
1 Conditional densities and expectations

From the probability theory (NMSA 333) we know, that the conditional expectation of Y for
given X is defined as

E (Y | X ) = E (Y | σ(X) ) ,

where σ(X) is sigma-algebra generated with the random variable X. In what follows we concentrate
on the situation when the random vector (X,Y )T has a joint density fXY (x, y) with respect to the
two-dimensional Lebesgue measure.

Conditional density of the random random Y for given X is defined for fX(x) > 0 as

fY |X(y|x) =
fXY (x, y)

fX(x)
,

where fX(x) is the marginal density of X.

Conditional expectation:

E (Y | X = x ) =

∫
y fY |X(y|x) dy.

It is known that EY is
”
the best“ estimator of Y (when the quadratic loss function is minimized),

when one know only the marginal distribution of Y . Analogously E (Y | X = x ) is
”
the best“

estimator Y with the knowledge of the joint distribution of (Y,X)T and the realisation of X.

Be careful. While E (Y | X = x ) is a function that is defined on the support of X, the conditional
expectation E (Y | X ) is a random variable that is a function of X.

Some useful properties of conditional expectation: Let h1 : R2 → R, h2 : R2 → R and
ψ : R→ R are measurable functions. Then

(i) E (a | X ) = a for an arbitrary a ∈ R.

(ii) E
(
E (Y | X )

)
= EY .

(iii) E (a1 h1(X,Y ) + a2h2(X,Y ) | X ) = a1 E (h1(X,Y ) | X ) + a2 E (h2(X,Y ) | X ) for an arbit-
rary a1, a2 ∈ R.

(iv) E (ψ(X)h1(X,Y ) | X ) = ψ(X)E (h1(X,Y ) | X ).

Variance decomposition with the help of conditioning:

q var(Y ) = E
[
var (Y | X )

]
+ var

(
E (Y | X )

)
.

Proof:

var(Y ) = EY 2 −
[
EY
]2

= E
[
E
(
Y 2
∣∣ X ) ]− [EY ]2

= E
[
var (Y | X )

]
+ E

[
E (Y | X )

]2 − [E{E (Y | X )
}]2

= E
[
var (Y | X )

]
+ var

(
E (Y | X )

)
.
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Example 1. f(x, y) = x+ y

Let (X,Y )T be a random vector with the density

f(x, y) = (x+ y)IM , M = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

(i) Calculate E (XY | X = x ).

(ii) Calculate E (XY | X ).

(iii) Calculate E
(
XY 2

∣∣ X ).
(iv) Calculate E

(
XY 2

∣∣ X2
)
.

Example 2. Conditionally normal distribution

Consider the random vector (Y,X)T. Let Y given X have the normal distribution with the ex-
pectation 2X3 and the variance 3X2. Further let X have the uniform distribution on the inter-
val (0, 1).

(i) Calculate E
[
Y
X2 |X

]
.

(ii) Calculate E Y
X2 .

(iii) Calculate EY .

(iv) Calculate var(Y ).

Example 3. Conditional expectation of the distribution on a rectangle

Let the random vector (X, Y )T follow the distribution given by the density

f(x, y) =


1

x
exp
(
−y
x

)
, 1 < x < 2, y > 0,

0, otherwise.

(i) Calculate E
(
Y
∣∣X = t

)
a E
(
Y
∣∣X).

(ii) Calculate E

(
Y

∣∣∣∣ log
(X − 1

2−X

)
= t

)
a E

(
Y

∣∣∣∣ log
(X − 1

2−X

))
.

(iii) Calculate E

(
Y

X6

∣∣∣∣ log
(X − 1

2−X

))

Example 4. Conditionally uniform distribution

Consider a random vector (Y,X)T. Let Y given X have uniform distribution R(0, X2 + 1). Further
let X have normal distribution N(0, 1).

(i) Calculate E
[
Y | exp{X}

]
.

(ii) Calculate EY .

(iii) Calculate var(Y ).
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2 Sufficient statistics

Let the random vectorX = (X1, . . . , Xn)T have density f(x;θ) with respect to a σ-finite measure µ,
where θ ∈ Θ is an unknown parameter.

Definition 1. We say that the statistic S = S(X) is sufficient for the parameter θ, if the
conditional distribution X given S does not depend on θ.

Thus the sufficient statistic contains all the available information about θ that is in the random
vector X. The following theorem is useful when searching for sufficient statistics.

Theorem 1 (Fisher-Neyman factorization theorem). The statistic S is sufficient if and only if
there exist a non-negative measurable functions g(s;θ) and h(x), such that

f(x;θ) = g
(
S(x);θ

)
h(x).

In applications we search for sufficient statistics that are in some sense ‘minimal’. This is motivation
for the following definition.

Definition 2. We say that the sufficient statistic S(X) is minimal, if for each sufficient statis-
tic T (X) there exists a function g such that S(X) = g

(
T (X)

)
.

The following theorem can be useful to find the minimal sufficient statistic.

Theorem 2 (Lehmann-Scheffé theorem about a minimal sufficient statistic). Let S be a sufficient
statistic and the set M = {x : f(x;θ) > 0} does not depend on θ. For x,y ∈M introduce

h(x,y;θ) =
f(x;θ)

f(y;θ)
.

Let h(x,y;θ) does not depend on θ implies that S(x) = S(y). Then S(X) is minimal.

Definition 3. We say that the statistic S is complete, if for each measurable function w(S) the
following implication holds{

Eθ w(S) = 0 for each θ ∈ Θ
}

=⇒
{
w(S) = 0 almost surely for each θ ∈ Θ

}
.

Example 5. Geometric distribution

Let X = (X1, . . . , Xn)T be a random sample from the geometric distribution, i.e.

P(Xi = k) = p (1− p)k, k = 0, 1, 2, . . .

Find, if S(X) =
∑n

i=1Xi is a sufficient statistic for parameter p.

(i) With the help of the definition of the sufficient statistic.

(ii) With the help of the Fisher-Neyman factorization theorem.
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Example 6. Poisson distribution

Let X = (X1, . . . , Xn)T be a random sample from the Poisson distribution, i.e.

P(Xi = k) =
λk e−λ

k!
, k = 0, 1, 2, . . .

Find, if S(X) =
∑n

i=1Xi is sufficient statistic for the parameter λ.

(i) With the help of the definition the sufficient statistic.

(ii) With the help of the Fisher-Neyman factorization theorem.

(iii) Show that X1 +X2 is a complete statistic.

Example 7. Uniform discrete distribution

Let X = (X1, . . . , Xn)T be a random sample from the uniform discrete distribution, i.e.

P(Xi = k) =
1

M
, k = 1, 2, . . . ,M,

where M ∈ N. Find, if S(X) = max1≤i≤nXi is a sufficient statistic for the parameter M .

(i) With the help of definition sufficient statistic.

(ii) With the help of Fisher-Neyman factorization theorem.

Example 8. Zero mean Gaussian distribution

Let X = (X1, . . . , Xn)T be a random sample from the normal distribution N(0, σ2). Check, if the
following statistics are sufficient for the parameter σ2.

(i) T (X) = X, (ii) T (X) =
(
|X1|, . . . , |Xn|

)T
, (iii) T (X) =

n∑
i=1

Xi, (iv) T (X) =

n∑
i=1

|Xi|,

(v) T (X) =

n∑
i=1

X2
i , (vi) T (X) =

1

n

n∑
i=1

X2
i , (vii) T (X) =

(
1

n

n−1∑
i=1

X2
i , X

2
n

)T

.

