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1 Random sequence

We fix a probability space (Ω,F ,P), i.e. Ω is a non-empty set, F is a σ-algebra on Ω and P is a probability
measure on (Ω,F). We consider an infinite sequence of real random variables {Xn, n ∈ N}, i.e. measurable
mappings Xn : (Ω,F) → (R,B), where B = B(R) is the Borel σ-algebra on R.

Definition 1.1. A sequence X1, X2, . . . of random variables is called a random sequence.

Let RN = {(x1, x2, . . . ) : xi ∈ R ∀i ∈ N} be the space of all infinite sequences of real numbers. The
random sequence X1, X2, . . . creates a mapping X : Ω → RN defined by

X(ω) = (X1(ω), X2(ω), . . . ), ω ∈ Ω. (1)

The question is whether this mapping is measurable in some sense.

Definition 1.2. If (Sn,Sn) are measurable spaces, we define the product σ-algebra
∞⊗

n=1
Sn of subsets of

the product space
∞

×
n=1

Sn as

∞⊗
n=1

Sn = σ{A1 ×A2 × · · · ×An × Sn+1 × Sn+2 × · · · : A1 ∈ S1, . . . , An ∈ Sn, n ∈ N}.

The set of the form A1 × A2 × · · · × An × Sn+1 × Sn+2 × · · · is called a finite dimensional cylinder set.

When Sn = S and Sn = S for all n ∈ N, we use the notation SN =
∞

×
n=1

Sn and SN =
∞⊗

n=1
Sn.

In our situation we have Sn = R and Sn = B for all n ∈ N.

Proposition 1.1. If X1, X2, . . . is a random sequence, then X defined in (1) is measurable with respect
to BN. We write X : (Ω,F) → (RN,BN).

Proof. Applying Definition 1.2 for Sn = R and Sn = B, it suffices to verify that F = [X ∈ A1 × A2 ×
· · · × An × R × R × · · · ] ∈ F for any A1, . . . , An ∈ B and n ∈ N. However, this is obvious because
F =

⋂n
k=1[Xk ∈ Ak] ∈ F .

The space RN can be naturally turned into a metric space.

Definition 1.3. The distance of two real sequences x = (x1, x2, . . . ) and y = (y1, y2, . . . ) is defined as

d(x, y) =

∞∑
n=1

|xn − yn| ∧ 1

2n
,

where a ∧ b = min{a, b}.
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Remark: Note that the series in the definition of d is always convergent and d(x, y) ≤ 1 for any x, y ∈ RN.

Proposition 1.2. (a) The function d is a metric on RN.

(b) The sequence {xn = (xn
1 , x

n
2 , . . . ) ∈ RN, n ∈ N} converges in the metric d as n → ∞ to the sequence

x = (x1, x2, . . . ) ∈ RN if and only if xn
j −→

n→∞
xj for all j ∈ N.

(c) The metric space (RN, d) is separable and complete.

(d) For −∞ < an ≤ bn < ∞, the set
∞

×
n=1

[an, bn] is a compact subset of RN.

Proof. (a), (b), (c) Exercise class.
(d) Let {xn = (xn

1 , x
n
2 , . . . ), n ∈ N} be a sequence of elements from [a1, b1] × [a2, b2] × · · · . Since

x1
1, x

2
1, . . . is a sequence of real numbers from the compact interval [a1, b1], there is a subsequence

x
n(1,1)
1 , x

n(1,2)
1 , . . . , x

n(1,k)
1 , . . . , that converges to some x1 ∈ [a1, b1] as k → ∞. Then we can find a subse-

quence {n(2, k), k ∈ N} of {n(1, k), k ∈ N} such that x
n(2,k)
2 −→

k→∞
x2 ∈ [a2, b2]. By induction we construct

x
n(1,1)
1 , x

n(1,2)
1 , . . . , x

n(1,k)
1 , . . . −→

k→∞
x1 ∈ [a1, b1],

x
n(2,1)
2 , x

n(2,2)
2 , . . . , x

n(2,k)
2 , . . . −→

k→∞
x2 ∈ [a2, b2],

...

x
n(ℓ,1)
ℓ , x

n(ℓ,2)
ℓ , . . . , x

n(ℓ,k)
ℓ , . . . −→

k→∞
xℓ ∈ [aℓ, bℓ],

...

so that {n(ℓ + 1, k), k ∈ N} is a subsequence of {n(ℓ, k), k ∈ N} for ℓ ∈ N. We use the diagonal
selection principle and consider the sequence {n(k, k), k ∈ N}. For any ℓ ∈ N we have {n(k, k), k ≥ ℓ} ⊆
{n(ℓ, k), k ∈ N} and hence

x
n(k,k)
ℓ −→

k→∞
xℓ.

Using part b) we get that {xn(k,k) = (x
n(k,k)
1 , x

n(k,k)
2 , . . . ), k ∈ N} converges in the metric d as k → ∞ to

the sequence x = (x1, x2, . . . ) ∈
∞

×
n=1

[an, bn]. This proves that
∞

×
n=1

[an, bn] is compact.

Now let us examine what the Borel σ-algebra B(RN) looks like.

Theorem 1.3. The relation BN = B(RN) holds, i.e.

σ{A1 × · · · ×An × R× · · · : A1, . . . , An ∈ B, n ∈ N} = σ{U : U ⊆ RN open set}.

Proof. The inclusion BN ⊆ B(RN) is obvious. We have to show that every open set U ⊆ RN lies in the
σ-algebra BN. For each x ∈ U there exists δx > 0 such that B(x, δx) ⊆ U , where B(x, δx) = {y : d(y, x) <
δx} is an open ball in RN with the centre x and radius δx. Therefore, U =

⋃
x∈U B(x, δx). The metric

space RN is separable (Proposition 1.2). Therefore, from an open covering of U we can select a countable
subcollection (Lindelöf’s covering theorem) which also covers U . We get U =

⋃∞
k=1 B(xk, δxk

), where
xk ∈ U . In order to finish the proof it suffices to show that B(x, δ) ∈ BN for any x ∈ RN and δ > 0. For
fixed x ∈ RN the mapping Tx : RN → R+ given by Tx : y 7→

∑∞
j=1 2

−j(|xj − yj | ∧ 1) is measurable with

respect to BN. Hence, B(x, δ) = T−1
x ([0, δ)) ∈ BN.

Definition 1.4. Let E be a metric space. Then X : (Ω,F) → (E,B(E)) is called a random element with
values in E.

Corollary 1.4. A random sequence X = (X1, X2, . . . ) is a random element with values in RN.

Proof. The assertion follows from Proposition 1.1 and Theorem 1.3.
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There exist several useful non-trivial sub-σ-algebras of the σ-algebra B(RN) that we meet later again
in Section 6.

Definition 1.5. The mapping p : RN → RN is called a finite permutation (of order n) if there exist n ∈ N
and a permutation (k1, . . . , kn) of the set {1, . . . , n} such that

p(x1, . . . , xn, xn+1, . . . ) = (xk1
, . . . , xkn

, xn+1, . . . ), (x1, x2, . . . ) ∈ RN.

Definition 1.6. The mapping s : RN → RN given by

s(x1, x2, . . . ) = (x2, x3, . . . ), (x1, x2, . . . ) ∈ RN,

is called a shift.

Definition 1.7. The set T ∈ B(RN) is called terminal if the following implication holds:

x = (x1, x2, . . . ) ∈ T, y = (y1, y2, . . . ) ∈ RN : yk = xk for all but finitely many k ∈ N ⇒ y ∈ T.

We say that T ∈ B(RN) is n-terminal if

x = (x1, x2, . . . ) ∈ T, y = (y1, y2, . . . ) ∈ RN : yk = xk for k > n ⇒ y ∈ T.

Definition 1.8. Denote the following collections of sets:

• n-symmetric sets: Sn = {S ∈ B(RN) : p(S) = S for any finite permutation p of order n},

• symmetric sets: S = {S ∈ B(RN) : p(S) = S for any finite permutation p},

• shift-invariant sets: I = {I ∈ B(RN) : s−1I = I},

• n-terminal sets: Tn = {T ∈ B(RN) : T n-terminal}.

• terminal sets: T = {T ∈ B(RN) : T terminal}.

Proposition 1.5. (a) Any finite permutation p : RN → RN is a homeomorphism.

(b) The shift s is continuous mapping.

(c) The set T ∈ B(RN) is n-terminal if and only if there exists Tn ∈ B(RN) such that T = Rn × Tn.

(d) The collections I, Tn, T , Sn and S are σ-algebras such that I ⊂ Tn ⊂ Sn for any n ∈ N. Conse-
quently, I ⊂ T ⊂ S. All inclusions are strict, i.e. I ≠ Tn ̸= Sn and I ≠ T ̸= S.

Proof. Exercise class.

By Corollary 1.4 the random sequence X = (X1, X2, . . . ) is a random element with values in RN.
Hence, it has a probability distribution.

Definition 1.9. Let X : (Ω,F) → (E,B(E)) be a random element with values in a metric space E. Let
P(E) denote the family of Borel probability measures on E. Define PX(B) = P(X ∈ B) for B ∈ B(E).
Then PX ∈ P(E) is called the probability distribution of X.

It means that the probability distribution of a random sequence X = (X1, X2, . . . ) is a probability
measure PX on B(RN) defined as PX(B) = P((X1, X2, . . . ) ∈ B) for B ∈ B(RN). We are going to show
that the distribution of X is determined by the set of finite dimensional distributions.

Definition 1.10. We say that the setB ∈ B(RN) is finite dimensional if there exist n ∈ N andBn ∈ B(Rn)
such that B = Bn × RN.

Proposition 1.6. Let A be the family of finite dimensional sets. This system is an algebra that generates
B(RN), i.e. σ(A) = B(RN).
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Proof. Obviously, RN ∈ A and for B = Bn × RN ∈ A we have Bc = Bc
n × RN ∈ A. Consider k sets

B1
n1

×RN, . . . , Bk
nk

×RN from A. Their union is (∪k
i=1(B

i
ni

×Rn−ni))×RN, where n = max(n1, . . . , nk).
Therefore, A is an algebra. Furthermore, define C = {A1×· · ·×An×RN : A1, . . . , An ∈ B, n ∈ N}. Then
σ(C) = B(RN) and C ⊆ A ⊆ B(RN), which implies σ(A) = B(RN).

Theorem 1.7. The probability distribution of a random sequence X = (X1, X2, . . . ) is uniquely deter-
mined by the probability distributions of all random vectors (X1, X2, . . . , Xn), n ∈ N.

Proof. Let X = (X1, X2, . . . ) and Y = (Y1, Y2, . . . ) be random sequences satisfying P(X1,...,Xn) =

P(Y1,...,Yn) for all n ∈ N. We have to show that PX = PY . Let B = Bn × RN be a finite dimensional set.
Then

PX(B) = P(X ∈ B) = P((X1, . . . , Xn) ∈ Bn) = P((Y1, . . . , Yn) ∈ Bn) = P(Y ∈ B) = PY (B).

The measures PX and PY coincide on the algebra A of finite dimensional sets. From the measure theory
we know that if two finite measures coincide on some π-system (system closed under finite intersections)
then they coincide on the σ-algebra generated by this π-system. Applying Proposition 1.6 we get that
PX = PY on B(RN).

Fundamental problem: We prescribe finite dimensional probability distributions Pn ∈ P(Rn) for
n ∈ N. When does a random sequence X = (X1, X2, . . . ) exist such that P(X1,...,Xn) = Pn for every
n ∈ N?

We easily find a necessary condition.

Definition 1.11. We say that a sequence {Pn ∈ P(Rn), n ∈ N} of probability distributions is projective
if Pn+1(Bn × R) = Pn(Bn), Bn ∈ Bn, n ∈ N, i.e. Pn is a marginal distribution of Pn+1 for arbitrary
n ∈ N.

The distribution Pn ∈ P(Rn) is uniquely determined by its distribution function

Fn(x1, . . . , xn) = Pn

(
(−∞, x1]× · · · × (−∞, xn]

)
, (x1, . . . , xn) ∈ Rn.

Therefore, we easily get the following result.

Proposition 1.8. The system {Pn ∈ P(Rn), n ∈ N} is projective if and only if

lim
xn+1→∞

Fn+1(x1, . . . , xn, xn+1) = Fn(x1, . . . , xn) for (x1, . . . , xn) ∈ Rn and n ∈ N,

where Fn denotes the distribution function of Pn.

It is obvious that {Pn, n ∈ N} in our fundamental problem must be projective. A deep result is that
this condition is also sufficient. The following two theorems are special cases of the Daniell–Kolmogorov
extension theorem.

Theorem 1.9. (Daniell’s extension theorem) Let {Pn ∈ P(Rn), n ∈ N} be a projective family. Then
there exists a random sequence X = (X1, X2, . . . ) such that P(X1,...,Xn) = Pn for all n ∈ N.

Theorem 1.10. Let {Pn ∈ P(Rn), n ∈ N} be a projective family. Then there exists a unique Borel
probability measure P on RN such that

P (Bn × RN) = Pn(Bn), Bn ∈ Bn, n ∈ N. (2)

Theorem 1.9 is a consequence of Theorem 1.10.

Proof. (of Theorem 1.9) By Theorem 1.10 there exists P ∈ P(RN) satisfying (2). We use a canonical
construction. Take (Ω,F ,P) = (RN,B(RN), P ) and X = id. The projections Xn : RN → R, n ∈ N, given
by

Xn(x1, . . . , xn, xn+1, . . . ) = xn for (x1, x2, . . . ) ∈ RN,

are continuous and hence measurable in the sense (RN,B(RN)) → (R,B). The distribution of the random
vector (X1, . . . , Xn) is

P(X1,...,Xn)(Bn) = P((X1, . . . , Xn) ∈ Bn) = P(X ∈ Bn × RN) = P (Bn × RN) = Pn(Bn), Bn ∈ Bn.

The random sequence X = (X1, X2, . . . ) satisfies the required property.
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Now we prove Theorem 1.10.

Proof. (of Theorem 1.10) Let {Pn ∈ P(Rn), n ∈ N} be a projective system. Relation (2) defines a
function P on the algebra A ⊆ B(RN) of finite dimensional sets.

We first need to verify that the definition of P : A → [0, 1] is correct. Let a finite dimensional set
be expressed in two ways as Bn × RN = Bm × RN, where Bn ∈ Bn, Bm ∈ Bm and m > n. Then
Bm = Bn × Rm−n and the projectivity property implies Pm(Bm) = Pm(Bn × Rm−n) = Pn(Bn).

Next we verify that P is finitely additive on A. If A and B are finite dimensional sets, then there
exist n ∈ N and An, Bn ∈ Bn such that A = An × RN and B = Bn × RN. For disjoint sets A and B it is
obvious that An and Bn are disjoint and A ∪B = (An ∪Bn)× RN. Therefore,

P (A ∪B) = Pn(An ∪Bn) = Pn(An) + Pn(Bn) = P (A) + P (B).

It remains to show that P is σ-additive probability measure on the algebra A. Then by the Hahn–
Kolmogorov theorem (sometimes also known as Carathéodory’s extension theorem or the Hopf extension
theorem), P can be extended to a unique probability measure P̄ on the σ-algebra σ(A). Proposition
1.6 claims that the algebra A generates B(RN). Thus, the extension P̄ is defined on B(RN) and has the
desired properties.

