
Circuit Lower Bounds in Bounded Arithmetics

Ján Pich1

Department of Algebra
Faculty of Mathematics and Physics

Charles University in Prague

Abstract

We prove that TNC1 , the true universal first-order theory in the language
containing names for all uniform NC1 algorithms, cannot prove that for
sufficiently large n, SAT is not computable by circuits of size n2kc where
k ≥ 1, c ≥ 4 unless each function f ∈ SIZE(nk) can be approximated by

formulas {Fn}∞n=1 of subexponential size 2O(n2/c) with subexponenital advan-

tage: Px∈{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n2/c). Unconditionally, V 0 cannot
prove that for sufficiently large n SAT does not have circuits of size nlogn.
The proof is based on an interpretation of Kraj́ıček’s proof (2011 [14]) that
certain NW-generators are hard for TPV , the true universal theory in the
language containing names for all p-time algorithms.

1. Introduction

We investigate the provability of polynomial circuit lower bounds in weak
fragments of arithmetic like S1

2(bit) or APC1. These theories are sufficiently
strong to prove many important results in Complexity Theory. In fact, they
can be considered as formalizations of feasible mathematics. Our motivation
behind the investigation of these theories is the general question whether
existential quantifiers in complexity-theoretic statements can be witnessed
feasibly.

Email address: janpich@yahoo.com (Ján Pich)
1Supported by grant GAUK 5732/2012 and partially by grants IAA100190902 of GA

AV ČR and SVV-2012-267317. A part of this research was done while I was a visiting
fellow at the Isaac Newton Institute in Cambridge in Spring 2012 supported by grant
N-SPP 2011/2012. I would like to thank Jan Kraj́ıček and Albert Atserias for useful
discussions.

Preprint submitted to ECCC May 1, 2013

Intuitively, if the statement expressing nk-size circuit lower bounds for
SAT was such a feasibly witnessed statement, for any nk-size circuit with n
inputs we could efficiently find a formula of size n on which the circuit fails
to decide SAT. We present a natural formalization of nk-size circuit lower
bounds for SAT denoted LB(SAT, nk) and observe that its provability in
S1
2(bit) gives us such error witnessing. One could hope to use the witnessing

algorithm to derive a contradiction with some established hardness assump-
tion, however, Atserias and Kraj́ıček (private communication) noticed that
certain cryptographic conjectures imply the same form of witnessing, see
Proposition 4.2.

We do not know how to obtain the unprovability of SAT circuit lower
bounds in S1

2(bit) but we can do it basically for any weaker theory with
stronger witnessing properties.

In weaker theories the situation is less natural because they cannot fully
reason about p-time concepts. In particular, LB(SAT, nk) is equivalent to a
formula LB2(SAT, n

k) (defined in Section 5) in S1
2(bit) but not necessarily

in weaker theories. Therefore, we need to consider these two formalizations
separately. We present it in the case of theory TNC1 which is the true universal
first-order theory in the language containing names for all uniform NC1

algorithms.

If TNC1 proves LB2(SAT, n
k), there are uniform NC1 circuits which for

each nk-size circuit C with large enough n find a formula y of size n and com-
putation of C on y witnessing that C decides SAT incorrectly on y. It is easy
to show that in such case nonuniform NC1 circuits could simulate SIZE(nk),
see Proposition 6.1. Thus, a conditional unprovability of LB2(SAT, n

k) in
TNC1 follows easily.

To prove LB(SAT, nk) in TNC1 , the resulting uniform NC1 circuits would
need to output for each nk-size circuit C with large enough n an error y but
they would not need to witness the computation of C on y. In this sense,
for TNC1 it is easier to reason about formalization LB(SAT, nk). We show
that even LB(SAT, n2kc) for k ≥ 1, c ≥ 4 is unprovable in TNC1 unless

each f ∈ SIZE(nk) can be approximate by formulas Fn of size 2O(n2/c) with

subexponential advantage: Px{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n2/c). The
proof will be quite generic so, in particular, using known lower bounds on
PARITY function, we will obtain that, unconditionally, V 0 cannot prove
quasi polynomial (nlogn-size) circuit lower bounds on SAT. Here, V 0 is a
second-order theory used frequently in Bounded Arithmetic, see Section 5.

2

To prove our main claim we firstly observe that by the KPT theorem
[15] the provability of LB(SAT, nk) in universal theories like TNC1 gives us
an O(1)-round Student-Teacher (S-T) protocol finding errors of n2kc-size cir-
cuits attempting to compute SAT. Then, in particular, it works for n2kc-size
circuits encoding Nisan-Wigderson (NW) generators based on any functions
f ∈ SIZE(nk) and suitable design matrices [16]. The interpretation of NW-
generators as p-size circuits comes from Razborov [19]. In this situation
we apply Kraj́ıček’s proof that certain NW-generators are hard for TPV [14]
which is the main technique we use. We show that it works in our context as
well and allows us to use the S-T protocol to compute f by subexponential
formulas with a subexponential advantage.

Perhaps the most significant earlier result of this kind was obtained by
Razborov [18]. Using natural proofs he showed that theory S2

2(α) cannot
prove polynomial circuit lower bounds on SAT unless strong pseudorandom
generators do not exist. The second-order theory S2

2(α) is however quite
weak with respect to the formalization Razborov used. As far as we know
his technique does not imply the unprovability of circuit lower bounds (for-
malized as here, see Section 2) even for Robinson’s Arithmetic Q. In this
respect, our proof applies to much stronger theories, basically to any theory
weaker than S1

2(bit).

The paper is organized as follows. In Section 2 we formalize circuit lower
bounds in the language of bounded arithmetic. In Section 3 we define theory
S1
2(bit), state its properties and in Section 4 discuss the provability of circuit

lower bounds in S1
2(bit). Section 5 defines subtheories of S1

2(bit) for which
we prove our main unprovability results in Section 6.

2. Formalization

The usual language of arithmetic contains well known symbols: 0, S,+, ·,=
,≤. To encode reasoning about computation it is natural to consider also
symbols bx

2
c, |x| for the length of binary representation of x and # with the

intended meaning x#y = 2|x|·|y|. Theories of bounded arithmetic are defined
using language L = {0, S,+, ·,=,≤, bx/2c, |x|,#}. We will consider also lan-
guage Lbit which contains in addition symbol xi for the i-th bit of the binary
representation of x. The basic properties of symbols from Lbit are captured
by a set of basic axioms BASIC(bit) which we will not spell out, cf. [2, 12].

3

Σb
0 denotes the set of all formulas in the language L with all quantifiers

sharply bounded: ∃x, x ≤ |t|, ∀x, x ≤ |t| where t is a term not containing
x. All relations defined by Σb

0 formulas are p-time computable. Σb
i resp. Πb

i

for i > 0 are sets of formulas constructed from sharply bounded formulas
by means of ∧, ∨, sharply bounded, and existential bounded quantifiers:
∃y y ≤ t resp. universal bounded quantifiers: ∀y y ≤ t for x not occurring
in t. All NP resp. coNP are representable by Σb

1 resp. Πb
1 formulas, cf.