Example 9. Bernoulli distribution

Let X = (X1, . . . , Xn)T be a random sample from Bernoulli distribution, i.e.

P(Xi = 1) = p, P(Xi = 0) = 1− p.

Define S(X) =
∑n

i=1Xi.

(i) Show that S(X) is sufficient for parameter p.

(ii) Show that S(X) is even minimal sufficient statistic for parameter p.

(iii) From the definition prove that T (X) = X1 is complete statistic for parameter p. Is the
statistic T (X) sufficient?

(iv) From the definition show that S(X) is a complete statistic for the parameter p.
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Example 10. Gaussian distribution

Let X = (X1, . . . , Xn)T be random sample from the normal distribution N(µ, σ2).

(i) Find minimal sufficient statistic for (µ, σ2)T.

Example 11. Uniform distribution R(0, θ)

Let X1, . . . , Xn be a random sample from the uniform distribution R(0, θ) with the density

f(x) =


1

θ
, 0 < x < θ,

0, otherwise,

where θ > 0.

(i) Show that the statistic X(n) = max1≤i≤nXi is sufficient and complete.

(ii) Show that the statistic X1 is complete, but it is not sufficient.

Example 12. Uniform distribution R(θ − 1
2
, θ + 1

2
)

Let X1, . . . , Xn be a random sample from the uniform distribution R(θ− 1
2 , θ+ 1

2) with the density

f(x) =

{
1, θ − 1

2 < x < θ + 1
2 ,

0, otherwise,

where θ ∈ R.

(i) Show that S(X) =
(
X(1), X(n)

)T
is a sufficient statistic for the parameter θ.

(ii) Show that S(X) is not complete.

Example 13. Pareto distribution

Let X1, . . . , Xn be a random sample from Pareto distribution with the density

f(x) =
β αβ

xβ+1
I{x>α}, where β > 0, α > 0.

(i) Find a non-trivial sufficient statistic for the parameter θ = (α, β)T.

Example 14.
”
Curved normal“ N(µ, µ2)

Let X1, . . . , Xn b a random sample form the Gaussian distribution N(µ, µ2), where µ ∈ R.

(i) Find a minimal sufficient statistic.

(ii) Is the statistic from (i) complete?
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Example 15. Multinomial distribution

We are modelling the number of children born in days of the week with the help of multinomial
distribution M(n, p1, . . . , p7), i.e.

P
(
X1 = x1, . . . , X7 = x7

)
=

n!

x1! · · ·x7!
px11 · · · p

x7
7 , where

7∑
i=1

xi = n,

7∑
i=1

pi = 1.

(i) Is the vector X = (X1, . . . , X7) the minimal sufficient statistic for the vector parameter
p = (p1, . . . , p7)T? If yes, would it be possible to decrease the dimension of the statistic so
that it is still minimal sufficient?

(ii) Find the minimal sufficient statistic (for the parameters of the model) provided that p1 =
p2 = . . . = p5 and p6 = p7.

(iii) Find a minimal sufficient statistic provided that children the probabilities for each of the days
of the week is the same, i.e. p1 = . . . = p7.

Example 16. Zero mean Gaussian distribution

Let X = (X1, . . . , Xn)T be a random sample from the normal ditribution N(0, σ2). Show that the
following statistics are not complete.

(i) T (X) =
∑n

i=1Xi,

(ii) T (X) = sin(X1)− 1.

Example 17. Beta distribution

Let X1, . . . , Xn be a random sample from the Beta distribution with the density

f(x) =


xa−1(1− x)b−1

B(a, b)
, 0 < x < 1,

0, otherwise,

where a > 0, b > 0 are unknown parameters and B(a, b) =
∫ 1

0 x
a−1(1− x)b−1 dx is a Beta function

in points a and b.

(i) Find a minimal sufficient statistic for the parameter (a, b)T.

Example 18. Two independent samples from the Gausiian distribution

Let X1, . . . , Xn be a random sample from the distribution N(µ1, σ
2) and Y1, . . . , Ym be a random

sample from the distribution N(µ2, σ
2). The random samples are independent.

(i) Show that

S(X,Y ) =

( n∑
i=1

Xi,

n∑
i=1

X2
i ,

m∑
i=1

Yi,

m∑
i=1

Y 2
i

)T

is a sufficient statistic.

(ii) Show that the statistic S(X,Y ) is not complete.
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3 The use of sufficient statistics in the estimation theory

Let the distribution of our data (represented by random vectors X1, . . . ,Xn) is known up to an
unknown parameter θ = (θ1, . . . , θk)

T, which belongs to the parametric space Θ.

Definition 4. We say that estimator T = T (X1, . . . ,Xn) is the best unbiased estimator of the
parametric function a(θ), if for each other unbiased estimator T̃ = T̃ (X1, . . . ,Xn) it holds that

varθ
(
T
)
≤ varθ

(
T̃
)
, pro ∀θ ∈ Θ.

As we see below, the complete sufficient statistic plays an important role when searching for the
best unbiased estimator. The complete sufficient statistic can be easily found in the exponential
systems.

Theorem 3 (About exponential systems). Let X1, . . . ,Xn be independent identically distributed
random vectors with the density of exponential type, i.e.

f(x;θ) = q(θ)h(x) exp

{ k∑
j=1

θjRj(x)

}
,

where h(x) ≥ 0 a q(θ) > 0. Suppose, that parameteric space contains nondegenerated k-dimensional
interval. Put

S = (S1, . . . , Sk)
T, where Sj =

n∑
i=1

Rj(Xi), j = 1, . . . , k.

Then S is a complete sufficient statistic for the parameter θ.

The following theorem says that the estimator can be
”
improved“ by conditioning on the sufficient

statistic.

Theorem 4 (Rao-Blackwell theorem). Let S = S(X1, . . . ,Xn) be a sufficient statistic and a(θ)
is a parametric function that is to be estimated. Let T = T (X1, . . . ,Xn) be an estimator such that
E θ T

2 <∞ for all θ ∈ Θ. Denote u(S) = E [T |S]. Then it holds that

Eu(S) = ET, E
[
T − a(θ)

]2 ≥ E
[
u(S)− a(θ)

]2
,

where the equality holds if and only if T = u(S) almost surely.

First Lehmann-Scheffé theorem says, that if an unbiased estimator is conditioned on the complete
sufficient statistic than we get the best unbiased estimate.

Theorem 5 (The first Lehmann-Scheffé theorem). Suppose that T = T (X1, . . . ,Xn) is an unbiased
estimator of the parametric function a(θ) such that E θ T

2 <∞ for all θ ∈ Θ. Let S be a complete
sufficient statistic for the parameter θ. Define u(S) = E [T |S]. Then u(S) is the unique best unbiased
estimator of a(θ).

The second Lehmann-Scheffé theorem says that if an unbiased estimator is a function of a complete
sufficient statistic then the estimator is the best unbiased estimator.

Theorem 6 (The second Lehmann-Scheffé theorem). Let S be a complete sufficient statistic for
the parameter θ. Let g be a function such that statistic W = g(S) is an unbiased estimator of
the parametric function a(θ). Further let E θW

2 < ∞ for all θ ∈ Θ. Then W is the unique best
unbiased estimator of a(θ).
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Example 19. Geometric distribution

Let X = (X1, . . . , Xn)T be a random sample from a geometric distribution, i.e.

