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1. Spatial models on lattices

1.1 Markov random fields

Let L C R? be a finite non-empty set that will be referred to as a lattice. It could be a regular grid,
eg. L =1{1,2,...,N}? (for N = 10 and d = 2 see Figure 1 left). This could be useful when studying a
type of spatial data in the form of images. In this case, the elements of L (called sites) represent pixels
(d =2) or voxels (d = 3). The sites can also represent some geographic regions (an example is shown in
Figure 1 right). Spatial data given by the observations related to these regions are known as areal unit
data.

Figure 1. Two examples of lattices in the plane. Left: regular square grid 10 x 10. Right: capitals of 13
regions of the Czech Republic, two sites are connected if the regions share a common border.

Definition 1. A family of random variables {Z; : i € L} defined on a probability space (2, A,P) is
called a random field on the lattice L. The state space of the random variables Z; will be denoted by
S CR.

The simplest random field is obtained from independent random variables. It serves as the basis for
the definition of more interesting random fields that allow spatial dependence.

Definition 2. A random field {Z; : i € L} is said to be a (spatial) strict white noise if the random
variables Z; are centred, independent and identically distributed.

The number of sites will be denoted by n = |L|. Sometimes it is convenient to order the sites
by numbers 1,...,n. Then the random field Z = {Z; : i« € L} can be viewed as a random vector
Z = (Zy,...,Z,)T. Its distribution is given by the density p(z) w.r.t. some o-finite measure " on

S™. Here, v denotes the n-th power of the measure v on S in the sense of the product of measures.
As a measure v, we usually consider the counting measure (discrete states) or the Lebesgue measure
(continuous states). Taking into account the isomorphism between L and {1,...,n}, we use the same
symbol p(z) for the density on S*, 2z = {z; : i € L} € S*, and by v* we denote the corresponding
product measure on ST. For A C L, we write shortly z4 = {z; : j € A}. For disjoint sets A, B C L, we
denote zawp = {y; : j € AU B}, where

|, for j € A,
Yi = w;, forj e B.

Let ~ be a symmetric relation on L x L. We say that two sites are neighbours if they are in this
relation. For simplicity, we use the following notation: 9i = {j € L : j ~i,j # i}, —i = L\ {i} fori € L,
and —A =L\ Afor AC L. The set L and the relation ~ generate an unoriented graph where the set of
nodes is L and two distinct nodes i, € L are connected by an edge if and only if ¢ ~ j. On the other
hand, every unoriented graph determines the system of neighbours. Figure 1 shows two examples of such
unoriented graphs: a regular square lattice with the nearest-neighbour relation and an irregular lattice
with the geographic adjacency neighbourhood.



Definition 3. A set A C L is called a cliqgue w.r.t. ~ if i ~ j for any i,j € A, i # j. We denote by
C={C C L:Cisaclique} the system of all cliques. Moreover, put C; = {C €C :i € C} fori € L.

Remark 1. The empty set and all singletons {i} are cliques.

To simplify the notation, we use the symbol p not only for joint density but also for marginal and
conditional densities. The type of density will be clear from the arguments of p.

Definition 4. A random field {Z; : ¢ € L} is called Markov w.r.t. ~ if the conditional distribution
of Z; | Z_; coincides with the conditional distribution of Z; | Zg; for every i € L. In the language of
conditional densities, it means that p(z;|z_;) = p(zi|za;) for vF-a.a. z = {z; : i € L} € ST satisfying
p(z) > 0. This condition is known as the local Markov property. The densities p(z;|zs;) are called local
characteristics.

Remark 2. If 9i = (), the local Markov property means that the conditional distribution of Z; | Z_; is
the same as the distribution of Z;. In other words, Z; and Z_; are independent.

Remark 3. The local Markov property is equivalent to the condition p(z;|z4) = p(z;|za:) for vF-a.a. z
satisfying p(z4) > 0 and for any i € L and 9i C A C —i.

Ezxample: Tt is obvious that the strict white noise is an example of a Markov random field.

Ezample: A Markov chain {Z,...,Z,} is a one-dimensional Markov random field (d = 1 and L =
{1,...,n}) w.r.t. the relation i ~ j < |i — j| < 1 (see Exercise class).

