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The domain

Let € > 0 be a small number, it measures the mutual distance between the

holes
N(e)

Qg :Q\ UTn,ay (1)

where Q € R? is a bounded C2-domain and {T,,,E},,Nfl) are C2-domains of the
diameter comparable to € for some « > 1 such that there exist dp, 1 and J2
positive for which

Tn,s = Xa,n+€a T;?,l C Béoso‘ (Xn,s) C 825060‘ (Xn,a) C Béla(xn,a) C Bézs(Xn,E) Cc Q.
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Let € > 0 be a small number, it measures the mutual distance between the

holes
N(e)

Qg :Q\ UTn,sg (1)
n=1
where © C R is a bounded C?-domain and {T, .} are C%-domains of the
diameter comparable to € for some « > 1 such that there exist dp, 1 and J2
positive for which

Tn,s = Xa,n+5a T;?,l C Béoso‘ (Xn,s) C 82505"‘ (Xn,a) C Bzha(xn,a) - Bézs(Xn,s) C Q.
(2)

The balls Bs,c(xn,c) centred at xc,, with diameter d2¢ are pairwise disjoint and

we assume that the domains {T,ﬁl}nNii) are uniformly C2-domains.

We want to study homogenization for tiny holes in case of the steady (joint

work with Y. Lu) and evolutionary (joint work with E. SkfiSovsky) compressible

Navier—Stokes—Fourier system.
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» « = 3 Limit system is the Brinkman system

» o > 3 Limit system is the original one

Similar results for evolutionary case were proved in

@ E. Feireisl, Y. Namlyeyeva, and S. Necasova. Homogenization of the
evolutionary Navier-Stokes system. Manuscripta Math. 149 (2016),
251-274.
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equations in a porous medium. ESAIM Control Optim. Calc. Var. 8
(2002), 885-906.

and the compressible Navier-Stokes—Fourier system in

@ E. Feireisl, A. Novotny and T. Takahashi. Homogenization and singular
limits for the complete Navier—Stokes—Fourier system. J. Math. Pures
Appl. 94 (2010), 33-57.

In both cases, one gets porous medium equation with Darcy law.

For the tiny holes (o > 3) and steady compressible Navier—Stokes equations
the limit system is the same

@ E. Feireisl, Y. Lu. Homogenization of stationary Navier-Stokes equations
in domains with tiny holes. J. Math. Fluid Mech. 17 (2015), 381-392.

@ L. Diening, E. Feireisl, Y. Lu. The inverse of the divergence operator on
perforated domains with applications to homogenization problems for the
compressible Navier—Stokes system. ESAIM Control Optim. Calc. Var. 23
(2017), 851-868.
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@ Y. Lu, M. P. Homogenization of stationary Navier—-Stokes—Fourier system
in domains with tiny holes. J. Differential Equations 278 (2021), 463-492.
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Navier—Stokes—Fourier system in domains with tiny holes. Submitted
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» The problem in Q.

» Main result

» Proof of the main result

Estimates independent of ¢ for the functions defined in Q.
Extension of functions to Q
Estimates of extended functions in Q

Limit passage

vV v vV.VvY

Properties of temperature, entropy inequality

The evolutionary case (main result)
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Original steady system

We consider in Q. given by (1) and (2):
div(pu) =0,
div(ou ® u) + Vp(o,9) — divS(d, Vu) = of,
div (0Eu + pu — S(¥, Vu)u + q) = of - u.

We complete the system by the boundary conditions on 9.
u=0,

q-n+L(¥—19)=0

and by prescribing the total mass

/ odx = M. > 0.
Q.

The unknown quantities are the density p: Q. — R, the velocity u:
Q. — R3 and the temperature 9¥: Q. — R,
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Pressure:
p(o,9) = 0" + 09, v > 2. (9)

Stress tensor:
S, Vu) = u(ﬁ)(Vu+VTu— %divu]l) +v(9)divul, (10)

where the viscosity coefficients are continuous functions of the temperature on
R, the shear viscosity u(-) is moreover globally Lipschitz continuous, and

G(1+9) <p@) < GA+9), 0 <v(®) < G(1+9). (11)
Heat flux:
q(¥, Vi) = —k(9) VY, (12)
where the heat conductivity

GA+9") < k) < GA+9"), m>2. (13)
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Total energy:

E=e+%M3
and the specific internal energy e fulfils the Gibbs relation
1 1
5 (Detp(e.9)D(7)) = Ds(,), (14)
ot
e(o,¥) =¥+ o (15)
The entropy fulfils formally
. qy _ __S:Vu q-V9
dIV(QSU+19)—O'— 3 2
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Continuity equation:

/ ou-Vipdx =0 (16)
R3

for all ¢ € CX(R?), where ¢ and u are extended by zero outside of ..
y

Renormalized continuity equation:
[, (be)u- v+ (blo) - ob'(@)) divur) dx =0 a7
R3

for all ¥ € CX(R?) and all b € C*([0, 0¢)) such that b’ € Go([0, >0)), and both
o and u are extended by zero outside of Q..
Momentum equation:

/ (—g(u@u) : Ve —pl(o,9) dive+S(9, Vu) : V(p)dx :/ of - pdx (18)

€ €

for all p € CH(Q; R?).
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Total energy balance:

- oEu+p(g,9)u—S(¥, Vu)u+q ) -Vip dx+ L(9—9)bdS = of -u dx
Q. .

9. Q
_ (19)
for all 1 € C*(Q.).
Entropy inequality:
S(9, vV -V LY
/ ( 0. Vu) _ 4 Y )¢dx+/ —24dS
9 9 sa. U
€ 1= (20)

q- -V
<L ¢d5+/ -
Qe Qe( 19

for all v € C*(Q.), non-negative.

— os(0,9)u - w) dx

Definition

We say that the triple (o, u, ¥), ¢ >0 and 9 > 0 a.e. in Q., is a renormalized
weak entropy solution to our problem (3)—(15), if o € L7(€.), fﬂs odx = M.,
uec W33(Q;R?), 92 and logd € WH2(Q.) such that glul®, [S(¥, Vu)u| and
p(o,u)|u| € L*(Q:) and the relations (16), (17), (18), (19) and (20) are
fulfilled with test functions specified above.
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Theorem
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Theorem

Let f € L°(Q;R?), 9o € L2(0Q:), Yo > To >0 a.e. on dQ., L >0, M. > 0.
Let v > % and m > 1. Then there exists a renormalized weak entropy solution
(o<, uc, Y. ) to our problem (3)—(15) in the sense of Definition 1.

The proof can be found in

@ A. Novotny, M. P. Steady compressible Navier—Stokes—Fourier system for
monoatomic gas and its generalizations. J. Differential Equations 251
(2011), 270-315.

or in the overview paper

@ P.B. Mucha, M. P., E. Zatorska. Existence of stationary weak solutions for
compressible heat conducting flows. Handbook of mathematical analysis in
mechanics of viscous fluids, 2595-2662, Springer, Cham, 2018.



Main result

Theorem

Let f € L>(Q;R?), M. > 0 with sup. M. = My < oo, infe M. = Mg > 0,

L >0 and let Yo > To > 0 in Q be defined so that it has finite L9-norm over
arbitrary smooth two-dimensional surface with finite surface area contained in
Q for some g > 1. Let (o., uc, ¥ ) denote the corresponding renormalized
weak entropy solution to (3)—(15) for fixed € > 0, extended suitably to the
whole Q, for which in particular the extensions preserve their values in Q.. Let
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Theorem

Let f € L>(Q;R?), M. > 0 with sup. M. = My < oo, infe M. = Mg > 0,

L >0 and let Yo > To > 0 in Q be defined so that it has finite L7-norm over
arbitrary smooth two-dimensional surface with finite surface area contained in
Q for some g > 1. Let (o., uc, ¥ ) denote the corresponding renormalized
weak entropy solution to (3)—(15) for fixed € > 0, extended suitably to the
whole Q, for which in particular the extensions preserve their values in Q.. Let
a>3, m>2and~y>?2 fulfil o > max{z,;’__za, 3m=2}. Then, fore € (0,1] the
solutions are uniformly bounded

lo=llirve() + [l yz2(q) + [19ellwr2nisme) < C, (21)
L . 3m—2 ..
where © := min {Z'y -3,7505 } and C is independent of . Moreover, the

corresponding weak limit of the sequence for e — 0" is a renormalized weak
solution to problem (3)—(15) in Q, i.e., it fulfils the continuity equation in the
weak and renormalized sense, the mass balance, the entropy inequality and the
total energy balance in the weak sense in Q, and ¢ > 0 and ¥ > 0 a.e. in Q.
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Estimates independent of ¢ in Q.