P(Xi = k) = p (1− p)k, k = 0, 1, 2, . . .

where p ∈ (0, 1).

(i) Show that estimator T (X) = 1
n

∑n
i=1 I{Xi = 0} is unbiased estimator of the parameter p.

(ii) With the help of sufficient statistic S(X) =
∑n

i=1Xi and Rao-Blackwell theorem
”
improve“

the estimator T (X).

(iii) Is the estimator derived in (ii) the best unbiased estimator of the parameter p?

(iv) Analogously as above find the best unbiased estimator of the parametric function p(1− p).

Example 20. Special multinomial distribution

Let X = (X1, . . . , Xn)T be a random sample from the following version of multinomial distribution

P(Xi = −1) = P(Xi = 1) = p, P(Xi = 0) = 1− 2 p,

where p ∈ (0, 1
2).

(i) Show that the estimator T (X) = 1
n

∑n
i=1 I{Xi = 1} is an unbiased estimator of the parame-

ter p.

(ii) Show that S(X) =
∑n

i=1 I{Xi 6= 0} is a sufficient statistic for the parameter p.

(iii) With the help of S(X) and Rao-Blackwell theorem
”
improve“ the estimator T (X).

(iv) Is the estimator found in (iii) the best unbiased estimator of the parameter p?

Example 21. Bernoulli distribution

Let X = (X1, . . . , Xn)T be a random sample from the Bernoulli distribution, i.e.

P(Xi = 1) = p, P(Xi = 0) = 1− p.

(i) Find the best unbiased estimator of the parameter p.

(ii) Find the best unbiased estimator of the parametric function p(1− p).

Example 22. Poisson distribution

Let X = (X1, . . . , Xn)T be a random sample from the Poisson distribution with the parameter λ.

(i) Find the best unbiased estimator of the parameter λ.

(ii) Find the best unbiased estimator of the parametric function e−λ.
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Example 23. Gaussian distribution

Let X1, . . . , Xn be a random sample from the Gaussian distribution with the density

f(x;µ, σ2) =
1√

2πσ2
exp

{
− (x−µ)2

2σ2

}
, x ∈ R.

Consider the estimator σ̃n = an

√∑n
i=1(Xi −Xn)2, where an =

Γ
(
n−1

2

)
√

2 Γ
(
n
2

) .

(i) Show that S2
n is the best unbiased estimator of the parameter σ2.

(ii) Show that σ̃n is the best unbiased estimator of σ.

(iii) Is the sample median the best unbiased estimator of the parameter µ?

(iv) Show that Xn + uα σ̃n is the best unbiased estimator of the parametric function µ+ uα σ.

(v) Find the best unbiased estimator of the parametric function µ2.

Hint. Note that the density of the Gaussian distribution can be written in the form

f(x;µ, σ2) =
1√

2πσ2
exp

{
− x2

2σ2 +−2xµ
2σ2

}
exp

{
− µ2

2σ2

}
.

Now use Theorem 3 to find that the complete sufficient statistic is given by (
∑n

i=1Xi,
∑n

i=1X
2
i ).

Example 24.
”
Curved normal“ N(µ, µ2)

Let X = (X1, . . . , Xn)T be a random sample from the Gaussian distribution with the density

f(x;µ) =
1√

2πµ2
exp

{
− (x−µ)2

2µ2

}
, x ∈ R, µ > 0.

Introduce T1(X) = Xn a T2(X) = an

√∑n
i=1(Xi −Xn)2, where an =

Γ
(
n−1

2

)
√

2 Γ
(
n
2

) .

(i) Show that T1(X) i T2(X) are the unbiased estimators µ and each of the estimators is a
function of the minimal sufficient statistic.

(ii) Show that the variances of the estimators T1(X) and T2(X) are different.

Example 25. Estimator of the shift in an exponential distribution

Let the random sample X1, . . . , Xn come from the distribution with the density

fX(x; δ) =

{
λ e−λ(x−δ), x ∈ (δ,∞),

0, otherwise,

where δ ∈ R and λ is known.

(i) Find the best unbiased estimator of the parameter δ.

Hint: Show that min1≤i≤nXi is the complete sufficient statistic and calculate its expectation. From
this find a correction so that the estimator is unbiased.
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Example 26. Estimator of λ in exponential distribution

Let X1, . . . , Xn be a random sample from exponential distribution with the density

f(x;λ) = λ e−λx I(0,∞)(x).

(i) Find the best unbiased estimator of the parameter λ.

(ii) Find the best unbiased estimator of the parametric function λk.

Hint for (i): Search for the estimator which is a multiple of 1
Xn

. You can make use of the fact that∑n
i=1Xi has a Gamma distribution with the density f(x) = λn xn−1 e−λx

Γ(n) I(0,∞)(x).

Example 27. Estimator of θ in a uniform distribution

Let X1, . . . , Xn be a random sample from a uniform distribution U(0, θ) with the density

f(x) =


1

θ
, 0 < x < θ,

0, otherwise,

where θ > 0.

(i) Is the estimator θ̃n = 2Xn the best unbiased estimator of the parameter θ?

(ii) If the answer in (i) is negative then find the best unbiased estimator of the parameter θ.

Example 28. General multinomial distribution

Let X1, . . . ,Xn be independent identically distributed random vectors with the multinomial dis-
tribution M(1; p1, . . . , pK), where

P
(
X1 = (x1, . . . , xK)

)
= px11 · · · p

xK
K ,

with
xi ∈ {0, 1}, 0 < pi < 1, i = 1, . . . ,K,

and
K∑
i=1

xi = 1,
K∑
i=1

pi = 1.

(i) Find the complete sufficient statistic for the parameter p = (p1, . . . , pK)T.

(ii) Find the best unbiased estimator of the parametric function a(p) = p1 p2.
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4 Method of maximum likelihood - introduction

Let the joint density function of our observations X = (X1, . . . ,Xn) be p(x;θ) (with respect to
a σ-finite measure µ), which depends on an unknown parameter θ ∈ Θ. By the likelihood we
understand a (random) function of the parameter θ:

Ln(θ) = p(X;θ),

Note si that if the distribution of our observations X is discrete, then the likelihood Ln(θ) is in
fact the probability of our observed data view as a function of the parameter θ.

The maximal likelihood estimator is defined as

θ̂n = arg max
θ∈Θ

Ln(θ).

Usually the estimator θ̂n is searched as an argument of the maximum of logarithmic likelihood (log-
likelihood) `n(θ) = logLn(θ). If the density p(x;θ) is

”
sufficiently smooth“ then the estimator is

often searched as a root of the likelihood equation

∂`n(θ)

∂θ
= 0.

In many applications we assume that X1, . . . ,Xn are independent identically distributed random
vectors with the density f(x;θ) with respect to a σ-finite measure µ. Then

Ln(θ) =

n∏
i=1

f(Xi;θ) and `n(θ) =

n∑
i=1

log f(Xi;θ).

