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1 Point processes

In this chapter, we will deal with the statistical analysis of simple point processes on Rd. We will start with
the estimation of summary characteristics. Afterwards, the task of testing various statistical hypotheses
will be discussed. Finally, we will consider parametric models and discuss the problem of model fitting
and diagnostics.

Recall that a spatial point process is defined as a random locally finite counting measure on Rd.
A simple point process can also be viewed as a random locally finite set. We will use both of these
approaches. Thus, we write Φ(B) for the number of points (atoms) of the process Φ in the set B. By
X ∈ Φ we mean that X is a point (atom) of Φ.

1.1 Estimation of summary characteristics

Assume that we have a single realization of Φ in a bounded Borel set W , so-called observation window .
The window is usually a d-dimensional rectangle, but its shape may be more complicated. Our aim is to
estimate various summary characteristics of the point process Φ based on the given realization in W . A
list of basic estimates follows. Most of them are implemented in the R package spatstat [1]. Therefore,
we always mention also the corresponding R function.

1.1.1 Edge effects

When estimating numerical and functional summary characteristics, edge effects play an important role.
They are caused by the fact that a point process is observed in a bounded window W . For example, we
can base the estimate of K-function K(r) on the number of points in balls of radius r centred at the
points of the process. However, we are unable to determine this number when the distance of the point
to the boundary of W is smaller than r. The situation is illustrated in Figure 1 (left) – true number
of points in b(X, r) is 5 but in W we only observe 3 points. For another example, we can consider the
estimation of G-function. We are looking for the nearest neighbour of the point X ∈ Φ. Based on the
point pattern inside the observation window W , we would determine Y to be the nearest neighbour of
X, see Figure 1 (right). Actually, the point Z that lies outside W is the true nearest neighbour of X. It
is clear that our conclusion about the characteristics of the point process could be distorted by ignoring
edge effects.

W

X

W

X

Y

Z

Figure 1: An illustration of edge effects in the case of estimating K-function (left) and G-function (right).
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1.1.2 Estimation of intensity function

Let Φ be a stationary point process on Rd with intensity λ. It follows directly from the definition that

λ̂ =
Φ(W )

|W |

is an unbiased estimator of λ. In the package spatstat, this estimator can be computed using summary.ppp.
If Φ is a homogeneous Poisson point process, λ̂ is moreover the maximum likelihood estimator. In fact,
we may understand Φ on W as a finite point process with density w.r.t. the distribution of unit Poisson
process on W and we know that its density has the form

pλ(φ) = λφ(W )e(1−λ)|W |.

It is easy to verify that the likelihood function L(λ) = pλ(φ) is maximized for λ = φ(W )/|W | (see
Exercise class).

For a non-stationary point process, non-parametric kernel estimators of its intensity function are often
used. One possibility is to consider the estimator (density.ppp)

λ̂(x) =
1

cW,b(x)

∑
Y ∈Φ∩W

kb(x− Y ), x ∈W,

where kb is a kernel function with bandwidth b > 0, i.e. kb(x) =
k(x/b)

bd
for some probability density k, and

cW,b(x) =

∫
W

kb(x− y) dy

is the edge correction factor . Another possibility is to use a more exact but computationally more
demanding estimator (density.ppp with diggle=TRUE)

λ̂(x) =
∑

Y ∈Φ∩W

kb(x− Y )

cW,b(Y )
, x ∈W. (1)

The quality of the estimator λ̂(x) is usually sensitive to the choice of bandwidth while the choice of kernel
function doesn’t play such an important role. For small values of b, the estimator is too concentrated
around the observed points. On the other hand, larger b leads to oversmoothing. Density functions
of the uniform distribution on a ball or the Gaussian distribution are one of the most common choices
for the kernel function k. Also, k is often chosen as the product of one-dimensional densities: k(x) =
k1(x1) · · · kd(xd) for x = (x1, . . . , xd) ∈ Rd. A popular example of a one-dimensional kernel function is
the Epanechnikov kernel :

e(u) =
3

4
(1− u2), u ∈ [−1, 1].

Note that if k is symmetric, then (1) is globally unbiased in the sense that∫
W

λ̂(x) dx = Φ(W ),

i.e.

E
∫
W

λ̂(x) dx =

∫
W

λ(x) dx.

For a non-stationary Poisson process, we can express the likelihood function using

pθ(φ) = exp
{
|W | −

∫
W

λθ(x) dx
} ∏

x∈φ

λθ(x).

If the intensity function λθ(x) has a parametric form, then the task of finding the maximum likelihood
estimator of parameter θ has to be solved by some numerical method. We will return to this problem in
Subsection 1.3.
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1.1.3 Estimation of K-function

Recall that the K-function K(r) of a stationary point process Φ is defined through the relation

λK(r) = E!
oΦ(b(o, r)), r > 0,

where E!
o is the expectation w.r.t. the reduced Palm distribution at the origin o. This definition could be

equivalently rewritten as

λK(r) = E
∑

X∈Φ∩A

Φ(b(X, r) \ {X})
λ|A|

= E
∑ ̸=

X,Y ∈Φ

1[X∈A,∥X−Y ∥≤r]

λ|A|
, (2)

where A is an arbitrary Borel set with finite and positive Lebesgue measure (0 < |A| <∞).
The following estimators can be obtained by the function Kest in the package spatstat.

0. uncorrected estimate: The equation (2) offers a theoretical unbiased estimator of λ2K(r) in the form

λ̂2K(r) =
∑

X∈Φ∩W

Φ(b(X, r) \ {X})
|W |

=
∑̸=

X,Y ∈Φ

1[X∈W,∥X−Y ∥≤r]

|W |
.

This estimator could only be used if we have additional information about the point pattern outside the
window W . This is because we put no restriction on points Y except that they have to be closer than
the given distance r to some point of Φ lying in W . For one particular point X, the distance r may be
larger than the distance to the boundary of W and thus we need to count points lying outside W . This
situation is known as the plus sampling . The problem of the inapplicability of the estimate rests in edge
effects. We are unable to determine Φ(b(X, r) \ {X}) only from the information about points lying inside
the window W , see Figure 1 (left). If we ignore the edge effects and consider only the points inside W ,
we get a negatively biased estimator

̂λ2Ku(r) =
∑̸=

X,Y ∈Φ∩W

1[∥X−Y ∥≤r]

|W |
.

The package spatstat enables to calculate this estimator by setting correction=”none” in Kest. However,
it is only for instructional reasons. This estimator should not be used in practice. All the following
estimators try to compensate for the problem of edge effects by including the edge correction factor
eW,r(X,Y ). The estimators of λ2K(r) then have the form∑̸=

X,Y ∈Φ∩W

1[∥X−Y ∥≤r]

|W |
eW,r(X,Y ).

For ̂λ2Ku(r) there is no edge correction and the factor eW,r(X,Y ) is identically equal to 1.

1. border estimate, correction=”border”: The simplest way to avoid the edge effects is to consider Φ in
a smaller window

W⊖r =W ⊖ b(o, r) = {y ∈W : b(y, r) ⊆W} = {y ∈W : d(y, ∂W ) ≥ r},

where ∂W denotes the boundary of W . We only consider the points for which we are able to determine
the number of neighbours at distance r. This procedure is known as the minus sampling . Then

̂λ2Kb(r) =
∑

X∈Φ∩W⊖r

Φ(b(X, r) \ {X})
|W⊖r|

=
∑̸=

X,Y ∈Φ∩W

1[X∈W⊖r,∥X−Y ∥≤r]

|W⊖r|

is an unbiased estimator λ2K(r), as it follows from (2). The edge correction factor is

eW,r(X,Y ) =
1[X∈W⊖r]|W |

|W⊖r|
.
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The estimator ̂λ2Kb(r) is defined for r < rb = sup{s > 0 : |W⊖s| > 0}. For example, rb = 0.5 for
W = [0, 1]2.

2. translation correction, correction=”translate”: Another possibility is to let the edge correction factor
be the function of both X and Y . The translation correction factor is

eW,r(X,Y ) =
|W |

|W ∩ (W +X − Y )|
,

which leads to the estimator

̂λ2Kt(r) =
∑ ̸=

X,Y ∈Φ∩W

1[∥X−Y ∥≤r]

|W ∩ (W +X − Y )|
.

Using the Campbell theorem it can be shown that this estimator is unbiased (see Exercise class). The
estimator is well defined for r < rt = sup{s > 0 : |W ∩ (W + x)| > 0 ∀x : ∥x∥ ≤ s}. For example, rt = 1
for W = [0, 1]2. Similarly, we can define the estimator of the reduced second-order moment measure K
using

̂λ2Kt(B) =
∑̸=

X,Y ∈Φ∩W

1[X−Y ∈B]

|W ∩ (W +X − Y )|
.

The smoothed kernel estimate of the density of K can be obtained by Kmeasure.

3. Ripley’s isotropic correction, correction=”isotropic” or correction=”Ripley”: Another correction factor
was suggested by B. D. Ripley [12]. It has the form

eW,r(X,Y ) =
|∂b(X, ∥X − Y ∥)|

|∂b(X, ∥X − Y ∥) ∩W |

and yields the estimator

̂λ2KR(r) =
∑̸=

X,Y ∈Φ∩W

1[∥X−Y ∥≤r]

|W |
· |∂b(X, ∥X − Y ∥)|
|∂b(X, ∥X − Y ∥) ∩W |

.

The notation |∂b(x, r)| means the (d−1)-Hausdorff measure of ∂b(x, r). If the process is motion-invariant,

it can be shown that ̂λ2KR(r) is an unbiased estimator of λ2K(r) for r < r0 = inf{t > 0 : |W (t)| < |W |},
where W (t) = {x ∈W : ∂b(x, t) ∩W ̸= ∅}. Ohser’s modification [9] is given by

̂λ2KO(r) =
∑̸=

X,Y ∈Φ∩W

1[∥X−Y ∥≤r]

|W (∥X−Y ∥)|
· |∂b(X, ∥X − Y ∥)|
|∂b(X, ∥X − Y ∥) ∩W |

.

It extends the definition of ̂λ2KR(r) to r < r∗ = sup{s > 0 : |W (s)| > 0}. For r < r0 we have
̂λ2KR(r) = ̂λ2KO(r). In case of the planar unit square W = [0, 1]2, r0 =

√
2/2, r∗ =

√
2, and W (s) =W

for all s ≤ r0.

In order to get the estimator of K(r) itself, we have to divide the estimator of λ2K(r) by the estimator
of λ2. This violates the unbiasedness property. The bias and variance are typically increasing with
increasing r. For a planar rectangular window, it is recommended to determine the estimators only for r
smaller than a 1/4 of the shorter side length of the rectangle. The estimator of λ2 often has the following
form

λ̂2 =
Φ(W )(Φ(W )− 1)

|W |2
.

The motivation is that λ̂2 is an unbiased estimator of λ2 in the case of Poisson point process Φ.
The border estimator of the K-function does not have to be a monotone function in r (as opposed to

the theoretical function). With increasing r and dimension d, the loss of information could be essential.
The estimators based on the translation or isotropic correction factors have statistically better properties.
On the other hand, the computation of K̂b is faster.
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1.1.4 Estimation of inhomogeneous K-function

Let Φ be a second-order intensity reweighted stationary point process. Then we define the inhomogeneous
K-function as

Kinhom(r) = E
∑ ̸=

X,Y ∈Φ

1[X∈A,∥X−Y ∥≤r]

λ(X)λ(Y )|A|
,

where A is an arbitrary Borel set with finite and positive Lebesgue measure (0 < |A| <∞). Its estimators
could be obtained similarly as in the case of stationary processes. For example, the estimator with
translation correction has the form

K̂inhom(r) =
∑ ̸=

X,Y ∈Φ∩W

1[∥X−Y ∥≤r]

λ̂(X)λ̂(Y )|W ∩ (W +X − Y )|
,

where λ̂(x) is the estimator of intensity function λ(x). In the package spatstat, we would use Kinhom
with the choice correction=”translate”.

1.1.5 Estimation of pair correlation function

For a motion-invariant point process, the pair correlation function g is related to the K-function by

g(r) =
K ′(r)

σdrd−1
, r > 0,

where σd = |∂b(o, 1)| is the surface area of the unit ball in Rd. The kernel estimator of g is

ĝ(r) =
1

λ̂2

∑ ̸=

X,Y ∈Φ∩W

kb(r − ∥X − Y ∥)
σdrd−1|W |

eW,r(X,Y ),

where kb is a suitable kernel function with bandwidth b and eW,r(X,Y ) is the edge correction factor.
The estimator is obtained by calling the function pcf in spatstat. The choices correction=”translate”
and correction=”ripley” correspond to the translation and isotropic edge correction, respectively. In the

case of a second-order intensity reweighted stationary point process, λ̂2 is replaced by λ̂(X)λ̂(Y ) in the
denominator of each summand. The computation could be performed by the function pcfinhom.

Another possibility would be to use some estimator of the K-function and approximate its derivative
by numerical methods (e.g., using splines). This is usually demanding because the estimators of K-
function are piecewise constant functions.

1.1.6 Estimation of nearest neighbour distance distribution function

Recall that for a stationary point process we define the nearest neighbour distance distribution function
as

G(r) = P !
o({φ ∈ N : φ(b(o, r)) > 0}), r > 0,

where P !
o is the reduced Palm distribution.

For the computation of the following estimators of G in R we can use the function Gest.
0. uncorrected estimate, correction=”none”: If we know the nearest neighbour distance for each observed
point of the process, we can estimate G classically by the empirical distribution function

Ĝ(r) =
1

Φ(W )

∑
X∈Φ∩W

1[e(X)≤r],

where e(x) = d(x,Φ\{x}) is the distance from the point x to its nearest neighbour. From the Campbell–
Mecke theorem it follows that

E
∑

X∈Φ∩W

1[e(X)≤r] = λ

∫
W

∫
N
1[d(o,φ)≤r] P

!
o(dφ) dx = λ|W |G(r).

7



Hence, we see that Ĝ(r) is a so-called ratio-unbiased estimator ofG. It means that the ratio of expectations
of the numerator and denominator of Ĝ(r) gives G(r), i.e.

E
∑

X∈Φ∩W 1[e(X)≤r]

EΦ(W )
=
λ|W |G(r)
λ|W |

= G(r).

Again, we are unable to get e(X) for each X ∈ Φ ∩W due to the edge effects, see Figure 1 (right). We
can replace e(X) by the distance e∗(X) = d(X, (Φ \ {X}) ∩W ) ≥ e(X), which we are able to observe in
the observation window. Then we obtain the naive estimator

Ĝu(r) =
1

Φ(W )

∑
X∈Φ∩W

1[e∗(X)≤r].

Since e∗(X) ≤ r implies e(X) ≤ r, we have Ĝu(r) ≤ Ĝ(r). The estimator Ĝu(r) is not used for practical
purposes. However, it can be obtained by the choice correction=”none”.

1. border estimate, correction=”border” or ”rs”: By restricting to the points X lying in the eroded window
W⊖r, the following ratio-unbiased estimator is obtained,

Ĝb(r) =
1

Φ(W⊖r)

∑
X∈Φ∩W⊖r

1[e(X)≤r] =
1

Φ(W⊖r)

∑
X∈Φ∩W⊖r

1[e∗(X)≤r].

