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The domain

Let ε > 0 be a small number, it measures the mutual distance between the
holes

Ωε = Ω \
N(ε)⋃
n=1

T n,ε, (1)

where Ω ⊂ R3 is a bounded C 2-domain and {Tn,ε}N(ε)
n=1 are C 2-domains of the

diameter comparable to εα for some α ≥ 1 such that there exist δ0, δ1 and δ2
positive for which

Tn,ε = xε,n+εαT 0
n,1 ⊂ Bδ0εα(xn,ε) ⊂ B2δ0εα(xn,ε) ⊂ Bδ1ε(xn,ε) ⊂ Bδ2ε(xn,ε) ⊂ Ω.

(2)
The balls Bδ2ε(xn,ε) centred at xε,n with diameter δ2ε are pairwise disjoint and
we assume that the domains {T 0

n,1}
N(ε)
n=1 are uniformly C 2-domains.

We want to study homogenization for tiny holes in case of the steady (joint
work with Y. Lu) and evolutionary (joint work with E. Skříšovský) compressible
Navier–Stokes–Fourier system.
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Homogenization I

The homogenization means in our case limit as ε→ 0+. The situation is well
understood in case of steady incompressible Stokes and Navier–Stokes
equations by Allaire:

G. Allaire. Homogenization of the Navier–Stokes equations in open sets
perforated with tiny holes. I. Abstract framework, a volume distribution of
holes. Arch. Ration. Mech. Anal. 113 (1990), 209–259.

G. Allaire. Homogenization of the Navier–Stokes equations in open sets
perforated with tiny holes. II. Noncritical sizes of the holes for a volume
distribution and a surface distribution of holes. Arch. Ration. Mech. Anal.
113 (1990), 261–298.

I 1 ≤ α < 3 Limit system is the Darcy system
I α = 3 Limit system is the Brinkman system
I α > 3 Limit system is the original one

Similar results for evolutionary case were proved in

E. Feireisl, Y. Namlyeyeva, and Š. Nečasová. Homogenization of the
evolutionary Navier–Stokes system. Manuscripta Math. 149 (2016),
251–274.
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Homogenization II

The compressible Navier–Stokes equations with α = 1 were studied in

N. Masmoudi. Homogenization of the compressible Navier–Stokes
equations in a porous medium. ESAIM Control Optim. Calc. Var. 8
(2002), 885–906.

and the compressible Navier–Stokes–Fourier system in

E. Feireisl, A. Novotný and T. Takahashi. Homogenization and singular
limits for the complete Navier–Stokes–Fourier system. J. Math. Pures
Appl. 94 (2010), 33–57.

In both cases, one gets porous medium equation with Darcy law.

For the tiny holes (α > 3) and steady compressible Navier–Stokes equations
the limit system is the same

E. Feireisl, Y. Lu. Homogenization of stationary Navier–Stokes equations
in domains with tiny holes. J. Math. Fluid Mech. 17 (2015), 381–392.

L. Diening, E. Feireisl, Y. Lu. The inverse of the divergence operator on
perforated domains with applications to homogenization problems for the
compressible Navier–Stokes system. ESAIM Control Optim. Calc. Var. 23
(2017), 851–868.
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Homogenization III

Similarly, for large γ in the evolutionary case

Y. Lu, S. Schwarzacher. Homogenization of the compressible
Navier–Stokes equations in domains with very tiny holes. Journal of
Differential Equations 265 (4) (2018), 1371–1406.

We intend to consider compressible Navier–Stokes–Fourier system and tiny
holes (α > 3). The presentation is based on

Y. Lu, M. P. Homogenization of stationary Navier–Stokes–Fourier system
in domains with tiny holes. J. Differential Equations 278 (2021), 463–492.

