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What Is a Manifold?

Informally, d-manifolds are the d-dimensional analogues of surfaces.

At any point they locally “look like” the d-dimensional Euclidean space.

We consider two manifolds equivalent if they are homeomorphic.

In this talk we are mostly concerned with compact 3-manifolds.

Source: PxHere (CC0 Public Domain)

Kristóf Huszár Algorithms, Triangulations, Topology December 19, 2023 1 / 14



Example: The 2- and 3-Dimensional Tori
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The Classification Problem of Manifolds

Many fundamental questions in topology are decision problems

HOMEOMORPHISM PROBLEM (HPd ). Given two triangulations T1 and
T2 of d-manifolds, algorithmically decide whether they are homeomorphic.

The decidability of HP2 follows from the classification of closed, orientable
surfaces via the Euler characteristic, an easily computable invariant.
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The Classification Problem of Manifolds

Many fundamental questions in topology are decision problems

HOMEOMORPHISM PROBLEM (HPd ). Given two triangulations T1 and
T2 of d-manifolds, algorithmically decide whether they are homeomorphic.

Image Credits: Wikimedia Commons (tetrahedron), Eeo Jun (triangulated sphere) and Daniel Rypl (Stanford bunny)

d “ 2: ✓ (easy). d “ 3: ✓ (very complicated). d ě 4: Undecidable.

Undecidability of HPd (d ě 4) follows from the undecidability of GROUP
TRIVIALITY [Adyan, 1957; Rabin, 1958] via a reduction [Markov, 1958].
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The Classification Problem of Manifolds

Many fundamental questions in topology are decision problems

HOMEOMORPHISM PROBLEM (HPd ). Given two triangulations T1 and
T2 of d-manifolds, algorithmically decide whether they are homeomorphic.

Image Credits: Wikimedia Commons (tetrahedron), Eeo Jun (triangulated sphere) and Daniel Rypl (Stanford bunny)

d “ 2: ✓ (easy). d “ 3: ✓ (very complicated). d ě 4: Undecidable.

Follows from Geometrization [Perelman, 2002].

At least as hard as Graph
Isomorphism [Lackenby, 2017], but elementary recursive [Kuperberg, 2019].
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The Classification Problem of Manifolds

Many fundamental questions in topology are decision problems

HOMEOMORPHISM PROBLEM (HPd ). Given two triangulations T1 and
T2 of d-manifolds, algorithmically decide whether they are homeomorphic.

Image Credits: Wikimedia Commons (tetrahedron), Eeo Jun (triangulated sphere) and Daniel Rypl (Stanford bunny)

d “ 2: ✓ (easy). d “ 3: ✓ (very complicated). d ě 4: Undecidable.

If T1 – T2 : Try to relate them via a sequence of Pachner moves.
If T1 fl T2 : Try to distinguish them via computable invariants.
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3-Manifolds: Triangulations and Their Dual Graphs

Theorem (Moise; 1952). Every
3-manifold has a triangulation.

T Finitely many tetrahedra

glued along triangular faces.

Dual graph (dual 1-skeleton)

Γ(T )

(multigraph, vertex degrees ≤ 4)

vertices: tetrahedra of T
edges: face gluings

σ

0

1

2

3

τ

0

1

2

3

vσ vτ

σ(123) ≡ τ(103)

Note. Most 3-manifolds can’t be embedded in the 3-dimensional space!

(*) 13, 399 compact orientable 3-manifolds can be triangulated with ď 11 tetrahedra.
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Motivation: Compute Invariants Efficiently from “simple” input

T : n-tetrahedron triangulation, t “ tw pΓpT qq is the treewidth of ΓpT q

ALGORITHM RUNNING TIME CITATION

taut angle structures
of ideal triangulations

O(7t · n)

Turaev–Viro invariants
for parameter r ≥ 3

O((r − 1)6(t+1)t2 log r · n)

optimal Morse matchings
in the Hasse diagram of T O(4t

2+tt3 log t · n)

any problem expressed in
monadic second-order logic

O(f (t) · n) Burton–Downey ’17

Burton–Spreer 2013

Burton–Maria–
Spreer 2015

Burton–Lewiner–
Paixão–Spreer 2016

Burton–Downey ’17
(Courcelle 1990)

Guiding Question. Given a 3-manifold M, how small can tw pΓpT qq be?
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O(f (t) · n) Burton–Downey ’17

Burton–Spreer 2013

Burton–Maria–
Spreer 2015

Burton–Lewiner–
Paixão–Spreer 2016

Burton–Downey ’17
(Courcelle 1990)

tw(Γ(T )) ≤ t fixed

⇒
linear in n

Guiding Question. Given a 3-manifold M, how small can tw pΓpT qq be?

