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Consider a distribution function H(x, y) with margins
F (x) = H(x,+∞) and G(y) = H(+∞, y).

I We know that if H is the joint distribution function of a pair
of independent random variables, then

H(x, y) = F (x) ·G(y).

I If F and G are injective, then there is clearly a well-defined
coupling function ∧ such that

H(x, y) = F (x) ∧G(y).

I In fact, this is true without the injectivity assumption.



Theorem
Let H(x, y) be a distribution function with margins F (x) and
G(y) as before. Then

|H(x1, y1)−H(x2, y2)| ≤ |F (x1)− F (x2)|+ |G(y1)−G(y2)|.

I The value H(x, y) thus depends only on F (x) and G(y).



I The value u ∧ v is defined for u in Img(F ) and v in Img(G).

I u ∧ 0 = 0 ∧ v = 0

I u ∧ 1 = u

I 1 ∧ v = v

I The ∧-area of any rectangle [u1, v1]× [u2, v2] with u1 ≤ u2
and v1 ≤ v2 is non-negative:

(u2 ∧ v2)− (u1 ∧ v2)− (u2 ∧ v1) + (u1 ∧ v1) ≥ 0.



Definition
Let U and V be subsets of [0, 1] containing 0 and 1. A function
C : U × V → [0, 1] is called a subcopula if

I C(u, 0) = C(0, v) = 0

I C(u, 1) = u

I C(1, v) = v

I For all u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0.

If U = V = [0, 1] then C is called a copula.



Sklar’s Theorem

Theorem
Let H(x, y) be a distribution with margins F (x) and G(y). Then
there exists a unique subcopula C defined on Img(F )× Img(G)
such that

H(x, y) = C(F (x), G(y)).

Theorem
Let F (x) and G(y) be distribution functions, and C be a
subcopula defined on Img(F )× Img(G). Then the function

H(x, y) = C(F (x), G(y))

is a distribution function whose margins are F and G.



I The function Π(u, v) = u · v is a copula.

Theorem
Let H(x, y) be a distribution function with margins F (x) and
G(y). Then the function

C(u, v) = H(F−1(u), G−1(v))

defined for u in Img(F ) and v in Img(G) is a subcopula.

We can use this theorem to construct e.g.:

I Normal copulas

I T copulas



Figure: Normal copula with ρ = 0.8



Figure: T copula with ρ = −0.8 and 1 degree of freedom



I Every subcopula can be extended to a copula.

I Every copula C is Lipshitz:

|C(u1, v1)− C(u2, v2)| ≤ |u1 − u2|+ |v1 − v2|

I Every copula is uniformly continuous on [0, 1]2.

I Every copula is differentiable almost everywhere on [0, 1]2.

I The partial derivatives of any copula C satisfy

0 ≤ ∂C

∂u
(u, v) ≤ 1 and 0 ≤ ∂C

∂v
(u, v) ≤ 1

for all u, v in [0, 1] such that the partial derivative exists.

I For any u in [0, 1], the function v 7→ ∂C
∂u (u, v) is defined

almost everywhere in [0, 1] and non-decreasing on its domain.



I The function M(u, v) = min{u, v} is a copula.

I The function W (u, v) = max{0, u+ v − 1} is a copula.

Theorem (Fréchet-Hoeffding bounds)

Every copula C satisfies M ≥ C ≥W .



Figure: The copula M



Figure: The copula W



Theorem
Let X and Y be non-atomic random variables.

The copula of X and Y is M if and only if there existst a
non-decreasing function T (x) such that T (X) = Y almost surely.

The copula of X and Y is W if and only if there existst a
non-increasing function T (x) such that T (X) = Y almost surely.



I Any copula induces a probability measure on [0, 1]2.

I This measure has uniform margins and is thus non-atomic.

I Thus it decomposes uniquely into an absolutely continuous
and singular part.



Figure: A copula with both an absolutely continuous and singular part



Theorem (Invariance principle)

Let X and Y be non-atomic random variables and S(x) and T (y)
be strictly increasing functions. Then S(X) and T (Y ) are also
non-atomic and have the same copula as X and Y .

Let C(u, v) be the copula of X and Y , and C ′(u, v) the copula of
S(X) and T (Y ).