[10, 20, 21].

Define Σb
i(bit),Π

b
i(bit) for i ≥ 0 as above but in the language Lbit. For

i ≥ 1, Σb
i(bit)-formulas are actually equivalent to Σb

i -formulas in theory PV1,
cf. [4, 12], see also Section 3. Analogously, for Πb

i -formulas with i ≥ 1.

We will now express circuit lower bounds in Lbit.

Firstly, denote by Comp(C, y, w) a Σb
0(bit)-formula saying that w is a

computation of circuit C on input y. Such a formula can be constructed in
many ways and our results work for any Σb

0(bit) formalization. For simplicity,
we present here a less efficient one where C represents a directed graph on
|w| vertices.

Let EC(i, j) be C[i,j] for pairing function [i, j] = (i + j)(i + j + 1)/2 + i.
EC(i, j) = 1, i, j < |w| means that there is an edge in circuit C going from
the i-th vertex to the j-th vertex. For k < |w|, let NC(k) be the tuple of
bits (C[|w|,|w|]+2k, C[|w|,|w|]+2k+1) encoding the connective in the k-th node of
circuit C, say (0, 1) be ∧, (1, 0) be ∨, and (1, 1) and (0, 0) be ¬. Therefore,
|C| = [|w|, |w|] + 2|w|. Then let Circ(C, y, w) be the formula stating that C
encodes a |w|-size circuit with |y| inputs:

∀j < |w|, j ≥ |y|
(NC(j) = (1, 0) ∨NC(j) = (0, 1)→ ∃i, k < j i 6= k∀l < j, l 6= k, l 6= j

(EC(i, j) = 1 ∧ EC(k, j) = 1 ∧ EC(l, j) = 0))∧
(NC(j) = (1, 1) ∨NC(j) = (0, 0)→ ∃i < j∀l < j, k 6= i

(EC(i, j) = 1 ∧ EC(l, j) = 0))

which means that if the j-th node of C is ∧ or ∨, there are exactly two
previous nodes i, k of C with edges going from i and k to j, if the j-th node
of C is ¬, there is exactly one previous node i with an edge going from i to
j.

4

Comp(C, y, w) says that for each i < |y| the value of wi is the value of
the i-th input bit of y and each wj is an evaluation of the j-th node of circuit
C given wk’s evaluating nodes connected to the j-th node:

Circ(C, y, w) ∧ ∀i < |y| yi = wi ∧ ∀j, k, l < |w|[
(NC(j) = (1, 0)∧EC(k, j) = 1∧EC(l, j) = 1→ (wj = 1↔ wk = 1∧wl = 1))∧
(NC(j) = (0, 1)∧EC(k, j) = 1∧EC(l, j) = 1→ (wj = 1↔ wk = 1∨wl = 1))∧
((NC(j) = (0, 0) ∨NC(j) = (1, 1)) ∧ EC(k, j) = 1→ (wj = 1↔ wk = 0))]

Formula C(y;w) = 1 stating that w is accepting computation of circuit
C on input y will be Comp(C, y, w)∧w|w|−1 = 1. Similarly for C(y;w) = 0.

Next, let SAT (y, z) be a Σb
0(bit)-formula saying that z is a satisfying

assignment to the propositional 3-CNF formula y.

To define it explicitly for each i, j, k < 2m we let y[i,j,k] = 1 if and only if
the 3-CNF encoded in y contains a clause of variables vpi , v

p
j , v

p
k where vpi is vi

if i < m and ¬vi−m if i ≥ m. Here also [i, j, k] = [i, [j, k]]. Hence, the 3-CNF
encoded in y has m variables v0, ..., vm−1 and |y| = [2m−1, 2m−1, 2m−1]+1.
We use m implicitly given by y in the formula SAT (y, z):

∀i, j, k < 2m [yi,j,k = 1→
(i, j, k < m→ zi = 1 ∨ zj = 1 ∨ zk = 1)∧
(i, j < m ∧ k ≥ m→ zi = 1 ∨ zj = 1 ∨ zk−m = 0)∧
...
(i, j, k ≥ m→ zi−m = 0 ∨ zj−m = 0 ∨ zk−m = 0)]

Finally, for any k, a hardness of SAT for nk-size circuits can be expressed
as

LB(SAT, nk)

∀1n > n0 ∀C ∃y, a |a| < |y| = n ∀w, z |w| ≤ nk, |z| < |y| [Comp(C, y, w)→
(C(y;w) = 1 ∧ ¬SAT (y, z)) ∨ (C(y;w) = 0 ∧ SAT (y, a))]

Here n0 is a fixed constant which is not indicated in LB(SAT, nk). This
should not cause any confusion. Whenever we say that LB(SAT, nk) is
provable in a theory T we mean that it is provable in T for some n0. Further,
∀1n > n0 is a shortcut for ∀m,n such that |m| = n ∧m > n0. Therefore, y
is feasible in m and for each n0 and k, LB(SAT, nk) is universal closure of a
Σb

2(bit) formula.

5

3. Feasible Mathematics

If we obtain nk-size circuit lower bounds for SAT but do not find any
efficient method how to witness errors of potential nk-size circuits for SAT,
some of these circuits might work in practice like correct ones. We will now
define theories of feasible mathematics where provability of nk-size circuit
lower bound for SAT implies the existence of such an error witnessing.

Perhaps, the most prominent one is S1
2 introduced by Buss [2]. We will

use its conservative extension S1
2(bit) which consists of BASIC(bit) and poly-

nomial induction for Σb
1(bit)-formulas A:

A(0) ∧ ∀x(A(bx/2c)→ A(x))→ ∀xA(x)

An important property of S1
2(bit) is Buss’s witnessing theorem:

Theorem 3.1 (Buss [2]). If S1
2(bit) ` ∃yA(x, y) for Σb

0(bit)-formula A, then
there is a p-time functions f such that A(x, f(x)) holds for any x.

S1
2(bit) admits also a useful kind of witnessing for Σb

2(bit)-formulas.

Theorem 3.2 (Kraj́ıček [11]). If S1
2(bit) ` ∃y∀z ≤ t A(x, y, z) for Σb

0(bit)-
formula A and term t depending only on x, y, then there is p-time algo-
rithm S such that for any x either ∀z ≤ t A(x, S(x), z) or for some z1,
¬A(x, S(x), z1). In the latter case, either ∀z ≤ t A(x, S(x, z1), z) or there is
z2 such that ¬A(x, S(x, z1), z2). However after k ≤ poly(|x|) rounds of this
kind, ∀z ≤ t A(x, S(x, z1, ..., zk), z) holds for any x.