A variant of this question: [Makowsky–Mariño, 2003] and [Burton, 2015].
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The Treewidth of Graphs and 3-Manifolds

The treewidth tw pGq quantifies the similarity of G to any tree.

tw(tree) = 1 tw(G ) = 2 tw(k × k-grid) = k tw(Kn) = n − 1

G

Key concept in graph minor theory developed by Robertson and
Seymour between 1983–2004 (20 papers, 500+ pages).
Cornerstone of parametrized complexity theory (since the 1970s).
A zoo of width parameters for graphs: cutwidth, pathwidth, etc.
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G

Let us define the treewidth of a 3-manifold M as

tw pMq “ minttw pΓpT qq : T is a triangulation of Mu.

Goal. Understand the quantitative relationship between the treewidth,
pathwidth, etc. and classical topological invariants of 3-manifolds.
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Results, I.
Treewidth versus Heegaard genus
Joint work with Jonathan Spreer and Uli Wagner

University of Sydney IST Austria



Treewidth versus Heegaard Genus

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Its Heegaard genus and treewidth satisfy

gpMq ď 18 ptw pMq ` 1q .

Theorem (Agol, 2003). There exist closed, orientable, irreducible, and
non-Haken 3-manifolds of arbitrary large Heegaard genus.

Corollary There exist 3-manifolds with arbitrary large treewidth.

Theorem 2 (H–Spreer, 2019). For M closed and orientable we have

tw pMq ď 4gpMq ´ 2.

Corollary For non-Haken 3-manifolds we have tw pMq « gpMq.

Kristóf Huszár Algorithms, Triangulations, Topology December 19, 2023 7 / 14



The Heegaard Genus of a 3-Manifold

A handlebody of genus g is a solid body with g holes.

¨ ¨ ¨

Theorem. Every* 3-manifold can be obtained as a Heegaard splitting
i.e., two handlebodies of the same genus with their boundaries identified.

(*) Every compact, orientable 3-manifold can be obtained as a Heegaard splitting.

M “ Yf1

M “ Yf2

The Heegaard genus
gpMq is the minimum
genus of any Heegaard
splitting of M.
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Proof of Theorem 1

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then we have gpMq ď 18 ptw pMq ` 1q.

Strategy Triangulation T ⇝ Heegaard splitting of M with small genus.

Step 1 The triangulation T induces a handle decomposition of M.
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Proof of Theorem 1

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then we have gpMq ď 18 ptw pMq ` 1q.

Strategy Triangulation T ⇝ Heegaard splitting of M with small genus.

Step 1 The triangulation T induces a handle decomposition of M.

H1 “ t0-handlesu Y t1-handlesu

H2 “ t2-handlesu Y t3-handlesu
⇝ M “ H1 Y H2, BH1 “ BH2 “ S
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Proof of Theorem 1

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then we have gpMq ď 18 ptw pMq ` 1q.

Strategy Triangulation T ⇝ Heegaard splitting of M with small genus.

Step 1 The triangulation T induces a handle decomposition of M.

Problem If T has n tetrahedra, then gpSq “ n ` 1 ñ Too large!

Kristóf Huszár Algorithms, Triangulations, Topology December 19, 2023 9 / 14



Proof of Theorem 1

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then we have gpMq ď 18 ptw pMq ` 1q.

Strategy Triangulation T ⇝ Heegaard splitting of M with small genus.

Step 1 The triangulation T induces a handle decomposition of M.

Step 2 We rebuild M from these handles, attaching them in a specific
order, so that the genus of each intermediate bounding surface is small.
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Proof of Theorem 1 (cont’d)

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then we have gpMq ď 18 ptw pMq ` 1q.

r

H

1

2

4

0

3

S1
S2

S3

S4

S0

S5

S6

S7

Sr

1.

2.

3.

Γ(T )

0

2

4

Γ(T )

1

3

M
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Proof of Theorem 1 (cont’d)

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then we have gpMq ď 18 ptw pMq ` 1q.
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M
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Proof of Theorem 1 (cont’d)

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then we have gpMq ď 18 ptw pMq ` 1q.
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gives a template for a

s.t. g(Si ) ≤ 18 (tw (Γ(T )) + 1)

M
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Proof of Theorem 1 (cont’d)

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then we have gpMq ď 18 ptw pMq ` 1q.
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S6

S7
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1.

2.

3.

Γ(T )

0

2

4

Γ(T )

1

3

1. T : tw (Γ(T )) = tw (M)

4. Bring into thin position

3. Gen. Heegaard splitting

=⇒
2. Low-congestion layout

[Bienstock 1990]

=⇒
gives a template for a

⇐
=

=
=

= s.t. g(Si ) ≤ 18 (tw (Γ(T )) + 1)

[Scharlemann–Thompson 1994]

M
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Proof of Theorem 1 (cont’d)

Theorem 1 (H–Spreer–Wagner, 2019). Let M be closed, orientable,
irreducible, non-Haken. Then we have gpMq ď 18 ptw pMq ` 1q.
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3
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5. Heegaard splitting

=⇒
2. Low-congestion layout

[Bienstock 1990]

=⇒
gives a template for a

⇐
=

=
=

= s.t. g(Si ) ≤ 18 (tw (Γ(T )) + 1)

[Scharlemann–Thompson 1994]

=⇒

M is non-Haken + [ST 1994]

s.t. g(S) ≤ 18 (tw (Γ(T )) + 1) �

M
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Results, II.
Treewidth versus Torus Decompositions

Joint work with Jonathan Spreer
University of Sydney



Prime Decomposition of Surfaces and 3-Manifolds

Theorem (Classification of Surfaces). A closed, connected, orientable
surface S is either homeomorphic to S2 or to a connected sum of tori.

