Introduction and function spaces

1. Prove:

Let Ω be an open bounded set. Then for any $\lambda \in (0,1]$ it holds

$$\mathcal{C}^{0,\lambda}(\overline{\Omega}) \hookrightarrow \hookrightarrow \mathcal{C}(\overline{\Omega}).$$

(10b) Let Ω be an open bounded set. Then for any $\alpha, \beta \in [0,1]$ such that $0 \le \alpha < \beta \le 1$ it holds

$$\mathcal{C}^{0,\beta}(\overline{\Omega}) \hookrightarrow \hookrightarrow \mathcal{C}^{0,\alpha}(\overline{\Omega}).$$

- 2. Let $\Omega \subset \mathbb{R}^d$ have a finite d-dimensional measure. Prove the following claims:
 - (i) If $f \in L^{\infty}(\Omega)$, then $f \in L^{p}(\Omega) \ \forall 1 \leq p < \infty$ and, moreover, $\lim_{p\to\infty} \|f\|_p = \|f\|_{\infty}$. Does the same hold for $|\Omega| = \infty$? If not, find an additional condition on f, so that the claim holds true.
 - (ii) If $f \in \cap_{p_k} L^{p_k}(\Omega)$ for a certain subsequence $p_k \to \infty$ and, moreover, $\sup_{p_k} \|f\|_{p_k} = C < \infty$, then $f \in L^{\infty}(\Omega)$ and $\|f\|_{\infty} \le C$. Is the assumption that Ω has a finite measure necessary?
- 3. For arbitrary $p \in [1, \infty]$ find a function which belongs to $L^p(\mathbb{R}^d)$, but does not belong to $L^q(\mathbb{R}^d)$ for any $q \neq p$.
- 4. Show that there exists a function which belongs to any $L^p(B_1(0))$, $1 \le p < \infty$, but does not belong to $L^{\infty}(B_1(0))$.
- 5. Show that the space $\widetilde{W}^{k,\infty}(\Omega)$ is isometrically isomorphic to $C^k(\overline{\Omega})$ and $\widetilde{W}_0^{k,\infty}(\Omega)$ to the space $\{v \in C^k(\overline{\Omega}); D^{\alpha}v = 0 \text{ on } \partial\Omega, \forall |\alpha| \leq k\}.$

6. Prove the following

Let $u \in L^1_{loc}(\Omega)$, Ω open, be such that

$$\int_{\Omega} u\varphi \, \mathrm{d}x = 0$$

for any $\varphi \in \mathcal{C}_0^{\infty}(\Omega)$. Then u = 0 a.e. in Ω .

- 7. Let Ω_1 , $\Omega_2 \subset \mathbb{R}^d$ be open, $p \in [1, \infty]$ and $u \in W^{1,p}(\Omega_1) \cap W^{1,p}(\Omega_2)$. Show that $u \in W^{1,p}(\Omega_1 \cap \Omega_2)$.
- 8. Let $f \in C^{0,1}(\mathbb{R})$ (with $||f||_{C^{0,1}(\mathbb{R})} < \infty$). Show that there exists a sequence $f_n \in C^1(\mathbb{R})$ such that:

$$f_n \rightrightarrows f$$
 in \mathbb{R} a.e. in \mathbb{R} .