Unidimensional parameter

Let X1, . . . ,Xn be independent identically distributed random vectors from the distribution with
the density f(x; θ) with respect to a σ-finite measure µ. Then under appropriate regularity as-
sumptions (requiring among others that the support of density f(x; θ) does not depend on the
unknown parameter θ) the maximum likelihood estimator is asymptotically normal and it satisfies

√
n
(
θ̂n − θ

) d−−−→
n→∞

N
(
0, 1/J(θ)

)
, (1)

where J(θ) is the Fisher information about parameter θ in (one) random vector X1. This Fisher
information is defined as

J(θ) = E
[∂ log f(X1; θ)

∂θ

]2
,

nevertheless it is usually easier to calculate it as

J(θ) = −E
[∂2 log f(X1; θ)

∂θ2

]
.

Thus we get that the asymptotic variance (i.e. the variance of the asymptotic distribution) of the
maximal likelihood estimator under some appropriate regularity assumptions satisfies

avar
(
θ̂n
)

= 1
nJ(θ) .
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Estimator of a transformed parameter. Sometimes we are interested in a maximal likelihood
estimator of a parametric function g(θ). Let θ̂n be maximal likelihood estimator of the parame-
ter θ. Then g(θ̂n) is the maximal likelihood estimator of the parametric function g(θ). Moreover
if θ̂n satisfies (1) and g is continuously differentiable on the parameter space, then the asymptotic
distribution of g(θ̂n) follows from the ∆-method and it holds

√
n
(
g(θ̂n)− g(θ)

) d−−−→
n→∞

N
(
0, [g′(θ)]2/J(θ)

)
.

Thus
avar

(
g(θ̂n)

)
= [g′(θ)]2

nJ(θ) .

Example 29. Poisson distribution

Let X = (X1, . . . , Xn)T be a random sample from the Poisson distribution with the parameter λ.

(i) Find the maximal likelihood estimator of the parameter λ a derive its asymptotic distribution.

(ii) Find the maximal likelihood estimator of the parametric function e−λ a derive its asymptotic
distribution.

Example 30. Exponential distribution

Let the random sample X1, . . . , Xn come from the distribution with the density

fX(x;λ) =

{
λ e−λx, x > 0,

0, otherwise,

where λ > 0.

(i) Find the maximal likelihood estimator λ̂n of the parameter λ.

(ii) Derive the asymptotic distribution of the estimator found in (i).

Example 31. Geometric distribution

Let X = (X1, . . . , Xn)T be a random sample from the geometric distribution, i.e.

P(Xi = k) = p (1− p)k, k = 0, 1, 2, . . . ,

where p ∈ (0, 1).

(i) Find the maximal likelihood estimator of the parameter p and derive its asymptotic distribu-
tion.

(ii) Find the maximal likelihood estimator of the parametric function p(1−p) a derive its asympto-
tic distribution.

Example 32. Uniform distribution U(θ − 1
2
, θ + 1

2
)

Let X1, . . . , Xn be random sample from uniform distribution R
(
θ − 1

2 , θ + 1
2

)
with the density

f(x; θ) =

{
1, θ − 1

2 ≤ x ≤ θ + 1
2 ,

0, otherwise,
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where θ ∈ R.

(i) Find the maximal likelihood estimator of the parameter θ.

(ii) Show that the estimator is (weakly) consistent.

Example 33. Logistic distribution

Let X1, . . . , Xn be random sample from the logistic distribution with the density

f(x; θ) =
e−(x−θ)(

1 + e−(x−θ)
)2 , x ∈ R,

where θ ∈ R.

(i) Find the likelihood equation for the estimator of the parameter θ and show that the equation
has exactly one root.

(ii) Find the asymptotic distribution of the estimator from (i).

Example 34. Weibullovo distribution

Let X1, . . . , Xn be random sample from the Weibull distribution with the density

f(x; θ) =

{
θ xθ−1 e−x

θ
, x > 0

0, otherwise,

where θ > 0.

(i) Write down the likelihood equation for the maximum likelihood estimator of the parameter
θ and show that this equation has a unique root.

(ii) Find the asymptotic distribution of the estimator from (i).
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5 Neyman-Pearson theorem

Let X1, . . . ,Xn be a random sample from the distribution with the density f(x;θ) with respect to
a σ-finite measure ν. We are interested in testing hypothesis H0 : θX = θ0 against the alternative
H1 : θX = θ1, where θ1 6= θ0. Put

Tn =

∏n
i=1 f(Xi;θ1)∏n
i=1 f(Xi;θ0)

,

and consider the test of the form
Tn ≥ c, (2)

where c is such a constant so that the test has the level α. Then the Neyman-Pearson theorem
says that the test with the critical region (2) maximizes the power (i.e. it minimizes the probability
of the type II error) among all tests with the level α. We also say that such a test is the most
powerful test.

It is worth noting that Tn = Ln(θ1)
Ln(θ0) , where Ln(θ) is a likelihood at θ.

Example 35. Poisson distribution

Let X1, . . . , Xn be a random sample from a Poisson distribution with the parameter λ.

(i) Find the most powerful test of the hypotheses

H0 : λX = λ0, H1 : λX = λ1,

where λ1 > λ0. Note that this test does not depend on λ1

(ii) Modify the test from (i) for a situation when λ1 < λ0.

Example 36. Bernoulli distribution

Let X1, . . . , Xn be random sample from a Bernoulli distribution with the parameter p.

(i) Find the most powerful test of the hypotheses

H0 : pX = p0, H1 : pX = p1,

where p1 > p0. Does the test depend on the specific choice of the value p1?

(ii) Modify the test from (i) for the situation that p1 < p0?

Example 37. Exponential distribution

Let X1, . . . , Xn be a random sample from the exponential distribution with the parameter λ.

(i) Find the most powerful test of the hypotheses

H0 : λX = λ0, H1 : λX = λ1,

where λ1 > λ0.

14



(ii) Modify the test from (i) for a situation when λ1 < λ0.
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6 Method of the maximum likelihood - the vector parameter

Let X1, . . . ,Xn be independent and identically distributed random vectors (or variables) from the
distribution with the density f(x;θ) with respect to a σ-finite measure µ, where θ = (θ1, . . . , θp)

T

is unknown parameter. Denote the true value of the parameter as θX . Then under appropriate
regularity assumptions (see for instance Chapter 7.6.5 of the book Anděl: Základy matematické
statistiky, 2007, MATFYZPRESS) is the maximum likelihood estimator (θ̂n = (θ̂n1, . . . , θ̂np)

T)
asymptotically normal and it satisfies

√
n
(
θ̂n − θX

) d−−−→
n→∞

Np
(
0p,J

−1(θX)
)
, (3)

where J(θ) is the Fisher information matrix about the parameter θ in the random vector (veličině)X1.

Estimation of the asymptotic variance. Note that (3) implies that the asymptotic variance of
maximal likelihood estimator is (in regular cases)

avar(θ̂n) = 1
n J
−1(θX).

As a consistent estimator of J(θX) we usually use either J(θ̂n) or the empirical Fisher information
matrix at the point θ̂n, i.e.

In(θ̂n) = − 1

n

∂2`n(θ)

∂θ∂θT

∣∣∣∣
θ=θ̂n

. (4)

Confidence interval for θXk

In applications we are usually interested in confidence intervals for θXk (i.e. for the k-th coordinate
of the parameter θX), where k = 1, . . . , p. Denote θ̂nk the k-th component of the maximal likelihood

estimator θ̂n. If the asymptotic normality result (3) and Ĵ
P−−−→

n→∞
J(θX) hold, then the asymptotic

(two-sided) confidence interval is given by(
θ̂nk −

u1−α/2

√
Ĵkk√

n
, θ̂nk +

u1−α/2

√
Ĵkk√

n
,
)
, (5)

where Ĵkk is the k-th diagonal element of the matrix Ĵ
−1

(i.e. of the inverse matrix of the estimated
Fisher information matrix).