2. Kaplan–Meier estimate, correction=”km”: Edge effects could be understood as a type of censoring
(see Subsection 5.1). Therefore, we can introduce the Kaplan–Meier type estimator,

ĜKM (r) = 1−
∏
s≤r

(
1− #{X ∈ Φ ∩W : e(X) = s, e(X) ≤ c(X)}

#{X ∈ Φ ∩W : e(X) ≥ s, c(X) ≥ s}

)
,

where c(x) = d(x, ∂W ) is the distance from x to the window boundary and # stands for the number
of elements. If e(X) ≤ c(X), we are sure that we observe true distance to the nearest neighbour of x.
In the opposite case, the distance e(X) is censored by c(X). We only know that e(X) is larger than
c(X). However, we don’t have information about the exact value of e(X). Note that the information
contained in the observation window W is sufficient for evaluating the estimator ĜKM (r). As opposed
to the classical situation of random censoring, we may not expect the independence of data and censors.
Hence, the optimality of the Kaplan–Meier estimator is violated. Nevertheless, it usually gives better
results than the border estimator.

For an absolutely continuous distribution function H(t) with density h(t), the hazard rate is defined
as λh(t) = h(t)/(1 − H(t)). The spatial Kaplan–Meier method enables us to estimate the hazard rate
of the distribution function G(r). However, we have to be cautious because G does not necessarily
have a density. In spatstat, this estimator can be obtained together with the Kaplan–Meier estimator of
G-function.

3. Hanisch estimate, correction=”han” or ”Hanisch”: Another improvement of the border estimate is
obtained by the following edge correction:

ĜH(r) =
1

λ̂

∑
X∈Φ∩W

1[e(X)≤c(X)]

|W⊖e(X)|
1[e(X)≤r],

where

λ̂ =
∑

X∈Φ∩W

1[e(X)≤c(X)]

|W⊖e(X)|
.

Note that only points with a smaller distance to their neighbour than to the boundary of the observation
window are used to compute this estimator. In Figure 1 (right), point X is not involved in the estimator
because its distance to the boundary of W is smaller than the distance to its nearest neighbour. The
Hanisch estimator is ratio-unbiased as we can easily verify by the Campbell–Mecke theorem if we realize
that 1[e(X)≤c(X)] = 1[X∈W⊖e(X)].

It is important to realize that mentioned estimators of G may not have the properties of a distribution
function: Ĝb is not necessarily monotone, ĜKM is non-decreasing but its maximal value could be strictly
smaller than 1.
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1.1.7 Estimation of contact distribution function

The contact distribution function of a stationary point process Φ is defined as

F (r) = P(Φ(b(o, r)) > 0) = P(D ≤ r), r > 0,

where D = d(o,Φ) is the distance from the origin to the nearest point of Φ.
Let us choose a regular grid Ia in Rd:

Ia = y + aZd = {(y1 + a1z1, . . . , yd + adzd) ∈ Rd : zi ∈ Z},

where y = (y1, . . . , yd) ∈ Rd and a = (a1, . . . , ad) ∈ Rd
+, i.e. ai > 0 for i = 1, . . . , d. The R function Fest

can be used for the calculation of the following estimators of F .

0. uncorrected estimate, correction=”none”: For every point of the grid in the window W , we find the
nearest point of the process. However, this nearest point may lie outside W . If we only consider points
of the process Φ that lie in W , we get

F̂u(r) =
1

|Ia ∩W |
∑

x∈Ia∩W

1[d(x,Φ∩W )≤r],

where |Ia ∩ W | is the number of points of a finite set Ia ∩ W . This estimator is negatively biased,
i.e. EF̂u(r) ≤ F (r), because 1[d(x,Φ∩W )≤r] ≤ 1[d(x,Φ)≤r] and P(d(x,Φ) ≤ r) = F (r) from stationarity.
The bias is caused by edge effects.

1. border estimate, correction=”border” or ”rs”:

F̂b(r) =
1

|Ia ∩W⊖r|
∑

x∈Ia∩W⊖r

1[d(x,Φ)≤r]

is an unbiased estimator of F (r) because P(d(x,Φ) ≤ r) = F (r) by stationarity. The continuous version
of this estimator (as a→ o) has the form

F̂b(r) =
|W⊖r ∩ Φr|

|W⊖r|
,

where Φr = {x ∈ Rd : d(x,Φ) ≤ r} = ∪X∈Φ b(X, r). Again it is an unbiased estimator.

2. Kaplan–Meier estimate, correction=”km”: Let d(x) = d(x,Φ) be the distance from x to the nearest
point of Φ. Then we define

F̂KM (r) = 1−
∏
s≤r

(
1− #{x ∈ Ia ∩W : d(x) = s, d(x) ≤ c(x)}

#{x ∈ Ia ∩W : d(x) ≥ s, c(x) ≥ s}

)
,

where c(x) = d(x, ∂W ) is the distance from x to the boundary of W . The contact distribution function
F (r) of a stationary point process is absolutely continuous and the hazard rate λh(r) exists. Its estimator
is based on the Kaplan–Meier estimator F̂KM (r).

3. Chiu–Stoyan estimate, correction=”cs” or ”Hanisch”: Using the same correction as in the Hanisch
estimator of G we obtain

F̂CS(r) =
1

Ca

∑
x∈Ia∩W

1[d(x)≤c(x)]

|W⊖d(x)|
1[d(x)≤r],

where

Ca =
∑

x∈Ia∩W

1[d(x)≤c(x)]

|W⊖d(x)|
.

The continuous version of this estimator is

F̂CS(r) =
1

C

∫
W

1[d(x)≤c(x)]

|W⊖d(x)|
1[d(x)≤r] dx,
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where

C =

∫
W

1[d(x)≤c(x)]

|W⊖d(x)|
dx.

We emphasize that the estimators of F may not have the properties of a distribution function: F̂b is
not necessarily monotone, F̂KM is non-decreasing but its maximal value could be strictly smaller than 1.
The border estimator is less efficient than the Kaplan–Meier estimator or the Chiu–Stoyan estimator.

1.1.8 Estimation of J-function

In spatstat it is possible to estimate the J-function

J(r) =
1−G(r)

1− F (r)
, r > 0 : F (r) < 1,

using the function Jest.
The estimator of J arises from its definition:

Ĵ(r) =
1− Ĝ(r)

1− F̂ (r)
.

We may distinguish the following estimators (depending on the type of estimator of G and F ):

• uncorrected (correction=”none”),

• border (correction=”border” or ”rs”),

• Kaplan–Meier (correction=”km”),

• Hanisch (correction=”Hanisch”).

Even if the uncorrected estimators Ĝu and F̂u are substantially biased, taking their ratio gives an
approximately unbiased estimator (at least when the point process is close to the Poisson process). The
advantage of this estimator is that it is insensitive to edge effects. Therefore, it could be used when
the edge effects are severe. The other three estimators are slightly biased (ratio of two approximately
unbiased estimators). The logarithm of the Kaplan–Meier estimator is an unbiased estimator of log J .

The package spatstat enables us to estimate four basic summary characteristics (functions F , G, J ,
K) at the same time by allstats.

1.1.9 Estimation of aggregation index

The expectation of an arbitrary non-negative random variable T can be expressed using its distribution
function H(t) as follows (e.g., [6], Lemma 5.7)

ET =

∫ ∞

0

(1−H(t)) dt.

Having the estimator Ĝ(t) of the nearest neighbour distance distribution function G(t), we can estimate
the Clark–Evans index

CE =
d(λωd)

1/d

Γ(1/d)
E!
oD

as

ĈE =
d(λ̂ωd)

1/d

Γ(1/d)

∫ ∞

0

(1− Ĝ(t)) dt.

In spatstat the function clarkevans can be used for the estimation of CE.

10



1.2 Hypothesis testing

The next statistical task consists of testing the hypothesis that the observed point pattern corresponds
to a given point process model. The most important case is testing the hypothesis of complete spatial
randomness. If we do not reject this hypothesis, then the observed data can be modelled by a Poisson point
process, and it is unnecessary to consider more complicated processes. A complete spatial randomness
test is one of the basic steps of exploratory data analysis.

First, divide the observation windowW to k mutually disjoint regions (so-called quadrats) of the same
volume and count the number of points in each of these quadrats. Denote these counts by n1, . . . , nk. We
consider the null hypothesis that the data corresponds to a homogeneous Poisson point process. Under
this hypothesis, the counts should form a realization of a random sample from the Poisson distribution
with parameter λ|W |/k. Moreover, all n = n1+· · ·+nk points are i.i.d. and have the uniform distribution
in W . Hence, we can use the well-known Pearson’s χ2 goodness-of-fit test. The test statistic is given as

k∑
i=1

(ni − n/k)2

n/k

and it is equal to the dispersion index

I =
(k − 1)s2

n̄
,

where n̄ = 1
k

∑k
i=1 ni = n/k is the average number of points per quadrat and s2 = 1

k−1

∑k
i=1(ni − n̄)2

is the sample variance. The index I has approximately χ2-distribution with k − 1 degrees of freedom.
We reject the null hypothesis if I ≤ χ2

k−1(α/2) or I ≥ χ2
k−1(1 − α/2), where χ2

k−1(p) is the p-quantile
of χ2-distribution with k − 1 degrees of freedom. In order to get a reasonable approximation by the
asymptotic χ2-distribution, the practical recommendation on the number of points of the investigated
point pattern is n̄ > 5. Small values of I correspond to smaller variability than for the Poisson process.
Thus, small values of I indicate regularity of the investigated point pattern. On the other hand, larger
values I show bigger variability in the point pattern. This situation corresponds to the clustering of the
observed point pattern. In spatstat, the test can be performed using quadrat.test.

The test based on the dispersion index is one of few cases in spatial statistics where the (asymptotic)
distribution of a test statistic is tractable. In most situations, the test statistic has a very complicated
distribution. Therefore, simulation (Monte Carlo) tests are used. First, we explain their general idea.

Suppose that we want to test the hypothesis H0 that the data corresponds to a given model. Consider
a suitable test statistic T . Usually, T has unknown or intractable distribution. We perform M indepen-
dent simulations from the null model H0 and determine the corresponding test statistics T1, . . . , TM . We
rank them from the smallest to the largest and obtain the ordered sample T(1) ≤ · · · ≤ T(M). Under the
null hypothesis, T and T1, . . . , TM are i.i.d. and hence by symmetry every ranking has the same proba-
bility. For simplicity, assume that there are no ties in T, T1, . . . , TM almost surely. Then the probability
that T is smaller than T(q) equals q/(M + 1). We want to test H0 on the prescribed significance level
α. If we consider a two-sided test (both small and large values of the test statistic serve against the null
hypothesis), we determine q such that

α =
2q

M + 1
.

We choose M so that α(M + 1)/2 is an integer. The hypothesis is then rejected if T ̸∈ [T(q), T(M−q+1)].
This test is referred to as Barnard’s Monte Carlo test . We can also determine the p-value of the test,
p = 2min(p+, p−), where

p+ =
1 +

∑M
j=1 1{Tj < T}
M + 1

and p− =
1 +

∑M
j=1 1{Tj > T}
M + 1

.

We reject H0 if p ≤ α.
In point processes, we rather work with functional than numerical characteristics. Let T (r) be some

functional test statistic. Often, T (r) = Ŝ(r) is an estimator of some summary characteristic S(r). For
fixed r0, chosen in advance independently on data, we may carry out Barnard’s Monte Carlo test with
T = T (r0). However, then we use only part of the information given by T (r).
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Consider an estimator of the summary characteristic S(r) evaluated on the interval [r1, r2], where
0 ≤ r1 < r2 are prescribed real constants. Denote by Ŝ(r) this estimator computed from data and by
Ŝ1(r), . . . , ŜM (r) the estimators computed from M independent simulations. For each r ∈ [r1, r2], we
would be able to determine Ŝ(q)(r) and Ŝ(M−q+1)(r). By joining the values Ŝ(q)(r) for different r, we

get a so-called pointwise lower envelope, while values Ŝ(M−q+1)(r) form a pointwise upper envelope. In
spatstat, we can draw these envelopes using the function envelope with parameter global=FALSE. They
could be useful to reveal the deviations from the null hypothesis. However, we have to realize that it
would be incorrect to use pointwise envelopes for testing. We are dealing with the problem of multiple
testing. When the curve Ŝ(r) reaches outside the envelopes for some r, it doesn’t mean that H0 has to
be rejected.

On the other hand, a global envelope test rejects the null hypothesisH0 if T (r) = Ŝ(r) is not completely
inside the envelope, i.e. if Ŝ(r) ̸∈ [Tlow(r), Tupp(r)] for some r ∈ [r1, r2]. The functions Tlow(r) and Tupp(r)
define lower and upper envelopes, respectively. In order to get the exact envelope test, assume that we
know the theoretical form of S(r) = S0(r) under the null hypothesis. Let us determine the maximal
absolute differences from the theoretical function:

D = sup
r1≤r≤r2

|Ŝ(r)− S0(r)|, Di = sup
r1≤r≤r2

|Ŝi(r)− S0(r)|, i = 1, . . . ,M.

Ordering the values D1, . . . , DM , we obtain rank statistics D(1) ≤ D(2) ≤ · · · ≤ D(M). Now we have a
one-sided test, only large values of the deviations give evidence against the null hypothesis. We reject
the null hypothesis if D > D(M−q+1), where q is chosen according to the required significance level,
α = q

M+1 . The testing procedure could be represented in the following way. Construct a band of

width 2D(M−q+1) around the function S0(r). If Ŝ(r) lies outside of this band (outside envelopes) for
some r ∈ [r1, r2], the hypothesis is rejected. It means that we have Tlow(r) = S0(r) − D(M−q+1) and

Tupp(r) = S0(r) + D(M−q+1). The probability that Ŝ(r) wanders outside the envelopes is exactly α.
These envelopes are called simultaneous. In spatstat, they could be obtained by the function envelope
with global=TRUE. The corresponding test is known as the maximum absolute deviation test and can be
performed by the function mad.test.

Another possibility is to consider integral deviation measure instead of the supremum one. For data
and for each simulation, we determine the integral square deviations from the theoretical function,

D =

∫ r2

r1

(Ŝ(r)− S0(r))
2 dr, Di =

∫ r2

r1

(Ŝi(r)− S0(r))
2 dr, i = 1, . . . ,M.

The null hypothesis is rejected if D > D(M−q+1), where q is chosen according to the required significance
level, α = q

M+1 . In this case we speak about the integral deviation test . It can be performed by the
function dclf.test.

The idea of Barnard’s Monte Carlo test can be extended to the case where the test statistic T belongs
to a more general space provided that ordering could be defined on this space. An example of the test
obtained by ordering the functions is the global rank envelope test in [8].

To test complete spatial randomness, we can use any of the simulation tests. As a characteristic S(r)
usually F , G, J , K or L-function is used. In the same way, we can perform a goodness-of-fit test for an
arbitrary model from which we are able to simulate.

1.3 Estimation of model parameters

Another statistical problem is to find a suitable model that describes our data well. Consider that the
distribution of a point process Φ is specified except for a vector θ of unknown parameters. We write Pθ

for the corresponding distribution of Φ and Eθ for the expectation with respect to Pθ. Our aim is to find
an estimate of θ based on the realization of Φ in a bounded window W ⊆ Rd.

