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1 Introduction

We consider the regression model with a change after an unknown time point mn,
i.e.

Yin = xT
inβ + xT

inδn · I{i > mn} + ei, i = 1 . . . , n, (1.1)

where mn (≤ n), β = (β1, . . . , βp)
T and δn = (δ1n, . . . , δpn)T �= 0 are unknown

parameters, xin = (xi1,n, . . . , xip,n)T , xi1,n = 1, i = 1, . . . , n, are known design
points and e1, . . . , en are iid random errors fulfilling regularity conditions specified
below. Function I{A} denotes the indicator of the set A.

Model (1.1) describes the situation where the first mn observations follow the
linear model with the parameter β and the remaining n−mn observations follow
the linear regression model with the parameter β + δn. The parameter mn is
usually called the change point.

Such models are usually considered if one suspects that the regression param-
eters might change at an unknown time point, i.e., when one is not sure whether
a change(s) has occurred or not. If the observations indicate a change, then an esti-
mator of its location is of interest. Such problems occur in various situations, e.g.,
in hydrological, meteorological or econometric time series. For recent references
see, e.g., Csörgő and Horváth (1997) and Antoch et al. (2002).

In the present paper we focus on the testing problem:

H0 : mn = n against H1 : mn < n. (1.2)
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We consider test procedures based the partial sums

Skn =
k∑

i=1

xin

(
Yin − xT

inβ̂n

)
, k = 1, . . . , n, (1.3)

S∗
kn =

k∑
i=1

(
Yin − xT

inβ̂n

)
, k = 1, . . . , n, (1.4)

where

β̂n = C−1
nn

n∑
i=1

xinYin, Ckn =
k∑

i=1

xinx
T
in, Co

kn = Cnn − Ckn, k = 1, . . . , n.

Both partial sums Skn and S∗
kn, k = 1, . . . , n, can be viewed as partial weighted

sums of the L2-type residuals

êin = Yin − xT
inβ̂n, i = 1, . . . , n. (1.5)

Procedures based on Skn, k = 1, . . . , n, used for testing H0 against H1, are
based on either of the following test statistics:

Tn = max
p<k<n−p

{
σ̂ −2

n ST
knC

−1
knCnnC

o−1
kn Skn

}
, (1.6)

Tn(q) = sup
0<t<1

{
q−2(t)σ̂ −2

n ST
�(n+1)t�nC−1

nnS�(n+1)t�n

}
, (1.7)

where �a� denotes the integer part of a, q(·) is a positive weight function and σ̂ 2
n

is an estimator of σ2 with the property

σ̂ 2
n − σ2 = op

(
(log log n)−1/2

)
as n → ∞. (1.8)

While the test statistic Tn is related to the likelihood ratio test statistic when
the errors have N(0, σ2) distribution, Tn(q) is its natural modification. For more
details see, e.g., Chapter 3 in Csörgő and Horváth (1997). Notice, moreover, that

β̂n is the least squares estimator of the vector parameter β in the model (1.1) with
mn = n, i.e. no change, and that

σ̂ 2
n =

1

n − p
min

p<k<n−p

{ k∑
i=1

(Yi − xT
i β̂k)

2 +
n∑

i=k+1

(Yi − xT
i β̂

0

k)
2
}

, (1.9)

where β̂k and β̂
0

k are the LSE based on Y1, . . . , Yk and Y1, . . . , Yk, respectively,
fulfills (1.8) in the case that there is at most one change (otherwise it should be
properly modified).
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It can be checked by direct, however tedious, calculation that

σ̂ 2
n =

1

n − p

{ n∑
i=1

ê 2
in − max

p<k<n−p
ST

knC
−1
knCnnC

o−1
kn Skn

}
(1.10)

and therefore Tn can be equivalently expressed as

Tn =
(
Q−1

n − 1

n − p

)−1

(1.11)

with

Qn =
maxp<k<n−p ST

knC
−1
knCnnC

o−1
kn Skn

1
n−p

∑n
i=1 ê 2

in

· (1.12)

The test procedures based on S∗
kn, k = 1, . . . , n, are either of the form

T ∗
n = max

1≤k<n

{√
n

k(n − k)
· |S

∗
kn|

σ̂n

}
or T ∗

n(q) = sup
0<t<1

{
|S∗

�(n+1)t�n|√
n q(t) σ̂n

}
· (1.13)

Notice, that the estimator (1.9) of σ2 used in statistic (1.13) is quite complicated.
However, those who prefer the computational simplicity to the efficiency may use
instead

σ̃ 2
n =

1

n

n∑
i=1

ê 2
i .