Let An = Bn
kn

× RN, n ∈ N, be the sets from A such that A1 ⊇ A2 ⊇ · · · and ∩∞
n=1A

n = ∅ (we write

shortly An ↘ ∅). We can assume that the sets Bn
kn

∈ Bkn are chosen so that k1 < k2 < · · · . Choose

arbitrary ε > 0. The measure Pkn
∈ P(Rkn) is tight for any n ∈ N. It means that there exists a compact

set Kn ⊆ Bn
kn

satisfying Pkn
(Bn

kn
\Kn) < ε/2n. We construct finite dimensional sets Cn = Kn×RN ∈ A.

From the construction it follows that Cn ⊆ An and hence ∩∞
n=1C

n = ∅.
We can find m ∈ N such that ∩m

n=1C
n = ∅. For contradiction assume that ∩m

n=1C
n ̸= ∅ for all

m ∈ N. Then there exist sequences xm = (xm
1 , xm

2 , . . . ) ∈ RN, m ∈ N, such that (xm
1 , . . . , xm

kn
) ∈ Kn for

all n = 1, . . . ,m. So we obtained a sequence {xm,m ∈ N} in RN such that every sequence (x1
ℓ , x

2
ℓ , . . . )

is bounded in R. By Proposition 1.2d, the sequence {xm,m ∈ N} has a limit point x ∈ RN. From the
construction we see that x ∈ ∩∞

n=1C
n = ∅, which leads to the desired contradiction.

Let m ∈ N be such that ∩m
n=1C

n = ∅. Then

P (Am) = P (Am \ ∩m
n=1C

n) ≤
m∑

n=1

P (An \ Cn) =

m∑
n=1

Pkn(B
n
kn

\Kn) <

m∑
n=1

ε

2n
< ε.

We used the relation Am \ ∩m
n=1C

n ⊆ ∪m
n=1(A

n \ Cn). Hence, we have P (An) ≤ P (Am) < ε for n ≥ m,
leading to P (An) ↘ 0 for n → ∞.

If Ã1, Ã2, · · · ∈ A are pairwise disjoint sets such that ∪∞
k=1Ã

k ∈ A, then An = ∪∞
k=nÃ

k ∈ A for n ∈ N
and An ↘ ∅. We have already shown that P (An) ↘ 0 for n → ∞. From this fact and finite additivity
of P we can deduce that

P

( ∞⋃
k=1

Ãk

)
= P

(
n−1⋃
k=1

Ãk

)
+ P (An) =

n−1∑
k=1

P (Ãk) + P (An) −→
n→∞

∞∑
k=1

P (Ãk).

We proved the desired σ-additivity of P , which completes the proof.

Recall the notion of product measure from the measure theory.

Definition 1.12. Let Q1, . . . , Qn ∈ P(R). The product measure Q =
n⊗

k=1

Qk is the unique probability

measure in P(Rn) satisfying the property

Q(B1 × · · · ×Bn) = Q1(B1) · · ·Qn(Bn)

for all B1, . . . , Bn ∈ B.
For Q1, Q2, . . . ∈ P(R) there exists a unique probability measure Q ∈ P(RN) such that

Q(B1 ×B2 × · · · ×Bn × R× · · · ) = Q1(B1) · · ·Qn(Bn) =

(
n⊗

k=1

Qk

)
(B1 × · · · ×Bn)
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for any finite dimensional cylinder set B1 × B2 × · · · × Bn × R × · · · ∈ B(RN). This measure is denoted

by Q =
∞⊗
k=1

Qk and it is called the infinite product measure of Q1, Q2, . . .

Proposition 1.11. The random variables X1, . . . , Xn are independent if and only if P(X1,...,Xn) =
n⊗

k=1

PXk
.

Proof. See Probability Theory 1.

If {Qk ∈ P(R), k ∈ N} is a sequence of probability measures, it is clear that {Pn =
n⊗

k=1

Qk, n ∈ N} is

a projective family. Then Theorem 1.10 has the following form.

Theorem 1.12. For an arbitrary sequence {Qk ∈ P(R), k ∈ N} there exists a unique probability measure
P ∈ P(RN) satisfying

P (Bn × RN) =

(
n⊗

k=1

Qk

)
(Bn), Bn ∈ Bn, n ∈ N.

Theorem 1.9 then can be stated in the following form.

Theorem 1.13. For an arbitrary sequence {Qk ∈ P(R), k ∈ N} there exists a sequence X = (X1, X2, . . . )

of independent random variables such that PXk
= Qk, k ∈ N. Moreover, PX =

∞⊗
k=1

Qk is the infinite

product measure.

Proof. Since the system {Pn =
n⊗

k=1

Qk, n ∈ N} is projective, by Theorem 1.9 there exists a random

sequence X = (X1, X2, . . . ) such that P(X1,...,Xn) = Pn =
n⊗

k=1

Qk, n ∈ N. Hence, PXk
= Qk for any

k ∈ N and random variables X1, . . . , Xn are independent for any n ∈ N by Proposition 1.11. This in

turn implies that random variables X1, X2, . . . are independent. The equality PX =
∞⊗
k=1

Qk follows from

P(X1,...,Xn) =
n⊗

k=1

Qk, n ∈ N, and Definition 1.12.

Theorem 1.13 states that if we specify one-dimensional distributions Qk, then there always exists
a sequence of independent random variables Xk that have distribution Qk, k ∈ N. When the Qk are
Bernoulli distributions with parameter p ∈ [0, 1], this gives a mathematical model for a sequence of
Bernoulli trials with the probability of success p. In the case p = 1/2 we can proceed directly without
the need of Daniell’s extension theorem.

Definition 1.13. The binary expansion of a number x ∈ (0, 1] is a sequence x1, x2, . . . of zeros and ones
that contains infinitely many ones and

x =

∞∑
k=1

xk

2k
.

The binary expansion of x = 0 is a sequence of zeros.

Proposition 1.14. Let X be a random variable with uniform distribution on [0, 1] and let

X(ω) =

∞∑
k=1

Xk(ω)

2k
(3)

be its binary expansion. Then X1, X2, . . . is a sequence of independent random variables having Bernoulli
distribution with parameter 1/2.

Conversely, if we consider a sequence of independent random variables having Bernoulli distribution
with parameter 1/2, then the random variable X defined by (3) has a uniform distribution on the interval
[0, 1].
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Proof. Exercise class.

We will deal with several important types of random sequences that describe the motion of a particle
at times n = 1, 2, . . .

Definition 1.14. We say that a random sequence X = (X1, X2, . . . ) is

• iid, if random variables Xj , j ∈ N, are independent and identically distributed,

• n-symmetric, if (X1, . . . , Xn, Xn+1, . . . ) and (Xk1 , . . . , Xkn , Xn+1, . . . ) have the same distributions
for every finite permutation (k1, . . . , kn) of order n ∈ N,

• symmetric, if it is n-symmetric for all n ∈ N,

• stationary, if the distributions of (X1, . . . , Xn, Xn+1, . . . ) and (Xn+1, Xn+2, . . . ) coincide for all
n ∈ N.

Examples and relations between these types of sequences are left to exercise class. Other important
types are Markov chains (course Stochastic processes 1) and martingales, which we are going to study in
more detail in the next sections.

2 Stopping times, filtrations, and martingales

Let X = (X1, X2, . . . ) be a random sequence. It models the random motion of a particle at times
t = 1, 2, . . . Then the events which the particle encounters until time n are collected in the σ-algebra

σ(X1, . . . , Xn) = {[(X1, . . . , Xn) ∈ Bn], Bn ∈ Bn}.

All events are collected in the σ-algebra σ(X) = {[X ∈ B], B ∈ B(RN)}.

Proposition 2.1. The following relation holds: σ(X) = σ (∪∞
n=1σ(X1, . . . , Xn)).

Proof. Exercise class.

Definition 2.1. Let (Ω,F) be a measurable space and let F1 ⊆ F2 ⊆ · · · ⊆ F be a non-decreasing
sequence of σ-algebras. We say that {Fn, n ∈ N} is a filtration. We denote F∞ = σ(∪∞

n=1Fn).
Let X = (X1, X2, . . . ) be a sequence of random variables defined on (Ω,F) and let {Fn} be a filtration

satisfying σ(X1, . . . , Xn) ⊆ Fn for each n ∈ N. We say that the sequence X is Fn-adapted.
If σ(X1, . . . , Xn) = Fn for all n ∈ N, we say that {Fn} is the canonical filtration of X = (X1, X2, . . . ).

Remark: For the definition of an Fn-adapted sequence it is equivalent to only require that Xn is Fn-
measurable for each n ∈ N.

Proposition 2.2. Let X = (X1, X2, . . . ) be a random sequence and let S = (S1, S2, . . . ) be a sequence
of its partial sums, i.e. Sn =

∑n
k=1 Xk, n ∈ N. Then X and S have the same canonical filtration,

i.e. σ(X1, . . . , Xn) = σ(S1, . . . , Sn) for all n ∈ N. Consequently, σ(X) = σ(S).

Proof. Exercise class.

An important event occurs when a particle first enters some barrier set B.

Definition 2.2. Let X = (X1, X2, . . . ) be a random sequence. For B ∈ B denote TB(ω) = min{n :
Xn(ω) ∈ B}, where min ∅ = ∞. We say that TB is the first hitting time of the set B by the sequence X.

Note that TB : Ω → N ∪ {∞} and

[TB ≤ n] =

n⋃
k=1

[Xk ∈ B] ∈ σ(X1, . . . , Xn) ⊆ F , n ∈ N.

It means that TB is a random variable.
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Definition 2.3. The mapping T : Ω → N∪{∞} is called a stopping time (or Markov time) with respect
to the filtration {Fn} provided that [T ≤ n] ∈ Fn for all n ∈ N. Shortly we speak about an Fn-stopping
time (or Fn-Markov time).

Let X = (X1, X2, . . . ) be a random sequence. A stopping time T with respect to the canonical
filtration is called a stopping time of the sequence X, i.e. T : Ω → N∪ {∞} and [T ≤ n] ∈ σ(X1, . . . , Xn)
for all n ∈ N.

The first hitting time TB is a stopping time of X because [TB ≤ n] ∈ σ(X1, . . . , Xn) for every n ∈ N.
This stopping time is a random variable that gives no information about the behaviour of X after the
time TB .

We are looking for a suitable definition of a σ-algebra that represents our information about the
random sequence X up to the stopping time T .

Definition 2.4. Let {Fn} be a filtration and T be an Fn-stopping time. Define

FT = {F ∈ F∞ : F ∩ [T ≤ n] ∈ Fn ∀n ∈ N}.

Then FT is a σ-algebra that is called stopping time σ-algebra.

Proposition 2.3. Let {Fn} be a filtration. Then T is an Fn-stopping time if and only if [T = n] ∈ Fn

for all n ∈ N. Furthermore,

FT = {F ∈ F∞ : F ∩ [T = n] ∈ Fn ∀n ∈ N}.

Proof. Exercise class.

At the time T (ω) < ∞, the particle is located in XT (ω)(ω). For ω ∈ Ω we denote

XT (ω) =

{
XT (ω)(ω) if T (ω) < ∞,

0 if T (ω) = ∞.

If T < ∞ a.s., we write shortly T
a.s.
< ∞. In that case, XT is almost surely a value of the random sequence

stopped at time T .

Proposition 2.4. (calculus for stopping times) Let {Fn} be a filtration. If S and T are Fn-stopping
times and {Xn, n ∈ N} is an Fn-adapted random sequence, then

a) T and XT are FT -measurable random variables,

b) S ∧ T , S ∨ T and S + T are Fn-stopping times,

c) T ∧ n is Fn-measurable random variable for any n ∈ N,

d) F ∈ FS ⇒ F ∩ [S ≤ T ] ∈ FT ,

e) S ≤ T ⇒ FS ⊆ FT ,

f) [S ≤ T ], [S = T ] ∈ FS ∩ FT ,

g) FS ∩ FT = FS∧T .

Proof. a), b), c) exercise.
d) According to Proposition 2.3, we have to show that F ∈ FS ⇒ F ∩ [S ≤ T ] ∩ [T = n] ∈ Fn for all

n ∈ N:
F ∩ [S ≤ T ] ∩ [T = n] = F ∩ [S ≤ n] ∩ [T = n] ∈ Fn.

This follows from F ∩ [S ≤ n] ∈ Fn and [T = n] ∈ Fn.
e) By part d), S ≤ T and F ∈ FS imply that F = F ∩ [S ≤ T ] ∈ FT .
f) By part d), we have [S ≤ T ] = Ω∩ [S ≤ T ] ∈ FT . If we put λ = S ∧T , then λ is a stopping time by

part b). Since [λ = T ]∩ [T = n] = [λ = n]∩ [T = n] ∈ Fn, we get [λ = T ] = [S ≥ T ] ∈ FT by Proposition
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2.3. Altogether we have [S ≤ T ], [S ≥ T ] ∈ FT and hence also [S = T ] = [S ≤ T ] ∩ [S ≥ T ] ∈ FT . The
events [S ≤ T ], [S ≥ T ], [S = T ] belong to FS from the symmetry.

g) By part e), we get FS∧T ⊆ FS ∩ FT . Let F ∈ FS ∩ FT . Then

F ∩ [S ∧ T ≤ n] = (F ∩ [T ≤ S] ∩ [T ≤ n]) ∪ (F ∩ [S ≤ T ] ∩ [S ≤ n]).

From part f), we have F ∩ [T ≤ S] ∈ FT and F ∩ [S ≤ T ] ∈ FS . Consequently, F ∩ [T ≤ S]∩ [T ≤ n] ∈ Fn

and F ∩ [S ≤ T ] ∩ [S ≤ n] ∈ Fn, which leads to F ∩ [S ∧ T ≤ n] ∈ Fn for any n ∈ N. It means that
F ∈ FS∧T .

Proposition 2.5. a) Let T be an Fn-stopping time. Let λ : Ω → N ∪ {∞} be an FT -measurable
random variable such that λ ≥ T . Then λ is an Fn-stopping time.

b) Let X = (X1, X2, . . . ) be a random sequence and T its stopping time. For B ∈ B define λ =
min{k > T : Xk ∈ B}, it is the first hitting time of B after time T . Then λ is a stopping time of
X.

Proof. Exercise class.

Definition 2.5. Let X1, X2, . . . be an iid random sequence and consider its partial sums Sn =
∑n

k=1 Xk,
n ∈ N. The sequence {Sn, n ∈ N} is called a random walk. If the random variables Xi take only values 1
and −1, then {Sn} is called a simple random walk.

Theorem 2.6. (strong Markov property of a random walk) Let Sn =
∑n

k=1 Xk be a random

walk and let T
a.s.
< ∞ be its stopping time. Denote Rk = ST+k − ST for k ∈ N. Then (R1, R2, . . . ) and

(S1, S2, . . . ) have the same distribution and the sequence (R1, R2, . . . ) is independent of the σ-algebra FT .

Proof. Consider n ∈ N, F ∈ FT and B ∈ Bn. Then

P([(R1, . . . , Rn) ∈ B] ∩ F ) =

∞∑
k=1

P([(R1, . . . , Rn) ∈ B] ∩ [T = k] ∩ F )

=

∞∑
k=1

P([(Sk+1 − Sk, . . . , Sk+n − Sk) ∈ B] ∩ [T = k] ∩ F )

=

∞∑
k=1

P((Sk+1 − Sk, . . . , Sk+n − Sk) ∈ B) · P([T = k] ∩ F )

= P((S1, . . . , Sn) ∈ B) ·
∞∑
k=1

P([T = k] ∩ F ) = P((S1, . . . , Sn) ∈ B) · P(F ).