M. P., E. Skříšovský. Homogenization of evolutionary
Navier–Stokes–Fourier system in domains with tiny holes. Submitted
(2021).
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The steady case

I The problem in Ωε

I Main result

I Proof of the main result

I Estimates independent of ε for the functions defined in Ωε

I Extension of functions to Ω

I Estimates of extended functions in Ω

I Limit passage

I Properties of temperature, entropy inequality

The evolutionary case (main result)
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Original steady system

We consider in Ωε given by (1) and (2):

div(%u) = 0, (3)

div(%u⊗ u) +∇p(%, ϑ)− div S(ϑ,∇u) = %f, (4)

div
(
%Eu + pu− S(ϑ,∇u)u + q

)
= %f · u. (5)

We complete the system by the boundary conditions on ∂Ωε

u = 0, (6)

q · n + L(ϑ− ϑ0) = 0 (7)

and by prescribing the total mass∫
Ωε

% dx = Mε > 0. (8)

The unknown quantities are the density %: Ωε → R≥0, the velocity u:
Ωε → R3 and the temperature ϑ: Ωε → R+.
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Constitutive relations I

Pressure:
p(%, ϑ) = %γ + %ϑ, γ > 2. (9)

Stress tensor:

S(ϑ,∇u) = µ(ϑ)
(
∇u +∇Tu− 2

3
div u I

)
+ ν(ϑ) div u I, (10)

where the viscosity coefficients are continuous functions of the temperature on
R+, the shear viscosity µ(·) is moreover globally Lipschitz continuous, and

C1(1 + ϑ) ≤ µ(ϑ) ≤ C2(1 + ϑ), 0 ≤ ν(ϑ) ≤ C2(1 + ϑ). (11)

Heat flux:
q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ, (12)

where the heat conductivity

C3(1 + ϑm) ≤ κ(ϑ) ≤ C4(1 + ϑm), m > 2. (13)
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Constitutive relations II

Total energy:

E = e +
1
2
|u|2,

and the specific internal energy e fulfils the Gibbs relation

1
ϑ

(
De + p(%, ϑ)D

(1
%

))
= Ds(%, ϑ), (14)

e(%, ϑ) = cvϑ+
%γ−1

γ − 1
. (15)

The entropy fulfils formally

div
(
%su +

q
ϑ

)
= σ =

S : ∇u
ϑ

− q · ∇ϑ
ϑ2 .
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Weak solution I

Continuity equation: ∫
R3
%u · ∇ψ dx = 0 (16)

for all ψ ∈ C 1
c (R3), where % and u are extended by zero outside of Ωε.

Renormalized continuity equation:∫
R3

(
b(%)u · ∇ψ + (b(%)− %b′(%)) div uψ

)
dx = 0 (17)

for all ψ ∈ C 1
c (R3) and all b ∈ C 1([0,∞)) such that b′ ∈ C0([0,∞)), and both

% and u are extended by zero outside of Ωε.

Momentum equation:∫
Ωε

(
−%(u⊗u) : ∇ϕϕϕ−p(%, ϑ) divϕϕϕ+S(ϑ,∇u) : ∇ϕϕϕ

)
dx =

∫
Ωε

%f ·ϕϕϕ dx (18)

for all ϕϕϕ ∈ C 1
c (Ωε;R3).
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Weak solution II

Total energy balance:

−
∫

Ωε

(
%Eu+p(%, ϑ)u−S(ϑ,∇u)u+q

)
·∇ψ dx+

∫
∂Ωε

L(ϑ−ϑ0)ψ dS =

∫
Ωε

%f·uψ dx

(19)
for all ψ ∈ C 1(Ωε).

Entropy inequality:∫
Ωε

(S(ϑ,∇u)

ϑ
− q · ∇ϑ

ϑ2

)
ψ dx +

∫
∂Ωε

Lϑ0

ϑ
ψ dS

≤ L

∫
∂Ωε

ψ dS +

∫
Ωε

(
− q · ∇ψ

ϑ
− %s(%, ϑ)u · ∇ψ

)
dx

(20)

for all ψ ∈ C 1(Ωε), non-negative.

Definition
We say that the triple (%, u, ϑ), % ≥ 0 and ϑ > 0 a.e. in Ωε, is a renormalized
weak entropy solution to our problem (3)–(15), if % ∈ Lγ(Ωε),

∫
Ωε
% dx = Mε,

u ∈W 1,2
0 (Ωε;R3), ϑ

m
2 and log ϑ ∈W 1,2(Ωε) such that %|u|3, |S(ϑ,∇u)u| and
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Existence result in perforated domains

Theorem
Let f ∈ L∞(Ω;R3), ϑ0 ∈ L1(∂Ωε), ϑ0 ≥ T0 > 0 a.e. on ∂Ωε, L > 0, Mε > 0.
Let γ > 5

3 and m > 1. Then there exists a renormalized weak entropy solution
(%ε, uε, ϑε) to our problem (3)–(15) in the sense of Definition 1.