1.3.1 Method of moments

We consider statistics T1, . . . , Tk. Let tj,θ = EθTj be the theoretical expected value of Tj for given θ.
Suppose that θ is a k-dimensional vector and we have an analytic expression of tj,θ as a function of θ for
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each j = 1, . . . , k. Then the estimator θ̂ by the method of moments is given as the solution (if it exists
and is unique) of the equations

Tj = tj,θ, j = 1, . . . , k.

That is, the observed values Tj coincide with the theoretical expected values.

Example: Let Φ be a stationary point process with intensity λ. We choose T1 = Φ(W ). Then t1,λ = λ|W |
and we obtain the natural estimator λ̂ = Φ(W )/|W |.

1.3.2 Minimum contrast method

For point processes, we often deal with functional summary characteristics. Let S(r) be a chosen func-
tional characteristic and Ŝ(r) be its estimator. Assume that the theoretical form of S(r) is known and
can be expressed as a function of model parameters, say Sθ(r). Then we may consider the estimator
evaluated for at least k distinct values r1, . . . , rk and apply the method of moments with Tj = Ŝ(rj) and

tj,θ = Sθ(rj), j = 1, . . . , k. Here, the relation tj,θ = EθTj holds only if the estimator Ŝ(r) is unbiased.
The theoretical form of S(r) is known in several cases. Examples include statistics of a Poisson process

or pair correlation function of a stationary Neyman-Scott process, which is given by

g(x) = 1 +
1

λp

∫
Rd

p(y)p(y − x) dy, x ∈ Rd,

where λp is the intensity of the parent point process and p is the density of the displacement vector of a
daughter point from its parent point. If p has a parametric form and is radially symmetric (as for Thomas
or Matérn cluster process), then g(r) = g(∥x∥) is expressed as a function of the model parameters.

We may try to exploit more information given by the estimator Ŝ(r). We look for θ that minimizes
the deviation of Ŝ(r) from Sθ(r) over some interval [a, b]. Define

D(θ) =

∫ b

a

∣∣∣Ŝ(r)q − Sθ(r)
q
∣∣∣p w(r) dr,

where 0 ≤ a < b and p, q > 0 are given constants and w(r) is a weight function. The estimator of θ is
attained by minimizing the function D(θ). This method is called the method of minimum contrast . When
the analytic expression of Sθ(r) is unknown, we can approximate Sθ(r) for fixed θ by many simulations
from the model. To compute the parameter estimate by the method of minimum contrast (with weight
function identically 1), we can use the function mincontrast in the package spatstat. There, the default
choice of parameters p and q is p = 2 and q = 1/4. If S(r) is the K-function, spatstat enables to find
the estimators for some particular models of point processes using the special functions lgcp.estK (log-
Gaussian Cox process), matclust.estK (Matérn cluster process), and thomas.estK (Thomas point process).
Similar functions lgcp.estpcf, matclust.estpcf, and thomas.estpcf exist for S(r) being the pair correlation
function.

Example: Let Φ be a Thomas point process with parameters λp (intensity of the parent Poisson pro-
cess), λc (mean number of cluster points), and σ2 (variance of the normal distribution describing the
displacement of a cluster point from its parent point). Then the pair correlation function is

g(r) = 1 +
1

λp(4πσ2)d/2
exp

{
− r2

4σ2

}
, r > 0.

We can estimate g(r) by the kernel estimator with some edge correction factor. Having such estimator
ĝ(r) defined on the interval [a, b], we can define the contrast function as

D(λp, σ
2) =

∫ b

a

(
ĝ(r)− 1− 1

λp(4πσ2)d/2
exp

{
− r2

4σ2

})2

dr.

The method of minimum contrast requires the minimization of this integral which has to be done by
numerical methods. Notice that the parameter λc is not appearing in the contrast function so we have
to estimate it by other approaches. The most natural approach would rely on the relation λ = λcλp and
the estimation of the intensity λ.

13



1.3.3 Maximum likelihood method

Another approach for the estimation of model parameters is based on the maximum likelihood. Assume
that Φ is a finite point process with density p w.r.t. the distribution Π of unit Poisson process on the
bounded Borel set B ⊆ Rd. The density is parameterized by the vector θ of unknown parameters,
p(φ) = pθ(φ). For simplicity, we consider that the observation window W coincides with B. The
maximum likelihood estimator of θ is obtained by maximizing the likelihood function L(θ) = pθ(φ),
where φ is an observed realization of the process Φ. Often it is more advantageous to maximize the
log-likelihood function, l(θ) = logL(θ). The log-likelihood function is known for the Poisson process with
intensity function λθ:

l(θ) = |W | −
∫
W

λθ(y) dy +
∑
x∈φ

log λθ(x).

As we already mentioned in Subsection 1.1, in homogeneous case (λθ(x) = λ) the argument of maxima
is λ = φ(W )/|W |. For the inhomogeneous Poisson point process, the maximum likelihood estimator is
not analytically tractable and we have to use numerical algorithms (e.g., the Newton-Raphson method)
for maximization of the log-likelihood function.

For other processes than Poisson, the normalizing constant is typically given by a complicated integral,
which is impossible to compute explicitly. In that case, we can use the Monte Carlo methods. Let
the density of the point process have the form pθ(φ) = hθ(φ)/cθ, where hθ is a known function and
cθ = Ehθ(ΦP ) is the unknown normalizing constant (ΦP is the Poisson point process on B with unit
intensity). Then l(θ) = log hθ(φ)− log cθ. It will be more advantageous to maximize the likelihood ratio
w.r.t. some fixed parameter value θ0,

l(θ)− l(θ0) = log
pθ(φ)

pθ0(φ)
= log

hθ(φ)

hθ0(φ)
− log

cθ
cθ0

.

For the first term, we have an analytic expression, while the second term may be approximated by MCMC
(Markov Chain Monte Carlo) methods. The ratio of normalizing constants could be written as

cθ
cθ0

=
1

cθ0

∫
hθ(φ)Π(dφ) =

∫
hθ(φ)

hθ0(φ)

hθ0(φ)

cθ0
Π(dφ)

=

∫
hθ(φ)

hθ0(φ)
pθ0(φ)Π(dφ) =

∫
hθ(φ)

hθ0(φ)
Pθ0(dφ) = Eθ0

hθ(Φ)

hθ0(Φ)
,

where Pθ0 is the distribution of Φ with density pθ0 (i.e. the true parameter is θ0) and Eθ0 is the expectation
w.r.t. this distribution. Here, we assume that hθ0(φ) = 0 implies hθ(φ) = 0 and use the convention
0/0 = 1. There exist different MCMC algorithms for generating the process with distribution Pθ0 . They
are based on the construction of a Markov chain {Φ(n)} whose limiting distribution is given by the density

pθ0 w.r.t. the distribution Π of the point process ΦP . Replacing the expectation E hθ(Φ)
hθ0

(Φ) by its sample

mean, we get the approximation of the log-likelihood ratio

lθ0,n(θ) = log
hθ(φ)

hθ0(φ)
− log

1

n

n−1∑
i=0

hθ(Φ
(i))

hθ0(Φ
(i))

.

This approximation is called the importance sampling approximation. The maximization of lθ0,n(θ)

gives the MCMC approximation θ̂n of the maximum likelihood estimator θ̂ of the parameter θ. This
approximation is usable if θ0 is close to θ̂. As θ0 we usually take some rough estimator obtained by
a simpler and less efficient method. The whole procedure can be iteratively repeated. There exist also
alternative approximations, the details can be found in [7, Subsections 8.2.4. and 8.2.5].

1.3.4 Maximum pseudolikelihood method

Since the likelihood function is often complicated, another strategy to estimate the model parameters is
based on approximation of the likelihood function by some simpler variant.
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Definition 1.1. Let Φ be a finite point process on a bounded Borel set B with Papangelou conditional
intensity λ∗θ(x, φ), where θ is the vector of unknown parameters. A realization φ of Φ is observed in the
window W . We assume that W coincides with B. We define the pseudolikelihood by the relation

PL(θ) = exp

{
|W | −

∫
W

λ∗θ(y, φ) dy

}∏
x∈φ

λ∗θ(x, φ \ {x}).

The estimator θ̂ that maximizes PL(θ) is called the maximum pseudolikelihood estimator of θ.

Remark 1.1. For a Poisson point process, λ∗(x, φ) = λ(x) and thus the pseudolikelihood coincides with
the likelihood.

Example: A Strauss point process has the Papangelou conditional intensity

λ∗(x, φ) = βγtR(x,φ),

where tR(x, φ) =
∑

y∈φ 1[0<∥x−y∥≤R]. Unknown parameters are β > 0, 0 ≤ γ ≤ 1 and R > 0. The
logarithm of the pseudolikelihood is

log PL(β, γ,R) = |W | −
∫
W

βγtR(y,φ) dy +
∑
x∈φ

(log β + tR(x, φ \ {x}) log γ)

= |W | −
∫
W

βγtR(y,φ) dy + φ(W ) log β + 2SR(φ) log γ,

where SR(φ) =
∑

{x,y}⊆φ 1[0<∥x−y∥≤R]. If we put the derivatives w.r.t. β and γ equal to zero, we get the
equations

φ(W ) = β

∫
W

γtR(y,φ) dy,

2SR(φ) = β

∫
W

tR(y, φ)γ
tR(y,φ) dy.

The parameter R is considered to be known and we search for the solution numerically. In this way the
estimators of β and γ are obtained. We realize that tR(y, φ) takes only non-negative integer values and
denote

mk =

∫
W

1[tR(y,φ)=k] dy, k ∈ N0.

Then our system of equations has the form

φ(W ) = β

φ(W )∑
k=0

γkmk,

2SR(φ) = β

φ(W )∑
k=0

kγkmk,

because tR(y, φ) is at most φ(W ). The advantage of assuming R to be known is that the Papangelou
conditional intensity has a log-linear form. We can choose several different values R1, . . . , RK of a
parameter R. For each value we calculate the maximum pseudolikelihood estimates of β and γ. Then we
determine such Ri, i = 1, . . . ,K, for which the pseudolikelihood is the largest. This value is taken as the
estimate of R.
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1.3.5 Second-order composite likelihood

The maximum pseudolikelihood method belongs to a more general class of statistical methods that are
based on so-called composite likelihood . These methods are used when the maximum likelihood method
is computationally very demanding or inaccessible. The composite likelihood is a function obtained by
multiplying a collection of likelihoods of simpler components. These components may not be independent.
The particular form depends on the context. In the setting of point processes it was suggested to consider
the product over the contributions of individual points or pairs of points.

Let Φ be a stationary point process on Rd with a second-order product density λ
(2)
θ that is parame-

terized by a vector θ. From stationarity it follows that λ
(2)
θ (x, y) = λ

(2)
θ (x− y). Again we assume that Φ

is observed in the window W . Then the density of pairs of points in W is

fθ(x, y) =
λ
(2)
θ (x− y)∫

W

∫
W
λ
(2)
θ (u− v) dudv

, x, y ∈W.

Of course, the distinct pairs of points are not independent. However, we consider the product of the
densities fθ(x, y) over all observed pairs. After taking the logarithm, we have

log CL(θ) =
∑ ̸=

X,Y ∈Φ∩W

[
log λ

(2)
θ (X − Y )− log

∫
W

∫
W

λ
(2)
θ (u− v) dudv

]
.

For practical purposes we disregard pairs at larger distances because for them the interactions are typically
weak. Therefore, we do not lose much information if we omit them. Moreover, in this way we reduce
computational complexity and variability of the resulting estimator. Let us choose R > 0 and work with
pairs of points in the distance smaller than R. We get the density

fRθ (x, y) =
λ
(2)
θ (x− y)1{∥x− y∥ < R}∫

W

∫
W
λ
(2)
θ (u− v)1{∥u− v∥ < R}dudv

, x, y ∈W,

and the logarithm of the composite likelihood

log CLR(θ) =
∑̸=

X,Y ∈Φ∩W :∥X−Y ∥<R

[
log λ

(2)
θ (X − Y )− log

∫
W

∫
W

λ
(2)
θ (u− v)1{∥u− v∥ < R} dudv

]
.

The estimator of θ is obtained by maximizing this function. Note that in the expression of fRθ or

log CLR(θ) we are allowed to replace the product density λ
(2)
θ by the pair correlation function gθ = λ

(2)
θ /λ2,

where λ is the intensity of Φ.
As opposed to previous two subsections we are now working with stationary point processes. The

composite likelihood method is used mainly for Cox point processes where we often have an analytic
form of the second-order product density. If Φ is a stationary Cox point process with driving intensity

function Z having the distribution depending on θ, then λ
(2)
θ (x− y) = EZ(x)Z(y). Next we will demon-

strate another method suitable for Cox point processes. This method is based on another second-order
characteristics.

1.3.6 Palm likelihood

Let Φ be a stationary point process on Rd with intensity λ and second-order product density λ(2). Then
we can write λ(2)(y − x) = λλo(y − x), where λo is called the Palm intensity . The second-order factorial
moment measure can be expressed from the Campbell theorem as

α(2)(A×B) = E
∑̸=

X,Y ∈Φ

1[X∈A,Y ∈B] =

∫
A

∫
B

λ(2)(y − x) dy dx = λ

∫
A

∫
B−x

λo(u) dudx.

On the other hand, by the Campbell–Mecke theorem we have

α(2)(A×B) = E
∑

X∈Φ∩A

Φ(B \ {X}) = λ

∫
A

∫
φ(B − x)P !

o(dφ) dx.
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Comparing these two expression we find out that

E!
oΦ(B) =

∫
B

λo(u) du, B ∈ Bd,

i.e. λo is the intensity function of the reduced Palm distribution of Φ. Now it is also clearer why λo is
called the Palm intensity. Realize that it is a second-order characteristics. For a Poisson point process
this function is constant. However, generally λo is not constant.

We will consider the point process of differences of observed points of Φ inW with the distance smaller
than R, i.e.

ΦR = {Y −X : X ̸= Y ∈ Φ ∩W, ∥Y −X∥ < R}.

Obviously, it is a point process in the ball b(o,R). Its intensity measure is (by Campbell’s theorem)

EΦR(A) = E
∑ ̸=

X,Y ∈Φ∩W

1[Y−X∈A] =

∫
W

∫
W

1[y−x∈A]λ
(2)(y − x) dy dx

=

∫ ∫
1[x∈W,x+u∈W ]1[u∈A]λ

(2)(u) dx du = λ

∫
A

|W ∩ (W − u)|λo(u) du.

Therefore, the intensity function of ΦR is

λR(u) = λλo(u)|W ∩ (W − u)|, u ∈ b(o,R).

We assume that a parametric form λθo(u) of the Palm intensity is given. We want to estimate the
vector θ of unknown parameters. To do this we consider ΦR as an inhomogeneous Poisson process with
the intensity function λR(u) which is approximated so that the unknown true intensity is replaced by
the observed intensity Φ(W )/|W | and the term |W ∩ (W − u)| is replaced by |W |, which is a reasonable
approximation if R is substantially smaller than the window side. Altogether we approximate λR(u) as
Φ(W )λo(u). The likelihood function is approximated by the likelihood function for the Poisson process
with this approximated intensity function. Such likelihood function is referred to as the Palm likelihood .
It means that the logarithm of the Palm likelihood is

logLP (θ) =
∑̸=

X,Y ∈Φ∩W

1[∥Y−X∥<R] log Φ(W )λθo(Y −X) + |b(o,R)| − Φ(W )

∫
b(o,R)

λθo(u) du.