By choosing F = Ω we get P((R1, . . . , Rn) ∈ B) = P((S1, . . . , Sn) ∈ B) for all n ∈ N and B ∈ Bn.
Applying Theorem 1.7 this in turn means that the distributions of (R1, R2, . . . ) and (S1, S2, . . . ) coincide.
Furthermore, we have P([(R1, . . . , Rn) ∈ B] ∩ F ) = P((R1, . . . , Rn) ∈ B) · P(F ). Thus, (R1, . . . , Rn) and
FT are independent for any n ∈ N. This is equivalent to the independence of (R1, R2, . . . ) and FT .

Proposition 2.7. (stationarity with respect to a stopping time) Let (X1, X2, . . . ) be an iid random

sequence and let T
a.s.
< ∞ be its stopping time. Then (XT+1, XT+2, . . . ) and (X1, X2, . . . ) have the same

distribution and the sequence (XT+1, XT+2, . . . ) is independent of the σ-algebra FT .

Proof. Analogously as in the proof of Theorem 2.6 consider arbitrary n ∈ N, F ∈ FT and B ∈ Bn. Then

P([(XT+1, . . . , XT+n) ∈ B] ∩ F ) =

∞∑
k=1

P([(XT+1, . . . , XT+n) ∈ B] ∩ F ∩ [T = k])

=

∞∑
k=1

P((Xk+1, . . . , Xk+n) ∈ B)P(F ∩ [T = k])

= P((X1, . . . , Xn) ∈ B)

∞∑
k=1

P(F ∩ [T = k])

= P((X1, . . . , Xn) ∈ B)P(F ).
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By choosing F = Ω we get P([(XT+1, . . . , XT+n) ∈ B]) = P([(X1, . . . , Xn) ∈ B]). Hence,

P([(XT+1, . . . , XT+n) ∈ B] ∩ F ) = P([(XT+1, . . . , XT+n) ∈ B])P(F ).

Definition 2.6. Let X1, X2, . . . be an iid random sequence such that P(X1 = 1) = P(X1 = −1) = 1/2.
The corresponding simple random walk {Sn} is called the symmetric simple random walk.

Proposition 2.8. Consider a symmetric simple random walk {Sn} associated with an iid random se-

quence X = (X1, X2, . . . ). Let T
a.s.
< ∞ be a stopping time of this sequence. Then the distribution of the

sequence (X1, . . . , XT ,−XT+1,−XT+2, . . . ) coincides with the distribution of X.

Proof. Let Fn = σ(X1, . . . , Xn) be the canonical filtration ofX. The random sequence (X1, . . . , XT , 0, . . . )
is FT -measurable because for any B ∈ B(RN) and n ∈ N we have

[(X1, . . . , XT , 0, . . . ) ∈ B] ∩ [T = n] = [(X1, . . . , Xn, 0, . . . ) ∈ B] ∩ [T = n] ∈ Fn,

which implies [(X1, . . . , XT , 0, . . . ) ∈ B] ∈ FT by Proposition 2.3. The random sequences

(0, . . . , 0, XT+1, XT+2, . . . ) and (0, . . . , 0,−XT+1,−XT+2, . . . )

have the same distribution and they are independent of FT by Proposition 2.7. Therefore, the random
sequences

(X1, X2, . . . ) = (X1, . . . , XT , 0, . . . ) + (0, . . . , 0, XT+1, XT+2, . . . )

and

(X1, . . . , XT ,−XT+1,−XT+2, . . . ) = (X1, . . . , XT , 0, . . . ) + (0, . . . , 0,−XT+1,−XT+2, . . . ),

that are given as the sums of two independent sequences, have the same distribution.

Proposition 2.9. (reflection principle) Let {Sn} be a symmetric simple random walk. Let T be the
first hitting time of the set {a} (for some a ∈ N) by this random walk. Denote Sr

k = 2Sk∧T − Sk, k ∈ N.
Then (Sr

1 , S
r
2 , . . . ) has the same distribution as (S1, S2, . . . ).

Proof. Exercise class.

Proposition 2.10. (maxima of symmetric simple random walk) For a symmetric simple random
walk {Sn} denote Mn = maxk=1,...,n Sk, n ∈ N. Let T be the first hitting time of the set {a} (for some
a ∈ N) by the random walk {Sn}. Then

P(T ≤ n) = P(Mn ≥ a) = 2P(Sn ≥ a)− P(Sn = a) and lim
n→∞

P(Mn ≥ a) = 1.

Proof. Exercise class.

Definition 2.7. Let H : (Ω,F) → (E,B(E)) be a random element with values in E. We define the
σ-algebra generated by H as σ(H) = {[H ∈ B], B ∈ B(E)}. It is the smallest sub-σ-algebra A ⊆ F such
that H : (Ω,A) → (E,B(E)).

Definition 2.8. Consider H : (Ω,F) → (E,B(E)) and T : Ω → R̄. We say that T is H-measurable
random variable if T : (Ω, σ(H)) → (R̄, B̄), i.e. σ(T ) ⊆ σ(H).

Proposition 2.11. A random variable T is H-measurable if and only if there exists f : (E,B(E)) →
(R̄, B̄) such that T = f(H).

Proof. See Probability Theory 1.

If T is a stopping time, then it follows from Proposition 2.4a that σ(T ) ⊆ FT . For an example when
this inclusion is sharp, consider T = n for some n ∈ N such that Fn is a non-trivial σ-algebra. Then
σ(T ) = {∅,Ω} ⊊ Fn = FT .

Before we get to the definition of a martingale, let us recall the definition and basic properties of
the conditional expectation. We write X ∈ L1(F) for a random variable X defined on (Ω,F ,P) and
satisfying E|X| < ∞. For a σ-algebra G ⊆ F we denote by Y ∈ L1(G) a random variable Y on (Ω,G,P|G)
satisfying E|Y | < ∞.

10



Definition 2.9. Let X ∈ L1(F) and G ⊆ F be a σ-algebra. A random variable EGX = E[X|G] ∈ L1(G)
is called the conditional expectation of X given G if for any G ∈ G we have∫

G

X dP =

∫
G

EGX dP.

The conditional expectation EGX is P-a.s. uniquely determined. We write X
a.s.
= Y if P(X = Y ) = 1

and X
a.s.
≤ Y if P(X ≤ Y ) = 1.

Proposition 2.12. (calculus for conditional expectation) For X,Y ∈ L1(F) and sub-σ-algebra
G ⊆ F the following relations hold:

a) EG(aX + bY + c)
a.s.
= aEGX + bEGY + c for a, b, c ∈ R,

b) X
a.s.
≤ Y ⇒ EGX

a.s.
≤ EGY ,

c) h : R → R convex and h(X) ∈ L1(F) ⇒ h(EGX)
a.s.
≤ EGh(X),

d) Y G-measurable random variable and X ·Y ∈ L1(F) ⇒ EGXY
a.s.
= Y ·EGX (in particular, Y ∈ L1(G)

⇒ EGY
a.s.
= Y ),

e) D ⊆ F sub-σ-algebra such that D and σ(X)∨G are independent ⇒ E[X|G∨D]
a.s.
= E[X|G] (notation:

A ∨ B = σ(A ∪ B)),

f) D ⊆ G sub-σ-algebra ⇒ EDEGX
a.s.
= EGEDX

a.s.
= EDX (in particular, E(EGX) = EX),

g) P(X,1G) = P(Y,1G) ∀G ∈ G ⇒ EGX
a.s.
= EGY .

Proof. See Probability Theory 1.

We may also consider conditioning given the random element H with values in a metric space E.
In particular, H = (H1, H2, . . . ) can be a random sequence. If X ∈ L1(F) then E[X|H] = E[X|σ(H)]
denotes the conditional expectation of X given H. It is a.s. uniquely determined by the conditions that
E[X|H] is integrable H-measurable random variable and∫

[H∈B]

X dP =

∫
[H∈B]

E[X|H] dP

for all B ∈ B(E). According to Proposition 2.11, there exists a Borel measurable function f : E → R
such that E[X|H] = f(H). By f(h) = E[X|H = h] we denote the conditional expectation of X given
H = h.

The following two properties play an important role.

Proposition 2.13. Let X and Y be random elements with values in metric spaces E1 and E2, respectively.
Let g : E1 × E2 → R be a Borel measurable function such that g(X,Y ) ∈ L1(F).

(i) If Z ∈ L1(F) and (Y, Z) and X are independent, then E[Z|X,Y ]
a.s.
= E[Z|Y ].

(ii) If X and Y are independent, then E[g(X,Y )|X = x] = Eg(x, Y ) for PX-a.a. x ∈ E1.

Proof. See Probability Theory 1.

By X ∈ L2(F) we mean that a random variable X defined on (Ω,F ,P) satisfies EX2 < ∞. When
studying martingale differences, the following result may be useful.

Proposition 2.14. For X ∈ L2(F) and σ-algebra G ⊆ F we have

(i) EGX ∈ L2(G), E(X − EGX)2 = EX2 − E(EGX)2,

(ii) E(X − EGX)Y = 0 for Y ∈ L2(G),

(iii) E(X − EGX)2 = minY ∈L2(G) E(X − Y )2.
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Proof. See Probability Theory 1.

The mapping EG : L2(F) → L2(G) is a projection operator in the Hilbert space L2. If we denote the

L2-norm ∥X∥ =
√
EX2, then X−Y = (X−EGX)+(EGX−Y ) is the decomposition into two orthogonal

summands by part (ii) of Proposition 2.14. Moreover,

∥X − Y ∥2 = ∥X − EGX∥2 + ∥EGX − Y ∥2 ≥ ∥X − EGX∥2,

and the equality holds for Y = EGX.
We will substantially improve the rule f) from Proposition 2.12 for iterated conditioning.

Proposition 2.15. Let {Fn} be a filtration and let S and T be its stopping times. Assume that Z ∈
L1(F). Then

(i) the implication (S ≤ T ⇒ EFSZ = EFS∧TZ) holds a.s.,

(ii) EFSEFTZ
a.s.
= EFTEFSZ

a.s.
= EFS∧TZ.

Proof. (i) We have to prove that there exists N ∈ F with the property P(N) = 0 such that (S(ω) ≤
T (ω) ⇒ (EFSZ)(ω) = (EFS∧TZ)(ω)) for ω /∈ N . In another words, we want to show that

1[S≤T ]EFSZ
a.s.
= 1[S≤T ]EFS∧TZ. By Proposition 2.4f we have [S ≤ T ] ∈ FS . Hence, taking

into account Proposition 2.12d we have to verify EFS1[S≤T ]Z
a.s.
= 1[S≤T ]EFS∧TZ. This means that

we have to show ∫
F

1[S≤T ]Z dP =

∫
F

1[S≤T ]EFS∧TZ dP

for all F ∈ FS . The last relation can be rewritten as∫
F∩[S≤T ]

Z dP =

∫
F∩[S≤T ]

EFS∧TZ dP. (4)

Now it suffices to note that F ∩ [S ≤ T ] ∈ FT ∩ FS = FS∧T by Proposition 2.4. Therefore, (4)
follows from the definition of conditional expectation.

(ii) We have to show that EFS
(
EFTZ

) a.s.
= EFS∧TZ, i.e.

∫
F
EFTZ dP =

∫
F
EFS∧TZ dP for all F ∈ FS .

For arbitrary F ∈ FS we get∫
F∩[S≤T ]

EFTZ dP =

∫
F∩[S≤T ]

Z dP =

∫
F∩[S≤T ]

EFS∧TZ dP.

The second equality is (4) and the first equality follows from F∩[S ≤ T ] ∈ FT (see Proposition 2.4d)

and the definition of conditional expectation. Similarly as in (i), we can show that 1[T<S]EFTZ
a.s.
=

1[T<S]EFS∧TZ. Consequently,∫
F∩[T<S]

EFTZ dP =

∫
F∩[T<S]

EFS∧TZ dP.

The continuity of E[X | G] in both arguments is an important property of the conditional expectation.
The following proposition deals with the continuity in the first argument. The continuity in the condition
will be stated later.

Proposition 2.16. Let Xn, X ∈ L1(F) and let Gn,G be sub-σ-algebras of F .

a) (continuity in L1): E|Xn −X| −→
n→∞

0 ⇒ E|EGXn − EGX| −→
n→∞

0,

b) (continuity in L2): E(Xn −X)2 −→
n→∞

0 ⇒ E(EGXn − EGX)2 −→
n→∞

0,

c) (uniform integrability): if the random sequence {Xn} is uniformly integrable, then also the sequence
{E[Xn | Gn]} is uniformly integrable,
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d) (monotone convergence theorem): 0 ≤ Xn

a.s.

↗
n→∞

X ⇒ 0
a.s.
≤ EGXn

a.s.

↗
n→∞

EGX,

e) (conditional Fatou’s lemma): Xn ≥ 0, X = lim infn→∞ Xn ∈ L1(F) ⇒

0
a.s.
≤ EGX

a.s.
≤ lim inf

n→∞
EGXn,

f) (dominated convergence theorem): |Xn| ≤ Y ∈ L1(F), Xn
a.s.−→

n→∞
X ⇒ E|EGXn − EGX| −→

n→∞
0 and

EGXn
a.s.−→

n→∞
EGX.

Proof. a) Jensen’s inequality (Proposition 2.12c) implies |EGXn − EGX|
a.s.
≤ EG |Xn − X|. Now it

suffices to take expectations on both sides of the inequality.

b) Again by Jensen’s inequality we have (EGXn−EGX)2
a.s.
≤ EG(Xn−X)2, and taking the expectation

gives the continuity in L2.

c) Denote Yn = E[Xn | Gn]. Then Jensen’s inequality provides |Yn|
a.s.
≤ EGn |Xn| and for the probability

of a Gn-measurable event [|Yn| ≥ c] we get

P(|Yn| ≥ c) ≤ c−1

∫
[|Yn|≥c]

|Yn|dP ≤ c−1

∫
[|Yn|≥c]

EGn |Xn|dP ≤ c−1 sup
n∈N

E|Xn|.

Hence, P(|Yn| ≥ c) −→
c→∞

0 uniformly in n. Furthermore,∫
[|Yn|≥c]

|Yn|dP ≤
∫
[|Yn|≥c]

EGn |Xn|dP =

∫
[|Yn|≥c]

|Xn|dP.

Since the Xn have uniformly absolutely continuous integrals, the right-hand side goes to zero for
c → ∞ uniformly in n.

d) See Probability Theory 1.

e) By applying part d) for monotone sequence 0 ≤ infk≥n Xk

a.s.

↗
n→∞

X we get

0
a.s.
≤ EG inf

k≥n
Xk

a.s.

↗
n→∞

EGX.

Since EG infk≥n Xk

a.s.
≤ infk≥n EGXk, we have EGX

a.s.
≤ lim infn→∞ EGXn.

f) The sequences {Y ±Xn} are non-negative. By e) we know that

EG(Y ±X)
a.s.
≤ EGY + lim inf

n→∞
EG(±Xn).

After subtraction of EGY we get ±EGX
a.s.
≤ lim infn→∞ ±EGXn, i.e. EGX

a.s.
≤ lim infn→∞ EGXn

and EGX
a.s.
≥ lim supn→∞ EGXn. Altogether,

EGX
a.s.
≤ lim inf

n→∞
EGXn ≤ lim sup

n→∞
EGXn

a.s.
≤ EGX

and all the inequality signs ≤ are in fact equality signs =. So we have proved that EGXn
a.s.−→

n→∞
EGX.

