Ring parametrizations and counting number fields

Lazar Radičević

November 7, 2023

Introduction

The study of number fields is one of the central topics in number theory. Let n be a natural number. A number field K of degree n is a field of characteristic 0 which is an n-dimensional vector space over \mathbb{Q}.

- Degree 2 number fields, or quadratic fields, are obtained by adding the square root to the field \mathbb{Q}.

$$
K=\mathbb{Q}(\sqrt{D})=\mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot \sqrt{D}
$$

- Number fields of degree 3, or cubic fields, are obtained by adding the solution of a cubic equation to the field \mathbb{Q}. E.g:

$$
\mathbb{Q}(\sqrt[3]{2})=\mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot \sqrt[3]{2} \oplus \mathbb{Q} \cdot \sqrt[3]{4}
$$

- Any $f=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0} \in \mathbb{Q}[x]$ defines a number field K

$$
K:=\mathbb{Q}[x] /(f(x)): \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot \alpha \oplus \ldots \oplus \mathbb{Q} \cdot \alpha^{n-1}
$$

- An $\alpha \in K$ is an algebraic integer if there is a polynomial $g=x^{n}+b_{n-1} x^{n-1}+\ldots+b_{0}$ with integer coefficients such that $g(\alpha)=\alpha^{n}+b_{n-1} \alpha^{n-1}+\ldots+b_{0}=0$.
- The set \mathcal{O}_{K} of all algebraic integers in \mathcal{K} is a subring of K.
- $K=\mathbb{Q}(\sqrt{2}) \mathrm{i} \alpha=\sqrt{2}$. As $\sqrt{2}$ is a root of $x^{2}-2 \in \mathbb{Z}[x]$, we see that $\sqrt{2} \in \mathcal{O}_{K}$.
- If we take $\alpha=\sqrt{2} / 2$, the minimal polynomial g of α is equal to $x^{2}-1 / 2$, and $\sqrt{2} / 2 \notin \mathcal{O}_{K}$. In fact $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{2}]=\mathbb{Z} \cdot 1 \oplus \mathbb{Z} \cdot \sqrt{2}$.
- Another example: $K=\mathbb{Q}(\sqrt{5})$. Notice that $\alpha=\frac{1+\sqrt{5}}{2}$ is a root of $f=x^{2}-x-1$, and so $\alpha \in \mathcal{O}_{K}$. In fact $\mathcal{O}_{K}=\mathbb{Z}[\alpha] \supset \mathbb{Z}[\sqrt{5}]$.
- For any number field, \mathcal{O}_{K} is a ring of rank n : it is free and of rank n as a \mathbb{Z}-module. In other words, there are: $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{O}_{K}$ such that $\mathcal{O}_{K}=\mathbb{Z} \alpha_{1} \oplus \cdots \oplus \mathbb{Z} \alpha_{n}$.
- \mathcal{O}_{K} is the maximal ring of rank n in K : every other ring of rank n in K is contained in \mathcal{O}_{K}.
- Every $\alpha \in \mathcal{O}_{K}$ defines the ring:

$$
\mathbb{Z}[\alpha]=\{P(\alpha): P \in \mathbb{Z}[x]\} \subset \mathcal{O}_{K} .
$$