From the entropy inequality and the total energy balances (in both cases, with
the test function identically equal to one) we get

||u5||W01’2(Q€) + IVOelli2q.) + [V log De [l 12(q.)

m 1
+ 1919 2 iz + || -

)

LY(09e)
||195||L1(395) < C(]- + ”QE”Lg(QE))'

We further need:
» to find a bound for the sequence of densities

> to check that the L3™(Q.)-norm of the sequence of temperatures is
bounded independently of ¢

» to extend all functions to Q and to keep the uniform bounds
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We extend the density and the velocity by zero. After this extension we still
have

||u5||W01,2(Q) = ||u5||Wol’2(Qs) <, HQEHL’(Q) = ||QE||L’(QE)7 1< r< oo

However, at this moment we do not know whether we control any norm of the
densities uniformly.
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Extensions of the functions Il

For the sequence of temperatures we use a slightly stronger version of the
extension from

ﬁ D. Cioranescu, J. S. J. Paulin. Homogenization in open sets with holes. J.
Math. Anal. Appl. 71 (1979), 590-607.

Lemma
Let Q. be given by (1) and (2). There exists an extension operator E.:
W23(Q.) — W3(Q) such that for each o € W'3(Q.),

Ecp(x) = o(x), x € Q,

IVE@lliz(7,.) < ClIVOll2(8y50 0 (xne\ Tac)

and hence ||VE:p||2@) < ClIV¢ll2q.)-Moreover, for all 1 < g < oo,

Ec@lleacrne) < CllollLa(Basyea (ne\ Tae)-

The constant C is independent of € and n. Furthermore, there is an extension
operator E. : W22 (Q:) — WZZ(Q) such that the above properties are also

satisfied. Here WZZ2(Q.) denotes the set of nonnegative functions in W*2(Q.).
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The extension fulfils the estimate
10 lwn ey + 1 Edliomay < €1+ el g )

where C is independent of ¢.
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Estimates independent of ¢ in Q |

We need to estimate the density. To this aim, we use the following version of
the Bogovskii operator from

@ L. Diening, E. Feireisl, Y. Lu. The inverse of the divergence operator on
perforated domains with applications to homogenization problems for the
compressible Navier—Stokes system. ESAIM Control Optim. Calc. Var. 23
(2017), 851-868.

Theorem

Let a family of domains Q. be defined by (1) and (2). Then there exists a
family of linear operators

Be: LI(Q:) = W' (2 R?), 1< g < oo,
such that for arbitrary f € L3(.) it holds
divB.(f)=f a.e infQ.,
ya—3

(3—gq
1Bo(lyza@y < CA+e 5 )lIfls.

where the constant C is independent of e. Here Li(S2.) denote the set of
L9(Q2.) functions which have zero mean value.



Estimates independent of ¢ in Q |l

We get

Lemma

Let v >2, m>2 and a > max 2;’_’23, 3m=—21. Then the sequence {g:} is
bounded in L"*®(.), where

3m—2

=min{2y — .
© mln{fy 3’73m+2




Estimates independent of ¢ in Q |l

We get
Lemma
Lety>2, m>2anda>max{Z=}, 32} Then the sequence {o.} is

bounded in L"*®(.), where

3m—2
3m+2

© = min {27—3,7

The proof is based on the use of the test function

1
0= B — (08), ()= / dx.
] Ja,



Estimates independent of ¢ in Q IlI

To summarize, we get
usllwz2o,) + llocllreqay + 19:llwrz,)

+ |V log e | 2.y + 192 [lwr2a.) + 19l 3ma.) < C,
19 li200.) + 192 200,y < C,

where © is as in the Lemma above.



Estimates independent of ¢ in Q IlI

To summarize, we get
usllwz2o,) + llocllreqay + 19:llwrz,)
+ [V log Vel i2a.) + 192 w2,y + 19:]l3m,) < C,
[19<ll 2000y + 192|120,y < C,

where © is as in the Lemma above.

For simplicity, we denote the extensions of our functions to Q as (uc, g, ¥:).
Then we have the following uniform estimates in Q

lucllwaze) < €, leellivoy < €, [[ellwrz) + [[ell3ma) < €. (22)



Trace estimates for the temperature

For the traces of the temperature, we have

Lemma
Under the assumptions stated in the main Theorem there holds

m >
(92175 (0Tne) = c(Ivive|= ||L2(325°5a(xn,5)\rn,5)
3 2
+ 10 15m (855 0 (e 1\ o) T 10385 o 0\ 7))

where the constant C is independent of € and n.



