PROGRAM SYNTHESIS FOR THE OEIS

Thibault Gauthier, Miroslav Olšák, Josef Urban

October 24, 2023

Discovering patterns in mathematical objects

- Discovery in 1995 of a more efficent formula for generating the digits of π by Simon Plouffe.
- In 2005, Hadi Kharaghani and Behruz Tayfeh-Rezaie published their construction of a Hadamard matrix of order 428.
- In 2012, Geoffrey Exoo has found an edge colorings of K35 that have no complete graphs of order 4 in the first color, and no complete graphs of order 6 in the second color proving that R(4,6) ≥ 36.
- Discovery in 2023 of a chiral aperiodic monotile by David Smith.

OEIS: > 350000 sequences

The OEIS is supported by the many generous donors to the OEIS Foundation.

013627 THE ON-LINE ENCYCLOPEDIA 23 TS 12 OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

235711

Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:2,3,5,7,11

Displaying 1-10 of 1163 results found.

page 1 2 3 4 5 6 7 8 9 10 ... 117

Sort: relevance | references | number | modified | created | Format: long | short | data

A000040 The prime numbers. (Formerly M0652 N0241)

+3010150

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271 (list; graph; refs; listen; history;

text; internal format)

OFFSET COMMENTS 1.1

See A065091 for comments, formulas etc. concerning only odd primes. For all information concerning prime powers, see A000961. For contributions concerning "almost primes" see A002808.

A number p is prime if (and only if) it is greater than 1 and has no positive divisors except 1 and p.

A natural number is prime if and only if it has exactly two (positive) divisors. A prime has exactly one proper positive divisor, 1.

A synthesize and test approach

OEIS sequence

$$0, 1, 3, 6, 10, 15, \ldots, 1431$$

Synthesized program

$$f(x) = (x \times x + x) \div 2$$

Test/Filter:

$$f(0) = 0, \ f(1) = 1, \ f(2) = 3, \ f(3) = 6, \ldots, \ f(53) = 1431$$

Test: criteria for selecting programs

OEIS sequence

$$0, 1, 3, 6, 10, 15, \ldots, 1431$$

An undesirable large program

```
if x = 0 then 0 else
if x = 1 then 1 else
if x = 2 then 3 else
if x = 3 then 6 else ...
if x \ge 53 then 1431
```

Small program (Occam's Razor)

$$f(x) = \sum_{i=1}^{x} i$$

Fast program (efficiency criterion)

$$f(x) = (x \times x + x) \div 2$$

Possible other criteria: usefulness criterion?

Synthesize: a Turing-complete language

- Constants: 0, 1, 2
- Variables: x, y
- Arithmetical operators: $+, -, \times, div, mod$
- Condition: if . . . ≤ 0 then . . . else . . .
- $loop(f, a, b) := u_a$ where $u_0 = b$,

$$u_n = f(u_{n-1}, n)$$

- Two other loop constructs: loop2, a while loop

Example:

$$\begin{array}{l} 2^{\mathbf{x}} = \prod_{y=1}^{x} 2 = loop(2 \times x, \mathbf{x}, 1) \\ \mathbf{x}! = \prod_{y=1}^{x} y = loop(y \times x, \mathbf{x}, 1) \end{array}$$

OEIS sequence

$$S = 0, 1, 3, 6, 10, 15, \dots, 1431$$

Synthesized program

(

OEIS sequence

$$S = 0, 1, 3, 6, 10, 15, \dots, 1431$$

Synthesized program

(**x**

OEIS sequence

$$S = 0, 1, 3, 6, 10, 15, \dots, 1431$$

$$(X \times$$

OEIS sequence

$$S = 0, 1, 3, 6, 10, 15, \dots, 1431$$

$$(X \times X)$$

OEIS sequence

$$S = 0, 1, 3, 6, 10, 15, \dots, 1431$$

$$(X \times X +$$

OEIS sequence

$$S = 0, 1, 3, 6, 10, 15, \dots, 1431$$

$$(X \times X + X)$$

OEIS sequence

$$S = 0, 1, 3, 6, 10, 15, \dots, 1431$$

$$(x \times x + x)$$

OEIS sequence

$$S = 0, 1, 3, 6, 10, 15, \dots, 1431$$

$$(x \times x + x) \div$$

OEIS sequence

$$S = 0, 1, 3, 6, 10, 15, \dots, 1431$$

$$(x \times x + x) \div 2$$

OEIS sequence

 $0, 1, 3, 6, 10, 15, \dots, 1431$

Synthesized program

(0.2)

