𝑛 and 𝜃𝑛 , which satisfy

√
𝑛

(
𝜃𝑛 − 𝜃𝑋

) d−−−−→
𝑛→∞

N
(
0, 𝜎21

)
,

√
𝑛

(
𝜃𝑛 − 𝜃𝑋

) d−−−−→
𝑛→∞

N
(
0, 𝜎22

)
.

Then (for large sample sizes) estimator 𝜃𝑛 is preferred if 𝜎21 < 𝜎22 . Conversely, if
𝜎21 > 𝜎22 , then estimator 𝜃𝑛 is preferred.

Example. Estimation of parameter 𝜎2
𝑋
= var𝑋𝑖 in model F =

{
N(𝜇, 𝜎2), 𝜇 ∈ ℝ, 𝜎2 >

0
}
. Show thatMSE(𝑆2𝑛) > MSE(𝜎2𝑛 ).
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Theorem 3.1 Let 𝜃𝑛 be an estimator of a parameter 𝜃𝑋 ∈ ℝ for which it holds that
E 𝜃𝑛 −−−−→

𝑛→∞
𝜃𝑋 (bias converges to zero) and var

(
𝜃𝑛

)
−−−−→
𝑛→∞

0, for each 𝐹𝑋 ∈ F . Then 𝜃𝑛

is a consistent estimator of 𝜃𝑋 .

Proof. Let 𝜀 > 0. Then from Markov’s inequality (theorem P.2.6) it follows that:

P
(��𝜃𝑛 − 𝜃𝑋

�� > 𝜀
)
≤ MSE(𝜃𝑛)

𝜀2
=

var (𝜃𝑛)
𝜀2

+
(
E 𝜃𝑛 − 𝜃𝑋

)2
𝜀2

.

Now, both terms on the right-hand side converge to zero because thanks to the as-
sumptions of the theorem var

(
𝜃𝑛

)
→ 0 and E 𝜃𝑛 → 𝜃𝑋 as 𝑛 → ∞. □

Remark.
• The opposite implication is not true. There exist consistent estimators which
satisfy that E

��𝜃𝑛 �� = ∞ for every finite 𝑛.
• Theorem 3.1 is useful in situations when the bias and the variance of the esti-
mator 𝜃𝑛 are available (or can be easily calculated). If, however, it is possible to
express 𝜃𝑛 as 𝜃𝑛 = 𝑔

( 1
𝑛

∑𝑛
𝑖=1X𝑖

)
(i.e. as a transformation of the sample mean),

then it is easier to study consistency of 𝜃𝑛 using the law of large numbers (the-
orem 1.3) in combination with the continuous mapping theorem (theorem 1.1).

Example. Let 𝑋1, . . . , 𝑋𝑛 be a random sample from the alternative distribution Be(𝑝).
Consider 𝜃𝑛 = 1

𝑋 𝑛
as an estimator of 𝜃𝑋 = 1

𝑝𝑋
. Show that although it holds that E 𝜃𝑛 =

∞, it also holds that 𝜃𝑛
P−−−−→

𝑛→∞
𝜃𝑋 .

3.2. CHOICE OF THE PARAMETER OF INTEREST

The parameter 𝜃 = 𝑡 (𝐹 ) which we are trying to estimate can be in principle anything.
Not all parameters, however, make sense in context of the practical problem we are
solving. Therefore, we must distinguish for which parameters it is reasonable to esti-
mate them and for which it is not. This depends on the meaning of the values of the
measured quantities, on the procedure by which they were obtained, processed, etc.
The statistical methods that will be introduced, will be divided according to the type
of measurements for which they are intended. We will consider the following data
types ormeasurement scales.

3.2.1. QUANTITATIVE DATA

A random variable 𝑋 will be called quantitative if its values have some specific nu-
merical meaning (e.g. number, percentage, length, volume, weight, interest rate, con-
centration, temperature, duration, angle, latitude, calendar year). For quantitative
data there exists a meaningful ordering of their values (temperature 10 ◦C is higher
than −11,4 ◦C). Furthermore, differences of these values are interpretable. Quantita-
tive random variables can be both discrete and continuous.
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Quantitative variables can be further subdivided into two subgroups: interval and
ratio. Ratio variables are typically non-negative with a clearly defined zero value
and interpretable ratios. For example, the weight 0 kg has a clear interpretation and
an object whose weight is 20 kg is 4 times heavier than 5 kg. Examples of ratio vari-
ables are number, length, volume, weight, interest rate, concentration, time duration,
temperaturemeasured in kelvins. Interval variables are quantitative variables which
do not follow properties of ratio variables, i.e. they do not have a fixed zero value or
ratios of their values are not interpretable. For instance, direction given by azimuth
is an interval quantity because azimuth 360◦ is not six times greater than 60◦. Simi-
larly, temperature measured in ◦C is an interval quantity because the temperature of
16 ◦C is not four times higher than the temperature of 4 ◦C. Calendar year is also an
interval quantity, because it does not make sense to calculate the ratio of this year
and the year of your birth.

3.2.2. CATEGORICAL DATA

A random variable 𝑋 is called categorical if its values encode affiliation (or classifica-
tion) of an object with a certain category, or with one of several disjoint sets. Cate-
gorical variables are always discrete and have a finite number 𝐾 of possible values,
usually 1, . . . , 𝐾 or 0, . . . , 𝐾 −1. Values of categorical variables do not have a direct nu-
merical interpretation. Their sole purpose is to distinguish possible states. Individual
states are called levels or categories.
We further subdivide categorical variables into nominal and ordinal. For nominal

variables there is no ordering of their categories - it cannot be said that some cate-
gory 𝑗 precedes the category 𝑗 + 1. An example of a nominal variable is, for instance,
residence categorised in terms of regions (1 = Prague, 2 = Central Bohemian, . . . , 14
= Moravian-Silesian) or social status (1 = underage; 2 = student; 3 = employee; 4 =
self-employed ; 5 = unemployed ; 6 = pensioner). Categories of ordinal variables are
in some sense ordered. Thus, it is possible to claim that category 𝑗 precedes category
𝑗 + 1 or that it is smaller, worse, etc. An example of an ordinal variable may be an an-
swer to a question with options 1 = strongly disagree, 2 = rather disagree, 3 = do not
know, 4 = rather agree, 5 = totally agree. A different example is a variable encoding
the highest attained level of education as 1 = primary education; 2 = lower secondary
education; 3 = upper secondary education; 4 = post-secondary non-tertiary educa-
tion; 5 = short-cycle tertiary education; 6 = bachelor’s or equivalent; 7 = master’s or
equivalent; 8 = doctorate or equivalent.

3.2.3. BINARY DATA

Binary variables are a special case of categorical variables when 𝐾 = 2. Hence, they
classify observations into one of two possible states. Their values are typically chosen
as 0 vs. 1 or, alternatively, 1 vs. 2. An example of a binary variable is the truth value
of some statement (0 = false, 1 = true), realisation of a random phenomenon (0 = did
not occur/failure, 1 = occurred/success) or sex (1 = male, 2 = female).
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3.2.4. CHOICE OF THE PARAMETER ACCORDING TO THE TYPE OF DATA

In general, for nominal quantities it does notmake sense to consider parameters such
as E𝑋 , var𝑋 , cumulative distribution function, quantiles, covariance and correlation,
in short, no characteristics that depend on encoding and ordering of individual cat-
egories. Although these parameters are properly defined, they have no practical in-
terpretation. The only parameters which in case of nominal variables do have an
interpretation are probabilities of individual categories, i.e. 𝑝𝑗 = P[𝑋 = 𝑗 ] for all ad-
missible values of 𝑗 .
One exception are binary variables. If value 0 encodes failure and value 1 encodes

success, then E𝑋 = P[𝑋 = 1], i.e. expectation and probability of success are equal.
For ordinal variables, thanks to natural ordering of their categories, it makes sense to
consider their cumulative distribution functions. It is often possible to attach to them
the interval interpretation (doctoral education is two levels higher than bachelor),
however, it is not usually feasible to afford them ratio interpretation (we cannot say
that bachelor’s education is 2 times higher than upper secondary education). Ordinal
variables are sometimes assigned non-integer values, so-called scores. For example
we can create an ordinal variable in a way that we take some quantitative variable 𝑍
and categorise it according to some chosen partition, e.g. 𝑋 = 1 if 𝑍 ∈ ⟨0, 5), 𝑋 = 2
if 𝑍 ∈ ⟨5, 20), 𝑋 = 3 if 𝑍 ∈ ⟨20, 100) and 𝑋 = 4 if 𝑍 ≥ 100. Such quantities usually
arise in questionnaires, when respondents are supposed to choose one of four op-
tions instead of writing down the exact number. The resulting variable 𝑋 is obviously
ordinal. Perhaps, instead of the values 1, . . . , 4 we could choose, as the values of 𝑋 ,
midpoints of the intervals which were used to define 𝑋 , i.e. 2,5; 12,5 a 60 for the first
three intervals. There is clearly a problem with the last one since it does not have
the right endpoint - thus, we would somehow need to add the last score (for exam-
ple take 150). Variables encoded in this way are not only ordinal, but they also retain
some properties of quantitative variables.
Ordinal variables can always be analysed as if they were nominal but it is often

possible to also apply methods originally devised for quantitative variables, estimate
their expectation or calculate their differences. Moreover, there exist special methods
designed specifically for the ordinal data, but we will not encounter them for a while.
Our explanation of statistical methods (starting with chapter 4) will distinguish be-

tween methods for quantitative data, where we will work with characteristics such
as expectation, variance, median, cumulative distribution function, covariance, etc.,
and methods for nominal data, where we will work with probabilities of individual
categories.

3.3. METHOD OF MOMENTS

The method of moments belongs, together with the method of maximum likelihood,
to basic methods of parameter estimation.
Let us consider a parametric model: we are given a random sample 𝑋1, . . . , 𝑋𝑛 from
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a distribution with a probability density function 𝑓 (𝑥 ;θ𝑋 ) with respect to some 𝜎-
finite measure 𝜇, where the form of the function 𝑓 (·; ·) is known and θ𝑋 is an un-
known (vector-valued) parameter, which belongs to some space of parameters Θ ⊆
ℝ𝑑 , 𝑑 ≥ 1. Thus, we are working with the following model:

F =
{
distributions with density 𝑓 (𝑥 ;θ), θ ∈ Θ ⊆ ℝ𝑑

}
The goal is to estimate the parameter θ𝑋 . We will take advantage of the fact that

we have at our disposal consistent estimators of moments and that we can usually
express moments of 𝑋𝑖 as functions of unknown parameters. We will assume that
E |𝑋𝑖 |𝑑 < ∞.

Consider first 𝑑 = 1. Let us assume that E𝑋𝑖 = 𝜏 (𝜃𝑋 ), where 𝜏 : Θ → ℝ. Since 𝑋 𝑛

is a consistent estimator, it is reasonable to try to find the moment estimator 𝜃𝑛 as a
solution of the estimating equation:

𝑋 𝑛 = 𝜏
(
𝜃𝑛

)
. (3.1)

If the function 𝜏 is strictly monotone, it is possible to express the estimator as 𝜃𝑛 =

𝜏−1(𝑋 𝑛) and the estimated parameter as 𝜃𝑋 = 𝜏−1(E𝑋𝑖 ).

Properties of the estimator 𝜃𝑛 :
• If 𝜏−1 is continuous at E𝑋𝑖 , then 𝜃𝑛

P−−−−→
𝑛→∞

𝜃𝑋 (theorem 1.1).
• If 𝜏−1 has a continuous derivative on some neighbourhood of E𝑋𝑖 , then thanks
to the Δ-method (theorem 1.5)

√
𝑛

(
𝜃𝑛 − 𝜃𝑋

) d−−−−→
𝑛→∞

N
(
0,𝑉 (𝜃𝑋 )

)
,

where

𝑉 (𝜃𝑋 ) =
{[
𝜏−1(E𝑋𝑖 )

] ′}2 var𝑋𝑖 =
var𝑋𝑖[

𝜏 ′
(
𝜏−1(E𝑋𝑖 )

) ]2 =
var𝑋𝑖[
𝜏 ′(𝜃𝑋 )

]2 . (3.2)

Note that in the expression of the asymptotic variance (last equality) we do not
need to know the explicit formula for 𝜏−1. This formula is therefore useful if 𝜏−1
is given only implicitly and the estimate 𝜃𝑛 is being searched for using numer-
ical methods as a solution of the estimating equation (3.1).
In applications, the asymptotic variance𝑉 (𝜃𝑋 ) is estimated by

𝑉𝑛 =

{[
𝜏−1(𝑋 𝑛)

] ′}2
𝑆2𝑛 =

𝑆2𝑛[
𝜏 ′

(
𝜃𝑛

) ]2 .
The last expression is again suitable especially when we do not have the explicit
formula for 𝜏−1.

Examples.
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1. 𝑋1, . . . , 𝑋𝑛 is a random sample from Po(𝜆𝑋 ) distribution, E𝑋𝑖 = 𝜆𝑋 . The moment
estimator of 𝜆𝑋 is 𝜃𝑛 = 𝑋 𝑛 .

2. 𝑋1, . . . , 𝑋𝑛 is a random sample from Geo(𝑝𝑋 ) distribution, E𝑋𝑖 = 1−𝑝𝑋
𝑝𝑋

and var𝑋𝑖 =
1−𝑝𝑋
𝑝2
𝑋

. Thus, 𝜏 (𝑥) = 1−𝑥
𝑥

and 𝜏−1(𝑥) = 1
1+𝑥 . The moment estimator of 𝑝𝑋 is 𝑝𝑛 =

1
1+𝑋 𝑛

. Further,
√
𝑛

(
𝑝𝑛 − 𝑝𝑋

) d−−−−→
𝑛→∞

N
(
0, 𝑝2𝑋 (1 − 𝑝𝑋 )

)
,

where the asymptotic variance 𝑝2
𝑋
(1 − 𝑝𝑋 ) follows either from the first equality

in (3.2)

𝑉 (𝑝𝑋 ) =
{

−1
(1 + E𝑋𝑖 )2

}2
var𝑋𝑖 = 𝑝4𝑋

1 − 𝑝𝑋
𝑝2
𝑋

or, alternatively, also from the third equality in (3.2)

𝑉 (𝑝𝑋 ) =
var𝑋𝑖{
− 1

𝑝2
𝑋

}2 =

1−𝑝𝑋
𝑝2
𝑋

1
𝑝4
𝑋

.

3. 𝑋1, . . . , 𝑋𝑛 is a random sample from U(0, 𝜃𝑋 ) distribution, E𝑋𝑖 = 𝜃𝑋 /2. The mo-
ment estimator of 𝜃𝑋 is 𝜃𝑛 = 2𝑋 𝑛 . It holds that

√
𝑛

(
𝜃𝑛 − 𝜃𝑋

) d−−−−→
𝑛→∞

N
(
0, 𝜃2

𝑋
/3

)
.

𝑑 = 1, but a different moment than E𝑋𝑖
Sometimes it can happen that E𝑋𝑖 = 0 for every 𝜃𝑋 ∈ Θ. For example, this is true for

distributions with finite expectations which are symmetric around zero. Then we can
consider the second moment, i.e. E𝑋 2

𝑖
= 𝜏 (𝜃𝑋 ) and the estimator 𝜃𝑛 will be acquired

as a solution of the equation
1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖 = 𝜏 (𝜃𝑛).

Generally, we can consider some suitable (measurable) function 𝑡 such that E |𝑡 (𝑋𝑖 ) | <
∞ and E 𝑡 (𝑋𝑖 ) = 𝜏 (𝜃𝑋 ). The estimator 𝜃𝑛 will be obtained as a solution of the equation

1
𝑛

𝑛∑︁
𝑖=1

𝑡 (𝑋𝑖 ) = 𝜏 (𝜃𝑛).

Now we will generalise the method for 𝑑 > 1.
The most straightforward method is to consider the first 𝑑-moments, i.e. we will

calculate
E𝑋𝑖 = 𝜏1(θ𝑋 ),E𝑋 2

𝑖 = 𝜏2(θ𝑋 ), . . . ,E𝑋 𝑑
𝑖 = 𝜏𝑑 (θ𝑋 ),
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and thus, we will obtain mappings 𝜏1, . . . ,𝜏𝑑 : Θ → ℝ. The estimator of the parameter
θ̂𝑛 is then obtained as a solution of the following system of 𝑑 equations with 𝑑 un-
knowns:

1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 = 𝜏1(θ̂𝑛),
1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖 = 𝜏2(θ̂𝑛), . . . ,

1
𝑛

𝑛∑︁
𝑖=1

𝑋 𝑑
𝑖 = 𝜏𝑑 (θ̂𝑛).

Once we define mapping τ = (𝜏1, . . . ,𝜏𝑑 )T : Θ → ℝ𝑑 , then under the assumption of
existence of τ −1 we can write

θ̂𝑛 = τ −1
(
1
𝑛

𝑛∑︁
𝑖=1

Z𝑖

)
, where Z𝑖 =

(
𝑋𝑖 , 𝑋

2
𝑖 , . . . , 𝑋

𝑑
𝑖

)T
.

From this expression, similarly as in the case of 𝑑 = 1, we can derive consistency and
the asymptotic normality of the estimator θ̂𝑛 .

Special case 𝑑 = 2
Suppose that (E𝑋𝑖 , var𝑋𝑖 )T = τ (θ𝑋 ), where τ : Θ → ℝ2. Then it is reasonable to try

to find the estimator of θ𝑋 as a solution of the system of estimating equations (more
precisely 2 equations with 2 unknowns)(

𝑋 𝑛 , 𝑆
2
𝑛

)T
= τ

(
θ̂𝑋

)
.

If the function τ is injective, then we can express the estimator as θ̂𝑋 = τ −1 (𝑋 𝑛 , 𝑆
2
𝑛

)
and the estimated parameter as θ𝑋 = 𝜏−1(E𝑋𝑖 , var𝑋𝑖 ).
Properties of the estimator 𝜃𝑛 :

• We know that 𝑋 𝑛 and 𝑆2𝑛 are consistent estimators of E𝑋𝑖 and var𝑋𝑖 . Hence, if
the function τ −1 is continuous at (E𝑋𝑖 , var𝑋𝑖 ), then θ̂𝑛

P−−−−→
𝑛→∞

θ𝑋 .

• From theorem 2.6, part (iv) we know that if E𝑋 4
𝑖
< ∞, then 𝑋 𝑛 and 𝑆2𝑛 are jointly

asymptotically normal. If τ −1 has a continuous derivative, then according to the
Δ-method also θ̂𝑛 has jointly asymptotically normal distribution with variance
matrix which can be calculated using theorem 2.6 and the Δ-method.

Examples.

4. 𝑋1, . . . , 𝑋𝑛 is a random sample from gamma distribution with density 𝑓 (𝑥 ;𝑎,𝑝) =
𝑎𝑝

Γ (𝑝 ) 𝑥
𝑝−1e−𝑎𝑥𝟙{𝑥 > 0}. Then it is know that E𝑋𝑖 = 𝑝

𝑎
and var𝑋𝑖 =

𝑝

𝑎2
. The moment

method yields consistent and asymptotically normal estimators

𝑎𝑛 =
𝑋 𝑛

𝑆2𝑛
and 𝑝𝑛 =

𝑋
2
𝑛

𝑆2𝑛
.

5. 𝑋1, . . . , 𝑋𝑛 is a random sample from U(𝜃1, 𝜃2) distribution. We know that

E𝑋𝑖 =
𝜃1 + 𝜃2
2

and var𝑋𝑖 =
(𝜃2 − 𝜃1)2

12
.
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In this case, the system of estimating equations is of the form

𝑋 𝑛 =
𝜃1𝑛 + 𝜃2𝑛

2
, var𝑋𝑖 =

(𝜃2𝑛 − 𝜃1𝑛)2
12

.

By solving this system we get

𝜃1𝑛 = 𝑋 𝑛 −
√︃
3𝑆2𝑛 and 𝜃2𝑛 = 𝑋 𝑛 +

√︃
3𝑆2𝑛 .

Since from theorem 2.6 we know that

√
𝑛

[(
𝑋 𝑛

𝑆2𝑛

)
−

(
𝜇

𝜎2

)]
d−−−−→

𝑛→∞
N2

(
0, Σ

)
,

where Σ =

(
𝜎2 𝜎3𝛾3
𝜎3𝛾3 𝜎4(𝛾4 − 1)

)
and 𝛾3 =

E (𝑋𝑖−𝜇)3
𝜎3

, then using the Δ-method it is

possible to show that

√
𝑛

[(
𝜃1𝑛
𝜃2𝑛

)
−

(
𝜃1
𝜃2

)]
d−−−−→

𝑛→∞
N2

(
0,𝔻Σ𝔻T)

,

where𝔻 denotes the Jacobianmatrix of themapping τ −1(𝑥1, 𝑥2) =
(
𝑥1−

√
3𝑥2, 𝑥1+√

3𝑥2) at point (E𝑋𝑖 , var𝑋𝑖 ). Therefore, the estimator θ̂𝑛 =
(
𝜃1𝑛 , 𝜃2𝑛

)
is asymptot-

ically normal.

6. 𝑋1, . . . , 𝑋𝑛 is a random sample from B(𝛼, 𝛽) distribution, i.e. E𝑋𝑖 = 𝛼
𝛼+𝛽 and

var𝑋𝑖 =
𝛼𝛽

(𝛼+𝛽 )2 (𝛼+𝛽+1) . By the moment method we get consistent and asymp-
totically normal estimators

𝛼𝑛 = 𝑋 𝑛

(
𝑋 𝑛 (1 − 𝑋 𝑛)

𝑆2𝑛
− 1

)
and 𝛽𝑛 = (1 − 𝑋 𝑛)

(
𝑋 𝑛 (1 − 𝑋 𝑛)

𝑆2𝑛
− 1

)
(
estimators are meaningful only if 𝑆2𝑛 < 𝑋 𝑛 (1 − 𝑋 𝑛)

)
.

Remark.
• Estimators obtained by the method of moments tend to have larger asymptotic
variance compared to the estimators obtained by themethod of maximum like-
lihood. Maximum likelihood theory will be discussed in detail in Mathematical
Statistics 2.

• Using the implicit function theorem it can be proved that it is sufficient that τ
has continuous derivative on some neighbourhood of (E𝑋𝑖 , var𝑋𝑖 ).
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3.4. MAXIMUM LIKELIHOOD ESTIMATORS

Suppose we have a random sample of random vectors X1, . . . ,X𝑛 being distributed
as the generic vector X = (𝑋1, . . . , 𝑋𝑘 )tr that has a density 𝑓 (x;θ) with respect to a
𝜎-finite measure 𝜇 and that the density is known up to an unknown 𝑝-dimensional
parameter θ = (𝜃1, . . . , 𝜃𝑝 )T ∈ Θ. Let θ𝑋 = (𝜃𝑋 1, . . . , 𝜃𝑋𝑝 )T be the true value of the
parameter.
Define the likelihood function as

𝐿𝑛 (θ) =
𝑛∏
𝑖=1

𝑓 (X𝑖 ;θ).

Note that the likelihood function is in fact a joint density viewed as a function of the
parameter. This corresponds to the fact that when dealing with real data we are in fact
dealing with the realizations of the random sample X1, . . . ,X𝑛 . Thus when dealing
data the observed values of X1, . . . ,X𝑛 are fixed. Nevertheless from the point of the
theory the likelihood function can be viewed as a random function as it depends on
the random vectorsX1, . . . ,X𝑛 .
The maximum likelihood estimator is usually defined as

θ̂𝑛 = argmax
θ∈Θ

𝐿𝑛 (θ). (3.3)

Very often it is much more tractable to maximize the log-likelihood function as

ℓ𝑛 (θ) = log 𝐿𝑛 (θ) =
𝑛∑︁
𝑖=1

log 𝑓 (X𝑖 ;θ).

Further, in regular systems the function log 𝑓 (x;θ) is differentiable with respect to
θ and one defines the maximum likelihood estimator as an appropriate root of the
maximum likelihood equations given by

𝜕ℓ𝑛 (θ)
𝜕θ

!
= 0𝑝 .

Example. Suppose we have a random sample 𝑋1, . . . , 𝑋𝑛 from the Bernoulli distribu-
tion with the parameter 𝑝 . Show the maximum likelihood estimator of 𝑝 and derive
its asymptotic distribution.

Example. Suppose we have a random sample 𝑋1, . . . , 𝑋𝑛 from the exponential distri-
bution with the density 𝑓 (𝑥 ;𝜆) = 𝜆 exp{−𝜆𝑥}𝟙{𝑥 > 0}. Find the maximum likelihood
estimator of 𝜆 and derive its asymptotic distribution.

Example. Suppose we have a random sample 𝑋1, . . . , 𝑋𝑛 from the uniform distribu-
tion on the interval (0, 𝜃 ), i.e. 𝑋𝑖 has the density 𝑓 (𝑥 ; 𝜃 ) = 1

𝜃
𝟙{𝑥 ∈ (0, 𝜃 )}. Derive the

maximum likelihood estimator of 𝜃 and show its consistency.

Example. Suppose we have a random sample 𝑋1, . . . , 𝑋𝑛 from the normal distribu-
tion N(𝜇, 𝜎2). Derive the maximum likelihood estimator of θ = (𝜇, 𝜎2).
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3.5. INTERVAL ESTIMATION

We are given a random sampleX = (X1,X2, . . . ,X𝑛), a model F and a parameter 𝜃 =

𝑡 (𝐹 ) ∈ ℝ for 𝐹 ∈ F , which we need to estimate. Let 𝐹𝑋 ∈ F be the true distribution of
some random vectorX𝑖 and 𝜃𝑋 ≡ 𝑡 (𝐹𝑋 ) be the true value of the estimated parameter.

3.5.1. DEFINITIONS

Definition 3.5 An interval 𝐵𝑛 = 𝐵𝑛 (X) ⊂ ℝ is called a confidence interval for param-
eter 𝜃𝑋 ∈ ℝ with confidence level 1 − 𝛼 in model F if and only if

P[𝜔 ∈ Ω : 𝐵𝑛 (𝜔) ∋ 𝜃𝑋 ] = 1 − 𝛼, for every distribution 𝐹𝑋 ∈ F .

An interval 𝐵𝑛 is called an asymptotic confidence interval for parameter 𝜃𝑋 ∈ ℝ with
(asymptotic) confidence level 1 − 𝛼 in model F if and only if

P[𝜔 ∈ Ω : 𝐵𝑛 (𝜔) ∋ 𝜃𝑋 ] −−−−→
𝑛→∞

1 − 𝛼 for every distribution 𝐹𝑋 ∈ F .

Remark.
• Interval 𝐵𝑛 is random (calculated from the data) while the parameter 𝜃𝑋 is not.
Expression 𝐵𝑛 ∋ 𝜃𝑋 is read as “interval 𝐵𝑛 covers (the true value of) 𝜃𝑋 ”.

• Number 𝛼 ∈ (0, 1) is fixed before the analysis; usually 𝛼 = 0.05 is chosen, which
leads to confidence intervals with confidence levels of 0.95. However, we can
also encounter intervals whose confidence levels are 0.90 or 0.99.

• It is not always possible or appropriate to calculate confidence intervals with
exact prescribed coverage. We are often satisfied with asymptotic confidence
intervals whose coverage converges to the prescribed level as the sample size
increases.

• We defined confidence intervals only for real parameters. Nevertheless, similar
concept can also be introduced for vector parameters: we need to find some
random set 𝐵𝑛 which covers the true value of the parameter with specified prob-
ability. This set is then called the confidence set. The shape of the set 𝐵𝑛 , how-
ever, can be chosen in many different ways.

Remark. Wedistinguish between two-sided and one-sided confidence intervals (lower
and upper).

• An interval of the form
(
𝜂𝐿 (X),𝜂𝑈 (X)

)
, where 𝜂𝐿 (X) and 𝜂𝑈 (X) are two ran-

dom variables satisfying P
[
𝜂𝐿 (X) < 𝜂𝑈 (X)

]
= 1, 𝜂𝐿 (X) > −∞ and 𝜂𝑈 (X) < ∞

a.s., is called two-sided confidence interval. Usually we construct it so that it
holds (at least asymptotically) that

P
[
𝜃𝑋 ≤ 𝜂𝐿 (X)

]
=
𝛼

2
, P

[
𝜃𝑋 ≥ 𝜂𝑈 (X)

]
=
𝛼

2
.

• An interval of the form
(
𝜂𝐿 (X),∞

)
is called lower one-sided confidence interval.

We have that P
[
𝜂𝐿 (X) < 𝜃𝑋

]
= 1 − 𝛼.
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• An interval of the form
(
−∞,𝜂𝑈 (X)

)
is called upper one-sided confidence inter-

val. We have that P
[
𝜃𝑋 < 𝜂𝑈 (X)

]
= 1 − 𝛼.

Example (expectation in normal model with known variance). Consider the prob-
lem of interval estimation of the expected value for normally distributed data with
known variance.
Data: 𝑋1, . . . , 𝑋𝑛 ∼ 𝐹𝑋
Model: 𝐹𝑋 ∈ F =

{
N(𝜇, 𝜎2

𝑋
), 𝜇 ∈ ℝ, 𝜎2

𝑋
known

}
Estimated parameter: 𝜃𝑋 = E𝑋𝑖 ≡ 𝜇𝑋
Procedure:

1. We have an unbiased and consistent estimator of the parameter 𝜇𝑋 - the sample
mean 𝑋 𝑛 . We know that 𝑋 𝑛 ∼ N(𝜇𝑋 , 𝜎2𝑋 /𝑛). Thus

√
𝑛

(
𝑋 𝑛 − 𝜇𝑋

)
𝜎𝑋

∼ N(0, 1).

2. We will use the equality

P
[
𝑢 𝛼

2
<

√
𝑛

(
𝑋 𝑛 − 𝜇𝑋

)
𝜎𝑋

< 𝑢1−𝛼/2

]
= 1 − 𝛼,

where 𝑢𝛼 = Φ−1(𝛼) is 𝛼-quantile of the standard normal distribution and af-
ter several manipulations of the expression (using symmetry of the density of
N(0, 1) distribution around 0) we will arrive at

P
[
𝑋 𝑛 − 𝑢1−𝛼/2

𝜎𝑋√
𝑛

< 𝜇𝑋 < 𝑋 𝑛 + 𝑢1−𝛼/2
𝜎𝑋√
𝑛

]
= 1 − 𝛼.

3. We obtained a two-sided confidence interval (𝜂𝐿 ,𝜂𝑈 ). Its endpoints are

𝜂𝐿 (X) = 𝑋 𝑛 − 𝑢1−𝛼/2
𝜎𝑋√
𝑛
, 𝜂𝑈 (X) = 𝑋 𝑛 + 𝑢1−𝛼/2

𝜎𝑋√
𝑛
.

Quantiles of the standard normal distribution which are needed for the con-
struction of the confidence interval are listed in Table 3.1.
For 𝛼 = 0.05we take quantile𝑢0.975 � 1.96 and obtain 95% two-sided confidence
interval. This means that the interval covers the true value 𝜇𝑋 with probability
0.95.

Table 3.1.: Some values of quantiles of the standard normal distribution.

𝜅 0.9 0.95 0.975 0.99 0.995
𝑢𝜅 = Φ−1(𝜅) 1.282 1.645 1.960 2.326 2.576
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3. Parameter Estimation

4. One-sided interval would be obtained by a small modification of step 2. Lower
one-sided confidence interval will be given as(

𝜂𝐿 (X),∞
)
, where 𝜂𝐿 (X) = 𝑋 𝑛 − 𝑢1−𝛼

𝜎𝑋√
𝑛
.

Upper one-sided confidence interval will be of the form(
−∞,𝜂𝑈 (X)

)
, where 𝜂𝑈 (X) = 𝑋 𝑛 + 𝑢1−𝛼

𝜎𝑋√
𝑛
.

One-sided confidence intervals differ from two-sided by the value of the normal
quantile (𝑢1−𝛼 quantile is used instead of 𝑢1−𝛼/2). For a 95% one-sided confi-
dence interval we would take 𝑢0.95 � 1.645.

Remark. Length of the confidence interval:
• decreases with increasing number of observations 𝑛,
• increases with increasing data variance 𝜎2

𝑋
,

• increases with increasing confidence level 1 − 𝛼.

Example. Let 𝑋1, . . . , 𝑋𝑛 be a random sample from N(𝜇𝑋 , 𝜎2𝑋 ) distribution, the vari-
ance 𝜎2

𝑋
is known. How many observations do we need so that the length of the two-

sided confidence interval for the expected value 𝜇𝑋 does not exceed the specified
limit 𝑑 > 0?
We have that 2𝑢1−𝛼/2 𝜎𝑋 /

√
𝑛 ≤ 𝑑 . Therefore we need at least 4𝑢21−𝛼/2 𝜎

2
𝑋
/𝑑2 obser-

vations. It is worth noting that if we want to halve the confidence interval, then we
need to increase the sample size 4 times.

Lemma 3.2 (confidence interval after parameter transformation) If (𝜂𝐿 ,𝜂𝑈 ) is a(n)
(asymptotic) confidence interval for parameter 𝜃𝑋 with the confidence level of 1 − 𝛼
and if𝜓 is an increasing continuous real-valued function on the space of parameters
Θ =

{
𝑡 (𝐹 ), 𝐹 ∈ F

}
⊆ ℝ, then

(
𝜓 (𝜂𝐿 ),𝜓 (𝜂𝑈 )

)
is a(n) (asymptotic) confidence interval

for parameter 𝜓 (𝜃𝑋 ) with the confidence level of 1 − 𝛼.

Proof. From the assumptions of the lemma we have that for a confidence interval
with exact coverage it holds that

1 − 𝛼 = P
[
𝜂𝐿 (X) < 𝜃𝑋 < 𝜂𝑈 (X)

]
= P

[
𝜓

(
𝜂𝐿 (X)

)
< 𝜓 (𝜃𝑋 ) < 𝜓

(
𝜂𝑈 (X)

) ]
.

Analogously for asymptotic confidence intervals. □

Example. Let 𝑋1, . . . , 𝑋𝑛 be a random sample from Po(𝜆) distribution. Then accord-
ing to the example on page 28 we know that

√
𝑛

(
2
√︃
𝑋 𝑛 − 2

√︁
𝜆𝑋

) d−−−−→
𝑛→∞

N(0, 1).
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3. Parameter Estimation

From this result we can easily deduce that the asymptotic confidence interval for
√
𝜆𝑋

is given as (√︃
𝑋 𝑛 −

𝑢1−𝛼/2

2
√
𝑛
,

√︃
𝑋 𝑛 +

𝑢1−𝛼/2

2
√
𝑛

)
.

And thus the confidence interval for 𝜆𝑋 is given as( [
max

{√︃
𝑋 𝑛 −

𝑢1−𝛼/2

2
√
𝑛
, 0

}]2
,
[√︃
𝑋 𝑛 +

𝑢1−𝛼/2

2
√
𝑛

]2)
.

3.5.2. CONSTRUCTION OF CONFIDENCE INTERVALS

LetX = (X1, . . . ,X𝑛), whereX1,X2, . . . ,X𝑛 is a random sample from some distribu-
tion 𝐹𝑋 ∈ F . We need to estimate parameter 𝜃𝑋 = 𝑡 (𝐹𝑋 ) ∈ ℝ. Let us briefly describe
the general procedure for construction of two-sided confidence intervals for 𝜃𝑋 .

1. We will find a function 𝜑 (x, 𝜃𝑋 ) satisfying that for every x fixed it is, as a func-
tion of 𝜃𝑋 , injective and continuous and that the distribution of the random
variable 𝑍𝑛 ≡ 𝜑 (X , 𝜃𝑋 ) is known at least asymptotically (it depends neither on
𝜃𝑋 nor on any other unknown parameters) and is non-degenerate. This random
variable 𝑍𝑛 is called pivotal. For the construction of function 𝜑 it may be use-
ful to start by calculating a point estimator of 𝜃𝑋 , whose distribution is usually
known (at least asymptotically). Let us denote by 𝐹𝑍 the (exact or asymptotic)
cumulative distribution function of 𝑍𝑛 and let 𝑐𝛼 = 𝐹 −1

𝑍
(𝛼) be 𝛼-quantile of the

distribution given by 𝐹𝑍 .

2. We will use the formula

P
(
𝑐𝛼/2 < 𝜑 (X , 𝜃𝑋 ) < 𝑐1−𝛼/2

)
= 1 − 𝛼 (or → 1 − 𝛼)

and we will “isolate” 𝜃𝑋 . In order to do that, it is needed to invert 𝜑 (x, 𝜃 ) as a
function of 𝜃 (for x fixed). Let �̄� (x, 𝑡 ) be a function such that

𝜑
(
x, �̄� (x, 𝑡 )

)
= 𝑡 and �̄�

(
x, 𝜑 (x, 𝜃 )

)
= 𝜃

for every x, 𝑡 and 𝜃 . Since function �̄� (x, 𝑡 ) is normally decreasing in 𝑡 , we get
that

P
(
�̄� (X , 𝑐1−𝛼/2) < 𝜃𝑋 < �̄� (X , 𝑐𝛼/2)

)
= 1 − 𝛼.

3. We obtained (asymptotic) confidence interval
(
𝜂𝐿 (X),𝜂𝑈 (X)

)
with confidence

level of 1 − 𝛼, where 𝜂𝐿 (X) = �̄� (X , 𝑐1−𝛼/2) and 𝜂𝑈 (X) = �̄� (X , 𝑐𝛼/2).

Example (variance and standard deviation of the normal distribution). Consider the
problem of constructing a confidence interval for the standard deviation of the nor-
mal distribution.

Data: 𝑋1, . . . , 𝑋𝑛 ∼ 𝐹𝑋
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3. Parameter Estimation

Model: 𝐹𝑋 ∈ F =
{
N(𝜇, 𝜎2), 𝜇 ∈ ℝ, 𝜎2 > 0

}
Estimated parameter: 𝜎𝑋 =

√
var𝑋𝑖

Procedure:
Let us first consider variance 𝜎2

𝑋
. Its unbiased and consistent estimator is 𝑆2𝑛 . Ac-

cording to theorem 2.8, part (i), we know that

(𝑛 − 1)𝑆2𝑛
𝜎2
𝑋

∼ 𝜒2𝑛−1.

Thus, we will choose 𝑍𝑛 = (𝑛 − 1)𝑆2𝑛/𝜎2𝑋 , 𝐹𝑍 = 𝜒2
𝑛−1 and 𝑐𝛼 = 𝜒2

𝑛−1(𝛼), i.e. 𝛼-quantile of
𝜒2
𝑛−1 distribution (Table 3.2).
We will use the equality

P

[
𝜒2𝑛−1(𝛼/2) <

(𝑛 − 1)𝑆2𝑛
𝜎2
𝑋

< 𝜒2𝑛−1(1 − 𝛼/2)
]
= 1 − 𝛼

and after several manipulations of the expression we will arrive at

P

[
(𝑛 − 1)𝑆2𝑛

𝜒2
𝑛−1(1 − 𝛼/2)

< 𝜎2𝑋 <
(𝑛 − 1)𝑆2𝑛
𝜒2
𝑛−1(𝛼/2)

]
= 1 − 𝛼.

We obtained a confidence interval(
(𝑛 − 1)𝑆2𝑛

𝜒2
𝑛−1(1 − 𝛼/2)

,
(𝑛 − 1)𝑆2𝑛
𝜒2
𝑛−1(𝛼/2)

)
(3.4)

for the variance 𝜎2
𝑋
whose confidence level is 1 − 𝛼.

Table 3.2.: Some values of quantiles 𝜒2
𝑓
(𝜅) of 𝜒2 distribution with 𝑓 degrees of free-

dom.

𝜅

𝑓 0,01 0,025 0,05 0,1 0,9 0,95 0,975 0,99

5 0,554 0,831 1,145 1,610 9,236 11,070 12,833 15,086
10 2,558 3,247 3,940 4,865 15,987 18,307 20,483 23,209
15 5,229 6,262 7,261 8,547 22,307 24,996 27,488 30,578
25 11,524 13,120 14,611 16,473 34,382 37,652 40,646 44,314
100 70,065 74,222 77,929 82,358 118,498 124,342 129,561 135,807
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Confidence interval for the standard deviation 𝜎𝑋 will be obtained by application
of square root to both endpoints of the confidence interval for the variance

©«
√
𝑛 − 1𝑆𝑛√︃

𝜒2
𝑛−1(1 − 𝛼/2)

,

√
𝑛 − 1𝑆𝑛√︃
𝜒2
𝑛−1(𝛼/2)

ª®®¬ ,
see also Lemma 3.2 (square root is an increasing and continuous function on (0,∞)).

Example (expectation of the normal distribution with unknown variance). Consider
the problem of constructing a confidence interval for the expectation of the normal
distribution with unknown variance.
Data: 𝑋1, . . . , 𝑋𝑛 ∼ 𝐹𝑋
Model: 𝐹𝑋 ∈ F =

{
N(𝜇, 𝜎2), 𝜇 ∈ ℝ, 𝜎2 > 0}

Estimated parameter: 𝜃𝑋 = E𝑋𝑖 ≡ 𝜇𝑋
Procedure:
The estimator 𝑋 𝑛 is unbiased and consistent for the parameter 𝜇𝑋 . Furthermore,

𝑆2𝑛 is an unbiased and consistent estimator of 𝜎2
𝑋
≡ var𝑋𝑖 . From theorem 2.10 we know

that

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜇𝑋

)
𝑆𝑛

∼ 𝑡𝑛−1.

Hence, we can take 𝑇𝑛 as our pivotal random variable, 𝐹𝑍 will be cumulative distri-
bution function of 𝑡𝑛−1 distribution and 𝑐𝛼 = 𝑡𝑛−1(𝛼) (𝛼-quantile of 𝑡𝑛−1 distribution).
Some quantiles of 𝑡 -distribution are listed in Table 3.3. Clearly, already for 𝑛 − 1 = 25
they are only slightly larger than the corresponding quantiles of the standard normal
distribution, to which they converge as the number of degrees of freedom increases
above all bounds. Larger values of 𝑡 -quantiles compared to the quantiles of the stan-
dard normal distribution, which were used in the introductory example, reflect in-
creased variability of the pivotal random variable, which is caused by ignorance of
the true variance.
We will use the equality

P
[
𝑡𝑛−1

(
𝛼
2
)
<

√
𝑛 (𝑋 𝑛 − 𝜇𝑋 )

𝑆𝑛
< 𝑡𝑛−1

(
1 − 𝛼

2
) ]

= 1 − 𝛼

and by the same procedure as in the case of the normal distribution with known vari-
ance we will arrive at the required confidence interval(

𝑋 𝑛 − 𝑡𝑛−1
(
1 − 𝛼

2
) 𝑆𝑛√

𝑛
, 𝑋 𝑛 + 𝑡𝑛−1

(
1 − 𝛼

2
) 𝑆𝑛√

𝑛

)
, (3.5)

whose confidence level is exactly 1 − 𝛼.
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Table 3.3.: Some values of 𝑡 𝑓 (𝜅) quantiles of t distribution with 𝑓 degrees of freedom.

𝜅

𝑓 0.9 0.95 0.975 0.99 0.995

5 1.476 2.015 2.571 3.365 4.032
10 1.372 1.812 2.228 2.764 3.169
15 1.341 1.753 2.131 2.602 2.947
25 1.316 1.708 2.060 2.485 2.787
100 1.290 1.660 1.984 2.364 2.626
∞ 1.282 1.645 1.960 2.326 2.576

Example (expected value of an arbitrary distribution with finite variance). Consider
the problem of constructing a confidence interval for the expectation without the
assumption of normality.
Data: 𝑋1, . . . , 𝑋𝑛 ∼ 𝐹𝑋
Model: 𝐹𝑋 ∈ F = L2

+ (all distributions with finite non-zero variance)
Estimated parameter: 𝜃𝑋 = E𝑋𝑖 ≡ 𝜇𝑋
Procedure: The estimator 𝑋 𝑛 is unbiased and consistent for the parameter 𝜇𝑋 . Fur-
thermore, 𝑆2𝑛 is an unbiased and consistent estimator of 𝜎2

𝑋
≡ var𝑋𝑖 . From theo-

rem 2.9 we know that

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜇𝑋

)
𝑆𝑛

d−−−−→
𝑛→∞

N(0, 1).

We can thus choose 𝑇𝑛 as our pivotal random variable.
We will use the following relation (which holds because 𝑇𝑛 converges in distribu-

tion to the standard normal distribution)

P
[
𝑢 𝛼

2
<

√
𝑛

(
𝑋 𝑛 − 𝜇𝑋

)
𝑆𝑛

< 𝑢1−𝛼/2
]
−−−−→
𝑛→∞

1 − 𝛼.

Thus, one possible asymptotic confidence interval would be(
𝑋 𝑛 − 𝑢1−𝛼/2

𝑆𝑛√
𝑛
, 𝑋 𝑛 + 𝑢1−𝛼/2

𝑆𝑛√
𝑛

)
. (3.6)

Since for 𝑛 → ∞ quantile 𝑡𝑛−1(𝛼) converges to 𝑢𝛼 (for arbitrary 0 < 𝛼 < 1), it holds
that interval (3.5), which was exact confidence interval for 𝜇𝑋 in case of a random
sample from the normal distribution, is also a valid asymptotic confidence interval
for 𝜇𝑋 for data coming from an arbitrary distribution with finite non-zero variance.
Note that |𝑡𝑛−1(𝛼) | > |𝑢𝛼 | for every 𝑛 ≥ 2, therefore interval (3.5) is longer than

interval (3.6). For caution, it is therefore recommended to use interval (3.5).
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Example (alternative distribution). Let us now present one possible way to construct
an asymptotic confidence interval for the probability of success in the alternative dis-
tribution. (We will show several more confidence intervals related to this problem
later.)

Data: 𝑋1, . . . , 𝑋𝑛 ∼ 𝐹𝑋
Model: 𝐹𝑋 ∈ F =

{
Be(𝑝), 𝑝 ∈ (0, 1)

}
Estimated parameter: 𝑝𝑋 = E𝑋𝑖 = P[𝑋𝑖 = 1]
Procedure:
Since we are estimating probability of an event, we will start by considering em-

pirical relative frequency 𝑝𝑛 = 𝑋 𝑛 , which is an unbiased and consistent estimator
of 𝑝 (theorem 2.3). From the central limit theorem (theorem P.7.11) we know that
√
𝑛

(
𝑝𝑛 − 𝑝𝑋

) d−−−−→
𝑛→∞

N
(
0, 𝑝𝑋 (1 − 𝑝𝑋 )

)
. Thus,

√
𝑛

(
𝑝𝑛 − 𝑝𝑋

)√︁
𝑝𝑋 (1 − 𝑝𝑋 )

d−−−−→
𝑛→∞

N(0, 1).

Left-hand side is a non-linear function of 𝑝𝑋 , but our situation can be simplified.
From the consistency of 𝑝𝑛 and the continuous mapping theorem (theorem P.7.3) it
follows that √︃

𝑝𝑛 (1 − 𝑝𝑛)
P−−−−→

𝑛→∞

√︁
𝑝𝑋 (1 − 𝑝𝑋 ).

From Slutsky’s theorem (theorem P.7.6) we obtain that
√
𝑛

(
𝑝𝑛 − 𝑝𝑋

)√︁
𝑝𝑛 (1 − 𝑝𝑛)

=

√
𝑛

(
𝑝𝑛 − 𝑝𝑋

)√︁
𝑝𝑋 (1 − 𝑝𝑋 )

√︁
𝑝𝑋 (1 − 𝑝𝑋 )√︁
𝑝𝑛 (1 − 𝑝𝑛)

d−−−−→
𝑛→∞

N(0, 1). (3.7)

Therefore, we can take 𝑍𝑛 =
√
𝑛 (𝑝𝑛−𝑝𝑋 )√
𝑝𝑛 (1−𝑝𝑛 )

, 𝐹𝑍 = Φ and 𝑐𝛼 = 𝑢𝛼 (𝛼-quantile of the

standard normal distribution).
From the following relation

P

[
−𝑢1−𝛼/2 <

√
𝑛

(
𝑝𝑛 − 𝑝𝑋

)√︁
𝑝𝑛 (1 − 𝑝𝑛)

< 𝑢1−𝛼/2

]
−−−−→
𝑛→∞

1 − 𝛼

we get that

P

[
𝑝𝑛 − 𝑢1−𝛼/2

√︁
𝑝𝑛 (1 − 𝑝𝑛)√

𝑛
< 𝑝𝑋 < 𝑝𝑛 + 𝑢1−𝛼/2

√︁
𝑝𝑛 (1 − 𝑝𝑛)√

𝑛

]
−−−−→
𝑛→∞

1 − 𝛼.

We obtained an asymptotic confidence interval(
𝑝𝑛 − 𝑢1−𝛼/2

√︁
𝑝𝑛 (1 − 𝑝𝑛)√

𝑛
, 𝑝𝑛 + 𝑢1−𝛼/2

√︁
𝑝𝑛 (1 − 𝑝𝑛)√

𝑛

)
,

whose coverage probability converges to 1 − 𝛼 as 𝑛 → ∞.
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3.6. EMPIRICAL ESTIMATORS

Consider a random sample 𝑋1, 𝑋2, . . . , 𝑋𝑛 from a distribution 𝐹𝑋 . We will present how
to estimate some characteristics of the distribution 𝐹𝑋 .

3.6.1. EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION

Let us first focus on estimation of the whole distribution function 𝐹𝑋 (𝑥) for 𝑥 ∈ ℝ.
We consider a model that includes all distributions on ℝ, i.e. we do not impose any
conditions at all on the distribution function 𝐹𝑋 .

Definition 3.6 Function 𝐹𝑛 (𝑥)
df
= 1

𝑛

∑𝑛
𝑖=1 𝟙{𝑋𝑖 ≤ 𝑥} is called the empirical distribution

function of the random sample 𝑋1, 𝑋2, . . . , 𝑋𝑛 .