Since large values of the above described test statistics indicate that the null
hypothesis is violated, the corresponding critical regions have the form

Tn > cn(α), T ∗
n > c∗n(α), Tn(q) > cn(α, q) and T ∗

n(q) > c∗n(α, q), (1.14)

where cn(α), c∗n(α), cn(α, q) and c∗n(α, q) are critical values corresponding to the
level α. Approximations to these critical values can be obtained through the limit
distribution of the respective test statistics under H0, however, such approxima-
tions are usually not satisfactory. For details see, e.g., Csörgő and Horváth (1997)
and Antoch et al. (2002). Therefore, in this paper we propose another possi-
bility, namely the approximations based on the application of the permutational
principle, of course, suitably modified for the situation of regression models.

Recall that the test statistic Tn(q) with q(t) = 1, t ∈ [0, 1] is quite often used
in detection of changes in econometric models. More information about the recent
development in the area of change point analysis in regression models can be found,
e.g., in Horváth (1995), Csörgő and Horváth (1997), Bai and Perron (1999) and
Hušková (1997, 2000).

In the following section we formulate the assumptions and remind the results
on the limit distribution of the considered statistics under H0. In Section 3 mod-
ified permutational tests are introduced and their limit properties investigated.
Section 4 describes selected results of the application of our approach both to the
real and simulated data. Finally, Section 5 summarizes crucial steps of the proofs.
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2 Assumptions and limit behavior under H0

In this section we formulate the assumptions and remind assertions on the limit
distributions of the test statistics introduced in Section 1. Their proofs can be
found, e.g., in Csörgő and Horváth (1997). Nevertheless, let us start with necessary
assumptions.

• Concerning the design points xin =
(
xi1,n, . . . , xip,n

)T
, i = 1, . . . , n, we assume

that they satisfy:

A.1. xi1,n = 1, i = 1, . . . , n, and
∑n

i=1 xij,n = 0, j = 2, . . . , p.

A.2. There exists a positive definite p × p matrix C such that for any sequence{
ln

}
, limn→∞ ln = ∞, ln ≤ n,∥∥∥∥ 1

ln

(
Ck+lnn − Ckn

)
− C

∥∥∥∥ = o
((

log ln
)−1

)
uniformly for 1 ≤ k ≤ n − ln; ‖ · ‖ denotes the Euclidean norm.

A.3. It holds, as n → ∞, that

max
1≤k≤n

{
1

k

k∑
i=1

∥∥xin

∥∥4
+

1

n − k

n∑
i=k+1

∥∥xin

∥∥4

}
= O(1).

• Concerning the distribution of the error terms ei’s, following set of assumptions
should be satisfied:

B.1. e1, e2, . . . are iid random variables with zero mean, nonzero variance σ2 and
finite moment E|ei|2+Δ1 with some Δ1 > 0.

• Finally, for the weight function q(·) it should hold:

C.1. q(·) is positive on (0, 1), nondecreasing in a neighborhood of 0, nonincreasing
in a neighborhood of 1, inf {q(t); t ∈ (η, 1 − η)} > 0 for all η ∈ (0, 1/2) and
for some c > 0

∫ 1

0

1

s(1 − s)
exp

{
− cq2(s)

s(1 − s)

}
ds < ∞.

The assumptions imposed on the design points xin’s are slightly stronger then
those considered in standard linear regression problems. However, the formulated
assumptions are still fulfilled for a broad spectrum of situations.

Now, we state two theorems on limit behavior of the considered test statistics
under the null hypothesis (corresponding to “no change”).
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Theorem 2.1. Let assumptions A.1. –A.3. and B.1 be satisfied. Then

lim
n→∞

P
(
a
(
log n

)√
Tn ≤ t + bp

(
log n

))
= exp

{
− 2e−t

}
, t ∈ R1, (2.1)

lim
n→∞

P
(
a
(
log n

)
T ∗

n ≤ t + b1

(
log n

))
= exp

{
− 2e−t

}
, t ∈ R1, (2.2)

where

a(y) =
√

2 log y, bp(y) = 2 log y + p
2
log log y − log

(
Γ(p

2
)
)
, y > 1, (2.3)

and Γ(p) =
∫ ∞
0

tp−1e−t dt.

