
Circuit Lower Bounds in Bounded Arithmetics

Ján Pich1

Department of Algebra
Faculty of Mathematics and Physics

Charles University in Prague
Sokolovska 83, Prague, CZ-186 75, The Czech Republic

Abstract

We prove that TNC1 , the true universal first-order theory in the language
containing names for all uniform NC1 algorithms, cannot prove that for
sufficiently large n, SAT is not computable by circuits of size n4kc where
k ≥ 1, c ≥ 2 unless each function f ∈ SIZE(nk) can be approximated by

formulas {Fn}∞n=1 of subexponential size 2O(n1/c) with subexponential advan-

tage: Px∈{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n1/c). Unconditionally, V 0 cannot
prove that for sufficiently large n, SAT does not have circuits of size nlogn.
The proof is based on an interpretation of Kraj́ıček’s proof [J.Kraj́ıček, On
the proof complexity of the Nisan-Wigderson generator based on NP∩coNP
function, Journal of Mathematical Logic 11(2011) 11-27] that certain NW-
generators are hard for TPV , the true universal theory in the language con-
taining names for all p-time algorithms.

Keywords: bounded arithmetic, circuit lower bounds
2000 MSC: 03B70, 03D15, 03F20

1. Introduction

We investigate the provability of polynomial circuit lower bounds in weak
fragments of arithmetic including Buss’s [1] theory S1

2 and its subsystems.
These theories are sufficiently strong to prove many important results in
Complexity Theory. In fact, they can be considered as formalizations of
feasible mathematics. A motivation behind the investigation of these theo-

Email address: janpich@yahoo.com (Ján Pich)

Preprint submitted to Annals of Pure and Applied Logic August 16, 2014

ries is the general question whether the existential quantifiers in complexity-
theoretic statements can be witnessed feasibly and so that to derive the
witnessing we do not need to exceed feasible reasoning.

Informally, our formalization of nk-size circuit lower bounds for SAT,
denoted by LB(SAT, nk), has the following form:

∀n > n0, ∀ circuit C with n inputs and size nk ∃ y, a such that
(C(y) = 0 ∧ SAT (y, a)) ∨ (C(y) = 1 ∧ ∀z¬SAT (y, z))

where n0, k are constants and SAT (y, z) means that z is a satisfying assign-
ment to the propositional 3CNF formula y, see Section 2.

If S1
2 proves the formula LB(SAT, nk) for some constant n0, then by the

usual kind of witnessing, Buss’s witnessing [1] or the KPT theorem [12], for
any nk-size circuit with n inputs we can efficiently find a formula of size n
on which the circuit fails to solve SAT, see Proposition 4.1.

One could hope to use the p-time algorithm to derive a contradiction
with some established hardness assumption, however, Atserias and Kraj́ıček
noticed that the same p-time algorithm follows from standard cryptographic
conjectures, see Proposition 4.2. (Actually, as discussed in Section 4, a ran-
domized version of such observations appeared already in Buss [3, Section
4.4] and Cook-Mitchell [6, Section 6].) It is an interesting question to ask
how strong theories are needed to derive these conjectures.

We do not know how to obtain the unprovability of SAT circuit lower
bounds in S1

2 but we can do it basically for any weaker theory with stronger
witnessing properties. We present it in the case of theory TNC1 which is
the true universal first-order theory in the language containing names for all
uniform NC1 algorithms.

In theories weaker than S1
2 , like the theory TNC1 , the situation is less

natural because they cannot fully reason about p-time concepts. In par-
ticular, some universal quantifiers in LB(SAT, nk) can be replaced by exis-
tential quantifiers without changing the intuitive meaning of the sentence.
The resulting formula LB∃(SAT, n

k) (defined in Section 5) is equivalent to
LB(SAT, nk) in S1

2 but not necessarily in TNC1 . This is because LB∃(SAT, n
k)

asserts among other things the existence of computations of general nk-size
circuits, a fact which may not be TNC1-provable. Therefore, it is essentially
trivial to obtain a conditional unprovability of LB∃(SAT, n

k) in TNC1 , see
Proposition 6.1. This is not the case with the formalization LB(SAT, nk)

2

and in this sense it is easier and more suitable for the theory TNC1 to reason
about LB(SAT, nk).

The main result of this paper is that we can obtain a conditional un-
provability of LB(SAT, nk) as well. We show that LB(SAT, n4kc) for k ≥
1, c ≥ 2 is unprovable in TNC1 unless each function f ∈ SIZE(nk) can be

approximated by formulas Fn of size 2O(n1/c) with subexponential advantage:
Px{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n1/c). The proof will be quite generic.
In particular, using known lower bounds on PARITY function, we will ob-
tain that, unconditionally, V 0 cannot prove quasi polynomial (nlogn-size)
circuit lower bounds on SAT. Here, V 0 is a second-order theory of bounded
arithmetic such that its provably total functions are computable in AC0, see
Section 5.

To prove our main theorem we firstly observe that by the KPT theorem
[16] the provability of LB(SAT, n4kc) in universal theories like TNC1 gives us
an O(1)-round Student-Teacher (S-T) protocol finding errors of n4kc-size cir-
cuits attempting to compute SAT. Then, in particular, it works for n4kc-size
circuits encoding Nisan-Wigderson (NW) generators based on any function
f ∈ SIZE(nk) and any suitable design matrix [17]. The interpretation of
NW-generators as p-size circuits comes from Razborov [20]. In this situation
we apply Kraj́ıček’s proof from [15] showing that certain NW-generators are
hard for the true universal theory TPV in the language containing names for
all p-time algorithms. This is the main technique we use. We show that it
works in our context as well and allows us to use the S-T protocol to compute
f by subexponential formulas with a subexponential advantage.

Perhaps the most significant earlier result of this kind was obtained by
Razborov [19]. Using natural proofs he showed that theory S2

2(α) cannot
prove superpolynomial circuit lower bounds on SAT unless strong pseudo-
random generators do not exist. In fact, his proof works even for sufficiently
big polynomial circuit lower bounds. The second-order theory S2

2(α) is how-
ever quite weak with respect to the formalization Razborov used. As far
as we know his technique does not imply the unprovability of circuit lower
bounds (formalized as here, see Section 2) even for V 0. In this respect, our
proof applies to much stronger theories, basically to any theory weaker than
S1
2 in terms of provably feasible functions.

The paper is organized as follows. In Section 2 we formalize circuit lower
bounds in the language of bounded arithmetic. In Section 3 we define a

3

conservative extension of the theory S1
2 denoted S1

2(bit) and state its prop-
erties. In Section 4 we discuss the provability of circuit lower bounds in
S1
2(bit). Section 5 defines subtheories of S1

2(bit) for which we prove our main
unprovability results in Section 6.

2. Formalization

The usual language of arithmetic contains well known symbols: 0, S,+, ·,=
,≤. To encode reasoning about computation it is natural to consider also
symbols bx

2
c, |x| for the length of the binary representation of x and # with

the intended meaning x#y = 2|x|·|y|. Theories of bounded arithmetic are typ-
ically defined using the language L = {0, S,+, ·,=,≤, bx/2c, |x|,#}, cf. Buss
[1]. We will consider also the language Lbit which contains in addition the
symbol xi for the i-th bit of the binary representation of x. The basic prop-
erties of symbols from Lbit are captured by a set of basic axioms BASIC(bit)
which we will not spell out, cf. [1, 13], e.g. chapter 5.2 in Kraj́ıček [13] states
the axioms for symbols in L and chapter 5.4 in [13] gives a construction of a
formula in the language L defining the i-th bit of the binary representation
of x which we use here as an axiom.

We say that a quantifier is sharply bounded if it has the form ∃x, x ≤ |t|
or ∀x, x ≤ |t| where t is a term not containing x. A quantifier is bounded if
it is existential bounded: ∃y, y ≤ t, or universal bounded: ∀y, y ≤ t where y
is not occuring in t. Σb

0(=Πb
0) denotes the set of all formulas in the language

L with all quantifiers sharply bounded. Note that all relations defined by Σb
0

formulas are p-time computable. For i ≥ 0, the sets Σb
i+1 and Πb

i+1 are the
smallest sets satisfying

(a) Σb
i ∪ Πb

i ⊆ Σb
i+1 ∩ Πb

i+1

(b) Σb
i+1 and Πb

i+1 are closed under ∧, ∨ and sharply bounded quantification
(c) Σb

i+1 is closed under bounded existential quantification
(d) Πb

i+1 is closed under bounded universal quantification
(e) the negation of a Σb

i+1-formula is Πb
i+1

(f) the negation of a Πb
i+1-formula is Σb

i+1.