The proof can be found in

A. Novotný, M. P. Steady compressible Navier–Stokes–Fourier system for
monoatomic gas and its generalizations. J. Differential Equations 251
(2011), 270–315.

or in the overview paper

P.B. Mucha, M. P., E. Zatorska. Existence of stationary weak solutions for
compressible heat conducting flows. Handbook of mathematical analysis in
mechanics of viscous fluids, 2595–2662, Springer, Cham, 2018.
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Main result

Theorem
Let f ∈ L∞(Ω;R3), Mε > 0 with supεMε = M1 <∞, infεMε = M0 > 0,
L > 0 and let ϑ0 ≥ T0 > 0 in Ω be defined so that it has finite Lq-norm over
arbitrary smooth two-dimensional surface with finite surface area contained in
Ω for some q > 1. Let (%ε, uε, ϑε) denote the corresponding renormalized
weak entropy solution to (3)–(15) for fixed ε > 0, extended suitably to the
whole Ω, for which in particular the extensions preserve their values in Ωε. Let
α > 3, m > 2 and γ > 2 fulfil α > max{ 2γ−3

γ−2 ,
3m−2
m−2 }. Then, for ε ∈ (0, 1] the

solutions are uniformly bounded

‖%ε‖Lγ+Θ(Ω) + ‖uε‖W 1,2
0 (Ω)

+ ‖ϑε‖W 1,2∩L3m(Ω) ≤ C , (21)

where Θ := min
{
2γ − 3, γ 3m−2

3m+2

}
and C is independent of ε. Moreover, the

corresponding weak limit of the sequence for ε→ 0+ is a renormalized weak
solution to problem (3)–(15) in Ω, i.e., it fulfils the continuity equation in the
weak and renormalized sense, the mass balance, the entropy inequality and the
total energy balance in the weak sense in Ω, and % ≥ 0 and ϑ > 0 a.e. in Ω.
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Estimates independent of ε in Ωε

From the entropy inequality and the total energy balances (in both cases, with
the test function identically equal to one) we get

‖uε‖W 1,2
0 (Ωε)

+ ‖∇ϑε‖L2(Ωε) + ‖∇ log ϑε‖L2(Ωε)

+ ‖∇|ϑε|
m
2 ‖L2(Ωε) +

∥∥∥ 1
ϑε

∥∥∥
L1(∂Ωε)

≤ C ,

‖ϑε‖L1(∂Ωε) ≤ C
(
1 + ‖%ε‖

L
6
5 (Ωε)

)
.

We further need:
I to find a bound for the sequence of densities
I to check that the L3m(Ωε)-norm of the sequence of temperatures is

bounded independently of ε
I to extend all functions to Ω and to keep the uniform bounds
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Extensions of the functions I

We extend the density and the velocity by zero. After this extension we still
have

‖uε‖W 1,2
0 (Ω)

= ‖uε‖W 1,2
0 (Ωε)

≤ C , ‖%ε‖Lr (Ω) = ‖%ε‖Lr (Ωε), 1 ≤ r ≤ ∞.

However, at this moment we do not know whether we control any norm of the
densities uniformly.
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Extensions of the functions II

For the sequence of temperatures we use a slightly stronger version of the
extension from

D. Cioranescu, J. S. J. Paulin. Homogenization in open sets with holes. J.
Math. Anal. Appl. 71 (1979), 590–607.

Lemma
Let Ωε be given by (1) and (2). There exists an extension operator Eε:
W 1,2(Ωε)→W 1,2(Ω) such that for each ϕ ∈W 1,2(Ωε),

Eεϕ(x) = ϕ(x), x ∈ Ωε,

‖∇Eεϕ‖L2(Tn,ε) ≤ C‖∇ϕ‖L2(B2δ0εα (xn,ε)\Tn,ε)

and hence ‖∇Eεϕ‖L2(Ω) ≤ C‖∇ϕ‖L2(Ωε).Moreover, for all 1 ≤ q ≤ ∞,

‖Eεϕ‖Lq(Tn,ε) ≤ C‖ϕ‖Lq(B2δ0εα (xn,ε)\Tn,ε).