Example 38. Lognormal distribution

Let X1, . . . , Xn be a random sample from the lognormal distribution with the density

f(x;µ, σ2) =

{
1

σx
√

2π
exp

{
− (log x−µ)2

2σ2

}
, x > 0,

0, x ≤ 0.

(i) Find the maximal likelihood estimator θ̂n = (µ̂n, σ̂
2
n)T of the vector parameter θ = (µ, σ2)T.

(ii) Derive the asymptotic distribution of the estimator from (i).

(iii) Find the confidence interval for the parameter µ.
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Example 39. Uniform distribution U(a, b)

Let X1, . . . , Xn be a random sample from the uniform distribution U(a, b) with the density

f(x; a, b) =

{
1
b−a , a ≤ x ≤ b,
0, otherwise,

where a < b.

(i) Find the maximal likelihood estimator of the vector parameter (a, b)T.

(ii) Show that the estimator from (i) is (weakly) consistent.

(iii) Calculate
lim
n→∞

P
(
n (̂bn − b) ≤ x

)
and with the help of this result find the the limit distribution of the estimator b̂n.

Example 40. Gaussian linear regression model

Suppose you observe independent and identically distributed random vectors
(
X1

Y1

)
, . . . ,

(
Xn

Yn

)T
,

where Xi = (Xi1, . . . , Xip)
T. Let the conditional distribution of Yi given Xi is Gaussian with

the mean βTXi and variance σ2 (for i = 1, . . . , n), where β = (β1, . . . , βp)
T. Further let the dis-

tribution Xi does not depend on the parameters β and σ2. Finally let EXiX
T
i be a finite matrix

that is not singular.

(i) Find the maximal likelihood estimator of the parameter θ = (βT, σ2)T.

(ii) Derive the asymptotic distribution of the maximum likelihood estimator θ̂n =
(
β̂
T

n , σ̂
2
n

)T
from

(i).

(iii) From (ii) deduce the asymptotic distribution of the estimator β̂n.

Example 41. Model of the logistic regression

Suppose you observe independent and identically distributed random vectors
(
X1

Y1

)
, . . . ,

(
Xn

Yn

)T
,

where

P
(
Y1 = 1 |X1

)
=

exp{βTX1}
1 + exp{βTX1}

, P
(
Y1 = 0 |X1

)
=

1

1 + exp{βTX1}
,

and the distribution of X1 does not depend on the unknown vector parameter β = (β1, . . . , βp)
T.

Further let E exp{βTX1}
(1+exp{βTX1})2

XiX
T
i be a finite matrix that is non-singular.

(i) Derive the asymptotic distribution of the maximal likelihood estimator parameter β.

(ii) Find the two-sided confidence interval for the parameter β1.
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7 Method of maximum likelihood - asymptotic tests
(without nuissance parameters)

Asymptotic tests for a vector parameter

The null hypothesis H0 : θX = θ0 against the alternative H1 : θX 6= θ0 can be tested with Wald
test, Rao score test or the likelihood ratio test.

Analogously as previously denote `n(θ) the logarithmic likelihood andUn(θ) = ∂`n(θ)
∂θ its derivative.

Further let Ĵ be an estimator of J(θ0) (Fisher information matrix of one observation at the point
of the null hypothesis). Define the following test statistics

Wn = n
(
θ̂n − θ0

)T
Ĵ
(
θ̂n − θ0

)
(Wald test),

Rn =
1

n
[Un(θ0)]TĴ

−1
Un(θ0) (Rao score test),

LRn = 2
(
`n(θ̂n)− `n(θ0)

)
(Likelihood ratio test).

Note that we need the estimator Ĵ . In Wald test we usually use J(θ̂n) or the empirical Fisher
information matrix at the point θ̂n, see (4). On the other hand in Rao score test (whose test statistic
is sometimes denoted also as LMn) we usually use J(θ0) or the empirical Fisher information matrix
at the point θ0. The reason is that then to perform the Rao score test we do not need to calculate
the maximum likelihood estimator θ̂n.

Under appropriate regularity assumptions (see e.g. Chapter 7.6.5 of the book Anděl: Základy ma-
tematické statistiky, 2007, MATFYZPRESS) and under the null hypothesis each of the three tests
has asymptotically χ2-distribution with p degrees of freedom. The large values of the test statistic
speak against the null hypothesis. That is why we reject the null hypothesis if the test test statistic
is greater (or equal) to (1− α)-quantile of χ2-distribution with p degree of freedom.

One-dimensional parameter θ

In this special case the test statistics are of the form

Wn = n
(
θ̂n − θ0

)2
Ĵ (Wald test),

Rn =
[Un(θ0)]2

n Ĵ
(Rao score test),

LRn = 2
(
`n(θ̂n)− `n(θ0)

)
(Likelihood ratio test).

Under the null hypothesis H0 : θX = θ0 each of the test statistics has (under appropriate regularity
assumptions) asymptotically χ2-distribution with one degrees of freedom.

Example 42. Exponential distribution

Let X1, . . . , Xn be a random sample from the distribution

f(x;λ) =

{
λ e−λx, x > 0,

0, otherwise,

where λ > 0.
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(i) Derive Wald test, Rao score test a likelihood ratio test for testing the null hypothesis H0 :
λX = λ0 against the alternative H1 : λX 6= λ0.

Example 43. Geometric distribution

Consider independent identically distributed random variables X1, . . . , Xn from a geometric distri-
bution i.e.

P(Xi = k) = p(1− p)k, k = 0, 1, 2, . . .

where p ∈ (0, 1) be unknown parameter.

(i) Derive Wald test, Rao score test and the likelihood ratio test for testing the null hypothesis,
that pX = p0 against two-sided alternative pX 6= p0.

Example 44. Gaussian distribution

Let X = (X1, . . . , Xn)T be a random sample from the Gaussian distribution N(µ, σ2).

(i) Derive Wald test, Rao score test and likelihood ratio test for testing the null hypothesis
H0 : (µ, σ2)T = (0, 1)T against H1 : (µ, σ2)T 6= (0, 1)T.

Example 45. Regression in exponential distribution

Let (X1, Y1)>, . . . , (Xn, Yn)> be independent and identically distributed random vectors. Let the
conditional distribution of Y for given X is has the density

fY |X(y|x;β) = β x exp
{
− β x y

}
I{y > 0},

where β > 0 is an unknown parameter. Further suppose that the distribution of X does not depend
on β.

(i) Find the maximal likelihood estimator for unknown parameter β.

(ii) Derive Wald test, Rao score test and the likelihood ratio test for testing H0 : βX = β0 against
the alternative H1 : βX 6= β0.

Example 46. Logistic distribution

Let X1, . . . , Xn be a random sample from the logistic distribution with the density

f(x; θ) =
e−(x−θ)(

1 + e−(x−θ)
)2 , x ∈ R,

where θ ∈ R.