Definition 5. Let A, B, C be pairwise disjoint subsets of L. We say that Z 4 and Z g are conditionally
independent given Z ¢ if
p(zazplzc) = p(zalzc) p(zBlzc)

for vE-a.a. z satisfying p(z¢) > 0.

Lemma 1. Let {Z; :i € L} be a random field and let A, B, C be pairwise disjoint subsets of L. Then
Z 4 and Z g are conditionally independent given Z if and only if

p(zalzpzc) = p(zalz0)
for vF-a.a. z satisfying p(zpzc) > 0, which happens if and only if
p(zBlzazc) = p(zslzc)

for vE-a.a. z satisfying p(zazc) > 0.
Proof: By simple manipulation, it follows from the definition of the conditional density that
p(zazpzco) _ p(zazslzc)

p(zalzpzc) = p(zsz0)  p(zslzo)

The second equation is obtained by interchanging A and B.
Ul

Hence, the local Markov property from Definition 4 is equivalent to the fact that Z; and Z_ (4081
are conditionally independent given Zj;.

Remark 4. Instead of an unoriented graph, we can work with a directed acyclic graph. Its nodes are
sites from L. If there is a directed edge from i to j, then i is referred to as a parent of j and j is referred
to as a child of i. We say that {Z; : i € L} is a Bayesian network, if Z; and Z_({;}ude(i)upa(i)) are
conditionally independent given Z,;) for every i € L. Here, de(i) is the set of all descendants of i
(i.e. all nodes that can be reached by a direct path from ) and pa(i) is the set of parents of . Since the
graph is acyclic, we have pa(i) C —({i} Ude(i)). The joint density is then given by the relation

p(z) = Hp(ZZ | zpa(i))'

ieL
Bayesian networks are widely used in the field of artificial intelligence.
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The number of neighbours is usually much smaller than the number of sites. While the full conditional
distributions Z; | Z_; can be very complicated, the local characteristics depend only on the neighbours
of a given site. The structure of the random field is then simpler thanks to the local Markov property.
This is used in MCMC methods, where the steps in Gibbs sampler are typically much easier.

We know that for Markov chains, the transition probabilities (or transition densities) together with
the initial distribution determine the joint distribution of the chain. We can ask when the system of local
characteristics determines the joint density of the random field. As opposed to the case of Markov chains,
we can not expect that the local characteristics may be chosen arbitrarily so that the joint density exists
and is unique (see Exercise class). The following theorem states that the conditional distributions well
define the joint distribution if they are derived from a joint density of a particular form.

Definition 6. We say that a random field with the joint density p(z) satisfies the positivity condition
if p(z) > 0 for all z € SE.

Theorem 2. (Hammersley—Clifford theorem) A random field satisfying the positivity condition is Mar-
kov if and only if there exist functions gc : S¢ — RT such that

= H gc(Zc), RS SL.
cecC

Proof: The simpler implication is from right to left. If the density has the required form then

) = p(z) _ [eec 9c(zc) - H go(ze),

p(zilz—i =
p(z—i) fS HCeCi gc (wiz*iﬁC) HCEC\Ci gc(zc) (dwl) cec;

where the symbol o means that p(z;|z—;) is proportional to [[sce, 9c(2¢). Since i € C implies C' C
{i} U 94, we also have

z ua
p(zi|z8i) = {z} . I I gC ZC
0i) cec;

Now assume that the random field is Markov. Fix some configuration w € S* and define

Va(za)=—logp(zaw_4) and Py(z4)= Z (-1)A-IBlw 5 (25), ACL.
BCA

From Lemma 3 it follows that ¥ 4(z4) = > gc 4 ®r(2B). For the density p(z) we get
p(z) = exp{~Vr(z1)} =exp{ = > ®5(zp) § = [] 9n(2n),
BCL BCL
where gp(zp) = exp{—®p(zp)}. It remains to show that if B is not a clique, then gp(zp) = 1, which

is equivalent to ®p(zp) = 0. If B is not a clique, then there exist two sites i, j € B such that ¢ # j. For
AC B\{i,j}let us denote A, = AU{i}, A; = AU{j}, Aj; = AU{i,j}. Then

®p(zp) = Y (—1)PIT0,(2)

ACB

= Z (_l)lB‘_‘A‘ [\I/A(ZA) - \I/Ai(zAi) - \IJA]' (ZAJ') + \I/Aij (zAij )}
ACB\{i,j}

_ Z (_1)|B\—\A\10gp ZA,W-A,)P (ZAJ‘w*Aj)

ACB\{i,j} p(za,;w-a,;)p(zaw_4)

ACB\{i,j}

=0.