The constant C is independent of ε and n. Furthermore, there is an extension
operator Ẽε : W 1,2

≥0 (Ωε)→W 1,2
≥0 (Ω) such that the above properties are also

satisfied. Here W 1,2
≥0 (Ωε) denotes the set of nonnegative functions in W 1,2(Ωε).
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Extensions of the functions III

The extension fulfils the estimate

‖Ẽεϑε‖W 1,2(Ω) + ‖Ẽεϑε‖L3m(Ω) ≤ C(1 + ‖%ε‖
L

6
5 (Ωε)

),

where C is independent of ε.



Estimates independent of ε in Ω I

We need to estimate the density. To this aim, we use the following version of
the Bogovskii operator from

L. Diening, E. Feireisl, Y. Lu. The inverse of the divergence operator on
perforated domains with applications to homogenization problems for the
compressible Navier–Stokes system. ESAIM Control Optim. Calc. Var. 23
(2017), 851–868.

Theorem
Let a family of domains Ωε be defined by (1) and (2). Then there exists a
family of linear operators

Bε : Lq
0(Ωε)→W 1,q

0 (Ωε;R3), 1 < q <∞,

such that for arbitrary f ∈ Lq
0(Ωε) it holds

divBε(f ) = f a.e. in Ωε,

‖Bε(f )‖
W

1,q
0 (Ωε)

≤ C
(
1 + ε

(3−q)α−3
q

)
‖f ‖Lq(Ωε),

where the constant C is independent of ε. Here Lq
0(Ωε) denote the set of

Lq(Ωε) functions which have zero mean value.
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Estimates independent of ε in Ω II

We get

Lemma
Let γ > 2, m > 2 and α > max

{ 2γ−3
γ−2 ,

3m−2
m−2

}
. Then the sequence {%ε} is

bounded in Lγ+Θ(Ωε), where

Θ = min
{
2γ − 3, γ

3m − 2
3m + 2

}
.

The proof is based on the use of the test function

ϕϕϕ := Bε
(
%Θ
ε − 〈%Θ

ε 〉
)
, 〈%Θ

ε 〉 :=
1
|Ωε|

∫
Ωε

%Θ
ε dx .
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Estimates independent of ε in Ω III

To summarize, we get

‖uε‖W 1,2
0 (Ωε)

+ ‖%ε‖Lγ+Θ(Ωε) + ‖ϑε‖W 1,2(Ωε)

+ ‖∇ log ϑε‖L2(Ωε) + ‖ϑ
m
2
ε ‖W 1,2(Ωε) + ‖ϑε‖L3m(Ωε) ≤ C ,

‖ϑε‖L1(∂Ωε) + ‖ϑ−1
ε ‖L1(∂Ωε) ≤ C ,

where Θ is as in the Lemma above.

For simplicity, we denote the extensions of our functions to Ω as (uε, %ε, ϑε).
Then we have the following uniform estimates in Ω

‖uε‖W 1,2(Ω) ≤ C , ‖%ε‖Lγ+Θ(Ω) ≤ C , ‖ϑε‖W 1,2(Ω) + ‖ϑε‖L3m(Ω) ≤ C . (22)
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Trace estimates for the temperature

For the traces of the temperature, we have

Lemma
Under the assumptions stated in the main Theorem there holds

‖ϑε‖2mL2m(∂Tn,ε) ≤ C
(
‖∇|ϑε|

m
2 ‖2L2(B2δ0εα (xn,ε)\Tn,ε)

+ ‖ϑε‖3mL3m(B2δ0εα (xn,ε)\Tn,ε) + ‖ϑε‖2mL3m(B2δ0εα (xn,ε)\Tn,ε)

)
,

where the constant C is independent of ε and n.

The previous lemma implies

Corollary
Under the assumptions stated in the main Theorem there holds

‖ϑε‖L2m(∪N(ε)
n=1 ∂Tn,ε)

≤ Cε−
1

2m .
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Limit passage in the total energy balance I

We have

uε → u weakly in W 1,2
0 (Ω;R3), uε → u strongly in Lr (Ω;R3), for all 1 ≤ r < 6,

%ε → % weakly in Lγ+Θ(Ω),

ϑε → ϑ weakly in W 1,2(Ω), ϑε → ϑ strongly in Lr (Ω), for all 1 ≤ r < 3m.