Another theory with similar witnessing properties is PV1 which is an ex-
tension of a theory PV defined by Cook [4], see also [12]. The language of
PV1 consist of symbols for all functions given by a Cobham-like inductive
definition of p-time functions (hence it contains Lbit). PV1 defined in [15]
is then a first-order theory axiomatized by equations defining all the func-
tion symbols and a derivation rule similar to polynomial induction for open
formulas. It is a universal theory, i.e. it has an axiomatization by purely uni-
versal sentences, and because all function symbols of PV1 have well-behaved
Σb

1 and Πb
1 definitions in S1

2(bit), PV1 is contained in the extension of S1
2(bit)

by these definitions which we denote also S1
2(bit). PV1 proves induction and

polynomial induction for Σb
0(PV)-formulas defined similarly as Σb

0-formulas
but in the language of PV1. There is also an interesting theory APC1 intro-
duced by Jeřábek [9] which is an extension of S1

2(bit) capturing a subclass of
BPP similarly as S1

2(bit) captures P.

6

Theories S1
2(bit), PV1 and APC1 are weak fragments of arithmetic but

they are sufficiently strong to prove many important things. In [12, chap.
15] it is shown how to prove PARITY /∈ AC0 in APC1. Razborov[17] argued
that S1

2(bit) is the right theory capturing techniques from circuit complexity
in 1995. We expect that APC1 captures feasible reasoning so well that any
provable statement about feasible concepts is provable in APC1 assuming
that feasible concepts intuitively correspond to BPP concepts . Of course,
this does not contain, for instance, Shannon’s argument if it is formalized so
that it manipulates with exponentially big objects.

3.1. Equivalent formalizations of LB(SAT, nk)

There are more possible formalizations of circuit lower bounds that are
essentially equivalent to LB(SAT, nk). For example, SCE(SAT, nk) mean-
ing that for each nk-size circuit there is a satisfiable formula of size n such
that the circuit will not find its satisfying assignment.

SCE(SAT, nk)

∀1n > n0 ∀C ∃y, a|a| < |y| = n ∀w, z |w| ≤ nk, |z| < |y|
[SAT (y, a) ∧ (C(y;w) = z → ¬SAT (y, z))]

where C(y;w) = z means that w is a computation of circuit C on input y
with output bits z. Formally, Comp(C, y, w) ∧ ∀i < |z|(w|w|−i−1 = 1↔ zi =
1). SCE in SCE(SAT, nk) refers to ”search SAT counter example”.

Another formalization of circuit lower bounds is given by the following
formula DCE(SAT, nk) where DCE refers to ”decision SAT counter exam-
ple”. Now circuits C have again just one output but using self-reducibility
they can be used to search for satisfying assignments of propositional formu-
las: If C says that formula y is satisfiable, we can set the first free variable in
y firstly to 1 and then to 0, and use C to decide in which of these cases the
resulting formula is satisfiable, then in the same manner continue searching
for the full satisfying assignment. If no such C can be used to find satisfying
assignments of satisfiable propositional formulas, for each such C there is
a formula y and a possibly partial assignment to its variables a such that
either SAT (y, a) and C says that y is unsatisfiable or ¬SAT (y, a) for full
assignment a of y and C says that a satisfies y or it happens that C gets into
a local inconsistency: for a partial assignment a of y it claims that y assigned
by a is satisfiable but when we extend a by setting the first of the remaining

7

free variables by 1 and 0 in both cases C claims that the resulting formula
is unsatisfiable. Formally:

DCE(SAT, nk)

∀1n > n0∀C ∃y, a|a| < |y| = n ∀w0, ..., w4 |w0|, ..., |w4| ≤ nk[
(Comp(C, y, w0)→ (C(y;w0) = 0 ∧ SAT (y, a)))∨
(Comp(C, y(a), w1)→ (C(y(a);w1) = 1 ∧ FA(a, y) ∧ ¬SAT (y, a)))∨
(Comp(C, y(a), w2)→ (C(y(a);w2) = 1 ∧ PA(a, y)∧

(Comp(C, y(a1), w3)→ C(y(a1);w3) = 0)∧
(Comp(C, y(a0), w4)→ C(y(a0);w4) = 0)))]

where y(a) encodes formula y assigned by a, FA(a, y) resp. PA(a, y)
means that a is full resp. partial assignment to variables in y and y(a1) resp.
y(a0) is y assigned by extension of a which set the first unassigned variable
in y by 1 resp. by 0. We leave details of these encodings to kind reader.

LB(SAT, nk), SCE(SAT, nk), DCE(SAT, nk) are basically equivalent. We
claim that this is provable already in PV1 and hence also in S1

2(bit).

Proposition 3.1. PV1 proves the following implications
SCE(SAT, n2k)→ LB(SAT, nk)
LB(SAT, n2k)→ SCE(SAT, nk)
LB(SAT, nk)→ DCE(SAT, nk)
DCE(SAT, nk)→ LB(SAT, nk)

where n0 arbitrary but the same constant in the assumption and the con-
clusion of each implication.

Proof: The first implication was observed in [5]: Assume ¬LB(SAT, nk),
i.e. for a big enough n there is an nk-size circuit C deciding SAT on instances
of size n. Then there is a p-time function which given a circuit C witnessing
¬LB(SAT, nk) produces an n2k-size circuit sC which outputs a satisfying
assignment sC(y) for every satisfiable formula y of size n. For each i, the
circuit sC finds the i-th bit of the satisfying assignment by asking C whether
y remains satisfiable if the i-th variable is set to 1, given the values it has pre-
viously found for the first i−1 variables. Then (assuming ¬LB(SAT, nk) and
SAT (y, a)) PV1 proves by Σb

0(PV) induction on i that y instantiated by the
first i truth values is satisfiable according to C and hence ¬SCE(SAT, n2k).

8

Concerning the second implication: If ¬SCE(SAT, nk), i.e. for a big
enough n there is an nk-size circuit C which outputs a satisfying assignment
C(y) for every satisfiable formula of size n, then there is a p-time function
which given any such circuit C produces an n2k-size circuit dC which de-
cides SAT on instances of size n. Given a formula y, dC outputs 1 if and
only if C(y) satisfies y. Assuming ¬SCE(SAT, nk) it follows in PV1 that
(SAT (y, a) → dC(y;w) = 1) ∧ (dC(y;w) = 1 → SAT (y, C(y))) for any y, a
of size |a| < |y| = n, hence ¬LB(SAT, n2k).

Next, in PV1, if circuit C witnesses ¬DCE(SAT, nk), it witnesses also
¬LB(SAT, nk): for any y, a of size |a| < |y| = n for a big enough n, C(y;w) =
0→ ¬SAT (y, a) and if C(y;w) = 1 then by Σb

0(PV)-induction C(y(b);w) =
1 for a full assignment b of y for which SAT (y, b) holds.

Finally, in PV1, if C witnesses ¬LB(SAT, nk), it witnesses ¬DCE(SAT, nk):
for any y, a of size |a| < |y| = n for a big enough n, (C(y;w) = 0 →
¬SAT (y, a)), C(y(a);w) = 1 ∧ FA(a, y) → SAT (y, a) and if C(y(a);w) =
1 ∧ PA(a, y) then for some b extending a SAT (y, b) and thus C(y(a1);w) =
1 ∨ C(y(a0);w) = 1.