Proof : Can be found in Chapter 3 of Csörgő and Horváth (1997).

Theorem 2.2. Let assumptions A.1. –A.3. and B.1 be satisfied. Let the weight
function q(·) satisfies assumption C.1. Then, as n → ∞,

√
Tn(q)

D−→ sup
0<t<1

{√∑p
i=1 B2

i (t)

q(t)

}
and T ∗

n(q)
D−→ sup

0<t<1

{
|B1(t)|
q(t)

}
, (2.4)

where
{
Bj(t); t ∈ (0, 1)

}p

j=1
are independent Brownian bridges.

Proof : Can be found in Chapter 3 of Csörgő and Horváth (1997).

Remark 2.1. The assertions of both theorems remain true also for random design.
Particularly, if x1n, . . . , xnn are random vectors that do not depend on e1, . . . , en

and that fulfill the assumptions (A.1) – (A.3) in probability.

3 Permutation test procedures

In the present section we apply a modified permutational principle in order to get
permutational counterparts of the test statistics considered in the previous section.
Then the limit behavior of these statistics is derived.

At first note that random errors
(
e1, . . . , en

)
have the same distribution as(

eR1 , . . . , eRn

)
, where R =

(
R1, . . . , Rn

)
is a random permutation of

(
1, . . . , n

)
.

The basic idea is that since we do not know e1, . . . , en, we randomly permute their
estimators ê1n, . . . , ênn, where êin is the L2-residual defined by (1.5), and apply
them repeatedly when calculating statistics Skn and S∗

kn.
More precisely, note that

Skn =
k∑

i=1

xinêin − CknC
−1
nn

n∑
j=1

xjnêjn, k = 1, . . . , n. (3.1)
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Applying the (modified) permutation principle, we have the permutational version
of Skn in the form

Skn(R) =
k∑

i=1

xinêRin − CknC
−1
nn

n∑
j=1

xjnêRjn, k = 1, . . . , n. (3.2)

Similarly, the permutational version of S∗
kn has the form

S∗
kn(R) =

k∑
i=1

êRin − k

n

n∑
j=1

êRjn, k = 1, . . . , n. (3.3)

Permutational versions Tn(R) and Tn(q; R) of Tn and Tn(q) are defined by (1.6)
and (1.7) with Skn, k = 1, . . . , n, and σ̂n replaced by Skn(R), k = 1, . . . , n, and
σ̂n(R). Here σ̂n(R) is defined as

σ̂ 2
n (R) =

1

n − p

{ n∑
i=1

ê 2
in − max

p<k<n−p
ST

kn(R)C−1
knCnnC

o−1
kn Skn(R)

}
.

The permutational versions T ∗
n(R) and T ∗

n(q; R) are defined accordingly. In case
of Tn(R) one can use the relation (1.11) with Qn(R) defined accordingly.

Next, we study the conditional distribution of Tn(R) given the original obser-

vations Yn =
(
Y1n, . . . , Ynn

)T
, i.e. we consider only the randomness generated by

the random permutation R = (R1, . . . , Rn)T . Since the distribution of R is known,
the conditional distribution of Tn(R) given Yn is known and can be calculated,
which means to calculate Tn(r) for all permutations r of {1, . . . , n}. Since the
number of possible permutations is n!, in reality one cannot calculate Tn(r) for
all permutations but only for very small part of them. However, with the current
state of computers one can calculate a reasonable approximation even for moderate
values of n. Particularly, one chooses independently and randomly permutations
r1, . . . , rB, where B is large enough but still affordable with computers. Details
are given in Section 4. With other permutational versions of statistics one can
proceed quite analogously.

Finally, we derive the conditional limit behavior of Tn(R) and T ∗
n(R) under

quite general assumptions. Particularly, it is shown that their conditional limit
distributions, given Yn that follows model (1.1), is with no assumptions on mn the
same as that of Tn and T ∗

n under H0.