Remark. The value of 𝐹𝑛 at some point 𝑥 is equal to the number of observations that
do not exceed 𝑥 which is then divided by the total number of observations. Function
𝐹𝑛 is non-decreasing, right-continuous, piecewise constant with jumps in observed
values of random variables 𝑋𝑖 , the magnitude of the jump at a point 𝑥 is given by the
number observations which are equal to 𝑥 which is then divided by the total number
of observations. Empirical distribution function has all the properties of a cumulative
distribution function of some discrete distribution.

For some 𝑥 fixed, is the value 𝐹𝑛 (𝑥) actually equal to the relative frequency of the
event [𝑋𝑖 ≤ 𝑥] calculated from 𝑛 observations, while the probability of this event is
equal to 𝐹𝑋 (𝑥). From theorem 2.3 we immediately obtain the most important prop-
erties of empirical distribution functions.

Theorem 3.3 (properties of empirical distribution functions) For an arbitrary 𝑥 ∈ ℝ

it holds that:
(i) E𝐹𝑛 (𝑥) = 𝐹𝑋 (𝑥) (unbiasedness), var

(
𝐹𝑛 (𝑥)

)
=

𝐹𝑋 (𝑥 ) [1−𝐹𝑋 (𝑥 ) ]
𝑛

;
(ii) 𝐹𝑛 (𝑥)

P−−−−→
𝑛→∞

𝐹𝑋 (𝑥) (pointwise consistency);

(iii)
√
𝑛

[
𝐹𝑛 (𝑥) − 𝐹𝑋 (𝑥)

] d−−−−→
𝑛→∞

N
(
0, 𝐹𝑋 (𝑥) [1 − 𝐹𝑋 (𝑥)]

)
(asymptotic normality);

(iv) 𝑛𝐹𝑛 (𝑥) ∼ Bi
(
𝑛, 𝐹𝑋 (𝑥)

)
;

(v) sup𝑥∈ℝ
���𝐹𝑛 (𝑥) − 𝐹𝑋 (𝑥)��� P−−−−→

𝑛→∞
0 (uniform consistency).

Remark.
• Point (iii) of the previous theorem can be used to construct an asymptotic con-
fidence interval for 𝐹𝑋 (𝑥) in the same way as in the case of the parameter in the
alternative distribution (see page 49).

• Point (v) is sometimes called the Glivenko-Cantelli theorem. It cannot be de-
duced from theorem 2.3 or from other results that are currently available. It will
be proved in one of the more advanced lectures on the probability theory.
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3.6.2. IDEA BEHIND EMPIRICAL ESTIMATORS

Estimators of many basic characteristics of the distribution 𝐹𝑋 can be derived from
the empirical distribution function. Let 𝜃𝑋 = 𝑡 (𝐹𝑋 ) be the parameter of interest. If
it can be calculated from the true cumulative distribution function 𝐹𝑋 , then it can
also be calculated from the empirical distribution function 𝐹𝑛 in the same way. Thus,
we obtain the estimator 𝜃𝑛

df
= 𝑡

(
𝐹𝑛

)
. These types of estimators are called empirical

estimators. We will see that empirical estimators often have reasonable properties.

Let us first demonstrate this procedure on the example of the empirical estimator
of expectation. We have that

E𝑋𝑖 =
∫ ∞

−∞
𝑥 𝑑𝐹𝑋 (𝑥).

The empirical estimator of expectation is obtained by using 𝐹𝑛 instead of the un-
known 𝐹𝑋 . We will get∫ ∞

−∞
𝑥 𝑑𝐹𝑛 (𝑥) =

∫ ∞

−∞
𝑥 𝑑

(
1
𝑛

𝑛∑︁
𝑖=1

𝟙{𝑋𝑖 ≤ 𝑥}
)
=
1
𝑛

𝑛∑︁
𝑖=1

∫ ∞

−∞
𝑥 𝑑 𝟙{𝑋𝑖 ≤ 𝑥} = 1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 ,

where we used the fact that 𝐺 (𝑥) = 𝟙{𝑋𝑖 ≤ 𝑥} is for fixed 𝑋𝑖 actually the cumulative
distribution function of a random variable that is equal to 𝑋𝑖 with probability 1. We
have, therefore, reached the conclusion that the empirical estimator of expectation
is the sample mean, which we already know to be unbiased and consistent.

Remark. Let us fix 𝜔 ∈ Ω and denote the observed realisations of random variables
as 𝑥1 = 𝑋1(𝜔), . . . , 𝑥𝑛 = 𝑋𝑛 (𝜔). Then 𝐹𝑛 satisfies all the properties of a cumulative
distribution function. If 𝑌 is some random variable whose cumulative distribution
function is 𝐹𝑛 , then the integral

∫ ∞
−∞ 𝑥 𝑑𝐹𝑛 (𝑥) is equal to the expectation of 𝑌 . Since

the distribution given by 𝐹𝑛 is discrete and satisfies that P(𝑌 = 𝑥𝑖 ) = 1
𝑛
for every

𝑖 = 1, . . . , 𝑛, then it holds that

E𝑌 =

𝑛∑︁
𝑖=1

𝑥𝑖 P(𝑌 = 𝑥𝑖 ) =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 =
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 (𝜔).

3.6.3. EMPIRICAL MOMENT ESTIMATORS

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from a distribution 𝐹𝑋 and ℎ be a measurable
real-valued function such that E |ℎ (𝑋𝑖 ) | < ∞. It is easy to verify that the empirical
estimator of the parameter Eℎ (𝑋𝑖 ) is the sample mean of the observed values ℎ (𝑋𝑖 ),
i.e. 1

𝑛

∑𝑛
𝑖=1 ℎ (𝑋𝑖 ). This estimator is unbiased and consistent.

Let us derive the empirical estimator of the variance 𝜎2
𝑋
= E𝑋 2

𝑖
− (E𝑋𝑖 )2. We know

that the empirical estimator of E𝑋𝑖 is 𝑋 𝑛 and that the empirical estimator of E𝑋 2
𝑖
is
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1
𝑛

∑𝑛
𝑖=1 𝑋

2
𝑖
. The empirical estimator of the variance is, therefore, given as

𝜎2𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝑋 2
𝑖 − 𝑋 2

𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋 𝑛

)2
.

Remark. It holds that

𝑆2𝑛 =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋 𝑛

)2
=

𝑛

𝑛 − 1𝜎
2
𝑛 .

For 𝑛 sufficiently large is the difference between 𝜎2𝑛 and 𝑆2𝑛 small, because thanks to
theorem 2.6(i)

𝜎2𝑛 − 𝑆2𝑛 = −𝑆
2
𝑛

𝑛

P−−−−→
𝑛→∞

0.

It follows from theorem 2.6 that the sample variance 𝑆2𝑛 is an unbiased and consistent
estimator of 𝜎2

𝑋
. The empirical estimator of the variance 𝜎2𝑛 is consistent, however, it

is not unbiased. On the other hand, from the example on page 33 we know that in
model F =

{
N(𝜇, 𝜎2), 𝜇 ∈ ℝ, 𝜎2 > 0

}
it holds thatMSE

(
𝜎2𝑛

)
< MSE(𝑆2𝑛).

Similarly, we can derive empirical estimators for higher order moments. Empirical
estimators of non-central moments 𝜇′

𝑘
= E𝑋 𝑘

𝑖
are

𝜇′
𝑘 =

1
𝑛

𝑛∑︁
𝑖=1

𝑋 𝑘
𝑖 .

Empirical estimators of central moments 𝜇𝑘 = E (𝑋𝑖 − E𝑋𝑖 )𝑘 are

𝜇𝑘 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑋 𝑛)𝑘 .

Empirical estimators of non-central moments are evidently unbiased as well as
consistent. Empirical estimators of central moments are consistent. In general, how-
ever, they are not unbiased.
The empirical estimator of the skewness is

𝛾3 =
𝜇3

(𝜎2𝑛 )3/2
,

The empirical estimator of the kurtosis is

𝛾4 =
𝜇4

𝜎4𝑛
.

Both of them are consistent (according to the continuousmapping theorem, theorem
P.7.3).

Exercise. Prove that if E |𝑋𝑖 |𝑘 < ∞, then 𝜇𝑘
P−−−−→

𝑛→∞
𝜇𝑘 .

Hint:

𝜇𝑘 =
1
𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=0

(
𝑗

𝑘

)
𝑋 𝑘
𝑖

(
− 𝑋 𝑛

)𝑘−𝑗
=

𝑘∑︁
𝑗=0

(
𝑗

𝑘

) ( 1
𝑛

𝑛∑︁
𝑖=1

𝑋 𝑘
𝑖

) (
− 𝑋 𝑛

)𝑘−𝑗
.
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3.6.4. EMPIRICAL (SAMPLE) QUANTILES

Let 𝛼 be a preselected number from the interval (0, 1). The quantile function of a
given distribution 𝐹𝑋 is defined as

𝐹 −1
𝑋 (𝛼) = inf

{
𝑥 : 𝐹𝑋 (𝑥) ≥ 𝛼

}
.

Then, 𝛼-quantile of distribution 𝐹𝑋 is defined as 𝑢𝑋 (𝛼) = 𝐹 −1
𝑋

(𝛼). For 𝛼-quantile it
holds that

𝐹𝑋
(
𝑢𝑋 (𝛼)

)
≥ 𝛼 and 𝐹𝑋

(
𝑢𝑋 (𝛼) − ℎ

)
< 𝛼 for ∀ℎ > 0.

As an empirical estimator, we use the value of 𝛼-quantile of the empirical distribu-
tion function, i.e.

𝐹 −1
𝑛 (𝛼) = inf

{
𝑥 : 𝐹𝑛 (𝑥) ≥ 𝛼

}
.

Definition 3.7 (Empirical quantile) For 𝛼 ∈ (0, 1) we define the empirical (sample)
𝛼-quantile as 𝑢𝑛 (𝛼) = 𝐹 −1

𝑛 (𝛼).

Remark.
• Recall that the empirical distribution function is piecewise constant with jumps
at points 𝑋 (1) , 𝑋 (2) , . . . , 𝑋 (𝑛 ) . Therefore, the empirical quantile will be (according
to our definition) an appropriately chosen order statistic. Since it holds that

𝐹𝑛
(
𝑋 (𝑘 )

)
≥ 𝑘

𝑛
and 𝐹𝑛

(
𝑋 (𝑘 ) − ℎ

)
<
𝑘

𝑛
for ∀ℎ > 0,

the empirical quantile will satisfy that

𝑢𝑛 (𝛼) = 𝑋 (𝑘𝛼 ) , where 𝑘𝛼 =

{
𝑛𝛼 for (𝑛𝛼) ∈ ℕ,

⌊𝑛𝛼⌋ + 1 for (𝑛𝛼) ∉ ℕ.

Since we do not assume continuity of the distribution, the order statistics 𝑋 (𝑘𝛼 )
must be understood in terms of the note on page 26.

• For 𝛼 = 0,5 we get the sample median: 𝑚𝑛 = 𝑋 ( 𝑛+12 ) for 𝑛 odd and 𝑚𝑛 = 𝑋 ( 𝑛2 ) for
𝑛 even.

• The empirical 𝛼-quantile satisfies inequalities

𝐹𝑛
(
𝑢𝑛 (𝛼)

)
≥ 𝛼 and lim

ℎ↘0
𝐹𝑛

(
𝑢𝑛 (𝛼) − ℎ

)
< 𝛼,

i.e. at least 𝑛𝛼 observations are less than or equal to 𝑢𝑛 (𝛼) and, simultaneously,
for every ℎ > 0 at least 𝑛 (1−𝛼) observation are greater than or equal to𝑢𝑛 (𝛼)−ℎ.

• There are many different definitions of the empirical 𝛼-quantile (typically some
linear interpolation between points 𝑋 (𝑘𝛼−1) , 𝑋 (𝑘𝛼 ) and 𝑋 (𝑘𝛼+1)). For example for
𝑛 even is the sample median often defined as

𝑚𝑛 =
𝑋 ( 𝑛2 ) + 𝑋 ( 𝑛2 +1)

2
.
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The following lemma characterises the empirical quantile as a solution of some
minimization problem (compare with lemma 2.1).

Lemma 3.4 Let 𝛼 ∈ (0, 1). For the empirical 𝛼-quantile 𝑢𝑛 (𝛼) it holds that

𝑢𝑛 (𝛼) = argmin
𝑐 ∈ℝ

𝑛∑︁
𝑖=1

𝜚𝛼 (𝑋𝑖 − 𝑐 ),

where 𝜚𝛼 (𝑢) = 𝛼 𝑢𝟙{𝑢 ≥ 0} + (1 − 𝛼) (−𝑢)𝟙{𝑢 < 0}.

Note that for 𝛼 = 1
2 we obtain that 𝜚1/2(𝑢) = 1

2 |𝑢 |. Since the constant
1
2 is for the

optimization irrelevant, it holds that the sample median satisfies

𝑚𝑛 = argmin
𝑐 ∈ℝ

𝑛∑︁
𝑖=1

��𝑋𝑖 − 𝑐 ��,
i.e. 𝑚𝑛 minimizes the sum of absolute deviations.

Remark. The minimization problem from part (ii) can be formulated as a problem
of linear programming in the form

argmin
𝑐 ∈ℝ

[
−(1 − 𝛼)

∑︁
𝑖 :𝑋𝑖<𝑐

(
𝑋𝑖 − 𝑐

)
+ 𝛼

∑︁
𝑖 :𝑋𝑖 ≥𝑐

(
𝑋𝑖 − 𝑐

) ]
.

If we introduce the notation 𝑈𝑖 = (𝑋𝑖 − 𝑐 )𝟙(𝑋𝑖 ≥ 𝑐 ), 𝑉𝑖 = −(𝑋𝑖 − 𝑐 )𝟙(𝑋𝑖 < 𝑐 ), U =

(𝑈1, . . . ,𝑈𝑛)T, V = (𝑉1, . . . ,𝑉𝑛)T, X = (𝑋1, . . . , 𝑋𝑛)T, our problem can be reformulated
as an optimization problem of linear programming in (2𝑛 + 1)-dimensional space

min
U ,V ,𝑐

𝛼1T
𝑛U + (1 − 𝛼)1T

𝑛V

subject to
𝑐1𝑛 +U − V = X , U ≥ 0, V ≥ 0.

Naturally, this minimization problem does not have to have a unique solution. The
minimum can be attained at every point from some interval.

Properties of empirical quantiles will be studied (proved) only in continuous dis-
tributions with increasing cumulative distribution functions 𝐹𝑋 and densities 𝑓𝑋 .

Theorem 3.5 Let 𝛼 ∈ (0, 1). Let 𝑋1, . . . , 𝑋𝑛 be a random sample from a distribution
whose cumulative distribution function 𝐹𝑋 is continuous and increasing on some
neighbourhood of 𝑢𝑋 (𝛼).
(i) Then 𝑢𝑛 (𝛼)

P−−−−→
𝑛→∞

𝑢𝑋 (𝛼).
(ii) Additionally, if there exists density 𝑓𝑋 , which is continuous and non-zero at𝑢𝑋 (𝛼),

then
√
𝑛
[
𝑢𝑛 (𝛼) − 𝑢𝑋 (𝛼)

] d−−−−→
𝑛→∞

N
(
0,𝑉 (𝛼)

)
, where 𝑉 (𝛼) = 𝛼 (1 − 𝛼)

𝑓 2
𝑋
(𝑢𝑋 (𝛼))

.
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Proof. Part (i): Let 𝜀 > 0. We need to prove that

P
(
|𝑢𝑛 (𝛼) − 𝑢𝑋 (𝛼) | > 𝜀

)
−−−−→
𝑛→∞

0.

In order to do that, it is sufficient to show that

P
(
𝑢𝑛 (𝛼) < 𝑢𝑋 (𝛼) − 𝜀

)
−−−−→
𝑛→∞

0 and P
(
𝑢𝑛 (𝛼) > 𝑢𝑋 (𝛼) + 𝜀

)
−−−−→
𝑛→∞

0.

So let us calculate

P
(
𝑢𝑛 (𝛼) < 𝑢𝑋 (𝛼) − 𝜀

)
= P

(
𝑋 (𝑘𝛼 ) < 𝑢𝑋 (𝛼) − 𝜀

)
= P

( ∑𝑛
𝑖=1 𝟙

{
𝑋𝑖 < 𝑢𝑋 (𝛼) − 𝜀

}
≥ 𝑘𝛼

)
≤ P

(
𝐹𝑛

(
𝑢𝑋 (𝛼) − 𝜀

)
− 𝐹𝑋

(
𝑢𝑋 (𝛼) − 𝜀

)
≥ 𝑘𝛼

𝑛
− 𝐹𝑋

(
𝑢𝑋 (𝛼) − 𝜀

) )
. (3.8)

From theorem 3.3 it follows that

𝐹𝑛
(
𝑢𝑋 (𝛼) − 𝜀

)
− 𝐹𝑋

(
𝑢𝑋 (𝛼) − 𝜀

) P−−−−→
𝑛→∞

0, (3.9)

and from the assumptions of this theorem we have that
𝑘𝛼
𝑛
− 𝐹𝑋

(
𝑢𝑋 (𝛼) − 𝜀

)
−−−−→
𝑛→∞

𝛼 − 𝐹𝑋
(
𝑢𝑋 (𝛼) − 𝜀

)
> 0. (3.10)

By combining (3.9) and (3.10) we obtain that the right-hand side of equality (3.8) con-
verges to zero, thus we have proved that P

(
𝑢𝑛 (𝛼) < 𝑢𝑋 (𝛼) − 𝜀

)
−−−−→
𝑛→∞

0.
Similarly

P
(
𝑢𝑛 (𝛼) > 𝑢𝑋 (𝛼) + 𝜀

)
= P

( ∑𝑛
𝑖=1 𝟙

{
𝑋𝑖 ≤ 𝑢𝑋 (𝛼) + 𝜀

}
< 𝑘𝛼

)
≤ P

(
𝐹𝑛

(
𝑢𝑋 (𝛼) + 𝜀

)
− 𝐹𝑋

(
𝑢𝑋 (𝛼) + 𝜀

)
<

𝑘𝛼
𝑛
− 𝐹𝑋

(
𝑢𝑋 (𝛼) + 𝜀

) )
. (3.11)

From theorem 3.3 it follows that

𝐹𝑛
(
𝑢𝑋 (𝛼) + 𝜀

)
− 𝐹𝑋

(
𝑢𝑋 (𝛼) + 𝜀

) P−−−−→
𝑛→∞

0, (3.12)

and from the assumptions of this theorem we have that
𝑘𝛼
𝑛
− 𝐹𝑋

(
𝑢𝑋 (𝛼) + 𝜀

)
−−−−→
𝑛→∞

𝛼 − 𝐹𝑋
(
𝑢𝑋 (𝛼) + 𝜀

)
< 0. (3.13)

By combining (3.12) and (3.13) we obtain that the right-hand side of equality (3.11)
converges to zero, thus we have proved that P

(
𝑢𝑛 (𝛼) > 𝑢𝑋 (𝛼) + 𝜀

)
−−−−→
𝑛→∞

0.

Part (ii): ∗ Similarly as in the part (i) let us calculate

P
(√
𝑛
[
𝑢𝑛 (𝛼) − 𝑢𝑋 (𝛼)

]
≤ 𝑥

)
= P

(
𝑢𝑛 (𝛼) ≤ 𝑢𝑋 (𝛼) + 𝑥√

𝑛

)
= P

(
𝐹𝑛

(
𝑢𝑋 (𝛼) + 𝑥√

𝑛

)
− 𝐹𝑋

(
𝑢𝑋 (𝛼) + 𝑥√

𝑛

)
≥ 𝑘𝛼

𝑛
− 𝐹𝑋

(
𝑢𝑋 (𝛼) + 𝑥√

𝑛

) )
.

= P
(
𝑍𝑛 ≥ 𝑥𝑛

)
,

∗ This part of the proof was not done in the lecture.
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where

𝑍𝑛 =

√
𝑛
[
𝐹𝑛

(
𝑢𝑋 (𝛼) + 𝑥√

𝑛

)
− 𝐹𝑋

(
𝑢𝑋 (𝛼) + 𝑥√

𝑛

) ]√︁
𝛼 (1 − 𝛼)

and

𝑥𝑛 =

√
𝑛
[
𝑘𝛼
𝑛
− 𝐹𝑋

(
𝑢𝑋 (𝛼) − 𝑥√

𝑛

) ]√︁
𝛼 (1 − 𝛼)

.

From the central limit theorem for triangular arrays it follows that 𝑍𝑛
d−−−−→

𝑛→∞
𝑍 , where

𝑍 ∼ N(0, 1). Furthermore, from the assumptions of the theorem we get that 𝑥𝑛 −−−−→
𝑛→∞

−𝑥 𝑓𝑋
(
𝑢𝑋 (𝛼 )

)
√
𝛼 (1−𝛼 )

. So in total we have that

P
(√
𝑛
[
𝑢𝑛 (𝛼) − 𝑢𝑋 (𝛼)

]
≤ 𝑥

)
−−−−→
𝑛→∞

P
(
𝑍 ≥ −𝑥 𝑓𝑋

(
𝑢𝑋 (𝛼 )

)
√
𝛼 (1−𝛼 )

)
= P

(
𝑍 ≤ 𝑥 𝑓𝑋

(
𝑢𝑋 (𝛼 )

)
√
𝛼 (1−𝛼 )

)
,

which (together with the definition of convergence in distribution) implies the state-
ment of the theorem. □

The asymptotic variance𝑉 (𝛼) of the empirical quantile is difficult to estimate be-
cause we do not have a universally applicable and reliable estimator of the density.
Under the assumption that 𝐹𝑋 is continuous at𝑢𝑋 (𝛼), it is possible to use order statis-
tics to construct a confidence interval.
For example two-sided confidence interval for 𝑢𝑋 (𝛼) with confidence level of 1 − 𝛽

can be found in the form of
(
𝑋 (𝑘𝐿 ) , 𝑋 (𝑘𝑈 )

)
. To determine numbers 𝑘𝐿 and 𝑘𝑈 let us

observe that

P
(
𝑋 (𝑘𝐿 ) ≥ 𝑢𝑋 (𝛼)

)
= P

( 𝑛∑︁
𝑖=1

𝟙
{
𝑋𝑖 < 𝑢𝑋 (𝛼)

}
≤ 𝑘𝐿 − 1

)
= P

(
Bi(𝑛, 𝛼) ≤ 𝑘𝐿 − 1

)
,

P
(
𝑋 (𝑘𝑈 ) ≤ 𝑢𝑋 (𝛼)

)
= P

( 𝑛∑︁
𝑖=1

𝟙
{
𝑋𝑖 ≤ 𝑢𝑋 (𝛼)

}
≥ 𝑘𝑈

)
= P

(
Bi

(
𝑛, 𝛼

)
≥ 𝑘𝑈

)
.

Therefore, numbers 𝑘𝐿 and 𝑘𝑈 can be found using the binomial distribution as the
largest and smallest natural numbers such that

P
(
Bi(𝑛, 𝛼) ≤ 𝑘𝐿 − 1

)
≤ 𝛽

2 , P
(
Bi

(
𝑛, 𝛼

)
≥ 𝑘𝑈

)
≤ 𝛽

2 .

If it is not feasible to work directly with the binomial distribution, we can approx-
imate it by the normal distribution. In this case it is good to notice that

P
(
Bi(𝑛, 𝛼) ≤ 𝑘𝐿 − 1

)
= P

(
Bi(𝑛, 𝛼) < 𝑘𝐿

)
and P

(
Bi

(
𝑛, 𝛼

)
≥ 𝑘𝑈

)
= P

(
Bi

(
𝑛, 𝛼

)
> 𝑘𝑈 − 1

)
.

Therefore, as a “compromise” before the normal approximation, we proceed from the
following equations

P
(
𝑋 (𝑘𝐿 ) ≥ 𝑢𝑋 (𝛼)

)
= P

(
Bi(𝑛, 𝛼) < 𝑘𝐿 − 1

2

)
, P

(
𝑋 (𝑘𝑈 ) ≤ 𝑢𝑋 (𝛼)

)
= P

(
Bi

(
𝑛, 𝛼

)
> 𝑘𝑈 − 1

2

)
.
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Now, using the normal approximation

P
(
Bi(𝑛, 𝛼) < 𝑘𝐿 − 1

2

)
= P

(
Bi(𝑛,𝛼 )−𝑛𝛼√
𝑛𝛼 (1−𝛼 )

<
𝑘𝐿− 1

2−𝑛𝛼√
𝑛𝛼 (1−𝛼 )

)
� Φ

(
𝑘𝐿− 1

2−𝑛𝛼√
𝑛𝛼 (1−𝛼 )

)
,

P
(
Bi(𝑛, 𝛼) > 𝑘𝑈 − 1

2

)
= P

(
Bi(𝑛,𝛼 )−𝑛𝛼√
𝑛𝛼 (1−𝛼 )

>
𝑘𝑈 − 1

2−𝑛𝛼√
𝑛𝛼 (1−𝛼 )

)
� 1 −Φ

(
𝑘𝑈 − 1

2−𝑛𝛼√
𝑛𝛼 (1−𝛼 )

)
.

From here we can already express the approximate values 𝑘𝐿 a 𝑘𝑈

𝑘𝐿 =

⌊
1
2 + 𝑛𝛼 − 𝑢1− 𝛽

2

√︁
𝑛𝛼 (1 − 𝛼)

⌋
, 𝑘𝑈 =

⌈
1
2 + 𝑛𝛼 + 𝑢1− 𝛽

2

√︁
𝑛𝛼 (1 − 𝛼)

⌉
.

The aforementioned “compromise” is usually called the continuity correction. The
purpose of this “correction”, however, is not to make something continuous out of
something discontinuous. It is a certain caution in case that a discrete distribution
(in our case binomial) is approximated by a continuous one (in our case normal).

Remark. For small sample sizes 𝑛 and 𝛼 close to zero or one it can happen that either
P
(
Bi(𝑛, 𝛼) = 0

)
>

𝛽
2 or P

(
Bi(𝑛, 𝛼) = 𝑛

)
>

𝛽
2 . In that case we choose the lower (or the

upper) bound of our confidence interval to be equal to −∞ (or +∞).

Exercise. Show that if we omit the assumption of continuity of the cumulative distri-
bution function at the estimated quantile𝑢𝑋 (𝛼), then the closed interval ⟨𝑋 (𝑘𝐿 ) , 𝑋 (𝑘𝑈 )⟩
will have (for 𝑛 sufficiently large) probability of coverage at least 1 − 𝛽.

3.6.5. EMPIRICAL ESTIMATORS FOR RANDOM VECTORS

Empirical estimators of first two moments can be easily generalised to random vec-
tors. LetX1, . . . ,X𝑛 be a random sample of independent 𝑘-dimensional random vec-
tors from a distribution 𝐹𝑋 . Individual components of the vectorX𝑖 will be denoted
by 𝑋𝑖 𝑗 , 𝑖 = 1, . . . , 𝑛, 𝑗 ∈ {1, . . . , 𝑘 }. Further, let us denote

µ = EX𝑖 , Σ = varX𝑖 .

The empirical estimator of µ is apparently the vector of empirical estimators of its
individual components, i.e. 𝑘-dimensional sample mean

X𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

X𝑖 .

The empirical estimator of the variance matrix Σ can be obtained from the follow-
ing representation

Σ = E
(
X𝑖 − EX𝑖

) (
X𝑖 − EX𝑖

)T
= EX𝑖X

T
𝑖 − (EX𝑖 ) (EX𝑖 )T = EX⊗2

𝑖 − (EX𝑖 )⊗2

if we replace the expected values by their empirical estimators (i.e. sample means).
Thus, we obtain

Σ̂𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

X⊗2
𝑖 −X

⊗2
𝑛 =

1
𝑛

𝑛∑︁
𝑖=1

(
X𝑖 −X𝑛

) (
X𝑖 −X𝑛

)T
.
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Nevertheless, usually so called sample covariance matrix is used. It is defined as a
multidimensional analogy of the sample variance 𝑆2𝑛 :

S2
𝑛 =

1
𝑛 − 1

𝑛∑︁
𝑖=1

(
X𝑖 −X𝑛

) (
X𝑖 −X𝑛

)T
.

Remark.

• Diagonal elements of S2
𝑛 are sample variances of individual components, i.e.

𝑆2𝑗 =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑋𝑖 𝑗 − 𝑋 𝑗 )2,

for 𝑗 ∈ {1, . . . , 𝑘 }, where 𝑋 𝑗 =
1
𝑛

∑𝑛
𝑖=1 𝑋𝑖 𝑗 .

• Element (𝑗 ,𝑚) of the matrix S2
𝑛 is given by the expression

𝑆 𝑗𝑚 =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑋𝑖 𝑗 − 𝑋 𝑗 ) (𝑋𝑖𝑚 − 𝑋𝑚)

for 𝑗 ∈ {1, . . . , 𝑘 } and 𝑚 ∈ {1, . . . , 𝑘 }, 𝑗 ≠ 𝑚. This random variable estimates the
covariance cov (𝑋𝑖 𝑗 , 𝑋𝑖𝑚) between 𝑗 -th a 𝑚-th component of X𝑖 . It is called the
sample covariance.

• S2
𝑛 is positive semi-definite and it holds that

S2
𝑛 =

𝑛

𝑛 − 1 Σ̂𝑛 =
𝑛

𝑛 − 1

( 1
𝑛

𝑛∑︁
𝑖=1

X⊗2
𝑖 −X

⊗2
𝑛

)
.

The following assertion shows that both X𝑛 and S2
𝑛 are unbiased and consistent

estimators.

Proposition 3.6

(i) If E
��𝑋𝑖 𝑗 �� < ∞ for every 𝑗 ∈ {1, . . . , 𝑘 }, then EX𝑛 = µ andX𝑛

P−−−−→
𝑛→∞

µ.

(ii) If var (𝑋𝑖 𝑗 ) < ∞ for every 𝑗 ∈ {1, . . . , 𝑘 }, then ES2
𝑛 = Σ and S2

𝑛

P−−−−→
𝑛→∞

Σ.

Proof. Part (i): Follows directly from theorem 2.2, which we use componentwise.

Part (ii): Consistency of S2
𝑛 can be proved analogously as in the case of 𝑆2𝑛 (see theo-

rem 2.6(i)).
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Unbiasedness can be proved in the following way:

ES2
𝑛 =

𝑛

𝑛 − 1

[
1
𝑛

𝑛∑︁
𝑖=1

EX⊗2
𝑖 − E

(
1
𝑛

𝑛∑︁
𝑖=1

X𝑖

)⊗2]
=

𝑛

𝑛 − 1

(
EX⊗2

𝑖 − 1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

EX𝑖X
T
𝑗

)
=

𝑛

𝑛 − 1

(
EX⊗2

𝑖 − 1
𝑛2

𝑛∑︁
𝑖=1

EX⊗2
𝑖 − 1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1,𝑗≠𝑖

EX𝑖X
T
𝑗

)
=

𝑛

𝑛 − 1

[
EX⊗2

𝑖

(
1 − 1

𝑛

)
− 𝑛 − 1

𝑛

(
EX𝑖

)⊗2]
= Σ.

□

∗Recall the definition of the correlation coefficient of the random variables 𝑋𝑖 𝑗 and
𝑋𝑖𝑚 :

𝜚(𝑋𝑖 𝑗 , 𝑋𝑖𝑚) =
cov (𝑋𝑖 𝑗 , 𝑋𝑖𝑚)√︁
var𝑋𝑖 𝑗 var𝑋𝑖𝑚

.

It is logical to define the sample correlation coefficient as the empirical estimator of
this parameter, composed of empirical estimators of individual components.

Definition 3.8 The sample correlation coefficient �̂�𝑗𝑚 of variables 𝑋𝑖 𝑗 and 𝑋𝑖𝑚 , 𝑗 ∈
{1, . . . , 𝑘 } and 𝑚 ∈ {1, . . . , 𝑘 }, 𝑗 ≠ 𝑚, is defined as

�̂�𝑗𝑚 =
𝑆 𝑗𝑚

𝑆 𝑗𝑆𝑚
=

∑𝑛
𝑖=1(𝑋𝑖 𝑗 − 𝑋 𝑗 ) (𝑋𝑖𝑚 − 𝑋𝑚)√︃∑𝑛

𝑖=1(𝑋𝑖 𝑗 − 𝑋 𝑗 )2
∑𝑛
𝑖=1(𝑋𝑖𝑚 − 𝑋𝑚)2

.

Remark.
• −1 ≤ �̂�𝑗𝑚 ≤ 1 (see the Cauchy-Schwarz inequality).
• �̂�𝑗𝑚 = 1 (or −1) if and only if there exist constants 𝑎 ∈ ℝ and 𝑏 > 0 (or 𝑏 < 0)
such that 𝑋𝑖 𝑗 = 𝑎 + 𝑏𝑋𝑖𝑚 for every 𝑖 = 1, . . . , 𝑛.

• �̂�𝑗𝑚 is a consistent estimator of the correlation coefficient 𝜚(𝑋𝑖 𝑗 , 𝑋𝑖𝑚) (this fol-
lows from consistency of S2

𝑛 and theorem 1.1). But it is not unbiased.

Exercise. Prove that �̂�𝑗𝑚
P−−−−→

𝑛→∞
𝜚(𝑋𝑖 𝑗 , 𝑋𝑖𝑚).

∗ The rest of the chapter was not lectured in 2020/21.
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Sample examples for the preparation for the exam.

1. Consider a random sample 𝑋1, . . . , 𝑋𝑛 from a distribution given by the density
𝑓 (𝑥 ; 𝛿 ) = e−𝑥/𝛿

𝛿
𝟙{𝑥 > 0}, where 𝛿 > 0 is an unknown parameter. Consider the

estimator 𝛿𝑛 = 𝑋 𝑛 . Show that it is an unbiased estimator of 𝛿𝑋 . Further, consider
the estimator 𝛿𝑛 (𝑎) = 𝑎 𝑋 𝑛 , where 𝑎 is a constant. Find 𝑎 which minimizes the
mean squared error of 𝛿𝑛 (𝑎).

2. Consider a random sample 𝑋1, . . . , 𝑋𝑛 from the alternative distributionwith some
parameter 𝑝𝑋 . Estimate the parameter 𝑝𝑋 by the method of moments and then
transform this estimator to create an estimator of 𝜃𝑋 = 𝑝𝑋 (1−𝑝𝑋 ). Examine the
unbiasedness and consistency of this new estimator of the variance. How is it
different from the ordinary sample variance?

3. Consider a random sample 𝑋1, . . . , 𝑋𝑛 from the alternative distributionwith some
parameter 𝑝𝑋 . From the example on page 49 we know that an asymptotic con-
fidence interval for the parameter 𝑝𝑋 whose confidence level is 1 − 𝛼 is(

𝑝𝑛 − 𝑢1−𝛼/2
√
𝑝𝑛 (1−𝑝𝑛 )√

𝑛
, 𝑝𝑛 + 𝑢1−𝛼/2

√
𝑝𝑛 (1−𝑝𝑛 )√

𝑛

)
.

Using this information derive a confidence interval for the parameter 𝜃𝑋 = 𝑝𝑋 (1−
𝑝𝑋 ).
Suppose that the confidence interval for the parameter 𝑝𝑋 was calculated from
the data. Interval (0.35, 0.55) was obtained. In that case, how does the confi-
dence interval for the parameter 𝜃𝑋 = 𝑝𝑋 (1 − 𝑝𝑋 ) look?

4. Let 𝑋1, . . . , 𝑋𝑛 be a random sample from N(𝜇𝑋 , 9) distribution. How many ob-
servations do we need so that the length of the confidence interval for 𝜇𝑋 with
the confidence level of 0.90 is at most 0.25?

5. Let 𝑋 𝑛 be the sample mean of a random sample 𝑋1, . . . , 𝑋𝑛 from Po(𝜆𝑋 ) dis-
tribution. Determine the asymptotic distribution of the sample mean 𝑋 𝑛 and
based on this distribution construct an asymptotic confidence interval for the
parameter 𝜃𝑋 = exp{−𝜆𝑋 }.

6. Let 𝑋1, . . . , 𝑋𝑛 be a random sample from the uniform distribution R(0, 1). Let
𝑘𝑛 =

⌈√
𝑛

⌉
. Prove that 𝑋 (𝑘𝑛 )

P−−−−→
𝑛→∞

0.
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4. TESTING OF STATISTICAL HYPOTHESIS

4.1. BASIC NOTIONS AND DEFINITIONS

Let X1, . . . ,X𝑛 be a random sample of independent 𝑘-dimensional random vectors
with distribution 𝐹𝑋 ∈ F , where F is our model. Let θ = t(𝐹 ) ∈ ℝ𝑑 be the character-
istic of the distribution (so called parameter), which is of our interest and denote by
Θ =

{
t(𝐹 ), 𝐹 ∈ F

}
⊆ ℝ𝑑 the set of all possible values of this parameter in model F (so

called parameter space). Denote the true value of our parameter of interest θ𝑋 = t(𝐹𝑋 )
and letX = (X1, . . . ,X𝑛) denote all of the observed data.

Examples. All of the new theory of this chapter will be explained on the following
examples.

A. Let 𝑋1, . . . , 𝑋𝑛 be a random sample from the distribution N(𝜃𝑋 , 𝜎20 ), where 𝜎
2
0 > 0

is known. Our model is
F 𝐴 =

{
N(𝜃 , 𝜎20 ), 𝜃 ∈ ℝ

}
.

B. Let 𝑋1, . . . , 𝑋𝑛 be a random sample from the distribution N(𝜃𝑋 , 𝜎2𝑋 ), where 𝜎
2
𝑋
is

unknown. We work with model

F 𝐵 =
{
N(𝜃 , 𝜎2), 𝜃 ∈ ℝ, 𝜎2 > 0

}
⊃ F 𝐴 .

C. Let 𝑋1, . . . , 𝑋𝑛 be a random sample from the distribution 𝐹𝑋 with finite positive
variance. Then we work with non-parametric model

F𝐶 = L2
+ ⊃ F 𝐵 ⊃ F 𝐴 .

The tested parameter will be the expected value 𝜃 =
∫
𝑥 𝑑𝐹 (𝑥), whose true value is

𝜃𝑋 = E𝑋𝑖 , the dimension 𝑑 of our parameter 𝜃 is 1. Parameter space is Θ = ℝ.

Choose two non-empty disjoint subsets of Θ and denote them Θ0 a Θ1. Assume
that we are not interested in the exact value of θ𝑋 , but we want to answer the question
whether θ𝑋 ∈ Θ0 or θ𝑋 ∈ Θ1.

Definition 4.1 (Null hypothesis and alternative hypothesis)
• The set Θ0 is called the null hypothesis and the set Θ1 is called the alternative
hypothesis.
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4. Testing of statistical hypothesis

• Denote
F0

df
=

{
𝐹 ∈ F : t(𝐹 ) ∈ Θ0

}
,

i.e. all distributions from model F whose parameter satisfies the null hypothe-
sis. If F0 = {𝐹0} (i.e. there is exactly one distribution from our model that sat-
isfies the null hypothesis), the null hypothesis is called simple null hypothesis,
otherwise we call it composite null hypothesis.

• Denote
F1

df
=

{
𝐹 ∈ F : t(𝐹 ) ∈ Θ1

}
,

i.e. all distributions frommodel F whose parameter satisfies the alternative hy-
pothesis. If F1 = {𝐹1} (i.e. there is exactly one distribution from our model that
satisfies the alternative hypothesis), the alternative is called simple alternative,
otherwise we call it composite alternative.

Remark.
• Null hypothesis is usually denoted by𝐻0, alternative by𝐻1. We speak about test-
ing the null hypothesis

𝐻0 : θ𝑋 ∈ Θ0 against the alternative 𝐻1 : θ𝑋 ∈ Θ1.

• We are in the situation of simple hypothesis, if Θ0 = {θ0}, i.e. it contains only
one point, and there exists exactly one distribution 𝐹0 ∈ F such that t(𝐹0) = θ0.

• Simple alternative occurs, if Θ1 = {θ1}, i.e. it contains only one point, and there
exists exactly one distribution 𝐹1 ∈ F such that t(𝐹1) = θ1.

Usually, we take Θ1 = Θc
0 and F1 = F c

0 . If this was not the case, i.e. Θ0 ∪ Θ1 ⊊ Θ, our
model can be narrowed to F 0 = {𝐹 ∈ F : t(𝐹 ) ∈ Θ0 ∪ Θ1}. Therefore we can assume
without loss of generality that Θ1 = Θc

0 a F1 = F c
0 .

Choice of hypothesis for one-dimensional parameter 𝜃
• Most common choice of null hypothesis is Θ0 = {𝜃0} for some chosen 𝜃0 ∈ ℝ,
i.e. we test the null hypothesis 𝐻0 : 𝜃𝑋 = 𝜃0. We take Θ1 = Θc

0 as the alternative,
i.e. 𝐻1 : 𝜃𝑋 ≠ 𝜃0. This procedure is called two-sided test or test against two-sided
alternative.

• Other possibility is to take either Θ0 = (−∞, 𝜃0⟩, i.e. test 𝐻0 : 𝜃𝑋 ≤ 𝜃0 against
𝐻1 : 𝜃𝑋 > 𝜃0, or Θ0 = ⟨𝜃0,∞), i.e. test 𝐻0 : 𝜃𝑋 ≥ 𝜃0 against 𝐻1 : 𝜃𝑋 < 𝜃0. These
tests are called one-sided tests or tests against one-sided alternative. Notice that
the extreme value of 𝜃0 is included in the null hypothesis.

The choice of the hypothesis is given by the practical problem that we are trying
to solve. In some cases, the choice can be different from the three possibilities men-
tioned above. However, in this lecture, we will only deal with one-sided and two-
sided tests.

Examples. Consider two-sided test of parameter 𝜃 = 𝑡 (𝐹 ) =
∫
𝑥 𝑑𝐹 (𝑥) ∈ ℝ. We test

the null hypothesis 𝐻0 : 𝜃𝑋 = 𝜃0 against the alternative 𝐻1 : 𝜃𝑋 ≠ 𝜃0.
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A. Take model F 𝐴 =
{
N(𝜃 , 𝜎20 ), 𝜃 ∈ ℝ

}
. In this case, we have F0 = {N(𝜃0, 𝜎20 )},

so we are in the situation of simple null hypothesis. Alternative is composite,
F1 =

{
N(𝜃 , 𝜎20 ), 𝜃 ∈ ℝ \ {𝜃0}

}
.

B. In model F 𝐵 =
{
N(𝜃 , 𝜎2), 𝜃 ∈ ℝ, 𝜎2 > 0

}
we have a composite null hypothe-

sis, F0 =
{
N(𝜃0, 𝜎2), 𝜎2 > 0

}
, and the alternative hypothesis is also composite,

F1 =
{
N(𝜃 , 𝜎2), 𝜃 ∈ ℝ \ {𝜃0}, 𝜎2 > 0

}
.

C. For model F𝐶 = L2
+, the hypothesis is composite, F0 =

{
𝐹 ∈ L2

+ : 𝑡 (𝐹 ) = 𝜃0
}
, and

so is the alternative, F1 =
{
𝐹 ∈ L2

+ : 𝑡 (𝐹 ) ≠ 𝜃0
}
.

We would like to decide, based on random sample X1, . . . ,X𝑛 , whether 𝐻0 holds
or not. To do that, we take appropriately chosen function of our data 𝑆𝑛 (X), which is
called test statistic, and appropriately chosen set C, called critical region. Test statistic
is usually one-dimensional; critical region is then some subset of ℝ. Our decision is
then based on whether test statistic lies in critical region or not.

• If 𝑆𝑛 (X) ∈ C, then the conclusion is that we reject null hypothesis𝐻0 and accept
alternative 𝐻1.

• If 𝑆𝑛 (X) ∉ C, then the conclusion is that we cannot reject the null hypothesis
𝐻0 and accept alternative 𝐻1.

Remark. Some authors define critical region as a subset of the sample space, i.e. in
our notation 𝑆−1

𝑛 (C). They reject the hypothesis 𝐻0 ifX ∈ 𝑆−1
𝑛 (C).

Definition 4.2 (Test) Statistical test is defined by test statistic 𝑆𝑛 (X), critical region C
and rule for rejecting hypothesis defined above. Two tests

(
𝑆𝑛 (X),C

)
and

(
𝑆∗𝑛 (X),C∗)

are called equivalent if and only if 𝑆𝑛 (X) ∈ C ⇔ 𝑆∗𝑛 (X) ∈ C∗ almost surely, i.e. both
tests give us the same result with probability 1.

4.2. SIGNIFICANCE LEVEL AND POWER OF A TEST

There are four possible scenarios that can occur while testing hypothesis, depending
on whether the null hypothesis holds or not and whether the test rejects the null
hypothesis or not.

• The null hypothesis holds, test does not reject it, i.e. θ𝑋 ∈ Θ0 and 𝑆𝑛 (X) ∉ C.
In this case, the test made the right decision.

• The null hypothesis holds, test rejects it, i.e. θ𝑋 ∈ Θ0 and 𝑆𝑛 (X) ∈ C. In this
case, the test made the wrong decision.

• The null hypothesis does not hold, test does not reject it, i.e. θ𝑋 ∉ Θ0 and
𝑆𝑛 (X) ∉ C. In this case, the test made the wrong decision.

• The null hypothesis does not hold, test rejects it, i.e. θ𝑋 ∉ Θ0 and 𝑆𝑛 (X) ∈ C.
In this case, the test made the right decision.
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Definition 4.3 (Type I and II error)
(i) If test rejects true hypothesis, we call it type I error.
(ii) If the test does not reject hypothesis that does not hold, we call it type II error.

The four possible scenarios are presented in table 4.1.

Table 4.1.: Possible scenarios for testing hypothesis.

𝐻0 is not rejected 𝐻0 is rejected

𝐻0 holds OK type I error

𝐻0 does not hold type II error OK

It is not possible to avoid type I and II errors. The standard statistical approach to
testing hypothesis is to control the probability of type I error.
Regarding type II error, the ideal approach would be to choose such test that min-

imizes the probability of type II error. However, since the probability of type II error
depends on the choice of alternative, we can only find these ideal tests in cases, where
the alternative is not too big.

4.2.1. SIGNIFICANCE LEVEL

Take 𝐹 ∈ F and denote

P𝐹
[
𝑆𝑛 (X) ∈ 𝐵

]
=

∫
𝟙
{
𝑆𝑛 (x) ∈ 𝐵

}
𝑑𝐹 (x1) · · ·𝑑𝐹 (x𝑛).

If there exists a unique relation between the parameter θ ∈ Θ and the distribution
𝐹 ∈ F , then we can write

Pθ [𝑆𝑛 (X) ∈ 𝐵] =
∫

𝟙
{
𝑆𝑛 (x) ∈ 𝐵

}
𝑑𝐹 (x1) · · ·𝑑𝐹 (x𝑛), (4.1)

where 𝐹 is the distribution satisfying t(𝐹 ) = θ.
Notice that we can also work with (4.1) if the distribution of the random variable

𝑆𝑛 (X) is the same for all 𝐹 such that t(𝐹 ) = θ.

Definition 4.4 (Significance level) Fix 𝛼 ∈ (0, 1).
(i) If the critical region C satisfies condition

sup
𝐹 ∈F0

P𝐹 [𝑆𝑛 (X) ∈ C] = 𝛼,

we say that test
(
𝑆𝑛 (X),C

)
has significance level equal to 𝛼.
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(ii) If the critical region C satisfies condition

sup
𝐹 ∈F0

lim
𝑛→∞

P𝐹 [𝑆𝑛 (X) ∈ C] = 𝛼,

we say that test
(
𝑆𝑛 (X),C

)
has significance level 𝛼 asymptotically.

Remark.
• If the set F0 = {𝐹0} has only one element, then the significance level can be
written as

𝛼 = Pθ0 [𝑆𝑛 (X) ∈ C] , where θ0 = t(𝐹0).
• Roughly speaking, significance level is the probability of type I error, i.e. prob-
ability of rejecting true hypothesis. If the hypothesis contains more than one
value of parameter, it is the biggest possible probability of type I error.

• Test that reaches the significance level 𝛼 exactly is called exact test. Test that
reaches the significance level 𝛼 only asymptotically will be called asymptotic
test.

Standard approach to testing hypothesis can be summarized in the following steps.
1. At first, we specify the required significance level 𝛼, which should be reached
exactly or asymptotically by the test.

2. We choose appropriate test statistic 𝑆𝑛 (X).
3. We choose the critical region C = C(𝛼) according to 𝛼, such that the significance

level (exact or asymptotic) will be 𝛼 and the probability of type II error will be
the smallest possible.

Remark.
• Significance level is chosen to be small, generally we choose 𝛼 = 0.05.
• If the test statistic 𝑆𝑛 (X) has discrete distribution, it is not possible to reach any
significance level 𝛼. If the required level 𝛼 is not reachable, we choose such
level 𝛼′ < 𝛼, which is the closest to the originally required level 𝛼. This guaran-
tees that the probability of rejecting true hypothesis cannot be larger then the
chosen tolerance 𝛼.

Terminology.
• Test, whose real significance level is smaller then required 𝛼, is called conser-
vative test. Test, whose real significance level is larger then required 𝛼, is called
liberal.

4.2.2. POWER OF A TEST

Definition 4.5 (Power function and power of a test) Function

𝛽𝑛 (𝐹 ) = P𝐹 [𝑆𝑛 (X) ∈ C]

which maps F into ⟨0, 1⟩ is called the power function of a test.
For 𝐹 ∈ F1 the value 𝛽𝑛 (𝐹 ) is called the power of a test against alternative 𝐹 .
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Remark.
• The power of a test is the probability, that we reject hypothesis, which does not
hold in the case of given alternative 𝐹 . The power of a test depends on the al-
ternative and it is equal to the complement of probability of type II error to 1.
There is no non-trivial lower boundary for the power of a test; we cannot as-
sume, that the probability of type II error is small.

