Ring parametrizations and counting number fields

Lazar Radičević

November 7, 2023

The study of number fields is one of the central topics in number theory. Let *n* be a natural number. A number field *K* of degree *n* is a field of characteristic 0 which is an *n*-dimensional vector space over \mathbb{Q} .

 \bullet Degree 2 number fields, or quadratic fields, are obtained by adding the square root to the field $\mathbb{Q}.$

$$\mathcal{K} = \mathbb{Q}(\sqrt{D}) = \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot \sqrt{D}$$

• Number fields of degree 3, or cubic fields, are obtained by adding the solution of a cubic equation to the field \mathbb{Q} . E.g:

$$\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot \sqrt[3]{2} \oplus \mathbb{Q} \cdot \sqrt[3]{4}$$

• Any $f = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \in \mathbb{Q}[x]$ defines a number field K

$$\mathcal{K} := \mathbb{Q}[x]/(f(x)) : \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot \alpha \oplus \ldots \oplus \mathbb{Q} \cdot \alpha^{n-1}$$

- An $\alpha \in K$ is an algebraic integer if there is a polynomial $g = x^n + b_{n-1}x^{n-1} + \ldots + b_0$ with integer coefficients such that $g(\alpha) = \alpha^n + b_{n-1}\alpha^{n-1} + \ldots + b_0 = 0$.
- The set \mathcal{O}_K of all algebraic integers in \mathcal{K} is a subring of K.

- $\mathcal{K} = \mathbb{Q}(\sqrt{2})$ i $\alpha = \sqrt{2}$. As $\sqrt{2}$ is a root of $x^2 2 \in \mathbb{Z}[x]$, we see that $\sqrt{2} \in \mathcal{O}_{\mathcal{K}}$.
- If we take $\alpha = \sqrt{2}/2$, the minimal polynomial g of α is equal to $x^2 1/2$, and $\sqrt{2}/2 \notin \mathcal{O}_K$. In fact $\mathcal{O}_K = \mathbb{Z}[\sqrt{2}] = \mathbb{Z} \cdot 1 \oplus \mathbb{Z} \cdot \sqrt{2}$.
- Another example: $K = \mathbb{Q}(\sqrt{5})$. Notice that $\alpha = \frac{1+\sqrt{5}}{2}$ is a root of $f = x^2 x 1$, and so $\alpha \in \mathcal{O}_K$. In fact $\mathcal{O}_K = \mathbb{Z}[\alpha] \supset \mathbb{Z}[\sqrt{5}]$.

- For any number field, O_K is a ring of rank n: it is free and of rank n as a Z-module. In other words, there are: α₁,..., α_n ∈ O_K such that O_K = Zα₁ ⊕ ··· ⊕ Zα_n.
- \$\mathcal{O}_K\$ is the maximal ring of rank n in \$K\$: every other ring of rank n in \$K\$ is contained in \$\mathcal{O}_K\$.
- Every $\alpha \in \mathcal{O}_K$ defines the ring:

$$\mathbb{Z}[\alpha] = \{ P(\alpha) : P \in \mathbb{Z}[x] \} \subset \mathcal{O}_{\mathcal{K}}.$$

- $\mathbb{Z}[\alpha]$ is a ring of rank *n*, with a \mathbb{Z} -basis $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$.
- Not every ring of rank *n* is of the form $\mathbb{Z}[\alpha]$! Example: consider the cubic field $K = \mathbb{Q}(\beta)$, where β is a root of $x^3 x^2 2x 8$. One can show that the ring of integers of \mathcal{O}_K is not equal to $\mathbb{Z}[\alpha]$ for any α in \mathcal{O}_K .

- Discriminant of a number field is a numerical invariant that measures its complexity.
- Discriminant of a rank n ring R: we view R as a free Z-module of rank n. Every α ∈ R defines a linear map R → Rby multiplication:
 β ↦ α ⋅ β. Define the trace Tr(α) ∈ Z as the trace of this linear map.
- We then define a symmetric bilinear form on $R \times R$ by $\langle \alpha, \beta \rangle = \text{Tr}(\alpha\beta)$.
- The discriminant of *R* is defined as the discriminant of this quadratic form.
- Concretely, for a Z-basis α₁,..., α_n of R, Disc(R) is the determinant of the n × n matrix (Tr(α_iα_j)))_{ij}.
- Discriminant of K is defined as the discriminant of the ring of integers \mathcal{O}_{K} .