Theorem 3.1. Let
(
Y1, x

T
1n

)
, . . . ,

(
Yn, x

T
nn

)
follow the model (1.1) and the assump-

tions A.1. –A.3. and B.1. be satisfied. Then

lim
n→∞

P
(
a
(
log n

)√
Tn(R) ≤ t + bp

(
log n

) ∣∣ Yn

)
= exp

{
− 2e−t

}
, t ∈ R1, (3.4)

in probability, and

lim
n→∞

P
(
a
(
log n

)
T ∗

n(R) ≤ t + b1

(
log n

) ∣∣Yn

)
= exp

{
− 2e−t

}
, t ∈ R1, (3.5)

in probability, where a(y) and bp(y) are given by (2.3).
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Concerning the permutational versions Tn(q; R) and T ∗
n(q; R) related to Tn(q)

and T ∗
n(q), their limit distribution can be approximated as stated bellow.

Theorem 3.2. Let assumptions of Theorem 3.1 be satisfied. Let the weight func-
tion q(·) satisfy assumption C.1. Then, for any ε > 0,

lim
n→∞

P

(
sup

y

∣∣∣∣∣ P
(√

Tn(q; R) ≤ y
∣∣ Yn

)
− P

(
sup

0<t<1

√Pp
i=1 B2

i (t)

q(t)
≤ y

) ∣∣∣∣∣ ≥ ε

)
= 0

in probability, and

lim
n→∞

P

(
sup

y

∣∣∣∣∣P(
T ∗

n

(
q; R

)
≤ y

∣∣ Yn

)
− P

(
sup

0<t<1

|B1(t)|
q(t)

≤ y
) ∣∣∣∣∣ ≥ ε

)
= 0

in probability, where
{
Bj(t); t ∈ (0, 1)

}p

j=1
are independent Brownian bridges.

Remark 3.1. Proofs are postponed to the Section 5.

Remark 3.2. Notice that the assumptions of Theorems 3.1 and 3.2 cover both
the null hypothesis (no change) and alternatives. Moreover, the limit condi-
tional distributions of Tn(R) does not depend on the original observations Y =(
Yn1, . . . , Ynn

)T
and coincide with the limit distribution of Tn under the null hy-

pothesis. This means that the 100(1−α)%-quantile dn(1−α, Yn) of the conditional
distribution of Tn(R) provides an approximation for the critical value for the test
based on Tn. Therefore, the resulting test with approximate level α based on the
permutational principle has the rejection region

Tn > dn(1 − α, Yn). (3.6)

The same also holds for other test statistics mentioned above.

4 Example

Large scale deforestation may cause the soil to lose its capability for water re-
tention. The researchers of the Czech Research Institute for Forest Management
studied the effect of controlled deforestation on the rainfalls-runoffs relationship,
for details see Jarušková (1997). The objective of statistical inference was to decide
whether this relationship changed during the study.

To simplify the model it is supposed that the relation between rainfalls and
runoffs is linear. The problem is one of many change point problems in linear
regression. One can either suppose that the change might occur in the intercept
only or that it might occur in both parameters, i.e. in the intercept and/or the
slope.
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The test statistic T ∗
n , cf (1.13), attains the value 8.22, and the test statistic

Tn, cf (1.6), value 8.11. The asymptotic critical value, cf Theorem 2.1, is equal
to 4.04, and therefore we can conclude that the null hypothesis claiming that the
rainfalls-runoffs relationship is stationary rejected.

The least squares estimator m̂n of the change point mn is equal to 26. Figure 1
shows the linear relationship between rainfalls and run-offs in the first as well in
the second time period; i.e. y = −0.194 + 0.800 x and y = −0.033 + 0.825 x. By �
we denote the observations related to the first 26 years of observation, while by ◦
the observations from the last 10 years.
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Figure 1. Malá Ráztoka: Data and model.
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Figure 2a shows the values of statistics

Z∗
k =

√
n

k(n − k)
· |S

∗
kn|

σ̂n

,

cf. (1.13) for details. Analogously, Figure 2b shows the values of statistics

Zk = σ̂ −2
n ST

knC
−1
knCnnC

o−1
kn Skn

,
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cf. (1.6) and (1.12) for details. In both Figures 2a and 2b the asymptotic and
permutational critical values are plotted. According to the expectation, the per-
mutational critical values are smaller than the asymptotic ones.

To understand better the sensitivity and usefulness of the permutational prin-
ciple, we prepared following semi-simulated study. At first we decided to keep the
same model as for the real Ráztoka data (RRD). More precisely:

C.1. As the base model we used two straight lines with the slopes equal to the
estimated ones in the real data set, i.e.,

y1 = a1 + 0.800x + ε1 and y2 = a2 + 0.825x + ε2.