In words, the complexity of bounded formulas in the language L (formulas
with all quantifiers bounded) is defined by counting the number of alterna-
tions of bounded quantifiers, ignoring the sharply bounded ones.

All NP resp. coNP properties are representable by Σb
1 resp. Πb

1 formulas,
cf. [11, 21, 22].

4

Define Σb
i(bit),Π

b
i(bit) for i ≥ 0 as above but in the language Lbit. For

i ≥ 1, Σb
i(bit) resp. Πb

i(bit) formulas are actually equivalent to Σb
i resp. Πb

i

formulas in the theory called PV1, cf. [4, 13], see also Section 3.

We will now express circuit lower bounds in Lbit.

Firstly, denote by Comp(C, y, w) a Σb
0(bit)-formula saying that w is a

computation of circuit C on input y. Such a formula can be constructed in
many ways and our results work for any Σb

0(bit) formalization. For simplicity,
we present here a less efficient one where C represents a directed graph on
|w| vertices.

Let EC(i, j) be C[i,j], the [i, j]th bit of C, where [i, j] is the pairing func-
tion [i, j] = (i + j)(i + j + 1)/2 + i. EC(i, j) = 1, i, j < |w|, means that
there is an edge in circuit C going from the i-th vertex to the j-th vertex.
For k < |w|, let NC(k) be the pair of bits (C[|w|,|w|]+2k, C[|w|,|w|]+2k+1) encod-
ing the connective in the k-th node of circuit C, say (0, 1) be ∧, (1, 0) be
∨, and (1, 1) and (0, 0) be ¬. Therefore, |C| = [|w|, |w|] + 2|w|. Then let
Circ(C, y, w) be the formula stating that C encodes a |w|-size circuit with
|y| inputs:

∀j < |w|, j ≥ |y|,
(NC(j) = (1, 0)∨NC(j) = (0, 1)→ ∃i, k < j, i 6= k, ∀l < j, l 6= k, l 6= i,

(EC(i, j) = 1 ∧ EC(k, j) = 1 ∧ EC(l, j) = 0))∧
(NC(j) = (1, 1) ∨NC(j) = (0, 0)→ ∃i < j, ∀l < j, l 6= i,

(EC(i, j) = 1 ∧ EC(l, j) = 0))

which means that if the j-th node of C is ∧ or ∨, there are exactly two
previous nodes i, k of C with edges going from i and k to j, if the j-th node
of C is ¬, there is exactly one previous node i with an edge going from i to
j.

Comp(C, y, w) says that for each i < |y| the value of wi is the value of
the i-th input bit of y and each wj is an evaluation of the j-th node of circuit
C given wk’s evaluating nodes connected to the j-th node:

Circ(C, y, w) ∧ ∀i < |y|, yi = wi ∧ ∀j, k, l < |w|, k 6= l, [
(NC(j) = (0, 1)∧EC(k, j) = 1∧EC(l, j) = 1→ (wj = 1↔ wk = 1∧wl = 1))∧
(NC(j) = (1, 0)∧EC(k, j) = 1∧EC(l, j) = 1→ (wj = 1↔ wk = 1∨wl = 1))∧
((NC(j) = (0, 0) ∨NC(j) = (1, 1)) ∧ EC(k, j) = 1→ (wj = 1↔ wk = 0))]

5

Formula C(y;w) = 1 stating that w is an accepting computation of circuit
C on input y will be Comp(C, y, w)∧w|w|−1 = 1. Similarly for C(y;w) = 0.

Next, let SAT (y, z) be a Σb
0(bit)-formula saying that z is a satisfying

assignment to the propositional 3-CNF formula y.

To define it explicitly for each i, j, k < 2m we let y[i,j,k] = 1 if and only if
the 3-CNF encoded in y contains a clause of variables vpi , v

p
j , v

p
k where vpi is vi

if i < m and ¬vi−m if i ≥ m. Here also [i, j, k] = [i, [j, k]]. Hence, the 3-CNF
encoded in y has m variables v0, ..., vm−1 and |y| = [2m−1, 2m−1, 2m−1]+1.
We use m implicitly given by y in the formula SAT (y, z):

∀i, j, k < 2m, [yi,j,k = 1→
(i, j, k < m→ zi = 1 ∨ zj = 1 ∨ zk = 1)∧
(i, j < m ∧ k ≥ m→ zi = 1 ∨ zj = 1 ∨ zk−m = 0)∧
...
(i, j, k ≥ m→ zi−m = 0 ∨ zj−m = 0 ∨ zk−m = 0)]

Finally, for any k, hardness of SAT for nk-size circuits can be expressed
as the following ∀Σb

2(bit) sentence

LB(SAT, nk) :

∀1n > n0, ∀C, ∃y, a, |a| < |y| = n, ∀w, z, |w| ≤ nk, |z| < |y|,
[Comp(C, y, w)→

(C(y;w) = 1 ∧ ¬SAT (y, z)) ∨ (C(y;w) = 0 ∧ SAT (y, a))]

Here n0 is a fixed constant which is not indicated in LB(SAT, nk). This
should not cause any confusion. Whenever we say that LB(SAT, nk) is
provable in a theory T we mean that it is provable in T for some n0. Further,
∀1n > n0 is a shortcut for ∀m,n such that |m| = n ∧m > n0. Therefore, y
is feasible in m and for each n0 and k, LB(SAT, nk) is universal closure of a
Σb

2(bit) formula.

We use the formalization of circuit lower bounds which is essentially a
family of statements parametrized by n0 instead of the formalization of the
form ∃n0, LB(SAT, nk) because the latter would result in a formula with
higher quantifier complexity and the witnessing necessary in our proofs would
not work. A similar problem would arise if we used lower bounds of the form
”∀1n0 ,∃1n > 1n0 ,∀C, ∃y, a ...”. Moreover, it seems natural to avoid situations
in which ∃n0, LB(SAT, nk) is provable but not for any specific n0.

6

Note also that, strictly speaking, for fixed k, LB(SAT, nk) might not be
equivalent to lower bounds with different encodings of SAT formulas. For
instance, our encoding of 3CNF’s makes the formula size (the n) always
cubic in the number of variables. However, the choice of our encoding is
rather arbitrary and our results apply analogously for any efficient encoding
of 3CNF’s. On the other hand, if we used general SAT formulas instead of
3CNF’s, the predicate SAT (x, y) would not be in AC0 anymore what would
cause problems in results concerning the provability in theory V 0. Then, we
would need to decide what is the right formalization of circuit lower bounds
in the case of V 0 and modify the proof accordingly which we want to avoid.

3. Feasible Mathematics

If we obtain nk-size circuit lower bounds for SAT but do not find any
efficient method how to witness errors of potential nk-size circuits for SAT,
some of these circuits might work in practice like correct ones. We will now
define theories of feasible mathematics where provability of nk-size circuit
lower bound for SAT implies the existence of such an error witnessing.

Perhaps, the most prominent one is S1
2 introduced by Buss [1]. We will

use its conservative extension S1
2(bit). The theory S1

2(bit) is defined in the
language Lbit and its axioms consist of BASIC(bit) and polynomial induction
for Σb

1(bit)-formulas A:

A(0) ∧ ∀x(A(bx/2c)→ A(x))→ ∀xA(x)

(S1
2 is defined in the language L and its axioms consist of polynomial induc-

tion for Σb
1-formulas and BASIC(bit) except the defining axioms of xi.) An

important property of S1
2(bit) is Buss’s witnessing theorem:

Theorem 3.1 (Buss [1]). If S1
2(bit) ` ∃yA(x, y) for Σb

0(bit)-formula A, then
there is a p-time function f such that A(x, f(x)) holds for any x.

S1
2(bit) admits also a useful kind of witnessing for Σb

2(bit)-formulas which
was obtained by using a direct method in Pudlák [18], and by using Herbrand
functions in Kraj́ıček [12].

Theorem 3.2 (Pudlák [18], Kraj́ıček [12]). If S1
2(bit) ` ∃y ∀z ≤ t A(x, y, z)

for Σb
0(bit)-formula A and term t depending only on x, y, then there is p-time

algorithm S such that for any x either ∀z ≤ t A(x, S(x), z) or for some z1,

7

¬A(x, S(x), z1). In the latter case, either ∀z ≤ t A(x, S(x, z1), z) or there is
z2 such that ¬A(x, S(x, z1), z2). However after k ≤ poly(|x|) rounds of this
kind, ∀z ≤ t A(x, S(x, z1, ..., zk), z) holds for any x.