An alternative way how to get the Palm likelihood is to consider the point processes

ΦX = {Y −X : Y ∈ Φ \ {X}}, X ∈ Φ ∩W,

which are inhomogeneous point processes with intensity function λo. We ignore interactions in the
processes ΦX ∩ b(o,R) and approximate them by inhomogeneous Poisson processes whose log-likelihoods
are ∑

Y ∈Φ∩W

1[0<∥X−Y ∥<R] log λ
θ
o(Y −X) + |b(o,R)| −

∫
b(o,R)

λθo(u) du.

Now we regard ΦX , X ∈ Φ ∩W , as independent identically distributed point processes, and we ignore
edge effects. Then the logarithmic Palm likelihood has the form

logLP (θ) =
∑

X,Y ∈Φ∩W

1[0<∥X−Y ∥<R] log λ
θ
o(Y −X) + Φ(W )|b(o,R)| − Φ(W )

∫
b(o,R)

λθo(u) du,

which differs from the previous expression only by a constant.

1.3.7 Takacs–Fiksel method

In order to find the maximum likelihood estimate one solves the equation l′(θ) = 0. The method of
moments is based on the relation Sθ(r) − Ŝ(r) = 0. Both of these approaches could be included in the
framework of estimating equations.
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Definition 1.2. Let Φ be a point process with distribution Qθ depending on an unknown parameter
θ ∈ Θ. Consider a function ψ : Θ×N → R such that Eθψ(θ,Φ) = 0 for each θ ∈ Θ. Here, Eθ denotes the
expectation w.r.t. Qθ. For a given realization φ the equation ψ(θ, φ) = 0 is called an unbiased estimating

equation. By different choices of ψ we obtain a system of equations. Its solution θ̂ is used as an estimator
of θ based on φ.

Besides the method of moments and maximum likelihood (or pseudolikelihood) method, another
example of estimating equations for point process models is given by the Takacs–Fiksel method. This
method is based on the Georgii–Nguyen–Zessin identity

E
∑
X∈Φ

h(X,Φ \ {X}) =
∫
Rd

Eh(x,Φ)λ∗(x,Φ) dx, (3)

where λ∗ is the conditional intensity of Φ.
In the case of a finite point process Φ with density p w.r.t. the distribution of unit Poisson point

process ΦP on the bounded Borel set B, λ∗ is the Papangelou conditional intensity. If Φ is the Poisson
point process on Rd with intensity function λ, then λ∗(x,Φ) = λ(x).

Assume that we know the parametric form of the conditional intensity λ∗θ(x, φ). We define

ψh(θ, φ) =
∑

x∈φ∩W

h(x, φ \ {x})−
∫
W

h(x, φ)λ∗θ(x, φ) dx

for an arbitrary function h. Then the Georgii–Nguyen–Zessin identity implies Eθψh(θ,Φ) = 0. The
estimator of θ is obtained as the solution of the unbiased estimating equation ψh(θ, φ) = 0. Similarly
as in the method of minimum contrast, we can choose more functions h than the number of unknown
parameters. For example, if we have k function h1, . . . , hk, we may search for θ which minimizes

k∑
i=1

ψhi(θ, φ)
2.

Remark 1.2. When we obtain the estimator θ̂ as the solution of an unbiased estimating equation, it
doesn’t mean that it is an unbiased estimator of θ.

For some natural choices of h it may be impossible to determine ψh(θ, φ) only from the observation
φ in a bounded window W . The problems with edge effects may arise. Then instead of ψh(θ, φ) we

can take the estimate ψ̂h(θ, φ) which considers corrections of edge effects. For example, in the case of a
stationary point process put h(x, φ) = φ(b(x, r))1[x∈W ]/|W |. Then the expectation of the first term in
ψh(θ,Φ), i.e. the left-hand side in (3), is equal to λ2K(r). However, we are not able to determine the first
term in ψh(θ, φ) only from the information insideW . The solution is to replace it by some edge-corrected
estimator of λ2K(r), e.g., the estimator with translation edge correction.

Example: Consider a Strauss point process and assume that the parameter R is known. Our goal is to
estimate θ = (β, γ). The choice h1(x, φ) = 1 gives

ψh1
(θ, φ) = φ(W )− β

∫
W

γtR(x,φ) dx.

Taking h2(x, φ) = tR(x, φ) we get

ψh2
(θ, φ) = 2SR(φ)− β

∫
W

tR(x, φ)γ
tR(x,φ) dx.

Note that we have obtained the same two equations with two unknown parameters as in the case of the
maximum pseudolikelihood method.
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1.4 Model diagnostics

In order to verify that the fitted parametric model is appropriate we can exploit the idea of Monte Carlo
tests. If we are able to simulate from our fitted model, then we can determine some summary character-
istics for each simulated realization of the model. The results from simulations could be compared with
the characteristics estimated from the data. This comparison should not show any substantial deviations
when the parameters of the model are determined correctly. The problems with this approach will begin
to exhibit for more general inhomogeneous point processes where we would need appropriate summary
characteristics.

Now let us examine how we can use the generalization of residuals from the classical linear regression
models in the context of point processes. Generally, the residuals are differences between the observed
and fitted values. If the fitted model is correct, the residuals should fluctuate around zero. On the
contrary, large deviations from zero may indicate what is wrong with the fitted model (e.g., incorrectly
estimated trend or interactions).

Definition 1.3. Let Φ be a point process with the conditional intensity λ∗. For some non-negative
measurable function h we define h-weighted innovation as the signed random measure

I(B, h, λ∗) =
∑

X∈Φ∩B

h(X,Φ \ {X})−
∫
B

h(x,Φ)λ∗(x,Φ) dx.

According to the Georgii–Nguyen–Zessin identity (3) we have EI(B, h, λ∗) = 0 for any B ∈ Bd.

Example: Let Φ be the Poisson point process with intensity function λ and consider the following three
choices of h: h(x, φ) = 1, h(x, φ) = 1/λ∗(x, φ) and h(x, φ) = 1/

√
λ∗(x, φ). Since λ∗(x, φ) = λ(x), we get

I(B, 1, λ) = Φ(B)−
∫
B

λ(x) dx,

I(B, 1/λ∗, λ) =
∑

X∈Φ∩B

1

λ(X)
− |B|,

I(B, 1/
√
λ∗, λ) =

∑
X∈Φ∩B

1√
λ(X)

−
∫
B

√
λ(x) dx.

It is easy to verify that EI(B, h, λ) = 0 by direct computation using the Campbell theorem. For the
variances we have

var I(B, 1, λ) =

∫
B

λ(x) dx,

var I(B, 1/λ∗, λ) =

∫
B

1

λ(x)
dx,

var I(B, 1/
√
λ∗, λ) = |B|.

These relations follow directly from the following lemma.

Lemma 1.1. Let Φ be the Poisson point process on Rd with intensity measure Λ. Then for an arbitrary
non-negative measurable function f ,

var
∑
X∈Φ

f(X) =

∫
f(x)2 Λ(dx).

Proof. From the Campbell theorem,

E
∑
X∈Φ

f(X) =

∫
f(x) Λ(dx).
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The second moment could be rewritten using the second-order Campbell theorem. Moreover, we make
use of the fact that the second-order factorial moment measure of the Poisson point process is Λ× Λ,

E

(∑
X∈Φ

f(X)

)2

= E
∑

X,Y ∈Φ

f(X)f(Y ) = E
∑
X∈Φ

f(X)2 + E
∑ ̸=

X,Y ∈Φ

f(X)f(Y )

=

∫
f(x)2 Λ(dx) +

∫ ∫
f(x)f(y) Λ(dx) Λ(dy) =

∫
f(x)2 Λ(dx) +

(∫
f(x) Λ(dx)

)2

.

From this we already obtain the assertion.

Assume that the conditional intensity λ∗θ(x, φ) depends on the parameter θ. Furthermore, suppose

that we found the estimator θ̂ (e.g., by one of the methods from Subsection 1.3) based on the observation

of Φ in the bounded window W . Then the estimator of the conditional intensity is λ̂∗(x, φ) = λ∗
θ̂
(x, φ).

In the definition of innovation we admit that h depends on θ̂. Put ĥ(x, φ) = hθ̂(x, φ).

Definition 1.4. A random signed measure

R(B, ĥ, θ̂) = I(B, ĥ, λ̂∗) =
∑

X∈Φ∩B

hθ̂(X,Φ \ {X})−
∫
B

hθ̂(x,Φ)λ
∗
θ̂
(x,Φ) dx

is called the h-weighted residual measure.

Since EI(B, h, λ∗) = 0, we expect that R(B, ĥ, θ̂) is around zero when the model with θ̂ is correct.

Note that the expectation ER(B, ĥ, θ̂) does not have to be zero but it should be approximately zero when

the model is true. Regions B with extreme values of R(B, ĥ, θ̂) may indicate regions of irregularity. The
usual choices for h include h = 1 (raw residuals), h = 1/λ∗ (inverse-lambda residuals) and h = 1/

√
λ∗

(Pearson residuals). Residuals for these three choices may be computed by residuals.ppm in package
spatstat. For h = 1 we have

R(B, 1, θ̂) = Φ(B)−
∫
B

λ∗
θ̂
(x,Φ) dx.

It means that the raw residual measure is given as the difference of an atomic measure with atoms in the
observed points and the measure with density λ∗

θ̂
(x,Φ) w.r.t. the Lebesgue measure.

Example: Consider a stationary Poisson point process Φ with intensity λ, which could be estimated as
λ̂ = Φ(W )/|W |. Then (provided that Φ(W ) > 0)

R(B, 1, λ̂) = Φ(B)− Φ(W )
|B|
|W |

,

R(B, 1/λ̂∗, λ̂) = |W | Φ(B)

Φ(W )
− |B|,

R(B, 1/

√
λ̂∗, λ̂) = Φ(B)

√
|W |
Φ(W )

− |B|

√
Φ(W )

|W |
.

It can be shown that the expectations of these three h-weighted residual measures are 0. We can also

notice that R(W, 1, λ̂) = R(W, 1/λ̂∗, λ̂) = R(W, 1/
√
λ̂∗, λ̂) = 0. This corresponds to the situation in the

classical linear regression where the sum of all residuals is 0.

For the graphical representation of the residuals it is convenient to perform kernel smoothing.

Definition 1.5. Let k be a probability density on Rd. The realization of a point process Φ is observed
in a bounded window W . We have constructed the estimator θ̂ of θ. Define the smoothed residual field
by the relation

S(x) = e(x)

∫
W

k(x− y)R(dy, ĥ, θ̂),
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where

e(x) =

(∫
W

k(x− y) dy

)−1

is the edge correction.

Remark 1.3. For h = 1 we have

S(x) = e(x)
∑

Y ∈Φ∩W

k(x− Y )− e(x)

∫
W

k(x− y)λ∗
θ̂
(y,Φ) dy.

2 Marked point processes

Let Φm be a marked point process on Rd with the mark space M. The corresponding unmarked point
process is denoted by Φ.

2.1 Estimation of summary characteristics

We will assume that a stationary marked point process Φm is observed in a bounded window W . The
estimators of summary characteristics are mostly either straightforward from the definition or it is enough
to suitably modify the estimators that were defined for point processes (Subsection 1.1).

First consider the case of qualitative marks M = {1, . . . , k}. It means that Φm is a k-dimensional
point process (Φ1, . . . ,Φk). The intensities λi may be estimated by Φi(W )/|W |. The stationary mark
distribution Q is an atomic measure on M and natural estimators of pi = Q({i}) are Φi(W )/Φ(W ).

For the cross G-function Gij(r) = P !i
o ({φm : d(o, φj) ≤ r}) and the condensed G-function Gi·(r) =

P !i
o ({φm : d(o, φ) ≤ r}), r ≥ 0, we may use, for example, the Kaplan–Meier estimator:

Ĝij(r) = 1−
∏
s≤r

(
1− #{X ∈ Φi ∩W : ej(X) = s, ej(X) ≤ c(X)}

#{X ∈ Φi ∩W : ej(X) ≥ s, c(X) ≥ s}

)
,

Ĝi·(r) = 1−
∏
s≤r

(
1− #{X ∈ Φi ∩W : e(X) = s, e(X) ≤ c(X)}

#{X ∈ Φi ∩W : e(X) ≥ s, c(X) ≥ s}

)
,

where c(x) = d(x, ∂W ) is the distance of x from the window boundary, ej(x) = d(x,Φj \ {x}) is the
distance of x from the nearest point of Φj and e(x) = d(x,Φ \ {x}) is the distance of x from the nearest
point of the process (regardless of the mark). In spatstat we can obtain these estimates using Gcross and
Gdot.

The cross K-function Kij is defined by the relation

λjKij(r) = E!i
oΦj(b(o, r))

and the condensed K-function Ki· by the relation

λKi·(r) = E!i
oΦ(b(o, r)).

Here λi is the intensity of Φi and we already noted that its natural estimator is λ̂i = Φi(W )/|W |. We
mention the estimators of the cross (Kcross) and condensed (Kdot)K-function that use the edge correction
factor eW,r(X,Y ),

K̂ij(r) =
1

λ̂iλ̂j

∑ ̸=

X∈Φi∩W,Y ∈Φj∩W

1[∥X−Y ∥≤r]

|W |
eW,r(X,Y ),

K̂i·(r) =
1

λ̂iλ̂

∑ ̸=

X∈Φi∩W,Y ∈Φ∩W

1[∥X−Y ∥≤r]

|W |
eW,r(X,Y ).
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Particular choices of eW,r(X,Y ) are considered in Subsection 1.1. Notice that this estimator of the cross

K-function satisfies K̂ij(r) = K̂ji(r).
If Φm is motion-invariant then the pair correlation function gij(x, y) = g((x, i), (y, j)), x, y ∈ Rd,

i, j ∈ {1, . . . , k} depends only on r = ∥x− y∥. Its kernel estimator has the form

ĝij(r) =
1

λ̂iλ̂j

∑ ̸=

X∈Φi∩W,Y ∈Φj∩W

kb(r − ∥X − Y ∥)
σdrd−1|W |

eW,r(X,Y ),

where kb is a kernel function with bandwidth b.
For marked point processes with quantitative marks we first deal with the estimation of a non-

normalized f -mark correlation function. It is defined as κf (r) =
λ
(2)
f (r)

λ(2)(r)
, where λ

(2)
f (r) is the density of

the second-order f -weighted factorial moment measure

α
(2)
f (B1 ×B2) = E

∑̸=

(X1,M1),(X2,M2)∈Φm

1[X1∈B1,X2∈B2]f(M1,M2), B1, B2 ∈ Bd.

Here, the process Φm is assumed to be motion-invariant. The kernel estimator of λ
(2)
f (r) is

λ̂
(2)
f (r) =

∑ ̸=

X,Y ∈Φ∩W

f(M(X),M(Y ))kb(∥X − Y ∥ − r)

σdrd−1|W |
eW,r(X,Y ),

while an analogous estimator of the second-order product density λ(2)(r) is

λ̂(2)(r) =
∑ ̸=

X,Y ∈Φ∩W

kb(∥X − Y ∥ − r)

σdrd−1|W |
eW,r(X,Y ).

Then the non-normalized f -mark correlation function can be estimated as

κ̂f (r) =
λ̂
(2)
f (r)

λ̂(2)(r)
, r > 0.

The function κf (r) can be also expressed using the two-point mark distribution,

κf (r) = Eorf(M(o),M(r)).