Trace estimates for the temperature

For the traces of the temperature, we have

Lemma
Under the assumptions stated in the main Theorem there holds

[19< 1 o7, .y < CUIVITe] 2 2855, cc 60N\ T )
H 10l 25m(8a54 e Gin e Toe) + 102l (805 G N\ T
where the constant C is independent of € and n.
The previous lemma implies
Corollary

Under the assumptions stated in the main Theorem there holds

A [ < Ceam,

2muMar,



Limit passage in the total energy balance |
We have
u. — u weakly in Wy ?(;R?), u. — ustrongly in L'(Q;R?), forall 1 < r <6,
0- — o weakly in L7T9(Q),
9. — ¥ weakly in WH3(Q), 9. — o strongly in L'(Q), forall 1 < r < 3m.



Limit passage in the total energy balance |
We have
u. — u weakly in Wy ?(;R?), u. — ustrongly in L'(Q;R?), forall 1 < r <6,
0- — o weakly in L7T9(Q),
9. — ¥ weakly in WH3(Q), 9. — o strongly in L'(Q), forall 1 < r < 3m.

As u. =0 and g. = 0 on Q\ Q., we can rewrite the weak formulation of the
total energy balance as follows:

- / (Qs (e(Qa7196) + %|u5|2)u5 + p(Qs,ﬁE)ue - S('ﬂa, vus)ug - K(ﬁE)VﬁE) . vw dX
Q

+/ L(ﬂe—ﬁo)z/)dS—/ggf-ugwdx
toi9) Q

/ K(0.)VD. - Vi dx — / L(9. — Do) dS
Q\Q. Ul

n:i)aTmE

=+ b.



Limit passage in the total energy balance |
We have
u. — u weakly in Wy ?(;R?), u. — ustrongly in L'(Q;R?), forall 1 < r <6,
0- — o weakly in L7T9(Q),
9. — ¥ weakly in WH3(Q), 9. — o strongly in L'(Q), forall 1 < r < 3m.

As u. =0 and g. = 0 on Q\ Q., we can rewrite the weak formulation of the
total energy balance as follows:

- / (Qs (3(967196) + %|u5|2)u5 + p(Qs,ﬁE)ue - S('ﬂa, vus)ug - H(ﬁE)VﬁE) . vw dX
Q
+/ L(ﬂe—ﬁo)z/)dS—/ggf-ugwdx
o0 Q

- / K(0.)VD. - Vi dx — / L(9. — Do) dS
Q\Q. uMar,
=+ b.

Using the estimates above we can show that

|h|+ || — 0O ase — 0.



Limit passage in the total energy balance Il

Therefore we get

_/Q ((0e(e.9) + o5 uP)u -+ plo 7)u — S(9, Vu)u — s(9)V9) - Vi dx
+ [ o =vowas = [ of-wwax.

We need to show the strong convergence of the density.



Limit passage in the total energy balance Il

Therefore we get

_/Q ((0e(e.9) + o5 uP)u -+ plo 7)u — S(9, Vu)u — s(9)V9) - Vi dx
+ [ o =vowas = [ of-wwax.

We need to show the strong convergence of the density.

Using the properties of the extension and the control of || Ec(log¥e)l|,2() we
can verify that the limit temperature is positive a.e. in Q.



Limit passage in the entropy inequality |
We want to keep the entropy inequality also for the limit problem. This was
not shown in the paper with Y. Lu, however, it was clarified in the paper for
the evolutionary problem. Recall that we have

/ (S(ﬂe7vus) _ Q(ﬂe,Vﬁs) : V'ﬁs)wdx_’_/ Lﬂowds
Qe 29

Ve 92 Ve
(23)

<L 1/1d5+/ (_‘m’vﬂw_gs(gﬁg)ug.w) dx
59, . .

for all ¥ € Cl(ﬁg), non-negative.