As uε = 0 and %ε = 0 on Ω \ Ωε, we can rewrite the weak formulation of the
total energy balance as follows:

−
∫

Ω

(
%ε
(
e(%ε, ϑε) +

1
2
|uε|2

)
uε + p(%ε, ϑε)uε − S(ϑε,∇uε)uε − κ(ϑε)∇ϑε

)
· ∇ψ dx

+

∫
∂Ω

L(ϑε − ϑ0)ψ dS −
∫

Ω

%εf · uεψ dx

=

∫
Ω\Ωε

κ(ϑε)∇ϑε · ∇ψ dx −
∫
∪N(ε)

n=1 ∂Tn,ε

L(ϑε − ϑ0)ψ dS

=: I1 + I2.

Using the estimates above we can show that

|I1|+ |I2| → 0 as ε→ 0.
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1
2
|uε|2

)
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· ∇ψ dx
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L(ϑε − ϑ0)ψ dS −
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Ω

%εf · uεψ dx
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∫
∪N(ε)

n=1 ∂Tn,ε

L(ϑε − ϑ0)ψ dS

=: I1 + I2.

Using the estimates above we can show that

|I1|+ |I2| → 0 as ε→ 0.
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Limit passage in the total energy balance II

Therefore we get

−
∫

Ω

((
%e(%, ϑ) + %

1
2
|u|2
)
u + p(%, ϑ)u− S(ϑ,∇u)u− κ(ϑ)∇ϑ

)
· ∇ψ dx

+

∫
∂Ω

L(ϑ− ϑ0)ψ dS =

∫
Ω

%f · uψ dx .

We need to show the strong convergence of the density.

Using the properties of the extension and the control of ‖Eε(log ϑε)‖L2(Ω) we
can verify that the limit temperature is positive a.e. in Ω.
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Limit passage in the entropy inequality I
We want to keep the entropy inequality also for the limit problem. This was
not shown in the paper with Y. Lu, however, it was clarified in the paper for
the evolutionary problem. Recall that we have

∫
Ωε

(S(ϑε,∇uε)

ϑε
− q(ϑε,∇ϑε) · ∇ϑε

ϑ2
ε

)
ψ dx +

∫
∂Ωε

Lϑ0

ϑε
ψ dS

≤ L

∫
∂Ωε

ψ dS +

∫
Ωε

(
− q(ϑε,∇ϑε) · ∇ψ

ϑε
− %s(%ε, ϑε)uε · ∇ψ

)
dx

(23)

for all ψ ∈ C 1(Ωε), non-negative. To avoid technical complications, we assume
that κ(z) = (1+ zm). We extend the velocity and the density by zero to Ω. For
the temperature we use both the extension ϑ̃ε := Ẽεϑε and Eε log ϑε. We have∫

Ω

(S(ϑ̃ε,∇uε)

ϑ̃ε
+ |∇Eε log(ϑε)|2 + ϑ̃m−2

ε |∇ϑ̃ε|2
)
ψ dx +

∫
∂Ω

Lϑ0

ϑε
ψ dS

≤
∫

Ω

((
−∇Eε log(ϑε)− ϑ̃m−1

ε ∇ϑ̃ε
)
· ∇ψ − %εsε(%ε, ϑε)uε · ∇ψ

)
dx

+ L

∫
∂Ω

ψ dS + Rε,

(24)

where Rε → 0 for ε→ 0. Note also that %εsε(%ε, ϑε)uε should be understood
in the sense that it is zero outside of Ωε.
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Limit passage in the entropy inequality II

The only complicated terms are∫
Ω

(
|∇Eε log(ϑε)|2 + ϑ̃m−2

ε |∇ϑ̃ε|2
)
ψ dx ,

in the other terms we may employ the strong convergence of velocity and
temperature, the weak convergence of the density and the weak lower
semicontinuity of convex functionals as well as the fact that due to a.e.
positivity of the temperature and the strong convergence we have
limε→0 Eε log(ϑε) = log ϑ a.e. We consider the first term, the other can be
treated similarly. We fix δ > 0 and compute∫

Ωε

|∇Eε log(ϑε)|2 dx ≥

≥ −
∫

Ω\Ωε

|∇Eε log(ϑε)|2−δχ{|∇Eε log(ϑε)|>1} dx +

∫
Ω

|∇Eε log(ϑε)|2−δ dx

+

∫
Ωε

(
|∇Eε log(ϑε)|2 − |∇Eε log(ϑε)|2−δ

)
χ{|∇Eε log(ϑε)|≤1} dx =:

3∑
i=1

Ii .

