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Charles University, Prague

Algebra Colloquium, MFF-KA, November 14, 2023
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Finite semifields

A finite semifield S = (S ,+, ◦) is a finite set S equipped with two
operations (+, ◦) satisfying the following axioms.

(S1) (S ,+) is a group.

(S2) For all x , y , z ∈ S ,

x ◦ (y + z) = x ◦ y + x ◦ z ,
(x + y) ◦ z = x ◦ z + y ◦ z .

(S3) For all x , y ∈ S , x ◦ y = 0 implies x = 0 or y = 0.

(S4) There exists ε ∈ S such that x ◦ ε = x = ε ◦ x .
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Semifields

An algebraic object satisfying the first three of the above
axioms is called a pre-semifield.

If P = (P,+, ◦) is a pre-semifield, then (P,+) is an
elementary abelian p-group.

If ◦ is associative then S is the finite field Fpn by
Wedderburn’s theorem.

By a result of Menichetti (known as Kaplansky’s conjecture)
when n > 2, there exist proper semifields of order pn where ◦
is non-associative.
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Semifields

A pre-semifield P = (Fn
p,+, ◦) can be converted to a semifield

S = (Fn
p,+, ∗) using Kaplansky’s trick by defining the new

multiplication as

(x ◦ e) ∗ (e ◦ y) = (x ◦ y),

for any nonzero element e ∈ Fn
p, making (e ◦ e) the

multiplicative identity of S.
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Semifields

We have Fp-bilinear B : Fn
p × Fn

p → Fn
p, satisfying

B(x , y) = x ◦ y ,

and Fp-linear left and right multiplications Lx ,Ry : Fn
p → Fn

p,
with

Lx(y) := B(x , y) =: Ry (x).

The mapping Lx (resp. Ry ) is a bijection whenever x 6= 0
(resp. y 6= 0) by (S3).

(S3) interchangeable with the quasigroup axiom.
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Semifields

Two pre-semifields P1 = (Fn
p,+, ◦1) and P2 = (Fn

p,+, ◦2) are
said to be isotopic if there exist Fp-linear bijections L,M and
N of Fn

p satisfying

N(x ◦1 y) = L(x) ◦2 M(y).

Such a triple γ = (N, L,M) is called an isotopism between P1

and P2. If additionally L = M holds, we call γ a strong
isotopism and P1 and P2 strongly isotopic.
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DO polynomials

Every Fp-linear mapping L : Fn
p → Fn

p can be written uniquely
as a linearized polynomial

L(x) =
n−1∑
i=0

bix
pi ,

in the polynomial ring Fpn [x ].

Let p be an odd prime and consider the polynomials from
Fpn [x ] of the form

F (x) =
∑

0≤i ,j<n

aijx
pi+pj .

These polynomials are called Dembowski-Ostrom (DO)
polynomials.

The notions of degree.
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DO polynomials

The polarization of a DO polynomial F is defined as

∆F (x , y) = F (x + y)− F (x)− F (y) + F (0).

The mapping ∆F : Fn
p × Fn

p → Fn
p is symmetric and

Fp-bilinear.

If ∆F (x , a) = 0 implies x = 0 for all a ∈ F×pn = Fpn \ {0}, then
∆F (x , y) describes a commutative pre-semifield multiplication.

Conversely, by a counting argument, every commutative
pre-semifield multiplication can be written as ∆F (x , y) for
some DO polynomial F .

In that case we will call F (x) a planar DO polynomial.
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Cryptography

Commutative semifields and APN functions in cryptography:

In symmetric cryptography, differential cryptanalysis

Let for a, b ∈ Fn
p, where a 6= 0,

δF (a, b) = #{x ∈ Fn
p : F (x + a)− F (x) = b}.

If for carefully chosen ai , bi the value δF (ai , bi ) are all high,
one can devise a cryptanalysis of a cipher where the S-Box F
is used in several consecutive rounds

Perfect Nonlinear if δF (a, b) = 1

Almost Perfect Nonlinear if δF (a, b) ≤ 2 (optimal in
characteristic two).
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Projective and biprojective polynomials

L = Fpl a finite field and q = pk with 0 ≤ k < l .

A polynomial of the form

φf (x) = axq+1 + bxq + cx + d ∈ L[x ] (1)

is called a q-projective polynomial over L.

A polynomial of the form

f (x , y) = axq+1 + bxqy + cxyq + dyq+1 ∈ L[x , y ]

is called a q-biprojective polynomial over L. Note that

φf (x) = f (x , 1).