Limit passage in the entropy inequality |
We want to keep the entropy inequality also for the limit problem. This was
not shown in the paper with Y. Lu, however, it was clarified in the paper for
the evolutionary problem. Recall that we have

S(W.,Vu:)  q(9e, VI.) - VI Lo
/ﬂ( PR 7 )wdx—i—/ms Sovds

<L wd5+/ (7ML9M7QS(Q€’§E)UE'V1/}) dx
0 Q €

€

(23)

for all v € C*(Q.), non-negative. To avoid technical complications, we assume
that x(z) = (1 +2™). We extend the velocity and the density by zero to Q. For
the temperature we use both the extension 9. := E.9. and E. log9.. We have

Lﬁo

/ (M + | VE: log(9:)[* + 977 V0|2 ) dx +
Q v "

5

< / ((~ VE log(v.) 97 Vd.) - V4 — oos.(o-, 92 Jue - w) dx  (24)
Q

L/ $dS + R,
o9

where R. — 0 for ¢ — 0. Note also that g.s:(oc, ¥ )u. should be understood
in the sense that it is zero outside of ..



Limit passage in the entropy inequality Il

The only complicated terms are
/ (IVE:log(d.)[* + 972V |?) ¢ dx,
Q

in the other terms we may employ the strong convergence of velocity and
temperature, the weak convergence of the density and the weak lower
semicontinuity of convex functionals as well as the fact that due to a.e.
positivity of the temperature and the strong convergence we have

lime_o E: log(¥.) = log ¥ a.e.



Limit passage in the entropy inequality Il
The only complicated terms are
/ (|VE- log(9:)|> + 92| VI:[*) dx,
Q

in the other terms we may employ the strong convergence of velocity and
temperature, the weak convergence of the density and the weak lower
semicontinuity of convex functionals as well as the fact that due to a.e.
positivity of the temperature and the strong convergence we have

lim._o E: log(¥:) = log ¥ a.e. We consider the first term, the other can be
treated similarly. We fix § > 0 and compute

/ |VE. log(¥.)|? dx >
Q.

> —/ |VE- log(9:)|*~° X (| VE. tog(v.)1>1) dx+/ |VE- log(d:)*~* dx
Q\Q. Q

3
+/Q (IVE- tog(9:) — IVE- log(9)° ™) x(|ve. lstoyi<1) dx =2 Y I
3 i=1
(25)



Limit passage in the entropy inequality Il

For hh we get

Ih] = / IVE. log(92) P~ x{ /v E. g0y >1) dx
Q\Q.
_ 2
< C[|VE- log(9:) 720 |2 \ Q5.

Thus for fixed § > 0 the term converges to zero for ¢ — 0", Next

|l3] < C(6) — 0 as § — 0 uniformly with respect to €, since z — z? — z>7° has
in (0,1) the maximum at zg = 27 v/2 — 8, so the bound for & is independent
of e.



Limit passage in the entropy inequality Il

For hh we get

Ih] = / IVE. log(92) P~ x{ /v E. g0y >1) dx
Q\Q.
_ 2
< C[|VE- log(9:) 720 |2 \ Q5.

Thus for fixed § > 0 the term converges to zero for ¢ — 0", Next

|l3] < C(6) — 0 as § — 0 uniformly with respect to €, since z — z? — z>7° has
in (0,1) the maximum at zg = 27 v/2 — 8, so the bound for & is independent
of e.

We first pass in (25) with ¢ — 0% and get

E—>

liminf [ |VE Iog(ﬁ5)|2dx2/|Vlog(19)|2_6dx+ C(9%),
Q. Q

due to the strong convergence of temperature, the fact that the integrand in
the second term is bounded in LP(2) for some p > 1 and the weak lower
semicontinuity.



Limit passage in the entropy inequality IV

Now we pass with § — 0 and use Vitali convergence Theorem for /» (the
sequence is equiintegrable, since it is bounded in L?(2)) and obtain

Iiminf/ |VE. Iog(05)|2dx2/|Vlog(19)|2dx. (26)
e—0 Qe Q

We therefore end up with

/(Lﬂ’vu) + |V log(9) + 9"Vl ) dx + Loy as
Q 9 o0N 9

< / (( — Vlog(d) — 9™ V) - Vi) — gs(g, O)u - vw) dx+L [ ds.
Q o0 (27)



Limit passage in the entropy inequality IV

Now we pass with § — 0 and use Vitali convergence Theorem for /» (the
sequence is equiintegrable, since it is bounded in L?(2)) and obtain

Iiminf/ |VE. Iog(05)|2dx2/|Vlog(19)|2dx. (26)
e—0 Qe Q

We therefore end up with

/(Lﬂ’vu) + |V log(9) + 9"Vl ) dx + Loy as
Q 9 o0N 9

< / (( — Vlog(9) — 9" *V¥) - Vo) — os(0,0)u - vw) dx+L [ wdS.
Q Elo)
(27)
The missing point is the strong convergence of the density.