(25)
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Limit passage in the entropy inequality III

For I1 we get

|I1| =

∫
Ω\Ωε

|∇Eε log(ϑε)|2−δχ{|∇Eε log(ϑε)|>1} dx

≤ C‖∇Eε log(ϑε)‖2−δL2(Ω)|Ω \ Ωε|
2
δ .

Thus for fixed δ > 0 the term converges to zero for ε→ 0+. Next
|I3| ≤ C(δ)→ 0 as δ → 0 uniformly with respect to ε, since z 7→ z2 − z2−δ has
in (0, 1) the maximum at z0 = 2

−1
δ
√
2− δ, so the bound for I3 is independent

of ε.
We first pass in (25) with ε→ 0+ and get

lim inf
ε→0

∫
Ωε

|∇Eε log(ϑε)|2 dx ≥
∫

Ω

|∇ log(ϑ)|2−δ dx + C(δ),

due to the strong convergence of temperature, the fact that the integrand in
the second term is bounded in Lp(Ω) for some p > 1 and the weak lower
semicontinuity.
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Limit passage in the entropy inequality IV

Now we pass with δ → 0 and use Vitali convergence Theorem for I2 (the
sequence is equiintegrable, since it is bounded in L2(Ω)) and obtain

lim inf
ε→0

∫
Ωε

|∇Eε log(ϑε)|2 dx ≥
∫

Ω

|∇ log(ϑ)|2 dx . (26)

We therefore end up with∫
Ω

(S(ϑ,∇u)

ϑ
+ |∇ log(ϑ)|2 + ϑm−2|∇ϑ|2

)
ψ dx +

∫
∂Ω

Lϑ0

ϑ
ψ dS

≤
∫

Ω

((
−∇ log(ϑ)− ϑm−1∇ϑ

)
· ∇ψ − %s(%, ϑ)u · ∇ψ

)
dx + L

∫
∂Ω

ψ dS .

(27)
The missing point is the strong convergence of the density.
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Limit passage in the continuity equation I

Recall, we may extend the sequence of densities and velocities by zero outside
of Ωε. Then the continuity equation is fulfilled in the sense of distributions in
the whole R3 for uε and %ε and it is easy to pass to the limit to get that

div(%u) = 0 holds in D′(R3).

Moreover, the equation is also satisfied in the renormalized sense (recall γ > 2)

div
(
b(%)u

)
+
(
%b′(%)− b(%)

)
div u = 0, holds in D′(R3),

for any b sufficiently regular.
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Limit passage in the momentum equation I

Here, the situation is slightly more complicated. The problem is that after the
corresponding extension we cannot use directly as test functions smooth
compactly supported functions in Ω.
Following

L. Diening, E. Feireisl, Y. Lu. The inverse of the divergence operator on
perforated domains with applications to homogenization problems for the
compressible Navier–Stokes system. ESAIM Control Optim. Calc. Var. 23
(2017), 851–868.

we can show

div(%u⊗ u) +∇p(%, ϑ)− div S(ϑ,∇u) = %f, in D′(Ω).
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Strong convergence of the density I

The proof of the strong convergence is relatively standard, in the case when
γ > 2 even easier than for small γ’s. It is based on
I the validity of the effective viscous flux identity

%γ+1 +%2ϑ−
(4µ(ϑ)

3
+ν(ϑ)

)
% div u = %%γ +%2ϑ−

(4µ(ϑ)

3
+ν(ϑ)

)
% div u

a.e. in Ω

I the validity of the renormalized continuity equation (which is immediate
here)

This finishes the proof of the main Theorem for the steady problem.
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Original evolutionary problem

We consider in (0,T )× Ωε given by (1) and (2):

∂t%+ div(%u) = 0, (28)

∂t(%u) + div(%u⊗ u) +∇p(%, ϑ)− div S(ϑ,∇u) = %f, (29)

∂t(%s) + div
(
%su) + div

( q
ϑ

)
= σ, (30)

where σ is the entropy production rate, together with the energy equality∫
Ωε

(1
2
%|u|2 + %e(%, ϑ)

)
(t, ·) dx =

∫ t

0

∫
Ωε

%u · f dx dτ

+

∫
Ωε

(1
2
%0|u0|2 + %0e(%0, ϑ0)

)
dx .