Another theory with similar witnessing properties is PV1 which is an
extension of a theory PV introduced by Cook [4], see also [13]. The lan-
guage of PV1 consists of symbols for all functions given by a Cobham-like
inductive definition of p-time functions (hence it contains Lbit). PV1 defined
in Kraj́ıček-Pudlák-Takeuti [16] is then a first-order theory axiomatized by
equations defining all the function symbols and a derivation rule similar to
polynomial induction for open formulas. It is a universal theory, i.e. it has an
axiomatization by purely universal sentences, and since all function symbols
of PV1 have well-behaved Σb

1 and Πb
1 definitions in S1

2(bit), PV1 is contained
in the extension of S1

2(bit) by these definitions. We denote the extension also
S1
2(bit).

Let Σb
0(PV)-formulas be defined as Σb

0-formulas but in the language of
PV1. PV1 proves induction:

A(0) ∧ ∀x(A(x)→ A(x+ 1))→ ∀xA(x)

for Σb
0(PV)-formulas A.

Theories S1
2(bit) and PV1 are weak fragments of arithmetic but they are

sufficiently strong to prove many things. We can interpret provability in
PV1 and S1

2 as capturing the idea of what can be demonstrated when our
reasoning is restricted to manipulations of p-time objects.

3.1. More formalizations of circuit lower bounds for SAT

LB(SAT, nk) is not the only way to express circuit lower bounds for SAT.
For example, for given n0 and k, we can define formula SCE(SAT, nk) stat-
ing that for each 1n > n0 and each nk-size circuit there is a satisfiable formula
of size n such that the circuit will not find its satisfying assignment.

SCE(SAT, nk) :

∀1n > n0, ∀C, ∃y, a, |a| < |y| = n, ∀w, z, |w| ≤ nk, |z| < |y|
[SAT (y, a) ∧ (C(y;w) = z → ¬SAT (y, z))]

where C(y;w) = z means that w is a computation of circuit C on input y with
output bits z. Formally, Comp(C, y, w) ∧ ∀i < |z|(w|w|−i−1 = 1 ↔ zi = 1).
SCE in SCE(SAT, nk) refers to ”search SAT counterexample”.

8

A different formalization of circuit lower bounds is given by the following
formula DCE(SAT, nk) where DCE refers to ”decision SAT counterexam-
ple”. In DCE(SAT, nk) circuits C attempting to solve SAT have again just
one output but using self-reducibility they are used to search for satisfying
assignments of propositional formulas: If C says that a formula y is satis-
fiable, we can set the first free variable in y firstly to 1 and then to 0, and
use C to decide in which of these cases the resulting formula is satisfiable
and in the same manner continue searching for the full satisfying assignment.
DCE(SAT, nk) states that for each nk-size circuit C there is a formula y and
a possibly partial assignment to its variables a such that either 1.) SAT (y, a)
and C says that y is unsatisfiable, or 2.) ¬SAT (y, a) for a full assignment
a of y and C says that a satisfies y, or 3.) it happens that C gets into a
local inconsistency: for a partial assignment a of y C claims that y under the
assignment a is satisfiable but when we extend a by setting the first of the
remaining free variables by 1 and 0 in both cases C claims that the resulting
formula is unsatisfiable. Formally,

DCE(SAT, nk) :

∀1n > n0, ∀C, ∃y, a, |a| < |y| = n, ∀w0, ..., w4, |w0|, ..., |w4| ≤ nk, [
(Comp(C, y, w0)→ (C(y;w0) = 0 ∧ SAT (y, a)))∨
(Comp(C, y(a), w1)→ (C(y(a);w1) = 1 ∧ FA(a, y) ∧ ¬SAT (y, a)))∨
(Comp(C, y(a), w2)→ (C(y(a);w2) = 1 ∧ PA(a, y)∧

(Comp(C, y(a1), w3)→ C(y(a1);w3) = 0)∧
(Comp(C, y(a0), w4)→ C(y(a0);w4) = 0)))]

where y(a) encodes formula y under the assignment a, FA(a, y) resp. PA(a, y)
means that a is full resp. partial assignment to variables in y and y(a1) resp.
y(a0) is y under the assignment which is the extension of a that sets the first
unassigned variable in y to 1 resp. 0. We leave details of these encodings to
the reader.

The formalizations LB(SAT, nk), SCE(SAT, nk), DCE(SAT, nk) are (es-
sentially) equivalent modulo slight changes to the size parameter. For ex-
ample, SCE(SAT,Knk+1) → LB(SAT, nk) and LB(SAT, nk + Kn) →
SCE(SAT, nk), where SCE(SAT,Knk+1) is defined as SCE(SAT, nk) but
with |w| bounded by Knk+1. Similarly for LB(SAT, nk + Kn). Here, K is
a sufficiently big constant and n0 is arbitrary but the same constant in the

9

assumption and in the conclusion of each implication. We claim that this is
provable already in PV1.

Proposition 3.1. PV1 proves the following implications
SCE(SAT,Knk+1)→ LB(SAT, nk)
LB(SAT, nk +Kn)→ SCE(SAT, nk)

LB(SAT, nk)→ DCE(SAT, nk)
DCE(SAT, nk)→ LB(SAT, nk)

where K is a sufficiently big constant and n0 is arbitrary but the same con-
stant in the assumption and the conclusion of each implication.

Proof: The first implication was observed in [5]: Assume ¬LB(SAT, nk),
i.e. for a big enough n there is an nk-size circuit C deciding SAT on in-
stances of size n. Then there is a p-time function which given a circuit C
witnessing ¬LB(SAT, nk) produces a Knk+1-size circuit sC which outputs
a satisfying assignment sC(y) for every satisfiable formula y of size n. For
each i, the circuit sC finds the i-th bit of the satisfying assignment by ask-
ing C whether y remains satisfiable if the i-th variable is set to 1, given the
values it has previously found for the first i − 1 variables. Then (assuming
¬LB(SAT, nk) and SAT (y, a)) PV1 proves by Σb

0(PV) induction on i that y
instantiated by the first i truth values is satisfiable according to C and hence
¬SCE(SAT,Knk+1).

Concerning the second implication: If ¬SCE(SAT, nk), i.e. for a big
enough n there is an nk-size circuit C which outputs a satisfying assignment
C(y) for every satisfiable formula of size n, then there is a p-time function
which given any such circuit C produces an (nk +Kn)-size circuit dC which
decides SAT on instances of size n. Given a formula y, dC outputs 1 if and
only if C(y) satisfies y. Assuming ¬SCE(SAT, nk) it follows in PV1 that
(SAT (y, a) → dC(y;w) = 1) ∧ (dC(y;w) = 1 → SAT (y, C(y))) for any y, a
of size |a| < |y| = n, hence ¬LB(SAT, nk +Kn).

Next, in PV1, if circuit C witnesses ¬DCE(SAT, nk), then it witnesses
also ¬LB(SAT, nk): for any y, a of size |a| < |y| = n for a big enough n,
C(y;w) = 0 → ¬SAT (y, a) and if C(y;w) = 1 then by Σb

0(PV)-induction
(as in the first implication) C(y(b);w) = 1 for a full assignment b of y for
which SAT (y, b) holds.

Finally, in PV1, if circuit C witnesses ¬LB(SAT, nk), then it witnesses
¬DCE(SAT, nk): for any y, a of size |a| < |y| = n for a big enough n,
(C(y;w) = 0 → ¬SAT (y, a)), C(y(a);w) = 1 ∧ FA(a, y) → SAT (y, a) and

10

if C(y(a);w) = 1∧PA(a, y) then for some b extending a SAT (y, b) and thus
C(y(a1);w) = 1 ∨ C(y(a0);w) = 1.

3.2. Witnessing errors of p-size circuits

Using LB(SAT, nk), SCE(SAT, nk) and DCE(SAT, nk) we can define
several types of error witnessing of p-size circuits claiming to solve SAT.

We say somewhat informally that LB(SAT, nk) ∈ P if there is a p-time
algorithm A which for any sufficiently big n and any nk-size circuit C with
n inputs finds out y, a such that LB(C, y, a):

C(y) = 0 ∧ SAT (y, a) or C(y) = 1 ∧ ∀z¬SAT (y, z)

Intuitively, A witnesses the important existential quantifiers in LB(SAT, nk).

