Introduction and function spaces

- 1. Show that the space $\widetilde{W}^{k,\infty}(\Omega)$ is isometrically isomorphic to $C^k(\overline{\Omega})$ and $\widetilde{W}^{k,\infty}_0(\Omega)$ to the space $\{v \in C^k(\overline{\Omega}); D^{\alpha}v = 0 \text{ on } \partial\Omega, \forall |\alpha| \leq k\}.$
- 2. Prove the following Let $u \in L^1_{loc}(\Omega)$, Ω open, be such that

$$\int_{\Omega} u\varphi \, \mathrm{d}x = 0$$

for any $\varphi \in \mathcal{C}_0^{\infty}(\Omega)$. Then u = 0 a.e. in Ω .

- 3. Let Ω_1 , $\Omega_2 \subset \mathbb{R}^d$ be open, $p \in [1, \infty]$ and $u \in W^{1,p}(\Omega_1) \cap W^{1,p}(\Omega_2)$. Show that $u \in W^{1,p}(\Omega_1 \cap \Omega_2)$.
- 4. Let $f \in C^{0,1}(\mathbb{R})$ (with $||f||_{C^{0,1}(\mathbb{R})} < \infty$). Show that there exists a sequence $f_n \in C^1(\mathbb{R})$ such that:

$$f_n \rightrightarrows f$$
 in \mathbb{R} $f'_n \to f$ a.e. in \mathbb{R} .

5. Let $u \in W^{2,2}(\mathbb{R}^d)$. Then

$$\|\nabla u\|_{L^2(\mathbb{R}^d)} \le \|u\|_{L^2(\mathbb{R}^d)}^{\frac{1}{2}} \|\Delta u\|_{L^2(\mathbb{R}^d)}^{\frac{1}{2}}.$$

6. Show the interpolation inequality: Let $\alpha \in [0,1), r, p, q \in [1,\infty]$ such that

$$\frac{1}{r} = \alpha \left(\frac{1}{p} - \frac{1}{d}\right) + (1 - \alpha)\frac{1}{q}.$$

Then there exists C>0 such that for any $u\in C_0^\infty(\mathbb{R}^d)$ there holds

$$||u||_{L^r(\mathbb{R}^d)} \le C||\nabla u||_{L^p(\mathbb{R}^d)}^{\alpha} ||u||_{L^q(\mathbb{R}^d)}^{1-\alpha}.$$

Moreover, if p < d, we may take also $\alpha = 1$.