- $\mathbb{Z}[\alpha]$ is a ring of rank n, with a \mathbb{Z}-basis $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$.
- Not every ring of rank n is of the form $\mathbb{Z}[\alpha]$! Example: consider the cubic field $K=\mathbb{Q}(\beta)$, where β is a root of $x^{3}-x^{2}-2 x-8$. One can show that the ring of integers of \mathcal{O}_{K} is not equal to $\mathbb{Z}[\alpha]$ for any α in \mathcal{O}_{K}.
- Discriminant of a number field is a numerical invariant that measures its complexity.
- Discriminant of a rank n ring R : we view R as a free \mathbb{Z}-module of rank n. Every $\alpha \in R$ defines a linear map $R \rightarrow R$ by multiplication: $\beta \mapsto \alpha \cdot \beta$. Define the trace $\operatorname{Tr}(\alpha) \in \mathbb{Z}$ as the trace of this linear map.
- We then define a symmetric bilinear form on $R \times R$ by $\langle\alpha, \beta\rangle=\operatorname{Tr}(\alpha \beta)$.
- The discriminant of R is defined as the discriminant of this quadratic form.
- Concretely, for a \mathbb{Z}-basis $\alpha_{1}, \ldots, \alpha_{n}$ of R, $\operatorname{Disc}(R)$ is the determinant of the $n \times n$ matrix $\left.\left(\operatorname{Tr}\left(\alpha_{i} \alpha_{j}\right)\right)\right)_{i j}$.
- Discriminant of K is defined as the discriminant of the ring of integers \mathcal{O}_{K}.
- If $R=\mathbb{Z}[x] /(f(x))$, where $f \in \mathbb{Z}[x]$ is monic, $\operatorname{Disc}(R)=\operatorname{Disc}(f)$.
- $\operatorname{Disc}(\mathbb{Z}[\sqrt{D}])=4 D$
- For $f=x^{3}+p x+q$, we have $\mathbb{Z}[x] /(f(x))=-4 p^{3}-27 q^{2}$.
- Discriminant can also be interpreted as the covolume of the lattice of R in the Minkowski embedding.
- Example: the ring $\mathbb{Z}[\sqrt{-1}]$ is the lattice of points $a+b i$ in \mathbb{C} with $a, b \in \mathbb{Z}$.

Asymptotic distribution of number fields

The starting point:

Theorem (Hermite)

For every $X>0$, there are only finitely many number fields K with $\operatorname{Disc}(K)<X$.

Let $D(X, n)$ be the set of degree n number fields with $|\operatorname{Disc}(K)|<X$, and let $N(X, n):=|D(X, n)|$. Can we say something about behaviour of $N(X, n)$ as $X \rightarrow \infty$?

Conjecture

The limit

$$
\lim _{X \rightarrow \infty} N(X, n) / X
$$

exists and is equal to a positive real constant $c(n)$.

- This conjecture has been proven for $2 \leq n \leq 5$.
- For $n=2$ the proof is simple - all quadratic fields can be listed as $\mathbb{Q}(\sqrt{D})$, where D is a squarefree integer. Discriminant of $\mathbb{Q}(\sqrt{D})$ is equal to D if $D \equiv 1(\bmod 4)$, or to $4 D$, if $D \equiv 2,3(\bmod 4)$.
- An elementary analytic number theory argument shows that the limit $c(n)$ exists and is equal to $6 / \pi^{2}$.
- Proof by counting the proportion of squarefree integers.
- For $n=3$, the conjecture has been proven by Davenport and Heilbronn in 1971. The cases $n=4$ and $n=5$ have been proven by Bhargava in 2005 and 2010.
- The proof has two parts.
- First part: Delone-Faddeev correspondence is a parametrization of all rings of rank 3 by binary integer cubic forms $f(x, y) \in \mathbb{Z}[x, y]$.
- Then, using methods from the geometry of numbers, we count the binary cubic forms $f(x, y)$ of bounded discriminant.

Delone-Faddeev correspondence

- From now on $n=3$.
- The simplest represenation of a cubic field is as $\mathbb{Q}[x] /(f(x))$, where $f=x^{3}+a x^{2}+b x+c \in \mathbb{Q}[x]$.By rescaling the coordinate x, we may assume $a, b, c \in \mathbb{Z}$.
- But it is not easy to work out what the discriminant of the field is from this representation: - discriminant of f is the discriminant of the ring $\mathbb{Z}[x] /(f(x))$, which often won't be equal to the full ring of integers \mathcal{O}_{K}.
- It is not simple to decide when two polynomials define the same field we don't want to overcount.
- A binary cubic is a polynomial of the form

$$
f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}
$$

- Let $V_{\mathbb{Z}}$ be the set of all binary cubic forms with integer coefficients. Consider the following action of the group $G L_{2}(\mathbb{Z})$ on $V_{\mathbb{Z}}$:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot f(x, y)=(a d-b c)^{-1} f(a x+c y, b x+d y)
$$

In other words, $g \cdot f(x, y)=\operatorname{det}(g)^{-1} f((x, y) \cdot g)$.