This conditional expectation could be estimated by arithmetic mean of f -values for marks corresponding
to the points at distance r. The number of pairs exactly at distance r will be usually small. Therefore,
we take ε > 0 and put

κ̂f (r) =
1

Nf (ε)

∑ ̸=

X,Y ∈Φ∩W :|∥X−Y ∥−r|<ε/2

f(M(X),M(Y )),

where Nf (ε) = #{X,Y ∈ Φ ∩W : |∥X − Y ∥ − r| < ε/2}. Note that this estimator corresponds to the
former one with constant kernel function on [−ε/2, ε/2] and no edge corrections.

Furthermore, we estimate the normalized f -mark correlation function kf (r) =
κf (r)
cf

by

k̂f (r) =
κ̂f (r)

ĉf
, r > 0,

where

ĉf =
1

Φ(W )2

∑
X,Y ∈Φ∩W

f(M(X),M(Y ))

is the estimator of cf =
∫ ∫

f(m1,m2)Q(dm1)Q(dm2). Denote µ = EM0 =
∫
mQ(dm) the mean typical

mark. Then for f(m1,m2) = c(m1,m2) = m1m2 we have cf = µ2 and kf = kc is known as Stoyan’s
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mark correlation function. For f(m1,m2) = e(m1,m2) = m1, cf = µ and kf = ke is referred to as the
r-mark function. The values kc(r) or ke(r) larger than 1 indicate mutual stimulation in the distance r.
On the other hand, the values smaller than 1 correspond to inhibition. The estimates of κf (r) and kf (r)
could be calculated using the function markcorr in the package spatstat.

The functions κf (r) and kf (r) are examples of non-cumulative summary characteristics. A cumulative
analogue is the mark-weighted K-function Kf (r) which generalizes the K-function for point processes in
the following way:

λKf (r) =
1

cf
E!
o

∑
(X,M(X))∈Φm

f(M(o),M(X))1[X∈b(o,r)],

where λ is the intensity of a stationary process Φm. An unbiased estimator of λ2cfKf (r) has the form

̂λ2cfKf (r) =
∑ ̸=

X,Y ∈Φ∩W

f(M(X),M(Y ))1{∥X − Y ∥ ≤ r}
|W |

eW,r(X,Y ).

In order to estimate Kf (r) we have to divide by estimators of λ2 and cf . For particular choices
c(m1,m2) = m1m2, e(m1,m2) = m1, e

∗(m1,m2) = m2, γ(m1,m2) = 1
2 (m1 − m2)

2 we get the func-
tions Kc, Ke, Ke∗ , Kγ , respectively.

As a representative of numerical characteristics we consider the non-normalized nearest-neighbour
correlation index defined as ν̄f = E!

of(M(o),M(Z1)), where Z1 is the point of the process that is the
closest to the origin and M(Z1) is the mark at Z1. This index can be naturally estimated by

̂̄νf =
1

Φ(W )

∑
X∈Φ∩W

f(M(X),M(ZX)),

where ZX ∈ Φ is the nearest neighbour of X. A natural estimator of the normalized nearest-neighbour
correlation index n̄f =

ν̄f

cf
is obtained as

̂̄nf =
̂̄νf
ĉf
.

For f(m1,m2) = m1m2 the values n̄f > 1 indicate mutual stimulation between neighbours. In spatstat
the commands nncorr (f(m1,m2) = m1m2), nnmean (f(m1,m2) = m1) and nnvario (f(m1,m2) = (m1 −
m2)

2/2) may be used.

2.2 Tests of independence

Statistical analysis of a marked point process mostly starts with the test of the hypothesis of independent
marks. If the marks may be considered independent, we can use the methods developed for independent
data. First, we will deal with the testing of independent marks. Afterwards, we mention some approaches
for testing the independence of marks and locations. We pursue a non-parametric approach and use
simulation tests whose principle was explained in Subsection 1.2.

2.2.1 Testing independent marking

First consider a two-dimensional point process Φm = (Φ1,Φ2). The null hypothesis of independent marks
may have two different interpretations:

1. independent marking (random labelling) – to the points of Φ independently randomly either mark
1 or mark 2 is assigned,

2. random superposition – two independent point processes Φ1 and Φ2 form a bivariate point process.

The first situation is an example of posterior marking – we describe how the marks were created con-
ditionally on given locations of points. This is an appropriate model when the points are tree locations
and the trees could be affected by some disease or catastrophe (mark 1) or not (mark 2). In the second
situation we have prior marking – a marked point process is formed by certain mechanism, namely union
of two independent populations.
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For testing the hypothesis that Φm is independently marked point process the method of random
allocation is used. We fix the locations and create new marks by random permutation of observed marks
(rlabel in spatstat). We generateM such permutations and carry out the corresponding Monte Carlo test.
Under the hypothesis of independent marking,

K(r) = K11(r) = K22(r) = K12(r) = K1·(r),

g(r) = g11(r) = g22(r) = g12(r),

G(r) = G1·(r),

J(r) = J1·(r),

where K(r), g(r), G(r) and J(r) are functional characteristics of the unmarked point process Φ. There-
fore, a useful test statistic could be S(r) = K1·(r)−K(r), which is equal to S0(r) = 0 if the null hypothesis
is true.

When we want to test the hypothesis of random superposition of point processes Φ1 and Φ2, we
can use the method of random shift . The locations of points with mark 1 are fixed. We generate M
realizations of the subprocess Φ2 so that all its points are simultaneously shifted (rshift) by a vector with
prescribed length R > 0. For each of M realizations of a bivariate point process we calculate estimator of
S(r) and apply simultaneous Monte Carlo test. As a function S(r) we may use one of the cross functional
characteristics. Under the hypothesis of random superposition the following relations hold:

K12(r) = ωdr
d,

g12(r) = 1,

G12(r) = F2(r),

J12(r) = 1.

In the case of process with quantitative marks we can again test the hypothesis of independent marking
by the method of random allocation. It means that the locations are kept fixed and the marks are assigned
by permuting the observed marks (sampling without replacement). In this way all M simulations lead
to the same empirical mark distribution. Another possibility is to generate marks from the empirical
mark distribution (sampling with replacement). The test statistic could be one of the f -mark correlation
functions or the f -weighted K-function. For motion-invariant independently marked point processes we
have kf (r) = 1 and Kc(r) = Kγ(r) = K(r), where K(r) is the K-function of the corresponding unmarked
point process.

2.2.2 Independence of marks and locations

We are going to present three methods for testing the independence of marks and locations in marked
point processes with quantitative marks. If the marks and locations are independent, we may investigate
both components separately, which simplifies the statistical inference. The geostatistical marking is an
appropriate marking model where the marks are independent of locations.

The first method is based on the summary characteristics Kf (r), in particular special cases Ke(r) and
Ke∗(r). Both these functions are equal to the K-function K(r) of the unmarked point process Φ if the
process is geostatistically marked. The test works conditionally on the locations and it is based on the
random allocation. We will generate M realizations by random permutations of marks (or by random
sample from empirical mark distribution). Since the locations are fixed, the estimators of K(r) will be
the same for allM simulations as well as for data. We use this estimator of K(r) as the statistics S0(r) in
Monte Carlo test. Further, we estimate Ke(r) or Ke∗(r) from data and also from M simulations. Under
the null hypothesis, all these M + 1 functions should look approximately like S0(r). By simultaneous
or integral Monte Carlo test, we find out whether the estimate from data significantly differs. This
approach ignores correlations among marks. This can cause that the hypothesis is rejected not because
of dependence between marks and locations but because of dependencies within marks.

The second method originates from the paper [13]. It is based on the fact that the functions E(r) =
κe(r) = EorM(r) and V (r) = κv(r) − κe(r)

2 = Eor(M(o) − E(r))2 are constant for motion-invariant
geostatistically marked point process. If the estimates of these functions from the data significantly
differ from a constant function, it gives evidence against the null hypothesis. Defining E(0) = EM0 and
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V (0) = varM0, we can perform simultaneous Monte Carlo test with the choice S(r) = E(r) − E(0) or
S(r) = V (r)− V (0). Under the null hypothesis, S0(r) = 0.

Also the third test is based on the principle of simultaneous tests. It was proposed in the paper [3]. Let
φm = {(x1,m1), . . . , (xn,mn)} be a realization of a motion-invariant marked point process Φm observed in
the windowW . Assume that the data are recorded in some fixed order. Let δ(xi) = d(xi, {xi+1, . . . , xn}),
i = 1, . . . , n, denote the distance of point xi to the nearest point of the process with a larger index. For
given r > 0 we choose those points with δ(xi) ≤ r. The number of selected points will be nr. It is
recommended to choose r small in comparison with distance of nearest neighbours. Since the selection
of points does not depend on marks, the mean of marks of nr points should be under the null hypothesis
close to the mean of marks of arbitrary randomly selected nr points out of n points. On the other hand,
if a mark is dependent on the presence of other points in the vicinity of its location, then the means
of marks selected according to the proposed criterion and the means of randomly selected marks should
differ significantly. We generateM different random samples of marks and for each such sample of size nr
we compute its mean. The test itself works in the same way as the classical Monte Carlo test described
in Subsection 1.2 (T is the mean of nr marks).

3 Geostatistics

Geostatistics is a part of spatial statistics dealing with data formed by finitely many observations of
a given variable in some fixed spatial locations.

The geostatistical data are modelled by a random field {Z(x) : x ∈ D}, where D ⊆ Rd has positive d-
dimensional Lebesgue measure. Recall that an intrinsically stationary random field satisfies the conditions
E(Z(x) − Z(y)) = 0 and var(Z(x) − Z(y)) = 2γ(x − y). The function 2γ(h) = var(Z(x + h) − Z(x)) =
E(Z(x + h) − Z(x))2 is called the variogram. Our first aim is to estimate the variogram from the
observations Z(x1), . . . , Z(xn), where x1, . . . , xn ∈ D are fixed deterministic points.

3.1 Variogram estimation

3.1.1 Non-parametric estimators

To get the first impression about the variogram, we can plot the squares of differences of observed values
(Z(xi) − Z(xj))

2 against xi − xj or ∥xi − xj∥. Such graph is called the empirical variogram cloud and
can be obtained in the package geoR [11] by variog with option=”cloud”. This graph often does not
give a clear picture because the number of possible pairs {xi, xj} of distinct points could be quite large,
specifically, it is

(
n
2

)
. More useful information is obtained by averaging the values corresponding to the

same difference xi − xj . Then we have the following unbiased estimator of the variogram,

2γ̂(h) =
1

|N(h)|
∑
N(h)

(Z(xi)− Z(xj))
2, (4)

where N(h) = {(xi, xj) : xi − xj = h, i, j = 1, . . . , n} and |N(h)| is the cardinality of N(h). It is in
fact the estimator obtained by the method of moments. The following properties of the estimator can be
easily seen: γ̂(h) ≥ 0, γ̂(o) = 0 and γ̂(h) = γ̂(−h). Thus, the estimator preserves the basic theoretical
properties of the variogram. Note that N(h) and N(−h) could be different sets but they have the same
cardinality and (xi, xj) ∈ N(h) if and only if (xj , xi) ∈ N(−h). Therefore, the symmetry of the estimator
follows. For small sample size or irregularly scattered points x1, . . . , xn, where the measurements are
taken, the number of pairs in N(h) will be very small and the estimator of 2γ(h) will have large variance.
The practical recommendation is to use h for which |N(h)| ≥ 30. If we are unable to assure this condition,
we divide (similarly as in the construction of histogram) pairs of points into several groups with similar
differences xi − xj . We calculate the mean of variables (Z(xi) − Z(xj))

2 in each group. In the package
RandomFields we can perform this by calling the function EmpiricalVariogram, in the package gstat [10]
by variogram. Another possibility is to use kernel smoothing with a kernel function kb and bandwidth b:

2γ̂(h) =

∑
i ̸=j(Z(xi)− Z(xj))

2kb(xi − xj − h)∑
i ̸=j kb(xi − xj − h)

.

25



Both smoothed and histogram-based estimator can be computed in the package geoR using variog.
The estimators based on the squared differences (Z(xi) − Z(xj))

2 are very sensitive to outlying
observations because for them large values are squared making them even larger. Assume that {Z(x) :
x ∈ D} is a Gaussian random field. Then (Z(x + h) − Z(x))2 has distribution 2γ(h) · χ2

1, which is very
skewed. The fourth root is a suitable transformation that creates a distribution “close” to the normal
distribution, see Figure 2. Instead of (Z(xi) − Z(xj))

2 we can thus work with |Z(xi) − Z(xj)|1/2. This
leads us to the robust version of the variogram estimator:

2γ̄(h) =

 1

|N(h)|
∑
N(h)

|Z(xi)− Z(xj)|1/2
4/

B(h),

where B(h) = 0.457 + 0.494/|N(h)|. The fourth power is there to preserve the proper scale. This
transformation breaks the unbiasedness of the estimator, and so the term B(h) is added. This term
represents the bias correction and ensures approximately unbiased estimator. The robust estimator is
computed in the package geoR by the choice estimator.type=”modulus” in variog. Except of reducing the
influence of outliers another advantage of the robust estimator is that the summands are less correlated
than in the case of the classical estimator (4).
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Figure 2: The density of a random variable X with χ2
1-distribution (left) and the density of a random

variable X1/4 (right).

If we assume that the random field is weakly stationary, we may also work with the autocovariance
function C(h) = cov(Z(x), Z(x + h)). In geostatistics, the term covariogram is usually used for the
autocovariance function. Then there exists a relation between the semivariogram and covariogram,

γ(h) = C(o)− C(h). (5)

The classical empirical estimator of the autocovariance function is

Ĉ(h) =
1

|N(h)|
∑
N(h)

(Z(xi)− Z̄)(Z(xj)− Z̄), (6)

where the sample mean Z̄ = 1
n

∑n
j=1 Z(xj) estimates the mean µ. The disadvantage is that we have to

estimate µ which causes bias of the estimator (6). For this reason, the variogram seems to provide better
characterization of dependence than the autocovariance function. Hence, the variogram is often preferred
to the covariogram in geostatistics. However, the autocovariance function is much more widely used in
the classical statistics. The estimator of the autocovariance function is symmetric (Ĉ(h) = Ĉ(−h)) and
for h = o we have the estimator of variance:

Ĉ(o) =
1

n

n∑
i=1

(Z(xi)− Z̄)2.

26



Rewriting (4) so that we add and subtract Z̄ in each summand, we get

2γ̂(h) =
1

|N(h)|
∑
N(h)

[
(Z(xi)− Z̄)2 + (Z(xj)− Z̄)2

]
− 2Ĉ(h).

Therefore, 2γ̂(h) ̸= 2(Ĉ(o)− Ĉ(h)), and so the relation (5) is not preserved if we switch to the moment

estimates. It would be unreasonable to estimate variogram by 2(Ĉ(o)−Ĉ(h)), i.e. by plugging the sample
covariances into (5) because negative values could be obtained.

Often we assume that the random field is also isotropic. Then the variogram is a function of distance
∥h∥. We can exploit this in the construction of estimators. In the histogram-based estimator we can
consider groups of pairs of points with similar mutual distances. In the kernel estimator we use kb(∥xi −
xj∥ − ∥h∥), where kb is a one-dimensional kernel function.