We will use the shorthand notation

f = (a, b, c , d)q
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Projective and biprojective polynomials

Our main interest is in cryptographic functions of the following
forms:

(q, r)-biprojective functions of the form:

F : L× L→ L× L
(x , y) 7→ (f (x , y), g(x , y)),

where f and g are q- and r -biprojective polynomials, and

fractional q-projective functions of the form

Π : P1(L)→ P1(L)

x 7→ φf (x)

φg (x)
,

where φf and φg are q-projective polynomials. Note that we
assume φf (x) = 0 = φg (x) does not happen for x ∈ L.
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Representations of vectorial functions

Let n = mk . Fn
p is a k-dimensional Fpm -vector space.

For all possible factorizations of n = mk , we can represent a
function F : Fn

p → Fn
p as

F (x1, . . . , xk) =
∑

0≤i1,...,ik≤pm−1
ai1,...,ikx

i1
1 · · · x

ik
k , ai1,...,ik ∈ Fk

pm ,

in
Fpm [x1, . . . , xk ]/(xp

m

1 − x1, . . . , x
pm

k − xk).
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Notions of degree

algebraic degree

deg F = max


k∑

j=1

wtp(ij) : ai1,...,ik 6= (0, 0, . . . , 0)

 ,

where wtp(ij) =
∑m

l=1 ij l .

Algebraic degree is independent of the representation.

polynomial degree

pdegk F = max


k∑

j=1

ij : ai1,...,ik 6= (0, 0, . . . , 0)

 .

For n = m1k1 and n = m2k2, the polynomial degrees pdegk1 F
and pdegk2 F are not necessarily the same.

Faruk Göloğlu Projective polynomials in cryptography and algebra: nonlinear functions and finite semifields



Biprojectivity in relation with the notions of degree

Recall the notions of q-biprojectivity:

f (x , y) = axq+1 + bxqy + cxyq + dyq+1 ∈ L[x , y ],

and (q, r)-biprojectivity:

F : L× L→ L× L
(x , y) 7→ (f (x , y), g(x , y)).

The (q, r)-biprojective functions F = (f1, f2) are

quadratic (in the sense of algebraic degree) vectorial functions
in bivariate representation F (x , y) = (f1(x , y), f2(x , y)) where

both f1 and f2 are homogeneous (in the sense of polynomial
degree) of degrees q + 1 and r + 1 respectively.
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Classical methods for finding new semifields

Finding pre-semifields of order pn is equivalent to finding
bilinear mappings B : Fpn × Fpn → Fpn satisfying

B(X ,U) = 0 ⇐⇒ XU = 0.

B(X ,U) =
∑

0≤i ,j<n

AijX
piUpj , Aij ∈ Fpn .

Natural to consider first the simplest bilinear mappings that
have few terms in this representation.
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Classical methods for finding new (commutative) semifields

For commutative pre-semifields of order pn when p is odd one
can consider (polarizations of) DO polynomials

F (X ) =
∑

0≤i ,j<n

BijX
pi+pj , Bij ∈ Fpn ,

Identify planar mappings among them in increasing
complexity, i.e., monomials, binomials, and so on.
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Monomials and binomials

Monomial bilinear mappings

B(X ,U) = AX qU r ,

describe pre-semifields (via X ∗U = B(X ,U)) that are isotopic
to finite fields where q, r are Fpn -automorphisms and A ∈ F×pn .

The simplest commutative semifield is the finite field whose
multiplication is given by the simplest bilinear mapping
B(X ,U) = XU

The finite field corresponds to the polarization of the planar
DO polynomial

F (X ) =
1

2
X 2.

Faruk Göloğlu Projective polynomials in cryptography and algebra: nonlinear functions and finite semifields



Monomials and binomials

(Albert’s generalized twisted fields) Any binomial can be
written up to isotopy

B(X ,U) = AXU − X qU r ,

and describes a pre-semifield if and only if

A 6∈ (F×pn)q−1(F×pn)r−1.

Generalized twisted fields that are isotopic to a commutative
semifield are isotopic to the twisted field

B(X ,U) = X qU + XUq,

when n/ gcd(k, n) is odd where q = pk (Albert ’65).

In this case the corresponding planar DO polynomial whose
polarization gives a commutative twisted field is

F (X ) = X q+1.
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Tri- and multinomials

The natural approach that is used to classify the above cases
does not seem to work for larger number of terms.

Indeed, the only known (to the best of our knowledge)
instance of trinomial (commutative) pre-semifields not isotopic
to finite fields or generalized twisted fields are isotopic to the
pre-semifield described by the bilinear map over F35 × F35 .