The uniform integrability of {Xn} and a.s. convergence imply convergence in L1. So the L1 con-
vergence of conditional expectations follows from a).

Now we are ready to define martingales.
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Definition 2.10. Let {Fn} be a filtration and let X = (X1, X2, . . . ) be a sequence of integrable random
variables. We say that X is an Fn-martingale if it is Fn-adapted and

E[Xn+1 | Fn]
a.s.
= Xn for all n ∈ N. (5)

In a particular case of canonical filtration Fn = σ(X1, . . . , Xn), X is simply called a martingale. It
satisfies

E[Xn+1 | X1, X2, . . . , Xn]
a.s.
= Xn for all n ∈ N. (6)

If
a.s.
= in (5) and (6) is replaced by

a.s.
≥ , we say that X is an Fn-submartingale and submartingale,

respectively.

If
a.s.
= in (5) and (6) is replaced by

a.s.
≤ , we say that X is an Fn-supermartingale and supermartingale,

respectively.

Remark: Obviously, {Xn} is an Fn-submartingale if and only if {−Xn} is an Fn-supermartingale.

From the definition it is clear that every martingale has a constant expectation. The sequence {EXn}
is non-decreasing for a submartingale while it is non-increasing for a supermartingale.

Note that

(5) ⇐⇒ E[Xn | Fk]
a.s.
= Xk for k ≤ n,

(6) ⇐⇒ E[Xn | X1, . . . , Xk]
a.s.
= Xk for k ≤ n.

It is enough to use Proposition 2.12f):

E[Xn | Fk]
a.s.
= EFkEFk+1 · · ·EFn−1Xn

a.s.
= Xk.

Similar equivalences hold for submartingales and supermartingales.

Proposition 2.17. (stability of the martingale property)

(i) If a random sequence X1, X2, . . . is an Fn-martingale, then it is also an Gn-martingale for any
filtration {Gn} satisfying σ(X1, . . . , Xn) ⊆ Gn ⊆ Fn for all n ∈ N. In particular, each Fn-martingale
is a martingale.

(ii) Let X1, X2, . . . be an Fn-martingale and let D be a σ-algebra that is independent with F∞. Then
X1, X2, . . . is an (Fn ∨ D)-martingale.

Proof. (i) By Proposition 2.12f), we have E[Xn+1 | Gn]
a.s.
= EGnEFnXn+1

a.s.
= EGnXn

a.s.
= Xn.

(ii) By Proposition 2.12e), we have E[Xn+1 | Fn ∨ D]
a.s.
= E[Xn+1 | Fn]

a.s.
= Xn.

Remark: Similar results hold for submartingales and supermartingales.

The fundamental examples of martingales are provided by sums or products of independent random
variables.

Proposition 2.18. Let X1, X2, . . . be a sequence of independent integrable random variables. For n ∈ N
denote Sn =

∑n
j=1 Xj and Zn =

∏n
j=1 Xj.

a) If EXn = 0 for all n ∈ N, then {Sn} is a martingale. If EXn ≥ 0 for all n ∈ N, then {Sn} is
a submartingale. If EXn ≤ 0 for all n ∈ N, then {Sn} is a supermartingale.

b) For any n ∈ N assume Xn ∈ L2, EXn = 0 and EX2
n = σ2. Let Mn = S2

n − nσ2, n ∈ N. Then
{Mn} is a martingale.

c) If EXn = 1 for all n ∈ N, then {Zn} is a martingale.

d) Let P(Xn = 1) = p ∈ (0, 1) and P(Xn = −1) = q = 1 − p for any n ∈ N. Define Yn = (q/p)Sn ,
n ∈ N. Then {Yn} is a martingale.
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Proof. a) Obviously, Sn ∈ L1. Therefore, it suffices to realize that

E[Sn+1 | S1, . . . , Sn]
a.s.
= E[Sn+1 | X1, . . . , Xn]

a.s.
= E[Sn +Xn+1 | X1, . . . , Xn]

a.s.
= Sn + EXn+1.

We have used Proposition 2.2 and Proposition 2.12.

b) The integrability of Mn follows from the assumption Xn ∈ L2. Furthermore,

E[S2
n+1 | S1, . . . , Sn]

a.s.
= E[(Sn +Xn+1)

2 | X1, . . . , Xn]
a.s.
= S2

n + 2SnEXn+1 + EX2
n+1 = S2

n + σ2,

which yields

E[Mn+1 | S1, . . . , Sn]
a.s.
= E[S2

n+1 | S1, . . . , Sn]− (n+ 1)σ2 a.s.
= S2

n − nσ2 = Mn.

Since
σ(M1, . . . ,Mn) = σ(S2

1 , . . . , S
2
n) ⊆ σ(S1, . . . , Sn),

we conclude that {Mn} is a σ(S1, . . . , Sn)-martingale and it is also a martingale by Proposition
2.17.

c), d) Exercise class.

A convex transformation of a martingale is a submartingale.

Proposition 2.19. (i) Let X1, X2, . . . be an Fn-martingale and let g : R → R be a convex function
such that g(Xn) ∈ L1 for any n ∈ N. Then g(X1), g(X2), . . . is an Fn-submartingale.

(ii) If X1, X2, . . . is an Fn-submartingale and g : R → R is a convex and non-decreasing function such
that g(Xn) ∈ L1 for any n ∈ N. Then g(X1), g(X2), . . . is an Fn-submartingale.

Proof. By our assumptions, {g(Xn)} is an Fn-adapted sequence of integrable random variables. From
Jensen’s inequality we have

E[g(Xn+1) | Fn]
a.s.
≥ g(E[Xn+1 | Fn]).

The right-hand side is a.s. equal to g(Xn) in case (i) due to the martingale property (5) and it is a.s. greater
or equal to g(Xn) in case (ii) due to the submartingale property and monotonicity of g.

Remark: In particular, {X+
n } is a submartingale if {Xn} is a submartingale and {|Yn|p} for p ≥ 1 is

a submartingale if {Yn} is an Lp-integrable martingale.

From Proposition 2.18a we know that a random walk {Sn} with centred steps is a martingale. There-
fore, {S2

n} is a submartingale and by Proposition 2.18b it can be decomposed into a martingale and an
increasing sequence: S2

n = Mn+nσ2. It is possible to make a similar decomposition for any submartingale.

Definition 2.11. Let {Fn} be a filtration. A random sequence I1, I2, . . . is Fn-predictable if In is
Fn−1-measurable for all n ∈ N, where we put F0 = {∅,Ω}, i.e. I1 is constant.

Remark: Every Fn-predictable Fn-martingale {Mn} is constant a.s. because it must satisfy Mn
a.s.
=

E[Mn+1 | Fn]
a.s.
= Mn+1.

Theorem 2.20. (Doob decomposition theorem) Let {Sn} be an Fn-submartingale. Then there exist
an Fn-martingale {Mn} and a non-decreasing Fn-predictable sequence {In} so that Sn = Mn+In, n ∈ N.
The sequences {Mn} and {In} are a.s. uniquely determined under the additional condition I1 = 0.

Proof. Let {Dn} be a sequence of differences of {Sn}, i.e. D1 = S1 and Dn+1 = Sn+1 − Sn for n ∈ N.
The submartingale property immediately implies EFnDn+1

a.s.
≥ 0, n ∈ N. Put Z1 = 0 and Zn+1 =

(EFnDn+1)
+ for n ∈ N. Then Zn+1

a.s.
= EFnDn+1 and {Zn} is Fn-predictable sequence. Furthermore,

we define Yn = Dn − Zn, n ∈ N. Now we proceed to the cumulative sums and introduce

Mn =

n∑
k=1

Yk, In =

n∑
k=1

Zk, Sn =

n∑
k=1

Dk =

n∑
k=1

Yk +

n∑
k=1

Zk = Mn + In, n ∈ N.
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We know that I1 = Z1 = 0 and In+1 =
∑n+1

k=1 Zk is Fn-measurable for n ∈ N. It means that {In} is
Fn-predictable sequence. Moreover, it is non-decreasing because Zn ≥ 0. The random sequence {Mn} is
Fn-adapted as it is a difference of Fn-adapted sequence {Sn} and Fn-predictable sequence {In}. Clearly,
both Dn and Zn are integrable. Consequently, also Yn and Mn are integrable. We verify that {Mn}
satisfies the martingale property:

EFn(Mn+1 −Mn) = EFnYn+1
a.s.
= EFn(Dn+1 − EFnDn+1)

a.s.
= EFnDn+1 − EFnDn+1 = 0,

i.e. EFnMn+1
a.s.
= Mn and thus {Mn} is an Fn-martingale. So we found the decomposition Sn = Mn+ In

into an Fn-martingale and a non-decreasing Fn-predictable sequence.
In order to show uniqueness assume that we have two decompositions Sn = Mn + In = Nn + Jn,

n ∈ N. Then M̄n = Mn −Nn = Jn − In is both Fn-martingale and Fn-predictable sequence. According
to Remark preceding this Theorem, the sequence {M̄n} is constant a.s. This constant must be zero due

to the condition I1 = J1 = 0. It means that {Mn}
a.s.
= {Nn} and {In}

a.s.
= {Jn}.

Definition 2.12. The sequence {In} from the Doob decomposition theorem is called a compensator of
a submartingale {Sn}.

Proposition 2.21. (Martingale differences of L2-martingale are orthogonal in L2) Let {Mn}
be an Fn-martingale such that Mn ∈ L2 for all n ∈ N. Denote D1 = M1−EM1 and Dn+1 = Mn+1−Mn

for n ∈ N. Then EDnDm = 0 for m ̸= n, and so varMn =
∑n

j=1 varDj.

Proof. First we observe that the martingale property implies EDn = 0 for any n ∈ N. Furthermore, for
m > n,

EFnDm = EFn(Mm −Mm−1)
a.s.
= Mn −Mn = 0,

which gives
EDmDn = E(EFnDmDn) = E(DnEFnDm) = 0.

It means that {Dn} is the sequence of uncorrelated random variables and the formula for varMn follows
easily from Mn = EM1 +

∑n
j=1 Dj .

3 Stopping theorems and maximal inequalities

Stopping problem: Let X1, X2, . . . be a martingale and T1 ≤ T2 ≤ · · · be a sequence of its stopping
times. Consider a sequence XT1

, XT2
, . . . given by the values of the martingale stopped at these stopping

times. Is it again a martingale?
First we consider the special case Tn = T ∧ n, n ∈ N. Then the answer is positive.

Theorem 3.1. (optional stopping theorem) Let X = (X1, X2, . . . ) be an Fn-martingale (or Fn-
submartingale) and let T be an Fn-stopping time. By stopping X at time T we obtain a random sequence
XT = (XT∧1, XT∧2, . . . ). This stopped sequence XT is an Fn-martingale (or Fn-submartingale).

Proof. The random variables XT∧n are FT∧n-measurable (Proposition 2.4a), and so also Fn-measurable
(FT∧n ⊆ Fn by Proposition 2.4e). Therefore, XT is Fn-adapted sequence. The integrability of the
random variables XT∧n follows from the simple bound

|XT∧n| ≤ max
j=1,...,n

|Xj | ≤
n∑

j=1

|Xj | ∈ L1.

It remains to verify the martingale (or submartingale) property. We can write

XT∧(n+1) = XT∧n +Dn+11[T>n], n ∈ N,

where Dn+1 = Xn+1 −Xn. Hence,

EFnXT∧(n+1)
a.s.
= EFnXT∧n + EFnDn+11[T>n]

a.s.
= XT∧n + 1[T>n]EFn(Xn+1 −Xn)

and the second term is zero for a martingale or greater or equal to zero for a submartingale.
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For more general sequences of stopping times T1 ≤ T2 ≤ · · · we just consider when the sequence
{XTn

} is an FTn
-martingale. The simplest situation occurs for stopping times bounded by some integer

K ∈ N. We formulate the corresponding result for two stopping times.

Theorem 3.2. (i) Let X1, X2, . . . be an Fn-martingale and let S, T be Fn-stopping times such that
S ≤ T ≤ K < ∞ for some K ∈ N. Then XS , XT ∈ L1 and

EFSXT
a.s.
= XS .

In particular, EXT = EXS.

(ii) If X1, X2, . . . is an Fn-submartingale, then XS , XT ∈ L1 and

EFSXT

a.s.
≥ XS .

In particular, EXT ≥ EXS.

Proof. The integrability of XS and XT follows similarly as in the proof of Theorem 3.1:

|XT | ≤ max
j=1,...,K

|Xj | ≤
K∑
j=1

|Xj | ∈ L1.

First assume that T − S ≤ 1. Then∫
F

(XT −XS) dP =

K−1∑
j=1

∫
F∩[S=j]∩[T>j]

(Xj+1 −Xj) dP.

Since Hj = F ∩ [S = j]∩ [T > j] ∈ Fj for F ∈ FS , we get
∫
Hj

(Xj+1−Xj) dP = 0 in case of Fn-martingale

{Xn} and
∫
Hj

(Xj+1 −Xj) dP ≥ 0 in case of Fn-submartingale {Xn}. Therefore,
∫
F
(XT −XS) dP = 0

for the martingale and
∫
F
(XT −XS) dP ≥ 0 for the submartingale.

In the general case we connect the times S and T by a finite chain of stopping times Vj = (S+ j)∧T
satisfying Vj+1 − Vj ≤ 1 and S = V0 ≤ V1 ≤ · · · ≤ VK = T . Now we can iteratively use the result proved
above for times that differ by at most 1. Then for the submartingale it follows that

EFSXT
a.s.
= EFV0EFV1 · · ·EFVK−1XT

a.s.
≥ EFV0EFV1 · · ·EFVK−2XVK−1

a.s.
≥ · · ·

a.s.
≥ EFV0XV1

a.s.
≥ XS .

For the martingale all inequalities
a.s.
≥ are equalities

a.s.
= .

Example: Let {Sn} be a symmetric simple random walk. Let T be the first hitting time of {a} by {Sn},
where a ∈ N. We know that {Sn} is a martingale and T is its stopping time that is a.s. finite. In this
case we have EST = a > 0 = ES1. This example shows that we cannot expect that the result of Theorem
3.2 would be valid for general unbounded stopping times.

Theorem 3.3. (i) Let X1, X2, . . . be an Fn-martingale and let S ≤ T
a.s.
< ∞ be Fn-stopping times

such that

XT ∈ L1 and

∫
[T>n]

|Xn|dP −→
n→∞

0. (7)

Then EFSXT
a.s.
= XS (and consequently EXT = EXS).

(ii) Let X1, X2, . . . be an Fn-submartingale and let S ≤ T
a.s.
< ∞ be Fn-stopping times such that

X+
T ∈ L1 and

∫
[T>n]

X+
n dP −→

n→∞
0. (8)

Then EFSXT

a.s.
≥ XS (and consequently EXT ≥ EXS).
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Proof. Observe that it is enough to prove only (ii).
First we realize that (8) implies XT ∈ L1. To see this we show that X−

T ∈ L1. From Theorem 3.1 we
know that {XT∧n} is an Fn-submartingale, so it must have a non-decreasing expectation. In particular,
EXT∧n ≥ EX1. Thus, we obtain the following bound for the negative part

EX−
T∧n = EX+

T∧n − EXT∧n ≤ EX+
T∧n − EX1

= EX+
n 1[T>n] + EX+

T 1[T≤n] − EX1 ≤ EX+
n 1[T>n] + EX+

T − EX1.