The disadvantage of non-parametric estimates is their larger variance and also the resulting estimators
do not have to be valid variograms or covariograms. We know that every variogram must be conditionally
negative definite and every covariogram must be positive semidefinite. However, the estimators γ̂ and Ĉ
do not necessarily have these properties. Therefore, we are now going to study parametric methods for
estimation of variogram and autocovariance function.

3.1.2 Parametric methods

We select a parametric model for the variogram 2γθ(h) or the covariogram Cθ(h), where θ ∈ Θ is the
vector of unknown parameters. For example, we may consider a power model for the variogram,

2γθ(h) = c0 + b∥h∥α, θ = (c0, b, α)
T,

where c0 ≥ 0 is the nugget, b ≥ 0 and 0 ≤ α < 2. Our aim is to estimate θ from data.

Least squares
The first possibility is a curve-fitting method of some non-parametric estimator computed in several

values hk, k = 1, . . . ,K. The simplest approach would be to minimize

K∑
k=1

(2γ̂(hk)− 2γθ(hk))
2
.

This is the ordinary least squares method. It disregards the correlations among the estimates 2γ̂(hk)
and their unequal variances. Put h = (h1, . . . , hK)T, 2γ̂(h) = (2γ̂(h1), . . . , 2γ̂(hK))T and 2γθ(h) =
(2γθ(h1), . . . , 2γθ(hK))T, and consider the statistical model in the form

2γ̂(h) = 2γθ(h) + e(h),

where we assume that e(h) = (e(h1), . . . , e(hK))T has zero mean and variance matrix V(θ), which may
depend on θ. Now we can apply the method of generalized least squares and minimize

(2γ̂(h)− 2γθ(h))
TV(θ)−1(2γ̂(h)− 2γθ(h))

w.r.t. θ ∈ Θ. The problem is how to obtain the matrix V(θ).
Let {Z(x) : x ∈ D} be a Gaussian random field. Then

E(Z(x1 + h1)− Z(x1))
2 = 2γ(h1) and var(Z(x1 + h1)− Z(x1))

2 = 2(2γ(h1))
2.

In order to express the covariance we use that cov(X2, Y 2) = 2ϱ2 holds for a random vector (X,Y )T with
bivariate normal distribution such that varX = varY = 1 and cov(X,Y ) = ϱ. Hence,

cov((Z(x1 + h1)− Z(x1))
2, (Z(x2 + h2)− Z(x2))

2) = 2
(
γ(x1 − x2 + h1) + γ(x1 − x2 − h2)

− γ(x1 − x2 + h1 − h2)− γ(x1 − x2)
)2
.
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The variance of the estimator (4) is

var 2γ̂(hk) =
1

|N(hk)|2
var

∑
N(hk)

(Z(xi)− Z(xj))
2

=
1

|N(hk)|2
∑
i,j

∑
l,m

cov((Z(xi)− Z(xj))
2, (Z(xl)− Z(xm))2).

A simple approximation of this variance is

var 2γ̂(hk) ≈
2(2γθ(hk))

2

|N(hk)|
. (7)

This approximation is precise if (Z(xi) − Z(xj))
2 are uncorrelated. We replace the matrix V(θ) by the

diagonal matrix ∆(θ) with elements given by the relation (7). Then we obtain the weighted sum of
squares

(2γ̂(h)− 2γθ(h))
T∆(θ)−1(2γ̂(h)− 2γθ(h)) =

K∑
k=1

|N(hk)|
2γθ(hk)2

(γ̂(hk)− γθ(hk))
2
.

The estimator of θ by the method of weighted least squares is obtained by the minimization of this sum.

Maximum likelihood
The second possibility is to look for an estimator by the maximum likelihood method. For Gaus-

sian random field with mean µ and autocovariance function Cθ, the log-likelihood based on data zn =
(z(x1), . . . , z(xn))

T has after multiplying by −2 this form:

−2 logL(µ, θ) = n log 2π + log det(Cn(θ)) + (zn − µ1n)
TCn(θ)

−1(zn − µ1n),

where 1n = (1, . . . , 1)T and Cn(θ)ij = Cθ(xi−xj) depends on the vector θ of covariance parameters. For
given θ, L(µ, θ) is maximized for

µ̃ = (1T
nCn(θ)

−11n)
−11T

nCn(θ)
−1zn. (8)

It is the generalized least squares estimator. Plugging µ̃ into L(µ, θ) we get the function of θ (so-called
profile likelihood), which has to be maximized (mostly by numerical methods). The estimator of µ is then
given by (8) with the estimate of θ inserted.

A popular variant of maximum likelihood is REML – estimator by the method of residual/restricted
maximal likelihood . This method does not apply the likelihood directly to data but to the residuals. It
relies on finding an appropriate matrix A which linearly transforms data Zn = (Z(x1), . . . , Z(xn))

T to
Z∗ = AZn so that the distribution of Z∗ does not depend on µ. The parameter θ is then estimated
by the maximum likelihood method applied to the transformed data Z∗. The choice of matrix A is
not unique. For example, for matrix A of type (n − 1) × n with entries aij = 1[i=j] − 1/n, we get
AZn = (Z(x1)− Z̄, . . . , Z(xn−1)− Z̄)T the vector of n− 1 differences from the sample mean Z̄. In this
way we get rid of dependence on µ. The estimator of θ minimizes the function

log det(ACn(θ)A
T) + zTnA

T(ACn(θ)A
T )−1Azn.

Plugging this estimator into (8) we get the estimator of µ. In practice, the estimators may be determined
by the functions likfit and variofit in the package geoR or fitvario in the package RandomFields.

Composite likelihood
The composite likelihood method was already mentioned when dealing with parameter estimation

in point processes. Similarly, it can be used for estimation of variogram parameters. Assume that the
differences Z(xi) − Z(xj) have normal distribution. Summing the contributions of log-likelihood over
pairs of distinct points we get the logarithm of composite likelihood:

log CL(θ) =
∑ ̸=

i,j=1,...,n

[
−1

2
log 4πγθ(xi − xj)−

1

4γθ(xi − xj)
(z(xi)− z(xj))

2

]
.

We are looking for θ that maximizes CL(θ). So we differentiate w.r.t. components θk and put equal to
zero: ∑ ̸=

i,j=1,...,n

∂γθ(xi − xj)

∂θk

1

4γθ(xi − xj)2
[
(z(xi)− z(xj))

2 − 2γθ(xi − xj)
]
= 0.
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3.1.3 Model validation

Once we have chosen a parametric model of variogram and estimated its parameters, we are interested
how well the obtained model 2γθ̂ describes the data. In the next subsection we will see how to obtain the

prediction Ẑ(x0) of Z(x0) together with the prediction error σ2(x0). It depends on the fitted variogram,
data and the locations x0, x1, . . . , xn. If we are able to get Z(x0), e.g., by additional measurement or
from remaining data that we left for model validation, we may compare the difference between Z(x0) and
Ẑ(x0). These values should be close to each other if the variogram is chosen correctly.

If all data were used for variogram fitting and it is impossible to perform additional measurement, we
can accomplish the cross-validation. We omit the location xj and calculate the prediction Ẑ−j(xj) from
the n − 1 remaining observations and the fitted variogram 2γθ̂(h). The corresponding prediction error
is denoted by σ2

−j(xj). We perform this procedure for each j = 1, . . . , n and calculate the standardized
residuals

Z(xj)− Ẑ−j(xj)

σ−j(xj)
.

Their arithmetic mean has to be around 0 and their sample second moment around 1. From the histogram
of standardized residuals we can detect possible extreme values of esiduals.

3.2 Kriging

Again we assume that the observed geostatistical data form a vector Zn = (Z(x1), . . . , Z(xn))
T. Our

aim is to find the predictor Ẑ(x0) of the unobservable value Z(x0) that the random field attains at some
further location x0 ∈ D. The term kriging is used for the methods of spatial prediction based on the
mean squared error minimization. It is named after a South African mining engineer D. G. Krige. His
paper [5] dealing with mineral resources is a pioneering paper for the field of geostatistics.

3.2.1 Simple kriging

Let us assume that the random field has finite second moments. Then it is well-known that the mean
squared error E[Z(x0) − Ẑ(x0)]

2 is minimized by the conditional expectation E[Z(x0) | Zn] and the
minimum value is E[Z(x0) − Ẑ(x0)]

2 = E var[Z(x0) | Zn], see e.g., [6], Theorem 7.15. It means that
E[Z(x0) | Zn] is the best predictor. The prediction error can be written as

E[Z(x0)− Ẑ(x0)]
2 = varZ(x0)− var Ẑ(x0).

In practice, the conditional expectation is difficult to determine. Therefore, for simplicity, we restrict
ourselves only to linear predictors of the form Ẑ(x0) = α + βTZn. Our aim is to determine α ∈ R and
β ∈ Rn so that the mean squared error is minimal. From the theory of linear models we know that the
solution is

β0 = C−1
n cn, α0 = µ(x0)− βT

0 µn,

where µn = EZn = (µ(x1), . . . , µ(xn))
T, µ(x0) = EZ(x0),

Cn = (cov(Z(xi), Z(xj)))i,j=1,...,n

is the variance matrix of Zn, and cn = (C(x0, x1), . . . , C(x0, xn))
T. Hence,

Ẑ(x0) = µ(x0) + cTnC
−1
n (Zn − µn)

and the prediction error is

σ2(x0) = E(Z(x0)− Ẑ(x0))
2 = varZ(x0)− cTnC

−1
n cn.

The technique for obtaining this spatial prediction is called the simple kriging . Even if we haven’t required
it, the predictor Ẑ(x0) is unbiased in the sense that EẐ(x0) = EZ(x0). Notice that the prediction error
does not depend on the data. If x0 is one of the locations x1, . . . , xn, then Ẑ(x0) = Z(x0), i.e. spatial
prediction interpolates the data. To make sure that it holds, note that

Ẑ(xj) = µ(xj) + (C(xj , x1), . . . , C(xj , xn))
TC−1

n (Zn − µn), j = 1, . . . , n,
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which, rewritten for the vectors, becomes

(Ẑ(x1), . . . , Ẑ(xn))
T = µn +CnC

−1
n (Zn − µn) = Zn.

The simple kriging predictor is optimal for Gaussian random fields.

Lemma 3.1. Let {Z(x) : x ∈ D} be a Gaussian random field. The best linear predictor Ẑ(x0) =
µ(x0) + cTnC

−1
n (Zn − µn) is the best predictor of Z(x0) and

Z(x0) | Zn ∼ N(Ẑ(x0),E(Z(x0)− Ẑ(x0))
2),

where E(Z(x0)− Ẑ(x0))
2 = varZ(x0)− cTnC

−1
n cn.

Proof. The joint distribution of (Z(x0),Zn)
T is (n + 1)-variate normal. Conditional distributions in

a multivariate normal distribution are again normal. In our case the conditional distribution of Z(x0) | Zn

is normal with mean µ(x0)+cTnC
−1
n (Zn−µn) and variance varZ(x0)−cTnC

−1
n cn. The best (not necessarily

linear) predictor of Z(x0) is the conditional expectation E[Z(x0) | Zn].

The best linear predictor is optimal in the case of the Gaussian model. However, it may have bad
properties when the assumption of the normal distribution is violated. In statistics, this problem is often
settled up with a transformation of data leading to a normal distribution. An example is the so-called
Box-Cox transformation

gλ(z) =

{
zλ−1

λ , λ ̸= 0,

log z, λ = 0.

There exist different methods to select the parameter λ. It is also possible to follow the Bayesian approach
and consider λ to be random.

We have expressed the best linear predictor. However, it depends on the values µn, µ(x0), cn and
Cn, which are unknown in practice. In general we have (n + 1) + n +

(
n+1
2

)
unknown parameters that

would have to be estimated from n observations. Therefore, we add some further assumptions. In next
two subsubsections, we will consider a specific form for the mean. Then in Subsection 3.3 we discuss the
influence of the estimation of covariances.

3.2.2 Ordinary kriging

Assume now that the random field has constant and finite mean µ. We look for the linear predictor in
the form

Ẑ(x0) = λTZn, where

n∑
j=1

λj = λT1n = 1,

where the components λ1, . . . , λn of the vector λ are unknown real coefficients. The condition that their
sum is one ensures that the predictor is unbiased: EẐ(x0) = λTµ1n = µ = EZ(x0). The method for
finding the spatial prediction under these assumptions is named the ordinary kriging .

For intrinsically stationary random field with semivariogram γ, we can express the variance of a linear
combination with zero sum of coefficients as follows:

E(Z(x0)− Ẑ(x0))
2 = E(Z(x0)− λTZn)

2 = var(Z(x0)− λTZn)

= −
n∑

i=1

n∑
j=1

λiλjγ(xi − xj) + 2

n∑
i=1

λiγ(xi − x0). (9)

It means that we don’t need to know µ in order to determine the predictor Ẑ(x0). To find the minimum
of (9) under the condition λT1n = 1, we can apply the method of Lagrange multipliers. For simpler
notation we multiply the multiplier by 2 and minimize

Q = var(Z(x0)− λTZn)− 2m(λT1n − 1) = −λTΓnλ+ 2λTγn − 2m(λT1n − 1),
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where Γn = (γ(xi − xj))i,j=1,...,n and γn = (γ(x1 − x0), . . . , γ(xn − x0))
T. Differentiate Q w.r.t. λ and

m, set the derivatives equal to zero, and obtain

∂Q

∂λ
= −2Γnλ+ 2γn − 2m1n = 0,

∂Q

∂m
= −2(λT1n − 1) = 0.

The solution is

λT =

(
γn + 1n

1− 1T
nΓ

−1
n γn

1T
nΓ

−1
n 1n

)T

Γ−1
n , (10)

m = −1− 1T
nΓ

−1
n γn

1T
nΓ

−1
n 1n

.

Hence, the predictor has the form

Ẑ(x0) =

(
γn + 1n

1− 1T
nΓ

−1
n γn

1T
nΓ

−1
n 1n

)T

Γ−1
n Zn = λ1Z(x1) + · · ·+ λnZ(xn).

The coefficients λi are components of the vector (10) and they are called the prediction weights. The
prediction weights are typically large for points close to x0. Nevertheless, their precise values depend on
the locations xi and the covariance structure of the data. It can happen that λi is negative or larger than
1. If x0 is one of the observed locations, say xi, it is not difficult to see that m = 0 and the prediction
weights are λi = 1 and λj = 0 for j ̸= i, i.e. Ẑ(x0) = Z(x0). The prediction error is

σ2(x0) = E(Z(x0)− Ẑ(x0))
2 = 2λTγn − λTΓnλ = γTnΓ

−1
n γn − (1− 1T

nΓ
−1
n γn)

2

1T
nΓ

−1
n 1n

.

Similarly we can rewrite Ẑ(x0) for weakly stationary random field using the autocovariance function:

Ẑ(x0) =

(
cn + 1n

1− 1T
nC

−1
n cn

1T
nC

−1
n 1n

)T

C−1
n Zn.

The prediction error is

σ2(x0) = varZ(x0)− cTnC
−1
n cn +

(1− 1T
nC

−1
n cn)

2

1T
nC

−1
n 1n

.

We see that this error is larger than in the case of simple kriging because the last term is positive. The
larger error is caused by the fact that we don’t know the mean µ.