B(X ,U) = X 81U9 + X 9U81 − XU

Some commutative multinomials:

Zha, Kyureghyan and Wang (Family ZKW) and Bierbrauer
(Families B3 and B4) — binomial DO mappings.

Budaghyan and Helleseth (Family BH) — multinomial planar
functions, discovered independently by Zha and Wang —
trinomial DO mappings.
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The bivariate method of Dickson and others

To construct a semifield of order pn where p is odd and
n = 2m is even, one can consider a quadratic polynomial F in
bivariate representation

F (x , y) = (f (x , y), g(x , y)).

F is planar ⇐⇒ polarization of F has only trivial zeroes.

In the bivariate method, this corresponds to solving

f (x + u, y + v)− f (x , y)− f (u, v) + f (0, 0) = 0,

g(x + u, y + v)− g(x , y)− g(u, v) + f (0, 0) = 0,

simultaneously.
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Choose f to be the simplest nontrivial function f (x , y) = xy ,
i.e., the finite field multiplication

First polarization becomes

∆f ((x , y), (u, v)) = xv + uy = 0,

which in turn gives x = −uy/v for nonzero v .

Plug this into the second polarization to eliminate x and solve
the problem for judicious choices of g .

Starting with Dickson in 1935, many semifields by considering
different g , again in increasing complexity : The family of
Dickson (Family D) the family of Zhou and Pott (Family ZP)
as well as Bierbrauer’s (not necessarily commutative) family
that includes BH/ZW
Includes non-commutative and also weak nucleus semifields
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Enumeration results (odd characteristic)

commutative general

before ≈ n2 ≈ (pn)1/2

after ≈ (pn)1/4 ≈ (pn)2/3

Table: Known number of pairwise non-isotopic semifields of odd order pn

Improving the number to an exponential level was considered a
major open problem.

Deciding whether the number of nonisotopic (commuta-
tive) semifield[s] can be bounded by a polynomial in n [is]
the main problem in connection with commutative semi-
fields of [odd] order pn.

Alexander Pott. Almost perfect and planar functions. Des. Codes
Cryptogr., 78(1):141–195, 2016.
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Enumeration results (even characteristic)

Until 1965 (Knuth) there were no known (proper)
commutative semifield of even order (Dickson and Albert
existed in odd case)
Dramatic turn in 2003 with Kantor-Williams’ family. Only a
linear number (n) in the odd characteristic, the even
characteristic case became super-polynomial (i.e., not
bounded by a polynomial) in q = pn.

Finally, we come to the most important problem: much
larger numbers of semifield planes are needed in all char-
acteristics. The difficulty is the nonisomorphism question
for planes, which is harder than that for the semifields
themselves. Isotopies are notoriously difficult to deal with.
[. . . ] What is needed is a better and more general ap-
proach to proving nonisotopy.

William M. Kantor and Michael E. Williams. Symplectic semifield
planes and Z4-linear codes. Trans. Amer. Math. Soc.,
356(3):895–938, 2004.
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(q, r)-biprojective (commmutative) semifields

Find planar (q, r)-biprojective mappings F : M×M→M×M,

F : (x , y) 7→ (f (x , y), g(x , y)),

wth,

f : (x , y) 7→ a0x
q+1 + b0x

qy + c0xy
q + d0y

q+1,

g : (x , y) 7→ a1x
r+1 + b1x

ry + c1xy
r + d1y

r+1.

where r = pl for an integer 0 ≤ l < m and q = pk for an integer
0 ≤ k < m.

Consider GL(2,M), i.e., (x , y) 7→ (ax + by , cx + dy).

In particular, x 7→ xz and y 7→ yz and divide by zq+1
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Advantages

Number of required permutations is low.

F (X ) = X q+1 (for q = pk)

The polarizations are

∆F (X ,U) = X qU + XUq = 0,

For every U ∈ F×pn , apply X 7→ XU to get

Uq+1(X q + X ) = 0.

This means that proving bijectivity of one linear mappping is
enough. In this case, this mapping is described by
X 7→ ∆F (X , 1) = X q + X .
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Advantages

Note that, for an arbitrary vectorial function, the number of
required bijective linear mappings is
|F×pn/F×p | = (pn − 1)/(p − 1).

To show that the polarization
∆F ((x , y), (u, v)) = (x , y) ∗ (u, v) = 0 has a unique zero for
each (u, v) ∈M×M \ (0, 0), by applying maps of the type
x 7→ xu, y 7→ yu, x 7→ xv , y 7→ yv , u 7→ uv we see that
showing bijective property of pn/2 + 1 bijections is enough.