The values x were simulated from the uniform distribution on [0.4, 1.0]. The
“error terms” were simulated from the normal distribution N (0, 0.04562)
and N (0, 0.07992), where the values 0.04562 and 0.07992 correspond to the
estimated variability of the two least squares fits from the RRD.

C.2. We “played” with the number of observations prior the “deforestification”
and after it. Denote the lengths of these periods n1 and n2.

C.3. Changing a1 and a2 we in the base model we see how small shift we are able
to detect using our approach.

Figures 3 and 4 show the situation for n1 = 75 and n2 = 25. analogously
as above, Figure 3 presents the data and Figure 4 the values of corresponding
statistics Zk and Z∗

k . Notice, that the values a1 and a2 were chosen in such a way
that the test statistics T ∗

n and Tn practically attain the 5% asymptotic critical
value. The permutation critical values based on 100 000 permutations are also
shown.

Finally, we shrinked both base further as shown in Figure 5. Here again n1 = 75
and n2 = 25. However, the values a1 and a2 were chosen in such a way that
the test statistic T ∗

n attains the 5% permutational critical value based on 100 000
permutations. The results are summarized in Figures 5 and 6.

Notice, that while for the real data the shift between both baseline straight
lines is equal to 170.6mm, in the situation shown in Figure 3 it is equal 40 mm
and, finally, in the situation shown in Figure 5 only 30.6 mm.

Aside the situation presented above we prepared several others ones combining
different types of changes, different sample sizes etc. Based on our experience with
various procedures for detection changes, we would suggest to use the permuta-
tional principle whenever applicable because one can distinguish much more subtle
changes.
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Figure 3. Simulated data and model.
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Figure 5. Simulated data and model.
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Our final remark concerns the comparison of the test statistics Tn and T ∗
n .

Based on our experience with both real and simulated data, we can conclude that
in the case of a change in the shift parameter only both statistics give more or less
the same results. Therefore, taking into account the computational simplicity of
T ∗

n , we would prefer it to the statistic Tn. On the other hand, for more complicated
situations as, e.g., the change in several parameters, the test statistic Tn seems to
be more appropriate despite its calculational complexity.

5 Proofs

The crucial step of the proofs of Theorems 3.1 – 3.2 relies on the fact that given
Yn the partial sums Skn(R) and S∗

kn(R), k = 1, . . . , n, can be viewed as vectors
of linear rank statistics and therefore the proofs reduce to treating functionals of
linear rank statistics.

More precisely, we use the results on approximations of functionals of the rank
statistics

Vkn =
k∑

i=1

cinan(Ri), k = 1, . . . , n, (5.1)

by functionals of weighted sums of independent random variables

Zkn =
k∑

i=1

cin

(
an

(
�nUi� + 1

)
− an

(
U

))
, k = 1, . . . , n, (5.2)

where U =
(
U1, . . . , Un

)T
is a sample of the size n from an uniform distribution

on (0, 1), R =
(
R1, . . . , Rn

)T
are corresponding ranks and

an(U) =
1

n

n∑
i=1

an

(
�nUi� + 1

)
. (5.3)

The following theorem plays the key role in the proofs of Theorems 3.1 – 3.2.
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Theorem 5.1. Let U =
(
U1, . . . , Un

)T
be a sample of size n from uniform distri-

bution on (0, 1) and let R =
(
R1, . . . , Rn

)T
be the corresponding ranks. Let scores

an(i), i = 1, . . . , n, satisfy

n∑
i=1

an(i) = 0, lim inf
n→∞

1

n

n∑
i=1

a2
n(i) > 0, lim sup

n→∞

1

n

n∑
i=1

|an(i)|2+Δ2 < ∞ (5.4)

with some Δ2 > 0. Let constants cin’s satisfy

lim sup
n→∞

1

n

n∑
i=1

c2
in < ∞. (5.5)

Then, as n → ∞,

max
1<k<n

{√
n

k(n−k)

∣∣ Vkn − Zkn

∣∣ } = OP

(
n−ν1

)
(5.6)

with some ν1 > 0 and, moreover, for 0 < α < 1/2,

max
1<k<n

{∣∣∣∣∣ 1√
n

(k(n − k)

n2

)−1/2+α(
Vkn − Zkn

)∣∣∣∣∣
}

= OP

(
n−ν2

)
(5.7)

with some ν2 > 0.

Proof : See Hušková (2002).