We say that LB(SAT, nk) has an S-T protocol with l rounds if there
is a p-time algorithm S such that for any function T and any sufficiently
big n, whenever S is given nk-size circuit C, S outputs y1, a1 such that either
LB(C, y1, a1) or otherwise T sends to S w1, z1 certifying ¬LB(C, y1, a1). Then
S uses C,w1, z1 to produce y2, a2 and the protocol continues in the same way,
S possibly using all counter-examples T sent in earlier rounds. But after at
most l rounds S outputs y, a such that LB(C, y, a).

Analogously, DCE(SAT, nk) ∈ P if there is a p-time algorithm A which
for any sufficiently big n and any nk-size circuit C with n inputs finds out
y, a such that DCE(C, y, a):

C(y) = 0 ∧ SAT (y, a) or C(y(a)) = 1 ∧ FA(a, y) ∧ ¬SAT (y, a) or
C(y(a)) = 1 ∧ PA(a, y) ∧ (C(y(a0)) = 0 ∧ C(y(a1)) = 0)

Finally, SCE(SAT, nk) ∈ P if there is a p-time algorithm A which for
any sufficiently big n and any nk-size circuit C with n inputs and n outputs
finds out y, a such that SAT (y, a) ∧ ¬SAT (y, C(y)).

The phrase that DCE(SAT, nk) resp. SCE(SAT, nk) has an S-T proto-
col with l rounds could be defined similarly but notice that in this case T’s
advice would consist only of computations w of given circuit C which can be
produced by S itself as it has C as input.

11

In practice, if we want to witness that no small circuit solves SAT, it
does not seem sufficient to have a p-time algorithm for LB(SAT, nk) because
such an algorithm could output a tautology but we would not have an apriori
way to certify that it is indeed a tautology and hence a correctly witnessed
error. Therefore, it seems that practically more appropriate error witnessing
is defined by DCE(SAT, nk) or SCE(SAT, nk) in which we actually force
given circuits to claim inconsistent statements. We discuss it in more detail
in the next section.

4. Circuit Lower Bounds in S1
2(bit)

In this section we observe that the provability of circuit lower bounds in
S1
2(bit) would give us an efficient witnessing of errors of p-size circuits for

SAT described in the previous section. Then we show that certain hardness
assumptions imply the same efficient witnessing of errors. Consequently it
seems that the first result itself cannot be used to show the unprovability of
LB(SAT, nk) in S1

2(bit).
Similar observations appeared already in Buss [3]. More precisely, Propo-

sition 4.1 is a folklore and Buss [3, Section 4.4] described also a witnessing
of SCE(SAT, nk) by non-uniform p-size circuits based on the existence of
strong pseudorandom generators which is analogous to the one from Propo-
sition 4.2.

Proposition 4.1. If S1
2(bit) ` LB(SAT, nk), then LB(SAT, nk) has an S-T

protocol with poly(n) rounds. If S1
2(bit) ` SCE(SAT, nk), then SCE(SAT, nk) ∈

P . If S1
2(bit) ` DCE(SAT, nk), then DCE(SAT, nk) ∈ P .

Proof: LB(SAT, nk), DCE(SAT, nk) and SCE(SAT, nk) are universal
closures of Σb

2(bit)-formulas so the first implication follows directly from The-
orem 3.2. In case of SCE(SAT, nk) and DCE(SAT, nk) T’s advice in the
resulting S-T protocol consist just of computations of given circuit C. This
can be, however, produced by S itself as it has C as input.

Alternatively, one could show in S1
2(bit) that SCE(SAT, nk) and also

DCE(SAT, nk) can be stated in a ∀Σb
1(bit) way and apply directly Buss’s

witnessing.

An efficient witnessing of errors of p-time SAT algorithms can be per-
formed in the following way.

12

If f is a one-way function, we can secretly produce a ∈ {0, 1}n and ask the
algorithm claiming to solve SAT whether the statement f(a) = f(x) encoded
as a poly(|a|)-size formula with free variables x = x1, ..., xn is satisfiable
(the formula might also contain some auxiliary variables used to express
computation of f such that their value can be efficiently determined given
any assignment to x), see Cook-Mitchell [6]. The algorithm is forced to say
that the formula is satisfiable and by the choice of f , with high probability
it will not find its satisfying assignment.

Atserias (private communication) suggested to derandomize this con-
struction and Kraj́ıček made the following observation.

Proposition 4.2. If there exists a one-way permutation f computable in p-
time and secure against p-size circuits, i.e. for any p-size circuits Cn there
is a function ε(n) = n−ω(1) such that for large enough n,

Px∈{0,1}n [Cn(f(x)) = x] ≤ ε(n)

and if there exists h ∈ E hard on average for subexponential circuits, i.e.
there is δ > 0 such that for all circuits Cn of size ≤ 2δn and large enough n,

Px∈{0,1}n [Cn(x) = h(x)] ≤ 1/2 + 1/2δn

then for each k, SCE(SAT, nk) ∈ P .

Proof: If there is h ∈ E hard on average for subexponential circuits, by
[17] for each l there is c and NW-generator g : {0, 1}c logn 7→ {0, 1}n such
that g is poly(n)-time computable and for any nl-size circuits Dn,

|Px∈{0,1}c logn [Dn(g(x)) = 1]− Px∈{0,1}n [Dn(x) = 1]| ≤ 1/n

This generator allows us to derandomize the construction above: Let f be a
one-way permutation secure against p-size circuits. Take l such that for each
((n+ 1)d)k-size circuits C(n+1)d with (n+ 1)d inputs, the following predicate
C(n+1)d(′′f(x) = f(y)′′) = x with input x ∈ {0, 1}n can be computed by
nl-size circuits. Here, ′′f(x) = f(y)′′ is a 3CNF formula expressing the fact
that f(x) = f(y). The formula has free variables y = y1, ..., yn together
with auxiliary variables used to express the computation of f . On the other
hand, x’s in ′′f(x) = f(y)′′ are constants denoting x ∈ {0, 1}n. The size
of ′′f(x) = f(y)′′ is nd for an absolute constant d (but ′′f(x) = f(y)′′ can

13

be seen also as a formula of size (n + 1)d). For the chosen l there is c and
NW -generator g as mentioned above.

Now, we will describe the algorithm witnessing SCE(SAT, nk) ∈ P . For
sufficiently big n, given mk-size circuit Cm with m inputs, nd ≤ m < (n+1)d,
consider the one-way function f on n inputs. Formulas of the form ′′e = f(y)′′

where e ∈ {0, 1}n can be seen as formulas of size m. By exhaustive search
find b ∈ {0, 1}c logn such that Cm(′′f(g(b)) = f(y)′′) 6= g(b). If such b did not
exist, then Px∈{0,1}c logn [Cm(′′f(g(x)) = f(y)′′) = g(x)] = 1. This would break
g because by definition of f , Px∈{0,1}n [Cm(′′f(x) = f(y)′′) = x] is small. The
failure of Cm is thus witnessed in p-time by the formula ′′f(g(b)) = f(y)′′

and its assignment g(b).

Proposition 4.2 says that under certain hardness assumptions we can
witness circuit lower bounds for SAT in p-time. It is natural to ask now for
a p-time witnessing of these assumptions. What we already know is that
by Jeřábek [9, Corollary 3.6] the existence of a function h ∈ E hard for
subexponential circuits in S1

2 would imply that S1
2 proves tha so-called dual

weak pigeonhole principle for PV-functions dWPHP (PV). In this case, S1
2

could formalize randomized algorithms as described in Jeřábek [10]. Kraj́ıček
observed that a witnessing of LB(SAT, nk) is also possible assuming just
that LB(SAT, nk) holds but the witnessing is non-constructive and only by
nonuniform p-size circuits, see Proposition 4.4.

Proposition 4.2 seems to imply that for proving S1
2(bit) 6` SCE(SAT, nk)

we need to use other properties than SCE(SAT, nk) ∈ P. Moreover, assump-
tions of Proposition 4.2 give us an S-T protocol for LB(SAT, nk) too. Infor-
mally, any nk-size circuit C claiming to decide SAT can be used to search for
satisfying assignments of propositional formulas. Using the algorithm from
Proposition 4.2, S can produce y, a, such that SAT (y, a) but C will not find
any satisfying assignment of y. This means that either C claims that y is
unsatisfiable or the assignment it finds does not satisfy y or while searching
for a satisfying assignment it gets into a local inconsistency which is the only
case when S needs to ask for an advice of T, a satisfying assignment of y
extending the partial assignment found by C.