Lemma

Let (x , y) 7→ F (x , y) = (f (x , y), g(x , y)) be a (q, r)-biprojective
mapping of M×M. Then F is planar if and only if the pair of
equations

Du
f (x , y) = 0 = Du

g (x , y)

has exactly one solution for each u ∈ P1(M).
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Advantages

Covers many previous constructions: Dickson, Albert,
Zhou-Pott, FF, Budaghyan-Helleseth, Knuth, Taniguchi and
many more.

Let q = pk be an automorphism of M and c , d ∈M such that

xq+1 + cx − d = 0

has no solutions x ∈M. The pre-semifields defined by

(x , y) ∗ (u, v) =


(xq

2
v + yuq

2
, yqv + dxqu + cyuq),

(xqv + yuq, yqv + dxuq + cyuq),
(xqv + yuq, yvq + dxqu + cyuq),

(xv + yu, yqv + dqxqu + cyqu),

are called Knuth semifields of Type II.i–iv.

Biprojectivity not identified.
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Advantages

Consider two isotopic twisted fields
B1(X ,Y ) = X qY + DXY q and B2(X ,Y ) = X q′Y + EXY q′

An isotopism triple (L,M,N) ∈ (GL(n,Fp))3 mapping B1 to
B2, i.e.,

N(B1(X ,Y )) = B2(L(X ),M(Y )),

satisfy (L,M,N) ∈ ΓL(1,Fpn)3 which immediately implies q
and q′ should agree, i.e., q′ ∈ {q, q}.
Moreover, (L,M,N) satisfies (setting q = q′),

L(X ) = AX r ,M(Y ) = BY r , and N(Z ) = AqBZ r ,

where A,B ∈ F×pn and r is an Fpn -automorphism satisfying

Dr/E = (B/A)q−1.

Generalize this notion (in a sense) to ΓL(2,Fpn/2).

Mauro Biliotti, Vikram Jha, and Norman L. Johnson. The
collineation groups of generalized twisted field planes. Geom.
Dedicata, 76(1):97–126, 1999.
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Advantages

There are many free spots for field coefficients

Let us go back to the bilinear multiplications of GTFs of order
pn, i.e., B(X ,Y ) = X qY + DXY r . Here we have two options
for variation:

different choices for the field automorphisms q, r , and
different choices for the field coefficient D.

Biprojective setting supplies many more spots for field
coefficients even in the commutative case:

F = ((a0, b0, c0, d0)q, (a1, b1, c1, d1)r ),

where
ai , bi , ci , di ∈M, q, r ∈ Gal(M/Fp).

Explain intuitively why the known biprojective constructions
were not able to exploit these spots — GL(2,M) connection.
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Known biprojective cases

Finite field type coefficients,

((0, 0, 1, 0)q, (1, 0, 0, a)r ),

for a non-square a ∈ M \M× and

(q, r) =


(1, 1) for finite fields,
(q, 1) for Family D,
(1, r) for Family BH/ZWodd,
(q, r) for Family ZP,

for judicious choices of q and r . For Albert type coefficients, i.e.,

((0, 1, b, 0)q, (1, 0, 0, a)r ),

with select a, b ∈ M×, we have

(q, r) =


(1, 1) for finite fields,
(q, q) for Family A,
(1, r) for Families ZP and BH/ZWodd,
(q, 1) for Family BH/ZWeven,

again for judicious choices of q and r .
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New commutative semifields

Theorem (with Lukas Kölsch)

Let a ∈ L× and B ∈M× \ (M×)2 and let

F : M×M→M×M

be defined as

F (x , y) = [(1, 0, 0,B)q, (0, 1, a/B, 0)r ].

Then F is planar.
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Fp

D = Fpd

E = Fpe

L = Fpm/2

M = Fpm

F = Fpn

d

2

m
e

2

2 p is an odd prime.

n = 2m, m is even.

Q = pm/2, Q2 = pm.

q = pk , r = pk+m/2 = Qq with
1 ≤ k ≤ m − 1.

e = gcd(k ,m) with m/e odd.

d = gcd(k + m/2,m).

e = 2d .

E = Fq ∩M = Fq2 ∩M = Fr2 ∩M.

D = Fr ∩M.
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Few words on the proof

Since there are too many nonzero coefficients on the both parts of

F (x , y) = [(1, 0, 0,B)q, (0, 1, a/B, 0)r ].

the proof is essentially different from Dickson’s method. The proof
uses intricate relations of non-squares that results in a
contradiction.
The isotopy technique that works for any two biprojective
semifields is then used to show non-isotopy and in enumeration.
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Analogy with Albert

A theorem of Albert states (under certain conditions) that
every isotopism δ between two twisted fields with defining
field automorphisms q and q′ respectively, has to satisfy:

δ ∈ ΓL(1,F)3,
q and q′ should agree, and
L,M,N, the component linear maps of δ, satisfy further
restrictions.