- If *R* = ℤ[*x*]/(*f*(*x*)), where *f* ∈ ℤ[*x*] is monic, Disc(*R*) = Disc(*f*).
 Disc(ℤ[√D]) = 4D
- For $f = x^3 + px + q$, we have $\mathbb{Z}[x]/(f(x)) = -4p^3 27q^2$.
- Discriminant can also be interpreted as the covolume of the lattice of *R* in the Minkowski embedding.
- Example: the ring $\mathbb{Z}[\sqrt{-1}]$ is the lattice of points a + bi in \mathbb{C} with $a, b \in \mathbb{Z}$.

Asymptotic distribution of number fields

The starting point:

Theorem (Hermite)

For every X > 0, there are only finitely many number fields K with Disc(K) < X.

Let D(X, n) be the set of degree *n* number fields with |Disc(K)| < X, and let N(X, n) := |D(X, n)|. Can we say something about behaviour of N(X, n) as $X \to \infty$?

Conjecture

The limit

$$\lim_{X\to\infty} N(X,n)/X$$

exists and is equal to a positive real constant c(n).

- This conjecture has been proven for $2 \le n \le 5$.
- For n = 2 the proof is simple all quadratic fields can be listed as $\mathbb{Q}(\sqrt{D})$, where D is a squarefree integer. Discriminant of $\mathbb{Q}(\sqrt{D})$ is equal to D if $D \equiv 1 \pmod{4}$, or to 4D, if $D \equiv 2, 3 \pmod{4}$.
- An elementary analytic number theory argument shows that the limit c(n) exists and is equal to $6/\pi^2$.
- Proof by counting the proportion of squarefree integers.

- For n = 3, the conjecture has been proven by Davenport and Heilbronn in 1971. The cases n = 4 and n = 5 have been proven by Bhargava in 2005 and 2010.
- The proof has two parts.
- First part: Delone-Faddeev correspondence is a parametrization of all rings of rank 3 by binary integer cubic forms f(x, y) ∈ Z[x, y].
- Then, using methods from the geometry of numbers, we count the binary cubic forms f(x, y) of bounded discriminant.

10/27

- From now on n = 3.
- The simplest representation of a cubic field is as $\mathbb{Q}[x]/(f(x))$, where $f = x^3 + ax^2 + bx + c \in \mathbb{Q}[x]$. By rescaling the coordinate x, we may assume $a, b, c \in \mathbb{Z}$.
- But it is not easy to work out what the discriminant of the field is from this representation: - discriminant of *f* is the discriminant of the ring ℤ[x]/(f(x)), which often won't be equal to the full ring of integers 𝒪_K.
- It is not simple to decide when two polynomials define the same field we don't want to overcount.

• A binary cubic is a polynomial of the form

$$f(x,y) = ax^3 + bx^2y + cxy^2 + dy^3$$

 Let V_ℤ be the set of all binary cubic forms with integer coefficients. Consider the following action of the group GL₂(ℤ) on V_ℤ:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot f(x, y) = (ad - bc)^{-1} f(ax + cy, bx + dy)$$

In other words, $g \cdot f(x, y) = \det(g)^{-1} f((x, y) \cdot g)$.

• Let R be a cubic ring, with a \mathbb{Z} -basis $1, \omega, \theta$. Write

$$\omega\theta = A \cdot 1 + B \cdot \omega + C \cdot \theta$$

for $A, B, C \in \mathbb{Z}$

• We normalize this basis so that $\omega \theta \in \mathbb{Z}$, by replacing $\omega' = \omega - C \cdot 1$ and $\theta' = \theta - B \cdot 1$. • The structure of the ring *R* is determined by the multiplication table for the basis $1, \omega, \theta$. For every normal basis, there are constants $a, b, c, d, k, l, m \in \mathbb{Z}$ for which

$$egin{aligned} &\omega heta &= k \ &\omega^2 &= m - b \omega + a heta \ & heta^2 &= l - d \omega + c heta \end{aligned}$$