• If the test has exact (resp. asymptotic) significance level 𝛼, then the following
must hold

sup
𝐹 ∈F0

𝛽𝑛 (𝐹 ) = 𝛼, resp. sup
𝐹 ∈F0

lim
𝑛→∞

𝛽𝑛 (𝐹 ) = 𝛼.

• If there exists a unique relation between θ ∈ Θ and 𝐹 ∈ F then the power func-
tion is usually defined as a mapping of the parameter space Θ into ⟨0, 1⟩ given
by the formula

𝛽𝑛 (θ) = Pθ [𝑆𝑛 (X) ∈ C] .

Remark (Interpretation of results of the test).
• If we reject the null hypothesis 𝐻0, it means that the distribution of our data is
not consistent with the distribution it should have under the null hypothesis.
The probability that we wrongly reject true hypothesis is bounded from above
by level 𝛼, which is chosen to be small. The null hypothesis 𝐻0 is rejected, we
have proven that the alternative 𝐻1 holds.

• If the result of the test is that we cannot reject the null hypothesis 𝐻0, it means
that the distribution of our data is not different enough from the distribution,
which our data should have under the null hypothesis. We cannot conclude
that the null hypothesis 𝐻0 holds and the alternative does not, since the proba-
bility of a wrong decision in the case, that the hypothesis does not hold, can be
considerably large. So, this result does not confirm that the hypothesis holds.

• The null hypothesis𝐻0 and alternative𝐻1 are not in symmetric positions in test-
ing. The null hypothesis can be rejected, but it cannot be confirmed or proven.

To be able to choose a critical region C(𝛼) which keeps the required significance
level 𝛼, we must be able to determine the exact or asymptotic distribution of our
test statistic under the null hypothesis and this distribution cannot depend on any
unknown characteristics of distribution 𝐹𝑋 .
The test statistic 𝑆𝑛 (X) is chosen so that
(i) its distribution is sensitive to the real value of tested parameter θ𝑋 ;
(ii) its distribution under the null hypothesis∗ is known (at least asymptotically) and

it does not dependent on unknown parameters.
After choosing the test statistic, the critical region C(𝛼) is chosen so that
(i) the required significance level 𝛼 is kept ;
(ii) all values of test statistic which are less probable under the null hypothesis than

under the alternative are included in the critical region.
∗ In the case of one-sided tests we should say if the true value of tested parameter is at the boundary
of null hypothesis and alternative.
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Example (A1). TWO-SIDED TEST OF THE EXPECTED VALUE OF GAUSSIAN DISTRIBUTION
WITH KNOWN VARIANCE.
Let us have random sample 𝑋1, . . . , 𝑋𝑛 from distribution 𝐹𝑋 = N(𝜃𝑋 , 𝜎20 ) ∈ F 𝐴 ={

N(𝜃 , 𝜎20 ), 𝜃 ∈ ℝ
}
. We test

𝐻0 : 𝜃𝑋 = 𝜃0 against 𝐻1 : 𝜃𝑋 ≠ 𝜃0.

Our test statistic will be based on estimator of our parameter of interest 𝜃𝑋 , i.e. the
sample mean. We know that

𝑈𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜃0

)
𝜎0

has under the null hypothesis 𝐻0 the distribution N(0, 1). If the hypothesis does not
hold, i.e. 𝜃𝑋 − 𝜃0 = 𝛿 ≠ 0, then

𝑈𝑛 =

√
𝑛 (𝑋 𝑛 − 𝜃𝑋 + 𝜃𝑋 − 𝜃0)

𝜎0
=

√
𝑛 (𝑋 𝑛 − 𝜃𝑋 )

𝜎0
+
√
𝑛 𝛿

𝜎0

has the distribution N(𝜈𝑛 , 1), where 𝜈𝑛 =
√
𝑛 𝛿
𝜎0

. If the null hypothesis does not hold,
then the distribution of our test statistic moves further away from zero, and this dis-
tance is larger with larger 𝑛 and |𝜃𝑋 − 𝜃0 |. So, values of our test statistic far away from
zero will lead to rejecting the null hypothesis.
The critical region C(𝛼) is chosen as(

−∞, 𝑐𝐿 (𝛼)
〉
∪

〈
𝑐𝑈 (𝛼),∞

)
.

Critical values 𝑐𝐿 (𝛼) and 𝑐𝑈 (𝛼) are chosen so that

P𝜃0

[
𝑈𝑛 ∈

(
−∞, 𝑐𝐿 (𝛼)

〉]
= P𝜃0

[
𝑈𝑛 ∈

〈
𝑐𝑈 (𝛼),∞

) ]
=
𝛼

2
.

This ensures that the significance level is exactly equal to 𝛼. Thanks to the symmetry
of the density of Gaussian distribution we have 𝑐𝑈 (𝛼) = −𝑐𝐿 (𝛼) = 𝑢1−𝛼/2. The test
works in the following way

reject 𝐻0 : 𝜃𝑋 = 𝜃0 ⇐⇒ |𝑈𝑛 | =
����√𝑛 (

𝑋 𝑛 − 𝜃0
)

𝜎0

���� ≥ 𝑢1−𝛼/2,

i.e. reject the null hypothesis if 𝑋 𝑛 differs from hypothetical value 𝜃0 by more than
𝑢1−𝛼/2 𝜎0√

𝑛
.

We put 1,96 as 𝑢1−𝛼/2 for 𝛼 = 0.05 and 1,645 for 𝛼 = 0.1. The critical region and
the densities of test statistic under the null hypothesis and alternative can be seen in
figure 4.1.
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Let us compute the power function of this test. Take some 𝜃 such that 𝜃−𝜃0 = 𝛿 ≠ 0.
If 𝜃 is the true value of our parameter, then the distribution of𝑈𝑛 is N(𝜈𝑛 , 1) and the
distribution of𝑈𝑛 − 𝜈𝑛 is N(0, 1). We get

𝛽𝑛 (𝜃 ) = P𝜃 [𝑈𝑛 ∈ C(𝛼)] = P𝜃
[
𝑈𝑛 ≤ −𝑢1−𝛼/2

]
+ P𝜃

[
𝑈𝑛 ≥ 𝑢1−𝛼/2

]
=

= P𝜃
[
𝑈𝑛 − 𝜈𝑛 ≤ −𝑢1−𝛼/2 − 𝜈𝑛

]
+ P𝜃

[
𝑈𝑛 − 𝜈𝑛 ≥ 𝑢1−𝛼/2 − 𝜈𝑛

]
=

= Φ
(
− 𝑢1−𝛼/2 − 𝜈𝑛

)
+ 1 −Φ

(
𝑢1−𝛼/2 − 𝜈𝑛

)
.

Since Φ(−𝑥) = 1 −Φ(𝑥), we can rewrite this and get

𝛽𝑛 (𝜃 ) = Φ
(
− 𝑢1−𝛼/2 − |𝜈𝑛 |

)
+ 1 −Φ

(
𝑢1−𝛼/2 − |𝜈𝑛 |

)
. (4.2)

For 𝜃 = 𝜃0 we get that 𝜈𝑛 = 0, so 𝛽𝑛 (𝜃0) = 𝛼. The power function of this test can be
seen in figure 4.2.
Let 𝛿 be non-zero. Then |𝜈𝑛 | goes to infinity with increasing 𝑛 and it turns out that

from certain 𝑛 the value Φ(−𝑢1−𝛼/2 − |𝜈𝑛 |) is negligible compared to Φ(𝑢1−𝛼/2 − |𝜈𝑛 |).
The power function can be approximated by 1 −Φ

(
𝑢1−𝛼/2 −

√
𝑛 |𝛿 |
𝜎0

)
, and it holds that

𝛽𝑛 (𝜃 ) ≥ 1 −Φ
(
𝑢1−𝛼/2 −

√
𝑛 |𝛿 |
𝜎0

)
. (4.3)

By solving the equation
1 −Φ

(
𝑢1−𝛼/2 −

√
𝑛 |𝛿 |
𝜎0

)
!
= 𝛽,

Figure 4.1.: Density of the test statistic 𝑈𝑛 under the null hypothesis and alternative
for 𝜈𝑛 = 1 and 𝛼 = 0.1. Critical values are blue, critical region is red.
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4. Testing of statistical hypothesis

Figure 4.2.: The power function for two-sided test of expected value of Gaussian dis-
tribution with known variance for 𝜃0 = 0, 𝜎20 = 1, 𝑛 = 30 and 𝛼 = 0.05.
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we can compute, how many observations are needed for the test to have power at
least 𝛽 (for example 0,8). The required sample size is

𝑛 ≥ (𝑢1−𝛼/2 − 𝑢1−𝛽 )2
𝜎20
𝛿 2

= (𝑢1−𝛼/2 + 𝑢𝛽 )2
𝜎20
𝛿 2
. (4.4)

Remark. As we have seen in the previous example, the power of the test depends on
• significance level 𝛼;
• alternative 𝜃 , respectively her distance 𝛿 from the null hypothesis 𝜃0;
• variance of the observations 𝜎20 ;
• sample size 𝑛.

Out of all of these factors, we can only influence the sample size. If we want our
test to have sufficient power, we need to have at least the number of observations
computed in (4.4).

Remark. Notice that the power of the previous test converges to 1 as 𝑛 → ∞ regard-
less of the alternative (see (4.3)). This property is called consistency of the test. Con-
sistency is very desirable property, otherwise we might not be able to reach required
power, even with large sample size.

Definition 4.6 Test
(
𝑆𝑛 (X),C

)
with level 𝛼 is called consistent test, if ∀𝐹 ∈ F1 we have

that lim𝑛→∞ 𝛽𝑛 (𝐹 ) = 1.

We will define one more useful property of statistical test: unbiasedness.

69



4. Testing of statistical hypothesis

Definition 4.7 Test
(
𝑆𝑛 (X),C

)
with level 𝛼 is called unbiased test, if ∀𝐹 ∈ F1 we have

that 𝛽𝑛 (𝐹 ) ≥ 𝛼.

Remark.
• Beware: the notion of unbiasedness and consistency of test have only vague (if
any) relation to notion of unbiasedness and consistency of estimate.

• Unbiasedness of a test requires that the power against every alternative is at
least 𝛼. If it was not the case, i.e. ∃𝐹 ∈ F1 such that 𝛽𝑛 (𝐹 ) < 𝛼, the test would
take this 𝐹 as a part of the null hypothesis.

• Test that always rejects 𝐻0 with probability 𝛼 (for whatever data) is unbiased.
Especially, there exists unbiased test.

• Sometimes the notion of unbiasedness and consistency is defined with respect
to specific alternative. So, for example, we would say that the test is consistent
against alternative 𝐹 ∈ F1, if we have that lim𝑛→∞ 𝛽𝑛 (𝐹 ) = 1.

4.2.3. CHOICE OF CRITICAL REGION

The critical region C(𝛼) is usually taken in one of the following forms:

•
〈
𝑐𝑈 (𝛼),∞

)
, i.e. we reject for large values of the test statistic 𝑆𝑛 (X);

•
(
−∞, 𝑐𝐿 (𝛼)

〉
, i.e. we reject for small values of the test statistic 𝑆𝑛 (X);

•
(
− ∞, 𝑐𝐿 (𝛼)

〉
∪

〈
𝑐𝑈 (𝛼),∞

)
, i.e. we reject for too small and for too large values of

the test statistic 𝑆𝑛 (X);

•
(
−∞,−𝑐𝑈 (𝛼)

〉
∪

〈
𝑐𝑈 (𝛼),∞

)
, i.e. we reject for large values of |𝑆𝑛 (X) |.

The constants 𝑐𝐿 (𝛼) a 𝑐𝑈 (𝛼), which determine the boundary of our critical region,
are called critical values. These values are chosen so that the test has the prescribed
significance level. As we will see in the following examples, critical values can be
expressed using quantiles of appropriately chosen distribution function 𝐺0.

Critical region in the form of C(𝛼) =
〈
𝑐𝑈 (𝛼),∞

)
At first, consider for simplicity exact test. Then the critical value 𝑐𝑈 (𝛼) is chosen so

that
sup
𝐹 ∈F0

P𝐹 [𝑆𝑛 (X) ≥ 𝑐𝑈 (𝛼)] = 𝛼.

We will only work with examples where we can easily find 𝐹0 ∈ F0 such that

sup
𝐹 ∈F0

P𝐹 [𝑆𝑛 (X) ≥ 𝑐 ] = P𝐹0 [𝑆𝑛 (X) ≥ 𝑐 ] ∀𝑐 ∈ ℝ. (4.5)

When we look for the distribution 𝐹0, we usually look for a distribution which satisfies
the null hypothesis (i.e. it lies in F0), but it is the closest to the alternative (i.e. it
is the closest to the set F1, see example (A2) below). Let 𝐺0 denote the cumulative
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distribution function of 𝑆𝑛 (X), if the distribution of X𝑖 is 𝐹0. Then in the case of
continuous distribution function we get

𝑐𝑈 (𝛼) = 𝑐𝑈 (𝛼) = 𝐺 −1
0 (1 − 𝛼). (4.6)

More generally if 𝐺0 is not continuous then one can use the open critical region

C(𝛼) =
(
𝐺 −1
0 (1 − 𝛼),∞

)
.

Note that the above critical region works also for 𝐺0 continuous. That is why in this
chapter and in Chapter 4.3 (about 𝑝-values) we will use open critical regions as they
are easier to express. Nevertheless in Chapter 4.4 we will use closed critical regions
so that it matches with open confidence intervals.
In the case of the asymptotic test we can use as 𝐺0 the distribution function of the

asymptotic distribution of our test statistic under the null hypothesis. More precisely,
𝐺0 is a function that satisfies

sup
𝐹 ∈F0

lim
𝑛→∞

P𝐹 [𝑆𝑛 (X) ≥ 𝑐 ] = 1 −𝐺0(𝑐−).

Since for us the function𝐺0 will always be continuous, the right-hand side of the last
equation will be 1 −𝐺0(𝑐 ).

Critical region in the form of C(𝛼) =
(
−∞, 𝑐𝐿 (𝛼)

〉
Similarly as above let 𝐹0 ∈ F0 be a distribution ofX𝑖 satisfying

sup
𝐹 ∈F0

P𝐹 [𝑆𝑛 (X) ≤ 𝑐 ] = P𝐹0 [𝑆𝑛 (X) ≤ 𝑐 ] ∀𝑐 ∈ ℝ.

Let𝐺0 denote the distribution function of 𝑆𝑛 (X), if the distribution ofX𝑖 is 𝐹0. Then
𝑐𝐿 (𝛼) is chosen as

𝑐𝐿 (𝛼) = 𝐺 −1
0 (𝛼). (4.7)

Again, if 𝐺0 is not continuous then the open critical region

C(𝛼) = (−∞,𝐺 −1
0 (𝛼)

)
will do the job.
Critical region in the form of 𝐶 (𝛼) = (−∞, 𝑐𝐿 (𝛼)

〉
∪ (𝑐𝑈 (𝛼),∞

〉
In this case it is common to choose the critical values 𝑐𝐿 (𝛼) and 𝑐𝑈 (𝛼) so that

sup
𝐹 ∈F0

P𝐹 [𝑆𝑛 (X) ≤ 𝑐𝐿 (𝛼)] = sup
𝐹 ∈F0

P𝐹 [𝑆𝑛 (X) ≥ 𝑐𝑈 (𝛼)] = 𝛼

2
, (4.8)

resp.
sup
𝐹 ∈F0

lim
𝑛→∞

P𝐹 [𝑆𝑛 (X) ≤ 𝑐𝐿 (𝛼)] = sup
𝐹 ∈F0

lim
𝑛→∞

P𝐹 [𝑆𝑛 (X) ≥ 𝑐𝑈 (𝛼)] = 𝛼

2
. (4.9)
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4. Testing of statistical hypothesis

Furthermore in the situations wewill be dealing with, the distribution (exact or asymp-
totic) of the test statistic 𝑆𝑛 (X) under the null hypothesis will be always the same,
for any true distribution 𝐹 from F0 (see also examples (B) a (C) on page 73 and 75).
Denote this distribution by 𝐺0. This means that we can omit the supremum in the
equations (4.8) and (4.9) and the condition is simplified to

𝐺0
(
𝑐𝐿 (𝛼)

)
= 1 −𝐺0

(
𝑐𝑈 (𝛼) −

)
=
𝛼

2
.

Critical values are equal to

𝑐𝐿 (𝛼) = 𝐺 −1
0 (𝛼/2) and 𝑐𝑈 (𝛼) = 𝐺 −1

0
(
1 − 𝛼/2

)
. (4.10)

Example (A2). ONE-SIDED TEST OF THE EXPECTED VALUE OF GAUSSIAN DISTRIBUTION
WITH KNOWN VARIANCE.
Let us have random sample 𝑋1, . . . , 𝑋𝑛 from the distribution 𝐹𝑋 = N(𝜃𝑋 , 𝜎20 ) ∈ F 𝐴 ={

N(𝜃 , 𝜎20 ), 𝜃 ∈ ℝ
}
. We test

𝐻0 : 𝜃𝑋 ≤ 𝜃0 against 𝐻1 : 𝜃𝑋 > 𝜃0.

Test statistic is the same as in example A1

𝑈𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜃0

)
𝜎0

.

Its distribution for 𝜃𝑋 = 𝜃0 is N(0, 1). For the values 𝜃𝑋 = 𝜃0 + 𝛿 we have𝑈𝑛 ∼ N(𝜈𝑛 , 1),
where 𝜈𝑛 =

√
𝑛 𝛿
𝜎0

. If the null hypothesis is violated, then the distribution of the test
statistic is moving to the positive values and it is further away with larger 𝑛 and 𝛿 .
Too large positive values of the test statistic will lead to rejecting the null hypothesis.
The critical region will be C(𝛼) =

〈
𝑐𝑈 (𝛼),∞

)
. The critical value 𝑐𝑈 (𝛼) will be chosen

so that
sup
θ∈Θ0

P𝜃 [𝑈𝑛 ∈ C(𝛼)] = 𝛼.

Since
P𝜃

[
𝑈𝑛 ∈

〈
𝑐𝑈 (𝛼),∞

) ]
= P𝜃

[√
𝑛 (𝑋 𝑛−𝜃0 )

𝜎0
≥ 𝑐𝑈 (𝛼)

]
is increasing function of parameter 𝜃 , we have

sup
𝐹 ∈F0

P𝐹
[
𝑈𝑛 ∈ C(𝛼)

]
= sup
𝜃 ∈Θ0

P𝜃

[
𝑈𝑛 ∈ C(𝛼)

]
= sup
𝜃 :𝜃≤𝜃0

P𝜃

[
𝑈𝑛 ∈

〈
𝑐𝑈 (𝛼),∞

) ]
= P𝜃0

[
𝑈𝑛 ∈

〈
𝑐𝑈 (𝛼),∞

) ]
= 1 −Φ

(
𝑐𝑈 (𝛼)

)
.

So for 𝑐𝑈 (𝛼) = 𝑢1−𝛼 this test satisfies the condition sup𝜃 ∈Θ0 P𝜃 [𝑈𝑛 ∈ C(𝛼)] = 𝛼 and so
its significance level is 𝛼. It is worth noting that in this example the distribution 𝐹0
from (4.5) is N(𝜃0, 𝜎20 ) and the function 𝐺0, i.e. the distribution function of the test
statistic 𝑈𝑛 for 𝑋𝑖 with distribution 𝐹0, is the cumulative distribution function Φ of
N(0, 1).
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4. Testing of statistical hypothesis

Figure 4.3.: The power function of a test of the expected value of Gaussian distribu-
tion with known variance against right-sided alternative for 𝜃0 = 0, 𝜎20 = 1,
𝑛 = 30 and 𝛼 = 0.05.
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Altogether we get the rule

reject 𝐻0 : 𝜃𝑋 ≤ 𝜃0 ⇐⇒ 𝑈𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜃0

)
𝜎0

≥ 𝑢1−𝛼 ,

i.e. reject the null hypothesis, if 𝑋 𝑛 is larger than 𝜃0 by more than 𝑢1−𝛼𝜎0√
𝑛

. We take
1,645 as the quantile 𝑢1−𝛼/2 for 𝛼 = 0.05 and 1,282 for 𝛼 = 0.1. The critical value for
one-sided test on level 𝛼 is the same as the critical value for two-sided test on level
𝛼/2. This follows from the fact that we reject the null hypothesis only in one of the
tails of the distribution of𝑈𝑛 .
The computation of the power function is easier than before. Take some 𝜃 such

that 𝜃 − 𝜃0 = 𝛿 and we get

𝛽𝑛 (𝜃 ) = P𝜃 [𝑈𝑛 ≥ 𝑢1−𝛼] = P𝜃 [𝑈𝑛 − 𝜈𝑛 ≥ 𝑢1−𝛼 − 𝜈𝑛] = 1 −Φ(𝑢1−𝛼 − 𝜈𝑛).

The graph of the power function can be seen in figure 4.3. The sample size required
for the test to have at least the power 𝛽 against the alternative 𝜃0 + 𝛿 , 𝛿 > 0, is

𝑛 ≥ (𝑢1−𝛼 + 𝑢𝛽 )2
𝜎20
𝛿2
.

Example (B). TWO-SIDED TEST OF THE EXPECTED VALUE OF GAUSSIAN DISTRIBUTION
WITH UNKNOWN VARIANCE.
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4. Testing of statistical hypothesis

Take random sample 𝑋1, . . . , 𝑋𝑛 from distribution 𝐹𝑋 = N(𝜃𝑋 , 𝜎2𝑋 ) ∈ F 𝐵 =
{
N(𝜃 , 𝜎2), 𝜃 ∈

ℝ, 𝜎2 > 0
}
. We test 𝐻0 : 𝜃𝑋 = 𝜃0 against 𝐻1 : 𝜃𝑋 ≠ 𝜃0.

The test statistic from examples (A1) and (A2) cannot be used in this example, since
the real variance 𝜎2

𝑋
is unknown. However, we can replace it by the sample variance

𝑆2𝑛 and get statistic

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜃0

)
𝑆𝑛

,

which has, in this model under the null hypothesis 𝐻0, 𝑡𝑛−1 distribution (see theo-
rem 2.10). If the null hypothesis does not hold, i.e. 𝜃𝑋 − 𝜃0 = 𝛿 ≠ 0, the test statistic
can be written as

𝑇𝑛 =
𝑍√︁

𝑈 /(𝑛 − 1)
,

where 𝑍 ∼ N(𝜈𝑛 , 1), 𝜈𝑛 =
√
𝑛𝛿
𝜎𝑋

,𝑈 ∼ 𝜒2
𝑛−1 and𝑈 , 𝑍 are independent. Distribution of this

random variable is called non-central t distribution with 𝑛 − 1 degrees of freedom and
noncentrality parameter 𝜈𝑛 . Its characteristics (density, distribution function, mo-
ments) are complicated, but it is sufficient to know that it can be approximated for
large 𝑛 by the distribution N(𝜈𝑛 , 1).
As in the previous examples, if the null hypothesis does not hold, the distribution

of the test statistic is moving away from zero, and this distance grows with larger 𝑛
and |𝜃𝑋 − 𝜃0 |. So values of the test statistic far away from zero will lead to rejecting
the null hypothesis.
The critical region is

(
− ∞, 𝑐𝐿 (𝛼)

〉
∪

〈
𝑐𝑈 (𝛼),∞

)
. Notice that we take 𝑡𝑛−1 distribu-

tion as 𝐺0, since under 𝐻0 it holds that 𝑇𝑛 ∼ 𝑡𝑛−1, for any positive 𝜎2. Since 𝑡𝑛−1 is a
symmetric distribution, we get, using (4.10), the following

𝑐𝐿 (𝛼) = 𝑡𝑛−1(𝛼/2) = −𝑡𝑛−1(1 − 𝛼/2), 𝑐𝑈 (𝛼) = 𝑡𝑛−1(1 − 𝛼/2).

Let us complete this example by verifying that the test has (with the above choice of
critical values) significance level 𝛼. Compute

sup
𝐹 ∈F0

P𝐹
(
𝑇𝑛 ∈ 𝐶 (𝛼)

)
= sup
𝜎2>0

P𝜃0,𝜎2
(
𝑇𝑛 ≤ −𝑡𝑛−1(1 − 𝛼/2) or 𝑇𝑛 ≥ 𝑡𝑛−1(1 − 𝛼/2)

)
= 𝛼.

So the test has exact level 𝛼 and we get the rule

reject 𝐻0 : 𝜃𝑋 = 𝜃0 ⇐⇒ |𝑇𝑛 | =
����√𝑛 (

𝑋 𝑛 − 𝜃0
)

𝑆𝑛

���� ≥ 𝑡𝑛−1(1 − 𝛼/2).

This means that the null hypothesis will be rejected if the sample mean 𝑋 𝑛 will dif-
fer from the hypothetical value 𝜃0 by more than 𝑡𝑛−1 (1−𝛼/2)𝑆𝑛√

𝑛
. This test is called one-

sample t-test.
The power function of this test can be obtained by similar process as in example

(1A). Take some 𝜃 such that 𝜃 − 𝜃0 = 𝛿 ≠ 0. If 𝜃 is the true value of our parameter,
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4. Testing of statistical hypothesis

then the distribution of 𝑇𝑛 is non -central 𝑡 distribution with 𝑛 − 1 degrees of free-
dom and noncentrality parameter 𝜈𝑛 =

√
𝑛𝛿
𝜎𝑋

. Denote the distribution function of this
distribution as 𝐺𝑛,𝜈𝑛 and compute

𝛽𝑛 (𝜃 , 𝜎2𝑋 ) = P𝜃 ,𝜎2
𝑋
[𝑇𝑛 ∈ C(𝛼)]

= P𝜃 ,𝜎2
𝑋
[𝑇𝑛 ≤ −𝑡𝑛−1(1 − 𝛼/2)] + P𝜃 ,𝜎2

𝑋
[𝑇𝑛 ≥ 𝑡𝑛−1(1 − 𝛼/2)]

= 𝐺𝑛,𝜈𝑛
(
−𝑡𝑛−1(1 − 𝛼/2)

)
+ 1 −𝐺𝑛,𝜈𝑛

(
𝑡𝑛−1(1 − 𝛼/2)

)
.

Non-central 𝑡 distribution has non-symmetric density, hence the result cannot be
simplified. If the number of observations 𝑛 is large enough, we can approximate the
power using the formula (4.2) or (4.3).
Using (4.3) we can get an approximation for the number of observations 𝑛 needed

for the test to have at least power 𝛽. The required sample size is

𝑛 ≥ (𝑢1−𝛼/2 + 𝑢𝛽 )2
𝜎2
𝑋

𝛿 2
+ 1.

We add one to the left side to compensate for approximating 𝑡 -distribution by Gaus-
sian. To compute the power of our test and the required sample size, we either need
to know the true value of variance 𝜎2

𝑋
or it can be replaced by some preliminary esti-

mate (since these calculations are usually done before obtaining our data).

Example (C). TWO-SIDED TEST OF THE EXPECTED VALUE OF ANY DISTRIBUTION WITH
FINITE VARIANCE.
Take random sample 𝑋1, . . . , 𝑋𝑛 from distribution 𝐹𝑋 ∈ F𝐶 = L2

+. Denote E𝑋𝑖 = 𝜃𝑋
and var𝑋𝑖 = 𝜎2𝑋 . We test 𝐻0 : 𝜃𝑋 = 𝜃0 against 𝐻1 : 𝜃𝑋 ≠ 𝜃0.
According to theorem 2.9 (limit theorem for 𝑇𝑛) the random variable

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜃0

)
𝑆𝑛

has in this model under 𝐻0 asymptotic distribution N(0, 1). If the null hypothesis
does not hold, i.e. 𝜃𝑋 − 𝜃0 = 𝛿 ≠ 0, then it can easily be shown∗, that the test statistic

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜃𝑋 + 𝜃𝑋 − 𝜃0

)
𝑆𝑛

=

√
𝑛

(
𝑋 𝑛 − 𝜃𝑋

)
𝑆𝑛

+
√
𝑛
𝛿

𝑆𝑛

converges in probability to +∞ or −∞, depending on the sign of 𝛿 . So the values of
the test statistic far away from zero will lead to rejecting the hypothesis.
The critical region will be

(
−∞, 𝑐𝐿 (𝛼)

〉
∪

〈
𝑐𝑈 (𝛼),∞

)
. Notice that

sup
𝐹 ∈F0

lim
𝑛→∞

P𝐹
(
|𝑇𝑛 | ≥ 𝑢1−𝛼/2

)
= P

(
|𝑍 | ≥ 𝑢1−𝛼/2

)
= 𝛼,

∗ We recommend to do this as an exercise.
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where 𝑍 ∼ N(0, 1). So 𝐺0 in (4.10) is, in this example, the distribution function of
N(0, 1). Therefore the critical values 𝑐𝑈 (𝛼) = −𝑐𝐿 (𝛼) = 𝑢1−𝛼/2 guarantee that the
asymptotic level of the test is equal to 𝛼.
Instead of the critical value 𝑢1−𝛼/2 we can use 𝑡𝑛−1(1−𝛼/2), since the test is asymp-

totic and 𝑡𝑛−1(1 − 𝛼/2) → 𝑢1−𝛼/2 for 𝑛 → ∞. As |𝑡𝑛−1(𝛼) | ≥ |𝑢𝛼 | holds, the test will be
more conservative, if we use the quantiles of 𝑡 -distribution instead of the quantiles
of Gaussian distribution.
Altogether we get the rule

reject 𝐻0 : 𝜃𝑋 = 𝜃0 ⇐⇒ |𝑇𝑛 | =
����√𝑛 (

𝑋 𝑛 − 𝜃0
)

𝑆𝑛

���� ≥ 𝑡𝑛−1(1 − 𝛼/2).

It is again one-sample 𝑡 -test. We have shown that, as an asymptotic test, it can be
used for any data from distribution with finite variance.

Exercise.

1. In example (A1) (page 67) consider test
(
𝑈𝑛 ,𝐶 (𝛼)

)
, where𝐶 (𝛼) = ⟨𝑢1/2−𝛼/2, 𝑢1/2+𝛼/2⟩.

Show that this test has significance level exactly 𝛼. Further show that the follow-
ing holds for this test: for all 𝜃 not equal to 𝜃0

𝛽𝑛 (𝜃 ) < 𝛼 and lim
𝑛→∞

𝛽𝑛 (𝜃 ) = 0.

2. In example (A1) (page 67) consider test
(
𝑈𝑛 ,𝐶 (𝛼)

)
, where𝐶 (𝛼) = ⟨𝑢1−𝛼 ,∞). Show

that this test has significance level exactly 𝛼. Is this test unbiased? For which 𝜃
is this test conservative? For which 𝜃 is this test consistent ?

3. Prove that the test from example (A2) (page 72) is unbiased and consistent.

4. Prove that the test from example (B) (page 73) is unbiased and consistent.
Hint: To prove unbiasedness we can use the fact that for random variable Z with
non-central student distribution with 𝜈 degrees of freedom and non-zero param-
eter of noncentrality the following holds: P( |𝑍𝑛 | ≥ 𝑡𝜈 (1 − 𝛼/2)) > 𝛼.

5. Prove that the test from example (C) (see previous page) is consistent.

6. The PR department of certain high school would like to prove that the expected
value of IQ of their students is higher then 105. They expect that the real ex-
pected value of IQ of their students is 110 and the standard deviation of the dis-
tribution of IQ of these students is 15. Find out the number of students whose
IQ needs to be measured so that if we choose the significance level of 5%, our
test will prove with probability 95% that the expected value of the student IQ is
higher than 105.
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4.3. P-VALUE

Deriving results of the test based on whether 𝑆𝑛 (X) lies in C or not is not the only
way nor the most common way. Results of the test ale usually derived using so called
p-value. It corresponds to the smallest possible significance level on which we could
reject the null hypothesis.
Consider null hypothesis 𝐻0 : θ𝑋 ∈ Θ0 against alternative 𝐻1 : θ𝑋 ∈ Θ1 and, for

fixed 𝛼 ∈ (0, 1), let
(
𝑆𝑛 (X),C(𝛼)

)
be a test with prescribed significance level 𝛼. For

precision define C(1) = (−∞,∞).
As we know from remark on page 65, if 𝑆𝑛 (X) has discrete distribution under the

null hypothesis, it is not possible to reach any desired significance level of a test.
If our desired level 𝛼 is unreachable, we denote by C(𝛼) the critical region of a test
which has level 𝛼′ < 𝛼, where 𝛼′ is the closest to the desired 𝛼.

Definition 4.8 (P-value) Let 𝑠x = 𝑆𝑛 (x) be the observed value of the test statistic.
Then we define p-value or the obtained level of test as

𝑝 (x) = inf
{
𝛼 ∈ (0, 1⟩ : 𝑠x ∈ C(𝛼)

}
.

If the test
(
𝑆𝑛 (X),C(𝛼)

)
is exact (resp. asymptotic), the p-value is called exact (resp.

asymptotic).

If a test has prescribed level 𝛼, the following rule can be used to make our conclu-
sion

𝐻0 is rejected, if 𝑝 (x) ≤ 𝛼,

𝐻0 is not rejected, if 𝑝 (x) > 𝛼.
(4.11)

Therefore if we know the p-value 𝑝 (x), we can reject the null hypothesis on all levels
𝛼′ ≥ 𝑝 (x), but we cannot reject it on levels 𝛼′ < 𝑝 (x). This is the reason for calling
p-value obtained level of test.
If our decision is based on p-value, we do not have to state the critical region and

we do not have to recalculate it, if we decide to change the level of a test. However,
we do have to highlight that changing the significance level after the result is known
is not legitimate.

Remark.
• P-value can be understood as the amount of agreement of data with the null
hypothesis. If 𝑝 (x) ≪ 𝛼, the null hypothesis is rejected “safely”. If 𝑝 (x) is close
to 𝛼, we sometimes say that the result is “on the verge of statistical significance”.

• P-value cannot be explained as a “probability that the null hypothesis holds”.
Whether the null hypothesis holds or not is not a random event, but a deter-
ministic one.

• If 𝑆𝑛 (X) has discrete distribution, then the rule (4.11) gives us a test which has
the closest possible reachable level 𝛼′ such that 𝛼′ ≤ 𝛼.
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4.3.1. CALCULATION OF P-VALUE FOR ONE-SIDED CRITICAL REGION

As can be seen from definition 4.8, p-value is a function of observed data x and
her calculation depends on the used statistic 𝑆𝑛 (X) and on the way the critical re-
gion C(𝛼) changes if we change 𝛼. The simplest case is the situation with one-sided
critical region, i.e. we reject for too large (or too small) values of the test statistic.

Assume at first that we reject for too large values of the test statistic. For this pur-
pose it is easier for a moment to think about the critical region in the open form
C(𝛼) =

(
𝑐𝑈 (𝛼),∞

)
. We know from chapter 4.2.3 that 𝑐𝑈 (𝛼) = limℎ→0+𝐺

−1
0 (1−𝛼), where

𝐺0 is a distribution function such that

sup
𝐹 ∈F0

P𝐹 [𝑆𝑛 (X) ≥ 𝑐 ] = 1 −𝐺0(𝑐−) ∀𝑐 ∈ ℝ.

In this case we get from definition of p-value that

𝑝 (x) = inf
{
𝛼 ∈ (0, 1⟩ : 𝑠x > 𝐺 −1

0 (1 − 𝛼)
}
= 1 −𝐺0

(
𝑠x −

)
. (4.12)

We can proceed analogously for a critical region in the form of C(𝛼) =
(
−∞,𝐺 −1

0 (𝛼)
)
,

where 𝐺0 is the distribution function such that

sup
𝐹 ∈F0

P𝐹 [𝑆𝑛 (X) ≤ 𝑐 ] = 𝐺0(𝑐 ) ∀𝑐 ∈ ℝ.

So from the definition of p-value

𝑝 (x) = inf
{
𝛼 ∈ (0, 1⟩ : 𝑠x < 𝐺 −1

0 (𝛼)
}
= 𝐺0

(
𝑠x

)
. (4.13)

Remark.
• The formulas (4.12) and (4.13) can be used even for asymptotic p-value if 𝐺0 is
the distribution function of the asymptotic distribution of test statistic under
the null hypothesis. I.e. consider critical region in the form of C(𝛼) =

〈
𝑐𝑈 (𝛼),∞

)
.

Then we need that 𝐺0 is a distribution function that satisfies

sup
𝐹 ∈F0

lim
𝑛→∞

P𝐹 [𝑆𝑛 (X) ≥ 𝑐 ] = 1 −𝐺0(𝑐−), ∀𝑐 ∈ ℝ.

Similarly for critical region C(𝛼) =
(
−∞, 𝑐𝐿 (𝛼)

〉
we need that 𝐺0 satisfies

sup
𝐹 ∈F0

lim
𝑛→∞

P𝐹 [𝑆𝑛 (X) ≤ 𝑐 ] = 𝐺0(𝑐 ), ∀𝑐 ∈ ℝ.

• Notice that for critical region C(𝛼) =
〈
𝑐𝑈 (𝛼),∞

)
the formula (4.12) for p-value

can be rewritten into

𝑝 (x) = 1 −𝐺0(𝑠x−) = sup
𝐹 ∈F0

P𝐹 [𝑆𝑛 (X) ≥ 𝑠x] . (4.14)
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Similarly for critical region C(𝛼) =
(
−∞, 𝑐𝐿 (𝛼)

〉
𝑝 (x) = 𝐺0(𝑠x) = sup

𝐹 ∈F0
P𝐹 [𝑆𝑛 (X) ≤ 𝑠x] . (4.15)

So the p-value can be also viewed as a (maximal possible) probability, that we
would, under the null hypothesis, observe data, which would be in the same or
larger disagreement with the null hypothesis than the data we analyse.

Example (A). TEST OF EXPECTED VALUE OF GAUSSIAN DISTRIBUTIONWITH KNOWN VARI-
ANCE.
Let us have random sample 𝑋1, . . . , 𝑋𝑛 from distribution 𝐹𝑋 = N(𝜃𝑋 , 𝜎20 ) ∈ F 𝐴 ={

N(𝜃 , 𝜎20 ), 𝜃 ∈ ℝ
}
. We test

𝐻0 : 𝜃𝑋 ≥ 𝜃0 against 𝐻1 : 𝜃𝑋 < 𝜃0.

Test statistic is chosen as

𝑈𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜃0

)
𝜎0

,

and we reject for small values of the test statistic.
Notice that (see example 4.2.2) the distribution of the test statistic isN(𝜈𝑛 , 1), where

the expected value 𝜈𝑛 =
√
𝑛 (𝜃𝑋 −𝜃0 )

𝜎0
is non-negative under the null hypothesis. Let 𝑢x

denote the observed value of our test statistic 𝑈𝑛 . Since the critical region is 𝐶 (𝛼) =(
−∞, 𝑐𝐿 (𝛼)

〉
, where 𝑐𝐿 (𝛼) = Φ−1(𝛼), we get from definition 4.8 that

𝑝 (x) = inf{𝛼 ∈ (0, 1) : 𝑢x ≤ Φ−1(𝛼)} = Φ(𝑢x).

Example (B). TEST OF EXPECTED VALUE OF GAUSSIAN DISTRIBUTION WITH UNKNOWN
VARIANCE.
Take random sample 𝑋1, . . . , 𝑋𝑛 , 𝑛 = 26 from distribution 𝐹𝑋 ∈ F 𝐵 and consider

𝜃𝑋 = E𝑋𝑖 . We test
𝐻0 : 𝜃𝑋 ≤ 𝜃0 against 𝐻1 : 𝜃𝑋 > 𝜃0.

To do that we use the test statistic

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜃0

)
𝑆𝑛

,

and the null hypothesis is rejected for large values of our test statistic.
Suppose that we have calculated the value of our test statistic and denote this as 𝑡x.

It was shown in the example B on page 73 that the test statistic 𝑇𝑛 has non-central
𝑡 -distribution with 𝑛 − 1 degrees of freedom and parameter of noncentrality 𝜈𝑛 =√
𝑛 (𝜃𝑋 −𝜃0 )

𝜎𝑋
. Notice that under the null hypothesis this parameter is negative or zero.

So large values of our test statistic will give evidence against the null hypothesis
and critical region will be of form 𝐶 (𝛼) = ⟨𝑐𝑈 (𝛼),∞). Given all of this, we choose
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4. Testing of statistical hypothesis

the distribution function of 𝑡𝑛−1- distribution as 𝐺0 in calculating the critical region
using the formula (4.6), i.e. in our example we use the distribution function of 𝑡25. So
𝑐𝑈 (𝛼) = 𝑡25(1 − 𝛼) and therefore

𝑝 (x) = inf{𝛼 ∈ (0, 1) : 𝑡x ≥ 𝑡25(1 − 𝛼)} = 1 −𝐺25(𝑡x),

where 𝐺25 is the distribution function of distribution 𝑡25.

4.3.2. CALCULATION OF P-VALUE FOR TWO-SIDED CRITICAL REGION

Again here it is easier to think about the critical region in the open form 𝐶 (𝛼) =

(−∞, 𝑐𝐿 (𝛼)
)
∪

(
𝑐𝑈 (𝛼),∞

)
, where −∞ < 𝑐𝐿 (𝛼) < 𝑐𝑈 (𝛼) < ∞, we get from definition

of p-value that

𝑝 (x) = inf
{
𝛼 ∈ (0, 1⟩ : 𝑠x < 𝑐𝐿 (𝛼) or 𝑠x > 𝑐𝑈 (𝛼)

}
. (4.16)

We know from chapter 4.2.3 that in the following text we will only encounter situ-
ations where the exact (or asymptotic) distribution of test statistic 𝑆𝑛 (X) does not
depend on the choice of 𝐹 from F0. Denote the distribution function of this (exact or
asymptotic) distribution of 𝑆𝑛 (X) by 𝐺0. Then according to (4.10) we have that

𝑐𝐿 (𝛼) = 𝐺 −1
0 (𝛼/2), and 𝑐𝑈 (𝛼) = lim

ℎ→0+
𝐺 −1
0

(
1 − 𝛼/2

)
.

So thanks to the formula (4.16) we get for the p-value that

𝑝 (x) = inf
{
𝛼 ∈ (0, 1⟩ : 𝑠x < 𝐺 −1

0 (𝛼/2) or 𝑠x > 𝐺 −1
0 (1 − 𝛼/2)

}
= 2 min

{
𝐺0(𝑠x), 1 −𝐺0(𝑠x−)

}
. (4.17)

The formula (4.17) can be simplified in the case that the exact (resp. asymptotic)
distribution 𝐺0 is symmetric around 0 and 𝑐𝐿 = −𝑐𝑈 (which is often true in practice).
Then the exact (resp. asymptotic) p-value can be obtained as

𝑝 (x) = P𝐹0
[
|𝑆𝑛 (X) | ≥ |𝑠x |

]
= 2

(
1 −𝐺0( |𝑠x | −)

)
. (4.18)

Example (A). TEST OF EXPECTED VALUE OF GAUSSIAN DISTRIBUTIONWITH KNOWN VARI-
ANCE.
Wehave random sample 𝑋1, . . . , 𝑋𝑛 from distribution 𝐹𝑋 = N(𝜃𝑋 , 𝜎20 ) ∈ F 𝐴 =

{
N(𝜃 , 𝜎20 ), 𝜃 ∈

ℝ
}
and we are interested in the hypothesis

𝐻0 : 𝜃𝑋 = 𝜃0 against 𝐻1 : 𝜃𝑋 ≠ 𝜃0.

Test statistic is

𝑈𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜃0

)
𝜎0

,
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and we reject for too large, resp. too small values of test statistic. The calculation of p-
value is fairly easy for this case since the hypothesis contains exactly one distribution
N(𝜃0, 𝜎20 ), which will play the role of distribution 𝐹0. Furthermore, the test statistic𝑈𝑛

has, under the null hypothesis, distribution N(0, 1), which is symmetric around zero.
So p-value can be obtained as

𝑝 (x) = 2min
{
1 −Φ(𝑢x),Φ(𝑢x)

}
= 2

(
1 −Φ( |𝑢x |)

)
.

Example (B). TEST OF EXPECTED VALUE OF GAUSSIAN DISTRIBUTION WITH UNKNOWN
VARIANCE.
Take random sample 𝑋1, . . . , 𝑋𝑛 , 𝑛 = 26, from distribution 𝐹𝑋 ∈ F 𝐵 and consider

𝜃𝑋 = E𝑋𝑖 . We test 𝐻0 : 𝜃𝑋 = 𝜃0 against 𝐻1 : 𝜃𝑋 ≠ 𝜃0. To do that we use test statistic

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜃0

)
𝑆𝑛

,

and the null hypothesis is rejected for too large or too small values of this test statistic.
Suppose that we have calculated the value of our test statistic and denote this value

by 𝑡x. It was shown in example B on page 73 that the test statistic 𝑇𝑛 has non-central
𝑡 -distribution with 𝑛 − 1 degrees of freedom and parameter of noncentrality 𝜈𝑛 =√
𝑛 (𝜃𝑋 − 𝜃0)/𝜎𝑋 . Notice that under the null hypothesis this parameter is zero. So

𝑝 (x) = 2min
{
1 −𝐺25(𝑡x),𝐺25(𝑡x)

}
= 2

(
1 −𝐺25( |𝑡x |)

)
.

We have used the fact that 𝑡 -distribution with 𝑛 − 1 degrees of freedom is symmetric
around zero.
Specifically for 𝑡x = 1,37 we get

𝑝 (x) = 2
(
1 −𝐺25( |1,37|)

)
� 0,183.

Example (C). Take random sample 𝑋1, . . . , 𝑋𝑛 , 𝑛 = 26, from distribution 𝐹𝑋 ∈ F𝐶 =

L2
+ with expected value E𝑋𝑖 = 𝜃𝑋 . We test 𝐻0 : 𝜃𝑋 = 𝜃0 against 𝐻1 : 𝜃𝑋 ≠ 𝜃0. The test

statistic𝑇𝑛 has under the null hypothesis approximately N(0, 1) distribution, which is
symmetric around 0. We have calculated the test statistic and the result is 𝑡x = 1,37.
We can use (4.18) to obtain the asymptotic p-value of this test as

𝑝 (x) = 2
(
1 −Φ( |1,37|)

)
� 0,171. (4.19)

We test on significance level 𝛼 = 0,05 and therefore we cannot reject the hypothesis,
since 𝑝 (x) > 0,05. However, if we have set (before performing the test) our signifi-
cance level as 𝛼′ = 0,2, we could reject the hypothesis.
Notice that in model F 𝐵 (i.e. the set of Gaussian distributions with unknown vari-

ance) we could use (4.18) to calculate the exact p-value as

𝑝 (x) = 2
(
1 −𝐺25( |1,37|)

)
� 0,183, (4.20)
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where 𝐺25 denotes the distribution function of 𝑡 -distribution 𝑡25. As this p-value is
higher than the asymptotic p-value (4.19), it is usual to use the p-value (4.20) cal-
culated using the distribution 𝑡25 also in model F𝐶 to be more careful (conserva-
tive). Since the distribution 𝑡𝑛−1 converges (in distribution) to Gaussian distribution
N(0, 1), the p-value (4.20) can be viewed as an asymptotic p-value for model F𝐶 .
It is worth noticing that the formula (4.20) can be obtained directly from the defi-

nition of p-value, if we use the critical values 𝑐𝐿 (𝛼) = 𝑡𝑛−1(𝛼/2) a 𝑐𝑈 (𝛼) = 𝑡𝑛−1(1−𝛼/2).
In this case we have

𝑝 (x) = inf
{
𝛼 ∈ (0, 1⟩ : 1,37 ≤ 𝑡𝑛−1(𝛼/2) or 1,37 ≥ 𝑡 −1𝑛−1(1 − 𝛼/2)

}
= 2 min

{
1 −𝐺25(1,37),𝐺0(1,37)

}
= 2

[
1 −𝐺25( |1,37|)

]
.

4.3.3. DISTRIBUTION OF P-VALUE UNDER NULL HYPOTHESIS

Consider now p-value 𝑝 (X) as a random variable, i.e. statistic calculated from ran-
dom sample X. It can be shown that, under certain assumptions, 𝑝 (X) has under
the null hypothesis uniform distribution on the interval (0, 1).

Proposition 4.1 Assume that the null hypothesis holds (i.e. 𝐹𝑋 ∈ F0) and let the
following be true

sup
𝐹 ∈F0

P𝐹 [𝑆𝑛 (X) ∈ C(𝛼)] = P𝐹𝑋 [𝑆𝑛 (X) ∈ C(𝛼)] ,∀𝛼 ∈ (0, 1). (4.21)

Assume that the test statistic 𝑆𝑛 (X) has continuous distribution. Then𝑝 (X) ∼ U(0, 1).

Proof. Denote𝑈 = 𝐺0
(
𝑆𝑛 (X)), where 𝐺0 is the distribution function of random vari-

able 𝑆𝑛 (X), if the distribution ofX𝑖 is 𝐹𝑋 . Notice that in this case the random variable
𝑈 has uniform distribution on (0, 1) (see lemma A.2). The proposition will be proven
separately for different forms of critical region.
(i) 𝐶 (𝛼) =

〈
𝑐𝑈 (𝛼),∞

)
In this case the formula (4.12) gives us p-value 𝑝 (x) = 1 −𝐺0(𝑠x). So we can write

for distribution function of random variable 𝑝 (X)

P𝐹𝑋 [𝑝 (X) ≤ 𝑢] = P𝐹𝑋
[
1 −𝐺0

(
𝑆𝑛 (X)

)
≤ 𝑢

]
= P

[
1 −𝑈 ≤ 𝑢

]
= P

[
1 − 𝑢 ≤ 𝑈

]
= 𝑢,

for ∀𝑢 ∈ (0, 1). Therefore the distribution function of 𝑝 (X) is the distribution func-
tion of uniform distribution on (0, 1), which was to be proven.