We prove that if there is an isotopism δ between two
biprojective semifields with defining field automorphisms
(q, r) and (q′, r ′) respectively, then there is an isotopism
γ between these semifields with

γ ∈ ΓL(2,M)3,
(q, r) and (q′, r ′) should agree, and
L,M,N, the component linear maps of γ, satisfy further
restrictions.
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Number of non-isotopic semifields in the new family

Corollary

Let NS(p, n) be the number of non-isotopic pre-semifields in
Family S on Fn

p. Then

σ(n)− 1

2
· p

n/4 − 1

n
≤ NS(p, n) ≤ σ(n)− 1

2

(
pn/4 − 1

)
.

Corollary

The number of pairwise non-isotopic Taniguchi semifields of order
p2m is Θ(p4m/3).
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Classification of (q, q)-biprojective APN functions

Theorem

Let q = 2k , r = 2l , L = F2l with 0 < k < l and
F : L× L→ L× L be a (q, q)-biprojective function. Then F is
APN if and only if gcd(k , l) = 1, and

1 l is even and F ≈L Gq+1 or F ≈L Gq+r , or

2 l is odd, k is odd, and F ≈L Gq+1, or

3 l is odd, k is even, and F ≈L Gq+r , or

4 l = 3 and F ≈L κ.

κ: the only known APN permutation on an even dimension.

Gs : the Gold maps X 7→ X s which are not equivalent to
permutations on even extensions (with P. Langevin)

F ≈L G means

M ◦ F ◦ N = G for some M,N ∈ GL(2,L).
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Classification of (q, q)-biprojective APN functions
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Classification of (q, q)-biprojective APN functions

Method

Boils down to proving that

π(x) =
f (x , 1)

g(x , 1)
=

s

r

has a unique solution x ∈ P1(L) for every s/r ∈ P1(L), i.e.,
x 7→ π(x) is bijective.

Thus the problem of classifying biprojective APN function has
reduced to the classification of fractional projective
permutations.
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GL(2,L) and PGL(2,L)

GL can be viewed as: (x , y) 7→ (ax + by , cx + dy) such that
ad − bc 6= 0

PGL can be viewed as:

x 7→ µ(x) =
ax + b

cx + d
,

where µ(∞) = a/c .

Recall the (q, q)-biprojective maps are of the form

(x , y) 7→ (a0x
qx + b0x

qy + c0xy
q + d0y

qy ,

a1x
qx + b1x

qy + c1xy
q + d1y

qy)
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Algebraic degree-2 functions that are homogenous (using
both notions of the degree)

Classify

(q, q)-biprojective functions of the form:

F : L× L→ L× L
(x , y) 7→ (f (x , y), g(x , y)),

where f and g are q-biprojective polynomials, and

fractional q-projective functions of the form

π : P1(L)→ P1(L)

x 7→ φf (x)

φg (x)
,

where φf and φg are q-projective polynomials.
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The classification theorem for fractional projective
permutations

Theorem

Let π(x) be a fractional q-projective permutation of P1(L) over a
finite field L. Then, char(L) = 2 and π(x) is equivalent to, either

1

π(x) ∼ xq+1 + (εq + 1)x + ε2 + δ + ε1
xq + x + εq

,

with trD/F2
(ε1) = 1, or

2

π(x) ∼ xq+1 + (εq + 1)x + ε2 + δ

xq + x + εq
.
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Classification explained

(The case [L : D] is odd.) Then,
1 π1 is the projectivization of X j for some j ∈ {q + 1, q + r}

depending on whether [K : D] is odd or even; and
2 π2 ∼ xq+1. Note the biprojective version

(x , y) 7→ (xq+1, yq+1).

(The case [L : D] is even.) Then, π1, π2 are projectivizations
of X j where j ∈ {q + 1, q + r}.

L = Fr ,K = Fq,D = K ∩ L
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More applications in cryptography

1 Discrete logarithm problem: Efficient algorithms that solve
the discrete logarithm problem on the multiplicative group of
a finite field. These algorithms were then employed to break
two records for computing discrete logarithms in largest
order finite fields.

2 Joint work with Robert Granger, Gary McGuire, Jens
Zumbrägel (who gave a seminar on this topic last year), and
another work with Antoine Joux.
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F. Göloğlu, Classification of (q, q)-biprojective APN functions,
IEEE Trans. Inform. Theory 69 (2022), no. 3, 1988–1999.
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Thanks for your attention.
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