(
(
_ _pBl-laly p(zilzaw_a,)p(wilza, w4,
> (-1 log (
(2
(

;)
p(2ilza;woa,;)p(wilzaw- A)
)
)

AR CIU S U

ACB\ (i) p(zilzaw_a,; )p(wilzaw_4,;



The positivity condition assures that the conditional densities are well-defined. We have used the relation
p(zilzaw_a,) = p(zilzaw_4,;) = p(zi|za;,w_4,;), which follows from the local Markov property (see
Remark 3) because i ¢ j.
Note that &y = ¥y = —log p(w) and gy = e~%? = p(w) is a normalizing constant, which is generally
difficult to compute.
t

Lemma 3. (Mbbius inversion formula) Let ® and ¥ be real-valued functions defined on the power set
of a finite set L. Then

o(A)= > (-)IPg(B) VACL =  ¥(A)=> ®[B) VACL

Proof: First we show the implication from left to right:

Yo=Y Y (-nE-Plym) =3 3 (-1)e(D) = u(4)

BCA BCADCB DCACCA\D

because ZCCA\D(*I)‘C‘ is distinct from zero only if A\ D = (. This can be seen from the identity

Sreo (Z) (—1)* = 0 for n € N, which follows from the binomial theorem.
The reverse implication is shown analogously:

Z( 1)4-1Bly (B Z Z DIA=IBle (D Z Z 1)lAI=IPI=IClg (D) = @(A).

BCA BCADCB DCACCA\D

Definition 7. The distribution of a random field {Z; : i € L} with density

p(2) exp{ Z(I)CZC}’ ze St (1)

ceC

is called the Gibbs distribution. The random field {Z; : i € L} is then called the Gibbs random field.
It plays an important role in statistical mechanics where its density is usually written as p(z) =
£ exp{—FE/T}. The term E is interpreted as the total energy (Hamiltonian) of the configuration z.
It is given as the sum of potentials Viz(z¢) over all non-empty cliques,

E = Z Vc(ZC).

ceC\{0}

The parameter 7' is a constant called the temperature, and Z is a normalizing constant called the partition
function,

Z[SLeXp f% > Volze) p vH(d2).

Cec\{0}

In this context, Vo (z¢) = T®c(z¢) is the potential of the configuration z¢, TUo(z¢) is the energy of
zc, and the partition function is Z = e®.

The Hammersley—Clifford theorem says that every Markov random field satisfying the positivity
condition is a Gibbs random field where gco(z¢) = exp{—Pc(z¢)}. We have already mentioned that
the conditional distributions do not determine the joint distribution. Therefore, we can not specify the
conditional distributions directly. However, we may instead construct them by choice of the potential
functions ®-. An advantage is that such conditional specification involves just a few functions. Since the

expression
=[] 9c(zc)
ceC
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is not unique, also the potentials are not uniquely determined. For given go(z¢), C # 0, the normalizing
constant gy = e~ %0 is already uniquely determined. It is given by

90 = IT 9c(ze)vh(dz)

St cee\ {0y

provided that the integral is finite and positive. Therefore, it is enough to specify the functions g¢
or ®¢ (or equivalently Vo and the temperature T') for non-empty cliques C. We can write the local
characteristics in terms of the potentials in the following way:

p(zilz_i) exp{ > @c(zc)}. (2)

cec;

Let us give some examples of Markov random fields.