3.2. Witnessing errors of p-size circuits

Using LB(SAT, nk), SCE(SAT, nk) and DCE(SAT, nk) we can define
several types of error witnessing of p-size circuits claiming to solve SAT.

We say somewhat informally that LB(SAT, nk) ∈ P if there is a p-time
algorithm A which for any sufficiently large n and nk-size circuit C with
n inputs finds out y, a such that LB(C, y, a): C(y) = 1 ∧ SAT (y, a) or
C(y) = 0∧ ∀z¬SAT (y, z). Intuitively, A witnesses the important existential
quantifiers in LB(SAT, nk).

We say that LB(SAT, nk) has an S-T protocol with l rounds if there is
a p-time algorithm S such that for any function T and any sufficiently large
n, whenever S is given nk-size circuit C, S outputs y1, a1 such that either
LB(C, y1, a1) or otherwise T sends to S w1, z1 certifying ¬LB(C, y1, a1). Then
S uses C,w1, z1 to produce y2, a2 and the protocol continues in the same way,
S possibly using all counter-examples T sent in earlier rounds. But after at
most l rounds S outputs y, a such that LB(C, y, a).

Analogously, DCE(SAT, nk) ∈ P if there is a p-time algorithm A which
for any nk-size circuit C with n inputs finds out y, a such that DCE(C, y, a):

C(y) = 0 ∧ SAT (y, a) or C(y(a)) = 1 ∧ FA(a, y) ∧ ¬SAT (y, a) or

9

C(y(a)) = 1 ∧ PA(a, y) ∧ (C(y(a0)) = 0 ∨ C(y(a1)) = 0)

SCE(SAT, nk) ∈ P if there is a p-time algorithm A which for any nk-size
circuit C with n inputs and n outputs finds out y, a such that SAT (y, a) ∧
¬SAT (y, C(y)).

The phrase that DCE(SAT, nk) resp. SCE(SAT, nk) has an S-T proto-
col with l rounds could be defined similarly but notice that in this case T’s
advise would consist only of computations w of given circuit C which can be
produced by S itself as it has C as input.

In practice, if we want to witness that no small circuit solves SAT, it
does not seem sufficient to have a p-time algorithm for LB(SAT, nk) because
such an algorithm could output a tautology but we would not have an apriori
way to certify that it is indeed a tautology and hence a correctly witnessed
error. Therefore, it seems that practically more appropriate error witnessing
is defined by DCE(SAT, nk) or SCE(SAT, nk) in which we actually force
given circuits to claim inconsistent statements. We discuss it in more details
in the next section.

4. Circuit Lower Bounds in S1
2(bit)

The provability of circuit lower bounds in S1
2(bit) gives us an efficient

witnessing errors of p-size circuits for SAT described in the previous section.

Proposition 4.1. If S1
2(bit) ` LB(SAT, nk), then LB(SAT, nk) has an S-T

protocol with poly(n) rounds. If S1
2(bit) ` SCE(SAT, nk), then SCE(SAT, nk) ∈

P . If S1
2(bit) ` DCE(SAT, nk), then DCE(SAT, nk) ∈ P .

Proof: LB(SAT, nk), DCE(SAT, nk) and SCE(SAT, nk) are universal
closures of Σb

2(bit)-formulas so the first implication follows directly from
Kraj́ıček’s witnessing theorem. In case of SCE(SAT, nk) andDCE(SAT, nk)
T’s advise in the resulting S-T protocol consist just of computations of given
circuit C. This can be, however, produced by S itself as it has C as input.

An efficient witnessing errors of p-time SAT algorithms follows also from
instance checkers for SAT, see [1, chap. 8]. If we want to check only nk-time
algorithms, the instance checker is p-time itself:

Theorem 4.1. There is a p-time algorithm that given any nk-time algorithm
M and a formula y of size n accepts if M solves SAT on all instances, and

10

rejects with probability ≥ 1 − 1/2n if M does not decide satisfiability of y
correctly.

Therefore, any nk-time algorithm M claiming to solve SAT can be tested
by checking it on formula FM(y, a) encoding the statement ”a satisfies for-
mula y but M fails to find a satisfying assignment of y (in the same way as C
fails to find it in DCE(SAT, nk))”. If M(Fm(y, a)) = 1, by self-reducibility
M will be forced to find a satisfying assignment of FM which is an error of
M or it will end up in a local inconsistency which is also error. If FM(y, a) is
unsatisfiable, the checker will use an interactive protocol with M as a Prover
to verify that.

In practice, we can test whether a given algorithm M proves theorems
efficiently also by taking a statement we consider hard to prove and refute it
instead of FM .

Furthermore, if f is one-way function, we can also secretly produce a ∈
{0, 1}n and ask the algorithm whether the statement f(a) = f(x) encoded as
a poly(|a|)-size formula with free variables x = x1, ..., xn is satisfiable, see [6].
In this case, we do not need to use interactive protocols because the algorithm
is forced to say that the formula is satisfiable and by the choice of f , with
high probability it will not find its satisfying assignment. Atserias (private
communication) suggested to derandomize this construction and Kraj́ıček
made the following observation.

Proposition 4.2. If there exists one-way permutation f secure against p-
size circuits, i.e. for any p-size circuits Cn there is a function ε(n) = n−ω(1)

such that for large enough n,

Px∈{0,1}n [Cn(f(x)) = x] ≤ ε(n)

and if there exists h ∈ E hard on average for subexponential circuits, i.e.
there is δ > 0 such that for all circuits Cn of size ≤ 2δn and large enough n,

Px∈{0,1}n [Cn(x) = h(x)] ≤ 1/2 + 1/2δn

then for each k, SCE(SAT, nk) ∈ P .

Proof: If there is h ∈ E hard on average for subexponential circuits, by
[16] for each l there is c and NW-generator g : {0, 1}c logn 7→ {0, 1}n such
that g is poly(n)-time computable and for any nl-size circuits Dn,

|Px∈{0,1}c logn [Dn(g(x)) = 1]− Px∈{0,1}n [Dn(x) = 1]| ≤ 1/n

11

This generator allows us to derandomize the construction above: Let f be
one-way permutation secure against p-size circuits. Take l such that for
each nk-size circuits Cn predicate Cn(f(x)) 6= x for x ∈ {0, 1}n can be
computed by nl-size circuits. Now, for any nk-size circuit Cn with suffi-
ciently big n, for each x ∈ {0, 1}c logn find out whether Cn(f(g(x))) 6= g(x)
holds. This can be done in poly(n)-time. If we did not succeed at least once,
Px∈{0,1}c logn [Cn(f(g(x))) = g(x)] = 1, and that would break g.

