An etude on polynomials over finite rings in Computational Complexity Theory

Piotr Kawałek

TU Wien
28 XI 2023

Quick reminder

We consider polynomials over the ring $\left(\mathbb{Z}_{m},+, \cdot\right)$, where m integer.

Polynomials of arity n are expressions from $\mathbb{Z}_{m}\left[x_{1}, \ldots, x_{n}\right]$

- Polynomial naturally represents a function $\left(\mathbb{Z}_{m}\right)^{n} \longmapsto \mathbb{Z}_{m}$
- Polynomials can also represent a function $\{0,1\}^{n} \longmapsto \mathbb{Z}_{m}$

Polynomials in sparse form

We say a polynomial is written in an s-sparse form if it is presented as a sum of s monomials.

4-sparse form:

$$
x z+x t+y z+y t
$$

Not s-sparse form:

$$
(x+y)(z+t)
$$

Representing Boolean functions

Polynomials over $\left(\mathbb{Z}_{m},+, \cdot\right)$ can be used to represent Boolean functions $\{0,1\}^{n} \longmapsto\{0,1\} \subseteq \mathbb{Z}_{m}$:

Negation: $\mathbf{f}(x)=1-x$
NOR: $\mathbf{f}(x, y)=x y-x-y+1$
$\mathbf{A N D}_{n}: \quad \mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdot \ldots \cdot x_{n}$
In fact every Boolean function can be represented as a polynomial over $\left(\mathbb{Z}_{m},+, \cdot\right)$. However, most of the n-ary functions require large degree (close to n).

Uniqueness

Every function $\{0,1\}^{n} \longmapsto \mathbb{Z}_{m}$ has a unique representation as a sparse multilinear polynomial. To get this representation just:
(1) Perform all the multiplications to get sparse form
(2) Replace each occurance of x^{k} with x (on Boolean domain $x^{k} \equiv x$)
Why is it unique?

- Every n-ary function has a representation,
- there is the same number of functions and representations.

Degree for the conjunction

$\mathrm{AND}_{n} \rightarrow \mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdot \ldots \cdot x_{n}$ of degree n.
What does it even mean that we represent AND_{n} in $\left(\mathbb{Z}_{m},+, \cdot\right)$?

Strong representation:

$$
\begin{array}{ll}
\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=1 & \text { if } x_{i}=1 \text { for all } i \\
\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=0 & \text { if } x_{i}=0 \text { for some } i
\end{array}
$$

Degree for the conjunction

$\mathrm{AND}_{n} \rightarrow \mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdot \ldots \cdot x_{n}$ of degree n.
What does it even mean that we represent AND_{n} in $\left(\mathbb{Z}_{m},+, \cdot\right)$?
Weak representation:

$$
\begin{array}{ll}
\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)=a & \text { if } x_{i}=1 \text { for all } i \\
\mathbf{f}\left(x_{1}, \ldots, x_{n}\right) \neq a & \text { if } x_{i}=0 \text { for some } i
\end{array}
$$

Weak representation for conjunction

Ring: $\left(\mathbb{Z}_{m},+, \cdot\right)$
With weak representation we can get smaller degree than n :

$$
x_{1} \cdot \ldots x_{n / 2}+x_{1+n / 2} \cdot \ldots \cdot x_{n}
$$

value 2 is achieved only for $x_{1}=\ldots=x_{n}=1$.
But by spliting variables uniformly into $m-1$ monomials we can achieve degree $\frac{n}{m-1}$.

Weak representation - optimal for a prime p

Ring: $\left(\mathbb{Z}_{p},+, \cdot\right)$
When $m=p$ is a prime the degree $\frac{n}{p-1}$ is optimal. Why?
Let $\mathbf{q}\left(x_{1}, \ldots, x_{n}\right)$ weakly represent AND_{n}, let $\mathbf{q}(1, \ldots, 1)=a$.
Define a new polynomial $\mathbf{p}(\bar{x})=1-(\mathbf{q}(\bar{x})-a)^{p-1}$. Notice that:

$$
\begin{array}{ll}
\mathbf{p}\left(x_{1}, \ldots, x_{n}\right)=1 & \text { if } x_{i}=1 \text { for all } i \\
\mathbf{p}\left(x_{1}, \ldots, x_{n}\right)=0 & \text { if } x_{i}=0 \text { for some } i
\end{array}
$$

So \mathbf{p} strongly represents AND_{n} ! The unique sparse multilinear form of \mathbf{p} must be $x_{1} \cdot \ldots \cdot x_{n}$. So $\operatorname{deg} \mathbf{p}=n$ but

$$
n=\operatorname{deg} \mathbf{p} \leqslant \operatorname{deg} \mathbf{q} \cdot(p-1)
$$

hence $\operatorname{deg} \mathbf{q} \geqslant \frac{n}{p-1}$

Weak representation - $m=6$

Ring: $\left(\mathbb{Z}_{6},+, \cdot\right)$

Barrington, Beigel, Rudrich, 1994

There is a polynomial $\mathbf{p}(\bar{x})$ over $\left(\mathbb{Z}_{6},+, \cdot\right)$ weakly representing AND_{n} of degree $O(\sqrt{n})$.