3.2.3 Universal kriging

In this part we deal with the situation when the mean µ(x) = EZ(x) is not constant. The simplest
approach is to use a linear model

µ(x) =

p∑
j=0

βjfj(x),

where f0(x), . . . , fp(x) are known observed values of functions fj in points x ∈ D and β0, . . . , βp are
unknown real parameters. A usual choice for f0 is the constant function equal to 1, then β0 is an
absolute term. For fi(x) one can consider a polynomial of spatial coordinates of the location x. In this
way, it is possible to model, for example, the linear trend. Another possibility is that fi(x) represents
some covariate. Denote f = (f0(x0), . . . , fp(x0))

T and let F be the matrix of type n×(p+1) with elements
fj(xi), i = 1, . . . , n, j = 0, . . . , p. If we require the predictor in the form

Ẑ(x0) = λTZn, where λTF = fT,
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we speak about the universal kriging . The condition λTF = fT ensures that this predictor is unbiased
because

EẐ(x0) = λTEZn = λTFβ = fTβ = µ(x0) = EZ(x0).

The optimal predictor (minimizing the mean squared error) can be again found by applying the method
of Lagrange multipliers. Analogously as in the case of ordinary kriging, we can show that the optimal
prediction weights have the form

λT =
(
γn + F(FTΓ−1

n F)−1(f − FTΓ−1
n γn)

)T
Γ−1
n .

The corresponding prediction error is

γTnΓ
−1
n γn + (f − FTΓ−1

n γn)
T(FTΓ−1

n F)−1(f − FTΓ−1
n γn).

Using covariance, the prediction weights could be written as

λT =
(
cn + F(FTC−1

n F)−1(f − FTC−1
n cn)

)T
C−1

n

and the prediction error as

σ2(x0) = C(o)− cTnC
−1
n cn + (f − FTC−1

n cn)
T(FTC−1

n F)−1(f − FTC−1
n cn).

By the generalized least squares, we can also estimate the parameter β:

β̂ = (FTC−1
n F)−1FTC−1

n Zn.

The predictor could be also written as

Ẑ(x0) = fTβ̂ + cTnC
−1
n (Zn − Fβ̂).

If Z(x0) is uncorrelated with the data, the predictor Ẑ(x0) coincides with the best linear unbiased

estimator of the mean, which is equal to fTβ̂. However, the predictor of Z(x0) is generally distinct from
the estimator of EZ(x0).

3.2.4 Other possibilities

Assume that instead of the prediction of Z(x0), we are interested in the prediction of the average value
in some region (block) B,

Z(B) =
1

|B|

∫
B

Z(x) dx.

An analogy of the ordinary kriging leads to the so-called block kriging . We look for the predictor in the
form

Ẑ(B) =

n∑
i=1

λ̂iZ(xi),

where
∑n

i=1 λi = 1. The optimal prediction weights have the form

λT =

(
cB + 1n

1− 1T
nC

−1
n cB

1T
nC

−1
n 1n

)T

C−1
n ,

where cB = (cov(Z(B), Z(x1)), . . . , cov(Z(B), Z(xn)))
T. The expression using variogram would look

analogously.
Similarly we may be interested in predicting g(Z(x0)), where g is a given function. The best predictor

is E[g(Z(x0)) | Zn].
Another frequent case is the task of estimating probabilities P(Z(x0) ≤ y | Zn), where y is a given

real number. We speak about the indicator kriging .
To perform the kriging techniques in R, we can use krige.conv in the package geoR or krige in the

package gstat.
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3.3 Influence of covariance parameters estimation

The formulas for spatial prediction derived in the previous subsection depend on the values of a covari-
ogram or a variogram that are typically unknown in practice and so they must be somehow estimated. We
have already mentioned basic approaches for the estimation of parameters for variogram or covariogram.
We put the estimates of the parameters into the parametric formula of the corresponding function. In
this way, we obtain the so-called plug-in estimators. The procedure goes in the following steps:

1. we select a parametric model for variogram γθ(h) or covariogram Cθ(h),

2. we estimate the parameter θ,

3. we adjust the statistical inference to take into account that instead of the constant θ we work with
the random variable θ̂.

The plug-in predictor for ordinary kriging has the form

ˆ̂
Z(x0) =

(
cn(θ̂) + 1n

1− 1T
nCn(θ̂)

−1cn(θ̂)

1T
nCn(θ̂)−11n

)T

Cn(θ̂)
−1Zn.

It is no longer the best linear unbiased predictor (BLUP) of Z(x0). It is just the estimator of this predictor
(i.e. EBLUP = estimated best linear unbiased predictor). While the prediction error of Ẑ(x0) is

C(o)− cn(θ)
TCn(θ)

−1cn(θ) +
(1− 1T

nCn(θ)
−1cn(θ))

2

1T
nCn(θ)−11n

, (11)

the prediction error of
ˆ̂
Z(x0) is unknown. If we plug θ̂ into (11), we get the estimate of the prediction

error of Ẑ(x0), i.e. of different predictor than we in fact use. This estimated prediction error has tendency

to underestimate the true prediction error of
ˆ̂
Z(x0) because we neglect the fact that random θ̂ introduces

further variability into the EBLUP.

Return back to the case of universal kriging, where we consider the model Z(x) = F(x)Tβ + e(x),
where F(x) = (f0(x), . . . , fp(x))

T and {e(x) : x ∈ D} is an intrinsically stationary random field with the
variogram parameterized by θ. It would be unreasonable to use empirical estimator of θ from the data
Zn = (Z(x1), . . . , Z(xn))

T because it is substantially biased. The bias of (4) is caused by the fact that
Z(x) does not have constant mean. Therefore, E(Z(xi)−Z(xj))2 = var(Z(xi)−Z(xj))+(µ(xi)−µ(xj))2.
We would need a variogram estimator for {e(x) : x ∈ D}, but the error random field {e(x) : x ∈ D} is
unobservable. If β was known, then e(x) = Z(x) − F(x)Tβ and we would be able to estimate θ from
en = (e(x1), . . . , e(xn))

T. However, the parameter β is unknown. If the field {e(x) : x ∈ D} is weakly
stationary with autocovariance function Cθ(h), we get the estimator of β using the method of generalized
least squares,

β̂ = (FTCn(θ)
−1F)−1FTCn(θ)

−1Zn. (12)

Nevertheless, this estimator requires knowledge of the parameter θ. It means that we are not able to
reasonably estimate θ without knowledge of β. On the other hand, to estimate β we need an estimator
of θ. This situation is referred to as the cat-and-mouse-game of universal kriging.

A possible solution is the iteratively re-weighted generalized least squares method. It is defined by the
following steps.

1. obtain an initial estimator of β, independent of θ, e.g., by ordinary least squares method: β̂ =
(FTF)−1FTZn,

2. calculate the residuals r = Zn − Fβ̂,

3. estimate a parametric model of the variogram or covariogram of residuals and obtain θ̂,

4. determine the new estimator β̂ as β̂ = (FTCn(θ̂)
−1F)−1FTCn(θ̂)

−1Zn,

5. repeat steps 2.–4. until relative changes of the estimators β and θ are small.
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The variogram estimator is biased though the bias is not caused by a non-constant mean but by estimating
the variogram of residuals and not the variogram of {e(x) : x ∈ D}.

A theoretical study of this procedure is intricate. It is not assured that the estimates converge to the
theoretical parameters.

Another possibility is to use the maximum likelihood method to estimate both β and θ simultaneously.
For example, for a Gaussian random field {Z(x) : x ∈ D} the log-likelihood has the form

logL(β, θ) = −n
2
log 2π − 1

2
log detCn(θ)−

1

2
(zn − Fβ)TCn(θ)

−1(zn − Fβ).

For a fixed θ, this function is maximized for β given by (12) with the vector Zn replaced by the observed
data zn. Substituting this to logL(β, θ), we get a function of θ (profile likelihood), which has to be
maximized numerically.

3.4 Bayesian approach

In the classical approach, the best predictor based on the observed data zn is E[Z(x0) | Zn = zn] and
its error is E var[Z(x0) | Zn]. Often we are rather interested in the whole conditional distribution of
Z(x0) given Zn = zn than only in its mean and variance. This distribution is known as the predictive
distribution. In the Bayesian approach, the predictive distribution is equal to the posterior distribution
of Z(x0).

Recall that in Bayesian statistics, the parameters are considered to be random. It means that there
is no difference between prediction and parameter estimation. The Bayesian approach is based on the
combination of historical information about the unknown parameters θ and observed data zn. Information
about the parameters is given in the so-called prior distribution with density p(θ) w.r.t. σ-finite measure
ν on the parametric space Θ. Let Zn given θ have a density f(zn | θ). Then the posterior distribution of
θ given Zn = zn is given by the Bayes theorem

p(θ | zn) =
f(zn | θ)p(θ)∫

Θ
f(zn | θ)p(θ) ν(dθ)

,

provided that the denominator is positive. This relation is shortly written as

p(θ | zn) ∝ f(zn | θ)p(θ). (13)

The symbol ∝ denotes equality up to a multiplicative constant.
Spatial prediction using Bayesian approach is denoted as the Bayesian kriging . For the prediction of

Z(x0) we get the predictive density by integrating over θ:

f(z0 | zn) =
∫
Θ

f(z0, θ | zn) ν(dθ) =
∫
Θ

f(z0 | zn, θ)p(θ | zn) ν(dθ). (14)

For known θ, the result is the same as in the classical approach. The advantage of the Bayesian approach
is that it takes the uncertainty about model parameters into consideration. The form (14) of predictive
density is mostly quite complicated. Therefore, the MCMC method are used. They enable to generate
a sequence θ(1), . . . , θ(T ) from the posterior distribution with density p(θ | zn). Then the average

f̂(z0 | zn) =
1

T

T∑
i=1

f(z0 | zn, θ(i))

gives an approximation of the predictive density f(z0 | zn). In practice the calculation of this approxima-

tion is usually accomplished in the following way. For each θ(i) generate z
(i)
0 from the distribution with

density f(z0 | zn, θ(i)). Then z
(1)
0 , . . . , z

(T )
0 is a sample from the predictive distribution and depiction of

the corresponding histogram or the kernel density estimator gives an approximate shape of the predictive
density. Another possible approach for the determination of the predictive density is at hand when we
are able to calculate the posterior density p(θ | zn) and p(θ | zn, z0). Then we can exploit the relation

f(z0 | zn) = f(z0 | zn, θ)
p(θ | zn)

p(θ | zn, z0)
.
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Example: Consider the linear model

Z(x) = F(x)Tβ + e(x), x ∈ D,

where F(x) = (f0(x), . . . , fp(x))
T is the vector of covariates, β = (β0, . . . , βp)

T is the vector of re-
gression parameters with prior distribution Np+1(m,Q), and {e(x) : x ∈ D} is a weakly stationary
zero mean Gaussian random field with autocovariance function C(h). Assume that we know the vec-
tor m, matrix Q and function C. Our aim is to find a spatial prediction of Z(x0) based on the data
Zn = (Z(x1), . . . , Z(xn))

T. Denote Cn the matrix with elements C(xi − xj), i, j = 1, . . . , n, and F the
matrix of type n× (p+ 1) with elements fj(xi), i = 1, . . . , n, j = 0, . . . , p. Further assume that both Q
and FTC−1

n F have full rank. Since the normal distribution is a conjugate prior for a normally distributed
data, the posterior distribution is a multivariate normal distribution. More precisely, β | Zn is distributed
according to Np+1(m

∗,Q∗), where

m∗ = (Q−1 + FTC−1
n F)−1(FTC−1

n Zn +Q−1m), Q∗ = (Q−1 + FTC−1
n F)−1.

The joint distribution of (Zn, Z(x0))
T is multivariate normal Nn+1(Fn0β,Cn0), where

Fn0 =

(
F

F(x0)
T

)
and

Cn0 =

(
Cn cn
cTn C(o)

)
,

cn = (C(x0 − x1), . . . , C(x0 − xn))
T. The predictive density may be obtained from the expression

f(z0 | zn) =
∫
f(z0 | zn, β)p(β | zn) dβ,

where p(β | zn) is the density of Np+1(m
∗,Q∗) and f(z0 | zn, β) is the normal density with mean

F(x0)
Tβ+ cTnC

−1
n (zn −Fβ) and variance C(o)− cTnC

−1
n cn, as we know from Lemma 3.1. After straight-

forward (though somewhat lengthy) calculation, we find out that the predictive distribution is normal
with mean

(F(x0)
T − cTnC

−1
n F)Q∗Q−1m+

[
cTnC

−1
n + (F(x0)

T − cTnC
−1
n F)Q∗FTC−1

n

]
Zn

and variance
C(o)− cTnC

−1
n cn + (F(x0)

T − cTnC
−1
n F)Q∗(F(x0)

T − cTnC
−1
n F)T.

In practice, we don’t know the function C. However, we may use some of the parametric models (e.g.,
Whittle–Matérn). Then we specify an appropriate prior distribution for parameters of the autocovariance
function and derive the corresponding posterior distribution.

Geostatistical models that we have considered could be understood as two-stage hierarchical models.
In the first stage of hierarchy, we model the dependence of the data on random effects. Specifically,
a random field Z = {Z(x) : x ∈ D} is prescribed conditionally on e = {e(x) : x ∈ D}. In the second
stage of hierarchy we model the distribution of a random effect, i.e. the unobserved random field e.

In the Bayesian approach, we have three basic random objects, apart from Z and e it is also the
vector θ of unknown parameters. We get a three-stage hierarchical model:

1. Z | θ, e,

2. e | θ,

3. θ.

A particular example is the model described at the universal kriging and used also in the previous example:

Z(x) = F(x)Tβ + e(x).

35



Assume that the residual random field {e(x) : x ∈ D} is a centred stationary Gaussian random field and
it can be written as the sum of a spatial component and a white noise:

e(x) =W (x) + ϵ(x),

where W = {W (x) : x ∈ D} is a centred stationary Gaussian random field with the autocovariance
function CW (h;σ2, ϕ) = σ2ρ(h;ϕ) and {ϵ(x) : x ∈ D} are uncorrelated random variables having normal
distribution with zero mean and variance τ2. It means that the semivariogram of the random field e is

γe(h;σ
2, τ2, ϕ) = τ21[h̸=o] + σ2 (1− ρ(h;ϕ)) .

It is parameterized by the nugget τ2, the partial sill σ2 and the correlation parameter ϕ which appears
in the autocorrelation function ρ(h;ϕ) of the random field W. The vector of unknown parameters is
thus θ = (βT, σ2, τ2, ϕ)T. Then Z given θ and W is a Gaussian random field with mean F(x)Tβ +W (x)
and autocovariance function CZ|W (h; τ2) = τ21[h=0]. Notice that Z | θ,W does not depend on σ2 and
ϕ at all. In the second stage of hierarchy, we specify W that conditionally on θ is a centred stationary
Gaussian random field with the autocovariance function CW (h;σ2, ϕ), i.e. W does not depend on β and
τ2. The third stage requires determination of a suitable prior distribution for θ. The graphical illustration
of this hierarchical model is shown in Figure 3. Usually the components of θ are taken to be a priori
independent, i.e. the prior density is

p(θ) = p(β)p(σ2)p(τ2)p(ϕ).