- Let R be a cubic ring, with a \mathbb{Z}-basis $1, \omega, \theta$. Write

$$
\omega \theta=A \cdot 1+B \cdot \omega+C \cdot \theta
$$

for $A, B, C \in \mathbb{Z}$

- We normalize this basis so that $\omega \theta \in \mathbb{Z}$, by replacing $\omega^{\prime}=\omega-C \cdot 1$ and $\theta^{\prime}=\theta-B \cdot 1$.
- The structure of the ring R is determined by the multiplication table for the basis $1, \omega, \theta$. For every normal basis, there are constants $a, b, c, d, k, l, m \in \mathbb{Z}$ for which

$$
\begin{aligned}
\omega \theta & =k \\
\omega^{2} & =m-b \omega+a \theta \\
\theta^{2} & =I-d \omega+c \theta
\end{aligned}
$$

- If we know a, b, c, d, k, l, m, we can determine each product

$$
\left(A_{1}+B_{1} \omega+C_{1} \theta\right)\left(A_{2}+B_{2} \omega+C_{2} \theta\right)
$$

- Multiplication is associative: $\omega \cdot \omega \theta=\omega^{2} \cdot \theta$ and $\omega \theta \cdot \theta=\omega \cdot \theta^{2}$. So

$$
\begin{aligned}
\omega \cdot k=(m-b \omega+a \theta) \cdot \theta & =m \theta-b k+a(I-d \omega+c \theta) \\
& =a l-b k-a d \cdot \omega+(m+a c) \cdot \theta \\
k \cdot \theta=\omega \cdot(I-d \omega+c \theta) & =I \omega-d(m-b \omega+a \theta)+c k \\
& =c k-d m+(I+d b) \cdot \omega-a d \cdot \theta
\end{aligned}
$$

Equating the coefficients, we find

$$
\begin{aligned}
k & =-a d \\
m & =-a c \\
l & =-b d
\end{aligned}
$$

So a, b, c i d determine uniquely k, l and m.

- Key observation : Every quadruple $a, b, c, d \in \mathbb{Z}$, with $k, l i m$ given as above, determines a cubic ring R with commutative and associative multiplication!
- The Delone-Fadeev correspondence: to the cubic form $f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ we associate the cubic ring R_{f} determined by the quadruple a, b, c, d.
- For a given ring R, a, b, c and d are uniquely determined by the choice of the normal basis ω, θ.
- How do we move from one normal basis of R to another?
- ω, θ defines the basis of the free \mathbb{Z}-module $R / \mathbb{Z} \cdot 1$ through the canonical mapping $R \rightarrow R / \mathbb{Z} \cdot 1$. Each basis $\bar{\omega}, \bar{\theta}$ of the module $R / \mathbb{Z} \cdot 1$ lifts uniquely to a normal basis ω, θ.
- Two normal bases ω, θ and $\omega^{\prime}, \theta^{\prime}$ are related by $g \in \mathrm{GL}_{2}(\mathbb{Z})$ with $g \cdot \overline{\omega^{\prime}}=\bar{\omega}$ and $g \cdot \bar{\theta}^{\prime}=\bar{\theta}$

$$
\begin{aligned}
\bar{\omega} & =A \cdot \overline{\omega^{\prime}}+B \cdot \overline{\theta^{\prime}} \\
\bar{\theta} & =C \cdot \overline{\omega^{\prime}}+D \cdot \bar{\theta}^{\prime}
\end{aligned}
$$

for $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Z})$.