Proposition 4.3. If the same hardness assumption as in Proposition 4.2
holds, then LB(SAT, nk) has an S-T protocol with 1 round (i.e. 1 advice
of T) where S is a p-time algorithm, and LB(SAT, nk) has also an S-T
protocol with poly(n) rounds where S is in uniform AC0. Here, “S in uniform

14

AC0” means that for each n, there are poly(n) circuits Sn1 , ..., S
n
poly(n), one for

each round of the interaction of the S-T protocol, and the uniformity means
that there is a p-time algorithm which produces Snj given 1n and 1j without
knowing the interaction before round j.

Proof:
By Proposition 4.2 we have a p-time algorithm A solving SCE(SAT, n2k).

Firstly, we show that LB(SAT, nk) has an S-T protocol with 1 round and
p-time S.

For each nk-size circuit C with one output bit, there is a circuit sC of
size ≤ Knk+1, for a sufficiently big K, searching for satisfying assignments
of given formulas as in Proposition 3.1. Here we give a more detailed de-
scription: For each formula y, let a be a partial assignment of y produced
by sC so far (empty at the beginning) and denote by y(a) the formula y
under the assignment a. If C(y(a)) = 0, sC outputs an assignment of y full
of zeros. If C(y(a)) = 1, it assigns y1a, the first free variable in y(a), firstly
by 1 and then by 0. Denote the resulting formula y(a1) resp. y(a0). If
C(y(a1)) = C(y(a0)) = 1, sC sets y1a = 1. If C(y(a1)) = C(y(a0)) = 0, sC
outputs an assignment of y full of zeros. If C(y(a1)) = 1 and C(y(a0)) = 0,
sC sets y1a = 1. If C(y(a1)) = 0 and C(y(a0)) = 1, it sets y1a = 0. In this
way sC sets all variables in y.

Given C, S can produce sC in p-time and use A to find y, a1 such that
SAT (y, a1) but ¬SAT (y, sC(y)).

If C(y) = 0, S outputs y, a1. Else, S simulates sC on input y. If it
never happens that C(y(a1)) = C(y(a0)) = 0 for any partial assignment a
produced by sC, S outputs y(sC(y)). Otherwise, for some partial assignment
a of y, C(y(a)) = 1 and C(y(a1)) = C(y(a0)) = 0. In such case S outputs
y(a), a2 where a2 is a full assignment of y extending a with all zeros. If this
is not a correct answer, T replies with a3 extending a and satisfying y. Then
S outputs y(ab), a3 where b ∈ {0, 1} such that ab is consistent with a3.

In all cases S succeeds after asking for at most 1 advice of T.

To get S in uniform AC0 note that A actually produces a set B of ≤ nc

propositional formulas of the form f(Y) = s and their satisfying assignments
such that each Knk+1-size circuit fails on at least one of them. It suffices to
use instead of A the set B, i.e. AC0 S will try all of the formulas f(Y) = s
with their satisfying assignments in place of y, a1. Recall that the AC0 S is

15

actually a sequence of polynomially many uniform AC0 circuits in the sense
that every reply of T is managed by a different AC0 circuit.

Given C, S will firstly try some y, a1 from B (it does not produce sC).
If y, a1 does not witness that C does not solve SAT as in LB(SAT, nk), T
replies with the computation of C witnessing that C(y) = 1. S then finds out
if C(y(1)) = C(y(0)) = 0 using the following general protocol. Whenever S
needs to simulate given circuit C on input z, it outputs z with its arbitrary
assignment r. If z, r does not witness that C fails to solve SAT, T replies
either with a satisfying assignment d of z or with the computation of C on
input z which can be verified by a uniform constant-depth formula. In the
former case, S (but a different AC0 circuit than the one which produced z, r)
outputs z, d and this time it either witnesses that C fails to solve SAT or it
gets the computation of C. In this way S finds out if C(y(1)) = C(y(0)) = 0
and continues to simulate sC and the S-T protocol with p-time S.

If the protocol above using y, a1 does not witness failure of C, S tries
another element from B in place of y, a1. By the definition of B, at least one
of them works.

Note that the uniformity of the AC0 S-T protocol described in Proposition
4.3 is not DLOGTIME because to produce the respective AC0 circuits we
need to compute a function h ∈ E on log-sized inputs which is hard for
subexponential circuits.

Further, while Proposition 4.3 says that uniform AC0 S-T protocols for
LB(SAT, nk) with poly(n) rounds are likely to exist, in Theorem 6.1 we
will show that under a hardness assumption LB(SAT, nk) has no AC0 S-T
protocols with O(1) rounds.

The proof of Proposition 4.3 shows also that if SCE(SAT, nk) ∈ P, then
DCE(SAT, nk) ∈ P. All in all, Buss’s witnessing does not seem to help us to
obtain the unprovability of LB(SAT, nk) in PV1 or S1

2(bit). Maybe it could
work for intuitionistic S1

2 where the witnessing holds for arbitrarily complex
formulas, cf. Buss [2]. The situation is different in case of weaker theories
where we have more efficient witnessing. This will allow us to reduce to some
hardness assumptions.

Before considering weaker theories let us also mention that in order to
show SCE(SAT, nk) ∈ P/poly, it suffices to assume that for any sufficiently
big n, SAT restricted to instances of length n has no circuit of size n2k. This

16

was observed by Kraj́ıček in [14] but unlike Buss’s [3, Section 4.4] proof of
SCE(SAT, nk) ∈ P/poly which assumes the existence of strong pseudoran-
dom generators, this method is not constructive in the sense that it does not
tell us what could be the hard SAT instances.

Kraj́ıček’s observation uses a well known combinatorial principle1: Let
E ⊆ X × Y be a bipartite graph, |X| = 2n

k
, |Y | = 2n. Then

∀x1, ..., xn ∈ X ∃y ∈ Y
∧

i=1,...,n

E(xi, y)⇒

∃y1, ..., ynk ∈ Y ∀x ∈ X
∨

i=1,...,nk

E(x, yi)

Now take as X the set of all nk/2-size circuits and interpret E(x, y) as
”y is a satisfiable formula of size n and circuit x does not find a satisfying
assignment of y”. Assume n is big enough. If SAT restricted to instances of
size n does not have nk-size circuits, then for every n circuits C1, ..., Cn of size
nk/2 there is y such that

∧
i=1,...,nE(Ci, y). Else, there is a specific sequence of

n circuits such that for any satisfiable y at least one of these n circuits finds a
satisfying assignment of y and this yields a single nk-size circuit solving SAT
at length n, contradicting the assumption. By the principle above, there
are then y1, ..., ynk such that for each nk/2-size circuit C,

∨
i=1,...,nk E(C, yi).

Therefore there is an n2k-size circuit which for each x ∈ X finds y such that
E(x, y) by trying E(x, yi) for i = 1, ..., nk and thus using additional satisfying
assignments a1, ..., ank of respective y’s as advice solves SCE(SAT, nk/2).

Analogously, we can show that DCE(SAT, nk) ∈ P/poly by considering
E(x, y) = ”circuit x rejects formula y which is satisfiable or circuit x accepts
y but if it is used to find a satisfying assignment of y it ends up in the
same inconsistent situation as in DCE(x, y, a) for some a”. Such E(x, y) is
a p-time relation.

It is not clear how to apply this technique in the case of LB(SAT, nk).
Straightforwardly defining E(x, y) as ”circuit x rejects formula y which is
satisfiable or circuit x accepts unsatisfiable y” does not work because then
for each y, ¬E(1, y) ∨ ¬E(0, y) where 1 resp. 0 is a trivial circuit which
outputs always 1 resp. always 0.

1To see that the principle holds note that by a counting argument whenever r x’s from
X remain unconnected to any of already chosen y’s there is another y ∈ Y connected to
at least r/2 of these r x’s.

17

Therefore, we have the following proposition.

Proposition 4.4 (Kraj́ıček [14]). If for any sufficiently big n, SAT restricted
to instances of length n has no circuit of size n2k, then SCE(SAT, nk) and
DCE(SAT, nk) are in P/poly.

5. Theories weaker than PV1

We will now present some theories weaker than PV1 like TNC1 for which
we will show the unprovability of circuit lower bounds. We could however
similarly define a general theory TC corresponding to a standard complexity
class C and our results would work analogously.