Appropriate candidates for the choice of marginal prior distributions are multivariate normal distribution
for β, inverse Γ-distribution for σ2 and τ2 (i.e. 1/σ2 and 1/τ2 have Γ-distribution). The choice for ϕ
certainly depends on the form of the variogram, e.g., for the exponential model ρ(h;ϕ) = exp{−ϕ∥h∥)}
a prior distribution for ϕ is often taken to be Γ. The described model may be also formulated as two-stage.
We utilize that Z | θ is a Gaussian random field with mean F(x)Tβ and the autocovariance function

CZ(h;σ
2, τ2, ϕ) = τ21[h=0] + σ2ρ(h;ϕ).

Z

ǫ W

βτ2 σ2 φ

Figure 3: Representation of the three-stage hierarchical model.

Assume that we observe the vector zn = (z(x1), . . . , z(xn))
T. The Bayesian estimate of the parameter

is then obtained from the posterior density p(θ | zn) given by (13), where in this case f(zn | θ) is the
density of n-variate normal distribution with mean FTβ and variance matrix τ2In + σ2H(ϕ). Here,
F = (fj(xi))i,j is the matrix of type n×(p+1), In is the identity matrix of size n, and H(ϕ) is the matrix
of type n× n with elements ρ(xi − xj ;ϕ), i, j = 1, . . . , n. We may as well use the three-stage hierarchical
model and express the posterior density as

p(θ,wn | zn) ∝ f(zn | θ,wn)p(wn | θ)p(θ),

where f(zn | θ,wn) is the density of n-variate distribution with mean FTβ + wn and variance matrix
τ2In and p(wn | θ) is the density of n-variate normal distribution with zero mean and variance matrix
σ2H(ϕ). However, in this way the number of parameters increases by n components of the vector
wn = (w(x1), . . . , w(xn))

T. In practice, the MCMC methods (in particular, Gibbs sampler) are used.
The form (13) is preferable because the variance matrix τ2In +σ2H(ϕ) behaves better than the variance
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matrix σ2H(ϕ). This could be illustrated on the situation when the points xi and xj are close together.
Then the matrix σ2H(ϕ) is close to a singular matrix while τ2In + σ2H(ϕ) is not.

Estimation of the parameters wn corresponds to the reconstruction of the spatial surface W in the
measurement points x1, . . . , xn. Similarly, we can be interested in the prediction of W (x0) for distinct
choices of x0. According to the relation

p(wn | zn) =
∫ ∫

p(wn | σ2, ϕ)p(σ2, ϕ | zn) dσ2 dϕ,

we may obtain the posterior distribution of Wn = (W (x1), . . . ,W (xn))
T from the posterior distribution

of (σ2, ϕ). Recall that in our case, p(wn | σ2, ϕ) is the density of n-variate centred normal distribution
with variance matrix σ2H(ϕ). Let ((σ2)(t), ϕ(t)) be the output of MCMC algorithm which generates
samples from the distribution with the posterior density p(σ2, ϕ | z). Then it suffices to generate the

vector w
(t)
n from the distribution with the density p(wn | (σ2)(t), ϕ(t)) which gives us the output from the

distribution with the density p(wn | zn).

4 Lattice data

4.1 Modelling and estimation for areal data

By areal data, we mean that the aggregated values associated with some geographical regions (counties,
districts, countries, etc.) are recorded. It is convenient to model such data using the random fields on
a lattice. The sites of the lattice L correspond to individual regions. The neighbourhood relation ∼
may be defined in such a way that two regions are in the relation ∼ if and only if they share a common
boundary. The areal data are often formed by the counts of a certain event (e.g., reported number of
infected people, number of criminal acts). The modelling of discrete spatial data may be based on the
generalized linear models.

Let Z = {Zi : i ∈ L} and W = {Wi : i ∈ L} be random fields on the lattice L. Assume that
conditionally on W, the Zi are independent random variables with mean E(Zi | W) = µi. Next consider
the function h (so-called link function) and assume that

h(µi) = FT
i β +Wi,

where Fi = (f0i, . . . , fpi)
T is a vector of region-specific covariates and β = (β0, . . . , βp)

T is a vector of
regression parameters. This enables non-linear relationships between data and covariates. For binary
data, the usual choice of h is the logit function h(µ) = log µ

1−µ . The random field W models spatial
variation. It captures spatial dependence present in the data. For example, we can use one of the
Gaussian models (CAR, SAR, SMA, SARMA).

The most common approach when modelling the counts is to use a Poisson model. Assume that
Zi | W has a Poisson distribution with parameter θiEi, i ∈ L. Here, Ei is supposed to be known and it
represents the expected number of events in the region i. As a link function we can use the logarithm
and thus we obtain a linear model for log θi:

log θi = − logEi + FT
i β +Wi.

Spatial epidemiology is one of the main fields where this model is used. In this case, Zi represents
the observed number of cases of some disease in region i and Ei is the expected number of cases, which
can be known from some additional information about the problem or may be some known function of
ni people at risk of the disease. For example, we can have Ei = rni, where r is the overall infection rate
in the whole population. The rate r can be estimated by the ratio∑

i∈L Zi∑
i∈L ni

.

This choice means that we expect the same infection rate in all regions. The value θi is the region-specific
relative risk. It gives the true relative risk of the infection in region i. As a covariate we can imagine, e.g.,
the level of air pollution which will have an important contribution when studying respiratory diseases.
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We can also view the whole situation as the hierarchical model and use the Bayesian methods to make
the statistical inference.

Now we consider a different model that specifies the joint distribution. Let {Zi : i ∈ L} be a Markov
random field with density p(z; θ) parameterized by a finite-dimensional vector θ. For discrete data, the
density is equal to the joint probabilities P(Zi = zi, i ∈ L), z = (zi, i ∈ L). For continuous data, it is the
joint density w.r.t. n-dimensional Lebesgue measure.

The maximum likelihood method is one of the most popular statistical methods for estimating the
parameters of a model. We find a value θ̂ at which the likelihood function L(θ) = p(z; θ) attains its
maximum. Here, z = (zi, i ∈ L) are observed data.

If we have a Markov random field with the Gibbs distribution, then

L(θ) = p(z; θ) = exp

{
−
∑
C∈C

ΦC(zC , θ)

}
=

exp
{
−
∑

C∈C:C ̸=∅ ΦC(zC , θ)
}

∫
exp

{
−
∑

C∈C:C ̸=∅ ΦC(zC , θ)
}
ν(dz)

,

where C is the system of cliques (subsets of L for which any two sites are neighbours). The problem
is that the normalizing constant depends on θ and it usually has a very complicated form. There exist
methods for approximation of the normalizing constant employing simulations (mostly MCMC methods).
Then we maximize this approximated likelihood function.

More similar procedure is to consider the so-called pseudolikelihood

LP (θ) =
∏
i∈L

p(zi | z∂i; θ) =
∏
i∈L

exp
{
−
∑

C∈C:C ̸=∅,i∈C ΦC(zC , θ)
}

c(z∂i, θ)
.

The normalizing constant c(z∂i, θ) is often easier to express (in the discrete case it is the sum of |S| terms,
where S is the state space of the random field). If we enumerate the elements of L by 1, . . . , n, then the
likelihood can be written as

L(θ) = p(z1 | z2, . . . , zn; θ)p(z2 | z3, . . . , zn; θ) · · · p(zn−1 | zn; θ)p(zn; θ).

Replacing the conditional densities p(zk | zk+1, . . . , zn; θ) by full conditional densities p(zk | z−k; θ), which
are equal to p(zk | z∂k; θ) thanks to the Markov property, we obtain the pseudolikelihood LP (θ).

The maximum pseudolikelihood estimator belongs to the class of estimators that are known in statis-
tics as M -estimators. Generally, an M -estimator of θ is obtained as the maximum of a contrast function
ϱ(Z, θ). In the classical situation of the maximum likelihood estimation for the sequence of i.i.d. random
variables, we have

ϱ(z, θ) =

n∑
i=1

log p(zi; θ).

In our case, we get

ϱ(z, θ) =
∑
i∈L

log p(zi | z∂i; θ).

4.2 Testing of spatial autocorrelation

Recall that for a random field Z = {Zi : i ∈ L} with constant mean EZi = µ and constant variance
varZi = σ2, we have defined Moran’s I by the relation

I =
n

w

∑
i∈L

∑
j∈L wij(Zi − Z̄)(Zj − Z̄)∑

i∈L(Zi − Z̄)2

and Geary’s c as

c =
n− 1

2w

∑
i∈L

∑
j∈L wij(Zi − Zj)

2∑
i∈L(Zi − Z̄)2

,

where wij are spatial proximity weights (i.e. we require wij = 0 if i = j or i ̸∼ j) and w =
∑

i∈L

∑
j∈L wij .

For the computation of Moran and Geary index one can use functions moran and geary, respectively, in
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the R package spdep. These characteristics can be used as test statistics for testing the hypothesis of no
spatial autocorrelation in data. Denote by M one of these test statistics (either Moran’s I or Geary’s c)
and by Mobs this test statistic computed from data.

Let us consider two different assumptions that correspond to the null hypothesis:

a) randomness assumption: all n! permutations of observed values at n sites of L have equal probability
1/n!,

b) Gaussianity assumption: random field Z is formed by independent random variables with normal
distribution N(µ, σ2).

One of the following three approaches is usually used for testing under the randomness assumption.

1. permutation test : The null hypothesis H0 means that the observed values Zi, i ∈ L, are assigned
completely at random. For n sites we have n! possible assignments. If we compute M for all n!
possibilities, we obtain the distribution of M under H0. Then we can determine the probability
that the value Mobs is exceeded. Both large and small values of this probability indicate against
H0 (if we consider two-sided test).

2. Monte Carlo test : Even if n is not very large, the corresponding number of permutations could
be huge. Instead of calculating M for all permutations, we can generate k random permutations
and construct the empirical distribution of M under H0. Larger k means better approximation
of the true distribution under H0. We take together Mobs with k values of M from generated
permutations and order them from the smallest to the largest. For extreme rank values of Mobs the
null hypothesis should be rejected. For example, if k = 999 we reject H0 on the level 5% when the
rank of Mobs is between 1 and 25 or between 976 and 1 000.

3. asymptotic test : Denote by ErM and varrM the expectation and variance of M under H0 and
randomness assumption, respectively. These first two moments can be determined analytically.
Since one can often show the asymptotic normality of M , it suffices to compare

Mobs − ErM√
varrM

with quantiles of the standard normal distribution N(0, 1).

Under the assumption of Gaussianity, it is not difficult to express the expectation and variance of M
when H0 holds. Denote these moments by EgM and vargM , respectively. Again we can consider the
asymptotic test and compare

Mobs − EgM√
vargM

with quantiles of the standard normal distribution N(0, 1).
It can be shown that EgI = ErI = − 1

n−1 and Egc = Erc = 1. The expectations are the same when
assuming randomness and Gaussianity. However, the formulas for variances differ (see [2]). Moran’s and
Geary’s statistics can be interpreted as follows: if I > EI or c < Ec, then the lattice site has the tendency
to be connected to the site with similar value of the random field. It corresponds to positive spatial
autocorrelation. On the contrary, if I < EI or c > Ec, the values at neighbouring sites have tendency to
be dissimilar. Therefore, we can also consider one-sided variants of the test against the alternative that
the spatial autocorrelation is positive (or negative).

5 Appendix

5.1 Random censoring

Assume that T1, . . . , Tn are independent and identically distributed non-negative random variables with
distribution function F . Our aim is to estimate F . If we observe all values of T1, . . . , Tn, the most natural
estimator of F is the empirical distribution function

F̂n(t) =
1

n

n∑
i=1

1[Ti≤t], t ≥ 0.
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However, in some situations we don’t have information about all Ti. In particular, Ti could represent
the times to some event and their observation is prematurely interrupted. A typical example is the
medical study of the influence of some treatment to the survival of a group of patients. Some of the
observations are incomplete because the patient moved away or the time reserved for the study expired.
Another example comes from the reliability theory where we measure the times to the breakdown of some
product. Except of the random variables Ti (so-called survival times or life times) we also consider random
variables C1, . . . , Cn (so-called censoring times). We observe the random sample (T̃1, D1), . . . , (T̃n, Dn),
where T̃i = min(Ti, Ci) are censored survival times and Di = 1[Ti≤Ci] are indicators of non-censoring.
For Di = 1 we observe the true time Ti while for Di = 0 the censoring happened and we have only partial
information about Ti, namely Ti ≥ T̃i. In the case of random censoring we assume that C1, . . . , Cn

are i.i.d. random variables, independent of T1, . . . , Tn. Then the non-parametric maximum likelihood
estimator of F is the Kaplan–Meier estimator introduced in [4] and defined as

F̂KM (t) = 1−
∏
s≤t

(
1− #{i : T̃i = s,Di = 1}

#{i : T̃i ≥ s}

)
.

The product effectively consists only of finitely many terms that correspond to the times s at which some
life time is realized. The estimator F̂KM (t) is always a non-decreasing and right-continuous function.
Its limit as t → ∞ could be strictly smaller than 1. This happens when the largest observed value is
censored.

The intuitive explanation of the Kaplan–Meier estimator is the following. Divide the interval [0, t)
into smaller intervals [0, t1), [t1, t2), . . . , [tk, t). Then

1− F (t) = P(T1 > t) = P(T1 > t | T1 ≥ tk) · P(T1 ≥ tk | T1 ≥ tk−1) · · ·P(T1 ≥ t2 | T1 ≥ t1) · P(T1 ≥ t1),

where the conditional probabilities

P(T1 ≥ tj | T1 ≥ tj−1) = 1− P (T1 ∈ [tj−1, tj) | T1 ≥ tj−1)

could be estimated by

1− #{i : T̃i ∈ [tj−1, tj), Di = 1}
#{i : T̃i ≥ tj−1}

.

Making the intervals [tj−1, tj) smaller, we get in the limit the expression for F̂KM (t).

References

[1] A. Baddeley and R. Turner (2005): Spatstat: an R package for analyzing spatial point patterns,
J. Stat. Softw. 12, 1–42.

[2] A. D. Cliff and J. K. Ord (1981): Spatial Processes; Models and Applications, Pion Limited,
London.

[3] Y. Guan (2006): Tests for independence between marks and points of a marked point process,
Biometrics 62, 126–134.

[4] E. L. Kaplan and P. Meier (1958): Nonparametric estimation from incomplete observations, J.
Amer. Statist. Assoc. 53, 457–481.

[5] D. G. Krige (1951): A statistical approach to some basic mine valuation problems on the Witwa-
tersrand, J. Chem. Metal. Min. Soc. S. Afr. 52, 119–139.
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[8] M. Myllymäki, T. Mrkvička, P. Grabarnik, H. Seijo and U. Hahn (2017): Global envelope
tests for spatial processes, J. R. Statist. Soc. B 79, 381–404.

40



[9] J. Ohser (1983): On estimators for the reduced second-moment measure of point processes, Math.
Operationsf. Statist., Ser. Statistics 14, 63–71.

[10] E. J. Pebesma (2004): Multivariable geostatistics in S: the gstat package, Computers & Geo-
sciences 30, 683–691.

[11] P. J. Ribeiro Jr and P. J. Diggle (2001): geoR: a package for geostatistical analysis, R-NEWS
1, 15–18.

[12] B. D. Ripley (1976): The second-order analysis of stationary point processes, J. Appl. Probab.
13, 255–266.

[13] M. Schlather, P. J. Ribeiro Jr. and P. J. Diggle (2004): Detecting dependence between
marks and locations of marked point processes, J. R. Statist. Soc. B 66, 79–93.

41