In [13] Kraj́ıček also observed that in order to show SCE(SAT, nk) ∈
P/poly, it suffices to assume that SAT /∈ SIZE(n2k). It uses a well known
combinatorial principle: Let E ⊆ X × Y be a bipartite graph, |X| =
2n

k
, |Y | = 2n. Then

∀x1, ..., xn ∈ X ∃y ∈ Y
∧

i=1,...,n

E(xi, y)⇒

∃y1, ..., ynk ∈ Y ∀x ∈ X
∨

i=1,...,nk

E(x, yi)

Now take as X the set of all nk/2-size circuits and interpret E(x, y) as ”if y is a
satisfiable formula of size n, circuit x does not find a satisfying assignment of
y”. If SAT restricted to instances of size n does not have nk-size circuits then
for every n circuits C1, ..., Cn of size nk/2 there is y such that

∧
i=1,...,nE(Ci, y).

Else, for any satisfiable y at least one of the n fixed circuits would find a
satisfying assignment of y. By the principle above, there are then y1, ..., ynk

such that for each nk/2-size circuit C,
∨
i=1,...,nk E(C, yi). Therefore there is

an n2k-size circuit which for each x ∈ X finds y such that E(x, y) by trying
E(x, yi) for i = 1, ..., nk and thus using additional satisfying assignments
a1, ..., ank of respective y’s as advice solves SCE(SAT, nk).

Similarly, it works forDCE(SAT, nk) because checkingE(x, y), i.e. whether
circuit x (with one output) can be used to find the satisfying assignment, is
efficient. For LB(SAT, nk) it could however happen that the search for the
satisfying assignment ends in a local inconsistency.

Proposition 4.3 (Kraj́ıček [13]). If SAT /∈ SIZE(n2k), then SCE(SAT, nk)
and DCE(SAT, nk) are in P/poly.

Proposition 4.2 seems to imply that for proving S1
2(bit) 6` SCE(SAT, nk)

we need to use other properties than SCE(SAT, nk) ∈ P. Moreover, assump-
tions of Proposition 4.2 give us an S-T protocol for LB(SAT, nk) too. Infor-
mally, any nk-size circuit C claiming to decide SAT can be used to search for

12

satisfying assignments of propositional formulas. Using the algorithm from
Proposition 4.2, S can produce y, a, such that SAT (y, a) but C will not find
any satisfying assignment of y. This means that either C claims that y is
unsatisfiable or the assignment it finds does not satisfy y or while searching
for a satisfying assignment it gets into a local inconsistency which is the only
case when S needs to ask for an advice of T, a satisfying assignment of y
extending the partial assignment found by C.

Proposition 4.4. If the same hardness assumption as in Proposition 4.2
holds, then LB(SAT, nk) has an S-T protocol with poly(n) rounds where S is
in uniform AC0, and it has also an S-T protocol with 1 round (i.e. 1 advice
of T) where S is a p-time algorithm.

Proof:
By Proposition 4.2 we have a p-time algorithm A solving SCE(SAT, n2k).

Firstly, we show that LB(SAT, nk) has an S-T protocol with 1 round and
p-time S.

For each nk-size circuit C with one output bit, there is a circuit sC
of size ≤ n2k searching for satisfying assignments of given formulas: For
each formula y, let a be a partial assignment of y produced by sC so far
(empty at the beginning) and denote by y(a) the formula y assigned by a. If
C(y(a)) = 0, sC outputs an assignment of y full of zeros. If C(y(a)) = 1, it
assigns y1a, the first free variable in y(a), firstly by 1 and then by 0. Denote
the resulting formula y(a1) resp. y(a0). If C(y(a1)) = C(y(a0)) = 1, sC sets
y1a = 1. If C(y(a1)) = C(y(a0)) = 0, sC outputs an assignment of y full of
zeros. If C(y(a1)) = 1 and C(y(a0)) = 0, sC sets y1a = 1. If C(y(a1)) = 0
and C(y(a0)) = 1, it sets y1a = 0. In this way sC sets all variables in y.

Given C, S can produce sC in p-time and use A to find y, a1 such that
SAT (y, a1) but ¬SAT (y, sC(y)).

If C(y) = 0, S outputs y, a1. Else, S simulates sC. If it never happens that
C(y(a1)) = C(y(a0)) = 0 for any partial assignment a produced by sC, S
outputs y, sC(y). Otherwise, for some partial assignment a of y, C(y(a)) = 1
and C(y(a0)) = C(y(a0)) = 0. In such case S outputs y, a2 where a2 is a full
assignment of y extending a with all zeros. If this is not a correct answer, T
replies with a3 extending a and satisfying y. Then S outputs y(ab), a3 where
b ∈ {0, 1} such that ab is consistent with a3.

In all cases S succeeds after asking for at most 1 advice of T.

13

To get S in uniform AC0 note that A actually produces a set B of ≤ nc

elements such that each n2k-size circuit fails on at least one of them. It
suffices to use instead of A the set B, i.e. to try all elements from B in place
of a1. Moreover, whenever S needs to simulate circuit C on input y it can
output y with an arbitrary assignment c of y. If this is not a correct answer, T
will reply either with a satisfying assignment d of y or with the computation
of C on y which can be verified by a uniform constant-depth formula. In the
former case S outputs y, d and this time it gets what it wants.

This also shows that if SCE(SAT, nk) ∈ P, then DCE(SAT, nk) ∈ P. All
in all, Buss’s witnessing does not seem to help us to obtain the unprovability
of LB(SAT, nk) in PV1 or S1

2(bit). Maybe it could work for intuitionistic
S1
2 where the witnessing holds for arbitrarily complex formulas, cf. [3]. The

situation is different in case of weaker theories where we have more efficient
witnessing. This will allow us to reduce to some hardness assumptions.

5. Theories weaker than PV1

In this section we consider some theories weaker than PV1 like TNC1 for
which we will show the unprovability of circuit lower bounds. We could
however similarly define a general theory TC corresponding to a standard
complexity class C and our results would work analogously.

Definition 5.1. TNC1 is the first-order theory of all universal LNC1 state-
ments true in the standard model of natural numbers where LNC1 is the lan-
guage containing names for all uniform NC1 algorithms. Analogously, TPV
resp. TAC0 is the true universal theory in the language LPV resp. LAC0

containing names for all p-time algorithms resp. uniform families of AC0

circuits.

These theories are universal so they admit the KPT theorem from [15]:

Theorem 5.1 ([15]). If TNC1 ` ∃yA(x, y) for open formula A, then there is
a function f in uniform NC1 such that A(x, f(x)) holds for any x.

If TNC1 ` ∃y∀zA(x, y, z) for open formula A, there are finitely many
functions f1, ..., fk in uniform NC1 such that

TNC1 ` A(x, f1(x), z1) ∨ A(x, f2(x, z1), z2) ∨ ... ∨ A(x, f(x, z1, ..., zk−1), zk)

Analogously for TAC0 and TPV for which the resulting functions are in
uniform AC0 resp. in P.

14

In the field of Bounded Arithmetic there are also standard theories cor-
responding to uniform AC0, NC1 and other complexity classes, cf. [7]. Typ-
ically, they are presented as two-sorted theories having one sort of variables
representing numbers and the second sort of variables representing bounded
sets of numbers. The first-sort (number) variables are denoted by lower
case letters x, y, z, ... and the second-sort (set) variables by capital letters
X, Y, Z, ... The underlying language includes the symbols +, ·,=,≤, 0, 1 of
first-order arithmetic. In addition it contains symbol =2 interpreted as equal-
ity between bounded sets of numbers, |X| for the function mapping an ele-
ment X of the set sort to the largest number in X plus one, and ∈ for the
relation which holds for a number n and set X if and only if n is an element
of X.