Or more generally:

Barrington, Beigel, Rudrich, 1994

Let m have r distinct prime divisors.
There is a polynomial $\mathbf{p}(\bar{x})$ over $\left(\mathbb{Z}_{m},+, \cdot\right)$ weakly representing AND $_{n}$ of degree $O(\sqrt[r]{n})$.

We will see the construction at the end!

Weak representation - lower bounds

Barrington, Tardos, 1998

Let m have r distinct prime divisors.
Any polynomial $\mathbf{p}(\bar{x})$ over $\left(\mathbb{Z}_{m},+, \cdot\right)$ weakly representing AND_{n} must have degree at least $\Omega\left((\log n)^{1 / r-1}\right)$.

We have exponential gap between lower bound and upper bound!

$$
(\log n)^{1 / r-1} \text { vs } n^{1 / r}
$$

No progress for >20 years despite many potential applications

Degree vs length

Ring: $\left(\mathbb{Z}_{p},+, \cdot\right)$

$$
\mathbf{p}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdot \ldots \cdot x_{n}
$$

Degree: n (in range $0-n$)
Length: 1 (in range $0-2^{n}$)
The degree is large while length (sparsity) is low. This is a problem.
Solution: redefine what we mean by monomial.

Old s-sparse form vs new s-sparse form

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$.
Old sparse form:

$$
\sum_{v \in x} a v \prod_{n \in=} v
$$

New sparse form:

$$
\sum_{V \subseteq X} \alpha_{V} \prod_{v \in V}(-1)^{v}
$$

In both cases we measure length (sparsity s) with the number of non-zero α_{V}

Values $\{0,1\}$ are now naturally interpreted as a multiplicative subgroup of $\left(\mathbb{Z}_{m}^{*}, \cdot\right)$ isomorphic to $\left(\mathbb{Z}_{2},+\right)$.

Old s-sparse form vs new s-sparse form

Whem m is odd, the degree of a function $\{0,1\}^{n} \longmapsto \mathbb{Z}_{m}$ is the same in old and a new representation.
Reason: the mapping $x \longmapsto 2^{-1} \cdot(x+1)$.
Corollary: all functions $\{0,1\}^{n} \longmapsto \mathbb{Z}_{m}$ have a unique, new s-sparse form.

Degree vs length

Ring: $\left(\mathbb{Z}_{p},+, \cdot\right)$

$$
\mathbf{p}\left(x_{1}, \ldots, x_{n}\right) \text { weakly representing } \mathrm{AND}_{n}
$$

Degree: $\Omega(n)$ (in old and new form)
Length: $2^{\Omega(n)}$ (in new form)
The proof is by Barrington, Straubing and Thérien (1990).

Results on length

Barrington, Beigel, Rudrich, 1994

Let m have r distinct prime divisors.
There is a polynomial $\mathbf{p}(\bar{x})$ over $\left(\mathbb{Z}_{m},+, \cdot\right)$
weakly representing AND_{n} of length $2^{O\left(n^{1 / r} \log n\right)}$.

Chattopadhyay, Goyal, Pudlak, Therien, 2006

Let m have r distinct prime divisors.
Any polynomial $\mathbf{p}(\bar{x})$ over $\left(\mathbb{Z}_{m},+, \cdot\right)$ weakly representing AND_{n} must have length at least $\Omega(n)$.

Error correcting codes

Error correcting codes - applications

© digital communication systems
(2) computer memory
(3) data storage devices
(1) internet and network transmission
(5) broadcasting
(1) QR codes and barcodes
(- deep space missions
(8) secure communication
(0) warfare devices

Error correcting codes - parameters

(1) We want to encode k-bit message x into N-bit codeword $C(x)$.
(2) We assume that at most δ fraction of bits can be corrupted, so at least $(1-\delta)|C(x)|$ bits are correct.
(3) Additionally we want the code to be locally decodable, i.e. to find an i-th bit of x we read r bits of $C(x)$ using some probabilistic procedure. We succeed with probability at least $1-\epsilon$.

Error correcting codes - parameters

(r, δ, ϵ)-localy decodable code translates k-bit message to $f(k)$-bit code.