- The basis ω, θ is obtained by normalizing the basis $g \cdot \omega^{\prime}, g \cdot \omega^{\prime}$.
- If f and f^{\prime} are binary cubic forms for these two bases, then $f^{\prime}=g \cdot f$. Conversely, if f_{1} and f_{2} are two binary cubic forms with $f_{1}=g \cdot f_{2}$, the rings $R_{f_{1}}$ and $R_{f_{2}}$ are isomorphic in a natural way.

Theorem (Delone-Faddeev)

The mapping $f \mapsto R_{f}$ defines a bijection between the set of $\mathrm{GL}_{2}(\mathbb{Z})$ equivalence classes of binary cubic forms with integer coefficients and the set of cubic rings, considered up to isomorphism.

- If $f=x^{3}-2 y^{3}$, then the ring $R_{f} \cong \mathbb{Z}[\sqrt[3]{2}]$ and the basis $1, \omega, \theta$ corresponds to the basis $1, \sqrt[3]{2}, \sqrt[3]{4}$.
- If the form f is irreducible, R_{f} is a domain.
- For irreducible forms $f=x^{3}+c x y^{2}+d y^{3}, R_{f} \cong \mathbb{Z}[\alpha]$, where α is the root of the polynomial $f(x, 1)=x^{3}+c x+d$. The basis $1, \omega, \theta$ corresponds to the basis $1, \alpha, \alpha^{2}$.
- We also get various "exotic" rings if f is not irreducible - for example, if $f=0, R_{f}=\mathbb{Z}[x, y] /\left(x^{2}, x y, y^{2}\right)$. If $f=x^{3}, R_{f}=\mathbb{Z}[x] /\left(x^{3}\right)$.
- The discriminant of the cubic form $f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ is defined as

$$
\operatorname{Disc}(f)=b^{2} c^{2}-4 a c^{3}-4 b^{3} d-27 a^{2} d^{2}+18 a b c d
$$

- We have $\operatorname{Disc}(f)=\operatorname{Disc}\left(R_{f}\right)$, and $\operatorname{Disc}(g \cdot f)=\operatorname{Disc}(f)$ for every $g \in \mathrm{GL}_{2}(\mathbb{Z})$, i.e. $\operatorname{Disc}(f)$ is $\mathrm{GL}_{2}(\mathbb{Z})$-invariant. ${ }^{\prime}$

Davenport-Heilbronn theorem

Theorem (Davenport-Heilbronn)

Let $N_{3}(A, B)$ be the number of cubic fields K, up to isomorphism, with $A<\operatorname{Disc}(K)<B$. Then

$$
\begin{aligned}
N_{3}(0, X) & =\frac{1}{12 \zeta(3)} X+o(X) \\
N_{3}(-X, 0) & =\frac{1}{4 \zeta(3)} X+o(X)
\end{aligned}
$$

We can also count cubic rings.

Theorem

Let $M_{3}(A, B)$ be the number of cubic rings R, up to isomorphism, with $A<\operatorname{Disc}(R)<B$. Then

$$
\begin{aligned}
M_{3}(0, X) & =\frac{\pi^{2}}{24} X+o(X) \\
M_{3}(-X, 0) & =\frac{\pi^{2}}{72} X+o(X)
\end{aligned}
$$

By the Delone-Faddeev correspondence $M_{3}(A, B)$ is the number of $\mathrm{GL}_{2}(\mathbb{Z})$-equivalence classes of binary cubic forms f with $A<\operatorname{Disc}(f)<B$.