By Fatou’s lemma and (8) we have

EX−
T ≤ lim inf

n→∞
EX−

T∧n ≤ lim inf
n→∞

EX+
n 1[T>n] + EX+

T − EX1 = EX+
T − EX1 < ∞.

For a while assume that XS ∈ L1. We have to show that∫
F

XT dP ≥
∫
F

XS dP for F ∈ FS . (9)

Since F ∩ [S ≤ n] = F ∩ [S ≤ S ∧ n] ∈ FS∧n according to Proposition 2.4d, we get from Theorem 3.2 the
following relation ∫

F∩[S≤n]

XT∧n dP ≥
∫
F∩[S≤n]

XS∧n dP =

∫
F∩[S≤n]

XS dP. (10)

The right-hand side of (10) goes to
∫
F
XS dP as n → ∞ because S

a.s.
< ∞ and XS ∈ L1. The left-hand

side of (10) can be rewritten as∫
F∩[S≤n]

XT∧n dP =

∫
F∩[S≤n]∩[T≤n]

XT dP+

∫
F∩[S≤n]∩[T>n]

Xn dP.

Since S ≤ T
a.s.
< ∞ and XT ∈ L1, the first summand satisfies∫

F∩[S≤n]∩[T≤n]

XT dP =

∫
F∩[T≤n]

XT dP −→
n→∞

∫
F

XT dP.

For the second summand we have by (8),

lim inf
n→∞

∫
F∩[S≤n]∩[T>n]

Xn dP ≤ lim inf
n→∞

∫
F∩[S≤n]∩[T>n]

X+
n dP ≤ lim inf

n→∞

∫
[T>n]

X+
n dP = 0.

The above results and (10) together imply that∫
F

XT dP ≥ lim inf
n→∞

∫
F∩[S≤n]

XT∧n dP ≥ lim inf
n→∞

∫
F∩[S≤n]

XS∧n dP =

∫
F

XS dP.

In other words, we have shown that EFSXT

a.s.
≥ XS . This relation holds for any Fn-stopping time S ≤ T

such that XS ∈ L1. A particular example is S = T ∧ k for arbitrary k ∈ N (integrability of XT∧k is
assured by Theorem 3.2). Therefore, using Proposition 2.12c we obtain

X+
T∧k

a.s.
≤
(
EFT∧kXT

)+ a.s.
≤ EFT∧kX+

T . (11)

Now we can get rid of the assumption XS ∈ L1. By noticing that [S = k] = [S = k] ∩ [T ≥ k] ∈
Fk ∩ FT = FT∧k and applying (11) we can express

EX+
S =

∞∑
k=1

EX+
k 1[S=k] =

∞∑
k=1

EX+
T∧k1[S=k] ≤

∞∑
k=1

EX+
T 1[S=k] = EX+

T < ∞.

By the same arguments as in the beginning of the proof we obtain EX−
S < ∞. Together it gives XS ∈ L1

and we have already shown that (9) holds. This completes the proof.
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Proposition 3.4. The condition (7) is equivalent to the condition that the stopped sequence XT =
{XT∧n} is uniformly integrable. Similarly, the condition (8) is equivalent to the uniform integrability of
{X+

T∧n}.

Proof. Again we only prove the second part. If the sequence {X+
T∧n} is uniformly integrable, then also the

sequence X+
n 1[T>n] = X+

T∧n1[T>n] is uniformly integrable. Moreover, it converges to zero a.s., thus also
in L1, which means that EX+

n 1[T>n] −→
n→∞

0, i.e.
∫
[T>n]

X+
n dP −→

n→∞
0. Since the limit of every uniformly

integrable sequence is integrable we have

X+
T = lim

n→∞
X+

T∧n1[T<∞] ∈ L1.

Conversely, assume that the condition (8) holds. Then we can write {X+
T∧n} as the sum of two

uniformly integrable sequences:

0 ≤ X+
T∧n = X+

n 1[T>n] +X+
T 1[T≤n].

The first sequence {X+
n 1[T>n]} is uniformly integrable because it converges to zero in L1 and the

second sequence {X+
T 1[T≤n]} is dominated by X+

T ∈ L1.

It is natural to ask how we can check condition (7) or equivalently the uniform integrability of the
sequence stopped at time T . We give several sufficient conditions that are usually much easier to verify.

Theorem 3.5. Let X1, X2, . . . be an Fn-martingale and let S ≤ T
a.s.
< ∞ be Fn-stopping times. Consider

the following conditions:

∃ 0 < c < ∞ : T ≥ n ⇒ |Xn| ≤ c a.s. ∀n ∈ N, (12)

i.e. until time T the trajectory X1, X2, . . . lies in the interval [−c, c] a.s.;

(∃ 0 < c < ∞ : T > n ⇒ |Xn+1 −Xn| ≤ c a.s. ∀n ∈ N) and ET < ∞, (13)

i.e. before time T the increments |Xn+1 −Xn| are uniformly bounded a.s. and T is integrable;(
∃ 0 < c < ∞ : T > n ⇒ EFn |Xn+1 −Xn| ≤ c a.s. ∀n ∈ N

)
and ET < ∞, (14)

i.e. before time T the conditional increments are uniformly bounded a.s. and T is integrable. Then each
of the conditions (12), (13) and (14) implies that

XT ∈ L1 and EFSXT
a.s.
= XS .

Proof. The condition (13) implies the condition (14) because

1[T>n]EFn |Xn+1 −Xn|
a.s.
= EFn1[T>n]|Xn+1 −Xn|

a.s.
≤ c1[T>n].

For both (12) and (14) we are going to verify that they are sufficient for (7). Then Theorem 3.3 finishes
the proof.

First assume that (12) is satisfied. Then the stopped sequence {XT∧n} is bounded (we have |XT∧n|
a.s.
≤

c for all n ∈ N) and thus also uniformly integrable. Therefore, (7) follows from Proposition 3.4.

Now assume that the condition (14) is satisfied. Define Yn = |X1|+
∑n−1

k=1 |Xk+1 −Xk|, n ∈ N. Then
|Xn| ≤ Yn for all n ∈ N and

0 ≤ |XT | ≤ YT
a.s.
= |X1|+

∞∑
k=1

|Xk+1 −Xk|1[T>k].

If we realize that the condition (14) implies

E|Xk+1 −Xk|1[T>k] = E1[T>k]EFk |Xk+1 −Xk| ≤ cP(T > k),
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we get

E|XT | ≤ EYT = E|X1|+
∞∑
k=1

E|Xk+1 −Xk|1[T>k] ≤ E|X1|+ c

∞∑
k=1

P(T > k) ≤ E|X1|+ cET < ∞,

that is XT ∈ L1. We have also shown that YT ∈ L1, which helps us to verify the second part of (7):∫
[T>n]

|Xn|dP ≤
∫
[T>n]

Yn dP ≤
∫
[T>n]

YT dP −→
n→∞

0.

Remark: We can formulate similar sufficient conditions that ensure (8) for the case of a submartingale
{Xn}:

∃ 0 < c < ∞ : T ≥ n ⇒ X+
n ≤ c a.s. ∀n ∈ N, (15)(

∃ 0 < c < ∞ : T > n ⇒ (Xn+1 −Xn)
+ ≤ c a.s. ∀n ∈ N

)
and ET < ∞, (16)(

∃ 0 < c < ∞ : T > n ⇒ EFn(Xn+1 −Xn)
+ ≤ c a.s. ∀n ∈ N

)
and ET < ∞. (17)

Each of the conditions (15), (16) and (17) implies that

X+
T ∈ L1 and EFSXT

a.s.
≥ XS .

Remark: In the conditions (12) and (15) we are not allowed to replace T ≥ n with T > n (see exercise
class).

Now we extend Theorem 3.3 to the setting of the Stopping problem from the beginning of Section 3.

Theorem 3.6. (optional sampling theorem)

(i) Let X1, X2, . . . be an Fn-martingale and let T1 ≤ T2 ≤ · · ·
a.s.
< ∞ be Fn-stopping times. If

XTk
∈ L1 and lim

n→∞

∫
[Tk>n]

|Xn|dP = 0

for all k ∈ N, then (XT1
, XT2

, . . . ) is an FTn
-martingale.

(ii) Let X1, X2, . . . be an Fn-submartingale and let T1 ≤ T2 ≤ · · ·
a.s.
< ∞ be Fn-stopping times. If

X+
Tk

∈ L1 and lim
n→∞

∫
[Tk>n]

X+
n dP = 0,

for all k ∈ N, then (XT1 , XT2 , . . . ) is an FTn-submartingale.

Proof. The sequence {XTn
} is FTn

-adapted by Proposition 2.4a. The integrability of XTn
is either

directly assumed in case (i) or it follows from the proof of Theorem 3.3 in case (ii). The martingale or
submartingale property is obtained by applying Theorem 3.3 for Tk ≤ Tk+1, k ∈ N.

Remark: According to Proposition 3.4, we may equivalently rewrite the conditions in Theorem 3.6 using
uniform integrability of the stopped sequences {XTk∧n, n ∈ N} and {X+

Tk∧n, n ∈ N}, respectively.

The following theorem provides an important application.

Theorem 3.7. (Wald’s equation – general version) Let Sn =
∑n

k=1 Xk be a random walk and let
T ∈ L1 be its stopping time. Then

a) if X1 ∈ L1, then ST
a.s.
=
∑T

k=1 Xk ∈ L1 and EST = ET · EX1,

b) if X1 ∈ L2, EX1 = 0 and ∃ c ∈ (0,∞) such that (T > n ⇒ |Sn| ≤ c a.s.) ∀n ∈ N, then ST ∈ L2

and
varST = ES2

T = ET · EX2
1 = ET · varX1.
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Proof. a) Consider Yn = Sn − nEX1, n ∈ N. It is a martingale by Proposition 2.18a. Furthermore,

EFn |Yn+1 − Yn| = EFn |Xn+1 − EX1| = E|X1 − EX1| = c < ∞,

where Fn = σ(S1, . . . , Sn). It means that {Yn} satisfies condition (14) in Theorem 3.5. Therefore,
YT ∈ L1 and

EYT = EY1 = 0 =⇒ E(ST − TEX1) = 0 =⇒ EST = ET · EX1.

b) Define Mn = S2
n−nEX2

1 , n ∈ N. It is a martingale by Proposition 2.18b. Again we verify condition
(14):

EFn |Mn+1 −Mn| = EFn |2SnXn+1 +X2
n+1 − EX2

1 |
a.s.
≤ EFn2|Sn||Xn+1|+ EFnX2

n+1 + EX2
1

a.s.
= 2|Sn|E|X1|+ 2EX2

1 ,

where Fn = σ(M1, . . . ,Mn). Hence,

1[T>n]EFn |Mn+1 −Mn|
a.s.
≤ 21[T>n]|Sn|E|X1|+ 2EX2

1

a.s.
≤ 2cE|X1|+ 2EX2

1 < ∞.

Theorem 3.5 gives MT ∈ L1 and

0 = EM1 = EMT = E(S2
T − TEX2

1 ) = ES2
T − ET · EX2

1 ,

which implies ES2
T = ET · EX2

1 .

We notice that Theorem 3.7 has a simpler version.

Proposition 3.8. (Wald’s equation – basic version) Let Sn =
∑n

k=1 Xk be a random walk and let
T ∈ L1 be independent of {Sn}. Then

a) X1 ∈ L1 =⇒ ST ∈ L1 and EST = ET · EX1,

b) X1 ∈ L2, EX1 = 0 =⇒ ST ∈ L2 and varST = ES2
T = ET · EX2

1 = ET · varX1.

Proof. Denote Gn = σ(S1, . . . , Sn) ∨ σ(T ). Then T is a Gn-stopping time and Yn = Sn − nEX1 is a Gn-
martingale (by Proposition 2.17b). The proof of part a) follows in the same way as the proof of part a) in
Theorem 3.7. Another possibility is to use the independence and directly calculate EST (see Probability
Theory 1).

Part b) could be shown directly:

ES2
T = E

∞∑
k=1

1[T=k]S
2
k =

∞∑
k=1

P(T = k)ES2
k = EX2

1

∞∑
k=1

kP(T = k) = ET · EX2
1 .

The application of the optional stopping theorem and optional sampling theorem to the simple random
walk is left to exercise class.

Definition 3.1. We say that the random walk {Sn} with steps {Xn} is non-trivial if P(X1 ̸= 0) > 0.

A non-trivial random walk has one of the following properties (see exercise class): 1. Sn
a.s.−→

n→∞
∞,

2. Sn
a.s.−→

n→∞
−∞, 3. lim supn→∞ Sn = ∞ and lim infn→∞ Sn = −∞ a.s. In particular, if TB is the first

exit time of a non-trivial random walk from a bounded Borel set B ∈ B(R), then TB
a.s.
< ∞. Moreover,

TB has all moments finite.

Theorem 3.9. Let TB = min{n : Sn /∈ B} be the first exit time of a non-trivial random walk {Sn} from
a bounded Borel set B ∈ B(R). Then E(TB)r < ∞ for all r ∈ N.
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Proof. We have already mentioned that TB
a.s.
< ∞. Denote by d the diameter of the set B and find n0

such that P = P(|Sn0 | > d) > 0. Consider a new random walk {Zk, k ∈ N} defined by Zk = Skn0 , k ∈ N.
This random walk moves faster than {Sn}. Let λ be the first exit of {Zn} from B. Then λ

a.s.
< ∞ and

TB ≤ n0λ. Furthermore, P(λ = k) ≤ P(Sn0
∈ B, |S(j+1)n0

− Sjn0
| ≤ d for j = 1, . . . , k− 2) ≤ (1− P )k−2

for k > 2. For k = 2 we also have P(λ = k) ≤ (1 − P )k−2 = 1. Therefore, Eλr =
∑∞

k=1 k
rP(λ = k) ≤

P(λ = 1) +
∑∞

k=2 k
r(1− P )k−2 < ∞.

Using Theorem 3.9 we get a transparent variant of Theorem 3.7.

Theorem 3.10. Let {Sn} be a non-trivial random walk and let T be its first exit time from some bounded
Borel set. Then

a) X1 ∈ L1 =⇒ ST
a.s.
=
∑T

k=1 Xk ∈ L1 and EST = ET · EX1,

b) X1 ∈ L2, EX1 = 0 =⇒ ST ∈ L2 and varST = ES2
T = ET · EX2

1 = ET · varX1.

Proof. It is a consequence of Theorem 3.7 as T is an integrable stopping time which satisfies (T > n ⇒
|Sn| ≤ c) a.s.

The following theorem gives another application of the stopping theory.

Theorem 3.11. (supermartingale goes bankrupt forever) Let X1, X2, . . . be a non-negative su-
permartingale. Consider T = min{n : Xn = 0}, where min ∅ = ∞. Then the implication (T < ∞ ⇒
XT+k = 0 for k ∈ N) holds a.s.

Proof. Take n, k ∈ N and denote Tn = T ∧ n. Then Tn ≤ Tn + k ≤ n + k are stopping times and the
variant of Theorem 3.2 for a supermartingale yields

EFTnXTn+k

a.s.
≤ XTn .

Since [T ≤ n] ∈ FT ∩ Fn = FTn
by Proposition 2.4, we have

0 ≤
∫
[T≤n]

XT+k dP =

∫
[T≤n]

XTn+k dP ≤
∫
[T≤n]

XTn
dP =

∫
[T≤n]

XT dP = 0.