(ii) 𝐶 (𝛼) =
(
−∞, 𝑐𝐿 (𝛼)

〉
In this case we can use (4.13) for ∀𝑢 ∈ (0, 1) to get

P𝐹𝑋 [𝑝 (X) ≤ 𝑢] = P𝐹𝑋
[
𝐺0

(
𝑆𝑛 (X)

)
≤ 𝑢

]
= P

[
𝑈 ≤ 𝑢

]
= 𝑢.

(iii) 𝐶 (𝛼) =
(
−∞, 𝑐𝐿 (𝛼)

〉
∪

〈
𝑐𝑈 (𝛼),∞

)
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Using the formula (4.17) for ∀𝑢 ∈ (0, 1) we get

P𝐹𝑋 [𝑝 (X) ≤ 𝑢] = P𝐹𝑋
[
2min

{
1 −𝐺0

(
𝑆𝑛 (X)

)
,𝐺0

(
𝑆𝑛 (X)

)}
≤ 𝑢

]
= P

[
2min

{
1 −𝑈 ,𝑈

}
≤ 𝑢

]
= P

[
2min

{
1 −𝑈 ,𝑈

}
≤ 𝑢, 𝑈 ≤ 1

2
]
+ P

[
2min

{
1 −𝑈 ,𝑈

}
≤ 𝑢, 𝑈 ≥ 1

2
]

= P
[
2𝑈 ≤ 𝑢, 𝑈 ≤ 1

2
]
+ P

[
2(1 −𝑈 ) ≤ 𝑢, 𝑈 ≥ 1

2
]

= P
[
𝑈 ≤ min

{
𝑢
2 ,

1
2
}]

+ P
[
𝑈 ≥ max

{
1 − 𝑢

2 ,
1
2
}]

= 𝑢
2 + 1 − (1 − 𝑢

2
)
= 𝑢.

□

Remark. The previous proposition does not hold if the distribution of the test statis-
tic is discrete. It also would not hold if the hypothesis did hold (i.e. 𝐹𝑋 ∈ F0), but 𝐹𝑋
would not be “the closest” to the alternative, (i.e. we could not replace sup𝐹 ∈F0 P𝐹 by
P𝐹𝑋 in (4.21)).

4.4. DUALITY BETWEEN INTERVAL ESTIMATION AND
HYPOTHESIS TESTING

Consider random sample X =
(
X1, . . . ,X𝑛

)
from distribution 𝐹𝑋 ∈ F , where F is

some model. Let 𝜃 = 𝑡 (𝐹 ) ∈ ℝ be a parameter and 𝜃𝑋 = 𝑡 (𝐹𝑋 ) its true value. In
chapter 3.5 we have dealt with the problem of interval estimation of parameter 𝜃𝑋 ,
i.e. we have looked for random variables 𝜂𝐿 (X) and 𝜂𝑈 (X) such that

P𝐹
[ (
𝜂𝐿 (X),𝜂𝑈 (X)

)
∋ 𝜃

]
= 1 − 𝛼 (or −−−−→

𝑛→∞
1 − 𝛼) for ∀𝐹 ∈ F .

In this chapter we deal with hypothesis testing, specifically the hypothesis

𝐻0 : 𝜃𝑋 = 𝜃0 against 𝐻1 : 𝜃𝑋 ≠ 𝜃0.

Both problems are solved by procedures that are similar in some way, even though
they differ in details.
The following proposition shows that there exists certain duality between the prob-

lem of testing hypothesis about some parameter and looking for interval estimate for
the same parameter. Interval estimation can be used to hypothesis testing and test
of a hypothesis can be converted to interval estimation.

Proposition 4.2 (Duality of interval estimates and testing)
(i) Assume that we have two-sided confidence interval for parameter 𝜃𝑋 with con-

fidence level 1 − 𝛼 (exact or asymptotic), in the form
(
𝜂𝐿 (X),𝜂𝑈 (X)

)
. Consider

test of hypothesis 𝐻0 : 𝜃𝑋 = 𝜃0 against 𝐻1 : 𝜃𝑋 ≠ 𝜃0 based on the rule

𝐻0 is rejected if 𝜃0 ∉
(
𝜂𝐿 (X),𝜂𝑈 (X)

)
𝐻0 is not rejected if 𝜃0 ∈

(
𝜂𝐿 (X),𝜂𝑈 (X)

)
.

(4.22)

Then the significance level of this test is 𝛼 (exact or asymptotic).
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(ii) Let there be, for all 𝜃 ∈ Θ, a test (𝑆𝑛 (X , 𝜃 ),𝐶𝜃 (𝛼)) of the hypothesis 𝐻0 : 𝜃𝑋 = 𝜃

against 𝐻1 : 𝜃𝑋 ≠ 𝜃 such that for all 𝐹 satisfying 𝜃 = 𝑡 (𝐹 )

P𝐹
[
𝑆𝑛 (X , 𝜃 ) ∈ 𝐶𝜃 (𝛼)

]
= 𝛼 (or −−−−→

𝑛→∞
𝛼).

Denote by 𝐵𝑛 (X) the set containing all parameters 𝜃 ∈ Θ, such that for observed
dataX we do not reject the hypothesis 𝐻0 : 𝜃𝑋 = 𝜃 . Then for all 𝐹 ∈ F

P𝐹
[
𝐵𝑛 (X) ∋ 𝜃

]
= 1 − 𝛼 (or −−−−→

𝑛→∞
1 − 𝛼),

and (if 𝐵𝑛 (X) is an interval) we have assembled confidence interval for param-
eter θ𝑋 with confidence level 1 − 𝛼 (exact or asymptotic).

Proof. Part (i) Let
(
𝜂𝐿 (X),𝜂𝑈 (X)

)
be exact confidence interval. The proof for asymp-

totic confidence interval would be analogous.
Confidence interval for the true value of parameter 𝜃𝑋 satisfies

P𝐹𝑋
[ (
𝜂𝐿 (X),𝜂𝑈 (X)

)
∋ 𝜃𝑋

]
= 1 − 𝛼.

So under the null hypothesis, i.e. for 𝜃𝑋 = 𝜃0, it holds for all 𝐹 ∈ F0 =
{
𝐹 ∈ F : 𝑡 (𝐹 ) =

𝜃0
}
that

P𝐹
[ (
𝜂𝐿 (X),𝜂𝑈 (X)

)
∋ 𝜃0

]
= 1 − 𝛼.

Therefore the significance level of the test given by (4.22) is

sup
𝐹 ∈F0

P𝐹
[ (
𝜂𝐿 (X),𝜂𝑈 (X)

)
∌ 𝜃0

]
= 𝛼,

which was to be proven.

Part (ii) Let
(
𝑆𝑛 (X , 𝜃 ),𝐶𝜃 (𝛼)

)
be, for all 𝜃 ∈ Θ, the exact test of null hypothesis

𝐻0 : 𝜃𝑋 = 𝜃 against alternative 𝐻1 : 𝜃𝑋 ≠ 𝜃 with significance level 𝛼. The proof
for asymptotic test would be analogous.
Denote

𝐵𝑛 (X) =
{
𝜃 ∈ Θ : 𝑆𝑛 (X , 𝜃 ) ∉ 𝐶𝜃 (𝛼)

}
.

Then for all 𝐹 ∈ F , 𝜃 = 𝑡 (𝐹 ) we have that

P𝐹 [𝐵𝑛 (X) ∋ 𝜃 ] = P𝐹 [𝑆𝑛 (X , 𝜃 ) ∉ 𝐶𝜃 (𝛼)] = 1 − 𝛼,

which was to be proven. □

Proposition 4.2 says that if we can construct confidence interval for parameter, we
can use it to test hypothesis about this parameter. Conversely, if we have a test for hy-
pothesis, we can use it to construct confidence interval. However, this step requires
more work, since we have to test all possible values of our parameter. Set of all val-
ues of our parameter, for which we do not reject the hypothesis, then has required
confidence level, but it is not necessarily an interval.
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4. Testing of statistical hypothesis

Example. Let us have random sample 𝑋1, . . . , 𝑋𝑛 from Gaussian distribution 𝐹𝑋 =

N(𝜃𝑋 , 𝜎2𝑋 ) ∈ F 𝐵 =
{
N(𝜃 , 𝜎2), 𝜃 ∈ ℝ, 𝜎2 > 0

}
.

Assume that we have calculated confidence interval (3.5) for expected value of Gaus-
sian distribution with unknown variance. We then reject the null hypothesis𝐻0 : 𝜃𝑋 =

𝜃0 against alternative 𝐻1 : 𝜃𝑋 ≠ 𝜃0, if

𝜃0 ∉

(
𝑋 𝑛 − 𝑡𝑛−1

(
1 − 𝛼

2
) 𝑆𝑛√

𝑛
, 𝑋 𝑛 + 𝑡𝑛−1

(
1 − 𝛼

2
) 𝑆𝑛√

𝑛

)
.

I.e. confidence interval contains those values of our parameter for which we would
not reject null hypothesis.
Conversely, if we use, for test 𝐻0 : 𝜃𝑋 = 𝜃 against alternative 𝐻1 : 𝜃𝑋 ≠ 𝜃 , test

statistic

𝑇𝑛 (𝜃 ) =
√
𝑛

(
𝑋 𝑛 − 𝜃

)
𝑆𝑛

,

(see example (B) on page 73), then the above stated confidence interval can be de-
rived as {

𝜃 ∈ ℝ : do not reject 𝐻0 : 𝜃𝑋 = 𝜃 against 𝐻1 : 𝜃𝑋 ≠ 𝜃
}

=
{
𝜃 ∈ 𝑅 : |𝑇𝑛 (𝜃 ) | < 𝑡𝑛−1(1 − 𝛼/2)

}
=

{
𝜃 ∈ 𝑅 :

��√𝑛 (
𝑋 𝑛−𝜃

)
𝑆𝑛

�� < 𝑡𝑛−1(1 − 𝛼/2)}.
Exercise. What would be the form of confidence interval derived from one-sided
test, i.e. from testing 𝐻0 : 𝜃𝑋 ≤ 𝜃0 against alternative 𝐻1 : 𝜃𝑋 > 𝜃0.
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5. ONE-SAMPLE AND PAIRED-PROBLEMS
FOR QUANTITATIVE DATA

In this chapter we consider a random sample 𝑋1, . . . , 𝑋𝑛 of quantitative random vari-
ables with the cumulative distribution function 𝐹𝑋 that belongs to the model F . We
are interested in the parameter 𝜃𝑋 = 𝑡 (𝐹𝑋 ). We want to test the hypothesis about this
parameter and also to find a confidence interval for this parameter whenever possi-
ble

5.1. ONE-SAMPLE KOLMOGOROV-SMIRNOV TEST

The aim of the one-sample Kolmogorov-Smirnov test is to find if the true cumulative
distribution function is the same as the given cumulative distribution function. It is
a nonparametric test.

Model: F = {all continuous distributions}
The parameter being tested: The entire cumulative distribution function 𝐹𝑋
The hypothesis and the alternative:

𝐻0 : 𝐹𝑋 (𝑥) = 𝐹0(𝑥) ∀𝑥 ∈ ℝ, 𝐻1 : ∃𝑥 ∈ ℝ : 𝐹𝑋 (𝑥) ≠ 𝐹0(𝑥),

where 𝐹0 is a given continuous cumulative distribution function (without unknown
parameters).
The test statistic is based on the empirical cumulative distribution function 𝐹𝑛 ,

which was introduced in Chapter 3.6.1 (see page 50). Its properties are summarized
in Theorem 3.3. The empirical cumulative distribution function is an unbiased and
consistent estimator of the true cumulative distribution function in each of the point.
Further according to Theorem 3.3(v) it is uniformly consistent, i.e.

sup
𝑥∈ℝ

��𝐹𝑛 (𝑥) − 𝐹𝑋 (𝑥)�� P−−−−→
𝑛→∞

0.

The test statistic also uses this supreme norm which searches for the biggest differ-
ence between 𝐹𝑛 (𝑥) and 𝐹0(𝑥).
Test statistic:

𝐾𝑛 = sup
𝑥∈ℝ

���𝐹𝑛 (𝑥) − 𝐹0(𝑥)���
If the (null) hypothesis is true and 𝐹0 is true cumulative distribution function, then

the value of the test statistic 𝐾𝑛 is close to zero. The hypothesis is rejected, when the
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5. One-sample and paired-problems for quantitative data

empirical cumulative distribution function is not too different from 𝐹0, i.e. when the
value of the test statistic is too large.
Denote

𝐾 +
𝑛 = sup

𝑥∈ℝ

(
𝐹𝑛 (𝑥) − 𝐹0(𝑥)

)
and 𝐾 −

𝑛 = sup
𝑥∈ℝ

(
𝐹0(𝑥) − 𝐹𝑛 (𝑥)

)
.

Then 𝐾𝑛 = max
(
𝐾 +
𝑛 , 𝐾

−
𝑛

)
.

Lemma 5.1 If 𝐹0 is continuous then

𝐾 +
𝑛 = max

1≤𝑖≤𝑛

(
𝑖

𝑛
− 𝐹0(𝑋 (𝑖 ) )

)
, 𝐾 −

𝑛 = max
1≤𝑖≤𝑛

(
𝐹0(𝑋 (𝑖 ) ) −

𝑖 − 1
𝑛

)
.

Proof. Define 𝑋 (0) = −∞ and 𝑋 (𝑛+1) = +∞. Then

𝐹𝑛 (𝑥) =
𝑖

𝑛
, pro 𝑥 ∈ ⟨𝑋 (𝑖 ) , 𝑋 (𝑖+1) ), 𝑖 = 0, 1, . . . , 𝑛.

Thus with the help of the above equation

𝐾 +
𝑛 = sup

𝑥∈ℝ

(
𝐹𝑛 (𝑥) − 𝐹0(𝑥)

)
= max
0≤𝑖≤𝑛

sup
𝑋 (𝑖 ) ≤𝑥<𝑋 (𝑖+1)

(
𝐹𝑛 (𝑥) − 𝐹0(𝑥)

)
= max
0≤𝑖≤𝑛

(
𝑖
𝑛
− inf
𝑋 (𝑖 ) ≤𝑥<𝑋 (𝑖+1)

𝐹0(𝑥)
)

= max
0≤𝑖≤𝑛

(
𝑖
𝑛
− 𝐹0(𝑋 (𝑖 ) )

)
= max
1≤𝑖≤𝑛

(
𝑖
𝑛
− 𝐹0(𝑋 (𝑖 ) )

)
,

where in the last equality we make use of the fact that 𝐹0(𝑋 (0) ) = 0 and that 1 −
𝐹0(𝑋 (𝑛 ) ) ≥ 0.

Analogously for 𝐾 −
𝑛 :

𝐾 −
𝑛 = sup

𝑥∈ℝ

(
𝐹0(𝑥) − 𝐹𝑛 (𝑥)

)
= max
0≤𝑖≤𝑛

sup
𝑋 (𝑖 ) ≤𝑥<𝑋 (𝑖+1)

(
𝐹0(𝑥) − 𝐹𝑛 (𝑥)

)
= max
0≤𝑖≤𝑛

(
𝐹0(𝑋 (𝑖+1) ) − 𝑖

𝑛

)
= max
0≤𝑖≤𝑛−1

(
𝐹0(𝑋 (𝑖+1) ) − 𝑖

𝑛

)
= max
1≤𝑖≤𝑛

(
𝐹0(𝑋 (𝑖 ) ) − 𝑖−1

𝑛

)
,

where in the second to last equality we make use of the fact that 𝐹0(𝑋 (𝑛+1) ) = 1 and
that 𝐹0(𝑋 (1) ) ≥ 0. In the last equality we only shift indices. □

Remark. The above lemma has several important consequences.
• The test statistic 𝐾𝑛 can be calculated with the help of Lemma 5.1. No that to
calculate 𝐾𝑛 it is sufficient to calculate the ordered random sample (and not 𝐹𝑛).

• With the help of Theorem 2.13 under the null hypothesis 𝐹0(𝑋 (𝑖 ) ) follows a beta
distribution whose parameters do not depend on 𝐹0. Thus the distribution of
𝐾𝑛 under the hypothesis does not depend on 𝐹0 (i.e. it is pivotal).

87



5. One-sample and paired-problems for quantitative data

• With the help Lemma 5.1 one can theoretically find the exact distribution distri-
bution of the test statistics under the null hypothesis. But to really evaluate this
distribution would be a rather computationally intensive task. Thus the exact
distribution of 𝐾𝑛 is used only for small sample sizes 𝑛 for which it is tabulated.

Asymptotic distribution of the test statistic under the null hypothesis is given by
the following proposition which generalizes the result of Theorem 3.3(v).

Proposition 5.2 Let 𝑋1, . . . , 𝑋𝑛 be a random sample from the continuous distribution
with the cumulative distribution function 𝐹𝑋 . Then

√
𝑛 sup

𝑥∈ℝ

��𝐹𝑛 (𝑥) − 𝐹𝑋 (𝑥)�� d−−−−→
𝑛→∞

𝑍 ,

where the random variable 𝑍 has the cumulative distribution function given by

𝐺 (𝑦 ) =
{
1 − 2∑∞

𝑘=1(−1)𝑘+1e−2𝑘
2𝑦2 , 𝑦 > 0,

0, 𝑦 ≤ 0.
(5.1)

The cumulative distribution function 𝐺 (𝑦 ) gives the limiting distribution of the
normalized test statistic

√
𝑛𝐾𝑛 under the null hypothesis, i.e. for 𝐹𝑋 = 𝐹0. Note that

this distribution is not Gaussian. It is worth noting that this distribution does not de-
pend on the choice of 𝐹0. The proof of the Proposition 5.2 requires a very advanced
methods of the theory of probability.
Now we can find the critical value for rejecting 𝐻0 so that the test has the asymp-

totic level 𝛼. Let 𝑘𝛼 = 𝐺 −1(𝛼) be the 𝛼-quantile of the distribution given by the cu-
mulative distribution function 𝐺 . Now we reject 𝐻0 when

√
𝑛𝐾𝑛 exceeds 𝑘1−𝛼 .

Critical region:
𝐻0 is rejected ⇔

√
𝑛𝐾𝑛 ≥ 𝑘1−𝛼 . (5.2)

With the help of Proposition 5.2 we know that the asymptotic level of the test is 𝛼.
P-value: 𝑝 = 1−𝐺

(√
𝑛 𝑘𝑛

)
, where 𝑘𝑛 is observed value of the statistic 𝐾𝑛 . Note that the

above equation gives an asymptotic p-value.

Remark.
• Under the alternative

𝐾𝑛
P−−−−→

𝑛→∞
sup
𝑥∈ℝ

|𝐹𝑋 (𝑥) − 𝐹0(𝑥) | > 0

fromwhich one conclude that the test is consistent. The advantage of Kolmogorov-
Smirnov test is its universality (it is capable to detect any difference of the true
distribution of data from the the distribution given by null hypothesis) and that
no parametric assumptions are made.

• On the other hand this test has a relatively small power against specific viola-
tions of 𝐻0 (e.g. the change in the expectation). When we know what type of
the violation of 𝐻0 to expect in the given application then it is usually better to
use a test that is specialized to detect this particular violation.
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5. One-sample and paired-problems for quantitative data

• It is possible to formulate this test also as one-sided, i.e. 𝐻 ′
1 : 𝐹𝑋 (𝑥) ≥ 𝐹0(𝑥),

∃𝑥 ∈ ℝ : 𝐹𝑋 (𝑥) > 𝐹0(𝑥) or 𝐻 ′′
1 : 𝐹𝑋 (𝑥) ≤ 𝐹0(𝑥), ∃𝑥 ∈ ℝ : 𝐹𝑋 (𝑥) < 𝐹0(𝑥). Then

we use either 𝐾 +
𝑛 or 𝐾 −

𝑛 as the test statistics and we reject for large values of
test statistics. But one cannot use Proposition 5.2 to find critical values. For
that reason one needs to derive the asymptotic distribution of

√
𝑛 𝐾 +

𝑛 (or
√
𝑛 𝐾 −

𝑛 )
under 𝐻0.

CONFIDENCE INTERVALS FOR 𝐹𝑋

Suppose that 𝑥 ∈ 𝑆𝑋 =
{
𝑥 : 𝐹𝑋 (𝑥) ∈ (0, 1)

}
be given and we are interested in the

confidence interval for 𝐹𝑋 (𝑥). Then we can use Theorem 3.3(iii) and use the same
construction as in the example on page 49 in Chapter 3.5.2. Then we get the confi-
dence interval

𝐼 𝑆𝑛 (𝑥) =
©«𝐹𝑛 (𝑥) −

𝑢1− 𝛼
2

√︃
𝐹𝑛 (𝑥) (1 − 𝐹𝑛 (𝑥))

√
𝑛

, 𝐹𝑛 (𝑥) +
𝑢1− 𝛼

2

√︃
𝐹𝑛 (𝑥) (1 − 𝐹𝑛 (𝑥))

√
𝑛

ª®®¬ .
For this confidence interval it holds that

P
[
𝐼 𝑆𝑛 (𝑥) ∋ 𝐹𝑋 (𝑥)

]
−−−−→
𝑛→∞

1 − 𝛼, ∀𝑥 ∈ 𝑆𝑋 .

This interval is also called pointwise confidence interval for 𝐹𝑋 (𝑥).
Sometimes we are not interested in a given point 𝑥 but rather in set that would

cover the entire cumulative distribution function. To do that one can make use of
Proposition 5.2. The thing is that

P
[√
𝑛
��𝐹𝑛 (𝑥) − 𝐹𝑋 (𝑥)�� < 𝑘1−𝛼 , ∀𝑥 ∈ ℝ

]
= P

[√
𝑛 sup

𝑥∈ℝ

��𝐹𝑛 (𝑥) − 𝐹𝑋 (𝑥)�� < 𝑘1−𝛼
]
−−−−→
𝑛→∞

1 − 𝛼

Thus for 𝑥 ∈ ℝ one can calculate the interval

𝐵𝑛 (𝑥) =
(
𝐹𝑛 (𝑥) −

𝑘1−𝛼√
𝑛
, 𝐹𝑛 (𝑥) +

𝑘1−𝛼√
𝑛

)
,

which has the following property

P
[
𝐵𝑛 (𝑥) ∋ 𝐹𝑋 (𝑥), ∀𝑥 ∈ 𝑆𝑋

]
−−−−→
𝑛→∞

1 − 𝛼.

Such intervals that creates a region that covers the entire unknown function with
a given probability are called confidence bounds. As the boundaries of the above
confidence bounds for the cumulative distribution function can be outside of the
interval ⟨0, 1⟩ it is natural to redefine the lower bound as max{0, 𝐹𝑛 (𝑥) − 𝑘1−𝛼/

√
𝑛}

and the upper bound asmin{1, 𝐹𝑛 (𝑥) + 𝑘1−𝛼/
√
𝑛}.∗

∗ In fact this is only one of the possible ways how to calculate confidence bounds for 𝐹𝑋 .
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5. One-sample and paired-problems for quantitative data

POSSIBLE VIOLATIONS OF THE ASSUMPTIONS OF THE TEST

𝐹0 is not continuous Also in this situation one can use statistic 𝐾𝑛 . But one has to
be careful that now the statement of Proposition 5.2 does not hold. Ignoring this fact
and using the quantile 𝑘1−𝛼 would result in an asymptotically conservative test im-
plying a lost of power. One should be also careful that in this situation one cannot
use Lemma 5.1 to calculate the test statistic.

𝐹0 is continuous but there ties in observed data. Strictly speaking the probability
of observing ties is zero when the data comes from the continuous distribution. In
applications ties can be present due to rounding. Thus formally in fact we observe
𝑋1, . . . , 𝑋𝑛 , where 𝑋𝑖 is a rounded value of 𝑋𝑖 . Thus the empirical cumulative distribu-
tion function of the observed values 𝑋1, . . . , 𝑋𝑛

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑︁
𝑖=1

𝟙{𝑋𝑖 ≤ 𝑥}

estimates in fact the cumulative distribution function 𝐹0 of rounded a random vari-
able 𝑋𝑖 . Nevertheless the test can be still used as an approximate test when 𝐹0 is not
different from 𝐹0. More precisely when

√
𝑛 sup

𝑥∈ℝ

��𝐹0(𝑥) − 𝐹0(𝑥)��,
is not too “large”. This is often satisfied in applications.

Hypothesis is not simple. Note that 𝐹0 should not contain unknown parameters (or
its estimates). Suppose that we are interested in testing the null hypothesis

𝐻0 : 𝐹𝑋 ∈ F0, 𝐻1 : 𝐹𝑋 ∉ F0,

where F0 =
{
𝐹 (𝑥 ;θ),θ ∈ Θ} is a a parametric family of distributions

(
e.g.

{
N(𝜇, 𝜎2), 𝜇 ∈

ℝ, 𝜎2 > 0
})
. Then it is natural to consider the test statistic

𝐾𝑛 = sup
𝑥∈ℝ

��𝐹𝑛 (
𝑥
)
− 𝐹

(
𝑥 ; θ̂𝑛

) ��,
where θ̂𝑛 is the estimate of the true value of the parameter θ𝑋 . The problem is that
Proposition 5.2 does not hold for the statistic 𝐾𝑛 . Further it has been derived that
the asymptotic distribution of 𝐾𝑛 is rather complex and depending on the unknown
value of the parameter θ𝑋 . Ignoring this fact and using the the quantile 𝑘1−𝛼 would
result in a test that is very conservative and thus suffers from a big loss of power.

All the above problems can be solved with the help of the bootstrap methods (the
courseMathematical Statistics 4).

Exercise. Consider the test with the critical region

𝐻0 is rejected ⇔
√
𝑛𝐾𝑛 ≤ 𝑘𝛼/2 or

√
𝑛𝐾𝑛 ≥ 𝑘1−𝛼/2.
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5. One-sample and paired-problems for quantitative data

1. Does this test keep the level 𝛼 (exactly or asymptotically)?
2. How would you calculate the p-value of this test?
3. Is this test consistent?
4. Why is this test better or worse than the test wit the critical region given by (5.2)?

5.2. ONE-SAMPLE 𝑡 -TEST

One-sample 𝑡 -test compares the expected value that is in agreement with our data
with the given constant. This test was described and investigated in detail in Example
B on p. 73 and also in Example C on p. 75. The only difference was only in the models
that was assumed.
Model: F 𝐵 =

{
N(𝜇, 𝜎2), 𝜇 ∈ ℝ, 𝜎2 > 0

}
or F𝐶 = L2

+
The parameter being tested: The expected value 𝜇𝑋 = E𝑋𝑖
The hypothesis and the alternative:

𝐻0 : 𝜇𝑋 = 𝜇0, 𝐻1 : 𝜇𝑋 ≠ 𝜇0,

where 𝜇0 is a given constant.
Test statistic:

𝑇𝑛 =

√
𝑛

(
𝑋 𝑛 − 𝜇0

)
𝑆𝑛

,

where 𝑋 𝑛 is a sample mean and 𝑆2𝑛 is a sample variance
Distribution of the test statistic under 𝐻0:

In model F 𝐵 : 𝑇𝑛 ∼ 𝑡𝑛−1 (see Theorem 2.10)
In model F𝐶 : 𝑇𝑛

as.∼ N(0, 1) (see Theorem 2.9).

Thus the test is exact, when in the “smaller” model F 𝐵 . For the “bigger” model F𝐶

this test asymptotic. Analogously this hold true also for the p-value and the confi-
dence interval. In model F 𝐵 the p-value and the confidence interval are exact. In
model F𝐶 only asymptotic.
Critical region:

𝐻0 is rejected ⇔ |𝑇𝑛 | ≥ 𝑡𝑛−1(1 − 𝛼/2),
where 𝑡𝑛−1(1−𝛼/2) is the (1−𝛼/2) quantile of Student 𝑡 -distribution with 𝑛−1 degrees
of freedom.
P-value: 𝑝 = 2

(
1 − 𝐹𝑛 ( |𝑡 |)

)
, where 𝑡 is the observed value of the test statistic 𝑇𝑛 and 𝐹𝑛

is the cumulative distribution function distribution of 𝑡𝑛−1.
Confidence interval for 𝜇𝑋 : Confidence interval for the expected value is given by(

𝑋 𝑛 − 𝑡𝑛−1
(
1 − 𝛼

2
) 𝑆𝑛√

𝑛
, 𝑋 𝑛 + 𝑡𝑛−1

(
1 − 𝛼

2
) 𝑆𝑛√

𝑛

)
.

See the formula on p. 47 and the following example.
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5. One-sample and paired-problems for quantitative data

Remark. T-test does not necessarily requires the normal distribution. It works as an
asymptotic (approximate) test of the expected value for an arbitrary distribution with
the finite variance.

Remark. The 𝑡 -test can be also performed as an one-sample test

Rejecting 𝐻 ′
0 : 𝜇𝑋 ≤ 𝜇0 against 𝐻 ′

1 : 𝜇𝑋 > 𝜇0 ⇔ 𝑇𝑛 ≥ 𝑡𝑛−1(1 − 𝛼).

Analogously 𝐻 ′′
0 : 𝜇𝑋 ≥ 𝜇0 against 𝐻 ′′

1 : 𝜇𝑋 < 𝜇0 is rejected, when the test statistic 𝑇𝑛
is smaller than the critical value −𝑡𝑛−1(1 − 𝛼).

5.3. ONE-SAMPLE SIGN TEST

One-sample sign test compares the median that is in agreement with our data with
the given value. It is a non-parametric test and it works for any continuous distribu-
tion.

Model: F = {all continuous distributions}
The parameter being tested: the median 𝑚𝑋 = 𝐹 −1

𝑋
(0.5)

The hypothesis and the alternative:

𝐻0 : 𝑚𝑋 = 𝑚0, 𝐻1 : 𝑚𝑋 ≠ 𝑚0,

where 𝑚0 is a given constant.
Test statistic:

𝐵𝑛 =

𝑛∑︁
𝑖=1

𝟙
{
𝑋𝑖 > 𝑚0

}
(number of observations bigger than 𝑚0).

Theorem 5.3 Let 𝑋1, . . . , 𝑋𝑛 be a random sample from an arbitrary continuous dis-
tribution with the median 𝑚𝑋 . Then
(i)

𝑛∑︁
𝑖=1

𝟙
{
𝑋𝑖 > 𝑚𝑋

}
∼ Bi

(
𝑛, 12

)
,

(ii)
1
√
𝑛

𝑛∑︁
𝑖=1

[
𝟙
{
𝑋𝑖 > 𝑚𝑋

}
− 1
2

]
d−−−−→

𝑛→∞
N

(
0, 14

)
.

Remark. Theorem 5.3 follows from Theorem 2.3(iii) and (iv).

The exact distribution of the test statistic under 𝐻0:

𝐵𝑛 ∼ Bi
(
𝑛, 12

)
, (viz Theorem 5.3(i))
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5. One-sample and paired-problems for quantitative data

Critical region (exact test): The hypothesis is rejected for too small or too large values
of 𝐵𝑛 .

𝐻0 is rejected ⇔ 𝐵𝑛 ≤ 𝑐𝐿 (𝛼) or 𝐵𝑛 ≥ 𝑐𝑈 (𝛼)
kde

𝑐𝐿 (𝛼) = max
{
𝑘1 ∈ ℕ0 : P

(
Bi

(
𝑛, 12

)
≤ 𝑘1

)
≤ 𝛼

2

}
= max

{
𝑘1 ∈ ℕ0 :

1
2𝑛

𝑘1∑︁
𝑗=0

(
𝑛

𝑗

)
≤ 𝛼

2

}
𝑐𝑈 (𝛼) = min

{
𝑘2 ∈ ℕ0 : P

(
Bi

(
𝑛, 12

)
≥ 𝑘2

)
≤ 𝛼

2

}
= min

{
𝑘2 ∈ ℕ0 :

1
2𝑛

𝑛∑︁
𝑗=𝑘2

(
𝑛

𝑗

)
≤ 𝛼

2

}
From the symmetry of the binomial distribution for 𝑝 = 1

2 it follows that 𝑐𝐿 (𝛼) +
𝑐𝑈 (𝛼) = 𝑛. This test has the level at most 𝛼 (the 𝛼 might not be attainable).
P-value (exact):

𝑝 = 2min
{
P
(
Bi

(
𝑛, 12 ) ≤ 𝑦𝑛

)
,P

(
Bi

(
𝑛, 12 ) ≥ 𝑦𝑛

)}
= 2min

{
1 −𝐺0(𝑦𝑛 − 1),𝐺0(𝑦𝑛)

}
,

where 𝐺0 is cumulative distribution function Bi(𝑛, 12 ) and 𝑦𝑛 is the observed value of
𝐵𝑛 .

Asymptotic distributions of the test statistic under 𝐻0:

𝑍𝑛 =
𝐵𝑛 − 𝑛

2√︁
𝑛
4

=
2
√
𝑛

(
𝐵𝑛 − 𝑛

2

)
as.∼ N(0, 1), (see Theorem 5.3(ii))

Critical region (asymptotic test): The hypothesis is rejected for too small or too large
values of 𝐵𝑛 .

𝐻0 is rejected ⇔ |𝑍𝑛 | ≥ 𝑢1−𝛼/2.

P-value (asymptotic): 𝑝 = 2
(
1−Φ( |𝑧𝑛 |)

)
, where 𝑧𝑛 is observed value of the test statistic

𝑍𝑛 .
Confidence interval pro 𝑚𝑋 : See confidence intervals for quantiles (Chapter 3.6.4).

Remark.
• Note that we do not need the exact values 𝑋𝑖 to calculate the test statistic. All
we need is to know how many of them are bigger than 𝑚0.

• This test can be performed also as one-sided test 𝐻 ′
0 : 𝑚𝑋 ≥ 𝑚0 (or ≤ 𝑚0).

• This test can be easily modified as a test about an arbitrary quantile. I.e. one
can test the hypothesis

𝐻0 : 𝑢𝑋 (𝛽) = 𝑢0, 𝐻1 : 𝑢𝑋 (𝛽) ≠ 𝑢0,
where 𝛽 ∈ (0, 1). Then the test statistic 𝐵𝑛 =

∑𝑛
𝑖=1 𝟙

{
𝑋𝑖 > 𝑢0

}
under the null

hypothesis follows the binomial distribution Bi(𝑛, 1 − 𝛽). The test about the
quantile is then performed as a test about the parameter of the binomial distri-
bution. This will be in detail treated later in Chapter 7.1.

Exercise. Show that the sign test is consistent.
Hint: It might be easier to work with the asymptotic version of the sign test.
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VIOLATIONS OF THE ASSUMPTIONS

Although in the literature it is usually required that the distribution 𝐹𝑋 is continuous
in fact it is sufficient to assume that P

[
𝑋𝑖 = 𝑚0

]
= 0. Nevertheless in applications it

might happen that due to rounding some of the observations are exactly equal to𝑚0.
The usual practice is then to remove such observations.

5.4. ONE-SAMPLE WILCOXON TEST (WILCOXON SIGNED-RANK
TEST)

This test assumes a symmetric distribution and it compares the center of the sym-
metry with a given constant.
Model: F =

{
continuous distribution with the density 𝑓 that satisfies ∃𝛿 ∈ ℝ : 𝑓 (𝛿 −

𝑥) = 𝑓 (𝛿 + 𝑥) ∀𝑥 ∈ ℝ
}

The parameter being tested: the center of the symmetry 𝛿𝑋

Remark. Themodel requires the density of 𝑋𝑖 being symmetric around the point 𝛿𝑋 .
Then it holds that 𝑚𝑋 = 𝛿𝑋 and if moreover 𝑋𝑖 ∈ L1, then also E𝑋𝑖 ≡ 𝜇𝑋 = 𝛿𝑋 .

The hypothesis and the alternative:

𝐻0 : 𝛿𝑋 = 𝛿0, 𝐻1 : 𝛿𝑋 ≠ 𝛿0,

where 𝛿0 is a given constant.

Remark. Provided that model F holds then the hypothesis 𝐻0 is equivalent to the
hypothesis 𝐻 ∗

0 : 𝑚𝑋 = 𝛿0 (i.e. we are resting the median). Further if 𝑋𝑖 ∈ L1, then the
hypothesis 𝐻0 is also equivalent to the hypothesis 𝐻 ∗∗

0 : 𝜇𝑋 = 𝛿0 (i.e. we are testing
the expected value).

Test statistic: Let 𝑍𝑖
df
= 𝑋𝑖 − 𝛿0. Define

𝑊𝑛 =
∑︁
𝑖 ∈I

𝑅𝑖 ,

where I =
{
𝑖 ∈ {1, . . . , 𝑛} : 𝑍𝑖 > 0

}
is a set of indices such that 𝑍𝑖 is positive and 𝑅𝑖 is

the rank of the absolute values |𝑍𝑖 | among all absolute values |𝑍1 | , . . . , |𝑍𝑛 |.

Remark. The test statistic𝑊𝑛 takes values in the set
{
0, 1, . . . , 𝑛 (𝑛+1)2

}
. It is calculated

as follows.
1. Calculate 𝑍𝑖 = 𝑋𝑖 − 𝛿0 and find the set I.
2. Calculate |𝑍1 |, . . . , |𝑍𝑛 |.
3. Order |𝑍𝑖 | from the smallest ones to the largest and get the ordered random

sample
0 < |𝑍 | (1) < |𝑍 | (2) < · · · < |𝑍 | (𝑛 ) .
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5. One-sample and paired-problems for quantitative data

4. Find the rank𝑅𝑖 of the random variable |𝑍𝑖 | among all random variables |𝑍 | (1) , . . . , |𝑍 | (𝑛 ) .
It holds that |𝑍𝑖 | = |𝑍 | (𝑅𝑖 ) .

5. Calculate the sum of the ranks 𝑅𝑖 for 𝑖 ∈ I.
The cardinality of the set I is equal to the number of variables for which 𝑋𝑖 > 𝛿0.
(compare this with the test statistic of the sign test).

Proposition 5.4 Let 𝑋1, . . . , 𝑋𝑛 be a random sample from an arbitrary continuous
distribution that belongs to F . Further let the null hypothesis 𝐻0 : 𝛿𝑋 = 𝛿0 holds.
Then

(i)
E𝐻0𝑊𝑛 =

𝑛 (𝑛 + 1)
4

, var𝐻0 (𝑊𝑛) =
𝑛 (𝑛 + 1) (2𝑛 + 1)

24
.

(ii)
𝑊𝑛 − E𝐻0𝑊𝑛√︁

var𝐻0 (𝑊𝑛)
d−−−−→

𝑛→∞
N(0, 1).

Proof. Without loss of generality consider 𝛿0 = 0 and introduce the random variables
Δ𝑖 = sign(𝑍𝑖 ). Note that

𝑊𝑛 =

𝑛∑︁
𝑖=1

𝑅𝑖 𝟙
{
Δ𝑖 = 1

}
.

The random variables Δ1, . . . ,Δ𝑛 are under𝐻0 independent and identically distributed
and

P
(
Δ𝑖 = 1

)
= P

(
Δ𝑖 = −1

)
= 1

2 .

From this we easily calculate that

EΔ𝑖 = 0, EΔ2𝑖 = 1.

The proof will be divided into 3 steps.

1. Showing that (𝑅1, . . . , 𝑅𝑛)T and (Δ1, . . . ,Δ𝑛)T are independent.
First note that the random vector (𝑅1, . . . , 𝑅𝑛)T is a function of the random vector

( |𝑍1 |, . . . , |𝑍𝑛 |)T. Thus it is sufficient to show that the random vectors ( |𝑍1 |, . . . , |𝑍𝑛 |)T
and (Δ1, . . . ,Δ𝑛)T are independent.
In order to do that note that the random vectors

( |𝑍1 |
Δ1

)
, . . . ,

( |𝑍𝑛 |
Δ𝑛

)
are independent.

Thus it is sufficient to show the independence of |𝑍𝑖 | and Δ𝑖 .
For ∀𝑧 > 0 it holds that

P
[
|𝑍𝑖 | ≤ 𝑧,Δ𝑖 = 1

]
= P

[
0 ≤ 𝑍𝑖 ≤ 𝑧

]
= 1

2 P
[
− 𝑧 ≤ 𝑍𝑖 ≤ 𝑧

]
= 1

2 P
[
0 ≤ |𝑍𝑖 | ≤ 𝑧

]
= P

[
Δ𝑖 = 1

]
P
[
|𝑍𝑖 | ≤ 𝑧

]
,

where in the second equation we use the fact that the distribution of 𝑍𝑖 is (under the
null hypothesis) symmetric around zero. Thus |𝑍𝑖 | and Δ𝑖 are indeed independent.

2. Writing𝑊𝑛 as a function of 𝑅𝑖 and Δ𝑖 .
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5. One-sample and paired-problems for quantitative data

Note that
𝑛∑︁
𝑖=1

𝑅𝑖 𝟙
{
Δ𝑖 = 1

}
+

𝑛∑︁
𝑖=1

𝑅𝑖 𝟙
{
Δ𝑖 = −1

}
=

𝑛∑︁
𝑖=1

𝑅𝑖 =
𝑛 (𝑛 + 1)

2
,

𝑛∑︁
𝑖=1

𝑅𝑖 𝟙
{
Δ𝑖 = 1

}
−

𝑛∑︁
𝑖=1

𝑅𝑖𝟙
{
Δ𝑖 = −1

}
=

𝑛∑︁
𝑖=1

𝑅𝑖 Δ𝑖 .

“Averaging” the above two equations and with the help that𝑊𝑛 =
∑𝑛
𝑖=1 𝑅𝑖 𝟙

{
Δ𝑖 = 1

}
we

get

𝑊𝑛 =
𝑛 (𝑛 + 1)

4
+ 1
2

𝑛∑︁
𝑖=1

𝑅𝑖 Δ𝑖 . (5.3)

3. Calculating E𝐻0𝑊𝑛 and var𝐻0 (𝑊𝑛).
Using (5.3) together with the independence of 𝑅𝑖 and Δ𝑖 and that EΔ𝑖 = 0 it holds

E𝐻0𝑊𝑛 =
𝑛 (𝑛 + 1)

4
+ 1
2

𝑛∑︁
𝑖=1

E𝑅𝑖 EΔ𝑖 =
𝑛 (𝑛 + 1)

4
.

Further

var𝐻0 (𝑊𝑛) =
1
4

var
( 𝑛∑︁
𝑖=1

𝑅𝑖 Δ𝑖

)
=
1
4

𝑛∑︁
𝑖=1

var
(
𝑅𝑖 Δ𝑖

)
+ 1
4

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1,𝑗≠𝑖

cov
(
𝑅𝑖 Δ𝑖 , 𝑅 𝑗 Δ𝑗

)
.

Next

var
(
𝑅𝑖 Δ𝑖

)
= E

(
𝑅𝑖 Δ𝑖

)2
= E𝑅2𝑖 EΔ2𝑖 =

1
𝑛

𝑛∑︁
𝑖=1

𝑖2 =
𝑛 (𝑛 + 1) (2𝑛 + 1)

6𝑛
=

(𝑛 + 1) (2𝑛 + 1)
6

,

where we utilize that E𝑅𝑖Δ𝑖 = 0, EΔ2
𝑖
= 1 and Theorem 2.16(i) which implies P[𝑅𝑖 =

𝑘 ] = 1
𝑛
for all 𝑖 , 𝑘 ∈ {1, . . . , 𝑛}.

Further for 𝑖 ≠ 𝑗 calculate

cov
(
𝑅𝑖 Δ𝑖 , 𝑅 𝑗 Δ𝑗

)
= E

(
𝑅𝑖 Δ𝑖 𝑅 𝑗 Δ𝑗

)
= E

(
𝑅𝑖 𝑅 𝑗

)
EΔ𝑖 EΔ𝑗 = 0,

where we use the independence of 𝑅𝑖 and Δ𝑖 .
Finally we get

var𝐻0 (𝑊𝑛) =
1
4

𝑛∑︁
𝑖=1

(𝑛 + 1) (2𝑛 + 1)
6

=
𝑛 (𝑛 + 1) (2𝑛 + 1)

24
.

□

Remark.
• The proof of asymptotic normality is left out. The proof is difficult because of
the fact that the ranks 𝑅1, . . . , 𝑅𝑛 are not independent random variables vari-
ables.
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5. One-sample and paired-problems for quantitative data

• The hypothesis is rejected for too small or too large values of𝑊𝑛 .
• If the sample size 𝑛 is not too large then under the null hypothesis one can
derive the exact distribution of𝑊𝑛 (numerically or with the help of already cal-
culated tables). The critical values are tabulated.

Asymptotic distribution of the test statistic under 𝐻0:

𝑈𝑛 =
𝑊𝑛 − E𝐻0𝑊𝑛√︁

var𝐻0 (𝑊𝑛)
=

𝑊𝑛 − 𝑛 (𝑛+1)
4√︃

𝑛 (𝑛+1) (2𝑛+1)
24

as.∼ N(0, 1)

Critical region (asymptotic test):

𝐻0 is rejected ⇔ |𝑈𝑛 | ≥ 𝑢1−𝛼/2.

P-value (asymptotic): 𝑝 = 2
(
1−Φ( |𝑢𝑛 |)

)
, where 𝑢𝑛 is observed value of the test statistic

𝑈𝑛 .

Remark. One-sample Wilcoxon test takes into consideration also the magnitude of
the differences of our observations from 𝛿0 (not only the sign as the sign test does). It
has usually a large power for testing the median then the sign test. On the other hand
the disadvantage of the one-sample Wilcoxon test is that it requires the symmetric
distribution of our observations.

VIOLATIONS OF THE ASSUMPTIONS

Ties due to rounding. It is rather common that due to rounding there ties in the
dataset. In this situation similarly as for the sign test we first give away the obser-
vations whose values are exactly equal to 𝛿0. The test statistic𝑊𝑛 is then calculated
from the remaining observations. Further because of rounding we work with average
ranks. Then one can show that under the null hypothesis

𝑊𝑛 − 𝑛 (𝑛+1)
4√︃

𝑛 (𝑛+1) (2𝑛+1)
24 − 𝑐𝑜𝑟 .

d−−−−→
𝑛→∞

N(0, 1),

where 𝑛 is the (possibly reduced) sample size and 𝑐𝑜𝑟 . is a correction of the variance
given by∗

𝑐𝑜𝑟 . =
1
48

∑︁
𝑧

(
𝑡 3𝑧 − 𝑡𝑧

)
,

where 𝑡𝑧 is the number how many times one observes the value 𝑧 among the values
|𝑍1 | . . . , |𝑍𝑛 |. The sum

∑
𝑧 then indicates one sums over all possible unique values of{

|𝑍1 | . . . , |𝑍𝑛 |
}
.

∗ See e.g. Hollander et al. (2013), p. 42.

97



5. One-sample and paired-problems for quantitative data

It is worth noting that without this variance correction 𝑐𝑜𝑟 . the test would be (asymp-
totically) conservative.

Asymmetry. When the density 𝑓 is not symmetric, then the parameter being tested
is not the median of 𝑋𝑖 but the so called pseudo-the median that is the median of
the random variable 𝑋1+𝑋2

2 . The problem of the pseudo-median is that it is difficult to
interpret. Generally one can also say that its value lies between the median 𝑚𝑋 and
the expected value E𝑋𝑖 (provided that this expectation exists).
The next unpleasant consequence of the asymmetry of our observations is that

even if view the one-sample Wilcoxon test as the test of the pseudo-median than its
actual/true level (exact as well as asymptotic) is different from the prescribed level 𝛼.
Nevertheless the simulation experiments show that the difference of the true level
from the prescribed level is not large even for rather asymmetric distributions. Thus
when the data are not obviously asymmetric then themain problem of the one-sample
Wilcoxon test is the interpretation of the pseudo-median.

5.5. ONE-SAMPLE 𝜒2-TEST ABOUT VARIANCE

It is test about variance that requires normality of observed data. Under this normal-
ity assumption is exact without this assumption is not even asymptotic.
Model: F =

{
N(𝜇, 𝜎2), 𝜇 ∈ ℝ, 𝜎2 > 0

}
The parameter being tested: variance 𝜎2

𝑋
= var𝑋𝑖 .

The hypothesis and the alternative:

𝐻0 : 𝜎2𝑋 = 𝜎20 , 𝐻1 : 𝜎2𝑋 ≠ 𝜎20 ,

where 𝜎20 is a given constant.
Test statistic:

(𝑛 − 1)𝑆2𝑛
𝜎20

,

where 𝑆2𝑛 is a sample variance (see Definition 2.4).
The exact distribution of the test statistic under 𝐻0:

(𝑛 − 1)𝑆2𝑛
𝜎20

∼ 𝜒2𝑛−1 (see Theorem 2.8(i)).

Critical region: The null hypothesis is rejected when the sample variance is too differ-
ent from the variance assumed under the null distribution. I.e. when the test statistic
is either too small or too large

𝐻0 is rejected ⇔ (𝑛 − 1)𝑆2𝑛
𝜎20

≤ 𝜒2𝑛−1(𝛼/2) or
(𝑛 − 1)𝑆2𝑛

𝜎20
≥ 𝜒2𝑛−1(1 − 𝛼/2),
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where 𝜒2
𝑛−1(𝛼/2) and 𝜒

2
𝑛−1(1 − 𝛼/2) are the 𝛼/2 a 1 − 𝛼/2 quantiles of 𝜒

2 distribution
with 𝑛 − 1 degrees of freedom.
P-value: 𝑝 = 2min{1 − 𝐺𝑛−1(𝑠 ),𝐺𝑛−1(𝑠 )}, where 𝑠 is the observed value of the test
statistic and 𝐺𝑛−1 is the cumulative distribution function of the distribution 𝜒2

𝑛−1.
Confidence interval for 𝜎2

𝑋
:(
(𝑛 − 1)𝑆2𝑛

𝜒2
𝑛−1(1 − 𝛼/2)

,
(𝑛 − 1)𝑆2𝑛
𝜒2
𝑛−1(𝛼/2)

)
(see (3.4)).