I If S is strictly increasing and T strictly decreasing, then

C ′(u, v) = u− C(u, 1− v).

I If S and T are both strictly decreasing, then

C ′(u, v) = u+ v − 1 + C(1− u, 1− v).



Theorem
Let (X1, Y1), . . . (Xn, Yn) be a random sample, and C(u, v) be the
copula of Xi and Yi. Then the copula of X(n) and Y(n) is

C ′(u, v) =
(
C(u1/n, v1/n)

)n
.

I It is also possible to express copulas of other order statistics in
terms of C.



Figure: Normal copula with ρ = 0.95



Figure: Transformed copula with n = 10



Dependence

Definition
Let X and Y be random variables with finite non-zero second
moments. We define the correlation of X and Y by

Cor(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
=

E(X − EX)(Y − EY )√
Var(X)

√
Var(Y )

.

I Cor(X,Y ) = 1 if and only if X = a+ bY almost surely for
some a ∈ R and b > 0.

I For a ∈ R and b > 0, Cor(X,Y ) = Cor(a+ bX, Y ).

I Correlation is not in general invariant under strictly increasing
transformations.



Theorem
Let X and Y be non-atomic random variables with finite second
moments and distribution functions F (x) and G(y). Let C(u, v)
be their copula. Then

Cov(X,Y ) =

∫ ∞
−∞

∫ ∞
−∞

C(F (x), G(y))− F (x)G(y)dxdy.

I The correlation of X and Y is maximized when their copula is
M , and minimized when it is W .

Let log(X) ∼ N (0, 1) and log(Y ) ∼ N (0, σ2). Then

e−σ − 1
√
e− 1

√
eσ2 − 1

≤ Cor(X,Y ) ≤ eσ − 1
√
e− 1

√
eσ2 − 1

.



Definition
We say that the pairs (x1, y1) and (x2, y2) are concordant if either

I x1 > x2 and y1 > y2, or

I x1 < x2 and y1 < y2.

Equivalently, (x1, y1) and (x2, y2) are concordant if

(x1 − x2)(y1 − y2) > 0.

We say (x1, y1) and (x2, y2) are discordant if either

I x1 < x2 and y1 > y2, or

I x1 > x2 and y1 < y2.

Equivalently, (x1, y1) and (x2, y2) are discordant if

(x1 − x2)(y1 − y2) < 0.



Definition
Let (X1, Y1) and (X2, Y2) be independent pairs of non-atomic
random variables, such that their distribution functions H1(x, y)
and H2(x, y) have common margins F (x) and G(y). We define
the concordance of (X1, Y1) and (X2, Y2) by

Q = P

[
(X1 −X2)(Y1 − Y2) > 0

]
− P

[
(X1 −X2)(Y1 − Y2) < 0

]
.

Theorem
The concordance of (X1, Y1) and (X2, Y2) depends only on their
copulas C1(u, v) and C2(u, v), and is equal to

Q(C1, C2) = 4

∫
[0,1]2

C1(u, v)dC2(u, v)− 1.



Theorem
The function Q(C1, C2) is symmetric and non-decreasing in each
of its arguments.

Recall the copulas following copulas:

I M(u, v) = min{u, v}
I W (u, v) = max{0, u+ v − 1}
I Π(u, v) = uv

Their concordances are summarized in the following table.

Q M Π W

M 1 1/3 0
Π 1/3 0 −1/3
W 0 −1/3 -1

Table: Concordances



Kendall’s τ

Definition
Let X and Y be non-atomic random variables with copula C(u, v).
We define

τ(X,Y ) = τ(C) = Q(C,C) = 4

∫
[0,1]2

C(u, v)dC(u, v)− 1.

Let (X1, Y1) and (X2, Y2) be independent copies of (X,Y ). Then

τ(X,Y ) = P

[
(X1, Y1) and (X2, Y2) are concordant

]
− P

[
(X1, Y1) and (X2, Y2) are discordant

]
.



Spearman’s ρ

Definition
Let X and Y be non-atomic random variables with copula C(u, v).
We define

ρ(X,Y ) = ρ(C) = 3Q(C,Π) = 12

∫
[0,1]2

C(u, v)dudv − 3.

Let F (x) and G(y) be the distribution functions of X and Y . Then

ρ(X,Y ) = Cor(F (X), G(Y )).
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