Example: The simplest non-trivial situation is when the state space has only two elements. Consider
S = {0,1}. In image analysis, the sites of L represent pixels, z; = 1 usually denotes black colour and
z; = 0 white colour of the pixel :. When dealing with areal unit data, we may put z; = 1 if an event of
interest occurs in the region ¢ and z; = 0 otherwise. Define (for C # ()

=B, it C={ij},i~jand z = zj,
®o(z0) = {O, otherwise,

where § > 0 is a parameter (in statistical mechanics it is referred to as the inverse temperature). Then
we get the joint density (w.r.t. the counting measure)

1
P(z) =5 =exp B Y lp—.o,
26 "\ 5
i,j}iing

where

Z(ﬁ) = Z €xXp ﬁ Z 1[zi:zj-] = e(b@

ze{0,1}1 {i.g}ring

is the partition function (here also sometimes called the partition sum), which is finite because S is finite.
The local characteristics satisfy

exp {6 Zjeai 1[Zj:Zi]}
exp {ﬂ 2jeoi 1[4:1]} +exp {ﬂ 20 Lzi=0) } |

p(zilzai) =P(Z; = z; | Zo; = zpi) =

For B8 = 0, every configuration has the same probability. It means that the values 0 and 1 are indepen-
dently and uniformly randomly assigned to the sites. For § > 0, the configurations with attractive forces
among the neighbours are more probable. The probability that a given pixel is black, given that it has &k
black neighbours and m — k white neighbours, is e?* /(e®¥ 4 e#(m=k)) For 8 — oo, one state prevails in
the whole configuration. Figure 2 shows simulated realizations of random fields on a regular grid 25 x 25
for different choices of the parameter 5. Theoretically, it is also possible to consider § < 0. Then the
neighbouring pixels of a black site will more likely tend to be white.

This random field is known as the Ising model [8]. It has been proposed as a mathematical model
of ferromagnetism in statistical mechanics. The value Z; represents the atomic spin at the site i, usually
+1 is used for the upward orientation and —1 is used for the downward orientation.

The Ising model (as well as other Markov random fields) can be extended to an infinite lattice. The
problem is that the sum in (1) may be infinite However, we can still consider local characteristics (if
every site has finitely many neighbours) of the form (2). A Gibbs distribution can be defined so that its
conditional distributions are determined by given local characteristics. The question is the existence and
uniqueness of such distribution. It turns out that the Gibbs distribution on an infinite lattice exists (if the
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state space is compact), but generally it is not unique. In this case, we speak about a phase transition.
In particular, consider a regular planar grid Ly = {—N,..., N}2. We are interested in the behaviour
of the Ising model for N — oo, i.e. Ly ' Z?. There exists a critical value 3. = log(1 + \/5) = (0.881
(analytically computed by Onsager [12]), at which the phase transition occurs. For § < ., the Gibbs
distribution is unique, whereas for 8 > [, it is not. In the case 8 > f., the values at the boundary of
lattice Ly influence the marginal distribution of Z(g ), when N — co. It means that there are long-range
interactions in the configuration. From the physics point of view, the particle is magnetized.
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Figure 2. Simulations of the Ising model on the rectangular lattice 25 x 25 for 8 € {0;0.3;0.6;1}.
In the definition of ®¢, we can allow non-zero values for one-point cliques: ®;(z;) = —f3h;. Then

the total energy is

b= 72}” - Z Lzi=zy)

i€L {i,5}i~vg

and the joint density is p(z) x exp{—E/T} = exp{—BE}. The values h; can be interpreted as the
influence of an external magnetic field. Further possible generalization is to admit the dependence of the
interaction strength on the sites or the values of the field in these sites. It means that 3 is then a function
of 7, j, z; and z;. We can also consider the interactions of higher order than just pair interactions.
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Even though the local structure is simple, the Ising model is already quite complex. The joint
density contains a computationally demanding normalizing constant. Therefore, direct simulations from
the model are practically unfeasible and one has to exploit MCMC or other methods.

Ezxample: The Potts model is a multicolour generalization of the Ising model. Let
S={0,1,...,n.— 1},

where n. > 2 denotes the number of colours. The potential functions ®¢ are defined exactly as in the
case of the Ising model. The local characteristics become

€xXp {ﬂ Zjeai 1[Zj:Zi]}
ZZCZBI exp {ﬁ Ejeai 1[Zj:k]}

In statistical mechanics, the Potts model is a model of interacting spins.

p(zi|zai) = P(Zs = 2; | Zoi = za:) = , 2z €{0,...,n.—1}.