Exercise. Show that the one-sample 𝜒2-test about variance is consistent.
Hint: Consider the one-sided hypothesis and alternative and note that 𝜒2

𝑛−1 (𝛽 )
𝑛

−−−−→
𝑛→∞

1
for all 𝛽 ∈ (0, 1).

Remark.
• When the assumption of normality is violated then this test does not keep the
level even asymptotically. When one is afraid that the normality assumption is
violated then it is more appropriate to make use of the asymptotic distribution
𝑆2𝑛 , see Theorem 2.6(iii).

• This test can be also considered as one-sided test

rejecting 𝐻 ′
0 : 𝜎

2
𝑋 ≤ 𝜎20 against 𝐻

′
1 : 𝜎

2
𝑋 > 𝜎20 ⇔ (𝑛 − 1)𝑆2𝑛

𝜎20
≥ 𝜒2𝑛−1(1 − 𝛼)

Analogously the hypothesis 𝐻 ′′
0 : 𝜎2

𝑋
≥ 𝜎20 against the alternative 𝐻

′′
1 : 𝜎2

𝑋
< 𝜎20 ,

is rejected when the test statistic is smaller (or equal to) 𝜒2
𝑛−1(𝛼).

5.6. PAIRED TESTS

Consider a random sample (
𝑋1
𝑌1

)
, . . . ,

(
𝑋𝑛

𝑌𝑛

)
of bivariate random vectors with the joint cumulative distribution function 𝐹𝑋 ,𝑌 . Usu-
ally we are interested in comparing the marginal distribution 𝐹𝑋 (of the random vari-
able 𝑋𝑖 ) with the marginal distribution 𝐹𝑌 (of the random variable 𝑌𝑖 ). The problem
is that the random variables 𝑋𝑖 and 𝑌𝑖 are not independent.
The main idea of the paired test is rather simple. Consider the differences 𝑍𝑖 = 𝑋𝑖 −

𝑌𝑖 and note that these differences from a random sample. Now one can proceed by
using an appropriate one-sample test. Nevertheless the crucial point is to think what
hypothesis is tested in the end. I.e. whether this hypothesis has some meaningful
interpretation for comparing the distributions 𝐹𝑋 and 𝐹𝑌 . This is sometimes true but
sometimes (for instance think about the interpretation of the paired Kolmogorov-
Smirnov test).
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Consider for instance the one-sample test of the expected value 𝑍𝑖 testuje. To be
more specific consider 𝐻0 : E𝑍𝑖 = 0. This hypothesis hold if and only if E𝑋𝑖 = E𝑌𝑖 .
Thus the paired test is really a test of equality of expectations of 𝑋𝑖 and 𝑌𝑖 .
The above might not be true for other characteristics. For instance when we are

testing the themedian 𝑍𝑖 it does notmean (in general) that we are testing the equality
of the medians of 𝑋𝑖 and 𝑌𝑖 . Similarly testing the variances 𝑍𝑖 with the one-sample
test then does not provide evidence of possible differences of distributions 𝑋𝑖 and 𝑌𝑖 .
The paired are typically used on the ordered pairs of themeasurements of the same

quantity, for instance the left eye and the right eye, the husband and the wife, before
treatment and after treatment, today and one year ago, . . .

THE HYPOTHESIS OF THE NULL EFFECT

In applications the random vector (𝑋𝑖 ,𝑌𝑖 )T often means a measurement (called often
response) before and after treatment. The null hypothesis says that the treatment has
zero effect on the response, i.e.

𝐻0 : 𝐹𝑋 (𝑥) = 𝐹𝑌 (𝑥),∀𝑥 ∈ ℝ 𝐻1 : ∃𝑥 ∈ ℝ 𝐹𝑋 (𝑥) ≠ 𝐹𝑌 (𝑥), (5.4)

where 𝐹𝑋 and 𝐹𝑌 are (marginal) cumulative distribution functions of random vari-
ables 𝑋𝑖 and 𝑌𝑖 .
It is important to note that each of the tests described below is designed to detect

one specific violation of the null hypothesis (5.4).

5.7. PAIRED 𝑡 -TEST

The paired 𝑡 -test is performed as one-sample 𝑡 -test applied to the differences 𝑍𝑖 .
Model: F𝑛 =

{
𝑍𝑖 = 𝑋𝑖 −𝑌𝑖 ∼ N(𝜇, 𝜎2), 𝜇 ∈ ℝ, 𝜎2 > 0

}
or F𝑎𝑠 =

{
𝑍𝑖 = 𝑋𝑖 −𝑌𝑖 ∈ L2

+
}

Tested parameters: Expected values 𝜇𝑋 = E𝑋𝑖 and 𝜇𝑌 = E𝑌𝑖 .
The hypothesis and the alternative:

𝐻0 : 𝜇𝑋 − 𝜇𝑌 = 𝛿0, 𝐻1 : 𝜇𝑋 − 𝜇𝑌 ≠ 𝛿0,

where 𝛿0 is a given constant (usually 𝛿0 = 0).
Test statistic:

𝑇𝑛 =

√
𝑛

(
𝑍 𝑛 − 𝛿0

)
𝑆𝑍

,

where 𝑍 𝑛 is the mean of 𝑍𝑖 (which is equal to 𝑋 𝑛 −𝑌 𝑛) and 𝑆𝑍 is the sample standard
deviation of 𝑍𝑖 .

Remark. Note that

𝑆2𝑍 =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(
𝑍𝑖 − 𝑍 𝑛

)2
=

1
𝑛 − 1

𝑛∑︁
𝑖=1

(
𝑋𝑖 −𝑌𝑖 − 𝑋 𝑛 +𝑌 𝑛

)2
= 𝑆2𝑋 − 2𝑆𝑋 ,𝑌 + 𝑆2𝑌 ,
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5. One-sample and paired-problems for quantitative data

where 𝑆2
𝑋
and 𝑆2

𝑌
are the corresponding sample variances and 𝑆𝑋 ,𝑌 is the sample co-

variance. Thus we can rewrite the test statistic as

𝑇𝑛 =
𝑋 𝑛 −𝑌 𝑛 − 𝛿0√︃

𝑆2
𝑋
/𝑛 + 𝑆2

𝑌
/𝑛 − 2𝑆𝑋 ,𝑌 /𝑛

,

which resembles the test statistic of the two-sample 𝑡 -test in case of equal sample
sizes (see Chapter 6.2). In our situation one has in the denominator the extra term
−2𝑆𝑋 ,𝑌 /𝑛. As usually 𝑆𝑋 ,𝑌 > 0 (as 𝑋𝑖 and𝑌𝑖 are typically positively correlated) by using
the two-sample 𝑡 -test on the paired problem would result in a loss of power.

Distribution of the test statistic under 𝐻0:

In model F𝑛 : 𝑇𝑛 ∼ 𝑡𝑛−1, In model F𝑎𝑠 : 𝑇𝑛 as.∼ N(0, 1).

Similarly as for the one-sample 𝑡 -test (Chapter 5.3) is this test exact in the “smaller”
model F𝑛 . In the “larger” model F𝑎𝑠 is this test asymptotic. Similarly this hold true
also for the p-value and confidence interval which are inmodel F𝑛 exact and inmodel
F𝑎𝑠 asymptotic.

Critical region:
𝐻0 is rejected ⇔ |𝑇𝑛 | ≥ 𝑡𝑛−1(1 − 𝛼/2),

where 𝑡𝑛−1(1−𝛼/2) is (1−𝛼/2) quantile of 𝑡 -distribution with 𝑛−1 degrees of freedom.
P-value: 𝑝 = 2

(
1 − 𝐺𝑛−1( |𝑡 |)

)
, where 𝑡 is the observed value of the test statistic and

𝐺𝑛−1 is the cumulative distribution function of distribution 𝑡𝑛−1.
Confidence interval pro 𝜇𝑋 − 𝜇𝑌 : Homework exercise.

Remark. For 𝛿0 = 0 one can view 𝑡 -test also as a test of the hypothesis of the null
effect (5.4). From this point of view the test will be sensitive to detect differences
in the expected values (i.e. the test is consistent for the alternatives for which the
expected values are different). On the other hand the test is not consistent when 𝐻0
v (5.4) is not true but at the same time E𝑍𝑖 = 0. I.e. the treatment has no effect on
the expected value E𝑌𝑖 , but it has an effect for instance on the variance var𝑌𝑖 .

5.8. PAIRED SIGN TEST

Paired sign test is performed as a one-sample sign test on the differences 𝑍𝑖 . Suppose
that the distribution of 𝑍𝑖 is continuous.
Model: F = {𝑍𝑖 has an arbitrary continuous distribution}
The parameter being tested: the median 𝑚𝑍 of the difference 𝑍𝑖 = 𝑋𝑖 −𝑌𝑖 .
The hypothesis and the alternative:

𝐻0 : 𝑚𝑍 = 0, 𝐻1 : 𝑚𝑍 ≠ 0.
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5. One-sample and paired-problems for quantitative data

Remark.
1. In general the median 𝑍𝑖 cannot be expressed as the difference of the medians
𝑋𝑖 and 𝑌𝑖 . Thus the test is not a test of the difference of the medians of 𝑋𝑖 and
𝑌𝑖 .

2. 𝐻0 holds if and only if P[𝑋𝑖 ≤ 𝑌𝑖 ] = P[𝑋𝑖 ≥ 𝑌𝑖 ] = 1/2, i.e. 𝑋𝑖 is with the probability
one half smaller than 𝑌𝑖 but also at the same time with the same probability it
is smaller than 𝑌𝑖 . Thus from the point of view of testing the null hypothesis of
the null effect (5.4) the test is consistent when the treatment effect affects the
distribution of 𝑌𝑖 in such a way that P[𝑋𝑖 ≥ 𝑌𝑖 ] ≠ P[𝑋𝑖 ≤ 𝑌𝑖 ].

3. Generalizing the null hypothesis and the alternative to

𝐻0 : 𝑚𝑍 = 𝑚0, 𝐻1 : 𝑚𝑍 ≠ 𝑚0,

we are in fact testing that P[𝑋𝑖 ≤ 𝑌𝑖 +𝑚0] = P[𝑋𝑖 ≥ 𝑌𝑖 +𝑚0] = 1/2.
4. Further if 𝑍𝑖 has a finite expected value and the density symmetric around 0,

then it holds that E𝑍𝑖 = E𝑋𝑖 − E𝑌𝑖 = 0. Under this additional assumptions 𝐻0 is
equivalent to the hypothesis of the equality of the expectations 𝑋𝑖 and 𝑌𝑖 .

Test statistic:

𝐵𝑛 =

𝑛∑︁
𝑖=1

𝟙
{
𝑍𝑖 > 0

}
, (i.e. the number of pairs for which 𝑋𝑖 > 𝑌𝑖 ).

The exact distribution of the test statistic under 𝐻0:

𝐵𝑛 ∼ Bi
(
𝑛, 12

)
Critical region (exact test): See the one-sample sign test.
Asymptotic distributions of the test statistic under 𝐻0:

𝐵𝑛 − 𝑛
2√︁

𝑛
4

as.∼ N(0, 1)

Critical region (asymptotic test):

𝐻0 is rejected ⇔
�����𝐵𝑛 − 𝑛

2√︁
𝑛
4

����� ≥ 𝑢1−𝛼/2.

Remark. The advantage of the paired sign test is that it does not require to enumer-
ate the difference between 𝑋𝑖 and 𝑌𝑖 . It is sufficient to know whether 𝑋𝑖 is “better”
than 𝑌𝑖 or if 𝑋𝑖 is “worse” than 𝑌𝑖 . This test is useful for applications in which it might
be problematic to enumerate the values 𝑋𝑖 and 𝑌𝑖 .
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5.9. THE PAIRED WILCOXON (SIGNED-RANK TEST) TEST

The paired Wilcoxon test compares the center of the symmetry 𝛿𝑍 of the distribution
of 𝑍𝑖 with a given constant.
Model: F = {𝑍𝑖 has a continuous distribution with the density 𝑓 satisfying ∃𝛿 ∈ ℝ :
𝑓 (𝛿 − 𝑥) = 𝑓 (𝛿 + 𝑥) ∀𝑥 ∈ ℝ}

Remark. Note that the it is sufficient that the density of 𝑍𝑖 is symmetric. We do not
require the symmetry of the original observations 𝑋𝑖 a 𝑌𝑖 . Provided that the corre-
sponding expected values exists then the assumption of the symmetry of 𝑍𝑖 implies
that 𝛿𝑍 = E𝑍𝑖 = E𝑋𝑖 − E𝑌𝑖 .

Tested parameter: the center of the symmetry 𝛿𝑍
The hypothesis and the alternative:

𝐻0 : 𝛿𝑍 = 𝛿0, 𝐻1 : 𝛿𝑍 ≠ 𝛿0,

where 𝛿0 is a given constant (usually 𝛿0 = 0).
Test statistic:

𝑊𝑛 =
∑︁
𝑖 ∈I

𝑅𝑖 ,

where I ⊂ {1, . . . , 𝑛} is a set of indices such that 𝑍 ∗
𝑖

df
= 𝑋𝑖 −𝑌𝑖 − 𝛿0 is positive for 𝑖 ∈ I

and 𝑅𝑖 is the rank of the random variable
��𝑍 ∗
𝑖

�� among the all variables
��𝑍 ∗
1
��, . . . , ��𝑍 ∗

𝑛

��.
Properties of the test statistic and critical region: see the one-sample (signed-rank)Wilcoxon
test.

Remark.
1. The paired Wilcoxon test can be interpreted as the test of expected values. Nev-
ertheless the paired 𝑡 -test is usually more appropriate for testing the equality of
expected values as it does not require the symmetry of the difference 𝑍𝑖 .

2. For 𝛿0 = 0 we can consider this test as test of the hypothesis of the null ef-
fect (5.4). In this situation it is common to assume that under the null hy-
pothesis the joint distribution of the random vector (𝑋𝑖 ,𝑌𝑖 )T is the same as the
joint distribution of (𝑌𝑖 , 𝑋𝑖 )T. Under this additional assumption one can con-
clude that under the null hypothesis the distribution of the random variable
𝑍𝑖 = 𝑋𝑖 −𝑌𝑖 is symmetric around zero. Thus the test will be hold the prescribed
level. But it is important to realize that the test will be consistent against the
alternatives for which the pseudo-the median 𝑍𝑖 (i.e. the median of 𝑍1+𝑍2

2 ) dif-
ferent from zero. Thus the test is consistent against the alternatives for which

P[𝑍1 + 𝑍2 ≤ 0] ≠ P[𝑍1 + 𝑍2 ≥ 0].
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Sample examples for the preparation for the exam.
The solution of “the practical exercises” should contain the mathematical model, the

null and the alternative hypothesis, the test statistic and its (either exact or asymptotic)
distribution under the null hypothesis, critical region and the formula to calculate the
p-value. It should be also explicitly stated if the test is exact or asymptotic.

1. It is know that the distribution of IQ in the overall population has the standard
deviation equal to 15. We managed to get the values of IQ for 158 randomly se-
lected members of a given party. Suggest a test (i.e. give the appropriate model
suitable for your data, the null and the alternative hypothesis, test statistic, crit-
ical region and the formula to calculate the p-value) that aims at showing that
the members of this party is a more homogeneous group in comparison to the
overall population.

2. Suppose that data on gross salary of 300 randomly chosen graduates of study
programe Probability, Mathematical Statistics and Econometrics. Suggest a test
to prove that at least 75% of graduates gets a gross monthly salary higher than
40 000 CZK.

3. Suppose that you know the gross monthly salaries of 500 randomly chosen em-
ployers of the given insurance company. For each of this employer we know
the entry salary and the salary after two years working for the company. Sug-
gest tests aiming to prove that during the first two years of the working for the
company:
(a) the expected increase in the salary is larger then 15 000 CZK;
(b) with the probability at least 90% the salary increases by at least 10 000CZK.
Do you think that with one dataset it is possible to prove both statements?

4. Suppose that we know the body heights of 300 randomly chosen of female stu-
dents of Charles University. Further it is said that the average height of the adult
women in the Czech Republic is 168 cm. We would like to show the female stu-
dents of Charles University are in some sense higher than what is common in
the overall population of women. Suggest an appropriate test and explain what
would be proved by rejecting the null hypothesis.

5. The following table contains the number of points that 10 randomly chosen em-
ployees get from the English test before and after intensive English course.

Employer 1 2 3 4 5 6 7 8 9 10
Before the course 37 41 36 48 42 36 42 44 40 34
After the course 38 43 43 47 52 44 41 42 42 39

Suggest a test to prove that the language test improves the language skills of the
employees.
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5. One-sample and paired-problems for quantitative data

6. We are interested in finding out if the spreadsheet software has a good gener-
ator of random numbers from the uniform distribution U(0, 1). To do that we
generated a sample of 1 000 random numbers. Suggest a test to find out if the
generator is a good one.

7. Try to think whether it makes sense to consider the paired Kolmogorov-Smirnov
test.
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6. TWO-SAMPLE PROBLEMS FOR
QUANTITATIVE DATA

Consider two independent random samples: let 𝑋1, . . . , 𝑋𝑛 be a random sample with
distribution function 𝐹𝑋 and𝑌1, . . . ,𝑌𝑚 a random sample with distribution function 𝐹𝑌 .
Model F specifies the set of considered distribution functions 𝐹𝑋 and 𝐹𝑌 . We are
given a parameter 𝜃 = 𝑡 (𝐹 ) and we would like to compare its value for both sam-
ples. Denote 𝜃𝑋 = 𝑡 (𝐹𝑋 ) and 𝜃𝑌 = 𝑡 (𝐹𝑌 ). Usually, we want to test the null hypothesis
𝐻0 : 𝜃𝑋 = 𝜃𝑌 against the alternative 𝐻1 : 𝜃𝑋 ≠ 𝜃𝑌 ; eventually we want to construct
an interval estimate for the difference 𝜃𝑋 − 𝜃𝑌 .
The two-sample problem can be also formulated in another way. Let us have a ran-

dom sample from bivariate distribution(
𝑍1
𝐼1

)
, . . . ,

(
𝑍𝑁

𝐼𝑁

)
,

where 𝑍 𝑗 are independent identically distributed random variables and 𝐼 𝑗 has alter-
native distribution with parameter 𝑝𝐺 ∈ (0, 1). Indicator 𝐼 𝑗 determines the group of
𝑗 th observation (if 𝐼 𝑗 = 0, then the 𝑗 th observation belongs to the first group, other-
wise to the second group). If we now denote the variable 𝑍 𝑗 by 𝑋𝑖 or 𝑌𝑖 based on the
group it belongs to, i.e.(

𝑋1, . . . , 𝑋𝑛
) df
=

(
𝑍 𝑗 : 𝐼 𝑗 = 0

)
and

(
𝑌1, . . . ,𝑌𝑚

) df
=

(
𝑍 𝑗 : 𝐼 𝑗 = 1

)
,

we get two independent random samples as in the first formulation of the problem.
We would like to compare the conditional distribution of 𝑍 𝑗 in both groups, i.e. we
are interested in the conditional distribution functions 𝐹𝑋 (𝑥) = P

[
𝑍 𝑗 ≤ 𝑥

�� 𝐼 𝑗 = 0] and
𝐹𝑌 (𝑥) = P

[
𝑍 𝑗 ≤ 𝑥

�� 𝐼 𝑗 = 1
]
, respectively their parameters 𝜃𝑋 = 𝑡 (𝐹𝑋 ) and 𝜃𝑌 = 𝑡 (𝐹𝑌 ).

This second formulation of the two-sample problem is the same as the first formula-
tion with one exception - the sizes of random samples 𝑛 and𝑚 are not constants, but
they are random variables with binomial distribution

(
𝑛 =

∑𝑁
𝑗=1(1− 𝐼 𝑗 ) ∼ Bi(𝑁 , 1−𝑝𝐼 ),

where 𝑝𝐼 = P(𝐼 𝑗 = 1)
)
. However, the analysis of our data is performed in the same

way as for constant sizes of random samples.
Data corresponding to the first formulation are obtained by determining in ad-

vance the number of observations in each group and afterwards observing the re-
quired number of values for each group separately. Data corresponding to the second
formulation are obtained if we determine the total number of observations𝑁 = 𝑛+𝑚,
then obtain these 𝑁 observations and afterwards decide for each observation the
group it belongs to.
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Both formulations differ a little bit in the concept of asymptotic results. With the
second formulation, we only need that 𝑁 → ∞. For the first formulation, we need
that 𝑛 → ∞ and 𝑚 → ∞ and we also have to assume that the speed of the conver-
gence is the same for both sample sizes, i.e. that 𝑛/𝑚 → 𝑞 , where 0 < 𝑞 < ∞.
All methods presented in this chapter can be used for both formulations of the

two-sample problem.

6.1. TWO-SAMPLE KOLMOGOROV-SMIRNOV TEST

Two-sample Kolmogorov-Smirnov test is an extension of the one-sample test with the
same name. It is a non-parametric test that can be used for any pair of continuous
distributions.
Model: F = {all continuous distributions}
Tested parameters: distribution functions 𝐹𝑋 and 𝐹𝑌
Null hypothesis and alternative:

𝐻0 : 𝐹𝑋 (𝑥) = 𝐹𝑌 (𝑥) ∀𝑥 ∈ ℝ, 𝐻1 : ∃𝑥 ∈ ℝ : 𝐹𝑋 (𝑥) ≠ 𝐹𝑌 (𝑥). (6.1)

We test whether both random samples come from the same distribution. This hy-
pothesis will be from now on called the null-difference hypothesis.
Test statistic:

𝐾𝑛,𝑚 = sup
𝑥∈ℝ

��𝐹𝑋 (𝑥) − 𝐹𝑌 (𝑥)��,
where 𝐹𝑋 is the empirical distribution function of the random sample 𝑋1, . . . , 𝑋𝑛 and
𝐹𝑌 is the empirical distribution function of the random sample 𝑌1, . . . ,𝑌𝑚 .

Proposition 6.1 Let 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . ,𝑌𝑚 be two independent random samples
from continuous distribution with distribution function 𝐹0. Then√︃

𝑛𝑚
𝑛+𝑚 𝐾𝑛,𝑚

d−→ 𝑍 , for 𝑚,𝑛 → ∞,

where the random variable 𝑍 has a distribution function given by the formula (5.1).

Remark.
• We reject the null hypothesis if empirical distribution functions of both samples
differ too much from each other, i.e. for large values of our test statistic.

• Proposition 6.1 implies that, under the null hypothesis,
√︁

𝑛𝑚
𝑛+𝑚𝐾𝑛,𝑚 converges in

distribution to a random variable with distribution function 𝐺 (𝑦 ), which is the
same as for one-sample Kolmogorov-Smirnov test (see Proposition 5.2). The im-
portant thing is that this distribution function does not depend on the real (for
both samples) distribution function 𝐹0. This enables us to determine critical
value for rejecting 𝐻0.
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Critical region:

𝐻0 is rejected ⇔
√︃

𝑛𝑚
𝑛+𝑚 𝐾𝑛,𝑚 ≥ 𝑘1−𝛼 , (6.2)

where 𝑘1−𝛼 = 𝐺 −1(1− 𝛼) is (1− 𝛼)-quantile of the distribution with distribution func-
tion 𝐺 .
According to Proposition 6.1, this test has asymptotic significance level 𝛼.

Remark.
• It is possible to compute the exact critical value for two-sample Kolmogorov-
Smirnov test for continuous distributions and small sample sizes 𝑛, 𝑚.

• Notice that under the alternative for 𝑚,𝑛 → ∞,

𝐾𝑛,𝑚
P−→ sup

𝑥∈ℝ

��𝐹𝑋 (𝑥) − 𝐹𝑌 (𝑥)�� > 0 =⇒
√︃

𝑛𝑚
𝑛+𝑚 𝐾𝑛,𝑚

P−→ ∞.

In particular, this test is consistent against any alternative. In other words, the
test reacts to any difference in distributions of both samples. Another advan-
tage of this test is the absence of restrictive assumptions. The disadvantage of
this test is that its power is small against specific violations of hypothesis 𝐻0. If
we are interested (or we expect) only a specific type of violation of 𝐻0 (for ex-
ample difference of expected values), it is better to use a test which is focused
on a specific parameter.

• It is worth noticing that the test statistic does not change if, at first, we trans-
form all observations by some injective function 𝑔 . It can be shown that two-
sample Kolmogorov-Smirnov test can be reformulated as a rank test.

VIOLATION OF ASSUMPTIONS

If the samples come, under the null hypothesis, from discrete distribution (i.e. 𝐹0
from Proposition 6.1 is not continuous), then the test with critical region (6.2) will
be conservative. Similarly if the "discreetness" arises from rounding. In this case
however, it is necessary to assume that the rounding is performed in the same way
for both samples.

6.2. TWO-SAMPLE 𝑡 -TEST WITHOUT THE ASSUMPTION OF
EQUALITY OF VARIANCES

Two-sample 𝑡 -test compares the expected values of both samples. The execution of
this test differs based on whether we assume (see Chapter 6.3) or do not assume the
equality of variances.
Model:

F =
{
𝐹𝑋 ∈ L2

+, 𝐹𝑌 ∈ L2
+
}
.

Tested parameters: Expected values 𝜇𝑋 = E𝑋𝑖 and 𝜇𝑌 = E𝑌𝑖 .
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Null hypothesis and alternative:

𝐻0 : 𝜇𝑋 = 𝜇𝑌 + 𝛿0, 𝐻1 : 𝜇𝑋 ≠ 𝜇𝑌 + 𝛿0. (6.3)

We test whether expected values differ by 𝛿0 (usually we choose 𝛿0 = 0).
Test statistic:

𝑇𝑛,𝑚 =
𝑋 𝑛 −𝑌 𝑚 − 𝛿0√︃
𝑆2
𝑋
/𝑛 + 𝑆2

𝑌
/𝑚

,

where 𝑋 𝑛 , 𝑌 𝑚 are sample means and 𝑆2
𝑋
, 𝑆2

𝑌
are sample variances of the two samples.

Remark. The test statistic 𝑇𝑛,𝑚 can be remembered with the help of the following
observation. Notice that

var
(
𝑋 𝑛 −𝑌 𝑚

)
=

𝜎2
𝑋

𝑛
+ 𝜎2

𝑌

𝑚
.

Natural (and even unbiased) estimate of this variance is 𝑆2
𝑋
/𝑛 + 𝑆2

𝑌
/𝑚.

Theorem 6.2 Let 𝑋1, . . . , 𝑋𝑛 and𝑌1, . . . ,𝑌𝑚 be two independent random samples from
distributions with expected values 𝜇𝑋 and 𝜇𝑌 and finite variances. Then

𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )√︃
𝑆2
𝑋
/𝑛 + 𝑆2

𝑌
/𝑚

d−→ N(0, 1) for 𝑚,𝑛 → ∞, 𝑛
𝑚

→ 𝑞 ∈ (0,∞).

Proof. We can rewrite

𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )√︃
𝑆2
𝑋
/𝑛 + 𝑆2

𝑌
/𝑚

=

√
𝑚

(
𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )

)√︃
𝑆2
𝑋
𝑚
𝑛
+ 𝑆2

𝑌

.

From the consistency of sample variance we have 𝑆2
𝑋

P−→ 𝜎2
𝑋
, 𝑆2

𝑌

P−→ 𝜎2
𝑌
and there-

fore we get, with the help of the continuous mapping theorem (Proposition 1.1), that√︃
𝑆2
𝑋
𝑚
𝑛
+ 𝑆2

𝑌

P−→
√︃
𝜎2
𝑋
/𝑞 + 𝜎2

𝑌
. So, if we take into account the Cramér-Slutsky theorem

(Proposition 1.2), it is enough to show that

√
𝑚

(
𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )

) d−→ N
(
0, 𝜎2𝑋 /𝑞 + 𝜎2𝑌

)
. (6.4)

From the central limit theorem we get that
√
𝑛

(
𝑋 𝑛 − 𝜇𝑋

) d−→ N(0, 𝜎2
𝑋
) and therefore

√
𝑚

(
𝑋 𝑛 − 𝜇𝑋

)
=

√︃
𝑚
𝑛

√
𝑛

(
𝑋 𝑛 − 𝜇𝑋

) d−→ N
(
0, 𝜎2𝑋 /𝑞

)
, (6.5)

since from the assumptions of the theorem we have
√︁
𝑚
𝑛

→ 1√
𝑞
. Furthermore, also

thanks to the central limit theorem, we have
√
𝑚

(
𝑌 𝑚 − 𝜇𝑌

) d−→ N
(
0, 𝜎2𝑌

)
. (6.6)
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6. Two-sample problems for quantitative data

Now, using (6.5), (6.6) and the independence of 𝑋 𝑛 and 𝑌 𝑚 , we get

√
𝑚

(
𝑋 𝑛 − 𝜇𝑋
𝑌 𝑚 − 𝜇𝑌

)
d−→ N2

((
0
0

)
,

(
𝜎2
𝑋
/𝑞 0
0 𝜎2

𝑌

) )
.

Therefore, also for all c ∈ ℝ2

cT√𝑚
(
𝑋 𝑛 − 𝜇𝑋
𝑌 𝑚 − 𝜇𝑌

)
d−→ N

(
0, cTΣc

)
, where Σ =

(
𝜎2
𝑋
/𝑞 0
0 𝜎2

𝑌

)
.

The convergence in (6.4) now follows from the above stated convergence for c = (1,−1)T,
since in that case

𝑐TΣc = 𝜎2𝑋 /𝑞 + 𝜎2𝑌 .

□

Remark.
• Wewill reject the hypothesis if the samplemeans of both random samples differ
too much, i.e. if the test statistic if too large or too small.

• Theorem 6.2 implies that in model F and under the null hypothesis 𝐻0 the test
statistic 𝑇𝑛,𝑚 has asymptotic distribution N(0, 1).

Critical region:
𝐻0 is rejected ⇔

���𝑇𝑛,𝑚 ��� ≥ 𝑢1−𝛼/2,

where 𝑢1−𝛼/2 is (1 − 𝛼/2)-quantile of standard normal distribution.
P-value: 𝑝 = 2

(
1 − Φ( |𝑡 |)

)
, where 𝑡 is the observed value of the test statistic 𝑇𝑛,𝑚 and

Φ is the distribution function of N(0, 1).
Confidence interval for 𝜇𝑋 −𝜇𝑌 : It is possible to derive an asymptotic confidence interval
for the difference between expected values of both samples from Theorem 6.2. For
𝑛,𝑚 → ∞ we get

P

[
𝑋 𝑛 −𝑌 𝑚 − 𝑢1−𝛼/2

√︂
𝑆2
𝑋

𝑛
+ 𝑆2

𝑌

𝑚
< 𝜇𝑋 − 𝜇𝑌 < 𝑋 𝑛 −𝑌 𝑚 + 𝑢1−𝛼/2

√︂
𝑆2
𝑋

𝑛
+ 𝑆2

𝑌

𝑚

]
→ 1 − 𝛼.

It turns out that even if we added the assumption of normality of our observations,
i.e. 𝑋𝑖 ∼ N(𝜇𝑋 , 𝜎2𝑋 ) and 𝑌𝑖 ∼ N(𝜇𝑌 , 𝜎2𝑌 ), the distribution of our test statistic 𝑇𝑛,𝑚 under
the null hypothesis would still be pivotal only asymptotically. The exact distribution
of the test statistic 𝑇𝑛,𝑚 , even with the assumption of normality, will depend on the
ratio 𝜎2

𝑋
/𝜎2

𝑌
. That’s why we are content to use the asymptotic test in practical prob-

lems.∗

∗ The problem of performing an exact test is known as Behrens-Fisher problem.
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6. Two-sample problems for quantitative data

Remark. There exists a better approximation of critical values for this test, which
is based on the 𝑡 -distribution with number of degrees of freedom depending on the
number of observations in both groups and on sample variances. There exists several
of these approximations∗. One of these approximations, so called Welch test, is im-
plemented in the software environment R as a standard method for testing equality
of expected values of two samples (it is performed by function t.test). For this ap-
proximation, quantiles of 𝑡 -distribution with 𝑓 degrees of freedom are used as critical
values, where 𝑓 is given by the formula

𝑓 =

(
𝑆2
𝑋

𝑛
+ 𝑆2

𝑌

𝑚

)2
(𝑆2
𝑋
)2

𝑛2 (𝑛−1) +
(𝑆2
𝑌
)2

𝑚2 (𝑚−1)

.

This formula was derived under the assumption of normality and is based on the
approximation of the distribution of random variable 𝑆2

𝑋

𝑛
+ 𝑆2

𝑌

𝑚
from the denominator

of the test statistic, using a multiple of 𝜒2-distribution with "appropriate" degrees of
freedom (details can be found in Welch, 1938).
Welch test can be understood as a variant of the two-sample 𝑡 -test (without the

assumption of equal variances) with improved critical values.
P-value of Welch 𝑡 -test for the two-sided alternative (6.3) can be calculated using

the formula 𝑝 = 2
(
1 −𝐺 𝑓 ( |𝑡 |)

)
, where 𝑡 is the observed value of the test statistic 𝑇𝑛,𝑚

and 𝐺 𝑓 is the distribution function of 𝑡 -distribution with 𝑓 degrees of freedom.

6.3. TWO-SAMPLE 𝑡 -TEST WITH THE ASSUMPTION OF EQUAL
VARIANCES

Similarly as in the case of one-sample 𝑡 -test (see Chapter 5.3) we will derive an exact
test under the assumption of normality and asymptotic test without this assumption.

Model:
F𝑛 =

{
𝐹𝑋 = N(𝜇𝑋 , 𝜎2), 𝐹𝑌 = N(𝜇𝑌 , 𝜎2), 𝜇𝑋 , 𝜇𝑌 ∈ ℝ, 𝜎2 > 0

}
or

F𝑎𝑠 =
{
𝐹𝑋 ∈ L2

+, 𝐹𝑌 ∈ L2
+, where var (𝑋𝑖 ) = var (𝑌𝑖 ) := 𝜎2

}
.

In model F𝑛 both random samples have Gaussian distribution with the same vari-
ance 𝜎2, i.e. they can differ only in the mean value. In model F𝑎𝑠 it is only required
that the variances are the same (i.e. the distributions can be different).
Tested parameters: Expected values 𝜇𝑋 = E𝑋𝑖 and 𝜇𝑌 = E𝑌𝑗 .
Null hypothesis and alternative:

𝐻0 : 𝜇𝑋 = 𝜇𝑌 + 𝛿0, 𝐻1 : 𝜇𝑋 ≠ 𝜇𝑌 + 𝛿0.

∗ They can be found for example in Chapter 8.1. in Anděl (1998).
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6. Two-sample problems for quantitative data

We test whether the expected values of our samples differ by 𝛿0 (usually 𝛿0 = 0).
Test statistic:

𝑇𝑛,𝑚 =
𝑋 𝑛 −𝑌 𝑚 − 𝛿0√︃
𝑆2𝑛,𝑚

( 1
𝑛
+ 1
𝑚

) =

√︂
𝑛𝑚

𝑛 +𝑚
𝑋 𝑛 −𝑌 𝑚 − 𝛿0

𝑆𝑛,𝑚
,

where 𝑋 𝑛 and 𝑌 𝑚 are sample means of both samples and

𝑆2𝑛,𝑚
df
=

1
𝑛 +𝑚 − 2

[ 𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑋 𝑛)2 +
𝑚∑︁
𝑗=1

(𝑌𝑗 −𝑌 𝑚)2
]
=

𝑛 − 1
𝑛 +𝑚 − 2𝑆

2
𝑋 + 𝑚 − 1

𝑛 +𝑚 − 2𝑆
2
𝑌

is the unbiased estimate of the common variance 𝜎2 calculated from both samples
(weighted average of sample variances 𝑆2

𝑋
and 𝑆2

𝑌
).

Remark. Test statistic 𝑇𝑛,𝑚 can be remembered with the help of the following obser-
vation. Notice that

var
(
𝑋 𝑛 −𝑌 𝑚

)
= 𝜎2

𝑛
+ 𝜎2

𝑚
= 𝜎2

( 1
𝑛
+ 1
𝑚

)
.

Since 𝑆2𝑛,𝑚 is (unbiased) estimate of 𝜎2, we have that 𝑆2𝑛,𝑚
( 1
𝑛
+ 1
𝑚

)
is natural (and even

unbiased) estimate of 𝜎2
( 1
𝑛
+ 1
𝑚

)
.

Theorem 6.3 Let 𝑋1, . . . , 𝑋𝑛 and𝑌1, . . . ,𝑌𝑚 be independent random samples from dis-
tributions with expected values 𝜇𝑋 and 𝜇𝑌 and finite variances 𝜎2

𝑋
= var (𝑋𝑖 ) and

𝜎2
𝑌
= var (𝑌𝑗 ). Then

𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )√︃
𝑆2𝑛,𝑚

( 1
𝑛
+ 1
𝑚

) d−→ N(0, 𝜎2∗ ), for 𝑚,𝑛 → ∞, 𝑛
𝑛+𝑚 → 𝜆 ∈ (0, 1),

where

𝜎2∗ =
(1 − 𝜆)𝜎2

𝑋
+ 𝜆𝜎2

𝑌

𝜆𝜎2
𝑋
+ (1 − 𝜆)𝜎2

𝑌

.

Proof. Proof is analogous to the proof of Theorem 6.2. At first we rewrite

𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )√︃
𝑆2𝑛,𝑚

( 1
𝑛
+ 1
𝑚

) =

√
𝑚

(
𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )

)√︃
𝑆2𝑛,𝑚

𝑚+𝑛
𝑛

.

Now we can show, similarly as in Theorem 6.2, that
√
𝑚

(
𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )

) d−→ N
(
0, 1−𝜆

𝜆
𝜎2𝑋 + 𝜎2𝑌

)
,

where we have used the fact that 1
𝑞
= 1−𝜆

𝜆
. Then we show that√︂

𝑆2𝑛,𝑚
𝑚 + 𝑛
𝑛

P−−−−→
𝑛→∞

√︄
𝜆𝜎2

𝑋
+ (1 − 𝜆)𝜎2

𝑌

𝜆
.

□
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6. Two-sample problems for quantitative data

Notice that under the assumption of equal variances, i.e. 𝜎2
𝑋
= 𝜎2

𝑌
(i.e. model F𝑎𝑠

holds), we have that 𝜎2∗ = 1 and so

𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )√︃
𝑆2𝑛,𝑚

( 1
𝑛
+ 1
𝑚

) d−→ N(0, 1), for 𝑚,𝑛 → ∞, 𝑛
𝑛+𝑚 → 𝜆 ∈ (0, 1).

Furthermore, if we can add the assumption of normality (i.e. model F𝑛 holds), we
can derive the exact distribution of random variable 𝑋 𝑛−𝑌 𝑚−(𝜇𝑋 −𝜇𝑌 )√︃

𝑆2𝑛,𝑚
(
1
𝑛 +

1
𝑚

) .

Theorem 6.4 Let 𝑋1, . . . , 𝑋𝑛 and𝑌1, . . . ,𝑌𝑚 be two independent random samples from
Gaussian distributions with expected values 𝜇𝑋 and 𝜇𝑌 and with the same vari-
ance 𝜎2. Then

𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )√︃
𝑆2𝑛,𝑚

( 1
𝑛
+ 1
𝑚

) ∼ 𝑡𝑛+𝑚−2.

Proof. Rewrite
𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )√︃

𝑆2𝑛,𝑚
( 1
𝑛
+ 1
𝑚

) =
𝑈√︁

𝑍 /(𝑛 +𝑚 − 2)
,

where

𝑈 =
𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )

𝜎

√︃
1
𝑛
+ 1
𝑚

and 𝑍 =
(𝑛 +𝑚 − 2) 𝑆2𝑛,𝑚

𝜎2
.

To complete the proof, it is enough to show that 𝑈 ∼ N(0, 1), 𝑍 ∼ 𝜒2
𝑛+𝑚−2 and that

𝑈 is independent with 𝑍 .
1. 𝑈 ∼ N(0, 1). To show this part, it is enough to realize that, because to the indepen-
dence of random samples, sample means 𝑋 𝑛 and 𝑌 𝑚 are also independent and it
holds that

𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 ) ∼ N
(
0, 𝜎2

𝑛
+ 𝜎2

𝑚

)
.

So

𝑈 =
𝑋 𝑛 −𝑌 𝑚 − (𝜇𝑋 − 𝜇𝑌 )

𝜎

√︃
1
𝑛
+ 1
𝑚

∼ N(0, 1).

2. 𝑍 ∼ 𝜒2
𝑛+𝑚−2. 𝑍 can be written, using 𝑆2

𝑋
and 𝑆2

𝑌
, as

𝑍 =
(𝑛 +𝑚 − 2) 𝑆2𝑛,𝑚

𝜎2
=

(𝑛 − 1) 𝑆2
𝑋

𝜎2
+
(𝑚 − 1) 𝑆2

𝑌

𝜎2
.

Now thanks to Theorem 2.8(i), we get that (𝑛−1) 𝑆2
𝑋

𝜎2
∼ 𝜒2

𝑛−1 and
(𝑚−1) 𝑆2

𝑌

𝜎2
∼ 𝜒2

𝑚−1.
Furthermore, from the independence of 𝑆2

𝑋
and 𝑆2

𝑌
we get that the distribution of 𝑍

is the same as the distribution of a sum of two independent random variables with
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6. Two-sample problems for quantitative data

𝜒2
𝑛−1 and 𝜒

2
𝑚−1 distributions. Now considering the definition of 𝜒2-distribution (dis-

tribution of the sum of squares of independent, N(0, 1) distributed variables) we get
that 𝑍 ∼ 𝜒2

𝑛+𝑚−2.
3. Independence of𝑈 and 𝑍 . Because of the independence of the random samples,
random vectors

(
𝑋 𝑛 , 𝑆

2
𝑋

)T and
(
𝑌 𝑚 , 𝑆

2
𝑌

)T are also independent. Furthermore, from
Theorem 2.8(ii) we get that random variables 𝑋 𝑛 and 𝑆2𝑋 are independent and simi-
larly random variables 𝑌 𝑚 and 𝑆2

𝑌
are also independent. Therefore, the random vari-

ables 𝑋 𝑛 − 𝑌 𝑚 and 𝑆2𝑛,𝑚 are independent. This implies the independence of 𝑈 and
𝑍 . □

Remark.
• While Theorem 6.3 implies that, in model F𝑎𝑠 , 𝑇𝑛,𝑚 has asymptotic distribution

N(0, 1), Theorem 6.4 tells us that in smaller model F𝑛 it holds that 𝑇𝑛,𝑚 has, un-
der 𝐻0, exact distribution 𝑡𝑛+𝑚−2.

• The null hypothesis will be rejected if sample means of both samples differ too
much from each other, i.e. the test statistic is too large or too small.

Critical region:
𝐻0 is rejected ⇔

��𝑇𝑛,𝑚 �� ≥ 𝑡𝑛+𝑚−2(1 − 𝛼/2),
where 𝑡𝑛+𝑚−2(1− 𝛼/2) is (1− 𝛼/2)-quantile of 𝑡 -distribution with 𝑛 +𝑚 − 2 degrees of
freedom.
Similarly as in the one-sample 𝑡 -test, the above described test is exact in model F𝑛

and asymptotic in model F𝑎𝑠 . The same holds for the following p-value and confi-
dence interval.
P-value: 𝑝 = 2

(
1 − 𝐹 ( |𝑡 |)

)
, where 𝑡 is the observed value of test statistic 𝑇𝑛,𝑚 and 𝐹 is

the distribution function of 𝑡𝑛+𝑚−2-distribution.
Confidence interval for 𝜇𝑋 −𝜇𝑌 : Using Theorem 6.4 (resp. Theorem 6.3), it is possible to
derive an exact (resp. asymptotic) confidence interval for the difference of expected
values of both samples. We get

P
[
𝑋 𝑛 −𝑌 𝑚 − 𝑡𝑛+𝑚−2(1 − 𝛼/2) 𝑆𝑛,𝑚

√︃
1
𝑛
+ 1
𝑚

< 𝜇𝑋 − 𝜇𝑌 <

𝑋 𝑛 −𝑌 𝑚 + 𝑡𝑛+𝑚−2(1 − 𝛼/2) 𝑆𝑛,𝑚
√︃

1
𝑛
+ 1
𝑚

]
= 1 − 𝛼.

Exercise. Modify the critical region and the formula for p-value for the test of the
null hypothesis 𝐻0 : 𝜇𝑋 ≤ 𝜇𝑌 + 𝛿0 against the alternative 𝐻1 : 𝜇𝑋 > 𝜇𝑌 + 𝛿0.

VIOLATION OF THE ASSUMPTION OF EQUAL VARIANCES

According to Theorem 6.3

𝑇𝑛,𝑚
d−→ N(0, 𝜎2∗ ), where 𝜎2∗ =

(1 − 𝜆)𝜎2
𝑋
+ 𝜆𝜎2

𝑌

𝜆𝜎2
𝑋
+ (1 − 𝜆)𝜎2

𝑌

and 𝑛
𝑛+𝑚 → 𝜆 ∈ (0, 1).
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Therefore, the test generally does not keep the required level even asymptotically. It
is also worth noticing that if we have, for example, 𝜎2

𝑋
> 𝜎2

𝑌
and at the same time

𝜆 < 1
2 (i.e. larger variance is in the sample with smaller sample size), then 𝜎2∗ > 1 and

the test is asymptotically liberal.
Notice also that for 𝜆 = 1

2 we have 𝜎
2
∗ = 1. So, for samples with roughly the same

size, it still holds that
𝑇𝑛,𝑚

d−→ N(0, 1)

and our test does keep the level asymptotically.
Furthermore, if the sizes of both samples equal, i.e. 𝑚 = 𝑛, then√︃

𝑆2
𝑋
/𝑛 + 𝑆2

𝑌
/𝑚 =

√︃(
𝑆2
𝑋
/2 + 𝑆2

𝑌
/2

) 2
𝑛
=

√︃
𝑆2𝑛,𝑚

( 1
𝑛
+ 1
𝑚

)
.

In this case, it always holds that 𝑇𝑛,𝑛 = 𝑇𝑛,𝑛 , i.e. test statistics of two-sample 𝑡 -test is
the same with or without the assumption of equal variances.

𝑡 -TEST AS A TEST OF THE NULL-DIFFERENCE HYPOTHESIS

If we take 𝛿0 = 0, this test can be understood as a test of the null-difference hypoth-
esis (6.1). Even though we do not have the assumption of normality, we have equal
variances under the null hypothesis. Therefore, the test will keep the required level
asymptotically.
Regarding the power of the test, it will be consistent against the alternative for

which we have 𝜇𝑋 − 𝜇𝑌 ≠ 0. However, if the distributions 𝐹𝑋 and 𝐹𝑌 differ not only
in expected values, but also in variances, we do not control the influence of this dif-
ference. It can both increase and decrease the power of our test. Furthermore, if we
reject the null hypothesis (6.1), we can only claim that we have proven difference of
distributions 𝐹𝑋 and 𝐹𝑌 . The rejection of the null hypothesis cannot be attributed
only to the difference in expected values, since the difference in variances could also
contribute to this result.

Exercise. Prove (in detail) Theorem 6.3.

Remark. Sometimes it is recommended to test the equality of variances of our sam-
ples before using the two-sample 𝑡 -test; this can be done for example by using the test
from Chapter 6.5 or so called Levene’s test (not presented in these lecture notes). If
the equality of variances is rejected, we use Welch test, otherwise we use two-sample
𝑡 -test. However, we advise against using this kind of approach. It is so called two-
phase test, where the result depends on three different test statistics that are not in-
dependent. It is not guaranteed that the significance level of this test is equal to the
required level 𝛼. If we are not sure about the assumption of normality or equal vari-
ances, we should use the Welch test. Then we do not have to verify either one of the
assumptions of the two-sample 𝑡 -test.
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6.4. TWO-SAMPLE WILCOXON TEST

The two-sample Wilcoxon test (also called the Wilcoxon rank-sum test) is a non-
parametric test based on ranks.

Model: F =
{
∃ increasing function 𝑔 and ∃𝛿 ∈ ℝ :
𝑔 (𝑋𝑖 ) ∼ 𝐹𝑋 continuous d.f., 𝑔 (𝑌𝑗 ) ∼ 𝐹𝑌 , 𝐹𝑋 (𝑥) = 𝐹𝑌 (𝑥 − 𝛿 ) ∀𝑥 ∈ ℝ

}
. (6.7)

Tested parameter: Shift 𝛿𝑋𝑌 .
Null hypothesis and alternative:

𝐻0 : 𝛿𝑋𝑌 = 0, 𝐻1 : 𝛿𝑋𝑌 ≠ 0.

If we have 𝑔 (𝑥) = 𝑥 , then model F is called location model. So model F will be
called generalized location model.

Remark.
• Unlike in one-sample and paired Wilcoxon test, we do not require symmetry
of any density.

• If both model F and hypothesis 𝐻0 hold, then the distributions of 𝑋 and 𝑌 are
identical. Then it holds that 𝑚𝑋 = 𝑚𝑌 and E𝑋 = E𝑌 (if the expected values
exist). In other words, if model F holds, then two-sample Wilcoxon test can be
understood as a test of equality of expected values and medians. Usually, the
two-sample Wilcoxon test is considered as a test of the equality of medians.

Test statistic:

𝑊𝑛,𝑚 =

𝑛∑︁
𝑖=1

𝑅𝑖 ,

where 𝑅1, 𝑅2, . . . , 𝑅𝑛 are ranks of random variables 𝑋𝑖 in the combined random sample
𝑋1, . . . , 𝑋𝑛 , 𝑌1, . . . ,𝑌𝑚 .