• If we know a, b, c, d, k, l, m, we can determine each product

$$(A_1+B_1\omega+C_1\theta)(A_2+B_2\omega+C_2\theta).$$

• Multiplication is associative: $\omega \cdot \omega \theta = \omega^2 \cdot \theta$ and $\omega \theta \cdot \theta = \omega \cdot \theta^2$. So

$$\omega \cdot k = (m - b\omega + a\theta) \cdot \theta = m\theta - bk + a(l - d\omega + c\theta)$$
$$= al - bk - ad \cdot \omega + (m + ac) \cdot \theta$$

$$k \cdot \theta = \omega \cdot (l - d\omega + c\theta) = l\omega - d(m - b\omega + a\theta) + ck$$
$$= ck - dm + (l + db) \cdot \omega - ad \cdot \theta$$

Equating the coefficients, we find

$$k = -ad$$
$$m = -ac$$
$$l = -bd$$

So a, b, c i d determine uniquely k, l and m.

- Key observation : Every quadruple a, b, c, d ∈ Z, with k, l i m given as above, determines a cubic ring R with commutative and associative multiplication!
- The Delone-Fadeev correspondence: to the cubic form
 f(x, y) = ax³ + bx²y + cxy² + dy³ we associate the cubic ring R_f determined by the quadruple a, b, c, d.
- For a given ring R, a, b, c and d are uniquely determined by the choice of the normal basis ω, θ.

- How do we move from one normal basis of R to another?
- ω, θ defines the basis of the free \mathbb{Z} -module $R/\mathbb{Z} \cdot 1$ through the canonical mapping $R \to R/\mathbb{Z} \cdot 1$. Each basis $\bar{\omega}, \bar{\theta}$ of the module $R/\mathbb{Z} \cdot 1$ lifts uniquely to a normal basis ω, θ .
- Two normal bases ω, θ and ω', θ' are related by $g \in GL_2(\mathbb{Z})$ with $g \cdot \bar{\omega'} = \bar{\omega}$ and $g \cdot \bar{\theta'} = \bar{\theta}$

$$\bar{\omega} = A \cdot \bar{\omega'} + B \cdot \bar{\theta'}$$
$$\bar{\theta} = C \cdot \bar{\omega'} + D \cdot \bar{\theta'}$$

for
$$g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z}).$$

• The basis ω, θ is obtained by normalizing the basis $g \cdot \omega', g \cdot \omega'$.

• If f and f' are binary cubic forms for these two bases, then $f' = g \cdot f$. Conversely, if f_1 and f_2 are two binary cubic forms with $f_1 = g \cdot f_2$, the rings R_{f_1} and R_{f_2} are isomorphic in a natural way.

Theorem (Delone-Faddeev)

The mapping $f \mapsto R_f$ defines a bijection between the set of $\operatorname{GL}_2(\mathbb{Z})$ equivalence classes of binary cubic forms with integer coefficients and the set of cubic rings, considered up to isomorphism.

- If $f = x^3 2y^3$, then the ring $R_f \cong \mathbb{Z}[\sqrt[3]{2}]$ and the basis $1, \omega, \theta$ corresponds to the basis $1, \sqrt[3]{2}, \sqrt[3]{4}$.
- If the form f is irreducible, R_f is a domain.
- For irreducible forms $f = x^3 + cxy^2 + dy^3$, $R_f \cong \mathbb{Z}[\alpha]$, where α is the root of the polynomial $f(x, 1) = x^3 + cx + d$. The basis $1, \omega, \theta$ corresponds to the basis $1, \alpha, \alpha^2$.
- We also get various "exotic" rings if f is not irreducible for example, if f = 0, $R_f = \mathbb{Z}[x, y]/(x^2, xy, y^2)$. If $f = x^3$, $R_f = \mathbb{Z}[x]/(x^3)$.

• The discriminant of the cubic form $f(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$ is defined as

$$\mathsf{Disc}(f) = b^2 c^2 - 4ac^3 - 4b^3 d - 27a^2 d^2 + 18abcd$$

• We have $\text{Disc}(f) = \text{Disc}(R_f)$, and $\text{Disc}(g \cdot f) = \text{Disc}(f)$ for every $g \in \text{GL}_2(\mathbb{Z})$, i.e. Disc(f) is $\text{GL}_2(\mathbb{Z})$ -invariant.

Theorem (Davenport-Heilbronn)

Let $N_3(A, B)$ be the number of cubic fields K, up to isomorphism, with A < Disc(K) < B. Then

$$N_3(0,X) = rac{1}{12\zeta(3)}X + o(X),$$

 $N_3(-X,0) = rac{1}{4\zeta(3)}X + o(X)$

We can also count cubic rings.