Definition 5.1. TNC1 is the first-order theory of all universal LNC1 state-
ments true in the standard model of natural numbers where LNC1 is the lan-
guage containing names for all uniform NC1 algorithms.

TNC1 is a universal theory so it admits the KPT theorem from [16]:

Theorem 5.1 (Kraj́ıček-Pudlák-Takeuti [16]). If TNC1 ` ∃yA(x, y) for open
formula A, then there is a function f in uniform NC1 such that A(x, f(x))
holds for any x.

If TNC1 ` ∃y∀zA(x, y, z) for open formula A, there are finitely many
functions f1, ..., fk in uniform NC1 such that

TNC1 ` A(x, f1(x), z1) ∨ A(x, f2(x, z1), z2) ∨ ... ∨ A(x, f(x, z1, ..., zk−1), zk)

There are also two-sorted theories of Bounded Arithmetic corresponding
to uniformAC0, NC1 and other complexity classes, cf. Cook-Nguyen [7]. The
first-sort (number) variables are denoted by lower case letters x, y, z, ... and
the second-sort (set) variables by capital letters X, Y, Z, ... The underlying
language includes the symbols +, ·,=,≤, 0, 1 of first-order arithmetic. In
addition it contains symbol =2 interpreted as equality between bounded sets
of numbers, |X| for the function mapping an element X of the set sort to the
largest number in X plus one, and ∈ for the relation n ∈ X meaning that n
is an element of X.

Bounded quantifiers for sets have the form ∃X ≤ t φ which stands for
∃X (|X| ≤ t ∧ φ) or ∀X ≤ t φ for ∀X (|X| ≤ t → φ). Here t is a number
term which does not involve X. ΣB

0 formulas are formulas without bounded
quantifiers for sets but may have bounded number quantifiers. Each bounded

18

set X ≤ t can be seen also as a finite binary string of size ≤ t which has
1 in the i-th position iff i ∈ X. When we say that a function f(x,X)
mapping bounded sets and numbers to bounded sets is in AC0 or NC1 we
mean that the corresponding function on finite binary strings X and unary
representation of x is in AC0 or NC1.

The base theory we will consider is V 0 consisting of a set of basic axioms
capturing the properties of symbols in the two-sorted language and a com-
prehension axiom schema for ΣB

0 -formulas stating that for any ΣB
0 formula

there exists a set containing exactly the elements that satisfy the formula,
cf. [7]. Further, Cook and Nguyen define theory V NC1 as V 0 extended by
the axiom that every monotone formula has an evaluation, see [7].

Theorem 5.2 (Cook-Nguyen [7]). If V NC1 ` ∀x ∀X ∃Y A(x,X, Y) for ΣB
0 -

formula A, there is a function f in uniform NC1 such that A(x,X, f(x,X))
holds for any x,X.

If V NC1 ` ∀x ∀X ∃Y ∀Z A(x,X, Y, Z) for ΣB
0 -formula A, there are

finitely many functions f1, ..., fk in uniform NC1 such that ∀x,X, Z1, Z2, ..., Zk

A(x,X, f1(x,X), Z1) ∨ A(x,X, f2(x,X, Z1), Z2) ∨ ...
... ∨ A(x,X, , f(x,X, Z1, ..., Zk−1), Zk)

Analogously for V 0 with the resulting functions in uniform AC0.

LB(SAT, nk) translates to the two-sorted language as follows

∀n > n0, ∀C, ∃Y ≤ n, ∃A ≤ n, ∀W ≤ nk, ∀Z ≤ n, [Comp(C, Y,W)→
(C(Y ;W) = 1 ∧ ¬SAT (Y, Z)) ∨ (C(Y ;W) = 0 ∧ SAT (Y,A))]

where k, n0 are constants as before and Comp(C, Y,W), C(Y ;W) = 0/1,
SAT (Y, Z) are defined as their first-order counterparts but function xi is
replaced by i ∈ X.

Similarly, we obtain the two-sorted SCE(SAT, nk), DCE(SAT, nk).

Let us also specify the formalization of LB(SAT, nk) in TNC1 . LNC1 con-
tains symbols for SAT (y, z), Comp(C, y, w) and all the predicates we explic-
itly defined as Σb

0(bit)-formulas because they are not just p-time but in fact
uniformNC1. For simplicity, whenever we speak about LB(SAT, nk) in TNC1

we mean its formalization where instead of the Σb
0(bit)-formulas we have the

respective symbols of LNC1 . Similarly for SCE(SAT, nk), DCE(SAT, nk).

19

Therefore, LB(SAT, nk), SCE(SAT, nk) and DCE(SAT, nk) in TNC1 have
the form ∃y∀z A(x, y, z) for an open formula A (i.e. A has no quantifiers).

The situation with the provability of polynomial circuit lower bounds
in weak theories like TNC1 is less natural because they cannot fully rea-
son about p-time concepts. In particular, there is a formula LB∃(SAT, n

k)
which is equivalent to LB(SAT, nk) in S1

2(bit) but not necessarily in TNC1 .
LB∃(SAT, n

k) is like LB(SAT, nk) but with LB(C, y, a) (defined in Section
3.2) expressed positively:

LB∃(SAT, n
k) :

∀1n > n0, ∀C, ∃y, a, w, |a| < |y| = n, |w| ≤ nk, ∀z, |z| < |y|,
[¬Circ(C, y, w)∨

(C(y;w) = 0 ∧ SAT (y, a)) ∨ (C(y;w) = 1 ∧ ¬SAT (y, z))]

Analogously defineDCE∃(SAT, n
k), SCE∃(SAT, n

k) and their two-sorted
and LNC1 formulations.

By the witnessing theorem above, if TNC1 proves LB(SAT, nk), then
LB(SAT, nk) has an NC1 S-T protocol with O(1) rounds which is S-T pro-
tocol with O(1) rounds and S in uniform NC1. If TNC1 ` LB∃(SAT, nk),
then LB∃(SAT, n

k) has an NC1 S-T protocol with O(1) rounds which is
defined analogously as for LB(SAT, nk) but with S producing also compu-
tations w of given circuits. As DCE∃(SAT, n

k) has the form ∃yA(x, y) for
an open A in LNC1 , its provability in TNC1 implies DCE∃(SAT, n

k) ∈ NC1.
Here again, DCE∃(SAT, n

k) ∈ NC1 is defined as DCE(SAT, nk) ∈ NC1

but with the witnessing algorithm producing also computations w of given
circuits. Analogously for theories V 0, V NC1 .

6. Unprovability of circuit lower bounds in subtheories of PV1

To prove that V NC1 or TNC1 do not prove LB(SAT, nk) it suffices to
show that LB(SAT, nk) has no S-T protocol with O(1) rounds where S is
in uniform NC1. For the unprovability of LB∃(SAT, n

k) it however suffices
to refute the existence of S-T protocols with O(1) rounds where S ∈ NC1

produces w’s (computations of given circuits) itself. This is essentially triv-
ial since in such case, NC1 circuits could produce computations of general
circuits of similar size:

20

Proposition 6.1. LB(SAT, nk+1) /∈ NC1, DCE∃(SAT, n
k+1) /∈ NC1 and

LB∃(SAT, n
k+1) has no NC1 S-T protocol with poly(n) rounds unless

SIZE(nk) ⊆ NC1. Unconditionally, for any sufficiently big k, LB(SAT, nk) /∈
AC0, DCE∃(SAT, n

k) /∈ AC0 and LB∃(SAT, n
k) has no AC0 S-T protocol

with poly(n) rounds.

Proof: Assume first that LB(SAT, nk+1) ∈ NC1, i.e. there are NC1

circuits Dm(x) such that for sufficiently big n whenever x ∈ {0, 1}m for
m = poly(n) encodes an nk+1-size circuit Cn with n inputs, Dm(x) outputs
y, a such that

Cn(y) = 0 ∧ SAT (y, a) or Cn(y) = 1 ∧ ∀z¬SAT (y, z)

Now any nk-size circuits Bn with n inputs can be simulated by NC1 circuits:
For b ∈ {0, 1}n and z = (z1, ..., zn) denote R[Bn, b, z] the circuit with n inputs
z but computing as Bn on b, i.e. it does not use inputs z at all. The size of
R[Bn, b, z] is (nk +n). Let En(b) be an AC0 circuit which uses description of
Bn’s as advice and maps b ∈ {0, 1}n to x ∈ {0, 1}m encoding R[Bn, b, z].

For each b ∈ {0, 1}n, useDm(En(b)) to find y, a and output 0 iff SAT (y, a).