Remark. Test statistic𝑊𝑛,𝑚 can attain values from the set
{𝑛 (𝑛+1)

2 , . . . ,𝑚𝑛 + 𝑛 (𝑛+1)
2

}
. It

can be computed in the following way:
1. Take combined random sample (𝑍1, . . . , 𝑍𝑛+𝑚)

df
= (𝑋1, . . . , 𝑋𝑛 ,𝑌1, . . . ,𝑌𝑚).

2. Order all 𝑍 𝑗 from smallest to largest to get the ordered random sample

𝑍 (1) < 𝑍 (2) < · · · < 𝑍 (𝑛+𝑚 ) .

3. Determine ranks 𝑅𝑖 of random variables 𝑋𝑖 between all 𝑍 (1) , . . . , 𝑍 (𝑛+𝑚 ) . It holds
that 𝑋𝑖 = 𝑍 (𝑅𝑖 ) .

4. Sum ranks 𝑅𝑖 for 𝑖 = 1, . . . , 𝑛.
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It is possible to find an exact distribution of the test statistic𝑊𝑛,𝑚 under the null
hypothesis for small values of 𝑛 and𝑚 (numerically or in tables). This exact distribu-
tion can be derived from the fact that under the null hypothesis any order of random
variables 𝑍1, . . . , 𝑍𝑛+𝑚 has the same probability (see Theorem 2.15) and therefore

P
(
𝑅1 = 𝑟1, . . . , 𝑅𝑛 = 𝑟𝑛

)
=

𝑚!
(𝑛 +𝑚)!

for all 𝑟1, . . . , 𝑟𝑛 ∈ {1, . . . , 𝑛 +𝑚} different.
For large values of 𝑛 and 𝑚 the following proposition is used.

Proposition 6.5 Let 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . ,𝑌𝑚 be two independent random samples
from model F . Suppose that the null hypothesis 𝐻0 holds, then

(i)
E𝐻0𝑊𝑛,𝑚 =

𝑛 (𝑛 +𝑚 + 1)
2

, var𝐻0 (𝑊𝑛,𝑚) =
𝑚𝑛 (𝑛 +𝑚 + 1)

12
.

(ii) If 𝑛,𝑚 → ∞, then
𝑊𝑛,𝑚 − E𝐻0𝑊𝑛,𝑚√︁

var𝐻0 (𝑊𝑛,𝑚)
d−→ N(0, 1).

Proof. Part (i). Under the null hypothesis, distributions of 𝑋𝑖 and 𝑌𝑗 are the same, so
the combined sample 𝑋1, . . . , 𝑋𝑛 ,𝑌1, . . . ,𝑌𝑚 is a random sample of size 𝑛+𝑚. It follows
from Theorem 2.16 that for 𝑖 ≠ 𝑗 :

E𝑅𝑖 =
𝑛 +𝑚 + 1

2
, var (𝑅𝑖 ) =

(𝑛 +𝑚)2 − 1
12

, cov (𝑅𝑖 , 𝑅 𝑗 ) = −𝑛 +𝑚 + 1
12

.

So

E𝐻0𝑊𝑛,𝑚 =

𝑛∑︁
𝑖=1

E𝑅𝑖 =
𝑛 (𝑛 +𝑚 + 1)

2

and

var𝐻0 (𝑊𝑛,𝑚) =
𝑛∑︁
𝑖=1

var (𝑅𝑖 ) +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1,𝑗≠𝑖

cov (𝑅𝑖 , 𝑅 𝑗 )

= 𝑛
(𝑛 +𝑚 + 1) (𝑛 +𝑚 − 1)

12
− 𝑛 (𝑛 − 1)𝑛 +𝑚 + 1

12

=
𝑛 (𝑛 +𝑚 + 1)

12
[
𝑛 +𝑚 − 1 − (𝑛 − 1)

]
=
𝑛𝑚 (𝑛 +𝑚 + 1)

12
.

Part (ii). Will not be proven. The difficulty of this proof lies in the fact that the ranks

𝑅1, . . . , 𝑅𝑛 are not independent random variables. □

Remark.
• Hypothesis will be rejected for too large or too small values of𝑊𝑛,𝑚 .
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• The previous proposition gives us instructions for finding critical values that
ensure asymptotic significance level 𝛼.

Critical region (asymptotic test):

𝐻0 is rejected ⇔

���𝑊𝑛,𝑚 − 𝑛 (𝑚+𝑛+1)
2

���√︃
𝑚𝑛 (𝑚+𝑛+1)

12

≥ 𝑢1−𝛼/2.

VIOLATION OF ASSUMPTIONS

Ties due to rounding. Because of rounding, we often see ties in our data. In that
situation, test statistic𝑊𝑛,𝑚 can be computed using so called average ranks. It can be
shown that under the null hypothesis

𝑊𝑛,𝑚 − 𝑛 (𝑛+𝑚+1)
2√︃

𝑚𝑛 (𝑛+𝑚+1−𝑘𝑜𝑟 .)
12

d−→ N(0, 1), for 𝑛,𝑚 → ∞,

where 𝑘𝑜𝑟 . is a correction of variance given by formula∗

𝑘𝑜𝑟 . =
1

(𝑛 +𝑚) (𝑛 +𝑚 − 1)
∑︁
𝑧

(
𝑡 3𝑧 − 𝑡𝑧

)
,

where 𝑡𝑧 denotes the number of the random variables 𝑍1 . . . , 𝑍𝑛+𝑚 which attain the
value 𝑧 . By

∑
𝑧 we denote the sum over all different values from the set

{
𝑍1 . . . , 𝑍𝑛+𝑚

}
.

It is worth noticing that without the use of correction 𝑘𝑜𝑟 . in the denominator, the
test would be asymptotically conservative.

Generalized location model F does not hold. Notice at first that under the null-
difference hypothesis, i.e. 𝐹𝑋 = 𝐹𝑌 , the test keeps (asymptotically) the required sig-
nificance level. The invalidity of this model has therefore effect on the interpretation
and the power of the test.
Concerning the interpretation of the test, rejecting the null hypothesis outside of

the generalized location model only tells us that the distributions 𝐹𝑋 and 𝐹𝑌 are not
identical. However in general, it is not possible to claim that the medians, resp. the
expected values, of those distributions differ.
Concerning the power of the test, in the previously described generalized location

model it holds that Wilcoxon test is consistent.
In practice however, we can never be sure that the generalized location model

holds. Therefore, to better understand the two-sample Wilcoxon test, it is convenient
to use theMann-Whitney formulation of the Wilcoxon test presented in the following
section.

∗ See for example Hollander et al. (2013), page 118.
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MANN-WHITNEY FORMULATION OF WILCOXON TEST

Test equivalent toWilcoxon test can be obtained by the following reasoning. Consider
all pairs (𝑋𝑖 ,𝑌𝑗 ) for 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {1, . . . ,𝑚} and determine how many of them
satisfy 𝑋𝑖 < 𝑌𝑗 :

𝑊 ∗
𝑛,𝑚 =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝟙
{
𝑋𝑖 < 𝑌𝑗

}
.

The random variable𝑊 ∗
𝑛,𝑚 , called theMann-Whitney statistic, can attain values from

the set {0, . . . , 𝑛𝑚}.
The following proposition shows that there exists a deterministic linear relation be-

tween the two-sample Wilcoxon statistic𝑊𝑛,𝑚 and the Mann-Whitney statistic𝑊 ∗
𝑛,𝑚 .

In particular, we can easily compute moments of𝑊 ∗
𝑛,𝑚 .

Proposition 6.6
(i) 𝑊𝑛,𝑚 +𝑊 ∗

𝑛,𝑚 = 𝑛𝑚 + 𝑛 (𝑛+1)
2 .

(ii) Ifmin(𝑛,𝑚) → ∞, then 𝑊 ∗
𝑛,𝑚

𝑛𝑚

P−→ P[𝑋𝑖 < 𝑌𝑗 ].

Proof. Part (i). From the definition of a rank we have

𝑅𝑖 =

𝑛+𝑚∑︁
𝑗=1

𝟙
{
𝑍 𝑗 ≤ 𝑋𝑖

}
=

𝑛∑︁
𝑗=1

𝟙
{
𝑋 𝑗 ≤ 𝑋𝑖

}
+

𝑚∑︁
𝑗=1

𝟙
{
𝑌𝑗 ≤ 𝑋𝑖

}
.

So

𝑊𝑛,𝑚 +𝑊 ∗
𝑛,𝑚 =

𝑛∑︁
𝑖=1

𝑅𝑖 +
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝟙
{
𝑋𝑖 < 𝑌𝑗

}
=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝟙
{
𝑋 𝑗 ≤ 𝑋𝑖

}
+

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝟙
{
𝑌𝑗 ≤ 𝑋𝑖

}
+

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝟙
{
𝑋𝑖 < 𝑌𝑗

}
=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝟙
{
𝑋 ( 𝑗 ) ≤ 𝑋 (𝑖 )

}
+

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝟙
{
𝑌𝑗 ≤ 𝑋𝑖 or 𝑌𝑗 > 𝑋𝑖

}
=

𝑛∑︁
𝑖=1

𝑖 + 𝑛𝑚 =
𝑛 (𝑛 + 1)

2
+ 𝑛𝑚.

Part (ii). Will not be proven. The difficulty of this proof lies in the fact that the in-
dicators 𝟙

{
𝑋𝑖 < 𝑌𝑗

}
are not (for 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚}) independent random

variables. □

Let us analyse corollaries of Proposition 6.6. Part (i) tells us that tests based on the
Wilcoxon test statistic and the Mann-Whitney test statistic are equivalent. Part (ii)
shows that 𝑊 ∗

𝑛,𝑚

𝑛𝑚
is a consistent estimate of the parameter 𝜃𝑋𝑌 = P[𝑋𝑖 < 𝑌𝑗 ]. It can
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easily be shown that if 𝐹𝑋 = 𝐹𝑌 then 𝜃𝑋𝑌 = 1/2. However, parameter 𝜃𝑋𝑌 can be equal
to 1/2 even for two distributions that are not identical.
So, if we consider two-sample Wilcoxon test as a test of the null-difference hypoth-

esis (6.1), then this test is consistent only against alternatives for which 𝜃𝑋𝑌 ≠ 1
2 . This

inequality cannot be in general (i.e. outside of the generalized location model) inter-
preted as a inequality of expected values or medians. There exist continuous distri-
butions 𝐹𝑋 and 𝐹𝑌 such that their expected values (resp. medians) are different and at
the same time 𝜃𝑋𝑌 = 1

2 . On the other hand, there also exist continuous distributions
𝐹𝑋 and 𝐹𝑌 such that their expected values (resp. medians) are the same and at the
same time 𝜃𝑋𝑌 ≠ 1

2 .

Considering all of the above, we could be interested in the question, whether we
could regard the Mann-Whitney test as a test for the following general situation.

Model: F ∗ =
{
𝑋 ∼ 𝐹𝑋 continuous d.f., 𝑌 ∼ 𝐹𝑌 continuous d.f.

}
Tested parameter: 𝜃𝑋𝑌 = P[𝑋 < 𝑌 ]
Null hypothesis and alternative:

𝐻 ∗
0 : 𝜃𝑋𝑌 = 1

2 , 𝐻 ∗
1 : 𝜃𝑋𝑌 ≠ 1

2 .

However, the problem lies in the fact that, in this case, we cannot compute the
variance of the test statistic𝑊 ∗

𝑛,𝑚 under the null hypothesis with the help of Propo-
sition 6.5 (since under the null hypothesis we do not have in general identically dis-
tributed random variables). So critical values computed for Wilcoxon test in model
F do not work in general model F ∗. And it turns out that ignoring this fact can lead
to both conservative and liberal tests.∗
The above reasoning leads to clear conclusion: If we want to test the equality of

expected values without additional assumptions on the shape of the distributions of
both samples, we use two-sample 𝑡 -test without the assumption of equality of vari-
ances (Welch test), not Wilcoxon test.

Remark. It is sometimes recommended to test the normality of both samples (e.g.
by the popular Shapiro-Wilk test, which is not presented) before using two-sample
𝑡 -test to compare the expected values. If the normality is rejected, we use Wilcoxon
test, otherwise we use two-sample 𝑡 -test. However, we strongly advise against using
this approach. As we already know, these two test are testing different hypothesis, we
cannot use them on the same problem. If we are uncertain of the normality of our
data, we should rather use Welch test, which tests the required hypothesis but does
not require the assumption of normality.

Remark. If ties are present, it is necessary to slightly modify Proposition 6.6. If we
use the average ranks to compute the statistic𝑊𝑛,𝑚 , then formula (i) holds, if we re-

∗ Standardization of the test statistic𝑊 ∗
𝑛,𝑚 which assures that the test keeps the required level asymp-

totically, even in general model F ∗, can be found for example in Chung and Romano (2016).
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define the statistic𝑊 ∗
𝑛,𝑚 as

𝑊 ∗
𝑛,𝑚 =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

[
𝟙
{
𝑋𝑖 < 𝑌𝑗

}
+ 1

2𝟙
{
𝑋𝑖 = 𝑌𝑗

}]
.

Part (ii) must then be modified to

𝑊 ∗
𝑛,𝑚

𝑚𝑛

P−→ P[𝑋𝑖 < 𝑌𝑗 ] + 1
2P[𝑋𝑖 = 𝑌𝑗 ].

6.5. TWO-SAMPLE 𝐹 -TEST OF EQUALITY OF VARIANCES

Two-sample 𝐹 -test of equality of variances is an exact test comparing variances of
two independent random samples under the assumption of normality.
Model: F =

{
𝑋𝑖 ∼ N(𝜇𝑋 , 𝜎2𝑋 ),𝑌𝑗 ∼ N(𝜇𝑌 , 𝜎2𝑌 ), 𝜇𝑋 , 𝜇𝑌 ∈ ℝ, 𝜎2

𝑋
> 0, 𝜎2

𝑌
> 0

}
Tested parameters: Variances 𝜎2

𝑋
= var𝑋𝑖 and 𝜎2𝑌 = var𝑌𝑗 .

Null hypothesis and alternative:

𝐻0 : 𝜎2𝑋 = 𝜎2𝑌 , 𝐻1 : 𝜎2𝑋 ≠ 𝜎2𝑌 .

Test statistic:

𝐹 =
𝑆2
𝑋

𝑆2
𝑌

,

where 𝑆2
𝑋
is the sample variance of the random sample 𝑋1, . . . , 𝑋𝑛 and 𝑆2𝑌 is the sample

variance of the random sample 𝑌1, . . . ,𝑌𝑚 .

Remark.
• Theorem 2.11 implies that, in the above model and under the null hypothesis,
the exact distribution of the test statistic is 𝐹𝑛−1,𝑚−1 distribution.

• We rejected the null hypothesis if the sample variances differ too much, i.e. if
the value of the test statistic is too small or too large.

Critical region:

𝐻0 is rejected ⇔ 𝐹 ≤ 𝐹𝑛−1,𝑚−1(𝛼/2) or 𝐹 ≥ 𝐹𝑛−1,𝑚−1(1 − 𝛼/2),

where 𝐹𝑛−1,𝑚−1(𝛼/2) and 𝐹𝑛−1,𝑚−1(1 − 𝛼/2) are (𝛼/2)-quantile and (1 − 𝛼/2)-quantile
of the 𝐹 -distribution with 𝑛 − 1 and 𝑚 − 1 degrees of freedom.
P-value: 𝑝 = 2min

{
1−𝐺 (𝑠 ),𝐺 (𝑠 )

}
, where 𝑠 is the observed value of the test statistic 𝐹

and 𝐺 is the distribution function of the distribution 𝐹𝑛−1,𝑚−1.
Confidence intervals for 𝜎2

𝑋
/𝜎2

𝑌
: According to Theorem 2.11 it holds that

P
[
𝐹𝑛−1,𝑚−1(𝛼/2) <

𝑆2
𝑋
/𝜎2

𝑋

𝑆2
𝑌
/𝜎2

𝑌

< 𝐹𝑛−1,𝑚−1(1 − 𝛼/2)
]
= 1 − 𝛼.
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So confidence interval for 𝜎2
𝑋
/𝜎2

𝑌
is given by formula(

𝑆2
𝑋

𝑆2
𝑌

1
𝐹𝑛−1,𝑚−1 (1− 𝛼

2 )
,
𝑆2
𝑋

𝑆2
𝑌

1
𝐹𝑛−1,𝑚−1 ( 𝛼2 )

)
.

Remark. This test can be modified to one-sided test: Null hypothesis 𝐻 ′
0 : 𝜎

2
𝑋

≤ 𝜎2
𝑌

is rejected for large values of the test statistic, critical value is 𝐹𝑚−1,𝑛−1(1 − 𝛼). Null
hypothesis 𝐻 ′′

0 : 𝜎2
𝑋
≥ 𝜎2

𝑌
is rejected for small values of the test statistic, critical value

is 𝐹𝑚−1,𝑛−1(𝛼).

VIOLATION OF ASSUMPTIONS

If the assumption of normality is violated, this test does not keep the level even
asymptotically. To construct a test without this assumption, we would need to derive
an asymptotic distribution of the test statistic 𝐹 under the hypothesis and work with
this distribution. Alternatively, one can use the Levene’s test. It can be used to com-
pare more independent random samples. However, we do have to highlight that, in
general, it does not test the equality of variances, but the equality of a slightly differ-
ent parameter of variability.
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Sample examples for the preparation for the exam.

1. Consider 𝑋𝑖 ∼ Exp(𝜆1) and 𝑌𝑗 ∼ Exp(𝜆2). Show that in this situation 𝑋𝑖 and 𝑌𝑗
satisfy the generalized location model (6.7).
Hint. Consider 𝑔 (𝑥) = log 𝑥 .

2. Modify the two-sample 𝐹 -test of variance so that it tests the null hypothesis
𝐻0 : 𝜎2

𝑋
≤ 𝜎2

𝑌
against the alternative 𝐻1 : 𝜎2

𝑋
> 𝜎2

𝑌
. Justify your modification.

What would be the formula for p-value in this modified test?

3. We are deciding whether to send our employees to a language course from the
company Analfabet or from the company Buran. To make this decision, we
have randomly chosen 20 employees and split them (again randomly) between
those two courses (10 employees went to each course). In the following table
we present the number of points received in an English test, taken by all of the
employees after they have completed their respective course.

Analfabet course 37 41 36 48 42 36 42 44 40 34
Buran course 38 43 43 47 52 44 41 42 42 39

How would you test that there is no difference between the courses?
The point of this exercise is not to numerically calculate the test statistic, but
rather to explain the test in detail (i.e. define suitable model for your data, null
and alternative hypothesis, test statistic and critical region).

4. We have data about the salaries of 100 employees in a large insurance company.
We also have the information whether these employees studied at MFF UK or
at another school. Suggest a test (i.e. define suitable model for the data, null
and alternative hypothesis, test statistic and formula for p-value), if we want to
show that the graduates of MFF UK have higher salaries then the graduates of
other schools.

5. We have two generators of independent numbers from two given distributions.
We have obtained 500 random numbers from each generator. Suggest a test (i.e.
define suitable model for the data, null and alternative hypothesis, test statistic
and critical region), which can be used to test that both generators generate the
random numbers from the same distribution.
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7. ONE-SAMPLE AND TWO-SAMPLES
PROBLEMS FOR BINARY DATA

In this chapter we will be dealing with binary variables, i.e. variables that can take
only tow values.

7.1. ONE-SAMPLE PROBLEM

Bernoulli distribution is the most simple for the categorical variable that takes only
two possible values coded as 0 and 1. Let 𝑝𝑋 ∈ (0, 1) be the probability that a given
subject is classified in the category 1.
Let𝑌1, . . . ,𝑌𝑛 be a random sample from the Bernoulli distributionBe(𝑝𝑋 ) that repre-

sents the categories of 𝑛 subjects. Denote the number of subject classified in the cat-
egory 1 as 𝑋𝑛 =

∑𝑛
𝑖=1𝑌𝑖 . This random variable has the binomial distribution Bi(𝑛,𝑝𝑋 )

(see Theorem 2.3(iv)).
We know that the relative frequency

𝑝𝑛 =
𝑋𝑛

𝑛
=

∑𝑛
𝑖=1𝑌𝑖

𝑛
= 𝑌 𝑛

is a consistent and unbiased estimator of 𝑝𝑋 . The properties of 𝑝𝑛 are summarized
in Theorem 2.3.

7.1.1. CLOPPER-PEARSON METHOD

This method makes use of Bi(𝑛,𝑝𝑋 ) which is the exact distribution of the statistic 𝑋𝑛 .
Consider the hypothesis 𝐻0 : 𝑝𝑋 = 𝑝0 against the alternative 𝐻1 : 𝑝𝑋 ≠ 𝑝0. The

critical region is given by

𝐻0 is rejected ⇔ 𝑋𝑛 ≤ 𝑐𝐿 (𝛼) or 𝑋𝑛 ≥ 𝑐𝑈 (𝛼),

where 𝑐𝐿 (𝛼) is the largest integer such that

P
(
Bi(𝑛,𝑝0) ≤ 𝑐𝐿 (𝛼)

)
=

𝑐𝐿 (𝛼 )∑︁
𝑗=0

(
𝑛

𝑗

)
𝑝
𝑗

0(1 − 𝑝0)
𝑛−𝑗 ≤ 𝛼

2

and 𝑐𝑈 (𝛼) is the smallest integer, such that

P
(
Bi(𝑛,𝑝0) ≥ 𝑐𝑈 (𝛼)

)
=

𝑛∑︁
𝑗=𝑐𝑈 (𝛼 )

(
𝑛

𝑗

)
𝑝
𝑗

0(1 − 𝑝0)
𝑛−𝑗 ≤ 𝛼

2
.
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7. One-sample and two-samples problems for binary data

This test (called Clopper-Pearson) has the level at most 𝛼 (due to the discrete distri-
bution of the test statistic not all levels are attainable). P-value of this test is given
by

𝑝 (𝑥𝑛) = 2min
{
P
(
Bi(𝑛,𝑝0) ≤ 𝑥𝑛

)
,P

(
Bi(𝑛,𝑝0) ≥ 𝑥𝑛

)}
= 2min

{
𝐺0(𝑥𝑛), 1 −𝐺0(𝑥𝑛 − 1)

}
,

where 𝐺0 is the cumulative distribution function of Bi(𝑛,𝑝0) and 𝑥𝑛 is the observed
value of 𝑋𝑛 .

Now consider the task of finding confidence interval for 𝑝𝑋 with the probability of
coverage (at least) 1 − 𝛼. Making use of the duality of the confidence intervals and
testing we can find the confidence interval as the set set containing the values of the
parameters 𝑝 ∈ (0, 1) for which (with given 𝑋𝑛) we do not reject the null hypothesis
𝐻0 : 𝑝𝑋 = 𝑝 against the alternative 𝐻1 : 𝑝𝑋 ≠ 𝑝 . Denote 𝐺𝑝 cumulative distribution
function Bi(𝑛,𝑝). Then

𝐼 𝑆𝑛 =
{
𝑝 ∈ (0, 1) : 𝑝 (𝑋𝑛) > 𝛼, where 𝑝 (𝑋𝑛) is the p-value of the test 𝐻0 : 𝑝𝑋 = 𝑝

}
=

{
𝑝 ∈ (0, 1) : 2min{𝐺𝑝 (𝑋𝑛), 1 −𝐺𝑝 (𝑋𝑛 − 1)} > 𝛼

}
=

{
𝑝 ∈ (0, 1) :

𝑋𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
𝑝 𝑗 (1 − 𝑝)𝑛−𝑗 > 𝛼

2
and at the same time

𝑛∑︁
𝑗=𝑋𝑛

(
𝑛

𝑗

)
𝑝 𝑗 (1 − 𝑝)𝑛−𝑗 > 𝛼

2

}
.

Thus the confidence interval will be of the form (𝑝𝐿 , 𝑝𝑈 ), where 𝑝𝐿 and 𝑝𝑈 are found
as the solutions of the following equations

𝑛∑︁
𝑗=𝑋𝑛

(
𝑛

𝑗

)
𝑝 𝑗 (1 − 𝑝)𝑛−𝑗 = 𝛼

2
,

𝑋𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
𝑝 𝑗 (1 − 𝑝)𝑛−𝑗 = 𝛼

2
.

It can be shown that 𝑝𝐿 and 𝑝𝑈 can be calculated explicitly as(
𝑋𝑛𝑞𝐿 (𝛼)

𝑋𝑛𝑞𝐿 (𝛼) + 𝑛 − 𝑋𝑛 + 1 ,
(𝑋𝑛 + 1)𝑞𝑈 (𝛼)

(𝑋𝑛 + 1)𝑞𝑈 (𝛼) + 𝑛 − 𝑋𝑛

)
,

where 𝑞𝐿 (𝛼) is the 𝛼/2-quantile of the distribution 𝐹2𝑋𝑛 ,2(𝑛−𝑋𝑛+1) and 𝑞𝑈 (𝛼) is (1−𝛼/2)-
quantile 𝐹2(𝑋𝑛+1) ,2(𝑛−𝑋𝑛 ) . When 𝑋𝑛 = 0 then we put the lower bound of the confidence
interval to 0. Further if 𝑋𝑛 = 𝑛 then the upper bound of the confidence interval is put
to 1.
The above interval is called the Clopper-Pearson confidence interval for the param-

eter of the binomial distribution. The advantage of this interval is that the coverage
probability is at least 1−𝛼 for each sample size. The disadvantage is that the coverage
probability can be considerable bigger than 1 − 𝛼 (which implies that it is too wide).
Now we can return to Clopper-Pearson test of the hypothesis 𝐻0 : 𝑝𝑋 = 𝑝0 against

the alternative 𝐻1 : 𝑝𝑋 ≠ 𝑝0. Instead of calculating the critical values 𝑐𝐿 (𝛼) and 𝑐𝑈 (𝛼)
one can calculate the Clopper-Pearson confidence interval and reject 𝐻0 when 𝑝0 is
not included in this interval.
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7. One-sample and two-samples problems for binary data

7.1.2. STANDARD ASYMPTOTIC METHOD

In Chapter 3.5.2 in the example on p. 49 we found the asymptotic confidence inter-
val for 𝑝𝑋 based on Theorem 2.3(iii) and Cramér-Slutsky theorem (Proposition 1.2).
Using (3.7) it holds that

𝑍𝑛 =

√
𝑛

(
𝑝𝑛 − 𝑝𝑋

)√︁
𝑝𝑛 (1 − 𝑝𝑛)

d−−−−→
𝑛→∞

N(0, 1).

This can be used to derive the asymptotic test of the hypothesis 𝐻0 : 𝑝𝑋 = 𝑝0 against
the alternative 𝐻1 : 𝑝𝑋 ≠ 𝑝0 with the critical region

𝐻0 is rejected ⇔
�����√𝑛 (

𝑝𝑛 − 𝑝0
)√︁

𝑝𝑛 (1 − 𝑝𝑛)

����� ≥ 𝑢1−𝛼/2. (7.1)

From the duality of testing and confidence interval (Proposition 4.2(ii)) we can find
the confidence interval for 𝑝𝑋 as

𝐼 𝑆𝑛 =

{
𝑝 ∈ (0, 1) :

���� √𝑛 (
𝑝𝑛−𝑝

)
√
𝑝𝑛 (1−𝑝𝑛 )

���� < 𝑢1−𝛼/2} =

(
𝑝𝑛 − 𝑢1− 𝛼

2

√︃
𝑝𝑛 (1−𝑝𝑛 )

𝑛
, 𝑝𝑛 + 𝑢1− 𝛼

2

√︃
𝑝𝑛 (1−𝑝𝑛 )

𝑛

)
.

It is worth noting that this confidence interval is the same as the confidence interval
for 𝑝𝑋 in Chapter 3.5.2.
The disadvantage of this approach is that if 𝑝𝑋 is close to zero or one, than one

needs large samples sizes so that the asymptotic approximation is reliable. In prac-
tice it is often recommended that for the asymptotic approximation one needs that
min{𝑋𝑛 , 𝑛 − 𝑋𝑛} ≥ 5. It is also worth noting that this interval is not necessarily in-
cluded in the interval (0, 1).

Exercise. As Bernoulli distribution is in L2
+, one can also use the the 𝑡 -test (see Chap-

ter 5.3) that is valid asymptotically. Show that

𝑇𝑛 =

√
𝑛 − 1

(
𝑝𝑛 − 𝑝0

)√︁
𝑝𝑛 (1 − 𝑝𝑛)

.

Further this test statistic would be compared with the quantiles of 𝑡𝑛−1-distribution.
Thus the 𝑡 -test would result in a test that is slightly more conservative than the test
given in (7.1).

7.1.3. WILSONOVA METHOD

This method is based directly on Theorem 2.3(iii) which states that

𝑊𝑛 =

√
𝑛

(
𝑝𝑛 − 𝑝𝑋

)√︁
𝑝𝑋 (1 − 𝑝𝑋 )

d−−−−→
𝑛→∞

N(0, 1)

126



7. One-sample and two-samples problems for binary data

Under the null hypothesis 𝐻0 : 𝑝𝑋 = 𝑝0 we know 𝑝𝑋 and thus one can perform the
test as

𝐻0 is rejected ⇔
�����√𝑛 (

𝑝𝑛 − 𝑝0
)√︁

𝑝0(1 − 𝑝0)

����� ≥ 𝑢1−𝛼/2.

This test is known asWilson test.
The confidence interval can be found again with the help of duality of testing and

confidence intervals as

𝐼 𝑆𝑛 =

{
𝑝 ∈ (0, 1) :

����√𝑛 (
𝑝𝑛−𝑝

)
√
𝑝 (1−𝑝 )

���� < 𝑢1−𝛼/2}.
After some algebra we get the following formula for the asymptotic confidence inter-
val (

𝑝𝑛 + 𝑢2

2𝑛
∓ 𝑢

√︃
𝑝𝑛 (1−𝑝𝑛 )

𝑛
+ 𝑢2

4𝑛2

)
1

1 + 𝑢2/𝑛
,

where 𝑢 denotes 𝑢1−𝛼/2. This interval is known also as Wilson confidence interval.
It is known that Wilson test and Wilson confidence interval provides a more precise
results than the methods of Chapter 7.1.2.
It is interesting to note that the middle of the Wilson interval can be expresses ad

the weighted mean 𝑤𝑛𝑝𝑛 + (1 − 𝑤𝑛)1/2, where 𝑤𝑛 = (1 + 𝑢2/𝑛)−1 → 1 for 𝑛 → ∞.
When calculating the 95% confidence interval, the middle of the Wilson interval is
approximately (𝑋𝑛 + 2)/(𝑛 + 4).

7.2. TWO SAMPLE PROBLEMS

Let𝑌11, . . . ,𝑌1𝑛 be a random sample fromBernoulli distribution Be(𝑝1) and𝑌21, . . . ,𝑌2𝑚
be a random sample from Be(𝑝2). Denote 𝑋1 =

∑𝑛
𝑖=1𝑌1𝑖 and 𝑋2 =

∑𝑚
𝑖=1𝑌2𝑖 . We will be

interested in comparing two independent binomial random variables 𝑋1 ∼ Bi(𝑛,𝑝1)
and 𝑋2 ∼ Bi(𝑚,𝑝2). We want to find out what is the difference in probabilities 𝑝1 and
𝑝2. The difference between 𝑝1 and 𝑝2 can be expressed in several ways.
If the random variables 𝑋1 and 𝑋2 give the numbers of some negative events (death,

disease, defect) then the parameters 𝑝1 and 𝑝2 are called risks of events. Probabil-
ities (risks) 𝑝1 and 𝑝2 can be estimated by the corresponding relative frequencies
𝑝1 = 𝑋1/𝑛, 𝑝2 = 𝑋2/𝑚. The properties of these relative frequencies are summarized
by 2.3.
Probabilities (risks) 𝑝1 and 𝑝2 are usually compared by one of the following three

ways:

1. difference of probabilities (risk difference, excess risk) 𝑑𝑋 = 𝑝1−𝑝2, is estimated
as 𝑑 = 𝑝1 − 𝑝2;

2. ratio of probabilities (relative risk) 𝑟𝑋 =
𝑝1
𝑝2
is estimated as �̂� = 𝑝1

𝑝2
;

3. odds ratio 𝑜𝑋 =
𝑝1/(1−𝑝1 )
𝑝2/(1−𝑝2 ) =

𝑝1 (1−𝑝2 )
𝑝2 (1−𝑝1 ) , is estimated as 𝑜 =

𝑝1 (1−𝑝2 )
𝑝2 (1−𝑝1 ) =

𝑋1 (𝑚−𝑋2 )
𝑋2 (𝑛−𝑋1 ) .
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7. One-sample and two-samples problems for binary data

For each of this way of comparing we will need to derive the asymptotic distribu-
tion of the corresponding estimator. For all the asymptotic results given below we
will assume that

𝑛 → ∞, 𝑚 → ∞, 𝑛/𝑚 → 𝑞 ∈ (0,∞). (7.2)
The results given in this results are also valid when only the number of all observa-
tions 𝑛 +𝑚 is fixed, while the sample sizes 𝑛 and 𝑚 are random (see the discussion
on p. 106).
Note that with the help of the central limit theorem

√
𝑛

(
𝑝1 − 𝑝1

) d−→ N
(
0, 𝑝1(1 − 𝑝1)

)
and

√
𝑚

(
𝑝2 − 𝑝2

) d−→ N
(
0, 𝑝2(1 − 𝑝2)

)
.

Further thanks to independence 𝑝1 and 𝑝2 we get in the same way as in the proof of
Theorem 6.2 that

√
𝑚

(
𝑝1 − 𝑝1
𝑝2 − 𝑝2

)
d−→ N2

((
0
0

)
,

(
𝑝1 (1−𝑝1 )

𝑞
0

0 𝑝2(1 − 𝑝2)

) )
. (7.3)

7.2.1. THE RISK DIFFERENCE

The risk difference is given by 𝑑𝑋 = 𝑝1 − 𝑝2. This difference says by how much is
the risk in population 1 larger than in population 2. This parameter can take values
between −1 and 1. The zero value of 𝑑𝑋 corresponds to the situation when 𝑝1 = 𝑝2.
The consistent and unbiased estimator of parameter 𝑑𝑋 is 𝑑 = 𝑝1 − 𝑝2.

Proposition 7.1 Let 𝑝1, 𝑝2 ∈ (0, 1) and it holds that (7.2). Then

𝑑 − 𝑑𝑋√︃
𝑝1 (1−𝑝1 )

𝑛
+ 𝑝2 (1−𝑝2 )

𝑚

d−→ N(0, 1).

Proof. The proof is completely analogous to the proof of Theorem 6.2.
First we rewrite

𝑑 − 𝑑𝑋√︃
𝑝1 (1−𝑝1 )

𝑛
+ 𝑝2 (1−𝑝2 )

𝑚

=

√
𝑚

(
𝑑 − 𝑑𝑋

)√︃
𝑝1(1 − 𝑝1)𝑚𝑛 + 𝑝2(1 − 𝑝2)

.

Now with the help of law of large numbers (Proposition 1.3) and continuous map-
ping theorem (Proposition 1.1) one can show that√︃

𝑝1(1 − 𝑝1)𝑚𝑛 + 𝑝2(1 − 𝑝2)
P−→

√︃
𝑝1 (1−𝑝1 )

𝑞
+ 𝑝2(1 − 𝑝2) .

With the help of Cramér-Slutsky theorem (Theorem 1.2) it remains to show that
√
𝑚

(
𝑑 − 𝑑𝑋

) d−→ N
(
0, 𝑝1 (1−𝑝1 )

𝑞
+ 𝑝2(1 − 𝑝2)

)
,

which can be proved analogously as in the proof of Theorem 6.2 from the joint asymp-
totic normality of estimators 𝑝1 and 𝑝2 v (7.3). □
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7. One-sample and two-samples problems for binary data

For the asymptotic test hypothesis 𝐻0 : 𝑑𝑋 = 0 against the alternative 𝐻1 : 𝑑𝑋 ≠ 0
we will use the test statistic

𝑇𝑑 =
𝑑√︃

𝑝1 (1−𝑝1 )
𝑛

+ 𝑝2 (1−𝑝2 )
𝑚

and the hypothesis will be rejected when
���𝑇𝑑 ��� ≥ 𝑢1−𝛼/2.

From Proposition 7.1 we get by the straightforward algebra that

P
[
𝑑 − 𝑢1−𝛼/2

√︃
𝑝1 (1−𝑝1 )

𝑛
+ 𝑝2 (1−𝑝2 )

𝑚
< 𝑑𝑋 < 𝑑 + 𝑢1−𝛼/2

√︃
𝑝1 (1−𝑝1 )

𝑛
+ 𝑝2 (1−𝑝2 )

𝑚

]
→ 1 − 𝛼.

From this one can easily get the asymptotic confidence interval for the difference of
probabilities 𝑑𝑋 .

Remark. As the null hypothesis𝐻0 : 𝑑𝑋 = 0 implies that 𝑝1 = 𝑝2, one can also instead
of 𝑇𝑑 use the test statistic

𝑇𝑑 =
𝑑√︃

𝑝 (1 − 𝑝)
( 1
𝑛
+ 1
𝑚

) , (7.4)

where 𝑝 =
𝑋1+𝑋2
𝑛+𝑚 is the estimate of the joint probability under the null hypothesis. The

test statistic𝑇𝑑 has asymptotic distribution N(0, 1) under the null hypothesis. The ad-
vantage of this test statistic is that the actual level of the corresponding test is usually
closer to 𝛼 than actual level of the test based on 𝑇𝑑 . On the other hand the disad-
vantage of this test statistic is that it cannot be used to to construct the confidence
interval for the difference of probabilities 𝑑𝑋 = 𝑝1 − 𝑝2.

Exercise. Alternatively one can use also the two-sample 𝑡 -test (see Chapter 6.2) for
testing the hypothesis 𝐻0 : 𝜇𝑋 = 𝜇𝑌 . Show that in this situation the test statistic 𝑇𝑛,𝑚
is of the form

𝑇𝑛,𝑚 =
𝑑√︃

𝑝1 (1−𝑝1 )
𝑛−1 + 𝑝2 (1−𝑝2 )

𝑚−1

.

7.2.2. RELATIVE RISK

A different way of comparing probabilities (risk) is the relative risk 𝑟𝑋 = 𝑝1/𝑝2. This
parameter says how many times is the risk in population 1 bigger than in popula-
tion 2 and it can take values in the interval (0,∞). The probabilities (risks) are the
same if and only if 𝑟𝑋 = 1.
The estimator �̂� = 𝑝1/𝑝2 is consistent (but not unbiased) estimator of the parameter

𝑟𝑋 .
Although we can derive the asymptotic distribution of �̂� = 𝑝1/𝑝2, it is known that

the normal approximation is more appropriate for the logarithm of the �̂�.
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7. One-sample and two-samples problems for binary data

Proposition 7.2 Let 𝑝1, 𝑝2 ∈ (0, 1) and it holds that (7.2). Then
log �̂� − log 𝑟𝑋√︃

1−𝑝1
𝑛𝑝1

+ 1−𝑝2
𝑚𝑝2

d−→ N(0, 1).

Proof. Again we will proceed analogously as in the proof of Theorem 6.2.
First rewrite

log �̂� − log 𝑟𝑋√︃
1−𝑝1
𝑛𝑝1

+ 1−𝑝2
𝑚𝑝2

=

√
𝑚

(
log �̂� − log 𝑟𝑋

)√︃
𝑚
𝑛
1−𝑝1
𝑝1

+ 1−𝑝2
𝑝2

Now with the help of law of large numbers (Proposition 1.3) and continuous map-
ping theorem (Proposition 1.1) it is straightforward to show that√︂

𝑚
𝑛
1−𝑝1
𝑝1

+ 1−𝑝2
𝑝2

P−→
√︃

1−𝑝1
𝑞𝑝1

+ 1−𝑝2
𝑝2

.

Thus with the help of Cramér-Slutsky theorem (Theorem 1.2) it remains to show
that √

𝑚
(
log �̂� − log 𝑟𝑋

) d−→ N
(
0, 1−𝑝1

𝑞𝑝1
+ 1−𝑝2

𝑝2

)
.

But this is implied by delta-method (Proposition 1.5) and the joint asymptotic nor-
mality (7.3), as the gradient of the function

𝑔 (𝑝1, 𝑝2) = log
(𝑝1
𝑝2

)
= log𝑝1 − log𝑝2

is
( 1
𝑝1
, −1
𝑝2

)
. Thus the asymptotic variance of the random variable

√
𝑚

(
log �̂� − 𝑟𝑋

)
is(

1
𝑝1

−1
𝑝2

) (
𝑝1 (1−𝑝1 )

𝑞
0

0 𝑝2(1 − 𝑝2)

) ( 1
𝑝1
−1
𝑝2

)
=
1 − 𝑝1
𝑞𝑝1

+ 1 − 𝑝2
𝑝2

.

□

Suppose we are interested in testing 𝑟𝑋 = 1. This can be also expressed as log 𝑟𝑋 = 0.
Thus for the test of 𝐻0 : 𝑟𝑋 = 1 against the alternative 𝐻1 : 𝑟𝑋 ≠ 1 one can use the test
statistic

𝑇𝑟 =
log �̂�√︃

1−𝑝1
𝑛𝑝1

+ 1−𝑝2
𝑚𝑝2

.

The hypothesis is rejected when |𝑇𝑟 | ≥ 𝑢1−𝛼/2.
Proposition 7.2 implies that

P
[
log �̂� − 𝑢1−𝛼/2

√︂
1−𝑝1
𝑛𝑝1

+ 1−𝑝2
𝑚𝑝2

< log 𝑟𝑋 < log �̂� + 𝑢1−𝛼/2
√︂

1−𝑝1
𝑛𝑝1

+ 1−𝑝2
𝑚𝑝2

]
→ 1 − 𝛼.

Thus the asymptotic confidence interval for 𝑟𝑋 is of the form(
�̂� exp

{
−𝑢1−𝛼/2

√︂
1−𝑝1
𝑛𝑝1

+ 1−𝑝2
𝑚𝑝2

}
, �̂� exp

{
𝑢1−𝛼/2

√︂
1−𝑝1
𝑛𝑝1

+ 1−𝑝2
𝑚𝑝2

})
.
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7. One-sample and two-samples problems for binary data

Exercise. What would be the critical region for testing the hypothesis 𝐻0 : 𝑟𝑋 = 2
against the alternative 𝐻1 : 𝑟𝑋 ≠ 2?

7.2.3. ODDS RATIO

The another way of comparing two probabilities is with the help odds ratio

𝑜𝑋 =
𝑝1/(1 − 𝑝1)
𝑝2/(1 − 𝑝2)

=
𝑝1(1 − 𝑝2)
𝑝2(1 − 𝑝1)

.

This parameter quantifies howmuch is is the odd in population 1 larger than in pop-
ulation 2. This parameter can take values in the interval (0,∞). The probabilities
(risks) in both populations are equal if and only if 𝑜𝑋 = 1.
The consistent estimator of the parameter 𝑜𝑋 is given by

𝑜 =
𝑝1(1 − 𝑝2)
𝑝2(1 − 𝑝1)

=
𝑋1(𝑚 − 𝑋2)
𝑋2(𝑛 − 𝑋1)

.

Although one can derive the asymptotic distribution of the estimator 𝑜 =
𝑝1 (1−𝑝2 )
𝑝2 (1−𝑝1 ) ,

it has been observed that the normal approximation works better for the logarithm
of this estimator.

Proposition 7.3 Let 𝑝1, 𝑝2 ∈ (0, 1) and it holds that (7.2). Put

𝑉𝑜 =
1
𝑛𝑝1

+ 1
𝑛 (1 − 𝑝1)

+ 1
𝑚𝑝2

+ 1
𝑚 (1 − 𝑝2)

=
1
𝑋1

+ 1
𝑛 − 𝑋1

+ 1
𝑋2

+ 1
𝑚 − 𝑋2

.

Then
log𝑜 − log𝑜𝑋√︃

𝑉𝑜

d−→ N(0, 1).

Proof. Similarly as in the proof of Theorem 6.2 first we rewrite

log𝑜 − log𝑜𝑋√︃
𝑉𝑜

=

√
𝑚

(
log𝑜 − log𝑜𝑋

)√︃
𝑚𝑉𝑜

Nowwith the help of the law of large numbers (Proposition 1.3) and the continuous
mapping theorem (Proposition 1.1) one can show that√︃

𝑚𝑉𝑜 =

√︃
𝑚
𝑛𝑝1

+ 𝑚
𝑛 (1−𝑝1 ) +

1
𝑝2

+ 1
(1−𝑝2 )

P−→
√︃

1
𝑞𝑝1

+ 1
𝑞 (1−𝑝1 ) +

1
𝑝2

+ 1
(1−𝑝2 )

Further using Cramér-Slutsky theorem (Theorem 1.2) it remains to show that

√
𝑚

(
log𝑜 − log𝑜𝑋

) d−→ N
(
0, 1

𝑞𝑝1
+ 1
𝑞 (1−𝑝1 ) +

1
𝑝2

+ 1
(1−𝑝2 )

)
,
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7. One-sample and two-samples problems for binary data

which follows from the delta-method (Proposition 1.5) from (7.3) as the gradient of
the function

𝑔 (𝑝1, 𝑝2) = log
( 𝑝1
1 − 𝑝1

/ 𝑝2
1 − 𝑝2

)
= log𝑝1 − log(1 − 𝑝1) − log𝑝2 + log(1 − 𝑝2)

is
( 1
𝑝1

+ 1
1−𝑝1 ,−

1
𝑝2

− 1
1−𝑝2

)
. □

The probabilities (odds) in the two populations are equal if and only if 𝑜𝑋 = 1 (or
alternatively if log𝑜𝑋 = 0). For the asymptotic test of the hypothesis 𝐻0 : 𝑜𝑋 = 1
against the alternative 𝐻1 : 𝑜𝑋 ≠ 1 we will use the test statistic

𝑇𝑜 =
log𝑜√︃
𝑉𝑜

and the hypothesis is rejected when |𝑇𝑜 | ≥ 𝑢1−𝛼/2.

Proposition 7.3 implies that

P
[
log𝑜 − 𝑢1−𝛼/2

√︃
𝑉𝑜 < log𝑜𝑋 < log𝑜 + 𝑢1−𝛼/2

√︃
𝑉𝑜

]
→ 1 − 𝛼.

Thus the asymptotic confidence interval for odds ratio 𝑜𝑋 is of the form(
𝑜 exp

{
−𝑢1−𝛼/2

√︃
𝑉𝑜

}
, 𝑜 exp

{
𝑢1−𝛼/2

√︃
𝑉𝑜

})
.

Exercise. What would be the critical region for the hypothesis 𝐻0 : 𝑜𝑋 ≤ 2 against
the alternative 𝐻1 : 𝑜𝑋 > 2?
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Sample examples for the preparation for the exam.
The solution of “the practical exercises” should contain the mathematical model, the

null and the alternative hypothesis, the test statistic and its (either exact or asymptotic)
distribution under the null hypothesis, critical region and the formula to calculate the
p-value. It should be also explicitly stated if the test is exact or asymptotic.

1. From 100 (randomly chosen) university graduates there were 11 who support
the given party. On the other hand from 200 (randomly chosen) high-school
graduates there were 84 people who support that party.
a) It is possible to say that that the party has the support at least 35% among

high-school graduates?
b) Is it possible to say that the support among high-school graduates is at

least two times larger than among university graduates?

2. The mayor of a small municipality would like to organize a new-year firework
but he is not sure if the citizens are in favor of that. He has found that 61 from
100 citizens are in favor of the firework. Based on this data can the mayor be
sufficiently sure that at least half of the citizens are in favor of firework?
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8. MULTINOMIAL DISTRIBUTION AND
CONTINGENCY TABLES

In this chapter we will be dealing with categorical variables, which can take in general
more than two values. The term categorical variable was explained in chapter 3.2.2.
Shortly speaking, it is a discrete variable which takes values from a finite set typically
denoted as 1, . . . , 𝐾 . The values from this does not have to have numerical interpreta-
tion. Usually they denote a membership in a given group (category). The parameters
used in the analysis of categorical data are typically the probabilities of the categories.

8.1. MULTINOMIAL DISTRIBUTION

Multinomial distribution generalises binomial distribution to allow for situations where
the categorical variable can take more than two different values.

8.1.1. MULTINOMIAL DISTRIBUTION: DEFINITION AND PROPERTIES

Definition 8.1 (Multinomial distribution) Let 𝐾 ≥ 2 and 𝑛 ≥ 1 are non-negative
integers and p = (𝑝1, . . . , 𝑝𝐾 )T is the vector of the constants such that 𝑝𝑘 > 0 ∀𝑘 and∑𝐾
𝑘=1 𝑝𝑘 = 1. We say that the random vector X = (𝑋1, . . . , 𝑋𝐾 )T has a multinomial

distribution Mult𝐾 (𝑛,p), if his density with respect to the counting measure on ℤ𝐾 is

P
[
𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝐾 = 𝑥𝐾

]
=


𝑛!

𝑥1! · · · 𝑥𝐾 !
𝑝
𝑥1
1 𝑝

𝑥2
2 · · ·𝑝𝑥𝐾

𝐾

∑𝐾
𝑘=1 𝑥𝑘 = 𝑛

𝑥𝑘 ∈ ℕ0 ∀𝑘

0 otherwise.

A multinomial distribution is the distribution of the numbers of elements in each
of the 𝐾 boxes (compartments) in 𝑛 independent experiments, when in each of the
experiments the probability of the putting of the element in the boxes is given by p.

Theorem 8.1 (Representation of multinomial distribution.) Let Y1, . . . ,Y𝑛 be inde-
pendent random vectors with the distributionMult𝐾 (1,p). Then

∑𝑛
𝑖=1 Y𝑖 ∼ Mult𝐾 (𝑛,p).

Proof. We will proceed by the mathematical induction.

For 𝑛 = 1 the statement obviously holds.

Assume now that the statement holds for 𝑛 − 1, i.e. X =
∑𝑛−1
𝑖=1 Y𝑖 ∼ Mult𝐾 (𝑛 − 1,p).