Exzample: In the Potts model, the arrangement of the state space S does not play any role. There is equal
strength of attraction for all colours. However, we can imagine that 0 corresponds to white colour, n.—1
to black colour, and other states to different grey shades. Then it would be desirable to take the ordering
into account. The attraction could be larger for similar colours. For example, we can consider the model
with the following local characteristics:

Ne — 1 2 Nne—1—2z;
P(zilzoi) =P(Zi = 2 | Zoi = z0i) = ( . )W(zaz‘) (1 —m(zai))

= ("Z_ 1> (1—7(z00))" " exp {z log M} )

1—7(z0i)

where 7(zp;) are prescribed probabilities. It means that Z; | Zy; = z; has a binomial distribution with
parameters n. — 1 and 7(zy;). If we assume that 7(z5;), ¢ € L, satisfy

log

WD) ) =i — Z Bijzj; (3)

1—7(zs;
(z0i jedi

then we get the Markov random field with potentials ®;(2;) = B;2; — log (";__1), Oy, 5y (2i25) = Bijziz;
and ®c(z¢) = 0 for |C| > 2. The relation (3) is analogous to the logistic regression model. Therefore,
such model for a random field {Z; : i € L} is known as an autologistic model.

Ezxample: Let us move to the countable state space: S = Ny. In practice, this situation appears when
we deal with counts data, e.g. disease-incidence counts in some regions. Consider a model where these
counts have the Poisson distribution with intensity A(zg;) that depends on the counts in neighbouring
sites:
_ _ _ _ Mzai)* |
p(Z”Zai) = ]P)(Z1 = Z; | Zai = Zai) = eXp{fA(Zai)}T = exp{f/\(zai) + z; IOg )\(Zai) - IOg Zz}

i
These local characteristics are called auto-Poisson. In order to get a Gibbs distribution of {Z; : i € L},
we require

log M(zai) = —Bi — > Bijz;.
JEOIi

Moreover, we have to make sure that the normalizing constant is finite:

Z = Z exp§ — Z(log zil + ﬁlzz) - Z Bijzizj < 0.

zeSL €L {i,j}eC

It can be shown that the sum is finite if and only if 3;; > 0 for all 4,5 € L such that ¢ ~ j, i # j
(see Exercise class). The condition 8;; > 0 means that large values of neighbours of the site ¢ result in
a higher probability of smaller values in . This restricts the practical application of the auto-Poisson
model.



1.2 Gaussian models

Gaussian random fields are the most frequently used examples of random fields with continuous states. Let
{Z; :i € L} have an n-dimensional Gaussian distribution with mean g and positive definite covariance
matrix X, i.e. the joint density has the form

1
——————¢€
(2m)"/2\/det &

The inverse of the covariance matrix is commonly referred to as the precision matriz. We denote it by
Q = 7! and its elements by ¢ij, i,j € L. Then the conditional distributions Z, | Z_; = z_; are

Gaussian with mean 1
= — Y ai(z — 1)
Gii <

p(z) = I i CE] B

and variance 1/g;; (cf. Theorem 94). This suggests a convenient choice of neighbourhood relation that
ensures the local Markov property. If we put ¢ ~ j < ¢;; # 0, then we get a Markov random field because
the conditional distribution Z; | Z_; does not depend on Z; for j that is not a neighbour of i.

Definition 8. Let ~ be a neighbourhood relation. A random field Z = {Z; : i € L} is called a Gaussian
Markov random field if it has n-dimensional normal distribution with positive definite covariance matrix
X satisfying ¢;; # 0 & ¢ ~ j, where ¢;; are elements of the matrix Q = >t

The following theorem states that the random variables corresponding to non-neighbouring sites are
conditionally independent.

Theorem 4. Let Z ={Z; :i € L} be a Gaussian Markov random field. Then, for i # j, Z; and Z; are
conditionally independent given Z _¢; ;y if and only if i ¢ j (i.e. gij = 0).