OEIS sequence

 $0, 1, 3, 6, 10, 15, \dots, 1431$

Synthesized program

 $(0.2 X_{0.3})$

OEIS sequence

$$0, 1, 3, 6, 10, 15, \ldots, 1431$$

$$(0.2 \ X_{0.3} \times_{0.12}$$

OEIS sequence

$$0, 1, 3, 6, 10, 15, \ldots, 1431$$

$$(0.2 X_{0.3} \times_{0.12} X_{0.99})$$

OEIS sequence

$$0, 1, 3, 6, 10, 15, \ldots, 1431$$

$$(0.2 \ X_{0.3} \times_{0.12} \ X_{0.99} +_{0.1}$$

OEIS sequence

$$0, 1, 3, 6, 10, 15, \dots, 1431$$

$$(0.2 \ X_{0.3} \times_{0.12} \ X_{0.99} +_{0.1} \ X_{0.25}$$

OEIS sequence

$$0, 1, 3, 6, 10, 15, \ldots, 1431$$

$$(0.2 \ X_{0.3} \ \times_{0.12} \ X_{0.99} \ +_{0.1} \ X_{0.25})_{0.48}$$

OEIS sequence

$$0, 1, 3, 6, 10, 15, \ldots, 1431$$

$$(0.2 \ X_{0.3} \times_{0.12} \ X_{0.99} +_{0.1} \ X_{0.25})_{0.48} \div_{0.02}$$

OEIS sequence

$$0, 1, 3, 6, 10, 15, \ldots, 1431$$

$$(0.2 \ X_{0.3} \ \times_{0.12} \ X_{0.99} \ +_{0.1} \ X_{0.25} \)_{0.48} \ \div_{0.02} \ 2_{0.09}$$

OEIS sequence

$$0, 1, 3, 6, 10, 15, \ldots, 1431$$

Synthesized program

$$(0.2 \ X_{0.3} \times_{0.12} \ X_{0.99} +_{0.1} \ X_{0.25})_{0.48} \div_{0.02} \ 2_{0.09}$$

The probability of generating this program is:

$$0.2 \times 0.3 \times 0.12 \times 0.99 \times 0.1 \times 0.25 \times 0.48 \times 0.02 \times 0.09 = 1.54... \times 10^{-7}$$

OEIS sequence

$$0, 1, 3, 6, 10, 15, \ldots, 1431$$

Synthesized program

$$(0.2 \ X_{0.3} \times_{0.12} \ X_{0.99} +_{0.1} \ X_{0.25})_{0.48} \div_{0.02} \ 2_{0.09}$$

The probability of generating this program is:

$$0.2 \times 0.3 \times 0.12 \times 0.99 \times 0.1 \times 0.25 \times 0.48 \times 0.02 \times 0.09 = 1.54... \times 10^{-7}$$

In general, we are given a probability function $\mathcal{P}(S, P, T)$.

$$\begin{split} \mathcal{P}(\left[0,1,3,6,\ldots\right]\,,\,\left[\right]\,,\,\text{"(")}\,) &= 0.2 \\ \mathcal{P}(\left[0,1,3,6,\ldots\right]\,,\,\left[\text{"(")}\,,\,x\right.) &= 0.3 \\ \mathcal{P}(\left[0,1,3,6,\ldots\right]\,,\,\left[\text{"(",x]}\,,\,\times\right.) &= 0.12 \\ \mathcal{P}(\left[0,1,3,6,\ldots\right]\,,\,\left[\text{"(",x]}\,,\,+\right.) &= 0.67 \\ \mathcal{P}(\left[2,3,5,7,\ldots\right]\,,\,\left[\text{"(",x]}\,,\,+\right.) &= 0.60 \end{split}$$

Synthesize: updating a probabilistic function

Having synthesized the program (fastest so far) $(x \times x + x) \div 2$ generating

$$0, 1, 3, 6, 10, 15, \dots, 1431$$

how do we update a probabilistic function P?