(31)

We complete the system by the boundary conditions on ∂Ωε

u = 0, (32)

q · n = 0. (33)

Finally we prescribe the initial velocity, momentum and entropy.
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Constitutive relations I

Pressure:
p(%, ϑ) = %γ + %ϑ+ aϑ4, γ > 6, a > 0. (34)

Stress tensor:

S(ϑ,∇u) = µ(ϑ)
(
∇u +∇Tu− 2

3
div u I

)
+ ν(ϑ) div u I, (35)

where the viscosity coefficients are continuous functions of the temperature on
R+, the shear viscosity µ(·) is moreover globally Lipschitz continuous, and

C1(1 + ϑ) ≤ µ(ϑ) ≤ C2(1 + ϑ), 0 ≤ ν(ϑ) ≤ C2(1 + ϑ). (36)

Heat flux:
q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ, (37)

where the heat conductivity is for simplicity

κ(ϑ) = (1 + ϑ3). (38)



Constitutive relations II

Total energy:

E = e +
1
2
|u|2,

and the specific internal energy e fulfils

e(%, ϑ) = cvϑ+
%γ−1

γ − 1
+

1
%
3aϑ4. (39)

Entropy:

s(%, ϑ) = cv log ϑ− log %+
1
%
4aϑ3. (40)

Entropy production rate:

σ ≥ 1
ϑ

(
S(ϑ,∇u) : ∇u +

κ(ϑ)

ϑ
|∇ϑ|2

)
. (41)



Main result

Theorem
Let (%0,ε, u0,ε, θ0,ε) be a sequence of functions defined in Ωε. Let γ > 6 and α
fulfill

α > max
{3(2γ − 3)

γ − 6
, 7
}
.

Let %0,ε ≥ 0 a.e. in Ωε be such that
∫

Ωε
%0,ε dx ≥ M > 0 and being extended

by zero to Ω, %0,ε → %0 weakly in Lγ(Ω) and strongly in L1(Ω),
%0,εu0,ε → %0u0 weakly in L1(Ω;R3) (extended again by zero to Ω)), ϑ0,ε > 0
a.e. in Ωε so that ϑ0,εχΩε → ϑ0 weakly in L4(Ω) with θ0 > 0 a.e. in Ω.
Furthermore, let %0,εs(%0,ε, ϑ0,εχΩε)→ %0s(%0, ϑ0) weakly in L1(Ω) and

E ε0 :=

∫
Ωε

(1
2
%0,ε|u0,ε|2 + %0,εe(%0,ε, ϑ0,ε)

)
dx

→
∫

Ω

(1
2
%0|u0|2 + %0e(%0, ϑ0)

)
dx =: E0.

Let f ∈ L∞((0,T )×Ω;R3). Then the sequence of renormalized weak solutions
to our problem in (0,T )× Ωε (after a suitable extension to Ω) contains a
subsequence which converges in suitable spaces given by the a priori estimates
to a triple (%, u, θ) which is a renormalized weak solution to our problem in
(0,T )× Ω.
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Furthermore, let %0,εs(%0,ε, ϑ0,εχΩε)→ %0s(%0, ϑ0) weakly in L1(Ω) and

E ε0 :=

∫
Ωε

(1
2
%0,ε|u0,ε|2 + %0,εe(%0,ε, ϑ0,ε)

)
dx

→
∫

Ω

(1
2
%0|u0|2 + %0e(%0, ϑ0)

)
dx =: E0.

Let f ∈ L∞((0,T )×Ω;R3). Then the sequence of renormalized weak solutions
to our problem in (0,T )× Ωε (after a suitable extension to Ω) contains a
subsequence which converges in suitable spaces given by the a priori estimates
to a triple (%, u, θ) which is a renormalized weak solution to our problem in
(0,T )× Ω.
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