Bounded quantifiers for sets have the form ∃X ≤ t φ which stands for
∃X (|X| ≤ t ∧ φ) or ∀X ≤ t φ for ∀X (|X| ≤ t → φ). Here t is number
term which does not involve X. ΣB

0 formulas are formulas without bounded
quantifiers for sets but may have bounded number quantifiers. Each bounded
set X ≤ t can be seen also as a finite binary string of size ≤ t which has 1
in the i-th position iff i ∈ X. When we say that a function f(x,X) mapping
bounded sets and numbers to bounded sets is in AC0 or NC1 we mean that
the corresponding function on finite binary strings and unary representation
of x is in AC0 or NC1.

The base theory we will consider is V 0 consisting of a set of basic axioms
capturing the properties of symbols in the two-sorted language and a com-
prehension axiom schema for ΣB

0 -formulas stating that for any ΣB
0 formula

there exists a set containing exactly the elements that satisfy the formula,
cf. [7]. Further, Cook and Nguyen define theory V NC1 as V 0 extended by
the axiom that every monotone formula has an evaluation, see [7].

Theorem 5.2 (Cook-Nguyen [7]). If V NC1 ` ∀x∀X∃Y A(x,X, Y) for ΣB
0 -

formula A, there is a function f in uniform NC1 such that A(x,X, f(x,X))
holds for any x,X.

If V NC1 ` ∀x∀X∃Y ∀ZA(x,X, Y, Z) for ΣB
0 -formula A, there are finitely

many functions f1, ..., fk in uniform NC1 such that

A(x,X, f1(x,X), Z1) ∨ A(x,X, f2(x,X, Z1), Z2) ∨ ...
... ∨ A(x,X, , f(x,X, Z1, ..., Zk−1), Zk)

Analogously for V 0 with the resulting functions in uniform AC0.

15

LB(SAT, nk) translates to the two-sorted language as follows

∀n > n0∀C∃Y ≤ n∃A ≤ n ∀W ≤ nk∀Z ≤ n[Comp(C, Y,W)→
(C(Y ;W) = 1 ∧ ¬SAT (Y, Z)) ∨ (C(Y ;W) = 0 ∧ SAT (Y,A))]

where k, n0 are constants as before and Comp(C, Y,W), C(Y ;W) = 0/1,
SAT (Y, Z) are defined as their first-order counterparts but function xi is
replaced by i ∈ X.

Similarly, we obtain the two-sorted SCE(SAT, nk), DCE(SAT, nk).

Let us also specify the formalization of LB(SAT, nk) in TAC0 . LAC0 con-
tains symbols for SAT (y, z), Comp(C, y, w) and all the predicates we explic-
itly defined as Σb

0(bit)-formulas because they are not just p-time but in fact
constant-depth formulas. Moreover, even if multiplication is not in LAC0 (but
in LNC1) we may assume that the LAC0 functions Comp(C, y, w), C(y;w) =
1/0 contain the bound |w| ≤ |y|k. For simplicity, whenever we speak about
LB(SAT, nk) in TAC0 we mean its formalization where instead of the Σb

0(bit)-
formulas we have the respective symbols of LAC0 . Similarly for SCE(SAT, nk),
DCE(SAT, nk) and TNC1 . Therefore, LB(SAT, nk), SCE(SAT, nk) and
DCE(SAT, nk) in TAC0 and TNC1 have the form ∃y∀z A(x, y, z) for an open
formula A (i.e. A has no quantifiers).

The situation with the provability of polynomial circuit lower bounds
in weak theories like TNC1 , V NC1, TAC0 ... is less natural because they can-
not fully reason about p-time concepts. In particular, there is a formula
LB2(SAT, n

k) which is equivalent to LB(SAT, nk) in S1
2(bit) but not nec-

essarily in TNC1 . LB2(SAT, n
k) is like LB(SAT, nk) but with LB(C, y, a)

expressed positively:

LB2(SAT, n
k)

∀1n > n0∀C ∃y, a, w |a| < |y| = n, |w| ≤ nk∀z, |z| < |y| [¬Circ(C, y, w)∨
(C(y;w) = 0 ∧ SAT (y, a)) ∨ (C(y;w) = 1 ∧ ¬SAT (y, z))

Analogously defineDCE2(SAT, n
k), SCE2(SAT, n

k) and their two-sorted
and LAC0 formulations.

By the witnessing theorem above, if TNC1 proves LB(SAT, nk), LB(SAT, nk)
has an NC1 S-T protocol with O(1) rounds which is S-T protocol with

16

O(1) rounds and uniform NC1 S. If TNC1 ` LB2(SAT, n
k), LB2(SAT, n

k)
has an NC1 S-T protocol with O(1) rounds which is defined analogously
as for LB(SAT, nk) but with S producing also computations w of given
circuits. As DCE2(SAT, n

k) has the form ∃yA(x, y) for an open A in
LAC0 , its provability in TNC1 implies DCE2(SAT, n

k) ∈ NC1. Here again,
DCE2(SAT, n

k) ∈ NC1 is defined as DCE(SAT, nk) ∈ NC1 but with the
witnessing algorithm producing also computations w of given circuits. Anal-
ogously for theories TAC0 , V 0, V NC1 .

6. Unprovability of circuit lower bounds in subtheories of PV1

To prove that V NC1 or TNC1 do not prove LB(SAT, nk) it suffices to
show that LB(SAT, nk) has no S-T protocol with O(1) rounds where S is
in uniform NC1. For the unprovability of LB2(SAT, n

k) it however suffices
to refute the existence of S-T protocols with O(1) rounds where S ∈ NC1

produces w’s (computations of given circuits) itself. This is quite simple:

Proposition 6.1. LB(SAT, nk+1) /∈ NC1, DCE2(SAT, n
k+1) /∈ NC1 and

LB2(SAT, n
k+1) has no NC1 S-T protocol with poly(n) rounds unless

SIZE(nk) ⊆ NC1. Unconditionally, for any sufficiently big k, LB(SAT, nk) /∈
AC0, DCE2(SAT, n

k) /∈ NC1 and LB2(SAT, n
k) has no AC0 S-T protocol

with poly(n) rounds.

Proof: Assume first that LB(SAT, nk+1) ∈ NC1, i.e. there are NC1

circuits Dm(x) such that for sufficiently big n whenever x ∈ {0, 1}m for
m = poly(n) encodes an nk+1-size circuit Cn with n inputs, Dm(x) outputs
y, a such that

Cn(y) = 0 ∧ SAT (y, a) or Cn(x) = 1 ∧ ∀z¬SAT (y, z)

Now any nk-size circuits Bn with n inputs can be simulated by NC1 circuits:
For b ∈ {0, 1}n and z = (z1, ..., zn) denote R[Bn, b, z] the circuit with n inputs
z but computing as Bn on b, i.e. it does not use inputs z at all. The size of
R[Bn, b, z] is (nk +n). Let En(b) be an AC0 circuit which uses description of
Bn’s as advice and maps b ∈ {0, 1}n to x ∈ {0, 1}m encoding R[Bn, b, z].