(i) Derive Wald test, Rao score test a likelihood ratio test for testing H0 : θX = θ0 against the
alternative H1 : θX 6= θ0.
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8 Method of maximum likelihood - asymptotic tests with nuisance
parameters

Let the random vector X = (X1, . . . , Xn)T be a random sample from the distribution with the
density f(x;θ) (with respect to a σ-finite measure µ), where θ = (θ1, . . . , θp)

T is an unknown
parameter and θX is its true value. Often we are interested in testing the null hypothesis H0 :
θX ∈ Θ0 against the alternative H1 : θ ∈ Θ \ Θ0, where Θ0 is subset of the parameter space Θ.
Likelihood ratio test for this situation can be written in the form

LR∗n = 2
(
`n(θ̂n)− `n(θ̃n)

)
, (6)

where θ̃n is the maximal likelihood estimator under the null hypothesis, i.e.

θ̃n = arg max
θ∈Θ0

`n(θ).

Under the null hypothesis and regularity assumption it holds that the test statistic LR∗n has
asymptotically χ2-distribution with degrees of freedom dim(Θ)− dim(Θ0).

In what follows we will treat the special case that we are interested in testing the first q elements
(1 ≤ q < p) of the vector θ. We denote this subvector as τ . The remaining p − q elements will be
denoted as ψ and we will call them nuisance parameters. Thus we can write θ = (τ ,ψ) and we
want to test

H0 : τX = τ 0 against the alternative H1 : τX 6= τ 0, (7)

where ψ can be arbitrary.

Denote τ̂n the first q components of the maximal likelihood estimator θ̂n and note that in this case
one can write maximal likelihood estimator under the null hypothesis (θ̃n) in the form

θ̃n = (τ 0, ψ̃n), where ψ̃n = arg max
ψ

`n(τ 0,ψ).

Let U1n(τ ,ψ) = ∂`n(τ ,ψ)
∂τ be the first q components of the score function. Further denote Ĵ the

estimator of the Fisher information matrix in a random vector Xi and assume that this estimator
is consistent under the null hypothesis.

For testing the hypotheses (7) one can use either the likelihood ratio test (6) or one of the following
tests

W ∗n = n
(
τ̂n − τ 0

)T [
Ĵ

11
]−1 (

τ̂n − τ 0

)
, (Wald test),

R∗n =
1

n
UT

1n(θ̃n) Ĵ
11
U1n(θ̃n), (Rao score test),

where Ĵ
11

is the upper left (q, q)−block of the matrix Ĵ
−1

(i.e. of the inversion of the estimator
Fisher information matrix). Each of the test statistics has under the null hypothesis (and under
appropriate regularity assumptions) asymptotically χ2-distribution with q degrees of freedom.

As the estimator of the Fisher information matrix in Wald test we usually use either

Ĵ = J
(
θ̂n
)

or Ĵ = − 1

n

∂2`n(θ)

∂θ∂θT

∣∣∣
θ=θ̂n

.
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In Rao score test it is usually used either

Ĵ = J
(
θ̃n
)

or Ĵ = − 1

n

∂2`n(θ)

∂θ∂θT

∣∣∣
θ=θ̃n

so that we can perform Rao score test without necessity to calculate the (full) maximum likelihood
estimator θ̂n.

Example 47. Gaussian distribution

Consider the random sample X1, . . . ,Xn from the Gaussian distribution N(µ, σ2), where both
parameters µ ∈ R a σ2 > 0 are unknown. The corresponding density is of the form

f(x;µ, σ2) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
, x ∈ R.

(i) Derive likelihood ratio test, Rao score test and Wald test of the hypothesis H0 : µ = µ0

against the alternative H1 : µ 6= µ0.

Example 48. Multinomial distribution

Let X1, . . . ,Xn be independent abd identically distributed random vectors from the multinomial
distribution M(1; p1, p2, p3, p4), where

P
(
X1 = (x1, x2, x3, x4)

)
= px11 · p

x2
2 · p

x3
3 · p

x4
4 ,

where
xi ∈ {0, 1}, 0 < pi < 1, i = 1, 2, 3, 4

and it holds that
x1 + x2 + x3 + x4 = 1, p1 + p2 + p3 + p4 = 1.

(i) Derive the likelihood ratio test and Wald test of the hypothesis H0 : p1 = 1
4 against the

alternative H1 : p1 6= 1
4 .

(ii) Derive the likelihood ratio test for the null hypothesis H0 : p1 = p2 against the alternative
H1 : p1 6= p2?

(iii) Derive the likelihood ratio test for the null hypothesis H0 : p3 = 1.1 p1 against the alternative
H1 : p3 6= 1.1 p1?

Example 49. Multinomial distribution

The table below gives the number of lively born children in the Czech Republich in 2008 in different
quarters of the year

Quarter 1 2 3 4

Number 28 737 30 871 31 915 28 047
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With the help of the tests derived in Example 48 find the answer to the following questions.

(i) Can we say that the probability of a child being born in the first quarter is 1
4?

(ii) Can we say that the probability of child being born in the first quarter is the same as in the
second quarter?

(iii) Can we say that the probability of child being born in the third quarter is 1.1-time bigger
than in the first quarter?

Example 50. The simple linear model

Suppose that you observe independent and identically distributed random vectors (X1, Y1)T, . . . , (Xn, Yn)T

such that that the conditional distribution of Yi given Xi is N(β0 + β1Xi, σ
2) and Xi has a distri-

bution with the density fX(x) not depending on the unknown parameters β0, β1 a σ2.

(i) Find likelihood ratio test null of the hypothesis H0 : β1 = 0 against the alternative that
H1 : β1 6= 0.

Example 51. Model jednoduché logistické regrese

Suppose you observe independent and identically distributed random vectors (X1, Y1)T, . . . , (Xn, Yn)T,
where

P(Y1 = 1 |X1) =
exp{α+ β X1}

1 + exp{α+ β X1}
, P(Y1 = 0 |X1) =

1

1 + exp{α+ β X1}
,

and distribution X1 does not depend on unknown parameters α a β.

(i) Derive a test of the null hypothesis H0 : β = 0 against the alternative that H1 : β 6= 0.

(ii) Calculate the p-value based on data in the table, where Xi stands for the weight and Yi for the
indicator of too high blood pressure. Calculate also the confidence interval for the parameter
β.

1 2 3 4 5 6 7 8 9 10

Xi 70 85 76 59 92 102 65 87 73 102

Yi 1 1 0 0 1 1 1 0 1 1

Example 52. Regression in exponential distribution

Let (X1, Y1)>, . . . , (Xn, Yn)> be independent and identically distributed random vectors such that
Y1 given that X1 = x has an exponential distribution with the density

fY |X(y|x;α, β) = λ(α, β, x) exp
{
− λ(α, β, x) y

}
I{y > 0},

where λ(α, β, x) = eα+β x a α, β are unknown parameters. Further assume that the distribution of
X1 does not depend on parameters α and β.
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(i) Derive the likelihood ratio test, Rao score test and Wald test of the null hypothesis β = 0
against two-sided alternative that β 6= 0.

For instance, you can think of Y has a time to a breakdown of a given product and X as the maximal
temperature during the manufacturing of this product. Note that under the null hypothesis X and
Y are independent.
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9 Results of some examples

Example 1

(i) E (XY | X = x ) = x(3x+2)
3(2x+1) , for x ∈ (0, 1).

Example 2

(i) E
[
Y
X2 |X

]
= 2X.

(ii) E Y
X2 = 1.

(iii) EY = 1
4 .