We will show thatX + Y𝑛 ∼ Mult𝐾 (𝑛,p).
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8. Multinomial distribution and contingency tables

Denote Y𝑛 =
(
𝑌𝑛1. . . . ,𝑌𝑛𝐾

)T and for
∑𝐾
𝑘=1 𝑥𝑘 = 𝑛 we can make use of the induction

assumption and calculate

P
[
𝑋1 +𝑌𝑛1 = 𝑥1, . . . , 𝑋𝐾 +𝑌𝑛𝐾 = 𝑥𝐾

]
=

𝐾∑︁
𝑘=1

P
[
𝑋1 +𝑌𝑛1 = 𝑥1, . . . , 𝑋𝐾 +𝑌𝑛𝐾 = 𝑥𝐾 |𝑌𝑛𝑘 = 1

]
P
[
𝑌𝑛𝑘 = 1

]
=

𝐾∑︁
𝑘=1

P
[
𝑋𝑘 = 𝑥𝑘 − 1, 𝑋 𝑗 = 𝑥𝑗 ,∀𝑗≠𝑘

]
P
[
𝑌𝑛𝑘 = 1

]
=

𝐾∑︁
𝑘=1

(𝑛 − 1)!
(𝑥𝑘 − 1)!

∏𝐾
𝑗=1,𝑗≠𝑘 𝑥𝑗 !

𝑝
𝑥𝑘−1
𝑘

(
𝐾∏

𝑗=1,𝑗≠𝑘
𝑝
𝑥𝑗
𝑗

)
𝑝𝑘

=
(𝑛 − 1)!∏𝐾
𝑗=1 𝑥𝑗 !

(
𝐾∏
𝑗=1

𝑝
𝑥𝑗
𝑗

)
𝐾∑︁
𝑘=1

𝑥𝑘 =
𝑛!

𝑥1! · · · 𝑥𝐾 !
𝑝
𝑥1
1 · · ·𝑝𝑥𝐾

𝐾
.

□

Theorem8.2 (Properties of themultinomial distribution.) LetX ∼ Mult𝐾 (𝑛,p). Then
(i) 𝑋𝑘 ∼ Bi(𝑛,𝑝𝑘 ),
(ii) E𝑋𝑘 = 𝑛𝑝𝑘 , var𝑋𝑘 = 𝑛𝑝𝑘 (1 − 𝑝𝑘 ),
(iii) cov (𝑋 𝑗 , 𝑋𝑘 ) = −𝑛𝑝𝑗𝑝𝑘 , for 𝑗 ≠ 𝑘 ,
(iv) the variance matrix ofX is

varX = 𝑛
[
diag (p) − p⊗2] ,

where diag (p) is the diagonal matrix with the diagonal given by the elements of
the vector p = (𝑝1, . . . , 𝑝𝐾 ) a p⊗2 = ppT.

Proof. With the help of theorem 8.1 we can representX asX =
∑𝑛
𝑖=1 Y𝑖 , whereY1, . . . ,Y𝑛

are independent random vectors with the distribution Mult𝐾 (1,p).
Part (i) follows from the fact that 𝑋𝑘 =

∑𝑛
𝑖=1𝑌𝑖𝑘 .

Part (ii) follows from the properties binomial distribution.

Part (iii). With the help of the above representation one can calculate for 𝑗 ≠ 𝑘

cov
(
𝑋 𝑗 , 𝑋𝑘

)
= cov

(
𝑛∑︁
𝑖=1

𝑌𝑖 𝑗 ,

𝑛∑︁
𝑙=1

𝑌𝑙𝑘

)
=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑙=1

cov
(
𝑌𝑖 𝑗 ,𝑌𝑙𝑘

)
=

𝑛∑︁
𝑖=1

cov
(
𝑌𝑖 𝑗 ,𝑌𝑖𝑘

)
= 𝑛 cov

(
𝑌𝑖 𝑗 ,𝑌𝑖𝑘

)
= 𝑛

(
E𝑌𝑖 𝑗𝑌𝑖𝑘 − E𝑌𝑖 𝑗 E𝑌𝑖𝑘

)
= −𝑛𝑝𝑗𝑝𝑘 ,

where we make use of the fact that cov
(
𝑌𝑖 𝑗 ,𝑌𝑙𝑘

)
= 0 for 𝑖 ≠ 𝑗 (by the independence

of random vectors Y𝑖 and Y𝑙 ), E𝑌𝑖 𝑗𝑌𝑖𝑘 = 0 (as only one element of the vector Y𝑖 is
non-zero), E𝑌𝑖 𝑗 = 𝑝𝑗 and E𝑌𝑖𝑘 = 𝑝𝑘 .
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8. Multinomial distribution and contingency tables

Part (iv). From the statements (ii) and (iii) it follows that

varX =

©«
𝑛𝑝1(1 − 𝑝1) −𝑛𝑝1𝑝2 . . . −𝑛𝑝1𝑝𝐾
−𝑛𝑝2𝑝1 𝑛𝑝2(1 − 𝑝2) . . . −𝑛𝑝2𝑝𝐾
. . . . . . . . . . . .

−𝑛𝑝𝐾𝑝1 −𝑛𝑝𝐾𝑝2 . . . 𝑛𝑝𝐾 (1 − 𝑝𝐾 )

ª®®®¬ = 𝑛
[
diag (p) − ppT]

.

□

Theorem 8.3 (Asymptotic properties of a multinomial distribution.)
LetX𝑛 ∼ Mult𝐾 (𝑛,p). Then
(i)

1
√
𝑛

(
X𝑛 − 𝑛p

) d−−−−→
𝑛→∞

N𝐾

(
0, diag (p) − p⊗2) ,

(ii)
𝐾∑︁
𝑘=1

(𝑋𝑘𝑛 − 𝑛𝑝𝑘 )2
𝑛𝑝𝑘

d−−−−→
𝑛→∞

𝜒2𝐾 −1.

Proof. Part (i). With the help of the theorem 8.1 we can representX𝑛 =
∑𝑛
𝑖=1 Y𝑖 , where

Y1, . . . ,Y𝑛 are independent random vectors with the distribution Mult𝐾 (1,p). Further
from the theorem 8.2 we know that

EY𝑖 = p, varY𝑖 = diag (p) − p⊗2.

Thus with the help of central limit theorem for independent identically distributed
random vectors (Proposition 1.4)

1
√
𝑛

(
X𝑛 − 𝑛 p

)
=

1
√
𝑛

𝑛∑︁
𝑖=1

(
Y𝑖 − p

) d−−−−→
𝑛→∞

N𝐾

(
0, diag (p) − p⊗2

)
.

Part (ii). Note that
𝐾∑︁
𝑘=1

(𝑋𝑛𝑘 − 𝑛𝑝𝑘 )2
𝑛𝑝𝑘

= ZT
𝑛Z𝑛 ,

where
Z𝑛 =

1
√
𝑛

diag
( 1√

p

) (
X𝑛 − 𝑛p

)
.

Now wit the help of part (i)

Z𝑛
d−−−−→

𝑛→∞
Z ∼ N𝐾

(
0, Σ), (8.1)

where diag
( 1√

p

)
is the diagonal matrix with the elements 1√

𝑝1
, . . . , 1√

𝑝𝐾
on the diagonal.

Σ = diag
( 1√

p

) [
diag (p) − p⊗2]diag

( 1√
p

)
= 𝕀𝐾 − √

p
⊗2
.
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8. Multinomial distribution and contingency tables

Note that (
𝕀𝐾 − √

p
⊗2) (

𝕀𝐾 − √
p
⊗2)

= 𝕀𝐾 − 2√p⊗2 + √
p
√
p

T√
p
√
p

T

= 𝕀𝐾 − 2√p⊗2 + √
p
√
p

T
= 𝕀𝐾 − √

p
⊗2
,

as √pT√p = 1. Thus the matrix 𝕀𝐾 − √
p⊗2 is idempotent.

Further with the help of (8.1) and continuous mapping theorem (Proposition 1.4)
one gets that

ZT
𝑛Z𝑛

d−−−−→
𝑛→∞

ZTZ.

Let the matrix Σ = 𝕀𝐾 − √
p⊗2 be idempotent. Then with the help of Lemma A.1 with

𝔸 = 𝕀𝐾 we get that the quadratic form ZTZ follows 𝜒2-distribution with the degrees
of freedom given by

tr
(
𝔸Σ

)
= tr

(
𝕀𝐾 − √

p
⊗2)

= 𝐾 −
𝐾∑︁
𝑘=1

𝑝𝑘 = 𝐾 − 1.

□

8.1.2. ESTIMATING PARAMETERS OF A MULTINOMIAL DISTRIBUTION

For estimating the parameters 𝑝𝑘 , testing hypotheses about 𝑝𝑘 and for the construc-
tion of the confidence intervals for 𝑝𝑘 we can use the methods described in Chap-
ter 7.1 as by Theorem 8.2(i) it holds that 𝑋𝑘 ∼ Bi(𝑛,𝑝𝑘 ).
The entire vector p can be estimated by p̂𝑛 = X

𝑛
. The joint asymptotic distribution

of the estimate p̂𝑛 follows from Theorem 8.3(i):
√
𝑛

(
p̂𝑛 − p

)
=

1
√
𝑛

(
X − 𝑛p

) d−−−−→
𝑛→∞

N𝐾

(
0, diag (p) − p⊗2) .

For an arbitrary 𝐾 -dimensional vector of constants c it holds that
√
𝑛

(
cTp̂𝑛 − cTp

) d−−−−→
𝑛→∞

N
(
0, cT [diag (p) − p⊗2]c

)
.

The unknown asymptotic variance𝑉𝑐 = cT [diag (p) − p⊗2]c can be estimated as

𝑉𝑐 = cT [diag (p̂𝑛) − p̂⊗2
𝑛 ]c.

Then𝑉𝑐 ≠ 0 and moreover with the help of Cramér-Slucký theorem (Proposition 1.2)
√
𝑛

(
cTp̂𝑛 − cTp

)√︃
𝑉𝑐

d−−−−→
𝑛→∞

N(0, 1). (8.2)

With the help of that one can easily derive the asymptotic test of the hypothesis

𝐻0 : cTp = 𝛾0, 𝐻1 : cTp ≠ 𝛾0.
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Consider the following test statistic

𝑇𝑐 =

√
𝑛

(
cTp̂𝑛 −𝛾0

)√︃
𝑉𝑐

.

Thanks to (8.2) under the null hypothesis this statistic has asymptotically standard
normal distribution. Thus we reject 𝐻0 if only if |𝑇𝑐 | ≥ 𝑢1−𝛼/2.
The asymptotic confidence interval for cTp based on (8.2) is given by(

cTp̂𝑛 − 𝑢1−𝛼/2
√︃
𝑉𝑐
𝑛
, cTp̂𝑛 + 𝑢1−𝛼/2

√︃
𝑉𝑐
𝑛

)
.

The vector c is chosen in such a way so that the linear combination cTp represents
the parameter that we are interested in. For instance if we are interested to know if
the probabilities of the first and the last category is the same and we want to cal-
culate the confidence interval for the difference of these probabilities then we take
c = (1, 0, . . . , 0,−1)T and 𝛾0 = 0.

8.1.3. 𝜒2-TEST OF GOODNESS OF FIT FOR MULTINOMIAL DISTRIBUTION

By 𝜒2-test of goodness of fit we understand the test of the hypothesis 𝐻0 : p = p0

based on Theorem 8.3(ii). This hypothesis states that the probabilities of categories
p = (𝑝1, . . . , 𝑝𝐾 )T are equal to the given hypothetical probabilities p0 = (𝑝01 , . . . , 𝑝

0
𝐾
)T,

i.e. 𝑝𝑘 = 𝑝0
𝑘
for each 𝑘 ∈ {1, . . . , 𝐾 }.

By Theorem 8.3(ii) under 𝐻0

𝜒2 =
𝐾∑︁
𝑘=1

(
𝑋𝑘 − 𝑛𝑝0𝑘

)2
𝑛𝑝0

𝑘

d−−−−→
𝑛→∞

𝜒2𝐾 −1. (8.3)

Note that the test statistic compares the observed frequency 𝑋𝑘 in the category 𝑘
with the frequency 𝑛𝑝0

𝑘
expected under the null hypothesis. Large values test statistic

speaks against 𝐻0. Thus the null hypothesis 𝐻0 is rejected when

𝐻0 is rejected ⇔ 𝜒2 ≥ 𝜒2𝐾 −1(1 − 𝛼), (8.4)

where 𝜒2
𝐾 −1(1 − 𝛼) stands for the (1 − 𝛼)-quantile of the distribution 𝜒2

𝐾 −1.
Let 𝑠x be observed value of the test statistic 𝜒2. Asymptotic p-value of this test is

calculated with the help of (4.12) as

𝑝 (x) = 1 −𝐺𝐾 −1(𝑠x),

where 𝐺𝐾 −1 is cumulative distribution function of 𝜒2-distribution with 𝐾 − 1 degrees
of freedom.
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Remark. The asymptotic approximation with the help of 𝜒2 distribution requires
that the sample size 𝑛 is sufficiently large. A simple rule of thumb is that the ex-
pected frequencies 𝑛𝑝0

𝑘
should be at least 5 for each 𝑘 ∈ {1, . . . , 𝐾 }. Otherwise the

𝜒2-approximation might be rather inaccurate.

Remark. For 𝐾 = 2, 𝑝01 ≡ 𝑝0, 𝑋2 = 𝑛 − 𝑋1, 𝑝02 = 1 − 𝑝0 one gets

𝜒2 =
(𝑋1 − 𝑛𝑝0)2

𝑛𝑝0
+ [𝑛 − 𝑋1 − 𝑛 (1 − 𝑝0)]2

𝑛 (1 − 𝑝0)
=

[√
𝑛 (𝑝𝑛 − 𝑝0)√︁
𝑝0(1 − 𝑝0)

]2
, kde 𝑝𝑛 =

𝑋1
𝑛
.

Thus the test statistic of 𝜒2-test for 𝐾 = 2 categories coincides with the square of the
Wilson test statistic introduced in Chapter 7.1.3.

Remark. Note that for 𝐾 > 2 one cannot express the null hypothesis and the alter-
native with a one-dimensional parameter. Thus one cannot simply use the duality
of confidence intervals and statistical testing (Proposition 4.2). Analogously this hold
true for all the tests that follow (with the exception of Chapter 8.2.1) in this chapter.
That is why no confidence intervals are given below.

Example (Is the dice regular?). We throw the dice 𝑛-times. Let 𝑋1, . . . , 𝑋6 be the ab-
solute frequencies of the numbers 1 – 6 on the dice. The dice is regular when 𝑝0

𝑘
= 1/6,

𝑘 = 1, . . . , 6. If the the null hypothesis𝐻0 is rejected then we have proved that the dice
is not regular.

Example (Are child-births uniform in the calendar year?). Suppose we know the num-
ber of babies 𝑋1, . . . , 𝑋12 born in the each of the months (from January to December).
Then we put 𝑝0

𝑘
=

𝑚𝑘

365 , where𝑚𝑘 is the number of days in the 𝑘-th month. By rejecting
𝐻0 we prove that the child-births are not uniform in the calendar year.

Example (Follow data the distribution given by cdf 𝐹0?). Suppose we have a random
sample 𝑍1, . . . , 𝑍𝑛 and we are interested if this sample is from the distribution given
by the cumulative distribution function 𝐹0(𝑥) = 𝐹 (𝑥 ;θ0), where θ0 is known.
Introduce the intervals (𝑎𝑘−1, 𝑎𝑘 ⟩, 𝑘 = 1, . . . , 𝐾 , where 𝑎0 = −∞ and 𝑎𝐾 = ∞. The

number 𝐾 should be chosen in such a way that it is much smaller than 𝑛. Denote
𝑋𝑘 =

∑𝑛
𝑖=1 𝟙(𝑎𝑘−1,𝑎𝑘 ⟩ (𝑍𝑖 ) the number of observations in the 𝑘-th interval. Now if 𝐹0(𝑥) =

𝐹 (𝑥 ;θ0) is the true distribution function of 𝑍𝑖 , then the random vectorX = (𝑋1, . . . , 𝑋𝐾 )T
follows the multinomial distribution Mult𝐾 (𝑛,p0), where probabilities of the cate-
gories are given by 𝑝0

𝑘
= 𝐹 (𝑎𝑘 ;θ0) − 𝐹 (𝑎𝑘−1;θ0).

Now we test the null hypothesis 𝐻0 : p = p0 with the 𝜒2-test of goodness of fit,
see (8.4). By rejecting 𝐻0 we prove that 𝐹 (𝑥 ;θ0) is not the true distribution function
of 𝑍𝑖 .
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8.1.4. 𝜒2-TEST OF GOODNESS OF FIT FOR MULTINOMIAL DISTRIBUTION WITH
ESTIMATED (NUISANCE) PARAMETERS

In the last example we see that the probabilities of categories 𝑝0
𝑘
may depend on the

vector parameter θ0. The test statistic of goodness of fit statistic (8.3) can be calcu-
lated only if this parameter is known. In practice we are often interested in situations
when this parameter is not known but we can estimate it. We will show how to mod-
ify the test statistic (8.3) and the critical region (8.4) for the situation of the unknown
parameter θ0.
Consider the model F0 given as follows. Let the random vector X = (𝑋1, . . . , 𝑋𝐾 )T

follow multinomial distribution Mult𝐾
(
𝑛,p(θ𝑋 )

)
, where θ𝑋 ∈ Θ ⊂ ℝ𝑑 is unknown 𝑑-

dimensional parameter, 𝑑 < 𝐾 − 1, and p is a function mapping Θ into (0, 1)𝐾 so that
p(θ)T1𝐾 = 1 for each θ ∈ Θ (the sum of the coordinates of p(θ) is always 1). We are
interested whether the distributionX can be described with this model or not.

Example. Suppose that in a given population there are two variants of a given gene.
Denote these variants as 𝐴 (e.g. dark eyes) and 𝑎 (e.g. blue eyes). Let 𝜃𝑋 ∈ (0, 1)
be the proportion of 𝐴 in the population of the given gene. Each individual has two
variants of the given gene (one from the father and one from the mother). Thus each
individual has one of the pairs 𝐴𝐴 or 𝐴𝑎 or 𝑎𝑎 . If the variants of the genes are mixing
independently (i.e. it holds Hardy-Weinberg equilibrium), then the following table
give the probabilities of the three possible pairs.

Genotype Probability

𝐴𝐴 𝜃2
𝑋

𝐴𝑎 2𝜃𝑋 (1 − 𝜃𝑋 )
𝑎𝑎 (1 − 𝜃𝑋 )2

Suppose now that we observe 𝑛 independent individuals. Denote 𝑋1, 𝑋2, 𝑋3 the num-
ber of individuals with the corresponding pair 𝐴𝐴, 𝐴𝑎 , 𝑎𝑎 . Provided that Hardy-Weinberg
equilibrium holds then the vectorX = (𝑋1, 𝑋2, 𝑋3)T follows the multinomial distribu-
tion Mult3(𝑛,p(𝜃𝑋 )), where p(𝜃𝑋 ) = (𝜃2

𝑋
, 2𝜃𝑋 (1 − 𝜃𝑋 ), (1 − 𝜃𝑋 )2)T. Base on the obser-

vationsX we would like to show if the population is in the Hardy-Weinberg equilib-
rium.

The parameter θ𝑋 needs to be estimated. For this reason it is natural to use the
maximum likelihood method. Note that the log-likelihood is of the form

ℓ𝑛 (θ) = log
(

𝑛!
𝑋1!· · ·𝑋𝐾 ! [𝑝1(θ)]

𝑋1 · · · [𝑝𝐾 (θ)]𝑋𝐾
)
=

𝐾∑︁
𝑘=1

𝑋𝑘 log𝑝𝑘 (θ) + log
(

𝑛!
𝑋1!· · ·𝑋𝐾 !

)
.

Thus the system of the likelihood equations is given by 𝜕ℓ𝑛 (θ)
𝜕θ

��
θ=θ̂𝑛

= 0, leads to the
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system of 𝑑 equations that determines a 𝑑-dimensional parameter θ̂𝑛 :

𝐾∑︁
𝑘=1

𝑋𝑘

𝑝𝑘 (θ̂𝑛)
𝜕𝑝𝑘 (θ̂𝑛)
𝜕θ

= 0. (8.5)

Consider now the hypotheses

𝐻0 : ∃θ𝑋 ∈ Θ p = p(θ𝑋 ) (model F0 holds)

against the alternative

𝐻1 : ∀θ𝑋 ∈ Θ p ≠ p(θ𝑋 ) (model F0 does not hold).

First we get the estimator θ̂𝑛 of the unknown parameter θ𝑋 by solving (8.5). Then
we can test 𝐻0 by the test of goodness of fit with estimated parameters (instead of
unknown parameters). The asymptotic distribution of the test statistic is still 𝜒2. But
for each estimated one-dimensional parameter we loose one degrees of freedom.

Proposition 8.4 Let the hypothesis𝐻0 holds. Then (under appropriate regularity as-
sumption) the test statistic

𝜒2 =
𝐾∑︁
𝑘=1

[
𝑋𝑘 − 𝑛𝑝𝑘 (θ̂𝑛)

]2
𝑛𝑝𝑘 (θ̂𝑛)

has asymptotically 𝜒2 -distribution with 𝐾 − 𝑑 − 1 degrees of freedom, where 𝑑 is the
number of estimated parameters.

Note that under the null hypothesis E𝑋𝑘 = 𝑛𝑝𝑘 (θ𝑋 ). Thus the test statistic com-
pares the observed frequency 𝑋𝑘 in the category 𝑘 with 𝑛𝑝𝑘 (θ̂𝑛). The latter quantity
can be viewed as the estimate of the expected frequencies under the null hypothesis.
As large values of the test statistic speaks against 𝐻0 one gets the critical region

𝐻0 is rejected ⇔ 𝜒2 ≥ 𝜒2𝐾 −𝑑−1(1 − 𝛼), (8.6)

where 𝜒2
𝐾 −𝑑−1(1 − 𝛼) denotes the (1 − 𝛼)-quantile of the distribution 𝜒2

𝐾 −𝑑−1.

Example (Testing goodness-of-fit with a given parametric family?). Suppose we have
a random sample 𝑍1, . . . , 𝑍𝑛 . We are interested if the distribution of 𝑍𝑖 is given by the
cumulative distribution function 𝐹𝑋 (𝑥) = 𝐹 (𝑥 ;θ𝑋 ), where θ𝑋 ∈ Θ is not know (e.g. a
normal distribution, a gamma distribution, a Poisson distribution).
Introduce the intervals (𝑎𝑘−1, 𝑎𝑘 ⟩, 𝑘 = 1, . . . , 𝐾 , 𝑎0 = −∞, 𝑎𝐾 = ∞, where 𝐾 is small in

comparison with 𝑛. Let the observed frequencies by given by 𝑋𝑘 =
∑𝑛
𝑖=1 𝟙(𝑎𝑘−1,𝑎𝑘 ⟩ (𝑍𝑖 ).

If the distribution of 𝑍𝑖 is given by 𝐹 (𝑥 ;θ𝑋 ), then the random vectorX = (𝑋1, . . . , 𝑋𝐾 )T
follows the multinomial distribution Mult𝐾

(
𝑛,p(θ𝑋 )

)
, where the probabilities of indi-

vidual categories are given by 𝑝𝑘 (θ𝑋 ) = 𝐹 (𝑎𝑘 ;θ𝑋 ) − 𝐹 (𝑎𝑘−1;θ𝑋 ).

141



8. Multinomial distribution and contingency tables

By solving the system of equations (8.5) we get the estimate θ̂𝑛 of the parameter
θ𝑋 . Now we can perform the test as in (8.6). If the null hypothesis is rejected then we
have proved that the distribution of 𝑍𝑖 is not in a given parametric family.
Note that we need that Proposition 8.4 requires that the parameter θ𝑋 is estimated

with the help of maximum likelihood in the model X ∼ Mult𝐾
(
𝑛,p(θ𝑋 )

)
. Proposi-

tion 8.4 is not true when the maximum likelihood estimator is used in the model
𝑍𝑖 ∼ 𝐹 (·;θ𝑋 ). I.e. when the estimate of θ is found as

θ̂𝑛 = argmax
θ∈Θ

𝑛∑︁
𝑖=1

log 𝑓 (𝑍𝑖 ;θ),

where 𝑓 (·;θ) is the density of the random variable 𝑍𝑖 with respect to the 𝜎-finite mea-
sure 𝜇.

8.2. CONTINGENCY TABLES

Let
(𝑋
𝑍

)
be a random vector whose both components are categorical. More specifically

suppose that 𝑋 ∈ {1, . . . , 𝐽 } and 𝑍 ∈ {1, . . . , 𝐾 }. Let(
𝑋1
𝑍1

)
, . . . ,

(
𝑋𝑁

𝑍𝑁

)
be a random sample from the distribution given by the vector

(𝑋
𝑍

)
with the fixed sam-

ple size 𝑁 . Denote the number of individuals classified into the 𝑗 -th category of 𝑋
and the 𝑘-th category of 𝑍 as

𝑛 𝑗𝑘 =

𝑁∑︁
𝑖=1

𝟙{𝑋𝑖 = 𝑗 , 𝑍𝑖 = 𝑘 }, 𝑗 ∈ {1, . . . , 𝐽 }, 𝑘 = 1, . . . , 𝐾 .

The random variable 𝑛 𝑗𝑘 is called the observed frequency for the combination of cat-
egories 𝑗 and 𝑘 . Denote 𝑝𝑗𝑘 = P[𝑋 = 𝑗 , 𝑍 = 𝑘 ] and p = (𝑝11, . . . , 𝑝 𝐽𝐾 )T. As the observed
frequencies were classifying 𝑁 independent individuals into 𝐽𝐾 categories, the ran-
dom vector n = (𝑛11, . . . , 𝑛 𝐽𝐾 )T follows the multinomial distribution Mult𝐽𝐾 (𝑁 ,p). As
we work with the multinomial distribution, we can make use of the results presented
in Chapter 8.1.
Further denote

𝑛 𝑗+ =

𝐾∑︁
𝑘=1

𝑛 𝑗𝑘 , 𝑛+𝑘 =

𝐽∑︁
𝑗=1

𝑛 𝑗𝑘 , 𝑛++ =

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑛 𝑗𝑘 = 𝑁 ,

𝑝𝑗+ =

𝐾∑︁
𝑘=1

𝑝𝑗𝑘 , 𝑝+𝑘 =

𝐽∑︁
𝑗=1

𝑝𝑗𝑘 , 𝑝++ =

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑝𝑗𝑘 = 1.
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While the probabilities 𝑝𝑗𝑘 characterize the joint distribution of 𝑋 and 𝑍 , proba-
bilities 𝑝𝑗+ = P[𝑋 = 𝑗 ] characterize the marginal distribution of 𝑋 and probabilities
𝑝+𝑘 = P[𝑍 = 𝑘 ] characterize marginal distribution of 𝑍 .
Observed frequencies can be represented by the table that is called the contin-

gency table.

𝑍 = 1 . . . 𝑍 = 𝐾 Σ
𝑋 = 1 𝑛11 . . . 𝑛1𝐾 𝑛1+
𝑋 = 2 𝑛21 . . . 𝑛2𝐾 𝑛2+
. . . . . . . . . . . . . . .
𝑋 = 𝐽 𝑛 𝐽1 . . . 𝑛 𝐽𝐾 𝑛 𝐽+
Σ 𝑛+1 . . . 𝑛+𝐾 𝑁

Analogously one can put together the table of probabilities that describes the joint
distribution of the vector (𝑋 , 𝑍 )T and the corresponding marginal distribution of the
random variables 𝑋 and 𝑍 .

𝑍 = 1 . . . 𝑍 = 𝐾 Σ
𝑋 = 1 𝑝11 . . . 𝑝1𝐾 𝑝1+
𝑋 = 2 𝑝21 . . . 𝑝2𝐾 𝑝2+
. . . . . . . . . . . . . . .
𝑋 = 𝐽 𝑝 𝐽1 . . . 𝑝 𝐽𝐾 𝑝 𝐽+
Σ 𝑝+1 . . . 𝑝+𝐾 1

Finally denote the conditional probabilities as

P [𝑋 = 𝑗 | 𝑍 = 𝑘 ] = 𝑝𝑗 (𝑘 ) =
𝑝𝑗𝑘

𝑝+𝑘
,

P [𝑍 = 𝑘 | 𝑋 = 𝑗 ] = 𝑝 ( 𝑗 )𝑘 =
𝑝𝑗𝑘

𝑝𝑗+
.

TESTING INDEPENDENCE 𝜒2-TESTEM

Random variables 𝑋 and 𝑍 are independent if and only if for each 𝑗 ∈ {1, . . . , 𝐽 } and
𝑘 ∈ {1, . . . , 𝐾 } it holds that

P[𝑋 = 𝑗 , 𝑍 = 𝑘 ] = P[𝑋 = 𝑗 ] P[𝑍 = 𝑘 ] neboli 𝑝𝑗𝑘 = 𝑝𝑗+𝑝+𝑘 .

If the null hypothesis holds, then 𝑋 and 𝑍 are independent random variables and
the joint probabilities p = (𝑝11, . . . , 𝑝 𝐽𝐾 )T can be written as functions of 𝑑 = 𝐽 + 𝐾 − 2
parameters

θ𝑋 = (𝑝1+, . . . , 𝑝 ( 𝐽−1)+, 𝑝+1, . . . , 𝑝+(𝐾 −1) )T.
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Maximum likelihood estimator of the parameter θ𝑋 under the null hypothesis of in-
dependence can be found as the solution of the system of equations (8.5) which is
now of the form

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑛 𝑗𝑘

𝑝𝑗𝑘 (θ̂𝑛)
𝜕𝑝𝑗𝑘 (θ̂𝑛)

𝜕θ
= 0.

Note that differentiating with respect to the parameter 𝑝𝑗+ gives

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑛 𝑗𝑘

𝑝𝑗𝑘 (θ)
𝜕𝑝𝑗𝑘 (θ)
𝜕𝑝𝑗+

=

𝐾∑︁
𝑘=1

𝑛 𝑗𝑘
𝑝𝑗+𝑝+𝑘

𝑝+𝑘 −
𝐾∑︁
𝑘=1

𝑛 𝐽𝑘
𝑝 𝐽+𝑝+𝑘

𝑝+𝑘 =

𝐾∑︁
𝑘=1

(
𝑛 𝑗𝑘
𝑝𝑗+

− 𝑛 𝐽𝑘
𝑝𝑗+

)
=
𝑛 𝑗+

𝑝𝑗+
− 𝑛 𝐽+
𝑝𝑗+

.

Thus we get the equations

𝑛 𝑗+

𝑝𝑗+
=
𝑛 𝐽+
𝑝 𝐽+

, 𝑗 = 1, . . . , 𝐽 − 1.

Analogously for differentiating with respect to the parameter 𝑝+𝑘
𝑛+𝑘
𝑝+𝑘

− 𝑛+𝐾
𝑝+𝐾

= 0, 𝑘 = 1, . . . , 𝐾 − 1.

Solving the above system of equations gives 𝑝𝑗+ =
𝑛 𝑗+
𝑁

and 𝑝+𝑘 =
𝑛+𝑘
𝑁

yielding that

θ̂𝑛 =
(
𝑝1+, . . . , 𝑝 ( 𝐽−1)+, 𝑝+1, . . . , 𝑝+(𝐾 −1)

)T
=

(𝑛1+
𝑁
, . . . ,

𝑛 ( 𝐽−1)+
𝑁

, 𝑛+1
𝑁
, . . . ,

𝑛+(𝐾 −1)
𝑁

)T
.

Maximum likelihood estimator of the vector parameter p under the hypothesis inde-
pendence has components

𝑝𝑗𝑘 (θ̂𝑛) = 𝑝𝑗+𝑝+𝑘 =
𝑛 𝑗+𝑛+𝑘

𝑁 2 , 𝑗 ∈ {1, . . . , 𝐽 }, 𝑘 = {1, . . . , 𝐾 }.

Thus the estimated expected frequencies in the contingency table under the null hy-
pothesis of independence are

𝑁𝑝𝑗𝑘 (θ̂𝑛) = 𝑁𝑝𝑗+𝑝+𝑘 =
𝑛 𝑗+𝑛+𝑘

𝑁
.

So the test statistic of Proposition 8.4 is (for the test of independence) of the form

𝜒2 =
𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

(
𝑛 𝑗𝑘 −

𝑛 𝑗+𝑛+𝑘
𝑁

)2
𝑛 𝑗+𝑛+𝑘
𝑁

. (8.7)

By Proposition 8.4 under the null hypothesis the asymptotic distribution of this
statistic is 𝜒2-distribution with the degrees of freedom equal to 𝐽𝐾 − 𝑑 − 1, where
𝑑 = 𝐽 + 𝐾 − 2. i.e. 𝜒2( 𝐽−1) (𝐾 −1) . The hypothesis of independence is rejected when
𝜒2 ≥ 𝜒2( 𝐽−1) (𝐾 −1) (1 − 𝛼).
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Remark. The test described above is called the 𝜒2-test of independence in the con-
tingency table. It can be summarized as follows.

Model (for the conting. table):
(𝑋1
𝑍1

)
, . . . ,

(𝑋𝑁
𝑍𝑁

)
be a random sample from the distribution

given by the random vector
(𝑋
𝑍

)
. Thus for the frequency in the contingency table it

holds that

n ∼ Mult𝐽𝐾
(
𝑁 , (𝑝11, . . . , 𝑝 𝐽𝐾 )

)
, where 𝑝𝑗𝑘 = P[𝑋 = 𝑗 , 𝑍 = 𝑘 ]. (8.8)

This model will be called the joint multinomial model.

Hypothesis and alternative:

𝐻0 : 𝑋 and 𝑍 are independent, i.e. 𝑝𝑗𝑘 = 𝑝𝑗+𝑝+𝑘 ∀𝑗 ∈ {1, . . . , 𝐽 }, ∀𝑘 ∈ {1, . . . , 𝐾 } (8.9)
𝐻1 : 𝑋 and 𝑍 are not independent, i.e. ∃𝑗 ∈{1,...,𝐽 }∃𝑘 ∈{1,...,𝐾 }𝑝𝑗𝑘 ≠ 𝑝𝑗+𝑝+𝑘

Test statistic: 𝜒2 given by (8.7)
Distribution of the test statistic under 𝐻0: 𝜒2

as.∼ 𝜒2( 𝐽−1) (𝐾 −1)

Critical region: 𝐻0 is rejected ⇔ 𝜒2 ≥ 𝜒2( 𝐽−1) (𝐾 −1) (1 − 𝛼).

𝜒2-TEST TEST AS A TEST OF THE HOMOGENEITY OF MULTINOMIAL DISTRIBUTIONS

Sometimes is natural to view the contingency table column-wise as the realizations
of 𝐾 independent multinomial distributions. But before formulating the model for-
mally note that the components of the random vector

(𝑋
𝑍

)
are independent, if and

only if for all 𝑗 ∈ {1, . . . , 𝐽 } and 𝑘 ∈ {1, . . . , 𝐾 } it holds that

P [𝑋 = 𝑗 | 𝑍 = 𝑘 ] = P[𝑋 = 𝑗 ] neboli 𝑝𝑗 (𝑘 ) = 𝑝𝑗+ .

I.e. the null hypothesis of independence holds, if and only if

𝑝𝑗 (1) = 𝑝𝑗 (2) = . . . = 𝑝𝑗 (𝐾 ) for each 𝑗 ∈ {1, . . . , 𝐽 }.

Denote p(𝑘 ) =
(
𝑝1(𝑘 ) , . . . , 𝑝 𝐽 (𝑘 )

)T. From the above thoughts one can conclude that in-
dependence 𝑋 of 𝑍 is equivalent to the fact that the the vectors of conditional prob-
abilities p(1) , . . . ,p(𝐾 ) are equal.
Let us now formalize the columns-wise view on the contingency table. Denote

n(𝑘 ) = (𝑛1𝑘 , . . . , 𝑛 𝐽𝑘 )T the vector of frequencies in the 𝑘-th column.
Model (for conting. table):

n(𝑘 ) ∼ Mult𝐽 (𝑛+𝑘 ,p(𝑘 ) ), 𝑘 ∈ {1, . . . , 𝐾 }, where n·1, . . . ,n·𝐾 are independent. (8.10)

This model will be called the column-wise multinomial model.
Hypothesis and alternative:

𝐻0 : p(1) = . . . = p(𝐾 ) , 𝐻1 : ∃𝑘,𝑙 ∈{1,...,𝐾 } p(𝑘 ) ≠ p(𝑙 ) , (8.11)
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8. Multinomial distribution and contingency tables

From the above considerations we know that the above null hypothesis is equiv-
alent to independence 𝑋 of 𝑍 (8.9) in the joint multinomial model (8.8). From this
one can conclude that the test statistic 𝜒2 given by (8.7) is also a suitable statistic
for testing the null hypothesis (8.11) in the column-wise model (8.10). Further it can
be proved that under the null hypothesis and appropriate assumptions on the col-
umn sizes (𝑛+1, . . . , 𝑛+𝐾 ) it holds that 𝜒2

as.∼ 𝜒2( 𝐽−1) (𝐾 −1) . Thus the test of the hypothesis
of homogeneity of multinomial distributions (8.11) in the column-wise multinomial
model can be performed in the completely same way as a test of independence in
the joint multinomial model.

Remark. The above considerations can be summarized as follows. The test statistic
(8.7) can be used for testing hypotheses independence (8.9) in the model (8.8) as well
as for testing the hypothesis of homogeneity multinomial distributions (8.11) in the
model (8.10). The choice of the model and the corresponding hypothesis depends on
the given applications.
Further it is also worth noting that in the column-wise multinomial model and

hypothesis (8.11) we perform in fact a 𝐾 -sample test.∗

8.2.1. CONTINGENCY TABLES 2 × 2

Consider now the special situation when 𝐽 = 2 and 𝐾 = 2, i.e. both components of the
random vector

(𝑋
𝑍

)
can take only two values. The corresponding contingency table is

𝑍 = 1 𝑍 = 2 Σ
𝑋 = 1 𝑛11 𝑛12 𝑛1+
𝑋 = 2 𝑛21 𝑛22 𝑛2+
Σ 𝑛+1 𝑛+2 𝑁

𝑍 = 1 𝑍 = 2 Σ
𝑋 = 1 𝑝11 𝑝12 𝑝1+
𝑋 = 2 𝑝21 𝑝22 𝑝2+
Σ 𝑝+1 𝑝+2 1

The test statistic is given by

𝜒2 =
2∑︁
𝑗=1

2∑︁
𝑘=1

(
𝑛 𝑗𝑘 −

𝑛 𝑗+𝑛+𝑘
𝑁

)2
𝑛 𝑗+𝑛+𝑘
𝑁

. (8.12)

Under the null hypothesis of independence the test statistic has asymptotically 𝜒21
distribution. The hypothesis of independence is rejected when 𝜒2 ≥ 𝜒21 (1 − 𝛼).

𝜒2-TEST AS A TEST OF HOMOGENEITY OF TWO BINOMIAL DISTRIBUTIONS

Suppose that the variable 𝑍 stands for the number of the sample. Then we have one
sample consisting of random variables 𝑋 representing individuals for which 𝑍 = 1.
The second sample consists of random variables 𝑋 of individuals satisfying 𝑍 = 2.
In the first sample consisting of 𝑛+1 observations there are 𝑛11 individuals for which

𝑋 = 1 (a success) and 𝑛21 values with 𝑋 = 2 (a failure). The probability of success in
∗ 𝐾 -sample tests for quantitative data will be considered in Chapter 9.
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8. Multinomial distribution and contingency tables

the first sample can be denoted as 𝑝1(1) = 𝑝11/𝑝+1. In the second sample consisting
of 𝑛+2 observations there are 𝑛12 individuals for which 𝑋 = 1 (success) and 𝑛22 values
with 𝑋 = 2 (a failure). The probability of success in the second sample is 𝑝1(2) =

𝑝12/𝑝+2.
From the considerations on the previous pages we know that 𝜒2-test can be also

viewed as a test of the equality of the parameters 𝑝1(1) and 𝑝1(2) of two indepen-
dent binomial distribution Bi(𝑛+1, 𝑝1(1) ) and Bi(𝑛+2, 𝑝1(2) ). This problem was already
treated in Chapter 7.2.
Notation used in Chapter 7.2 can be easily transformed to the notation used here

(and otherwise around). The contingency table rewritten in the notation of Chap-
ter 7.2 is given by:

𝑍 = 1 𝑍 = 2 Σ
𝑋 = 1 𝑋1 𝑋2 𝑋1 + 𝑋2
𝑋 = 2 𝑛 − 𝑋1 𝑚 − 𝑋2 𝑛 +𝑚 − 𝑋1 − 𝑋2
Σ 𝑛 𝑚 𝑛 +𝑚

The only difference is that while in Chapter 7.2 we consider two independent ran-
dom samples here we consider one random sample from the multinomial distribu-
tion with 2x2 possible values. While in Chapter 7.2 the sample sizes 𝑛,𝑚 are consid-
ered as fixed, now the sample size are binomial random variables and only the total
number of observations 𝑁 = 𝑛 + 𝑚 is fixed. Thus we are again facing two possible
formulations of the two-sample problem as discussed at the beginning of Chapter 6
about two-sample tests for quantitative data. Similarly as there it does not matter
which of the formulations is chosen and which of the two models is more appropri-
ate for the given contingency table. All the methods presented here are valid for both
of the models.
Chapter 7.2 explains how to compare probabilities (risks) of the event [𝑋 = 1] for

different values of 𝑍 . Basically we can make us of one of the three methods of com-
parison:

• difference of probabilities 𝑑𝑋 = 𝑝1(1) − 𝑝1(2) is estimated by 𝑑 =
𝑛11
𝑛+1

− 𝑛12
𝑛+2

;

• ratio of probabilities 𝑟𝑋 = 𝑝1(1)/𝑝1(2) is estimated by �̂� = 𝑛11𝑛+2
𝑛12𝑛+1

;

• odds ratio 𝑜𝑋 =
𝑝1(1) (1−𝑝1(2) )
𝑝1(2) (1−𝑝1(1) ) is estimated by 𝑜 =

𝑛11𝑛22
𝑛12𝑛21

(that is why the odds ratio
is also called cross ratio).

The methods for testing and confidence intervals for these parameters are described
in Chapter 7.2.
Note that the independence of random variables 𝑋 and 𝑍 are equivalent to one of

the equalities below
𝑑𝑋 = 0, 𝑟𝑋 = 1, 𝑜𝑥 = 1.

Thus the test of null risk difference, the unit relative risk or odds ratio is equivalent
to the test of independence of 𝑋 and 𝑍 .
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8. Multinomial distribution and contingency tables

Remark. It can be shown that for the test statistic of 𝜒2-test of independence (8.12)
it holds that

𝜒2 = 𝑇 2
𝑑 ,

where 𝑇𝑑 is a test statistic for the difference of probabilities give by (7.4).

8.2.2. CONTINGENCY TABLE 2 × K

Now consider the special situation when 𝐽 = 2 and 𝐾 ≥ 2. The contingency table
consists of 2 × 𝐾 frequencies:

𝑍 = 1 𝑍 = 2 . . . 𝑍 = 𝐾 Σ
𝑋 = 1 𝑛11 𝑛12 . . . 𝑛1𝐾 𝑛1+
𝑋 = 2 𝑛21 𝑛22 . . . 𝑛2𝐾 𝑛2+
Σ 𝑛+1 𝑛+2 . . . 𝑛+𝐾 𝑁

𝑍 = 1 𝑍 = 2 . . . 𝑍 = 𝐾 Σ
𝑋 = 1 𝑝11 𝑝12 . . . 𝑝1𝐾 𝑝1+
𝑋 = 2 𝑝21 𝑝22 . . . 𝑝2𝐾 𝑝2+
Σ 𝑝+1 𝑝+2 . . . 𝑝+𝐾 𝑁

One can view the table column-wise as having 𝐾 independent samples from the bi-
nomial distributions with potentially different probabilities of success 𝑝1𝑘/𝑝+𝑘 . This
can be viewed as a generalization of the two-sample problem treated Chapter 7.2 to
more then two samples.
Alternatively one can also view the table row-wise as two samples from the multi-

nomial distribution with potentially different vectors of probabilities(
𝑝11
𝑝1+
,
𝑝12
𝑝1+
, . . . ,

𝑝1𝐾
𝑝1+

)T
a

(
𝑝21
𝑝2+
,
𝑝22
𝑝2+
, . . . ,

𝑝2𝐾
𝑝2+

)T
.

TESTING INDEPENDENCE BY THE 𝜒2-TEST

𝑋 and 𝑍 are independent, if and only if 𝑝1(1) = 𝑝1(2) = . . . = 𝑝1(𝐾 ) . This requires that
for each pair of the groups 𝑍 = 𝑘1 and 𝑍 = 𝑘2 the difference of the risks 0 (alternatively
the relative risk or odds ratio is 1).
When the null hypothesis of independence of 𝑋 and 𝑍 holds then the probabili-

ties p = (𝑝11, 𝑝21, . . . , 𝑝1𝐾 , 𝑝2𝐾 )T specifying the multinomial distribution vector n are
functions of 𝐾 parameters (𝑝1+ a 𝑝+1, . . . , 𝑝+(𝐾 −1)). Thus we get that the test statistic is

𝜒2 =
2∑︁
𝑗=1

𝐾∑︁
𝑘=1

(
𝑛 𝑗𝑘 −

𝑛 𝑗+𝑛+𝑘
𝑁

)2
𝑛 𝑗+𝑛+𝑘
𝑁

.

Under the null hypothesis this test statistic has asymptotically 𝜒2
𝐾 −1 distribution. The

null hypothesis is rejected when 𝜒2 ≥ 𝜒2
𝐾 −1(1 − 𝛼).
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8. Multinomial distribution and contingency tables

Analogously as in Chapter 8.2.1 one can view the 𝜒2-test of independence as a test
of homogeneity of binomial distributions (i.e. a 𝐾 -sample tests for binomial distri-
butions).
Alternatively one can view the test also a test that two multinomial distributions

have the same vectors of probabilities (i.e. a two-sample test in the multinomial dis-
tribution).

Example. Suppose that we observe data about the highest gained education (pri-
mary, high-school, university) and whether the given person is a regularly smoker or
not. Suppose that we are interested in the relationship of smoking and gained edu-
cation.
The null hypothesis that the smoking is independent of the gained education can

be viewed in two equivalent ways:
• for each of the groups (according to the gained education) the probability of
smoking is the same (i.e. we compare three binomial distributions);

• the structure of gained education is the same in the group of smokers as in the
group of non-smokers (i.e. we compare two multinomial distributions).

Remark. Suppose we observe 𝐾 independent random variables 𝑋1, . . . , 𝑋𝐾 , where
𝑋𝑘 ∼ Bi(𝑛𝑘 , 𝑝𝑘 ) for each 𝑘 ∈ {1, . . . , 𝐾 }. We want to test the hypotheses

𝐻0 : 𝑝1 = · · · = 𝑝𝐾 , 𝐻1 : ∃𝑘≠𝑗 𝑝𝑘 ≠ 𝑝𝑗 .

For this situation in statistical textbooks one can often find that the null hypothesis
should be rejected when

𝑄 ≥ 𝜒2𝐾 −1(1 − 𝛼), where 𝑄 =
1

𝑝 (1 − 𝑝)

𝐾∑︁
𝑘=1

𝑛𝑘
(
𝑝𝑘 − 𝑝)2,

with 𝑝𝑘 =
𝑋𝑘
𝑛𝑘
, 𝑝 = 1

𝑁

∑𝐾
𝑘=1 𝑋𝑘 and 𝑁 =

∑𝐾
𝑘=1 𝑛𝑘 .

It can be proved that
𝑄 = 𝜒2,

where 𝜒2 is test statistic of 𝜒2-test of independence calculated from the following con-
tingency table

𝑍 = 1 𝑍 = 2 . . . 𝑍 = 𝐾 Σ

𝑋 = 1 𝑋1 𝑋2 . . . 𝑋𝐾
∑𝐾
𝑘=1 𝑋𝑘

𝑋 = 2 𝑛1 − 𝑋1 𝑛2 − 𝑋2 . . . 𝑛𝐾 − 𝑋𝐾 𝑁 − ∑𝐾
𝑘=1 𝑋𝑘

Σ 𝑛1 𝑛2 . . . 𝑛𝐾 𝑁

.

Thus the test based on test statistic 𝑄 is the same as the approach based on the 𝜒2-
test of independence.
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8. Multinomial distribution and contingency tables

Sample examples for the preparation for the exam.
The solution of “the practical exercises” should contain the mathematical model, the

null and the alternative hypothesis, the test statistic and its (either exact or asymptotic)
distribution under the null hypothesis, critical region and the formula to calculate the
p-value. It should be also explicitly stated if the test is exact or asymptotic.

1. The target is divided into 4 segments. They were 𝑛 𝑗 shots in the 𝑗 -th segment
(𝑗 = 1, . . . , 4).
(a) Suggest a test of the hypothesis that the probabilities of hitting the first and
the second segment are equal.
(b) Suggest a test of the hypothesis that the probability of hitting the first seg-
ment is at least two times larger than the probability of hitting the fourth seg-
ment.

2. In a large shopping centre there are 3 elevators. The management of the shop-
ping centre would like to know if the customers have some preferences regard-
ing these elevators. Suggest a way what data to collect and how to statistically
test the hypothesis that the customers have no preferences.