In the realm of 3-manifolds, the connected sum is taken along 2-spheres.

Theorem (Prime Decomposition of 3-Manifolds; Kneser ‘29, Milnor ‘62).
Every closed, connected and oriented 3-manifold M can be decomposed
as a connected sum M “ M1# ¨ ¨ ¨ #Mk of prime 3-manifolds Mi .
Moreover, the summands of this decomposition are uniquely determined.
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The Torus Decomposition of Prime 3-Manifolds

Theorem (Torus Decomposition Theorem; Jaco–Shalen, Johannson ‘79).
Given a prime 3-manifold M, there is a canonical family T of pairwise
disjoint tori embedded in M, decomposing M into “simpler pieces.”

DM “ torus decomposition
of the 3-manifold M

ΓpDMq “ the dual graph
of the decomposition

Kristóf Huszár Algorithms, Triangulations, Topology December 19, 2023 12 / 14



The Torus Decomposition of Prime 3-Manifolds

Theorem (Torus Decomposition Theorem; Jaco–Shalen, Johannson ‘79).
Given a prime 3-manifold M, there is a canonical family T of pairwise
disjoint tori embedded in M, decomposing M into “simpler pieces.”

M

DM “ torus decomposition
of the 3-manifold M

ΓpDMq “ the dual graph
of the decomposition

Kristóf Huszár Algorithms, Triangulations, Topology December 19, 2023 12 / 14



The Torus Decomposition of Prime 3-Manifolds

Theorem (Torus Decomposition Theorem; Jaco–Shalen, Johannson ‘79).
Given a prime 3-manifold M, there is a canonical family T of pairwise
disjoint tori embedded in M, decomposing M into “simpler pieces.”

M

DM “ torus decomposition
of the 3-manifold M

ΓpDMq “ the dual graph
of the decomposition

Kristóf Huszár Algorithms, Triangulations, Topology December 19, 2023 12 / 14



The Torus Decomposition of Prime 3-Manifolds

Theorem (Torus Decomposition Theorem; Jaco–Shalen, Johannson ‘79).
Given a prime 3-manifold M, there is a canonical family T of pairwise
disjoint tori embedded in M, decomposing M into “simpler pieces.”

DM DM “ torus decomposition
of the 3-manifold M

ΓpDMq “ the dual graph
of the decomposition

Kristóf Huszár Algorithms, Triangulations, Topology December 19, 2023 12 / 14



The Torus Decomposition of Prime 3-Manifolds

Theorem (Torus Decomposition Theorem; Jaco–Shalen, Johannson ‘79).
Given a prime 3-manifold M, there is a canonical family T of pairwise
disjoint tori embedded in M, decomposing M into “simpler pieces.”

DM Γ(DM) DM “ torus decomposition
of the 3-manifold M

ΓpDMq “ the dual graph
of the decomposition

Kristóf Huszár Algorithms, Triangulations, Topology December 19, 2023 12 / 14



{Path,Tree}width and Torus Decompositions

Theorem 2 (H–Spreer, 2023). For any closed, orientable and prime
3-manifold M with “sufficiently complicated” torus gluings in its torus
decomposition DM, the following inequalities are satisfied:

tw pΓpDMqq ď 18ptw pMq ` 1q and (1)
pwpΓpDMqq ď 12 pwpMq ` 4. (2)
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of the decomposition
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Applications

1. Family of bounded-treewidth 3-manifolds with arbitrary large pathwidth.
To our knowledge, this is the first construction of such a family of 3-manifolds.

2. Haken 3-manifolds with arbitrary large treewidth.
Previously, the existence of such 3-manifolds was only known in the non-Haken case
(see [H–Spreer–Wagner, 2019]).

T3

1. tw(Th) = 1, pw(Th) = dh/2e 2. tw(k × k-grid) = k
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Merry Christmas! Veselé Vánoce!

https://kristofhuszar.github.io

https://kristofhuszar.github.io


The Treewidth of a Graph – The Precise Definition

In order to precisely define the treewidth of G ,
we need to talk about tree decompositions.

Tree decomposition T of G “ pV , E q:

1.

B1 Y . . . Y Bm “ V

2.

@tu, vu P E Di : tu, vu Ď Bi

3.

@v P V , the Bi ’s containing v
3. induce a connected subgraph of T .

Treewidth “How tree-like the graph G is.”

Pathwidth pwpGq is defined analogously, but
the min is taken over T where T is a path.
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