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Graph homomorphism

G H

Definition

For graphs G and H, a mapping f : V (G) → V (H) is a
homomorphism if, for all x, y ∈ V (G), xy is an edge in G ⇒
f(x)f(y) is an edge in H.
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Graph isomorphism

G H

Definition

For graphs G and H, a bijective mapping f : V (G) → V (H) is an
isomorphism if both f and f−1 are homomorphisms.
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Graph automorphism

G α

β

Definition

An isomorphism a : G → G from a graph G to itself is an
automorphism. The automorphisms of G form a group denoted
Aut(G).
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Induced subgraph

H G

Definition

A graph G is an induced subgraph of a graph H if
V (G) ⊆ V (H) and E(G) = E(H) ∩

(
V (G)

)2
.

Let Age(H) denote the set of all induced subgraphs of H up
to isomorphism.

If G is isomorphic to an induced subgraph of H, then G
embeds into H.
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Homogeneous graph

H B

A
f

α

Definition

A graph H is homogeneous if it has countably many vertices and,
for any finite induced subgraphs A,B of H and any isomorphism
f : A → B, there exists α ∈ Aut(H) such that α

∣∣
V (A) = f .
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Example: Finite homogeneous graphs

Theorem ([Gardiner, Golfand & Klin])

Let G be a finite homogeneous graph. Then either G or G is
isomorphic to a disjoint union of complete graphs all of the same
size, or to the pentagon, or to the 3× 3 rook’s graph.
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Construction of Infinite Graphs
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Countably many finite graphs

The infinite homogeneous graph is constructed from a countable
class C of finite graphs which is assumed to be closed under taking
isomorphisms, taking induced subgraphs, and to have the two
following properties.
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Joint Embedding Property (JEP)

A B

Cf g

Definition

A class C has the joint embedding property if, for any A,B ∈ C,
there exists C ∈ C and embeddings f : A → C and g : B → C.
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Amalgamation Property (AP)

A

B1 B2

C

f1 f2

g1 g2

Definition

C has the amalgamation property if, for any A,B1,B2 ∈ C and any
embeddings f1 : A → B1, f2 : A → B2, there exists C ∈ C and
embeddings g1 : B1 → C, g2 : B2 → C such that g1 ◦ f1 = g2 ◦ f2.
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Fräıssé’s Theorem

Theorem ([Fräıssé])

1 Let M be a homogeneous graph. Then Age(M) has the
amalgamation property.

2 Let C be a non-empty class of finite graphs such that it is
closed under taking isomorphisms and subgraphs, and that it
has JEP and AP. Then there is a homogeneous graph M with
Age(M) = C. M is called the Fräıssé limit of C.

3 Let M and M′ be two homogeneous graphs such that
Age(M) = Age(M′). Then M′ is isomorphic to M′.
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Proof of (1)

M
fA f(A)

α
B2B1 α(B1)

Without loss of generality, let A be an induced subgraph of B1.
Let f be an embedding of A into B2, i.e. A ∼= f(A). Then there is
α ∈ Aut(M) such that α

∣∣
A = f . The desired graph C is induced

on the union of α(B1) and B2.
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Proof of (2) – Construction

Let θ : N× N → N be a bijection such that θ(i, j) ≥ i for all
i, j ∈ N.

Construct the chain M0 ⊆ M1 ⊆ . . . by induction and put
M :=

⋃∞
k=0Mk.

Step 0. Take arbitrary M0 ∈ C.
Step k + 1. Mk is associated with a countably infinite
sequence (Akj ,Bkj , fkj)j of all triples Akj ,Bkj , fkj such that
(a) Akj ⊆ Mk, (b) Bkj ∈ C, and (c) f : Akj → Bkj is an
embedding. Assuming k = θ(i, j), choose Mk+1 to be the
amalgamation of Mk and Bij over Aij .
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Proof of (2) – Checking the properties

M0 A
Mk B

Mk+1
⊇

A

Mk

⊆

Age(M) = C
(⊇) By JEP, for every A in C there is B in C such that both M0

and A embed into B. The graph B is amalgamated to some Mk

over M0, therefore A embeds into Mk+1.

(⊆) Every Mk is a result of finitely many amalgamations, so it is in
C. Every finite A ⊆ M is an induced subgraph of some Mk. As C is
closed under taking induced subgraphs, A is also in C.
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Proof of (2) – Checking the properties

The homogenity of M follows from this claim.

Claim

For all A,B ∈ C and for all embeddings e : A → B and f : A → M,
there is an embedding g : B → M such that g ◦ e = f .

A
Mk

B
Mℓ

Mℓ+1

ef

g

id

id

Proof.