- We want δ, ϵ to be constant, preferably δ around $\frac{1}{4}$
- r also should be constant, or at least some small function of k
- $f(k)$ should be some very small function of k.

Matching Vector Codes

BBR94 construction of AND_{n} using polynomial over \mathbb{Z}_{m} of degree $O(\sqrt[r]{n})$ leads to so-called Matching Vector Codes.

This codes are based on 2 families of vectors u_{1}, \ldots, u_{k} and v_{1}, \ldots, v_{k} over \mathbb{Z}_{m}^{n}. They are matching in a sense that $\left(u_{i}, v_{i}\right)=0$ while $\left(u_{i}, v_{j}\right) \neq 0$ for $i \neq j$.

Dvir, Gopalan, Yekhanin, 2011

There are good (r, δ, ϵ)-locally decodable Matching Vector codes with δ being constant and ϵ being constant if r is small enough. There is a complicated trade-off between r and the size of the code.

The (r, δ, ϵ)-code is parametrized with $\delta \in(0,1)$ and $t \in \mathbb{N}$.

- number of trials $r=t^{O(t)}$
- probability of failure $\epsilon=4 \delta(1+1 /(\log t))$
- size of the code is $\exp \exp \left((\log k)^{1 / t}(\log \log k)^{1-1 / t}\right)$.

Ramsey Graphs

Fix k.
How to contruct a large graph, which does not have k-clique nor k-independent set?

Grolmusz, 2000

There is explicit construction of graphs of size $2^{\Omega\left((\log k)^{2} / \log \log k\right)}$.
But also: if we construct AND_{n} with degree n^{ϵ} over \mathbb{Z}_{6} we get a Ramsey graph of size $2^{\Omega\left((\log k)^{1 / \epsilon} /(\log \log k)^{1 / \epsilon-1}\right.}$

\mathbf{D}_{m} - group of symmetry of regular m-gon

Elements of \mathbf{D}_{m}
Rotations: $\rho^{0}, \rho^{1}, \ldots, \rho^{m-1}$
Reflections $\sigma, \sigma \circ \rho, \ldots, \sigma \circ \rho^{m-1}$

Equations - examples

Has solution:

$$
x \circ \sigma \circ y=\rho
$$

Has no solution:

$$
x \circ y \circ x^{-1} \circ y^{-1}=\sigma
$$

Equations - algorithm

Random Sampling: just put random values for variables.
Assume you have lower bound $s(n)$ for the length of polynomial over \mathbb{Z}_{m} representing AND_{n}.

Idziak, PK, Krzaczkowski, 2022

For equation of length $/$ in the group \mathbb{D}_{m} the random sampling algorithm with $O\left(2^{s^{-1}(I)}\right)$ trials finds a solution if it exists with probability $1-\epsilon$.

If $s(n)=2^{r \sqrt{n}}$ then algorithm needs $n^{(\log n)^{r}}$ samples.

Solving systems of linear equations

Consider systems of linear equations over domain $\{0,1\}$.

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & \equiv b_{1} & (\bmod 2), \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & \equiv b_{2} & (\bmod 2), \\
\vdots & & \\
a_{(k-1) 1} x_{1}+a_{(k-1) 2} x_{2}+\cdots+a_{(k-1) n} x_{n} & \equiv b_{k-1} \quad(\bmod 2), \\
a_{k 1} x_{1}+a_{k 2} x_{2}+\cdots+a_{k n} x_{n} & \equiv b_{k} \quad(\bmod m) .
\end{array}
$$

How to solve them when 1 equation is modulo m ?
This problem enebles to classify Boolean CSP's with global modular constraints which admit polynomial-time solution.

Algorithm

Random Sampling:

(1) Ignore the equation modulo m.
(2) Compute affine subspace of solutions to the system modulo 2 .
(3) In the subspace, take R random points.
(9) If some of the random points satisfies also the last equation we return a solution.
(5) Otherwise we say there is no solution.

Brakensiek, Gopi, Guruswami, 2019

The better lower bounds for the length of AND_{n}, the smaller R is required.

Weak representation - $m=6$

Ring: $\left(\mathbb{Z}_{6},+, \cdot\right)$

Barrington, Beigel, Rudrich, 1994

There is a polynomial $\mathbf{p}(\bar{x})$ over $\left(\mathbb{Z}_{6},+, \cdot\right)$ weakly representing AND_{n} of degree $O(\sqrt{n})$.

Or more generally:

Barrington, Beigel, Rudrich, 1994

Let m have r distinct prime divisors.
There is a polynomial $\mathbf{p}(\bar{x})$ over $\left(\mathbb{Z}_{m},+, \cdot\right)$ weakly representing AND_{n} of degree $O(\sqrt[r]{n})$.