For each b ∈ {0, 1}n, useDm(En(b)) to find y, a and output 0 iff SAT (y, a).

Deciding SAT (y, a) is by our formalization doable by constant-depth for-
mulas. Therefore, for each b, we predict Bn(b) with an NC1 circuit.

17

If LB(SAT, nk) ∈ AC0, we would obtain AC0 circuits for PARITY, which
is impossible.

This construction works analogously for DCE2(SAT, n
k) and as well for

LB2(SAT, n
k) because if there was some NC1 S-T protocol for LB2(SAT, n

k)
S would be forced to produce computations w of given circuits.

Corollary 6.1. TNC1 6` DCE2(SAT, n
k+1) and TNC1 6` LB2(SAT, n

k) unless
SIZE(nk) ⊆ NC1. For any sufficiently big k, V 0 6` DCE2(SAT, n

k) and
V 0 6` LB2(SAT, n

k).

This simple observation does not work if we want to refute that LB(SAT, nk)
has NC1 S-T protocols because T can send to S a computation of the artifi-
cially attached circuit. Indeed by Proposition 4.4 LB(SAT, nk) has a uniform
AC0 S-T protocol with poly(n) rounds under a plausible assumption.

We can however show that LB(SAT, nk) has no NC1 S-T protocols with
O(1) rounds under a hardness assumption. To show this we will use an
interpretation of suitable NW-generators as p-size circuits which is due to
Razborov [19] and Kraj́ıček’s proof of a hardness of certain NW-generators
for TPV [14]. It actually seems to be a relatively straightforward modification
of the previous simple observation.

Theorem 6.1. If there is f ∈ SIZE(nk) such that for all formulas Fn of

size 2O(n2/c), Px∈{0,1}n [Fn(x) = f(x)] < 1/2 + 1/2O(n2/c) for infinitely many
n’s, then LB(SAT, n2kc) has no NC1 S-T protocol with O(1) rounds.

To prove the theorem we will use Nisan-Wigdewrson (NW) generators
with specific design properties. Let A = {ai,j}i=1,...,m

j=1,...,n be an m×n 0-1 matrix

with l ones per row. Ji(A) := {j ∈ {1, ..., n}; ai,j = 1} and f : {0, 1}l 7→
{0, 1}. Then define NW-generator based on f and A, NWf,A : {0, 1}n 7→
{0, 1}m as

(NWf,A(x))i = f(x|Ji(A))

where x|Ji(A) are xj’s such that j ∈ Ji(A).

For any c ≥ 4, Nisan and Wigderson [16] constructed 2n × nc 0-1 matrix
A with nc/2 ones per row which is also (n, nc/2)-design meaning that for each
i 6= j, |Ji(A) ∩ Jj(A)| ≤ n. Moreover, the matrix A has such a property
that there are nc-size circuits which given i ∈ {0, 1}n compute the set Ji(A).
Therefore, as it was observed by Razborov [19], if f is in addition computable

18

by nk-size circuits, for any x ∈ {0, 1}nc
, (NWf,A(x))x is a function on n inputs

y computable by circuits of size n2kc.

Proof(of Theorem 6.1): Let f ∈ SIZE(nk) and A be a 2n × nc (n, nc/2)-
design defined above so for any x, (NWf,A(x))y can be computed from y by
an n2kc-size circuit. Assume that LB(SAT, n2kc) has an NC1 S-T protocol
with O(1) rounds. In particular, for each n2kc-size circuit C(y) computing
(NWf,A(x))y S either finds out the value of C(y1) by deciding (in AC0)
SAT (y1, a1) for y1, a1 it produced itself or T will send to S w1, b1 such that

(C(y1;w1) = 0 ∨ ¬SAT (y1, a1)) ∨ (C(y1;w1) = 1 ∨ SAT (y1, b1))

In the later case, S continues with its second try y2, a2. After at most t ≤ l
rounds for some fixed constant l, S will successfully predict C(yt).

Let Enc(x) be AC0 circuits mapping x ∈ {0, 1}nc
to a description of an

n2kc-size circuit with n inputs y computing the function (NWf,A(x))y. We
will consider our S-T protocol only on inputs of the form Enc(x).

Kraj́ıček [14] showed that if f is in NP∩coNP with unique witnesses such
S-T protocol allows us to approximate f by a p-size circuit. We will inspect
that his proof works also for f in P/poly and NC1 S-T protocols. In addition
we will assume that T in our S-T protocol operates as follows: whenever S
outputs y with some a, T answers with the lexicographically first satisfying
assignment b to y and the unique computation w of given circuit y. If there is
no such b, T replies with a string of zeros. This should replace the uniqueness
property assumed in [14].

For u ∈ {0, 1}nc/2
and v ∈ {0, 1}nc−nc/2

define ry(u, v) ∈ {0, 1}nc
by

putting bits of u into positions Jy(A) and filling the remaining bits by v (in
the natural order). For each x there is a trace tr(x) = y1, a1, ..., yt, at, t ≤ l
of the S-T communication.

Claim 1. There is a trace Tr = y1, a1, ..., yt, at, t ≤ l and a ∈ {0, 1}nc−nc/2

such that Tr = tr(ryt(u, a)) for at least a fraction of 2/(3(22n))t of all u’s.

Tr and a can be constructed inductively. There are at most 22n tuples
yj, ai, hence there is y1, a1 such that at least 1/22n traces begin with it. Either

there is a ∈ {0, 1}nc−nc/2
such that y1, a1 = tr(ry1(u, a)) for at least 2/(3(22n))

of all u’s or we can find y2, a2 such that at least 1/(3(22n))2 traces begin with
y1, a1, y2, a2. For the induction step assume we have a trace y1, a1, ..., yi, ai
such that at least 1/(3i−1(22n)i) traces begin with it. Either there is a ∈

19

{0, 1}nc−nc/2
such that y1, a1, ..., yi, ai = tr(ryi(u, a)) for at least 2/(3i(22n)i)

of all u’s or we can find yi+1, ai+1 such that at least 1/(3i(22n)i+1) traces
begin with y1, a1, ..., yi+1, ai+1. This proves the claim.

Fix now Tr and a from the previous claim.

Because A is (n, nc/2)-design, for any row y 6= yt at most n xj’s with
j ∈ Jy(A) are not set by a. Hence there are at most 2n assignments z to xj’s
with j ∈ Jy(A) not set by a. For each such z let wz, bz be the T’s advice
after S outputs y, ai on any x containing the assignment given by z and a.
By our choice of T, bz depends only on y and wz is uniquely determined by
z (and a which is fixed). Let Yy, y 6= yt be the set of all these witnesses for
all possible z’s. The size of each such Yy is 2O(n).