Limit passage in the continuity equation |

Recall, we may extend the sequence of densities and velocities by zero outside
of Q.. Then the continuity equation is fulfilled in the sense of distributions in
the whole R? for u. and g. and it is easy to pass to the limit to get that

div(ou) =0 holds in D'(R?).



Limit passage in the continuity equation |

Recall, we may extend the sequence of densities and velocities by zero outside
of Q.. Then the continuity equation is fulfilled in the sense of distributions in
the whole R? for u. and g. and it is easy to pass to the limit to get that

div(ou) =0 holds in D'(R?).
Moreover, the equation is also satisfied in the renormalized sense (recall v > 2)
div (b(o)u) + (ob'(0) — b(e)) divu =0, holds in D'(R?),

for any b sufficiently regular.



Limit passage in the momentum equation |

Here, the situation is slightly more complicated. The problem is that after the
corresponding extension we cannot use directly as test functions smooth
compactly supported functions in Q.

[
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Here, the situation is slightly more complicated. The problem is that after the
corresponding extension we cannot use directly as test functions smooth
compactly supported functions in Q.

Following

@ L. Diening, E. Feireisl, Y. Lu. The inverse of the divergence operator on
perforated domains with applications to homogenization problems for the
compressible Navier—Stokes system. ESAIM Control Optim. Calc. Var. 23
(2017), 851-868.

we can show



Limit passage in the momentum equation |

Here, the situation is slightly more complicated. The problem is that after the
corresponding extension we cannot use directly as test functions smooth
compactly supported functions in Q.

Following

@ L. Diening, E. Feireisl, Y. Lu. The inverse of the divergence operator on
perforated domains with applications to homogenization problems for the
compressible Navier—Stokes system. ESAIM Control Optim. Calc. Var. 23
(2017), 851-868.

we can show

div(ou ® u) + Vp(g,9) — divS(9, Vu) = of, in D'(Q).



Strong convergence of the density |

The proof of the strong convergence is relatively standard, in the case when
~ > 2 even easier than for small 4's. It is based on
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The proof of the strong convergence is relatively standard, in the case when
~ > 2 even easier than for small 4's. It is based on

» the validity of the effective viscous flux identity
ot 4 0209 — (4%(1’0 + 1/(19)) odivu = go7 + 029 — (4%(1” + 1/(19)) odivu

a.e. inQ



Strong convergence of the density |

The proof of the strong convergence is relatively standard, in the case when
~ > 2 even easier than for small 4's. It is based on

» the validity of the effective viscous flux identity
ot 4 0209 — (4%(1’0 + V(Q?))gdivu = 007+ 0°0 — (4“( ) + (19)) odivu

a.e. in Q
» the validity of the renormalized continuity equation (which is immediate
here)



Strong convergence of the density |

The proof of the strong convergence is relatively standard, in the case when
~ > 2 even easier than for small 4's. It is based on

» the validity of the effective viscous flux identity
ot 4 0209 — (4%(1’0 + V(Q?))gdivu = 007+ 0°0 — (4“( ) + (19)) odivu

a.e. in Q
» the validity of the renormalized continuity equation (which is immediate
here)
This finishes the proof of the main Theorem for the steady problem.



Original evolutionary problem

We consider in (0, T) x Q. given by (1) and (2):

0o + div(ou) = 0, (28)
O:(ou) + div(ou ® u) + Vp(p,d) — divS(9, Vu) = of, (29)
e (0s) + div (osu) + div (%) =0, (30)

where o is the entropy production rate, together with the energy equality

t
/(EQIUIZ+9e(@,19))(t7-)dx=// ou-fdxdr
0. \2 o Jo.