3. Four universities have decided to compare howmany left-handed students they
have. Each of the university taken a sample of 100 randomly sampled students.
Suggest a test of the hypothesis that there is no difference among the universi-
ties in the proportions of left-handed students.
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9. 𝐾 -SAMPLE PROBLEM FOR QUANTITATIVE
DATA

Two-sample tests verify whether two groups of independent samples differ in some
characteristic, usually in the expected value. The question is, how to compare more
than two groups at the same time. The problem of comparing several groups of cat-
egorical data (binomial or multinomial distribution) was addressed in the previous
chapter. In this chapter, we will study this problem for the case of quantitative ran-
dom variables.
Let us have 𝐾 ≥ 2 independent random samples (groups)

𝑌11, . . . ,𝑌1𝑛1 from the distribution 𝐹1,
𝑌21, . . . ,𝑌2𝑛2 from the distribution 𝐹2,
...

and 𝑌𝐾 1, . . . ,𝑌𝐾 𝑛𝐾 from the distribution 𝐹𝐾 .

Individual observations are denoted by 𝑌𝑘𝑖 , where the index 𝑘 stands for the num-
ber of the sample the observation belongs to and it attains values from 1 to 𝐾 , while
𝑖 is the index of the observation within said sample and it attains values from 1 to 𝑛𝑘 ,
where 𝑛𝑘 is the size of 𝑘 th sample. Denote 𝑁 =

∑𝐾
𝑘=1 𝑛𝑘 and n = (𝑛1, . . . , 𝑛𝐾 )T. Then

we have that 1T
𝐾
n =

∑𝐾
𝑘=1 𝑛𝑘 = 𝑁 .

𝐾 -sample problem tests the null-difference hypothesis

𝐻0 : 𝐹1(𝑥) = 𝐹2(𝑥) = . . . = 𝐹𝐾 (𝑥), ∀𝑥 ∈ 𝑅,

against the alternative that there exists at least one pair of different groups, i.e.

𝐻1 : ∃𝑘≠𝑗 ∃𝑥 ∈ ℝ : 𝐹𝑘 (𝑥) ≠ 𝐹𝑗 (𝑥).

9.1. ANALYSIS OF VARIANCE (ANOVA)

We will assume a model that requires all the distributions 𝐹1, . . . , 𝐹𝐾 to have the
same variance.
Similarly as in the case of one-sample and two-sample 𝑡 -test with the assumption

of equality of variances (see Sections 5.3 and 6.3) the further described test will be
exact under the assumption of normality and asymptotic without this assumption.
Model:

F𝑛 =
{
𝐹𝑘 = N(𝜇𝑘 , 𝜎2), 𝜇𝑘 ∈ ℝ, 𝑘 ∈ {1, . . . , 𝐾 }, 𝜎2 > 0

}
(9.1)
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9. 𝐾 -sample problem for quantitative data

or

F𝑎𝑠 =
{
𝐹𝑘 ∈ L2

+, 𝑘 ∈ {1, . . . , 𝐾 }, where var (𝑌11) = var (𝑌21) = var (𝑌𝐾 1) := 𝜎2
}
.

Notice that in the normal model F𝑛 , individual groups can only differ in expected
values.
Let 𝜇𝑘 denote the expected value of the 𝑘 th group, i.e. 𝜇𝑘 = E𝑌𝑘𝑖 . We will deal with

the question whether all groups have the same expected value.
Tested parameters: Expected values 𝜇𝑘 = E𝑌𝑘𝑖 .
Null hypothesis and alternative

𝐻0 : 𝜇1 = · · · = 𝜇𝐾 , 𝐻1 : ∃𝑘≠𝑗 𝜇𝑘 ≠ 𝜇𝑗 .

Značení. Let
• 𝑌𝑘+

df
=

∑𝑛𝑘
𝑖=1𝑌𝑘𝑖 and𝑌𝑘+

df
= 𝑛−1

𝑘

∑𝑛𝑘
𝑖=1𝑌𝑘𝑖 be the sum and samplemean of each group

• 𝑌++
df
=

∑𝐾
𝑘=1

∑𝑛𝑘
𝑖=1𝑌𝑘𝑖 be the total sum and 𝑌++

df
= 𝑁 −1 ∑𝐾

𝑘=1
∑𝑛𝑘
𝑖=1𝑌𝑘𝑖 be the total

sample mean.
Notice that 𝑌++ is the weighted mean of all group means 𝑌𝑘+ with weights 𝑛𝑘 , i.e.

𝑌++ =

∑𝐾
𝑘=1 𝑛𝑘𝑌𝑘+∑𝐾
𝑘=1 𝑛𝑘

.

Furthermore, denote the observations in the groupsY𝑘 = (𝑌𝑘1, . . . ,𝑌𝑘𝑛𝑘 )T, 𝑘 ∈ {1, . . . , 𝐾 }
and all of the observations Y = (Y T

1 , . . . ,Y
T
𝐾
)T.

Our approach will be based on several kinds of sums of squares presented in the
following definition.

Definition 9.1 The sum of squares in the analysis of variance:
• 𝑆𝑆𝐶

df
=

∑𝐾
𝑘=1

∑𝑛𝑘
𝑖=1

(
𝑌𝑘𝑖 −𝑌++

)2 is called the total sum of squares,
• 𝑆𝑆𝐴

df
=

∑𝐾
𝑘=1 𝑛𝑘

(
𝑌𝑘+ −𝑌++

)2 is called the between group sum of squares,
• 𝑆𝑆𝑒

df
=

∑𝐾
𝑘=1

∑𝑛𝑘
𝑖=1

(
𝑌𝑘𝑖 −𝑌𝑘+

)2 is called the residual sum of squares or the error sum
of squares.

Theorem 9.1 It holds that
𝑆𝑆𝐶 = 𝑆𝑆𝐴 + 𝑆𝑆𝑒 .
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9. 𝐾 -sample problem for quantitative data

Proof.

𝑆𝑆𝐶 =

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

(
𝑌𝑘𝑖 −𝑌++

)2
=

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

(
𝑌𝑘𝑖 −𝑌𝑘+ +𝑌𝑘+ −𝑌++

)2
=

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

(
𝑌𝑘𝑖 −𝑌𝑘+

)2 + 𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

(
𝑌𝑘+ −𝑌++

)2 + 2 𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

(
𝑌𝑘𝑖 −𝑌𝑘+

) (
𝑌𝑘+ −𝑌++

)
= 𝑆𝑆𝑒 +

𝐾∑︁
𝑘=1

𝑛𝑘
(
𝑌𝑘+ −𝑌++

)2 + 2 𝐾∑︁
𝑘=1

(
𝑌𝑘+ −𝑌++

) 𝑛𝑘∑︁
𝑖=1

(
𝑌𝑘𝑖 −𝑌𝑘+

)
= 𝑆𝑆𝑒 + 𝑆𝑆𝐴 + 0.

We have used the fact that
𝑛𝑘∑︁
𝑖=1

(
𝑌𝑘𝑖 −𝑌𝑘+

)
= 𝑌𝑘+ − 𝑛𝑘𝑌𝑘+ = 0, for 𝑘 ∈ {1, . . . , 𝐾 }.

□

Remark. 𝑆𝑆𝐶 measures the total variability of our data. This variability can be de-
composed into two parts, the variability between individual groups expressing their
difference (𝑆𝑆𝐴) and the variability within each group 𝑆𝑆𝑒 .
𝑌𝑘+ is an estimate of 𝜇𝑘 and 𝑌++ is an estimate of the total expected value (under

𝐻0), therefore 𝑆𝑆𝐴 should be small compared to 𝑆𝑆𝑒 under the null hypothesis. If 𝑆𝑆𝐴
is too large compared to 𝑆𝑆𝑒 , it implies that the means of the individual groups differ
too much from each other and we should reject the hypothesis of equal expected
values.

The test statistic will compare the variability of the sample means (𝑆𝑆𝐴) and the
variability within individual groups (𝑆𝑆𝑒 ). In the following part, we will examine
properties of statistics 𝑆𝑆𝑒 and 𝑆𝑆𝐴 .

Lemma 9.2 Suppose that model F𝑎𝑠 holds.
(i) Then it holds that

E𝑆𝑆𝑒 = (𝑁 − 𝐾 ) 𝜎2.

(ii) Furthermore, if model F𝑛 holds, then
𝑆𝑆𝑒

𝜎2
∼ 𝜒2

𝑁 −𝐾 .

Proof. Part (i) Notice that

𝑆𝑆𝑒 =

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

(
𝑌𝑘𝑖 −𝑌𝑘+

)2
=

𝐾∑︁
𝑘=1

(𝑛𝑘 − 1) 𝑆2𝑘 , (9.2)
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9. 𝐾 -sample problem for quantitative data

where 𝑆2
𝑘
= 1

𝑛𝑘−1
∑𝑛𝑘
𝑖=1

(
𝑌𝑘𝑖 − 𝑌𝑘+

)2 is the sample variance of the 𝑘 th group. According
to Theorem 2.6(ii), 𝑆2

𝑘
is an unbiased estimate of the variance 𝜎2. Therefore

E𝑆𝑆𝑒 =
𝐾∑︁
𝑘=1

(𝑛𝑘 − 1) 𝜎2 = (𝑁 − 𝐾 ) 𝜎2.

Part (ii) Using (9.2), we can write

𝑆𝑆𝑒

𝜎2
=

𝐾∑︁
𝑘=1

(𝑛𝑘 − 1) 𝑆2𝑘
𝜎2

.

For 𝑘 ∈ {1, . . . , 𝐾 }, the random variables (𝑛𝑘−1) 𝑆2𝑘
𝜎2

have, according to Theorem 2.8(i),
𝜒2-distribution with 𝑛𝑘 − 1 degrees of freedom. Furthermore, these random vari-
ables are independent. Therefore, the random variable 𝑆𝑆𝑒

𝜎2
has 𝜒2-distribution with∑𝐾

𝑘=1(𝑛𝑘 − 1) = 𝑁 − 𝐾 degrees of freedom.
□

The following lemma summarises the properties of 𝑆𝑆𝐴 . At first, let us denote

𝜇 = E𝑌++ =
1
𝑁

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

E𝑌𝑘𝑖 =
1
𝑁

𝐾∑︁
𝑘=1

𝑛𝑘𝜇𝑘 .

Lemma 9.3 Assume that the model F𝑎𝑠 holds.
(i) Then

E𝑆𝑆𝐴 =

𝐾∑︁
𝑘=1

𝑛𝑘
(
𝜇𝑘 − 𝜇

)2 + (𝐾 − 1)𝜎2.

(ii) Furthermore, if the model F𝑛 holds, then 𝑆𝑆𝐴 and 𝑆𝑆𝑒 are independent.
(iii) Furthermore, if the model F𝑛 and the null hypothesis𝐻0 hold, then 𝑆𝑆𝐴

𝜎2
∼ 𝜒2

𝐾 −1.

Proof. To prove this theorem, we use the following fact from Theorem 9.1:

𝑆𝑆𝐴 = 𝑆𝑆𝐶 − 𝑆𝑆𝑒 . (9.3)

Part (i). Let us at first compute E𝑆𝑆𝐶 . Similarly as in Theorem 2.4(ii) we can write

𝑆𝑆𝐶 =

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

(
𝑌𝑘𝑖 −𝑌++

)2
= Y T𝔸𝐶Y , where 𝔸𝐶 = 𝕀𝑁 − 1

𝑁
1𝑁1

T
𝑁 . (9.4)

So, with the help of Lemma 2.5, we have that

E𝑆𝑆𝐶 = EY T𝔸𝐶 EY + tr
(
𝔸𝐶 var (Y )

)
=

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

(𝜇𝑘 − 𝜇)2 + 𝜎2 tr
(
𝔸𝐶

)
=

𝐾∑︁
𝑘=1

𝑛𝑘 (𝜇𝑘 − 𝜇)2 + 𝜎2(𝑁 − 1).
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Furthermore, we know from Lemma 9.2 that E𝑆𝑆𝑒 = (𝑁 − 𝐾 ) 𝜎2. Using (9.3), we can
write

E𝑆𝑆𝐴 = E𝑆𝑆𝐶 − E𝑆𝑆𝑒 =
𝐾∑︁
𝑘=1

𝑛𝑘 (𝜇𝑘 − 𝜇)2 + 𝜎2(𝐾 − 1).

Part (ii). Notice that Y ∼ N𝑁 (·, 𝜎2𝕀𝑁 ). Since our aim is to use Lemma 2.7(ii), we have
to, at first, express 𝑆𝑆𝑒 and 𝑆𝑆𝐴 as quadratic forms of all observations Y .
Notice that by using (9.2) we get, similarly as in (9.4), that

𝑆𝑆𝑒 =

𝐾∑︁
𝑘=1

(𝑛𝑘 − 1) 𝑆2𝑘 =

𝐾∑︁
𝑘=1

Y T
𝑘

(
𝕀𝑛𝑘 − 1

𝑛𝑘
1𝑛𝑘1

T
𝑛𝑘
)Y𝑘 = Y T (

𝕀𝑁 − 𝔹
)
Y , (9.5)

where

𝔹 =

©«
1
𝑛1
1𝑛11

T
𝑛1 𝟘𝑛1×𝑛2 . . . 𝟘𝑛1×𝑛𝐾

𝟘𝑛2×𝑛1
1
𝑛2
1𝑛21

T
𝑛2 . . . 𝟘𝑛2×𝑛𝐾

...
...

. . .
...

𝟘𝑛𝐾 ×𝑛1 𝟘𝑛𝐾 ×𝑛2 . . . 1
𝑛𝐾

1𝑛𝐾 1
T
𝑛𝐾

ª®®®®®¬
.

Moreover, using (9.3), (9.4) and (9.5), we get that

𝑆𝑆𝐴 = 𝑆𝑆𝐶 − 𝑆𝑆𝑒 = Y T (
𝕀𝑁 − 1

𝑁
1𝑁1

T
𝑁

)
Y − Y T (

𝕀𝑁 − 𝔹
)
Y

= Y T (
𝔹 − 1

𝑁
1𝑁1

T
𝑁

)
Y . (9.6)

Since we have Σ = var (Y ) = 𝜎2𝕀𝑁 , it is now enough to verify, thanks to Lemma 2.7(ii),
that the product of matrices

(
𝔹 − 1

𝑁
1𝑁1

T
𝑁

)
(𝕀𝑁 − 𝔹) is a null matrix. We can compute(

𝔹 − 1
𝑁
1𝑁1

T
𝑁

)
(𝕀𝑁 − 𝔹) = 𝔹 − 1

𝑁
1𝑁1

T
𝑁 − 𝔹𝔹 + 1

𝑁
1𝑁1

T
𝑁𝔹

= 𝔹 − 1
𝑁
1𝑁1

T
𝑁 − 𝔹 + 1

𝑁
1𝑁1

T
𝑁 = 𝟘𝑁 ×𝑁 ,

where we have used the fact that

𝔹𝔹 = 𝔹 and 1T
𝑁𝔹 = 1T

𝑁 . (9.7)

Part (iii). Notice at first that the statistic 𝑆𝑆𝐴 is invariant under translations, i.e. the
value 𝑆𝑆𝐴 does not change, if we compute it from Ỹ = Y − 𝑐1𝑁 , for any 𝑐 ∈ ℝ.
So, using (9.6), we get that

𝑆𝑆𝐴

𝜎2
=

(
Y −𝜇1𝑁

𝜎

)T (
𝔹 − 1

𝑁
1𝑁1

T
𝑁

) (
Y −𝜇1𝑁

𝜎

)
,

where 𝜇 is the common value of parameters 𝜇1, . . . , 𝜇𝐾 under the null hypothesis.
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We have that Y −𝜇1𝑁
𝜎

∼ N𝑁

(
0, 𝕀𝑁

)
. So we are in the situation of Lemma A.1 with

𝔸 = 𝔹 − 1
𝑁
1𝑁1

T
𝑁
and Σ = 𝕀𝑁 . It remains to verify that the matrix 𝔸Σ = 𝔹 − 1

𝑁
1𝑁1

T
𝑁
is

idempotent. Let us compute(
𝔹 − 1

𝑁
1𝑁1

T
𝑁

) (
𝔹 − 1

𝑁
1𝑁1

T
𝑁

)
= 𝔹𝔹 − 1

𝑁
1𝑁1

T
𝑁𝔹 − 𝔹 1

𝑁
1𝑁1

T
𝑁 + 1

𝑁
1𝑁1

T
𝑁

1
𝑁
1𝑁1

T
𝑁

= 𝔹 − 1
𝑁
1𝑁1

T
𝑁 − 1

𝑁
1𝑁1

T
𝑁 + 1

𝑁
1𝑁1

T
𝑁 = 𝔹 − 1

𝑁
1𝑁1

T
𝑁 ,

where we have used (9.7), the symmetry of the matrix 𝔹 and the fact that 1
𝑁
1T
𝑁
1𝑁 =

1. So, according to Lemma A.1, 𝑆𝑆𝐴
𝜎2

has 𝜒2-distribution with the following degrees of
freedom

tr
(
𝔹 − 1

𝑁
1𝑁1

T
𝑁

)
= 𝐾 − 1.

□

Notice that, according to Lemma 9.2 (i), the statistic 𝑆𝑆𝑒
𝑁 −𝐾 is also an unbiased esti-

mate of 𝜎2. On the other hand, by Lemma 9.3 (i), we have that 𝑆𝑆𝐴
𝐾 −1 is an unbiased

estimate of 𝜎2 only under the null hypothesis, while under the alternative we have
that E 𝑆𝑆𝐴

𝐾 −1 > 𝜎2. This brings us to the following test.
Test statistic:

𝐹𝐴 =
𝑆𝑆𝐴/(𝐾 − 1)
𝑆𝑆𝑒/(𝑁 − 𝐾 ) .

The null hypothesis will be rejected for too large values of 𝐹𝐴 .

Theorem 9.4 Suppose that the model F𝑛 and also the null hypothesis 𝐻0 hold, then
𝐹𝐴 ∼ 𝐹𝐾 −1,𝑁 −𝐾 .

Proof. The statistic 𝐹𝐴 can be rewritten as

𝐹𝐴 =

𝑆𝑆𝐴
𝜎2

/(𝐾 − 1)
𝑆𝑆𝑒
𝜎2

/(𝑁 − 𝐾 )
.

From Lemma 9.3(ii) and Lemma 9.2(iii) we have that 𝑆𝑆𝐴
𝜎2

∼ 𝜒2
𝐾 −1 and

𝑆𝑆𝑒
𝜎2

∼ 𝜒2
𝑁 −𝐾 .

The independence of random variables 𝑆𝑆𝐴
𝜎2

and 𝑆𝑆𝑒
𝜎2

follows from Lemma 9.3(ii). The
theorem then follows from the definition of 𝐹 -distribution (see Definition 2.5). □

Using Theorem 9.4 and the reasoning before it, we get the following.
Critical region:

𝐻0 is rejected ⇔ 𝐹𝐴 ≥ 𝐹𝐾 −1,𝑁 −𝐾 (1 − 𝛼),

where 𝐹𝐾 −1,𝑁 −𝐾 (1−𝛼) is (1−𝛼)-quantile of 𝐹 -distribution with 𝐾 −1 and𝑁 −𝐾 degrees
of freedom.
P-value: 1 − 𝐹 ∗(𝑠 ), where 𝑠 is the observed value of the test statistic 𝐹𝐴 and 𝐹 ∗ is the
distribution function of the distribution 𝐹𝐾 −1,𝑁 −𝐾 .

Remark.
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9. 𝐾 -sample problem for quantitative data

• The above described method is called the analysis of variance or ANOVA due to
the way the test statistic is constructed (we essentially compare two estimates
of 𝜎2). However the purpose of ANOVA is not to analyse the variance. The
test itself is called the F-test of analysis of variance.

• In Gaussian model with equal variances (i.e. in the model F𝑛) we have that
the 𝐹 -test of analysis of variance is an exact test of equality of expected values
in 𝐾 ≥ 2 independent samples.

• It can be shown that without the assumption of normality but with the assump-
tion of equal variances (i.e. in the model F𝑎𝑠 ), 𝐹 -test of analysis of variance
keeps the significance level at least asymptotically.

Remark. The results of analysis of variance are usually given in a table

Source of Sum of Degrees of
variation squares freedom

Quotient F

Group 𝑆𝑆𝐴 𝐾 − 1 𝑆𝑆𝐴
𝐾 −1

𝑆𝑆𝐴
𝐾 −1

/ 𝑆𝑆𝑒
𝑁 −𝐾

Residual 𝑆𝑆𝑒 𝑁 − 𝐾 𝑆𝑆𝑒
𝑁 −𝐾

Total 𝑆𝑆𝐶 𝑁 − 1

Proposition 9.5 For 𝐾 = 2 we have that

𝐹𝐴 = 𝑇 2
𝑛1,𝑛2 ,

where 𝐹𝐴 is the test statistic in analysis of variance and 𝑇 2
𝑛1,𝑛2 is the square of the test

statistic of two-sample 𝑡 -test for the case of equal variances (see Chapter 6.3).

Proof. Using (9.2), the numerator of the test statistic 𝐹𝐴 can be rewritten as
𝑆𝑆𝑒

𝑁 − 𝐾 =
1

𝑛1 + 𝑛2 − 2
(
(𝑛1 − 1)𝑆21 + (𝑛2 − 1)𝑆22

)
= 𝑆2𝑛1,𝑛2 , (9.8)

where 𝑆2
𝑘
is the sample variance in 𝑘 th group.

After this, we notice that

𝑌1+ −𝑌++ = 𝑌1+ −
𝑛1𝑌1+ + 𝑛2𝑌2+

𝑛1 + 𝑛2
=
𝑛2 (𝑌1+ −𝑌2+)

𝑛1 + 𝑛2
.

Similarly

𝑌2+ −𝑌++ =
𝑛1 (𝑌2+ −𝑌1+)

𝑛1 + 𝑛2
.

So

𝑆𝑆𝐴

𝐾 − 1 = 𝑛1
(
𝑌1+ −𝑌++

)2 + 𝑛2 (
𝑌2+ −𝑌++

)2
=

(
𝑌1+ −𝑌2+

)2
(𝑛1 + 𝑛2)2

(
𝑛1𝑛

2
2 + 𝑛2𝑛

2
1
)

=
𝑛1𝑛2

(
𝑌1+ −𝑌2+

)2
𝑛1 + 𝑛2

=

(
𝑌1+ −𝑌2+

)2
1
𝑛1

+ 1
𝑛2

. (9.9)
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Now, with the help of (9.8) and (9.9) we get that

𝐹𝐴 =
𝑆𝑆𝐴/(𝐾 − 1)
𝑆𝑆𝑒/(𝑁 − 𝐾 ) =

©«
𝑌1+ −𝑌2+√︃

𝑆2𝑛1,𝑛2
( 1
𝑛1

+ 1
𝑛2

) ª®®¬
2

= 𝑇 2
𝑛1,𝑛2 ,

which was to be proven. □

So, if we compare only two groups, the analysis of variance is equivalent to the
two-sample 𝑡 -test with the assumption of equal variances (see Chapter 6.3). In this
case, i.e. for 𝐾 = 2, it is usually preferred to use the 𝑡 -test, since it allows us to test
one-sided hypothesis and we are able to easily derive a confidence interval from it.
On the other hand, if 𝐾 > 2, thenwe are not able to talk about one-sided hypothesis

or deal with this problem with the help of one confidence interval.

Remark. The analysis of variance is further generalised into multi-way analysis of
variance. This generalisation is discussed in the class Linear regression. For exam-
ple, two-way analysis of variance is based on dividing observations into 𝐾 𝐽 groups
according to two categorical variables with 𝐾 and 𝐽 possible values. We are inter-
ested in whether one of those categorical variables influences the mean value of our
observations.

VIOLATION OF ASSUMPTIONS

Violation of equality of variances. In this case, 𝐹 -test of analysis of variance does
not keep the exact or asymptotic significance level. However, published simulation
studies show that if the number of observations is roughly the same in all groups,
then the true significance level of 𝐹 -test of analysis of variance is close to the required
level.
For the case of unequal variances, a generalization of the test statistic and approx-

imation of its distribution has been proposed already in Welch (1951). It is a gener-
alization of the two-sample Welch test for a situation with more samples. The test
statistic of this test takes into account the potentially different variances and it is
given by the formula

𝐹𝑤 =

∑𝐾
𝑘=1𝑤𝑘

(
𝑌𝑘+ −𝑌 𝑤

)2
𝐾 − 1

1
1 + 2Λ(𝐾 − 2) ,

where 𝑤𝑘 =
𝑛𝑘
𝑆2
𝑘

is a weight assigned to the 𝑘 th group, 𝑌 𝑤 =

∑𝐾
𝑘=1𝑤𝑘𝑌𝑘+∑𝐾
𝑘=1𝑤𝑘

is an estimate of
the common mean value and

Λ =

∑𝐾
𝑘=1

1
𝑛𝑘−1

(
1 − 𝑤𝑘∑𝐾

𝑗=1𝑤𝑗

)2
𝐾 2 − 1
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is a certain correction, which is close to zero if we have large sample sizes in all of the
groups.
It can be shown that under the null hypothesis, even without the assumption of

equal variances (and also without the assumption of normality), it holds that

(𝐾 − 1)𝐹𝑤
d−→ 𝜒2𝐾 −1

where the sample sizes of all samples grow to infinity, i.e.

min
{
𝑛1, . . . , 𝑛𝐾

}
→ ∞ and simultaneously 𝑛𝑘

𝑁
→ 𝜆𝑘 > 0, 𝑘 ∈ {1, . . . , 𝐾 }. (9.10)

However, similarly as for the two-sample Welch 𝑡 -test (see page 111), it is recom-
mended, out of caution, to compare the test statistic 𝐹𝑤 with quantiles of the 𝐹 -
distribution with 𝐾 − 1 and 1/(3Λ) degrees of freedom.

9.2. MULTIPLE COMPARISONS

In the analysis of variance we compare expected values of 𝐾 groups. If the 𝐹 -test of
analysis of variance rejects the null hypothesis that all groups have the same expected
value, we conclude that at least two groups differ in their expectations. However, we
do not know, how many and what groups actually differ in their expectations.
If we wanted to compare the expectations of two groups, for example groups 𝑘

and 𝑗 , we would use two-sample 𝑡 -test. We could perform two-sample 𝑡 -tests for
all 𝐾 (𝐾 −1)

2 possible pairs of groups and test all hypotheses 𝐻 𝑘 𝑗

0 : 𝜇𝑘 = 𝜇𝑗 on level 𝛼.
However, the probability that at least one of these hypotheses will be rejected, under
the condition that all of them hold, is not equal to 𝛼, it is in fact higher.
The problem of simultaneous testing of several hypotheses is usually calledmulti-

ple comparisons ormultiple testing.
The general problem of multiple testing can be formulated as follows. We want to

test 𝑚 null hypotheses 𝐻 1
0 , . . . ,𝐻

𝑚
0 . To test hypothesis 𝐻

𝑗

0 we use the test statistic 𝑇𝑗
with critical region C𝑗 chosen such that each test has level 𝛼0. Then we have that for
all 𝑗 ∈ {1, . . . ,𝑚}

P
𝐻
𝑗

0

[
𝑇𝑗 ∈ C𝑗

]
= 𝛼0.

The probability of rejecting at least one hypothesis, under the condition that all
hypotheses hold, is then

P⋂𝑚
𝑗=1𝐻

𝑗

0

(⋃𝑚
𝑗=1 [𝑇𝑗 ∈ C𝑗 ]

)
= 𝛼𝐶 .

Naturally, 𝛼𝐶 is larger than 𝛼0, usually distinctly. Our aim is to find, for a prescribed
level 𝛼, tests 𝑇𝑗 with critical region C̃𝑗 , so that

P⋂𝑚
𝑗=1𝐻

𝑗

0

(⋃𝑚
𝑗=1

[
𝑇𝑗 ∈ C̃𝑗

] )
≤ 𝛼.
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9. 𝐾 -sample problem for quantitative data

The situation is similar for confidence intervals. Let 𝐵1, . . . , 𝐵𝑚 be the confidence
intervals for parameters 𝜃 (1)

𝑋
, . . . , 𝜃

(𝑚 )
𝑋

, that satisfy

P
(
𝐵 𝑗 ∋ 𝜃 ( 𝑗 )

𝑋

)
= 1 − 𝛼, 𝑗 ∈ {1, . . . ,𝑚},

where 1 − 𝛼 is the prescribed probability of coverage.
Then typically

P
(
𝐵1 ∋ 𝜃 (1)

𝑋
, . . . , 𝐵𝑚 ∋ 𝜃 (𝑚 )

𝑋

)
< 1 − 𝛼.

Our aim is to construct such confidence intervals 𝐵1, . . . , 𝐵𝑚 , for which we will have

P
(
𝐵1 ∋ 𝜃 (1)

𝑋
, . . . , 𝐵𝑚 ∋ 𝜃 (𝑚 )

𝑋

)
≥ 1 − 𝛼.

Such intervals 𝐵1, . . . , 𝐵𝑚 are called simultaneous confidence intervals.
In the following chapter, we will introduce one universal approach to this problem

and after that a special method for comparing expected values of several indepen-
dent random samples.

9.2.1. BONFERRONI CORRECTION

We are given the total required level 𝛼 and we want to guarantee that 𝛼𝐶 ≤ 𝛼. To do
that, we use the following lemma.

Lemma 9.6 (Boole’s inequality) For any random events 𝐴1, . . . , 𝐴𝑚 we have that

P

(
𝑚⋃
𝑗=1

𝐴𝑗

)
≤

𝑚∑︁
𝑗=1

P(𝐴𝑗 ).

This inequality is trivial for𝑚 = 2 and it can easily be proven for higher𝑚 by math-
ematical induction.
We have that

𝛼𝐶 = P⋂𝑚
𝑗=1𝐻

𝑗

0

(⋃𝑚
𝑗=1 [𝑇𝑗 ∈ C𝑗 ]

)
≤ 𝑚𝛼0.

If we choose 𝛼0 = 𝛼/𝑚, then it must hold that 𝛼𝐶 ≤ 𝛼. Therefore, if me want to
perform𝑚 tests and keep the total level of all tests (the probability of rejecting at least
one hypothesis under the condition that they all hold) to be at least 𝛼, we perform
individual tests on level 𝛼/𝑚.
Similarly, if we want to construct 𝑚 confidence intervals, which satisfy that all of

them cover their respective parameters with probability at least 1 − 𝛼, it is enough
to choose the individual intervals with probability of coverage at least 1 − 𝛼/𝑚. This
approach to multiple testing and construction of simultaneous confidence intervals
is called the Bonferroni correction.
The advantage of Bonferroni correction is its simplicity and universality. On the

other hand its disadvantage is that the correction of level 𝛼 to 𝛼/𝑚 is almost always
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9. 𝐾 -sample problem for quantitative data

too strict. Therefore, this method produces tests with low power and overly wide con-
fidence intervals. Special methods of multiple testing, derived for specific problems
(for example Tukey method described below) try to overcome these disadvantages of
Bonferroni correction.

Application of Bonferroni correction to multiple comparisons in the analysis of vari-
ance looks as follows: we perform all 𝐾 (𝐾 −1)

2 two-sample 𝑡 -tests for all possible pairs
of groups and test all hypotheses 𝐻 𝑘 𝑗

0 : 𝜇𝑘 = 𝜇𝑗 on level 2𝛼
𝐾 (𝐾 −1) . If at least one of

these hypotheses is rejected, we proclaim the expected values of these two groups as
significantly different on the total level 𝛼.
Imagine that we have chosen 𝛼 = 0,05 and we have 𝐾 = 6 groups, then we per-

form 15 tests of equality of expected values for 15 different pairs of groups on level
0,05/15 � 0,0033. This significance level is so low that it may be difficult to find two
significantly different groups, even though the 𝐹 -test of analysis of variance rejects
the hypothesis that the expected values of all groups are the same.

Remark. While using a method, which takes into account the problem of multiple
testing, we sometimes define the so called p-value adjusted for multiple comparisons.
For Bonferroni correction, this adjusted p-value can be easily computed as

𝑝𝑗 = min
{
𝑚𝑝𝑗 , 1

}
, 𝑗 ∈ {1, . . . ,𝑚},

where 𝑝𝑗 is the standard (non-adjusted) p-value of the 𝑗 th test.

9.2.2. TUKEY METHOD

This method is derived from normal (homoscedastic) model (9.1) assumed for the
analysis of variance. Under the assumptions of this model, this new method has
higher power and it produces shorter confidence intervals compared to Bonferroni
correction.
Rem.: This part was not presented during 2020/21.

Let us have independent random variables 𝑍 𝑗 ∼ N(𝜇, 𝜎2), where 𝑗 ∈ {1, . . . ,𝑚}. Let
𝑆2 be an estimate of the variance 𝜎2 such that 𝑆2 is independent with 𝑍1, . . . , 𝑍𝑚 and
for some 𝜈 natural we have that 𝜈 𝑆2

𝜎2
∼ 𝜒2𝜈 .

Let us define the studentized range as

𝑄 =
max𝑗 ∈{1,...,𝑚 } 𝑍 𝑗 −min𝑗 ∈{1,...,𝑚 } 𝑍 𝑗

𝑆
.

It can be shown that the random variable 𝑄 has distribution which depends only
on the values 𝑚 and 𝜈 . Denote by 𝑞𝑚,𝜈 (𝛼) the quantile function of this distribution.
(Wewill not present formulas for density and cumulative distribution function here.)∗

∗ Sometimes, studentized range is defined as𝑄/
√
2. One needs to be aware of this while using values of

𝑞𝑚,𝜈 (𝛼) from the tables or software. To check correctness of our values, we can compare distribution𝑄
with𝑚 = 2 with distribution |𝑇 |, where 𝑇 ∼ 𝑡𝑘 . For our definition, these two distributions are the same.
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9. 𝐾 -sample problem for quantitative data

Studentized range can be used to construct simultaneous confidence intervals for
differences of expected values. This approach is called the Tukey method, the Tukey’s
range test or Tukey’s HSD (honest significant difference) test.

Theorem 9.7 (Tukey) Let 𝑍1, . . . , 𝑍𝑚 be independent random variables with distribu-
tions 𝑍 𝑗 ∼ N(𝜇𝑗 , 𝜎2). Let 𝑆2 be an estimate of the variance 𝜎2 such that 𝑆2 is indepen-
dent with 𝑍1, . . . , 𝑍𝑚 and for some 𝜈 natural it holds that 𝜈 𝑆2

𝜎2
∼ 𝜒2𝜈 . Then

P
[
𝑍𝑘 −𝑍 𝑗 −𝑆𝑞𝑚,𝜈 (1−𝛼) ≤ 𝜇𝑘 −𝜇𝑘 ≤ 𝑍𝑘 −𝑍 𝑗 +𝑆𝑞𝑚,𝜈 (1−𝛼), ∀𝑘 ≠ 𝑗 ∈ {1, . . . ,𝑚}

]
= 1−𝛼.

The above theorem can be used for hypothesis testing as well. The hypothesis𝐻 𝑘 𝑗

0 :
𝜇𝑘 = 𝜇𝑗 is rejected, if

��𝑍𝑘 − 𝑍 𝑗
�� > 𝑆𝑞𝑚,𝜈 (1 − 𝛼). The null hypothesis 𝐻0 : 𝜇1 = . . . = 𝜇𝑚

is rejected on total significance level 𝛼, if for at least one pair 𝑘 ≠ 𝑗 we have that��𝑍𝑘 − 𝑍 𝑗 �� > 𝑆𝑞𝑚,𝜈 (1 − 𝛼).
Tukey theorem can be directly used for the problem of multiple comparison in the

analysis of variance, if the sample sizes of all groups are the same, i.e. 𝑛1 = · · · = 𝑛𝐾 ≡
𝑛. Then it holds that 𝑌1+, . . . ,𝑌𝐾 + are independent random variables with distribu-
tions 𝑌𝑘+ ∼ N(𝜇𝑘 , 𝜎

2

𝑛
). We take 𝑆𝑆𝑒

𝑛 (𝑁 −𝐾 ) as 𝑆
2, the estimate of 𝜎2

𝑛
. We have 𝜈 = 𝑁 − 𝐾 .

The null hypothesis 𝐻 𝑘 𝑗

0 : 𝜇𝑘 = 𝜇𝑗 is rejected, if���𝑌𝑘+ −𝑌 𝑗+��� ≥ √︂
𝑆𝑆𝑒

𝑁 − 𝐾

√︂
1
𝑛
𝑞𝐾 ,𝑁 −𝐾 (1 − 𝛼). (9.11)

If the sample sizes of all groups are not the same, we cannot use Tukey theorem di-
rectly, since its assumptions do not hold. However, it can be shown that, if we replace
the formula

√︃
1
𝑛
in (9.11) by

√︃
1
2𝑛𝑘 + 1

2𝑛 𝑗 , then the total probability of rejecting one of

the true hypotheses 𝐻 𝑘 𝑗

0 does not exceed 𝛼. So, Tukey method still works after this
adjustment, however, it does become somewhat more conservative.

9.3. KRUSKAL-WALLIS TEST

Kruskal-Wallis test is a generalization of the two-sample Wilcoxon test to compare
𝐾 ≥ 2 samples. The notation used in this section is the notation for 𝐾 -sample prob-
lem defined at the beginning of this chapter.

Model: F =
{
∃𝑔 (·) increasing function ∃𝐹 continuous CDF ∃𝛿1, . . . , 𝛿𝐾 ∈ ℝ :

𝑔 (𝑋𝑘1) ∼ 𝐹𝑘 , 𝐹𝑘 (𝑥) = 𝐹 (𝑥 − 𝛿𝑘 ) ∀𝑥 ∈ ℝ, 𝑘 ∈ {1, . . . , 𝐾 }
}

It is a model for 𝐾 continuous distributions which are, after a suitable transforma-
tion 𝑔 , mutually shifted in location.
The null hypothesis and alternative:

𝐻0 : 𝛿1 = · · · = 𝛿𝐾 , 𝐻1 : ∃𝑘≠𝑗 𝛿𝑘 ≠ 𝛿𝑗 .
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9. 𝐾 -sample problem for quantitative data

Remark. If bothmodel F and hypothesis𝐻0 hold, then the distributions of all groups
are the same. In that case all 𝐾 groups share coinciding characteristics.

Test statistic:
It can be shown that the test statistic of two-sample Wilcoxon test is equivalent

to the numerator of the test statistic of two-sample 𝑡 -test (i.e. difference of sample
means), if, instead of the original observations, we use their ranks. We can try to pro-
ceedwith the same logic and use the construction of the 𝐹 -test of analysis of variance,
where instead of using the observations in joint random sample Y = (𝑌11, . . . ,𝑌𝐾 𝑛𝐾 )T,
we use their ranks 𝑅11, . . . , 𝑅𝐾 𝑛𝐾 .
Then

𝑆𝑆𝐴 =

𝐾∑︁
𝑘=1

𝑛𝑘
(
𝑅𝑘+ − 𝑅++

)2
,

where 𝑅𝑘+ = 𝑛−1
𝑘

∑𝑛𝑘
𝑖=1 𝑅𝑘𝑖 is the mean rank in 𝑘 th group and

𝑅++ =
1
𝑁

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝑅𝑘𝑖 =
𝑁 + 1
2

is the total mean rank.
Notice that in the standard analysis of variance the random variable 𝑆𝑆𝑒

𝑁 −𝐾 estimates
the unknown variance var (𝑌𝑘𝑖 ) = 𝜎2. However, in the case of ranks we know, thanks
to Theorem 2.16(iii), that under the null hypothesis 𝜎2 = var (𝑅𝑘𝑖 ) = 𝑁 2−1

12 . Therefore,
the candidate for our test statistic seems to be

𝑄 =
𝑆𝑆𝐴

𝜎2
=

12
(𝑁 − 1) (𝑁 + 1)

𝐾∑︁
𝑘=1

𝑛𝑘

(
𝑅𝑘+ − 𝑁+1

2

)2
. (9.12)

It can be shown that an asymptotic analogy of Lemma 9.3(iii) holds, i.e. under the
null hypothesis and with increasing number of observations, see (9.10), we have that

𝑄
d−→ 𝜒2𝐾 −1.

As we will show below, it holds that E𝑄 = (𝐾 − 1) 𝑁
𝑁 −1 . However, since the expected

value of the asymptotic distribution 𝜒2
𝐾 −1 is 𝐾 − 1, we use the following test statistic

(to improve on the asymptotic approximation)

𝑄 =
𝑁 − 1
𝑁

𝑄 =
12

𝑁 (𝑁 + 1)

𝐾∑︁
𝑘=1

𝑛𝑘

(
𝑅𝑘+ − 𝑁+1

2

)2
.

Critical region: Since large values of the test statistic indicate against the null hypoth-
esis, we get for our asymptotic test the following rule

𝐻0 is rejected ⇔ 𝑄 ≥ 𝜒2𝐾 −1(1 − 𝛼).

The above stated test is called the Kruskal-Wallis test. Similarly as for the (two-sample)
Wilcoxon test, it is possible to use exact critical values, which are tabulated, for small
sample sizes (if there are no ties in our data).
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9. 𝐾 -sample problem for quantitative data

Remark. Let 𝑅𝑘+ =
∑𝑛𝑘
𝑖=1 𝑅𝑘𝑖 . Then

𝐾∑︁
𝑘=1

𝑛𝑘

(
𝑅𝑘+ − 𝑁+1

2

)2
=

𝐾∑︁
𝑘=1

1
𝑛𝑘

(
𝑅𝑘+ − 𝑛𝑘 𝑁+1

2

)2
=

𝐾∑︁
𝑘=1

1
𝑛𝑘

(
𝑅2𝑘+ − 𝑅𝑘+𝑛𝑘 (𝑁 + 1) + 𝑛2𝑘

(𝑁+1)2
4

)
=

𝐾∑︁
𝑘=1

𝑅2
𝑘+
𝑛𝑘

− 𝑁 (𝑁 + 1)2
4

.

Hence the test statistic 𝑄 is often given in a computationally easier formula (see for
example Anděl, 2002, Chapter 11.3.1)

𝑄 =
12

𝑁 (𝑁 + 1)

𝐾∑︁
𝑘=1

𝑅2
𝑘+
𝑛𝑘

− 3(𝑁 + 1). (9.13)

Remark. We will use the formula (9.13) to calculate the expected value of the test
statistic 𝑄 under the null hypothesis. To do that, we will at first carry out the fol-
lowing calculation, using Theorem 2.16

E𝑅2𝑘+ = var
(
𝑅𝑘+

)
+

(
E𝑅𝑘+

)2
=

𝑛𝑘∑︁
𝑖=1

var (𝑅𝑘𝑖 ) +
𝑛𝑘∑︁
𝑖=1

𝑛𝑘∑︁
𝑖 ′=1,𝑖 ′≠𝑖

cov (𝑅𝑘𝑖 , 𝑅𝑘𝑖 ′) +
(
𝑛𝑘∑︁
𝑖=1

𝑁 + 1
2

)2
=
𝑛𝑘 (𝑁 2 − 1)

12
− 𝑛𝑘 (𝑛𝑘 − 1) (𝑁 + 1)

12
+
𝑛2
𝑘
(𝑁 + 1)2

4
.

Therefore (under the null hypothesis)

E𝑄 =
12

𝑁 (𝑁 + 1)

𝐾∑︁
𝑘=1

E𝑅2
𝑘+

𝑛𝑘
− 3(𝑁 + 1)

=
12

𝑁 (𝑁 + 1)

𝐾∑︁
𝑘=1

[
(𝑁 2 − 1)

12
− (𝑛𝑘 − 1) (𝑁 + 1)

12
+ 𝑛𝑘 (𝑁 + 1)2

4

]
− 3(𝑁 + 1)

=
𝐾 (𝑁 − 1)

𝑁
− (𝑁 − 𝐾 )

𝑁
+ 3(𝑁 + 1) − 3(𝑁 − 1) = 𝐾 − 1.

This corresponds to the expected value of the distribution 𝜒2
𝐾 −1 and it is the reason

why instead of the test statistic 𝑄 given by the formula (9.12) we use the test statis-
tic 𝑄 .

VIOLATION OF ASSUMPTIONS

Ties due to rounding. We often see ties in our data because of rounding. The test
statistic 𝑄 is then calculated using the so called average ranks. It can be shown that,
under the null hypothesis, we have

𝑄

1 − 𝑘𝑜𝑟 .
𝑑−−−−→

(9.10)
𝜒2𝐾 −1,
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where 𝑘𝑜𝑟 . is the variance adjusting correction, given by the formula∗

𝑘𝑜𝑟 . =
1

𝑁 (𝑁 2 − 1)
∑︁
𝑦

(
𝑡 3𝑦 − 𝑡𝑦

)
,

where 𝑡𝑦 denotes the number of the random variables 𝑌11 . . . ,𝑌𝐾 𝑛𝐾 which attain the
value 𝑦 . It is worth noticing that, without this adjustment, the test would be (asymp-
totically) conservative.

The generalized location model does not hold. Notice at first that the test keeps
the significance level (asymptotically), if the observations 𝑌11 . . . ,𝑌𝐾 𝑛𝐾 are indepen-
dent and identically distributed. Therefore, the fact that the model does not hold
has, similarly as for the two-sample Wilcoxon test (see Chapter 6.4), two unpleasant
consequences regarding the behaviour of the test under the alternative:

1. Interpretation problem - if the generalized location model does not hold, then
we are only able to conclude that the distributions are not the same in indi-
vidual groups from the rejection of the null hypothesis. However, we generally
cannot conclude that their expected values or medians are different.

2. The power of the test - similarly as for Mann-Whitney formulation of two-
sample Wilcoxon test (see page 119), it can be shown that the Kruskal-Wallis test
tests whether P[𝑌𝑘1 < 𝑌𝑗1] = 1/2 holds for all 𝑘 , 𝑗 ∈ {1, . . . , 𝐾 }. In the generalized
location model, if we have 𝛿𝑘 ≠ 𝛿𝑗 , then indeed P[𝑌𝑘1 < 𝑌𝑗1] ≠ 1/2. However, if
under the alternative we have some additional changes and not only the change
in the location parameters, then it is not clear what will be the consequence of
this on the power of the test.

∗ See for example Hollander et al. (2013), page 205.
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Sample examples for the preparation for the exam.
Your solution to the "practical problem" should include a mathematical model, a

null hypothesis, a test statistic and its exact (or asymptotic) distribution under the null
hypothesis. It should also include a critical region or a formula for p-value and you
should state whether the test is exact or asymptotic.

1. We have data about the height of 500 adult women and about the colour of their
eyes, where we distinguish between brown, blue and green. Propose a suitable
test to find out whether the height is connected with the colour of the eyes.

2. We have data about the salaries of 2 000 employees from the IT domain and
about the region (8 possibilities) they live in. Propose appropriatemethodwhich
will find, while keeping the required significance level, two regions whose salaries
can be considered as different.
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A. APPENDIX

A.1. 𝜒2- AND 𝑡 -DISTRIBUTION

Definition A.1 (𝜒2-distribution) Let 𝑋1, . . . , 𝑋𝑘 be independent and identically dis-
tributed random variables with distribution N(0, 1). Then the distribution of the ran-
dom variable

∑𝑘
𝑖=1 𝑋

2
𝑖
is the 𝜒2-distribution of 𝑘 degrees of freedom. We write that

𝑌 ∼ 𝜒2
𝑘
.

Definition A.2 (𝑡 -distribution) Let 𝑋 ∼ N(0, 1) and 𝑍 ∼ 𝜒2
𝑘
be independent. Then the

distribution of the random variable 𝑇 df
= 𝑋√

𝑍 /𝑘
is called the [Student] 𝑡 distribution

with 𝑘 degrees of freedom. We write 𝑇 ∼ 𝑡𝑘 .

A.2. IDEMPOTENT MATRICES

Definition A.3 The squaredmatrix𝔸 (of dimension 𝑛×𝑛) is idempotent, when𝔸𝔸 =

𝔸.

Lemma A.1 LetX ∼ N𝑛 (0, Σ) and 𝔸 be a positively semidefinite matrix of dimension
𝑛 × 𝑛 such that 𝔸Σ is non-null and idempotent. Then

XT𝔸X ∼ 𝜒2tr (𝔸Σ) .

A.3. TRANSFORMATION OF THE RANDOM VARIABLE WITH ITS
CUMULATIVE DISTRIBUTION FUNCTION

Lemma A.2 Let the random variable 𝑋 have continuous distribution function 𝐹 .
Then the random variable 𝐹 (𝑋 ) follows the uniform distribution on the interval (0, 1).

Proof. For 𝑢 ∈ (0, 1) calculate

P
[
𝐹 (𝑋 ) ≤ 𝑢

]
= P

[
𝑋 ≤ 𝐹 −1(𝑢)

]
= 𝐹

(
𝐹 −1(𝑢)

)
= 𝑢,

where in the last equality we use the continuity of 𝐹 . □

The following lemma is inverse to the lemma above. It is used for generating ran-
dom variables. Note that it does not require the continuity of 𝐹 .
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Lemma A.3 Let the random variable𝑈 follows the uniform distribution on (0, 1) and
𝐹 is a cumulative distribution function. Then the random variable 𝐹 −1(𝑈 ) follows the
distribution given by 𝐹 .

Proof. Let 𝑥 ∈ ℝ. Calculate

P
[
𝐹 −1(𝑈 ) ≤ 𝑥

]
= P

[
𝑈 ≤ 𝐹 (𝑥)

]
= 𝐹 (𝑥).

□

A.4. GAMA FUNCTION AND BETA FUNCTION

Gama function is for 𝑧 > 0 definied as

Γ(𝑧) =
∫ ∞

0
𝑥𝑧−1 e−𝑥 𝑑𝑥.

From the properties of the gama function it is often used that Γ(𝑛) = (𝑛 − 1)!.

Beta function is for 𝑎, 𝑏 > 0 defined as

𝐵 (𝑎, 𝑏) =
∫ 1

0
𝑥𝑎−1(1 − 𝑥)𝑏−1 𝑑𝑥.

It holds that
𝐵 (𝑎, 𝑏) = Γ(𝑎) Γ(𝑏)

Γ(𝑎 + 𝑏) . (A.1)
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