NMFM401 - Mathematics of Non-Life Insurance 1

6. Frequency III - Models for the Number of Payments

A Exercises

1. For the data from the following table determine the MoM estimates of the parameters of the Poisson-Poisson distribution where the secondary distribution is the ordinary (not-zero truncated) Poisson distribution. Perform the chi-squared GoF test using the model.

No. of accidents	Observed frequency
0	103,704
1	14,075
2	1,766
3	255
4	45
5	6
6	2
$7+$	0

2. Show that for any pgf, $P^{(k)}(1)=\mathbb{E}[N(N-1) \cdots(N-k+1)]$, provided the expectation exists. Here $P^{(k)}(z)$ indicates the k th derivative. Use this result to conform that the first three central moments of the compound Poisson distribution are

$$
\mu_{j}=\lambda m_{j}^{\prime}, \quad j=1,2,3
$$

where m_{j}^{\prime} is the j th raw moment of the secondary distribution.
3. Show that the pgf for the inverse Gaussian distribution

$$
f(x ; \mu, \theta)=\left(\frac{\theta}{2 \pi x^{3}}\right)^{1 / 2} \exp \left\{-\frac{\theta(x-\mu)^{2}}{2 x \mu^{2}}\right\}, \quad x>0, \mu>0, \theta>0
$$

is

$$
P(z)=\exp \left\{-\frac{\theta}{\mu}\left[\sqrt{1-2 \frac{\mu^{2}}{\theta} \log z}-1\right]\right\}
$$

4. Individual losses have a Pareto distribution

$$
f(x ; \alpha, \theta)=\frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}, \quad x \geq 0, \alpha>0, \theta>0
$$

with $\alpha=2$ and $\theta=1,000$. With a deductible of 500 the frequency distribution for the number of payments is Poisson-inverse Gaussian with $\lambda=3$ and $\beta=2$. If the deductible is raised to 1,000 , determine the distribution for the number of payments. Also, determine the pdf of the severity distribution (per payment) when the new deductible is in place.

B Homework

1. In Exercise Hw 4 from the previous assignment, the best model from among the members of the $(a, b, 0)$ and $(a, b, 1)$ classes was selected for the four data sets. Fit the PoissonPoisson, Polya-Aeppli, Poisson-inverse Gaussian, and Poisson-ETNB (generalized PoissonPascal) distribution to these data and use the chi-squared GoF test as well as the LRT to determine if any of these distributions should replace the one selected in Exercise Hw 4 from the previous assignment. Is the current best model acceptable.
2. Verify that for the Poisson-binomial distribution, the first three central moments are

$$
\begin{aligned}
\mu & =\lambda m q \\
\sigma^{2} & =\mu[1+(m-1) q], \\
\mu_{3} & =3 \sigma^{2}-2 \mu+\frac{m-2}{m-1} \frac{\left(\sigma^{2}-\mu\right)^{2}}{\mu} .
\end{aligned}
$$

3. Show that the negative binomial-Poisson compound distribution is the same as a mixed Poisson distribution with a negative binomial mixing distribution.
4. Losses have a Pareto distribution with $\alpha=2$ and $\theta=1,000$. The frequency distribution for a deductible of 500 is zero-truncated logarithmic with $\beta=4$. Determine a model for the number of payments when the deductible is reduced to 0 .
(Version: October 30, 2013)

Source

[1] Klugman, Stuart A., Panjer, Harry H., and Willmont, Gordon E. Loss Models: From Data to Decisions. John Wiley \& Sons, Inc., New York, NY, 4th Edition, 2012.