Theorem

Let $M_3(A, B)$ be the number of cubic rings R, up to isomorphism, with A < Disc(R) < B. Then

$$M_3(0,X) = rac{\pi^2}{24}X + o(X),$$

 $M_3(-X,0) = rac{\pi^2}{72}X + o(X)$

By the Delone-Faddeev correspondence $M_3(A, B)$ is the number of $GL_2(\mathbb{Z})$ -equivalence classes of binary cubic forms f with A < Disc(f) < B.

- We count cubic forms using geometry of numbers.
- Let $V_{\mathbb{R}} = \{ax^3 + bx^2y + cxy^2 + dy^3 : a, b, c, d \in \mathbb{R}\} \cong \mathbb{R}^4$.
- We construct a fundamental domain \mathcal{F} for the action of $\operatorname{GL}_2(\mathbb{Z})$ on $V_{\mathbb{R}}$ a set \mathcal{F} containing a representative of each $\operatorname{GL}_2(\mathbb{Z})$ -class in $V_{\mathbb{R}}$.
- The number of GL₂(ℤ)-classes [f] wit A < Disc(f) < B is the number of cubic forms f in F with integer coefficients and A < Disc(f) < B.
- We want to estimate the number of points \mathcal{F} with integer coordinates and the discriminant in this range.

22 / 27

To count integer points we use the following result of Davenport.

Theorem

Let \mathcal{R} be a bounded, semi-algebraic multiset in \mathbb{R}^n having maximum multiplicity m, and which is defined by at most k polynomial inequalities each having degree at most I. Then the number of integer lattice points (counted with multiplicity) contained in the region \mathcal{R} is is

 $\operatorname{Vol}(\mathcal{R}) + O(\max{\operatorname{Vol}(\bar{\mathcal{R}}), 1})$

where $\operatorname{Vol}(\overline{\mathcal{R}})$ denotes the greatest d-dimensional volume of any projection of R onto a coordinate subspace obtained by equating nd coordinates to zero, where d takes all values from 1 to n - 1. The implied constant in the second summand depends only on n, m, k and I.

- First step: Write down a fundamental domain \mathcal{F} .
- Key point: there are only two orbits for the action of GL₂(ℝ) the space V_ℝ of real binary cubics.
- The two orbits are $\operatorname{GL}_2(\mathbb{R}) \cdot f_1$ and $\operatorname{GL}_2(\mathbb{R}) \cdot f_2$ where f_1 has 3 real roots and f_2 has one real root.
- So a fundamental domain can be expressed in terms of the fundamental domain for $GL_2(\mathbb{R})/\mathrm{GL}_2(\mathbb{Z})$, and this essentially the well-known fundamental domain for $\mathrm{SL}_2(\mathbb{Z})$ acting on the upper half plane.

- Define R_X(F) = {f ∈ F : Disc(f) < X}. We want to count integer points in R_X(F).
- We show the equality $\operatorname{Vol}(\mathcal{R}_X(\mathcal{F})) = C \cdot X$, for a suitable constant C > 0.
- We don't need all integer points in $\mathcal{R}_X(\mathcal{F})$ -just the ones that correspond to irreducible forms, since those correspond to non-degenerate rings.
- Now we apply Davenport's result to count integer points . Applying the theorem directly to the region $\mathcal{R}_X(\mathcal{F})$ is not good enough. We remove a thin cusp from $\mathcal{R}_X(\mathcal{F})$, which has a small volume but many integer points. These points correspond to degenerate rings, so that we can ignore them.

- To count cubic fields, we only want to count maximal orders. These can be characterised by a mod p^2 condition for every prime p.
- Analogous to the quadratic situation: we don't want to count rings of the form $\mathbb{Z}[\sqrt{p^2D}] = \mathbb{Z}[p\sqrt{D}].$
- Bhargava, Shankar and Tsimerman improve on this by using not only one fundamental domain, but they instead average over a continous family of them.
- This makes applying Davenport's theorem simpler, and it also allows them to prove a secondary error term:

$$N_3(0,X) = \frac{1}{12\zeta(3)}X + \frac{4\zeta(1/3)}{5\Gamma(2/3)^3\zeta(5/3)}X^{5/6} + O(X^{5/6-1/48+\epsilon})$$

Thanks for listening!