Proof of Theorem 3.1: We apply Theorem 5.1 with

an(i) = êin, i = 1, . . . , n, and cij = xij,n, i = 1, . . . , n, j = 1, . . . , p, (5.8)

where xij,n is the j-th component of the vector xin. Clearly, since the assump-
tions A.1. –A.3. the regression constants xij,n’s have properties requested in Theo-
rem 3.1. Concerning the assumptions on the scores, clearly

∑n
i=1 êin = 0. Finally,

we have

1

n

n∑
i=1

ê 2
in =

1

n

n∑
i=1

(
ei − xT

inC
−1
nn

n∑
j=1

xjnej + xT
inδn · I{i > m} − xT

inC
−1
nnCo

mnδn

)2

= An1 + An2 − 2An3 + An4 + 2An5,

where

An1 =
1

n

n∑
i=1

e2
i , An2 = An3 =

1

n

( n∑
i=1

xinei

)T

C−1
nn

( n∑
i=1

xinei

)
,

An4 =
1

n
δT

nCmnC
−1
nnCo

mnδn and
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An5 =
1

n

n∑
i=1

(
ei − xT

inC
−1
nn

n∑
j=1

xjnej

)(
xT

inδn · I{i > m} − xT
inC

−1
nnCo

mnδn

)
.

Standard tools give, as n → ∞,

An1
P−→ σ2, An2 = An3 = OP

(
n−1

)
, An4 =

(n − m)m

n2
δT

nCδn

(
1 + o(1)

)
and

An5 = OP

(
||δn||n−1/2

)
,

which immediately implies that

1

n

n∑
i=1

ê 2
in = σ2 +

(n − m)m

n2
δT

nCδn + op(1).

Therefore, the first part of the assumptions (5.4) is satisfied. The remaining part
is an easy consequence of the following inequality, i.e.,

1

n

n∑
i=1

∣∣ êin

∣∣2+Δ ≤ D

(
1

n

n∑
i=1

∣∣ ei

∣∣2+Δ
+ ||δn||2+Δ

)
= OP (1),

with some positive constants D and Δ ≤ min(Δ1, Δ2).
Hence, Theorem 5.1 can be applied in our situation and we receive, after few

standard steps, that for given Yn∣∣|Tn(R) − Tn(U)
∣∣| = OP

(
n−ν1

)
,

where
Tn(U) = max

p<k<n−p

{
σ̂ −2

n

(
Skn(U)

)T
C−1

knCnnC
o−1
kn Skn(U)

}
,

Skn(U) = Vkn(U) − Wkn(U),

Vkn(U) =
k∑

i=1

xinê(�nUi�+1)n − CknC
−1
nn

n∑
j=1

xjnê(�nUj�+1)n,

Wkn(U) =

(
k∑

i=1

xin − CknC
−1
nn

n∑
i=1

xin

)
en(U), k = 1, . . . , n,

and

en(U) =
1

n

n∑
i=1

ê(�nUi�+1)n.

Notice that due to the assumption A.1.
(∑k

i=1 xin is the first column of Ckn

and
∑k

i=1 xT
in is the first row of Ckn

)
, we realize that
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k∑
i=1

xin − CknC
−1
nn

n∑
i=1

xin = 0, k = 1, . . . , n,

and hence

Wkn(U) = 0.

Moreover, since

E
(
ê(�nUi�+1)n |Y n

)
=

1

n

k∑
i=1

êin = 0,

we find that Tn(U) can be rewritten in the form

Tn(U) = max
p<k<n−p

{
σ̂−2

n Vkn(U)TC−1
knCnnC

o−1
kn Vkn(U)

}
,

where, conditionally on Y n, Vkn’s are sums of independent random vectors with
zero means and the variance matrix

var
{
Vkn(U)

∣∣ Yn

}
= CknC

−1
nnCo

kn

1

n

n∑
i=1

ê 2
in.

Now, the assertions (3.4) and (3.5) follows from Theorem 3.1.5 in Csörgő and
Horváth (1997).

Proof of Theorem 3.2: We proceed analogously as in the proof of Theorem 3.1, but
we apply Lemma 3.1.6 from Csörgő and Horváth (1997) and results of Chapter 4
in Csörgő and Horváth (1993).
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[12] Hušková M. and Slabý A. (2001). Permutation tests for mutiple changes.

Kybernetika 37, 3605 – 622.
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