Deciding SAT (y, a) is by our formalization doable by constant-depth for-
mulas. Therefore, for each b, we predict Bn(b) with an NC1 circuit.

If LB(SAT, nk) ∈ AC0 for sufficiently big k, we would obtain AC0 circuits
for PARITY, which is impossible.

This construction works analogously for DCE∃(SAT, n
k+1) and as well

for LB∃(SAT, n
k+1). If LB∃(SAT, n

k+1) has an NC1 S-T protocol, then for
given nk+1-size circuit C, S does not have to produce w, y, a such that w is a
computation of C on input y but then T can reply 0 and S is thus eventually
forced to produce a computation of circuit C which means that NC1 S can
simulate any nk-size circuit as in the case of LB(SAT, nk+1).

Corollary 6.1. TNC1 6` DCE∃(SAT, n
k+1) and TNC1 6` LB∃(SAT, n

k+1)
unless SIZE(nk) ⊆ NC1. For any sufficiently big k, V 0 6` DCE∃(SAT, nk)
and V 0 6` LB∃(SAT, nk).

This simple observation does not work if we want to refute that LB(SAT, nk)
has NC1 S-T protocols because T can send to S a computation of the ar-
tificially attached circuit. Indeed by Proposition 4.3, LB(SAT, nk) has a

21

uniform AC0 S-T protocol with poly(n) rounds under a plausible assump-
tion.

We can however show that LB(SAT, nk) has no NC1 S-T protocols with
O(1) rounds under a hardness assumption. To show this we will use an
interpretation of suitable NW-generators as p-size circuits which is due to
Razborov [20] and Kraj́ıček’s proof of a hardness of certain NW-generators
for theory TPV which is defined as TNC1 but in the language containing
names for all p-time algorithms, cf. [15]. Actually, the proof of the following
theorem seems to be a natural modification of the proof of Proposition 6.1.

Theorem 6.1. Let c ≥ 2, k ≥ 1. If there is f ∈ SIZE(nk) such that for all

formulas Fn of size 2O(n1/c), Px∈{0,1}n [Fn(x) = f(x)] < 1/2 + 1/2O(n1/c) for
infinitely many n’s, then LB(SAT, n4kc) has no NC1 S-T protocol with O(1)
rounds.

To prove the theorem we will use Nisan-Wigderson (NW) generators with
specific design properties. Let A = {ai,j}i=1,...,m

j=1,...,n be an m×n 0-1 matrix with

l ones per row. Ji(A) := {j ∈ {1, ..., n}; ai,j = 1} and f : {0, 1}l 7→ {0, 1}.
Then define NW-generator based on f and A, NWf,A : {0, 1}n 7→ {0, 1}m as

(NWf,A(x))i = f(x|Ji(A))

where x|Ji(A) are xj’s such that j ∈ Ji(A).

For any c ≥ 2, Nisan and Wigderson [17] constructed 2n×n2c 0-1 matrix
A with nc ones per row which is also (n, nc)-design meaning that for each
i 6= j, |Ji(A)∩ Jj(A)| ≤ n. Moreover, the matrix A has such a property that
for big enough n there are n2c-size circuits which given i ∈ {0, 1}n compute
the set Ji(A), more precisely, given input i ∈ {0, 1}n they output nc indices
in Ji(A) where each index is described by 2c log n output bits. Therefore, as
it was observed by Razborov [20], if f is in addition computable by nk-size
circuits, for any x ∈ {0, 1}n2c

, (NWf,A(x))y is a function on n inputs y which
is for sufficiently big n computable by circuits of size n4kc.

To see this, note that for any given y ∈ {0, 1}n an n2c-size circuit pro-
duces nc indices of Jy(A) where the r-th index is described by 2c log n bits
Jr,1, ..., Jr,2c logn. Then a circuit of size ≤ ncn2c(2Kc log n + K), with an
absolute constant K, which has the form∧

r∈{1,...,nc}

∧
s∈{0,1}2c logn

((
∧

t∈{1,...,2c logn}

(Jr,t ↔ st))→ (r-th output bit↔ xs))

22

specifies nc bits in x on which an nck-size circuit computes f(x|Jy(A)). As
n2c + nkc + ncn2c(2Kc log n + K) < n4kc for k ≥ 1 and big enough n, the
whole circuit computing (NWf,A(x))y has size < n4kc.

Proof(of Theorem 6.1): Let f ∈ SIZE(nk) and A be a 2n × n2c (n, nc)-
design defined above so for any sufficiently big n and any x, (NWf,A(x))y
can be computed from y by an n4kc-size circuit. Assume that LB(SAT, n4kc)
has an NC1 S-T protocol with O(1) rounds. In particular, for sufficiently big
n and each n4kc-size circuit C(y) computing (NWf,A(x))y, S either finds out
the value of C(y1) by deciding (in AC0) SAT (y1, a1) for y1, a1 it produced
itself or T will send to S counterexamples w1, b1 such that

(C(y1;w1) = 1 ∨ ¬SAT (y1, a1)) ∧ (C(y1;w1) = 0 ∨ SAT (y1, b1))

In the latter case, S continues with its second try y2, a2. After at most t ≤ l
rounds for some fixed constant l, S will successfully predict C(yt).

Let En2c(x) be AC0 circuits mapping x ∈ {0, 1}n2c
to a description of an

n4kc-size circuit with n inputs y computing the function (NWf,A(x))y, so En2c

just substitutes given x to a description of (NWf,A(x))y which is otherwise
fixed. Moreover, without loss of generality, for any y and x1, x2 such that
x1|Jy(A) = x2|Jy(A) the computation of En2c(x1) on input y is the same as
the computation of En2c(x2) on input y up to the specific bits of x1 resp. x2
where x1 and x2 differ. We denote the invariant part of the computation of
En2c(x) on input y as its relevant part. To be precise, it is the computation
of En2c(x) on input y with bits xj, j /∈ Jy(A) replaced by 0’s.

We will consider our S-T protocol only on inputs of the form En2c(x).

Kraj́ıček [15] showed that if f is in NP∩coNP with unique witnesses such
S-T protocol allows us to approximate f by a p-size circuit. We will inspect
that his proof works also for f in P/poly and NC1 S-T protocols. In addition
we will assume that T in our S-T protocol operates as follows: whenever S
outputs y with some a, T answers with the lexicographically first assignment
b satisfying y and the unique relevant part w of the computation of given
circuit on input y. If there is no such b, T replies with a string of zeroes
instead of b (and the unique relevant part w of the computation of given
circuit on input y). This should replace the uniqueness property assumed in
[15]. Note that S can recover the full computation of given circuit on input
y just from its relevant part.

For u ∈ {0, 1}nc
and v ∈ {0, 1}n2c−nc

define ry(u, v) ∈ {0, 1}n2c
by putting

bits of u into positions Jy(A) and filling the remaining bits by v (in the

23

natural order). For each x there is a trace tr(x) = y1, a1, ..., yt, at, t ≤ l of
the S-T communication.

Claim 1. There is a trace Tr = y1, a1, ..., yt, at, t ≤ l and p ∈ {0, 1}n2c−nc

such that Tr = tr(ryt(u, p)) for at least a fraction of 2/(3(22n))t of all u’s.

Tr and p can be constructed inductively. There are at most 22n pairs
yj, ai, hence there is y1, a1 such that at least 1/22n traces begin with it. Either
there is p ∈ {0, 1}n2c−nc

such that y1, a1 = tr(ry1(u, p)) for at least 2/(3(22n))
of all u’s or we can find y2, a2 such that at least 1/(3(22n)2) traces begin with
y1, a1, y2, a2. For the induction step assume we have a trace y1, a1, ..., yi, ai
such that at least 1/(3i−1(22n)i) traces begin with it. Either there is p ∈
{0, 1}n2c−nc

such that y1, a1, ..., yi, ai = tr(ryi(u, p)) for at least 2/(3i(22n)i) of
all u’s or we can find yi+1, ai+1 such that at least 1/(3i(22n)i+1) traces begin
with y1, a1, ..., yi+1, ai+1. This proves the claim.

Fix now Tr and p from the previous claim.

Because A is (n, nc)-design, for any row y 6= yt at most n xj’s with
j ∈ Jy(A) are not set by p. Hence there are at most 2n assignments z to xj’s
with j ∈ Jy(A) not set by p. For each such z let wz, bz be the T’s advice
after S outputs y, ai on any x containing the assignment given by z and p.
By our choice of T, bz depends only on y and wz is uniquely determined by z
(and p which is fixed). Let Yy, y 6= yt be the set of all these witnesses wz, bz
for all possible z’s. The size of each such Yy is 2O(n) (including the sizes of
the witnesses wz, bz).