; (31)
+/ (590|UO|2 + Qoe(Qo,ﬁO)) dx.
Qe
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We consider in (0, T) x Q. given by (1) and (2):

0o + div(ou) = 0, (28)
O:(ou) + div(ou ® u) + Vp(p,d) — divS(9, Vu) = of, (29)
e (0s) + div (osu) + div (%) =0, (30)

where o is the entropy production rate, together with the energy equality

t
/(EQIUIZ+9e(@,19))(t7-)dx=// ou-fdxdr
0. \2 o Jo.
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+/ (190|UO|2 + 00e(00 190)) dx.
Q. 2 '
We complete the system by the boundary conditions on 992,
u=0, (32)

q-n=0. (33)



Original evolutionary problem

We consider in (0, T) x Q. given by (1) and (2):
0o + div(ou) = 0,
Ot(ou) + div(ou @ u) + Vp(,9) — divS(d, Vu) = of,
. . (9
e (0s) + div (osu) + div (5) =0,

where o is the entropy production rate, together with the energy equality

t
/ (19|u|2 + Qe(@,ﬁ))(m-)dx = / / ou-fdxdr
Q. \2 o Ja.
1 2
+/Qa (EQO|U0| + 906(90,190)) dx.
We complete the system by the boundary conditions on 992,
u=20,

q-n=0.

Finally we prescribe the initial velocity, momentum and entropy.

(28)
(29)
(30)

(31)

(32)
(33)



Constitutive relations |

Pressure:
p(0,9) = " + 09 + av*, v>6,a>0. (34)

Stress tensor:
S, Vu) = u(9) (Vu +VTu— % div u]I) +v(9)divul, (35)

where the viscosity coefficients are continuous functions of the temperature on
R, the shear viscosity u(-) is moreover globally Lipschitz continuous, and

GL+7) <u@) < GA+9), 0<v@) < G(l+d).  (36)

Heat flux:
q(¥, Vi) = —k(9) VY, (37)

where the heat conductivity is for simplicity

®(9) = (1 +9°). (38)



Constitutive relations Il

Total energy:

E:e+%M€
and the specific internal energy e fulfils
v—1 1
e(0,9) = cd + Z— + 2329,
y-1 o

Entropy:
s(o,9) = cvlog¥ — log o + 14:—1193.
o

Entropy production rate:

r(9)

o> (S(ﬁ,Vu) : Vu+ 5

S

|vmﬁ.

(39)

(40)

(41)



Main result

Theorem
Let (0o,e, Uo,e, bo,c) be a sequence of functions defined in Q.. Let v > 6 and a
fulfill 300 3

a > max {%7 7}.



Main result

Theorem
Let (0o,c,Uo,s,00,c) be a sequence of functions defined in Q.. Let v > 6 and «
fulfill 35 3

a > max {%7 7}.

Let go,e > 0 a.e. in Q. be such that fnz 00, dx > M > 0 and being extended
by zero to Q, 0o, — 0o weakly in LY(Q) and strongly in L*(S),

00,cU0,c — ooUg weakly in L}(; R?) (extended again by zero to Q)), ¥o.. > 0
a.e. in Q. so that ¥o.xa. — Yo weakly in L4(Q) with 6o > 0 a.e. in €.
Furthermore, let 0o,:5(00,c,%0,cXa.) — 005(00,%0) weakly in L*(Q) and

e 1
Ey = / (590,E|u0,5|2 + QO,se(QO,Eﬂ%,E)) dx
Qe

1
— / (*Qo‘U0|2 + goe(go,ﬁo)) dx =: Ep.
Q \2



Main result

Theorem
Let (0o,c,Uo,s,00,c) be a sequence of functions defined in Q.. Let v > 6 and «
fulfill 35 3

o > max {%7 7}.

Let go,e > 0 a.e. in Q. be such that fnz 00, dx > M > 0 and being extended
by zero to Q, 0o, — 0o weakly in LY(Q) and strongly in L*(S),

00,cU0,c — ooUg weakly in L}(; R?) (extended again by zero to Q)), ¥o.. > 0
a.e. in Q. so that ¥o.xa. — Yo weakly in L4(Q) with 6o > 0 a.e. in €.
Furthermore, let 0o,:5(00,c,%0,cXa.) — 005(00,%0) weakly in L*(Q) and

< 1
B i= [ (Goocluol+ ooelenci0.)) dx
Qe
Lo
— (EQO|U0| +Q06(Qo,190)) dx =: Eo.
Q

Let f € L>°((0, T) x ;R®). Then the sequence of renormalized weak solutions
to our problem in (0, T) x Q. (after a suitable extension to Q1) contains a
subsequence which converges in suitable spaces given by the a priori estimates
to a triple (p,u, ) which is a renormalized weak solution to our problem in

(0, T) x Q.
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