- We count cubic forms using geometry of numbers.
- Let $V_{\mathbb{R}}=\left\{a x^{3}+b x^{2} y+c x y^{2}+d y^{3}: a, b, c, d \in \mathbb{R}\right\} \cong \mathbb{R}^{4}$.
- We construct a fundamental domain \mathcal{F} for the action of $\mathrm{GL}_{2}(\mathbb{Z})$ on $V_{\mathbb{R}}$ - a set \mathcal{F} containing a representative of each $\mathrm{GL}_{2}(\mathbb{Z})$-class in $V_{\mathbb{R}}$.
- The number of $\mathrm{GL}_{2}(\mathbb{Z})$-classes $[f]$ wit $A<\operatorname{Disc}(f)<B$ is the number of cubic forms f in \mathcal{F} with integer coefficients and $A<\operatorname{Disc}(f)<B$.
- We want to estimate the number of points \mathcal{F} with integer coordinates and the discriminant in this range.

To count integer points we use the following result of Davenport.

Theorem

Let \mathcal{R} be a bounded, semi-algebraic multiset in \mathbb{R}^{n} having maximum multiplicity m, and which is defined by at most k polynomial inequalities each having degree at most l. Then the number of integer lattice points (counted with multiplicity) contained in the region \mathcal{R} is is

$$
\operatorname{Vol}(\mathcal{R})+O(\max \{\operatorname{Vol}(\overline{\mathcal{R}}), 1\})
$$

where $\operatorname{Vol}(\overline{\mathcal{R}})$ denotes the greatest d-dimensional volume of any projection of R onto a coordinate subspace obtained by equating nd coordinates to zero, where d takes all values from 1 to $n-1$. The implied constant in the second summand depends only on n, m, k and l.

Proof sketch

- First step: Write down a fundamental domain \mathcal{F}.
- Key point: there are only two orbits for the action of $\mathrm{GL}_{2}(\mathbb{R})$ the space $V_{\mathbb{R}}$ of real binary cubics.
- The two orbits are $\mathrm{GL}_{2}(\mathbb{R}) \cdot f_{1}$ and $\mathrm{GL}_{2}(\mathbb{R}) \cdot f_{2}$ where f_{1} has 3 real roots and f_{2} has one real root.
- So a fundamental domain can be expressed in terms of the fundamental domain for $G L_{2}(\mathbb{R}) / G L_{2}(\mathbb{Z})$, and this essentially the well-known fundamental domain for $\mathrm{SL}_{2}(\mathbb{Z})$ acting on the upper half plane.
- Define $\mathcal{R}_{X}(\mathcal{F})=\{f \in \mathcal{F}: \operatorname{Disc}(f)<X\}$. We want to count integer points in $\mathcal{R}_{X}(\mathcal{F})$.
- We show the equality $\operatorname{Vol}\left(\mathcal{R}_{X}(\mathcal{F})\right)=C \cdot X$, for a suitable constant $C>0$.
- We don't need all integer points in $\mathcal{R}_{X}(\mathcal{F})$-just the ones that correspond to irreducible forms, since those correspond to non-degenerate rings.
- Now we apply Davenport's result to count integer points. Applying the theorem directly to the region $\mathcal{R}_{X}(\mathcal{F})$ is not good enough. We remove a thin cusp from $\mathcal{R}_{X}(\mathcal{F})$, which has a small volume but many integer points. These points correspond to degenerate rings, so that we can ignore them.
- To count cubic fields, we only want to count maximal orders. These can be characterised by a $\bmod p^{2}$ condition for every prime p.
- Analogous to the quadratic situation: we don't want to count rings of the form $\mathbb{Z}\left[\sqrt{p^{2} D}\right]=\mathbb{Z}[p \sqrt{D}]$.
- Bhargava, Shankar and Tsimerman improve on this by using not only one fundamental domain, but they instead average over a continous family of them.
- This makes applying Davenport's theorem simpler, and it also allows them to prove a secondary error term:

$$
N_{3}(0, X)=\frac{1}{12 \zeta(3)} X+\frac{4 \zeta(1 / 3)}{5 \Gamma(2 / 3)^{3} \zeta(5 / 3)} X^{5 / 6}+O\left(X^{5 / 6-1 / 48+\epsilon}\right)
$$

Thanks for listening!