Now we define a formula F that attempts to compute f and uses as advice
Tr, a and some t sets Yy. For each u ∈ {0, 1}nc/2

produce ryt(u, a) (this is in
AC0). Let V be the set of those inputs u for which tr(ryt(u, a)) either is Tr or
starts as Tr and let U be the complement of V . Define d0 to be the majority
value of f on U . Then use S to produce y′1, a

′
1. If y′1, a

′
1 is different from Tr

output d0. Otherwise, find the unique T’s advice in Yy1 . Again, this is doable
by a constant depth formula of size 2n which has poly(n) output bits. It has
the form

∨
z∈{0,1}n(z = ryt(u, a)|(Jy1(A) ∩ Jyt(A)) → output = wz ∈ Yy1). In

the same manner continue until S produces y′t, a
′
t. If y′t, a

′
t differs from Tr

output d0. Otherwise, output 0 iff SAT (yt, at).

F is a formula with nc/2 inputs and size 2O(n) because producing ryt(u, a)
is in AC0, searching for T’s advice in Yi’s is doable by constant-depth 2O(n)-
size formulas, S is in NC1 and the structure of S-T protocol can be described
by a constant-depth formula of size nO(1):

(S(x) /∈ Tr → output = d0) ∧ (S(x) ∈ Tr →
((S(x,wz, bz) /∈ Tr → output = d0) ∧ (...

(S(x,w1, b1, ..., wt, bt) /∈ Tr → output = d0)∧
(S(x,w1, b1, ..., wt, bt) ∈ Tr → (output = 0↔ SAT (yt, bt)))...)))

By the choice of Tr, for at least a fraction 2/(3(2n))t of all u ∈ {0, 1}nc/2

F will successfully predict f(u). Moreover, at most 1/(3(2n))t of all traces
tr(ryt(u, a)) extend Tr. Because d0 is the correct value on at least half of
u ∈ U , Pu[F (u) = f(u)] ≥ 1/2 + 1/(3t2nt+1)

Corollary 6.2. TNC1 6` LB(SAT, n2kc) and V NC1 6` LB(SAT, n2kc) for k ≥
1, c ≥ 4 unless for each f ∈ SIZE(nk) there are formulas Fn of size 2O(n2/c)

such that for sufficiently big n’s, Px∈{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n2/c).

20

To obtain an unconditional unprovability of circuit lower bounds we can
use Hastad’s lower bound for constant depth circuits computing the parity
function.

Theorem 6.2 (Hastad [8]). For any depth d circuits Cn of size 2n
1/(d+1)

and

large enough n, Px∈{0,1}n [Cn(x) = PARITY (x)] ≤ 1/2 + 1/2n
1/(d+1)

If V 0 ` LB(SAT, nk), LB(SAT, nk) has an AC0 S-T protocol with O(1)
rounds so the resulting formula F in the proof of Theorem 6.1 would be
actually a constant-depth circuit and PARITY could be approximated by
constant depth circuits of size 2O(n2/c) with advantage 1/2O(n2/c). This is not
enough for the contradiction with Hastad’s theorem. Nevertheless, it is suf-
ficient if we replace polynomial circuit lower bounds LB(SAT, nk) by quasi
polynomial lower bounds LB(SAT, nlogn):

∀m > n0∀C∃y, a |a| < |y| = n∀w, |w| ≤ nlogn = m[Comp(C, y, w)→
(C(y;w) = 0 ∧ SAT (y, a)) ∨ (C(y;w) = 1 ∧ ∀z¬SAT (y, z))]

where n is the number of inputs to C and m represents nlogn (or sim-
ply |m| = |n|2). Analogously, define the two-sorted and LAC0 version of
LB(SAT, nlogn).

Corollary 6.3. TAC0 6` LB(SAT, nlogn). V 0 6` LB(SAT, nlogn)

References

[1] Arora S., Barak B.; Computational Complexity: A Modern Approach,
Cambridge University Press, 2009.

[2] Buss S.R.; Bounded Arithmetic, Bibliopolis, Naples, 1986.

[3] Buss S.R.; The Polynomial Hierarchy and Intuitionistic Bounded Arith-
metic, Structure in Complexity, Lecture Notes in Computer Science
#223, 1986, pp. 77-103.

[4] Cook S.A.; Feasibly constructive proofs and the propositional calculus,
Proceedings of the 7th Annual ACM Symposium on Theory of Comput-
ing, ACM Press, 1975, pp. 83-97.

[5] Cook S.A., Kraj́ıček J.; Consequences of the Provability of NP⊆P/poly,
J. of Symbolic Logic, 72 (2007), 1353-1357.

21

[6] Cook S.A., Mitchell D.G.; Finding Hard Instances of the Satisfiability
problem: A survey, DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, 1997.

[7] Cook S.A., Nguyen P.; Logical Foundations of Proof Complexity, Cam-
bridge University Press, 2010.

[8] Hastad J.; Computational limitations for small depth circuits, PhD the-
sis, M.I.T. press, 1986.

[9] Jeřábek E.; Approximate counting in bounded arithmetic, Journal of
Symbolic Logic, 72 (2007), 959-993.

[10] Kent C.F., and Hodgson B.R.; An arithmetic characterization of NP,
Theoretical Comput. Sci., 21 (1982), 255-267.

[11] Kraj́ıček J.; Fragments of Bounded Arithmetic and Bounded Query
Classes, Transactions of the AMS, 338 (1993), 587-598.

[12] Kraj́ıček J.; Bounded arithmetic, propositional logic, and complexity
theory, Cambridge University Press, 1995.

[13] Kraj́ıček J.; Extensions of models of PV, Logic Colloquium ’95, ASL
Springer Series Lecture Notes in Logic, 11 (1998), 104-114.

[14] Kraj́ıček J.; On the proof complexity of the Nisan-Wigderson generator
based on NP∩coNP function, J. of Mathematical Logic, 11 (2011), 11-
27.

[15] Kraj́ıček J., Pudlák P., Takeuti G.; Bounded arithmetic and the polyno-
mial hierarchy, Annals of Pure and Applied Logic, 52 (1991), 143-153.

[16] Nisan N., Wigderson A.; Hardness vs. Randomness, J. Comput. System
Sci., 49 (1994), 149-167.

[17] Razborov A.A.; Bounded Arithmetic and Lower Bounds in Boolean
Complexity, Feasible Mathematics II, 1995, pp. 344-386.

[18] Razborov A.A; Unprovability of Lower Bounds on the Circuit Size in
Certain Fragments of Bounded Arithmetic, Izvestiya of the Russian
Academy of Science, 59 (1995), 201-224.

22

[19] Razborov A.A; Pseudorandom Generators Hard for k-DNF Resolution
and Polynomial Calculus, preprint, 2002-2003.

[20] Stockmayer L.J.; The polynomial-time hierarchy, Theoretical Comput.
Sci., 3 (1976), 1-22.

[21] Wrathall C.; Complete sets and the polynomial-time hierarchy. Theo-
retical Comput. Sci., 3 (1976), 23-33.

23