For some k ∈ N, A embeds into Mk. Then, the sequence
(Akj ,Bkj , fkj)j contains the triple (A,B, e). Then, for some ℓ ≥ k,
Mℓ+1 is the amalgamation of Mℓ and B over A.
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Proof of (3) – Back-and-forth argument

M M′

M and M′ are homogeneous and Age(M) = Age(M′). Let
V (M) = {0, 1, . . .} and V (M′) = {0′, 1′, . . .}.
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Proof of (3) – Back-and-forth argument

M M′

The isomorphism f : M → M′ is constructed by induction.
Suppose that f is a partial isomorphism between Mi and M′

i.
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Proof of (3) – Back-and-forth argument

M M′
j

Take the least j in M which is not assigned to any element from
M′ and consider the subgraph induced on Mi ∪ {j}.
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Proof of (3) – Back-and-forth argument

M M′
j

As Age(M) = Age(M′), the graph M′ contains an induced
subgraph isomorphic to Mi ∪ {j}.
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Proof of (3) – Back-and-forth argument

M M′

α
j

As M′ is homogeneous, there exists α ∈ Aut(M′) that maps M′
i to

this induced subgraph.

Construction of Infinite Graphs 23/39



Proof of (3) – Back-and-forth argument

M M′

α
j f(j)

After assigning f(j) to j, take the smallest unassigned j′ in M′

and similarly find the suitable f−1(j′) in M.
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Examples
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Independent sets and cliques

The class of finite independent sets and the class of all cliques
both have AP. The Fräıssé limits are the countable independent set
and the countable clique.
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Random graph

The Fräıssé limit M of the class of all finite graphs is called Rado
graph or Erdős-Rényi graph, or random graph. For x, y ∈ V (M),
xy is an edge with some fixed probability p ∈ (0, 1).
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Universal clique-free graph

Kℓ =

The class of graphs omitting Kℓ for some ℓ has AP, so there exists
the universal homogeneous Kℓ-free graph that is unique up to
isomorphism.
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Ordered sets

<a b

<c d <e f<a < b<a <b

<c d<a <b<e f <

<c da < b <
e

f

transitive closure

< <

The classes of finite partially ordered sets and of finite linearly
ordered sets both have AP. The Fräıssé limit of finite linear orders
is isomorphic to (Q, <).
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Constraint Satisfaction Problems
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Constraint Satisfaction Problems

Definition

Let τ = {R1, . . . , Rt} be a relational signature. A τ -structure A is
a tuple

(
A;RA

1 , . . . , R
A
t

)
, where A is a set, and, for all R ∈ τ of

arity k, we have that RA ⊆ Ak. The set A is the domain of A and
each RA is a relation of A.

A B

?

Definition

Let B be a τ -structure. The class CSP(B) contains all finite
τ -structures A such that there is a homomorphism A → B. The
corresponding membership problem is also denoted CSP(B).
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What is CSP?

Theorem

Let τ be a finite relational signature and let C be a class of finite
τ -structures. Then the following are equivalent.

C = CSP(B) for a countable τ -structure B.

C is closed under disjoint unions and inverse homomorphisms.

A,B ∈ C =⇒ A ⊔ B ∈ C

B ∈ C and A → B =⇒ A ∈ C

Constraint Satisfaction Problems 32/39



What is CSP?

Theorem

Let τ be a finite relational signature and let C be a class of finite
τ -structures. Then the following are equivalent.

C = CSP(B) for a countable τ -structure B.
C is closed under disjoint unions and inverse homomorphisms.

A,B ∈ C =⇒ A ⊔ B ∈ C

B ∈ C and A → B =⇒ A ∈ C

Constraint Satisfaction Problems 32/39



What do I study?

F

input

∃? question

finite
connected

F -free edge-coloring problems

How to color the input graph edges so that no edge-colored graph
from F maps homomorphically to it?
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Finitely boundedness

Definition

A family C of finite τ -structures is finitely bounded if there is a
finite set of structures F such that, for any finite τ -structure A,
A ∈ C iff no F ∈ F embeds into A, denoted C = Forbemb(F).
A homogeneous structure M is finitely bounded if so is Age(M).

Question

Which homogeneous structures from “Examples” are finitely
bounded?
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First-order reducts of relational structures

∃z, z′ Exz
∃z Exz ∧ Ezy ∧Ezz′ ∧ Ez′y

Definition

A structure B is a first-order reduct of a structure A if they have
the same set of vertices and if all relations of B are first-order
definable from the relations of A.
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First-order reducts of finitely bounded homogeneous
structures

Theorem ([CSS’1999, HN’2019, BMM’2021])

For every finite class F of connected finite structures there is a
first-order reduct M of some homogeneous structure such that
Age(M) = Forbemb(F).

Corollary

Every F-free edge-coloring problem is exactly CSP(B), where B is
a first-order reduct of a finitely bounded homogeneous structure.

Why?

If B is a first-order reduct of a finitely bounded homogeneous
structure, then CSP(B) is in NP.
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How can infinite CSPs help me?

Dichotomy Decidability of Containment

CSP(finite) 2017 decidable(obvious)

CSP(FORFBHS) open open

vertex-coloring 2017(1998) decidable(2010)

edge-coloring open decidable (2023)(binary)

Definition

A family of NP-problems has a dichotomy if every its problem is
either solvable in polynomial time or NP-hard.

Definition

A problem P1 is contained in a problem P2 if every finite input is
accepted by P1 only if it is accepted by P2. For a class of problems
L, the containment is decidable if there is an algorithm running in
finite time that checks for any given P1, P2 ∈ L whether P1 ⊆ P2.
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