$$\begin{split} \mathcal{P}_{\textit{desired}}([0,1,3,6,\ldots]\;,\; []\;,\;\text{"(")}\; = 0.2 \to 1 \\ \mathcal{P}_{\textit{desired}}([0,1,3,6,\ldots]\;,\; [\text{"(")}\;,\;x\;) = 0.3 \to 1 \\ \mathcal{P}_{\textit{desired}}([0,1,3,6,\ldots]\;,\; [\text{"(",x]}\;,\;\times\;) = 0.12 \to 1 \\ \mathcal{P}_{\textit{desired}}([0,1,3,6,\ldots]\;,\; [\text{"(",x]}\;,\;+\;) = 0.67 \to 0 \end{split}$$

A neural network finds a smooth curve approximating $\mathcal{P}_{\textit{desired}}$. Then \mathcal{P}' is used to sample new programs from OEIS sequences.

Self-learning: five different runs

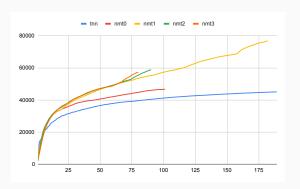


Figure: Number y of OEIS sequences (with at least one program) after x iterations

 \mathcal{P}_0 is a random probability distribution function.

 \mathcal{P}_x synthesizes/samples 240 programs for each OEIS sequence.

A program may be correct for an other OEIS sequence.

 \mathcal{P}_{x} is updated to \mathcal{P}_{x+1} .

Examples

Let's now see some examples of synthesized programs.

A10445: squares modulo 84

OEIS sequence

$$0, 1, 4, 9, 16, 21, 25, 28, 36, 37, 49, 57, 60, 64, 72, 81$$

Synthesized program

$$\{x \mid (x^4 - x) \mod 84 = 0\}$$

with 84 =
$$2 \times f^2(2)$$
 and $f(x) = x \times x + x$

Proof: Left to the listener.

Example: characteristic function of primes

OEIS sequence

$$0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, \dots, 1, 0$$

Synthesized program

$$((x \times x!) \mod (1+x)) \mod 2$$

Proof: Left to the listener.

Example: prime numbers

OEIS sequence

$$2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \dots, 271$$

Synthesized program

$$\{x\mid 2^x\equiv 2\mod x\}$$

Proof: 341 is a counterexample

Example: A294082 by David Cerna

$$1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 14, 9, 4, 1, 1, 184, 75, 16, 5, 1, 1, 33674, 5553, 244\dots$$

OEIS description: Square array read by antidiagonals:

$$T(m, n) = T(m, n-1)^2 - T(m, n-2)^2 + T(m, n-2)$$
 with $T(1, n) = 1$, $T(m, 0) = 1$, and $T(m, 1) = m$.

Program:

Proof: Left to the reader.

Selection of 123 Solved Sequences

https://oeis.org/A317485 Number of Hamiltonian paths in the n-Bruhat graph.

Table: Samples of the solved sequences.

https://oeis.org/A349073	$a(n) = U(2^*n, n)$, where $U(n, x)$ is the Chebyshev polynomial of the second kind.
https://oeis.org/A293339	Greatest integer k such that $k/2^n < 1/e$.
https://oeis.org/A1848	Crystal ball sequence for 6-dimensional cubic lattice.
https://oeis.org/A8628	Molien series for A_5 .
https://oeis.org/A259445	Multiplicative with $a(n) = n$ if n is odd and $a(2^s) = 2$.
https://oeis.org/A314106	Coordination sequence Gal.6.199.4 where G.u.t.v denotes the coordination sequence for a
	vertex of type v in tiling number t in the Galebach list of u-uniform tilings
https://oeis.org/A311889	Coordination sequence Gal.6.129.2 where G.u.t.v denotes the coordination sequence for a
	vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A315334	Coordination sequence Gal.6.623.2 where G.u.t.v denotes the coordination sequence for a
	vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A315742	Coordination sequence Gal.5.302.5 where G.u.t.v denotes the coordination sequence for a
	vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A004165	OEIS writing backward
https://oeis.org/A83186	Sum of first n primes whose indices are primes.
https://oeis.org/A88176	Primes such that the previous two primes are a twin prime pair.
https://oeis.org/A96282	Sums of successive twin primes of order 2.
https://oeis.org/A53176	Primes p such that $2p + 1$ is composite.
https://oeis.org/A267262	Total number of OFF (white) cells after n iterations of the "Rule 111" elementary cellular
	automaton starting with a single ON (black) cell.

Thank you for your attention!

https://github.com/Anon52MI4/oeis-alien