It means thatXT+k1[T≤n]
a.s.
= 0. Taking the limit as n → ∞ we obtainXT+k1[T<∞]

a.s.
= 0. In other words,

there exists a P-null set Nk (i.e. P(Nk) = 0) such that XT+k(ω)1[T (ω)<∞] = 0 for ω /∈ Nk. From this it
follows that the sequence (XT+k(ω)1[T (ω)<∞], k ∈ N) is equal to the null sequence for ω /∈ N = ∪∞

k=1Nk,
where P(N) = 0.

The theory of martingales was developed by a distinguished American mathematician J. L. Doob
(1910–2004). We formulate two maximal inequalities that are named after him. However, first we prove
the following lemma.

Lemma 3.12. Let X1, X2, . . . be an Fn-submartingale. If we denote Mn = max
k=1,...,n

Xk for n ∈ N, then

P (Mn ≥ a) ≤ a−1

∫
[Mn≥a]

X+
n dP ≤ a−1EX+

n

for any a > 0.

Proof. Define Fk = [X1 < a, . . . ,Xk−1 < a,Xk ≥ a] ∈ Fk, k ∈ N. Proposition 2.19 implies that
X+

1 , X+
2 , . . . is an Fn-submartingale. Hence, for any n ∈ N we can write

aP(Mn ≥ a) = aP

(
n⋃

k=1

Fk

)
= a

n∑
k=1

P(Fk) ≤
n∑

k=1

∫
Fk

X+
k dP ≤

n∑
k=1

∫
Fk

X+
n dP =

∫
[Mn≥a]

X+
n dP ≤ EX+

n .
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Theorem 3.13. (Doob’s maximal inequalities) Let X1, X2, . . . be a martingale or a non-negative
submartingale. Then for all n ∈ N we have

1.

P
(

max
k=1,...,n

|Xk| ≥ a

)
≤ a−pE|Xn|p, for p ≥ 1 and a > 0,

2. (Doob’s Lp inequality)

E
(

max
k=1,...,n

|Xk|
)p

≤
(

p

p− 1

)p

E|Xn|p, for p > 1.

Proof. Let us fix n ∈ N. Obviously, we can assume that Xn ∈ Lp, otherwise the right-hand side is
infinite and the inequalities hold trivially. If {Xn} is a martingale or a non-negative submartingale, then
{|X1|p, . . . , |Xn|p} with p ≥ 1 is a non-negative submartingale by Proposition 2.19. Applying Lemma
3.12 to this submartingale gives the first inequality.

Let Y = maxk=1,...,n |Xk| and fix p > 1. Then

EY p ≤
n∑

k=1

E|Xk|p ≤ nE|Xn|p < ∞.

The expectation of a non-negative random variable is obtained by integrating its complementary distri-
bution function. Therefore,

EY p =

∫ ∞

0

P(Y p > t) dt =

∫ ∞

0

P(Y p > ap)pap−1 da.

If we use Lemma 3.12 for a submartingale {|X1|, . . . , |Xn|} and Fubini’s theorem, we get the bound

EY p ≤
∫ ∞

0

pap−1a−1

∫
[Y≥a]

|Xn|dPda = E
∫ ∞

0

pap−2|Xn|1[Y≥a] da

= pE|Xn|
Y p−1

p− 1
=

p

p− 1
E|Xn|Y p−1.

By Hölder’s inequality,

E|Xn|Y p−1 ≤ (E|Xn|p)
1
p (EY p)

p−1
p .

Therefore,

EY p ≤ p

p− 1
(E|Xn|p)

1
p (EY p)

p−1
p .

Doob’s Lp inequality is trivially satisfied for EY p = 0. If EY p > 0 we can divide both sides by (EY p)
p−1
p

and obtain
(EY p)

1/p ≤ p

p− 1
(E|Xn|p)1/p ,

which is equivalent to the formulation of Doob’s Lp inequality.

Doob’s maximal inequality implies the classical maximal inequalities for independent random vari-
ables.

Theorem 3.14. (Kolmogorov’s inequality) Let X1, X2, . . . be independent random variables with
zero expectation and finite variance and let Sn = X1 + · · ·+Xn. Then

P
(

max
k=1,...,n

|Sk| ≥ a

)
≤ a−2ES2

n = a−2
n∑

k=1

EX2
k , a > 0.

Proof. Since {Sn} is a martingale by Proposition 2.18a, it is enough to use the first Doob’s maximal
inequality for p = 2.
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4 Submartingale convergence

Definition 4.1. Consider real numbers a < b and a finite sequence y(n) = (y1, . . . , yn) of real numbers.
We denote the number of upcrossings of (a, b) by

y(n)↑ba = card{(s, t) : 1 ≤ s < t ≤ n, {ys+1, . . . , yt−1} ⊆ (a, b) ⊆ [ys, yt]},

where we let [c, d] = ∅ for c > d. Analogously, the number of downcrossings of (a, b) is

y(n)↓ba = card{(s, t) : 1 ≤ s < t ≤ n, {ys+1, . . . , yt−1} ⊆ (a, b) ⊆ [yt, ys]}.

For an infinite sequence y = (y1, y2, . . . ) we put

y↑ba = lim
n→∞

y(n)↑ba and y↓ba = lim
n→∞

y(n)↓ba .

Remark: Clearly, y↑ba = (−y)↓−a
−b and y↓ba −1 ≤ y↑ba ≤ y↓ba +1. If X = (X1, X2, . . . ) is a random sequence,

then X↑ba is a random variable with values in N ∪ {0,∞}.

Proposition 4.1. Let X = (X1, X2, . . . ) be a random sequence.

(i) There exists a random variable X∗ (with values in R∪{−∞,∞}) such that Xn
a.s.−→

n→∞
X∗ if and only

if P(X↑ba < ∞) = 1 for each a, b ∈ R : a < b.

(ii) There exists a real random variable Y such that Xn
a.s.−→

n→∞
Y if and only if P(supn∈N |Xn| < ∞) = 1

and P(X↑ba < ∞) = 1 for each a, b ∈ R : a < b.

Proof. Both implications from left to right are obvious.
Assume that P(X↑ba < ∞) = 1 for each a, b ∈ R : a < b and consider the random variables

X∗ = lim sup
n→∞

Xn and X∗ = lim inf
n→∞

Xn.

Then
P(X∗ < X∗) ≤

∑
a,b∈Q:a<b

P(X∗ < a < b < X∗) ≤
∑

a,b∈Q:a<b

P(X↑ba = ∞) = 0,

and so Xn
a.s.−→

n→∞
X∗.

If we moreover assume that supn∈N |Xn|
a.s.
< ∞, then |X∗| ≤ supn∈N |Xn|

a.s.
< ∞ and we can take

Y = X∗1[|X∗|<∞].

Theorem 4.2. (Doob’s upcrossing inequality) Let {Xn} be an Fn-submartingale. Then for n ∈ N
and a, b ∈ R such that a < b,

EX(n)↑ba ≤
E(Xn − a)+ − E(X1 − a)+

b− a
≤ E(Xn − a)+

b− a
,

where X(n) = (X1, . . . , Xn).

Proof. Consider a sequence Zn = (Xn − a)+, n ∈ N. By Proposition 2.19 we know that {Zn} is an
Fn-submartingale. Fix n ∈ N and define τ0 = 1, νj = min{k ≥ τj−1 : Zk = 0} ∧ n, τj = min{k ≥ νj :
Zk ≥ b−a}∧n, j ∈ N. From this definition, Proposition 2.4, and Proposition 2.5 we see that νj and τj are
Fn-stopping times satisfying τ0 ≤ ν1 ≤ τ1 ≤ ν2 ≤ · · · ≤ n. Moreover, νj < n implies νj < τj for j ∈ N.
Similarly, τj < n implies τj < νj+1 for j ∈ N. Therefore, there exists m ∈ N such that τm = νm = n. We
can write

Zn − Z1 =

m∑
j=1

(Zνj − Zτj−1) +

m∑
j=1

(Zτj − Zνj ) ≥
m∑
j=1

(Zνj − Zτj−1) + (b− a)Z(n)↑b−a
0 ,
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where Z(n) = (Z1, . . . , Zn). According to Theorem 3.2 for bounded times τj−1 ≤ νj , we have EZνj
≥

EZτj−1
for any j ∈ N. Hence,

E(Zn − Z1) ≥ (b− a)EZ(n)↑b−a
0 .

Finally, it suffices to use the definition of {Zn} which yields

E(Xn − a)+ − E(X1 − a)+ ≥ (b− a)EX(n)↑ba,

because Z(n)↑b−a
0 = X(n)↑ba.

Remark: The statement for an Fn-supermartingale {Xn} has the form

EX(n)↓ba ≤
E(b−Xn)

+ − E(b−X1)
+

b− a
≤ E(b−Xn)

+

b− a
,

as follows from the relation y(n)↑ba = (−y)(n)↓−a
−b .

Theorem 4.3. (Doob’s submartingale convergence theorem) Let {Xn} be an Fn-submartingale

that satisfies supn∈N EX+
n < ∞. Then there exists a random variable X∞ ∈ L1 such that Xn

a.s.−→
n→∞

X∞

and

EX+
∞ ≤ sup

n∈N
EX+

n < ∞,

EX−
∞ ≤ sup

n∈N
EX+

n − EX1 < ∞.

Proof. For a < b, X ↑ba is the limit of a non-decreasing non-negative sequence X(n)↑ba, where X(n) =
(X1, . . . , Xn). Hence, from Lévi’s monotone convergence theorem and Theorem 4.2 we obtain

EX↑ba = lim
n→∞

EX(n)↑ba ≤ lim inf
n→∞

E(Xn − a)+

b− a

≤ lim inf
n→∞

EX+
n + a−

b− a
≤

supn∈N EX+
n + a−

b− a
< ∞.

By Proposition 4.1 there exists a random variable X∞ such that Xn
a.s.−→

n→∞
X∞. Positive and negative part

are continuous functions, thus also X+
n

a.s.−→
n→∞

X+
∞ and X−

n
a.s.−→

n→∞
X−

∞. From Fatou’s lemma we get

EX+
∞ = E lim inf

n→∞
X+

n ≤ lim inf
n→∞

EX+
n ≤ sup

n∈N
EX+

n < ∞,

EX−
∞ = E lim inf

n→∞
X−

n ≤ lim inf
n→∞

(EX+
n − EXn) ≤ sup

n∈N
EX+

n − EX1 < ∞.

We used that the submartingale {Xn} satisfies EXn ≥ EX1 for any n ∈ N. Altogether, E|X∞| =
EX+

∞ + EX−
∞ < ∞.

Remark: Similarly, every Fn-supermartingale {Xn} satisfying supn∈N EX−
n < ∞ has an integrable a.s.-

limit. As special cases we have the following statements:

1. A submartingale bounded from above has an integrable a.s.-limit.

2. A supermartingale bounded from below (e.g. a non-negative supermartingale) has an integrable
a.s.-limit.

3. Each martingale that is bounded either from above or from below has an integrable a.s.-limit.

Remark: The condition supn∈N EX+
n < ∞ could be equivalently replaced by supn∈N E|Xn| < ∞ because

for a submartingale we have

EX+
n ≤ E|Xn| = 2EX+

n − EXn ≤ 2EX+
n − EX1.
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Corollary 4.4. Let {Xn} be a sequence of independent integrable random variables such that

sup
n∈N

E

∣∣∣∣∣
n∑

k=1

(Xk − EXk)

∣∣∣∣∣ < ∞.

Then
∑∞

k=1(Xk − EXk) is a.s.-summable and
∑∞

k=1(Xk − EXk) ∈ L1.

Proof. Define Sn =
∑n

k=1(Xk − EXk), n ∈ N. Then {Sn} is a martingale and we assume that
supn∈N E|Sn| < ∞. So it suffices to use Theorem 4.3.

Remark: Recall that the condition
∑∞

k=1 varXk < ∞ is sufficient for the summability of
∑∞

k=1(Xk −
EXk) a.s., in probability and in L2 (see Probability Theory 1). Now we have an improvement for a.s.-
summability. The condition

∑∞
k=1 varXk < ∞ implies supn∈N E|Sn| < ∞ because

E|Sn| ≤
√

ES2
n =

√√√√ n∑
k=1

varXk ≤

√√√√ ∞∑
k=1

varXk.

Definition 4.2. Let (. . . , X−2, X−1) be a random sequence indexed by negative integers. Let · · · ⊆
F−2 ⊆ F−1 be a non-decreasing sequence of σ-algebras (filtration). We say that the sequence {X−n} is
an F−n-martingale if for all n ∈ N we have X−n ∈ L1, σ(. . . , X−n−1, X−n) ⊆ F−n, and

E[X−n | F−(n+1)]
a.s.
= X−(n+1).

If F−n = σ(. . . , X−n−1, X−n), then we speak about a backwards martingale. Analogously we define
F−n-submartingale and F−n-supermartingale. We denote F−∞ = ∩∞

n=1F−n.

Remark: Due to Proposition 2.12f the martingale property can be equivalently written as E[X−k | F−n]
a.s.
=

X−n for k ≤ n.

An example of a backwards martingale can be constructed from the random walk.

Lemma 4.5. Let {Xn} be an iid random sequence of integrable random variables. Define

Z−n =
1

n

n∑
k=1

Xk, n ∈ N.

Then {Z−n} is a backwards martingale.

Proof. By the triangle inequality, E|Z−n| ≤ E|X1| < ∞. Denote F−n = σ(. . . , Z−n−1, Z−n) and consider

the sequence M−n = E[X1 | F−n], n ∈ N. From symmetry we have E[X1 | F−n]
a.s.
= · · · a.s.

= E[Xn | F−n].
Hence,

E[Z−n+1 | F−n]
a.s.
=

1

n− 1

n−1∑
k=1

E[Xk | F−n]
a.s.
= M−n.

However, we can also write

Z−n
a.s.
= E[Z−n | F−n]

a.s.
=

1

n

n∑
k=1

E[Xk | F−n]
a.s.
= M−n

for any n ∈ N.

We can formulate the analogy of Theorem 4.3 for backwards submartingales.

Theorem 4.6. (Doob’s backwards submartingale convergence theorem) Let {X−n} be an F−n-

submartingale. Then there exists a random variable X−∞ such that X−n
a.s.−→

n→∞
X−∞. The limiting random

variable X−∞ takes values in R ∪ {−∞} with probability 1. It is integrable (and so a.s. finite) provided
that supn∈N EX−

−n < ∞.
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Proof. Denote X = (X−1, X−2, . . . ), X
(−n) = (X−1, . . . , X−n) and X̃(−n) = (X−n, . . . , X−1) for n ∈ N.

Similarly as in the proof of Theorem 4.3 we obtain

EX↑ba = lim
n→∞

EX(−n)↑ba ≤ lim
n→∞

EX̃(−n)↑ba +1 ≤ E(X−1 − a)+

b− a
+ 1 < ∞.

We have used Doob’s upcrossing inequality (Theorem 4.2) and a simple observation that the numbers of
upcrossings of X(−n) and X̃(−n) differ by at most one. The existence of the a.s.-limit X−∞ now follows
from Proposition 4.1. In order to show X−∞ ∈ L1 apply Fatou’s lemma for both positive and negative
part,

EX+
−∞ ≤ lim inf

n→∞
EX+

−n ≤ EX+
−1 < ∞

and
EX−

−∞ ≤ lim inf
n→∞

EX−
−n ≤ sup

n∈N
EX−

−n.