Proof: We could simply use Lemma 1 and the knowledge of the distribution of Z; | Z_,. However, let us
proceed directly from the definition. Recall that the conditional independence of Z; and Z; given Z_y; ;3
means that p(z, zj|z_(; ;1) = p(2ilz—(,51)p(2j|2—(,51)- Since the joint distribution of Z is Gaussian,
also the conditional densities are Gaussian densities. From the relation for the joint density

1 1
Z2)= o, e X S o — L
p(2) (27)/2+/det = p 2;( & — k) qr (21 — )
we deduce that

1
P(ziy 25 | 2_(i4y) eXP{(Zi — pi)(zj — pj)aij — 5(21' — 1)’ qii — Z (2 — ) (26 — pk) Gike
ki, j

- %(Zj — 1) a55 = Y (2 — )z — uz)(Jﬂ}- (4)

14,5

If qij = 0, then

1
(i, 2j|z—{i,5y) o< exp —5(21' — i) qii — (2 — i) Z (21 — 1) ik

ki g
1
xexp§ —5 (2 — 1) a5 — (25— 13) Y (2= p)azi ¢
i

where, apart from the normalizing constant, the first term is p(z; | z_{;;;) and the second term is
P25z {ijy)-
Conversely, if p(zi, zj|2_yi ;3) = p(2ilz—{i,53)P(2j]2—{i ;3 ), the right-hand side of (4) does not contain
the term with (z; — u;)(2; — ;). Hence, g;; = 0.
a



The simplest example of a Gaussian Markov random field is obtained when any two distinct sites
are not neighbours. It means that both Q and X are diagonal matrices. A particular case is ¥ = 021,
where I is the identity matrix.

Definition 9. We say that a random field {Z; : i € L} is a Gaussian (spatial) white noise if the random
variables Z; form a strict white noise and have normal distribution N (0, c?).

Another simple example of a Gaussian Markov random field is a Gaussian autoregressive sequence
of order 1 (see Exercise class). More information on the theory and applications of Gaussian Markov
random fields can be found in the monograph [15].

The Gaussian Markov random fields were defined by their joint density, determined by the mean
p and the precision matrix Q. Alternatively, we can specify the full conditional distributions Z; | Z _;.
Obviously, we are not allowed to choose the conditional distributions arbitrarily (see Exercise class).

Lemma 5. (Brook’s lemma) Let p be the density of an n-dimensional random vector. For x,y € R"
satisfying p(x),p(y) > 0, the following relation holds:

p(m) :ﬁp(zi|z17"'7$i*1;yi+17"'7yn)
p(y) i=1 p(yi|$15‘"5$i—17yi+1a"'ayn)
n
:Hp(xikyla"'ayi—hxi-‘rl""axn)
i=1 p(yi|y17---7yi717$i+17---7$n)
Proof: From the relation
p(enlry, .. xn1) p(Tr, . Tn1)  p(T1,. . Tt Tn)

p(YnlT1, s Tn—1)p(@1, .o 1) P(TL, . Tp1,Yn)

it follows that

p(@n|21,- -, Tno1)
x) = Ti1, .oy Tn_1, .
p( ) P(yn|3€1,---,$n—1) p( 1 n—1 yn)

Now we can similarly express the last term on the right-hand side:

p(Tn_1|T1, - s Tn—2,Yn)
p(yn71|$17 cee 7$n727yn)

p(‘r17"'7xn—17yn): p(xla"'axn—Qayn—layN)'
In this way, we inductively obtain the desired equation. The second equation is obtained analogously by
adjusting the formula
p(x1|z2, ..., 2n)
plx) = —F/—"—""-—=pW1,T2...,2n).
( ) p(y1|$27---7$n) ( ")

O

Brook’s lemma gives instructions on how to get the joint density from the full conditional densities.
We fix some y and apply Lemma 5 to compute p(x) up to the normalizing constant p(y). The normalizing
constant is determined so that the integral of the joint density is equal to one. If we obtain a function
that is not integrable, then our system of conditional densities does not lead to a proper joint density.
The system of full conditional densities that gives a proper joint density is called consistent.

Definition 10. The system of conditional densities {p(z;|z_;) : i € L} is called consistent if there
exists a joint density p(z) of a random field {Z; : i € L} such that p(z;|z_;) are the corresponding full
conditional densities. The random field {Z; : i € L} is called the conditional autoregressive model which
is abbreviated as CAR.