(iv) var(Y ) = 37
28 .

Example 3

(i) E
(
Y
∣∣X = t

)
= t for t ∈ (1, 2) and E

(
Y
∣∣X) = X.

(ii) E
(
Y

∣∣∣∣ log
(
X−1
2−X

)
= t
)

= 2 exp{t}+1
exp{t}+1 for t ∈ (−∞,∞) and E

(
Y
∣∣ log

(
X−1
2−X

))
= X.

(iii) E
[
Y
X6

∣∣ log
(
X−1
2−X

)]
= 1

X5 .

Example 4

(i) E
[
Y | exp{X}

]
= X2+1

2 .

(ii) EY = 1.

(iii) var(Y ) = 1.

Example 8

(i) X is sufficient.

(ii)
(
|X1|, . . . , |Xn|

)T
is sufficient.

(iii)
∑n

i=1Xi is not sufficient.

(iv)
∑n

i=1 |Xi| is not sufficient.

(v)
∑n

i=1X
2
i is sufficient.

(vi) 1
n

∑n
i=1X

2
i is sufficient.

(vii)
(

1
n

∑n−1
i=1 X

2
i , X

2
n

)T
is sufficient.

Example 10

(i) S(X) =
(∑n

i=1Xi,
∑n

i=1X
2
i

)T
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Example 14

(i)
(∑n

i=1Xi,
∑n

i=1X
2
i

)T
(ii) Statistic from (i) is not complete.

Example 17

(i)
(∑n

i=1 log(Xi),
∑n

i=1 log(1−Xi)
)T

Example 18

(ii) Consider the statistic S2
X − S2

Y .

Example 19

(ii)
1− 1

n(
Xn+1− 1

n

)
(iii) Yes.

(iv)
Xn

(
1− 1

n

)(
Xn+1− 1

n

)(
Xn+1− 2

n

)
Example 21

(i) Xn.

(ii) n
n−1 Xn

(
1−Xn

)
.

Example 22

(i) Xn.

(ii)
(
1− 1

n

)∑n
i=1Xi .

Example 23

(i) It is sufficient to show that the estimator is unbiased (this is known) and that it is function
of the complete sufficient statistic.

(ii) Similar as in (i), but here it is rather technical to show that the estimator is unbiased.

(iii) No, it cannot be as it is not a function of the complete sufficient statistic.

(iv) Similarly as in (i) and (ii).

(v) We need to find an unbiased estimator that is a function a complete sufficient statistic. A

straightforward estimator would be
(
Xn

)2
. Try to calculate E

(
Xn

)2
. Then find a ∈ R such

that the estimator W =
(
Xn

)2 − aS2
n is unbiased.

Example 24

Viz Example 7.57 from Anděl: Základy matematické statistiky, 2007, MATFYZPRESS.
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Example 25

(i) δ̂n = min1≤i≤nXi − 1
nλ

Example 26

(i) λ̂n = n−1∑n
i=1Xi

Example 27

(i) Estimator θ̃n = 2Xn is unbiased, but it is not the best unbiased estimator.

(ii) n+1
n max1≤i≤nXi.

Example 28

(i) T =
(∑n

i=1X1i, . . . ,
∑n

i=1X(K−1)i

)T
(ii) 1

n(n−1)

∑n
i=1X1i

∑n
i=1X2i

Example 29

(i) Xn.

(ii) The maximal likelihood estimator is e−Xn , and it holds that

√
n
(
e−Xn − e−λ

) d−→ N
(
0, λ e−2λ

)
,

Example 30

(i) λ̂n = 1
Xn

(ii)
√
n
(
λ̂n − λ

) d−→ N
(
0, λ2

)
Example 31

(i) p̂n = 1
1+Xn

,
√
n(p̂n − pX)

d−−−→
n→∞

N
(
0, p2(1− p)

)
(ii) p̂n(1− p̂n) = Xn

(1+Xn)2
,
√
n(p̂n(1− p̂n)− p(1− p)) d−−−→

n→∞
N
(
0, (1− 2p)2p2(1− p)

)
Example 32

(i) The maximal likelihood estimator is any of the values from the interval(
max

1≤i≤n
Xi − 1

2 , min
1≤i≤n

Xi + 1
2

)
.

(ii) The estimator from (i) is consistent as max1≤i≤nXi
P−→ θ+ 1

2 and min1≤i≤nXi
P−→ θ− 1

2 for
n→∞.
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Example 33

(i) See Example 7.96 of the book of Anděl.

(ii) Note that the estimator is given only implicitly. Thus one needs to use the general result (1),
which gives us that

√
n
(
θ̂n − θ

) d−→ N(0, 3).

Example 34

(i) See Example 7.99 of the book of Anděl.

(ii) J(θ) = 1
θ2

+ EXθ log2(X) = 1
θ2

(1 +
∫∞

0 y2 log2(y) e−ydy).

Example 35

(i) The test has the critical region
∑n

i=1Xi ≥ c, where one can take c as the (1− α)-quantile of
the distribution Po(nλ0). The test does not depend on the choice of λ1 from which one can
conclude that the test is the most powerful test for testing H0 : λX = λ0 against H1 : λX > λ0.

(ii) In this situation the test is of the form
∑n

i=1Xi ≤ c.

Example 36

(i) The test has the critical region
∑n

i=1Xi ≥ c, where one can take c as the (1− α)-quantile of
the distribution Bi(n, p0). The test does not depend on the choice of p1 from which one can
conclude that the test is the most powerful test for testing H0 : pX = p0 against H1 : pX > p0.

(ii) In this situation the test is of the form
∑n

i=1Xi ≤ c.

Example 37

(i) The test has the critical region
∑n

i=1Xi ≤ c.
(ii) The test would have a critical region

∑n
i=1Xi ≥ c.

Example 38

Put Yi = logXi.

(i) θ̂n = (µ̂n, σ̂
2
n)T =

(
Y n,

1
n

∑n
i=1(Yi − Y n)2

)T
.

(ii)

√
n

((
µ̂n
σ̂2
n

)
−
(
µ

σ2

))
d−−−→

n→∞
N2

((
0

0

)
,

(
σ2, 0

0, 2σ4

))

(iii) (Xn −
u1−α/2 σ̂n√

n
, Xn +

u1−α/2 σ̂n√
n

)

Example 39

(i)
(

min1≤i≤nXi,max1≤i≤nXi

)T
.

(ii) Estimator from (i) is consistent.

(iii) limn→∞ P
(
n (̂bn − b) ≤ x

)
= exp{ x

b−a} for x < 0. For x ≥ 0 is this probability equal to 1.

Thus n (̂bn− b)
d−−−→

n→∞
−Y , where Y has an exponential distribution with the parameter 1

b−a .
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Example 40

(i) β̂n =
(∑n

i=1XiX
T
i

)−1∑n
i=1XiYi and σ̂2

n = 1
n

∑n
i=1

(
Yi − β̂

T

nXi

)2
.

Example 41

(i)
√
n (β̂n − β)

d−−−→
n→∞

Np
(
0p,
[
E exp{βTXi}

(1+exp{βTXi})2
XiX

T
i

]−1)
;

(ii)
(
β̂n1 ∓ u1−α/2

√
Ĵ11

n

)
, where Ĵ11 is the first diagonal element of the matrix

[
1

n

n∑
i=1

exp{β̂
T

nXi}

(1 + exp{β̂
T

nXi})2
XiX

T
i

]−1

.