Remark: Since
EX−

−n ≤ E|X−n| = EX−
−n + EX+

−n ≤ EX−
−n + EX+

−1,

the condition supn∈N EX−
−n < ∞ can be equivalently replaced by the condition supn∈N E|X−n| < ∞.

It can also be equivalently replaced by the condition limn→∞ EX−n > −∞. This is clear from the
monotonicity of {EX−n} and the following inequalities

−EX−n ≤ E|X−n| = 2EX+
−n − EX−n ≤ 2EX+

−1 − EX−n.

Proposition 4.7. Every F−n-martingale is uniformly integrable. Every F−n-submartingale {X−n} such
that supn∈N EX−

−n < ∞ is uniformly integrable.

Proof. Let {X−n} be an F−n-martingale. Since X−n
a.s.
= EF−nX−1, the uniform integrability follows

from Proposition 2.16c.
Now assume that {X−n} is an F−n-submartingale. In this case

E|X−n| = EX+
−n + EX−

−n ≤ EX+
−1 + sup

n∈N
EX−

−n = K < ∞.

For c > 0, n ∈ N and k ≤ n we can write

E|X−n|1[|X−n|≥c] = EX−n1[X−n≥c] − EX−n1[X−n≤−c]

= EX−n1[X−n≥c] + EX−n1[X−n>−c] − EX−n

≤ EX−k1[X−n≥c] + EX−k1[X−n>−c] − EX−n

= EX−k1[X−n≥c] − EX−k1[X−n≤−c] + EX−k − EX−n

= E|X−k|1[|X−n|≥c] + EX−k − EX−n

by the submartingale property. Let ε > 0 be given. Since {EX−n} is a monotone sequence and EX−n ≥
− supn∈N EX−

−n > −∞, there exists k such that 0 ≤ EX−k − EX−n ≤ ε for all n ≥ k. Therefore,

sup
n≥k

E|X−n|1[|X−n|≥c] ≤ sup
n≥k

E|X−k|1[|X−n|≥c] + ε.

Since X−k is integrable, we can find δ > 0 such that E|X−k|1F < ε for any F ∈ F with P(F ) < δ.
Chebyshev’s inequality implies P(|X−n| ≥ c) ≤ E|X−n|/c ≤ K/c. Then for c > K/δ,

sup
n≥k

E|X−k|1[|X−n|≥c] < ε

and consequently
sup
n≥k

E|X−n|1[|X−n|≥c] < 2ε.
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Theorem 4.8. (convergence of uniformly integrable (sub)martingale)

a) Let {Xn} be a uniformly integrable Fn-submartingale (or uniformly integrable Fn-martingale). Then

there exists a random variable X∞ ∈ L1 such that both Xn
a.s.−→

n→∞
X∞ and Xn

L1−→
n→∞

X∞. Furthermore,

E[X∞ | Fn]
a.s.
≥ Xn (or E[X∞ | Fn]

a.s.
= Xn) for all n ∈ N.

b) Let {X−n} be a uniformly integrable F−n-submartingale (or F−n-martingale), then there exists

a random variable X−∞ ∈ L1 such that both X−n
a.s.−→

n→∞
X−∞ and X−n

L1−→
n→∞

X−∞. Furthermore,

E[X−n | F−∞]
a.s.
≥ X−∞ (or E[X−n | F−∞]

a.s.
= X−∞) for all n ∈ N.

Proof. a) The assumption of uniform integrability implies uniformly bounded absolute moments.
Therefore, the assumption of Doob’s submartingale convergence theorem (Theorem 4.3) is fulfilled:
supn∈N EX+

n ≤ supn∈N E|Xn| < ∞. Hence, there exists a random variable X∞ ∈ L1 such that

Xn
a.s.−→

n→∞
X∞. We obtain the L1 convergence from the property of uniformly integrable sequences.

For fixed integer numbers n ≤ m we have Xn

a.s.
≤ E[Xm | Fn]. By the L1 continuity of conditional

expectation (Proposition 2.16a), E[Xm | Fn] converges in L1 to E[X∞ | Fn] as m → ∞. The L1

convergence implies convergence in probability which in turn implies the existence of a subsequence

that converges a.s. For this subsequence {mk} we already know that Xn

a.s.
≤ E[Xmk

| Fn]. This

inequality is preserved when passing to the limit (as k → ∞). Hence, Xn

a.s.
≤ E[X∞ | Fn].

b) Theorem 4.6 and uniform integrability ensure the existence of a random variable X−∞ ∈ L1

such that X−n
a.s.−→

n→∞
X−∞ and X−n

L1−→
n→∞

X−∞. Then the L1 continuity of conditional expecta-

tion (Proposition 2.16a) yields E[X−m | F−∞]
L1−→

m→∞
E[X−∞ | F−∞]

a.s.
= X−∞. From X−m

a.s.
≤

E[X−n | F−m] for m ≥ n we get by conditioning with the σ-algebra F−∞ the relation E[X−m |
F−∞]

a.s.
≤ E[X−n | F−∞]. The left-hand side goes in L1 to X−∞ as m → ∞ and the inequality is

preserved when passing to the limit.

Corollary 4.9. If {Xn} is an Fn-adapted random sequence, then {Xn} is a uniformly integrable Fn-

martingale if and only if there exists X∞ ∈ L1 such that Xn
a.s.
= E[X∞ | Fn].

Proof. The implication from left to right follows from Theorem 4.8. Conversely, the sequence given by
Xn

a.s.
= E[X∞ | Fn] is an Fn-martingale (see exercise class) that is uniformly integrable (Proposition

2.16c).

We used XT for the sequence stopped at finite time T . When the sequence is convergent we can allow
T to take the value ∞. For ω ∈ Ω define

XT (ω) =

{
XT (ω)(ω) if T (ω) < ∞,

X∞(ω) if T (ω) = ∞.

We can formulate the version of Theorem 3.3 for a uniformly integrable martingale.

Theorem 4.10. Let {Xn} be a uniformly integrable Fn-martingale and let S and T be Fn-stopping times

with S ≤ T . Then XS , XT ∈ L1 and EFSXT
a.s.
= XS (and consequently EXT = EXS).

Proof. From Corollary 4.9 we know that Xn
a.s.
= EFnX∞ which by Jensen’s inequality gives |Xn|

a.s.
≤

EFn |X∞|. First we show that XT ∈ L1:

E|XT | =
∞∑

n=1

E|Xn|1[T=n] + E|X∞|1[T=∞] ≤
∞∑

n=1

E|X∞|1[T=n] + E|X∞|1[T=∞] = E|X∞| < ∞.
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We have used that E|Xn|1[T=n] ≤ E|X∞|1[T=n] which follows from |Xn|1[T=n]

a.s.
≤ EFn |X∞|1[T=n]. In

the same way we have XS ∈ L1. Now let F ∈ FT . Then from Xn
a.s.
= EFnX∞ we obtain∫

F

XT dP =

∞∑
n=1

∫
F∩[T=n]

Xn dP+

∫
F∩[T=∞]

X∞ dP

=

∞∑
n=1

∫
F∩[T=n]

X∞ dP+

∫
F∩[T=∞]

X∞ dP =

∫
F

X∞ dP.

Since XT is FT -measurable (Proposition 2.4a), we showed that XT
a.s.
= EFTX∞. Finally, using Proposi-

tion 2.4e and Proposition 2.12f we get

EFSXT
a.s.
= EFSEFTX∞

a.s.
= EFSX∞

a.s.
= XS .

Convergence theorems imply that conditional expectations are continuous in the condition.

Proposition 4.11. Let Y ∈ L1 and · · · ⊆ F−2 ⊆ F−1 ⊆ F , F1 ⊆ F2 ⊆ · · · ⊆ F be non-decreasing
sequences of σ-algebras. Then

a) E[Y | Fn] −→
n→∞

E[Y | F∞] both a.s. and in L1,

b) E[Y | F−n] −→
n→∞

E[Y | F−∞] both a.s. and in L1.

Proof. a) We know that Yn = E[Y | Fn] is uniformly integrable Fn-martingale (Corollary 4.9). By

Theorem 4.8 there exists Y∞ ∈ L1 so that Yn −→
n→∞

Y∞ both a.s. and in L1 and Yn
a.s.
= E[Y∞ | Fn].

We are going to show that E[Y | F∞]
a.s.
= Y∞. Denote Y ∗ = lim supn→∞ E[Y | Fn]. For F ∈ Fn we

have ∫
F

Y dP =

∫
F

Yn dP =

∫
F

Y∞ dP =

∫
F

Y ∗ dP.

The first equality follows from Yn = E[Y | Fn], the second equality from Yn
a.s.
= E[Y∞ | Fn] and the

last equality from Y∞
a.s.
= Y ∗. Thus, we have verified the relation∫

F

Y dP =

∫
F

Y ∗ dP

for arbitrary F ∈ ∪∞
n=1Fn, where ∪∞

n=1Fn is an algebra that generates F∞. Moreover, Y ∗ is

F∞-measurable, which yields E[Y | F∞]
a.s.
= Y ∗.

b) A random sequence Y−n = E[Y | F−n] is (uniformly integrable) F−n-martingale (exercise class).
By Theorem 4.8 there exists a random variable Y−∞ ∈ L1 such that Y−n −→

n→∞
Y−∞ both a.s. and

in L1 and Y−∞
a.s.
= E[Y−n | F−∞]. Then for arbitrary F ∈ F−∞ we have∫

F

Y−∞ dP =

∫
F

Y−n dP =

∫
F

Y dP.

In other words, Y−∞
a.s.
= E[Y | F−∞].

Theorem 4.12. (submartingale converges or explodes) Let {Xn} be a submartingale. Denote
Yk = Xk+1 − Xk for k ∈ N. If (supn∈N Yn)

+ ∈ L1, then there exists a random variable X∞ such that
Xn(ω) −→

n→∞
X∞(ω) for a.a. ω ∈ Ω with the property supn∈N Xn(ω) < ∞.

Proof. For k ∈ N denote the stopping time τk = min{n ∈ N : Xn ≥ k}. We fix k ∈ N. Optional stopping
theorem (Theorem 3.1) states that {Xn∧τk , n ∈ N} is a submartingale. We distinguish the following three
cases:
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1. τk = 1 ⇒ Xn∧τk = X1,

2. 1 < τk ≤ n ⇒ Xn∧τk = Xτk = Xτk−1 + Yτk−1 ≤ k + supn∈N Yn,

3. τk > n ⇒ Xn∧τk = Xn < k.

Combining all three cases we have

X+
n∧τk

≤ X+
1 + k +

(
sup
n∈N

Yn

)+

∈ L1.

It means that supn∈N EX+
n∧τk < ∞ and we can apply Doob’s submartingale convergence theorem (The-

orem 4.3). Therefore, there exists a random variable X(k) ∈ L1 such that Xn∧τk
a.s.−→

n→∞
X(k). Then for

Ak = [τk = ∞],

Xn1Ak
= Xn∧τk1Ak

a.s.−→
n→∞

X(k)1Ak
.

The events Ak form a non-decreasing sequence and their limit for k → ∞ is A = [supn∈N Xn < ∞].

Furthermore, X(k)1Ak

a.s.
= X(l)1Ak

for l ≥ k. If we put X∞ = X(1)1A1
+ X(2)1A2\A1

+ · · · , then

Xn1A
a.s.−→

n→∞
X∞.

5 Limit theorems for martingale differences

Definition 5.1. Let {Mn} be a martingale. PutM0 = EM1 and defineDn = Mn−Mn−1 for n ∈ N. Then
{Dn} is called a martingale difference sequence of the martingale {Mn}. If {Mn} is an Fn-martingale we
speak about an Fn-martingale difference sequence.

Remark: Equivalently we can define an Fn-martingale difference sequence as an Fn-adapted integrable
sequence {Dn} satisfying E[Dn | Fn−1]

a.s.
= 0 for n ∈ N, where we let F0 = {∅,Ω}.

Theorem 5.1. (summability of martingale differences) Let {Dn} be a martingale difference se-
quence of a martingale {Mn} that satisfies Mn ∈ L2 for each n ∈ N. If

∑∞
n=1 varDn < ∞, the series∑∞

n=1 Dn is summable both a.s. and in L2, i.e. the martingale {Mn − EM1} converges both a.s. and in
L2 as n → ∞.

Proof. According to Proposition 2.21, the random variables Dn are uncorrelated. Recall that from
Probability Theory 1, we know that centred uncorrelated random variables are summable in L2 if and
only if the sum of their variances is finite. In order to get a.s.-summability we verify the assumption of
Theorem 4.3:

E|Mn − EM1| ≤
√
E(Mn − EM1)2 =

√√√√E

(
n∑

k=1

Dk

)2

=

√√√√var

n∑
k=1

Dk

=

√√√√ n∑
k=1

varDk ≤

√√√√ ∞∑
k=1

varDk < ∞,

and so supn∈N E|Mn − EM1| < ∞.

Theorem 5.2. (strong law of large numbers for martingale differences) Let {Dn} be a martingale
difference sequence of a martingale {Mn} that satisfies Mn ∈ L2 for each n ∈ N. Let 0 < bn ↗

n→∞
∞ be

a real sequence. If
∑∞

n=1 b
−2
n varDn < ∞, then

1

bn

n∑
k=1

Dk =
Mn − EM1

bn
−→
n→∞

0 both a.s. and in L2.
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Proof. The sequence
{

Dn

bn

}
is also a martingale difference sequence and it satisfies the assumption of Theo-

rem 5.1. Therefore, the series
∑∞

n=1 b
−1
n Dn is a.s.-summable. The a.s.-convergence of b−1

n

∑n
k=1 Dk follows

from Kronecker’s lemma which says that if
∑∞

n=1 an < ∞ and 0 < bn ↗
n→∞

∞, then 1
bn

∑n
k=1 akbk −→

n→∞
0.

To show convergence in L2 we apply Kronecker’s lemma as well:

E

(
1

bn

n∑
k=1

Dk

)2

=
1

b2n

n∑
k=1

varDk −→
n→∞

0.

Theorem 5.3. (central limit theorem for martingale differences) Let {Dn} be an Fn-martingale
difference sequence of a martingale {Mn}. Assume that for each n ∈ N we have

1. E[D2
n | Fn−1]

a.s.
= 1,

2. E[|Dn|3 | Fn−1]
a.s.
≤ K < ∞,

where F0 = {∅,Ω}. Then

1√
n

n∑
k=1

Dk =
Mn − EM1√

n

d−→
n→∞

N(0, 1).

Proof. Define

φn,k(t) = E
[
exp

{
it
Dk√
n

} ∣∣∣Fk−1

]
, k = 1, . . . , n, n ∈ N, t ∈ R.

From Taylor’s expansion we get

exp

{
it
Dk√
n

}
= 1 + it

Dk√
n
− t2D2

k

2n
− it3

∆3
k

6n3/2
,

where ∆k is a random variable such that 0 ≤ |∆k| ≤ |Dk|. Applying conditional expectation on both
sides, we obtain

φn,k(t)
a.s.
= 1 +

it√
n
E[Dk | Fk−1]−

t2

2n
E[D2

k | Fk−1]−
it3

6n3/2
E[∆3

k | Fk−1],

which by our assumptions can be simplified to

φn,k(t)
a.s.
= 1− t2

2n
− it3

6n3/2
E[∆3

k | Fk−1].