A particular CAR model is obtained by choosing Gaussian conditional densities. Let B = (b;; )i jer
be a zero-diagonal matrix (b; = 0 for all i € L). Let 72, i € L, be positive parameters. Denote by D a
diagonal matrix with elements d;; = 77 in its diagonal. Consider the system of conditional distributions
such that Z; | Z_; has a Gaussian distribution with mean jer bi; Z; and variance Tl? . Enumerate the

sites of L by 1,...,n and fix y = o as the null vector in R". Then by Lemma 5 we have
p(Z) n 22 n 1—1 b n 2’2 n—1 n b
] 1, 3 1,
— = exp 722124’22—;21'2]' = exp 722124’2 Z —gzizj y ZER”.
p(0) o1 T i=2 j=1 T o1 T i=1 j=i+1 T

10



Comparing these expressions, we get the necessary conditions

% = i—? for all 4, j. (5)
Under these conditions,
D 22 "N by 1 -~
p(z) = p(o) exp ; 2; + ;; 2;12 zizj ¢ = p(o) exp 3 ;;(Zijzizj )

where ¢;; are the elements of the matrix Q = D! (I — B). From this we see that under the assumption of
the positive definiteness of @ (which is equivalent to the positive definiteness of I — B), the density p(z)
is the density of a centred n-dimensional normal distribution with precision matrix Q. The normalizing
constant p(o) is equal to (27)~"/2\/det Q. The matrix @ is symmetric due to (5). Note that the matrix
B is not symmetric unless all 77 are equal. Our choice of n conditional normal distributions is consistent
under the condition (5) and if I — B is assumed to be positive definite.

Definition 11. Consider a matrix B = (b;;); jer such that b, = 0 for all i € L and I — B is positive
definite. Let 72, i € L, be positive parameters satisfying (5). Then there exists a random field {Z; : i € L}
for which Z; | Z_; has a Gaussian distribution N(3;. 1 bi;Z;, 7; 2). We will refer to it as the Gaussian
CAR model.

The Gaussian CAR model can be viewed as the Gaussian Markov random field w.r.t. the relation
i~ j & ¢y # 0. The whole system can be briefly written as Z = BZ + e, which is equivalent to the
expression (I — B)Z = €. Since Z has a centred n-dimensional normal distribution with the covariance
matrix Q' = (I — B)~'D, the vector € has a centred n-dimensional normal distribution with the
covariance matrix D(I — B)™T. It means that the elements of € are not independent. For simplicity, we
have considered the centred case. However, we can easily incorporate the mean g in the model:

Z=p+B(Z—-p)+e. (6)

Besides the approach using conditional distributions, it is possible to consider spatial Gaussian mo-
dels where the random field is specified simultaneously. This approach is motivated by the generalization
of autoregressive sequences from stochastic processes in time. The relation (6) can be rewritten as

wa +51; i€ L.
JeL

While for the CAR models, Z induces the distribution of €, we now let € induce the distribution of Z.

Definition 12. Let € = {¢; : i € L} be a Gaussian white noise. We assume that B is a matrix whose
diagonal elements are zero and that (I — B)™! exists. The matrix B is not necessarily symmetric. We
define the random field Z = {Z; : i € L} by the relation

(I-B)(Z-p)=¢. (7)

We speak about the simultaneous autoregressive model with mean p and abbreviate it by SAR.

Clearly, EZ = p and the covariance matrix of Z is
E(Z - n)(Z — )" = o*(I - B)™(I - B")~!

Since Z is a linear transformation of e, the distribution of Z is normal. The relation (7) coincides with
(6). The difference is that now we considered (in analogy with the time series autoregressive model) € to
be a white noise. The elements of matrix B determine the spatial dependence. If b;; = 0, then Z; and
Zj are conditionally independent given Z_; ;3. The joint density has the form

W) = e ew g W T BT - B} 2R
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Note that cov(e, Z) = o*(I — BT)~!, and so (as opposed to a causal autoregressive sequence in time)
the £; may depend on the autoregressors.

Similarly, we can consider generalizations of the moving average (MA) models or ARMA models to
spatial models.

Definition 13. Let € = {¢; : i € L} be a Gaussian white noise, let u be a vector of means and let E
be a matrix of real coefficients. The random field Z = {Z; : i € L} given by Z = p+ (I — E)e is called
a spatial moving average and is abbreviated by SMA. If we moreover consider a zero-diagonal matrix B
such that I — B is invertible, then we define a SARMA model by

(I-B)(Z—p)=(I-B).

For the SMA model, Z has an n-dimensi