Note that here we do not know the distribution of Xi. Thus one cannot use J(β̂n) as an

estimate of the Fisher information matrix J(β) = E exp{βTXi}
(1+exp{βTXi})2

XiX
T
i .

Example 42

(i) MLE is λ̂n = 1
Xn

.

Wn =
n (λ̂n − λ0)2

λ̂2
n

=

(√
n (λ̂n − λ0)

λ̂n

)2

,

Rn =

(√
n (λ̂n − λ0)

λ0

)2

,

LRn = 2

[
n log λ̂n

λ0
−

n∑
i=1

Xi (λ̂n − λ0)

]
.

The null hypothesis is rejected if the value of the given test statistic is greater than (or equal
to) χ2

1(1− α).

Example 42

(i) MLE is p̂n = 1
1+Xn

.

Wn =
n(p̂n − p0)2

p̂2
n(1− p̂n)

Rn =
(
n
p0
−

∑n
i=1Xi
1−p0

)2
n p2

0(1− p0),

LRn = 2

[
n log p̂n

p0
+

n∑
i=1

Xi log 1−p̂n
1−p0

]
.
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Example 44

(i) MLE: µ̂n = Xn and σ̂2
n = 1

n

∑n
i=1(Xi −Xn)2.

Wn =
n (µ̂n − 0)2

σ̂2
n

+
n (σ̂2

n − 1)2

2σ̂4
n

≥ χ2
2(1− α),

Rn =

(∑n
i=1Xi

)2
n

+
(
∑n

i=1

[
X2
i − 1

]
)2

2n
≥ χ2

2(1− α),

LRn = −n log σ̂2
n +

n∑
i=1

(
X2
i − 1

)
≥ χ2

2(1− α).

Example 45

(i) β̂n = 1
1
n

∑n
i=1 YiXi

(ii)

Wn =
n (β̂n − β0)2

β̂2
n

Rn =
(
n
β0
−

n∑
i=1

XiYi
)2
β2

0

LRn = 2

[
n log β̂n

β0
−

n∑
i=1

XiYi (β̂n − β0)

]
.

Example 46

(i) For the asymptotic distribution of MLEE see Example 33. From this example we know that
J(θ) = 1

3 .

Wn =
n (θ̂n − θ0)2

3

Rn =

(
n−

∑n
i=1

2eθ0−Xi
1+eθ0−Xi

)2
n
3

LRn = 2n (θ̂n − θ0)− 4

n∑
i=1

log
(

1+eθ0−Xi

1+eθ̂n−Xi

)
It is worth noting that to calculate Rao score test we do not need to find θ̂n (which is given
only implicitly as a root of a nonlinear equation). Thus we can perform Rao score test without
special numerical software.

Example 47

σ̂2
n = 1

n

∑n
i=1(Xi −Xn)2 be MLE of σ2 (without restrictions) and σ̃2

n = 1
n

∑n
i=1(Xi − µ0)2 be the

MLE estimator of σ2 under H0.

(i) LR∗n = n log σ̃2
n
σ̂2
n

, W ∗n = n (Xn−µ0)2

σ̂2
n

, R∗n = n (Xn−µ0)2

σ̃2
n

.

The critical region is always of the form Tn ≥ χ2
1(1 − α), where Tn is one of the above test

statistics.
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Example 48

Denote Yk =
∑n

i=1Xik pro k ∈ {1, . . . , 4}. Then MLE (without restrictions) is

p̂n =
(
p̂n1, . . . , p̂n4

)T
=
(
Y1
n , . . . ,

Y4
n

)T
.

The asymptotic distribution can be deduced directly from the central limit theorem (think why it
is not possible to use the the general result about the asymptotic normality of MLE).

The likelihood ratio test is of the form

LR∗n = 2
4∑

k=1

Xk log
( p̂nk
p̃nk

)
≥ χ2

1(1− α).

(i) The estimate of p under the null hypothesis for the likelihood ration test is given by

(
p̃n1, . . . , p̃n4

)T
=
(1

4
, 3Y2

4
∑4
k=2 Yk

, 3Y3
4
∑4
k=2 Yk

, 3Y4
4
∑4
k=2 Yk

)T
.

Wald test has a critical region ∣∣∣∣ √n
(
p̂1n − 1

4

)√
p̂1n(1− p̂1n)

∣∣∣∣ ≥ u1−α/2

(ii) MLE of p under the null hypothesis

(
p̃n1, . . . , p̃n4

)T
=
(
Y1+Y2

2n , Y1+Y2
2n , p̂n3, p̂n4

)T
.

(iii) MLE of p under the null hypothesis

(
p̃n1, . . . , p̃n4

)T
=
(
Y1+Y3
2.1n , p̂n2,

1.1(Y1+Y3)
2.1n , p̂n4

)T
.

Example 50

MLE (without restrictions) β̂1 =
∑n
i=1(Yi−Y n)(Xi−Xn)∑n

i=1(Xi−Xn)2
, β̂0 = Y n− β̂1Xn and σ̂2 = 1

n

∑n
i=1(Yi− β̂0−

β̂1Xi)
2.

MLE under the null hypothesis (i.e. β1 = 1) is given β̃0 = Y n and σ̃2 = 1
n

∑n
i=1(Yi − β̃0)2.

(i) LR∗n = n log σ̃2

σ̂2 ≥ χ2
2(1− α),

Example 51

MLE
(α̂n
β̂n

)
withou restriction is given implicitly as a solution of the following likelihood equations

n∑
i=1

[
Yi − exp{α+β Xi}

1+exp{α+β Xi}
]

= 0,

n∑
i=1

Xi

[
Yi − exp{α+β Xi}

1+exp{α+β Xi}
]

= 0.
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MLE under the null hypothesis that β = 0 is given by
(
α̃n
0

)
where α̃n = log

(
Y n

1−Y n

)
.

As we do not know the distribution of Xi we estimate the Fisher information matrix as

Ĵ(α, β) =

(
1
n

∑n
i=1

exp{α+β Xi}
(1+exp{α+β Xi})2 ,

1
n

∑n
i=1

Xi exp{α+β Xi}
(1+exp{α+β Xi})2

1
n

∑n
i=1

Xi exp{α+β Xi}
(1+exp{α+β Xi})2 ,

1
n

∑n
i=1

X2
i exp{α+β Xi}

(1+exp{α+β Xi})2

)

(i) W ∗n =
( √

n(β̂n−0)√
Ĵ22(α̂n,β̂n)

)2
, where Ĵ22(α̂n, β̂n) is the second diagonal element of the inversion of

the matrix Ĵ(α̂n, β̂n).

R∗n = 1
n

(∑n
i=1Xi(Yi − eα̃n

1+eα̃n
)
)2
Ĵ22(α̃n, 0), where Ĵ22(α̃n, 0) is the second diagonal element

of the inversion matrix Ĵ(α̃n, 0).

test. stat. p-value

LR∗n 1.14 0.29

R∗n 1.08 0.30

W ∗n 0.98 0.32

(ii) Asymptotic confidence interval for β is given by(
β̂n − u1−α/2

√
Ĵ22(α̂n,β̂n)

n , β̂n + u1−α/2

√
Ĵ22(α̂n,β̂n)

n

)
.

For the given data and α = 0.05 the confidence interval is (−0.055, 0.168).
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