For p = 1, . . . , n we have

E exp

{
it
Mp√
n

}
= E

[
exp

{
it
Mp−1√

n

}
exp

{
it
Dp√
n

}]
= E

[
exp

{
it
Mp−1√

n

}
E
[
exp

{
it
Dp√
n

} ∣∣∣Fp−1

]]
= E

[
exp

{
it
Mp−1√

n

}
φn,p(t)

]
= E

[
exp

{
it
Mp−1√

n

}(
1− t2

2n
− it3

6n3/2
E[∆3

p | Fp−1]

)]
.

Consequently,

E exp

{
it
Mp√
n

}
−
(
1− t2

2n

)
E exp

{
it
Mp−1√

n

}
= − it3

6n3/2
E
[
exp

{
it
Mp−1√

n

}
E[∆3

p | Fp−1]

]
.

Since |∆p| ≤ |Dp| and the conditional absolute third moments are bounded, it follows that∣∣∣∣E exp

{
it
Mp√
n

}
−
(
1− t2

2n

)
E exp

{
it
Mp−1√

n

}∣∣∣∣ ≤ K
|t|3

6n3/2
. (18)
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Let us fix t ∈ R. For a sufficiently large n (namely, n ≥ t2/2), we have 0 ≤ 1 − t2

2n ≤ 1. Therefore, the

left-hand side of (18) is not going to increase by multiplication with
(
1− t2

2n

)n−p

. It means that∣∣∣∣∣
(
1− t2

2n

)n−p

E exp

{
it
Mp√
n

}
−
(
1− t2

2n

)n−p+1

E exp

{
it
Mp−1√

n

}∣∣∣∣∣ ≤ K
|t|3

6n3/2
.

We apply the triangle inequality to the identity

E exp

{
it
Mn − EM1√

n

}
−
(
1− t2

2n

)n

= exp

{
−it

EM1√
n

} n∑
p=1

[(
1− t2

2n

)n−p

E exp

{
it
Mp√
n

}
−
(
1− t2

2n

)n−p+1

E exp

{
it
Mp−1√

n

}]

and obtain (for n ≥ t2/2)∣∣∣∣E exp

{
it
Mn − EM1√

n

}
−
(
1− t2

2n

)n∣∣∣∣ ≤ nK
|t|3

6n3/2
= K

|t|3

6
√
n
.

As the right-hand side tends to zero and
(
1− t2

2n

)n
tends to e−t2/2 for n → ∞, we have

lim
n→∞

E exp

{
it
Mn − EM1√

n

}
= exp

{
− t2

2

}
.

We showed the pointwise convergence of characteristic functions to the characteristic function of the
standard normal distribution. This proves the desired convergence in distribution.

At the end, we present (without proof) a generalization of the Feller–Lindeberg central limit theorem
for a triangular array of martingale differences.

Theorem 5.4. (Brown’s central limit theorem for martingale differences) Consider a triangular
array {Dk,n, k = 1, . . . , kn, n ∈ N} such that for each row n ∈ N, there are σ-algebras F0,n = {∅,Ω} ⊆
F1,n ⊆ F2,n ⊆ · · · ⊆ Fkn,n and (D1,n, . . . , Dkn,n) is an {Fk,n, k = 1, . . . , kn}-martingale difference
sequence. Assume that

(i)
∑kn

k=1 E[D2
k,n | Fk−1,n]

P−→
n→∞

1,

(ii) the conditional Feller–Lindeberg condition is satisfied, that is,

kn∑
k=1

E
[
D2

k,n1[|Dk,n|≥ε] | Fk−1,n

] P−→
n→∞

0 for every ε > 0.

Then
kn∑
k=1

Dk,n
d−→

n→∞
N(0, 1).

Note that Theorem 5.3 is a special case of Theorem 5.4. It suffices to take Dk,n = Dk/
√
n,

k = 1, . . . , kn = n. The conditional Feller–Lindeberg condition follows from the assumption that the
conditional absolute third moments are bounded.

6 Ergodic sequences

Recall the definitions of systems S (symmetric sets), I (shift-invariant sets) and T (terminal sets). From
Proposition 1.5 we know that I ⊂ T ⊂ S.

In probability theory, 0-1 laws state that certain events have probability either zero or one. First we
formulate the result associated with terminal sets.
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Theorem 6.1. (Kolmogorov’s 0-1 law) Let X = (X1, X2, . . . ) be a sequence of independent random
variables. Then P(X ∈ T ) ∈ {0, 1} for all T ∈ T .

Proof. This result was proved in Probability Theory 1. For the proof based on Proposition 4.11 consider
F = [X ∈ T ] and Fn = σ(X1, . . . , Xn). Show that EFn1F

a.s.−→
n→∞

1F and at the same time EFn1F
a.s.
= P(F )

for any n ∈ N. For details see exercise class.

A similar 0-1 law is dealing with larger class of symmetric sets but requires more restrictive assumption
on the sequence X. Before we prove it, we need the following lemma.

Lemma 6.2. Let A be an algebra and P be a probability measure on σ(A). Then for each A ∈ σ(A)
there exists a sequence An ∈ A such that P (An △A) −→

n→∞
0.

Proof. Let D be the system of sets A with the required property. It can be verified that D is a Dynkin
system (Ω ∈ D, A ∈ D ⇒ Ac ∈ D, {Ai} pairwise distinct sets from D ⇒ ∪∞

i=1Ai ∈ D). Since A ⊆ D,
Dynkin’s π-λ theorem gives σ(A) ⊆ D.

Theorem 6.3. (Hewitt–Savage 0-1 law) Let X = (X1, X2, . . . ) be an iid random sequence. Then
P(X ∈ S) ∈ {0, 1} for all S ∈ S.

Proof. Let A be an algebra of finite dimensional sets and let PX be a distribution of X. We know

that σ(A) = B(RN) (Proposition 1.6) and PX =
∞⊗
k=1

PXk
, where PXk

= PX1
. Let S ∈ S be fixed.

By Lemma 6.2, there exists a sequence An ∈ A such that PX(An △ S) −→
n→∞

0. The obvious inequality

|PX(An) − PX(S)| ≤ PX(An △ S) then yields PX(An) −→
n→∞

PX(S). For fixed n ∈ N, An has the form

Bm × RN for some m ∈ N and Bm ∈ B(Rm). Define π : RN → RN by the relation π(x1, x2, . . . ) =
(xm+1, . . . , x2m, x1, . . . , xm, x2m+1, . . . ). Then PX(π−1An) = PX(An) and using the independence of
[X ∈ An] = [(X1, . . . , Xm) ∈ Bm] and [X ∈ π−1An] = [(Xm+1, . . . , X2m) ∈ Bm] we obtain

PX(An ∩ π−1An) = PX(An)PX(π−1An) = PX(An)
2 −→
n→∞

PX(S)2.

Next, we have π−1(An △ S) = π−1An △ π−1S = π−1An △ S, which means that PX(π−1An △ S) =
PX(π−1(An △ S)) = PX(An △ S) −→

n→∞
0. Therefore,

|PX(An ∩ π−1An)− PX(S)| ≤ PX((An ∩ π−1An)△ S) ≤ PX(An △ S) + PX(π−1An △ S) −→
n→∞

0.

We found out that PX(An∩π−1An) tends to both PX(S)2 and PX(S). This is only possible if PX(S)2 =
PX(S).

Theorem 6.3 says that for an iid random sequence, symmetric sets are trivial (have PX either zero or
one). Theorem 6.1 says that for a random sequence of independent variables, terminal sets are trivial.
The following definition specifies the case in which shift-invariant sets are trivial.

Definition 6.1. A random sequence X = (X1, X2, . . . ) is said to be ergodic if P(X ∈ I) ∈ {0, 1} for all
I ∈ I.

Corollary 6.4. Every sequence of independent random variables is ergodic. Every iid sequence is sta-
tionary and ergodic.

Proof. Since I ⊆ T , Theorem 6.1 gives that PX(I) ∈ {0, 1} for all I ∈ I.

Definition 6.2. A stationary random sequence X = (X1, X2, . . . ) is said to be mixing if

P(X ∈ s−nA ∩B) −→
n→∞

P(X ∈ A)P(X ∈ B)

for any A,B ∈ BN.
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Example: Suppose that X takes only two values, (0, 1, 0, 1, . . . ), (1, 0, 1, 0, . . . ), each with probability
1/2. Obviously, X is stationary. We show that it is ergodic but it is not mixing. Let I be a shift-
invariant set, i.e. I = s−1I. If (0, 1, 0, 1, . . . ) ∈ I, then also (1, 0, 1, 0, . . . ) ∈ s−1I = I. Similarly, if
(1, 0, 1, 0, . . . ) ∈ I, then (0, 1, 0, 1, . . . ) ∈ s−1I = I. Therefore, PX(I) is either 0 (if I does not contain
any of two sequences) or 1 (if it contains at least one and consequently both sequences). Therefore, X
is ergodic. Let A = B = {(0, 1, 0, 1, . . . )}. Then PX(s−nA ∩ B) is either 1/2 (if n is even) or 0 (if n is
odd). Clearly, PX(s−nA ∩B) does not converge to PX(A)PX(B) = 1/4. Therefore, X is not mixing.

Proposition 6.5. Let X be a stationary random sequence that is mixing. Then X is ergodic.

Proof. Consider a shift-invariant set I ∈ I. Then s−nI = I and the definition of mixing with A =
B = I yields PX(I) −→

n→∞
PX(I)2. We have used that PX(s−nI) = PX(I) by stationarity. The relation

PX(I) −→
n→∞

PX(I)2 implies that PX(I) = PX(I)2 which is only possible if PX(I) ∈ {0, 1}.

Proposition 6.6. Let X be a stationary random sequence. If P(X ∈ T ) ∈ {0, 1} for any T ∈ T , then X
is mixing.

Proof. For A,B ∈ BN and n ∈ N define random variables Yn = 1[X∈s−nA] − PX(A) and Z = 1[X∈B] −
PX(B). Then EYnZ = PX(s−nA ∩ B) − PX(A)PX(B). Let F−n = σ(Xn+1, Xn+2, . . . ) and F−∞ =
∩∞
n=1F−n. Note that if [X ∈ D] ∈ F−∞, then D ∈ T and by assumption P(X ∈ D) ∈ {0, 1}. We want to

show that EYnZ −→
n→∞

0. Since Yn is F−n-measurable, we can also write EYnZ = E (YnE[Z | F−n]). By

the Cauchy–Schwarz inequality,

|EYnZ| ≤
√
EY 2

n

√
E(E[Z | F−n])2.

The first term
√
EY 2

n is bounded by 1 and for the second term we apply Proposition 4.11b and obtain E[Z |
F−n]

a.s.−→
n→∞

E[Z | F−∞]
a.s.
= EZ = 0. Since Z is bounded by 1, we also have E(E[Z | F−n])

2 −→
n→∞

0.

Corollary 6.7. Every iid sequence is mixing.

Proof. It suffices to combine Theorem 6.1 and Proposition 6.6.

We define IX = {[X ∈ I], I ∈ I}. It follows from Proposition 1.5d that IX is a σ-algebra.
We formulate two important ergodic theorems. For details and proofs we refer to the course Ergodic

Theory.

Theorem 6.8. (Birkhoff’s pointwise ergodic theorem) Let X = (X1, X2, . . . ) be a stationary
random sequence. Then for every measurable function f : RN → R such that E|f(X)| < ∞, we have

1

n

n−1∑
i=0

f(Xi+1, Xi+2, . . . )
a.s.−→

n→∞
E [f(X) | IX ] .

A random sequence is ergodic if and only if P(A) ∈ {0, 1} for all A ∈ IX . Therefore, for ergodic

sequences we have E [f(X) | IX ]
a.s.
= Ef(X).

Corollary 6.9. Let X = (X1, X2, . . . ) be a stationary and ergodic random sequence. Then

1

n

n−1∑
i=0

f(Xi+1, Xi+2, . . . )
a.s.−→

n→∞
Ef(X)

for every measurable function f : RN → R satisfying E|f(X)| < ∞.

Let (X1, X2, . . . ) be a stationary and ergodic random sequence of integrable random variables. Then
the particular choice f(x1, x2, . . . ) = x1 gives the strong law of large numbers

1

n

n∑
i=1

Xi
a.s.−→

n→∞
EX1.

In this sense, the limiting behaviour of a stationary ergodic sequence is the same as that of iid.
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Theorem 6.10. (von Neumann’s mean ergodic theorem) Let X = (X1, X2, . . . ) be a stationary
random sequence. Then for every measurable function f : RN → R such that E|f(X)|2 < ∞, we have

1

n

n−1∑
i=0

f(Xi+1, Xi+2, . . . )
L2−→

n→∞
E [f(X) | IX ] .

Corollary 6.11. Let X = (X1, X2, . . . ) be a stationary and ergodic random sequence. Then

1

n

n−1∑
i=0

f(Xi+1, Xi+2, . . . )
L2−→

n→∞
Ef(X)

for every measurable function f : RN → R satisfying E|f(X)|2 < ∞.

In particular, for f(x1, x2, . . . ) = x1 we obtain the law of large numbers in L2,

1

n

n∑
i=1

Xi
L2−→

n→∞
EX1.

In the course Stochastic Processes 2, a stationary sequence satisfying the law of large numbers in L2 is
called mean square ergodic.

For stationary sequences we have an equivalent definition of ergodicity.

Theorem 6.12. Let X be a stationary random sequence. Then X is ergodic if and only if

lim
n→∞

1

n

n∑
i=1

P(X ∈ s−iA ∩B) = P(X ∈ A)P(X ∈ B) (19)

for any A,B ∈ BN.

Proof. Taking A = B = I ∈ I in (19), we obtain 1
n

∑n
i=1 P(X ∈ s−iI ∩ I) = P(X ∈ I) −→

n→∞
P(X ∈ I)2

which gives P(X ∈ I) ∈ {0, 1}.
Now assume that X is ergodic. Consider A,B ∈ BN. By the pointwise ergodic theorem (Corollary

6.9), we have

1

n

n∑
i=1

1[X∈s−iA]
a.s.−→

n→∞
P(X ∈ A).

Multiplying both sides by 1[X∈B] gives

1

n

n∑
i=1

1[X∈s−iA∩B]
a.s.−→

n→∞
P(X ∈ A)1[X∈B].

Now we can apply Lebesgue’s dominated convergence theorem,

E
1

n

n∑
i=1

1[X∈s−iA∩B] −→
n→∞

P(X ∈ A)P(X ∈ B).

The left-hand side is equal to the left-hand side of (19).

Theorem 6.12 can be used to see that mixing is really a stronger property than ergodicity (this fact is
stated in Proposition 6.5). We may also introduce an intermediate property that is weaker than mixing
but stronger than ergodicity.

Definition 6.3. A stationary random sequence X = (X1, X2, . . . ) is said to be weakly mixing if

1

n

n∑
i=1

|P(X ∈ s−iA ∩B)− P(X ∈ A)P(X ∈ B)| −→
n→∞

0

for any A,B ∈ BN.
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Proposition 6.13. For a stationary random sequence mixing implies weakly mixing, which in turn
implies ergodicity.

Proof. Obviously, mixing implies weakly mixing because the usual convergence of a sequence implies its
strong Cesàro convergence. In order to show that weakly mixing implies ergodicity we may use Theorem
6.12 and the fact that the strong Cesàro convergence of a sequence implies its Cesàro convergence.
Alternatively, we may proceed directly as in the proof of Proposition 6.5.

Example: Consider again a random sequence X taking only two values, (0, 1, 0, 1, . . . ) and (1, 0, 1, 0, . . . ),
each with probability 1/2. It provides an example of a stationary and ergodic sequence that is not weakly
mixing.
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