Now we define a formula F that attempts to compute f and uses as advice
Tr, p and some t sets Yy. For each u ∈ {0, 1}nc

produce ryt(u, p) (this is in
AC0). Let V be the set of those inputs u for which tr(ryt(u, p)) either is Tr or
extends Tr and let U be the complement of V . Define d0 to be the majority
value of f on U . Then use S to produce y′1, a

′
1. If y′1, a

′
1 is different from Tr

output d0. Otherwise, find the unique T’s advice in Yy1 . Again, this is doable
by a constant depth formula of size 2O(n) which has poly(n) output bits. It
has the form

∧
z∈{0,1}n(z = ryt(u, p)|(Jy1(A)∩ Jyt(A))→ output = wz ∈ Yy1).

In the same manner continue until S produces y′t, a
′
t. If y′t, a

′
t differs from Tr

output d0. Otherwise, output 0 iff SAT (yt, at).

F is a formula with nc inputs and size 2O(n) because producing ryt(u, p)
is in AC0, searching for T’s advice in Yyi ’s is doable by constant-depth 2O(n)-
size formulas, S is in NC1 and the structure of S-T protocol can be described
by a constant-depth formula of size nO(1):

24

(S(x) /∈ Tr → output = d0) ∧ (S(x) ∈ Tr →
((S(x,wz, bz) /∈ Tr → output = d0) ∧ (...

(S(x,w1, b1, ..., wt, bt) /∈ Tr → output = d0)∧
(S(x,w1, b1, ..., wt, bt) ∈ Tr → (output = 0↔ SAT (yt, bt)))...)))

By the choice of Tr, for at least a fraction 2/(3(2n))t of all u ∈ {0, 1}nc
, we

have that u ∈ V and F will successfully predict f(u). Moreover, by the choice
of Tr in the proof of Claim 1, at most 1/(3(2n))t of all traces tr(ryt(u, p))
properly extend Tr. Since d0 is the correct value on at least half of u ∈ U , F
will successfully predict f(u) on at least half of U , half of V and 1/2(1/(3t2nt))
of all u’s. That is, Pu∈{0,1}nc [F (u) = f(u)] ≥ 1/2 + 1/(3t2nt+1).

Corollary 6.2. TNC1 6` LB(SAT, n4kc) and V NC1 6` LB(SAT, n4kc) for k ≥
1, c ≥ 2 unless for each f ∈ SIZE(nk) there are formulas Fn of size 2O(n1/c)

such that for sufficiently big n’s, Px∈{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n1/c).

To obtain an unconditional unprovability of circuit lower bounds we can
use Hastad’s lower bound for constant depth circuits computing the parity
function.

Theorem 6.2 (Hastad [8]). For any depth d circuits Cn of size 2n
1/(d+1)

and

large enough n, Px∈{0,1}n [Cn(x) = PARITY (x)] ≤ 1/2 + 1/2n
1/(d+1)

.

If V 0 ` LB(SAT, nk), then LB(SAT, nk) has an AC0 S-T protocol with
O(1) rounds so the resulting formula F in the proof of Theorem 6.1 would
be actually a constant-depth circuit and PARITY could be approximated
by constant depth circuits of size 2O(n1/c) with advantage 1/2O(n1/c). This
is not enough for the contradiction with Hastad’s theorem. Nevertheless, it
is sufficient if we replace polynomial circuit lower bounds LB(SAT, nk) by
quasi polynomial lower bounds LB(SAT, nlogn):

∀m > n0, ∀C, ∃y, a, |a| < |y| = n, ∀w, |w| ≤ nlogn = m,
[Comp(C, y, w)→

(C(y;w) = 0 ∧ SAT (y, a)) ∨ (C(y;w) = 1 ∧ ∀z¬SAT (y, z))]

where n is the number of inputs to C and m represents nlogn (or simply
|m| = |n|2).

If V 0 ` LB(SAT, nlogn), then in the proof of Theorem 6.1 we can use
instead of n4kc-size circuits of the form (NWf,A(x))y with x ∈ {0, 1}n2c

say

25

n4kblog lognc-size circuits (NWf,A(x))y with x of size n2blog lognc and big enough
k. The proof works for big enough n even if c = log log n. The size of
the resulting constant-depth circuit F is then 2O(n1/blog lognc) with advantage
1/2O(n1/blog lognc) contradicting Hastad’s theorem.

Corollary 6.3. V 0 6` LB(SAT, nlogn).

7. Acknowledgement

I would like to thank Jan Kraj́ıček, Albert Atserias, Sam Buss and an
anonymous reviewer for many useful discussions, comments and suggestions.
This research was supported by grant GAUK 5732/2012 and partially by
grants IAA100190902 of GA AV ČR and SVV-2012-267317. A part of this
research was done while I was a visiting fellow at the Isaac Newton Institute
in Cambridge in Spring 2012 supported by grant N-SPP 2011/2012.

References

[1] Buss S.R.; Bounded Arithmetic, Bibliopolis, Naples, 1986.

[2] Buss S.R.; The Polynomial Hierarchy and Intuitionistic Bounded Arith-
metic, Structure in Complexity, Lecture Notes in Computer Science
#223, 1986, 77-103.

[3] Buss S.R.; Bounded arithmetic, cryptography and complexity, Theoria,
63 (1997), 147-167.

[4] Cook S.A.; Feasibly constructive proofs and the propositional calculus,
Proceedings of the 7th Annual ACM Symposium on Theory of Comput-
ing, ACM Press, 1975, 83-97.

[5] Cook S.A., Kraj́ıček J.; Consequences of the Provability of NP⊆P/poly,
J. of Symbolic Logic, 72 (2007), 1353-1357.

[6] Cook S.A., Mitchell D.G.; Finding Hard Instances of the Satisfiability
problem: A survey, DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, 1997.

[7] Cook S.A., Nguyen P.; Logical Foundations of Proof Complexity, Cam-
bridge University Press, 2010.

26

[8] Hastad J.; Computational limitations for small depth circuits, PhD the-
sis, M.I.T. press, 1986.

[9] Jeřábek E.; Dual weak pigeonhole principle, Boolean complexity and
derandomization, Annals of Pure and Applied Logic, 129 (2004) 1-37.

[10] Jeřábek E.; Approximate counting in bounded arithmetic, Journal of
Symbolic Logic, 72 (2007), 959-993.

[11] Kent C.F., and Hodgson B.R.; An arithmetic characterization of NP,
Theoretical Comput. Sci., 21 (1982), 255-267.

[12] Kraj́ıček J.; No counter-example interpretation and interactive compu-
tation, Logic from Computer Science, 21 (1992), 287-293.

[13] Kraj́ıček J.; Bounded arithmetic, propositional logic, and complexity
theory, Cambridge University Press, 1995.

[14] Kraj́ıček J.; Extensions of models of PV, Logic Colloquium ’95, ASL
Springer Series Lecture Notes in Logic, 11 (1998), 104-114.

[15] Kraj́ıček J.; On the proof complexity of the Nisan-Wigderson generator
based on NP∩coNP function, J. of Mathematical Logic, 11 (2011), 11-
27.

[16] Kraj́ıček J., Pudlák P., Takeuti G.; Bounded arithmetic and the polyno-
mial hierarchy, Annals of Pure and Applied Logic, 52 (1991), 143-153.

[17] Nisan N., Wigderson A.; Hardness vs. Randomness, J. Comput. System
Sci., 49 (1994), 149-167.

[18] Pudlák P.; Some relations between subsystems of arithmetic and com-
plexity theory, Proc. Conf. Logic from Computer Science, 21 (1992),
499-519.

[19] Razborov A.A; Unprovability of Lower Bounds on the Circuit Size in
Certain Fragments of Bounded Arithmetic, Izvestiya of the Russian
Academy of Science, 59 (1995), 201-224.

[20] Razborov A.A; Pseudorandom Generators Hard for k-DNF Resolution
and Polynomial Calculus, preprint, 2002-2003.

27

[21] Stockmayer L.J.; The polynomial-time hierarchy, Theoretical Comput.
Sci., 3 (1976), 1-22.

[22] Wrathall C.; Complete sets and the polynomial-time hierarchy. Theo-
retical Comput. Sci., 3 (1976), 23-33.

28

