Basic notation

Here we present the most often used notation. For further details see Ap-
pendix or the corresponding place in the text.
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ball with diameter R and center at x
intersection of the ball Br(0) with
intersection of 2 with the exterior of the ball
Br(0)

for R1 < Ry

gradient of a scalar and a vector field
divergence of a vector field

divergence of a tensor field

curl of a (threedimensional) vector field
scalar product of two vector fields
scalar product of two tensor fields

Laplace operator

elliptic part of the modified Oseen operator,
r e [0;1)

fundamental solution to the Laplace equation
fundamental solution to the Oseen problem

fundamental solution to the modified Oseen
problem

fundamental solution to the Stokes problem

convolution of the functions f and g
Fourier transform of the function f
inverse Fourier transform of a function f

space of k—times continuously differentiable
functions with the norm || - ||c®

space of functions from C*(Q) with compact
support in €2

Lebesgue space with the norm || - ||,

factor Lebesgue space with the norm
inchR ” ’ +C||q

space of locally integrable functions in the
power ¢

space of functions integrable over all Qg
space of functions integrable with the weight
g and the norm || - |5 g
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We finally note that
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Sobolev space with the norm || - ||,
closure of D(Q2) in the norm || - ||x,
homogeneous Sobolev space with the
norm | - i,

closure of D(2) in the seminorm
| - k,p

space of distributions on (2
Schwartz class of functions

space of tempered distributions
space of functions from D(Q2) with
zero divergence

space of functions from W, 4(€2) with
zero divergence
closure of ¢D(12) in the norm || - ||1 4

space of functions from Dé’q(Q) with
zero divergence

closure of ¢D(2) in the norm of | - |1 4
subspace of L4() with the diver-
gence belonging to LI()

weight
weight
weight
weight
weight
weight
weight

usual cut—off function
Sobolev cut—off function
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Introduction

The method of decomposition, introduced recently by Novotny and Padula in
[NoPa] (see also [Nol] or [Du]), reveals to be powerful approach for studying
the asymptotic structure of the steady slow flows, governed by the compressi-
ble Navier—Stokes equations. It has been shown that in the exterior domains,
corresponding to the physical reality, there exists a wake region i.e. a parabolic
domain in which the asymptotic behaviour is worse.! This corresponds exactly
to the asymptotic structure of the Oseen fundamental tensor. The authors used
the fact that the original problem can be decomposed into several linear pro-
blems which are standard and the solution of the original nonlinear problem
has been constructed by means of a modified version of the Banach fixed point
theorem. Let us also mention that due to the method one has to assume only
small perturbations of the rest state.

It is known that several models of non—-Newtonian fluids can be also decom-
posed into the Oseen (eventually Stokes) problem and the transport equations.
A natural question appeared: is it possible to study the asymptotic structure
of such models and show that, at least for small perturbations of the rest state,
there exists similar wake region as in the case of Newtonian fluid? This pro-
blem has been used as a starting point for my studies. During the calculations
it revealed that the classical results for the Oseen problem do not suffice for
our purposes. We had to study in more details the LP—weighted theory for
convolutions with Oseen potentials and, moreover, we had to consider a cer-
tain modification of the classical Oseen problem. We call it the modified Oseen
problem.

In Chapter I, after a short survey of results from fluid mechanics we list se-
veral models of fluids which will be studied later on. Chapters II and III contain
a detailed study of the classical and modified Oseen problems. We first recall
the asymptotic structure of the fundamental Oseen tensor and then present the
weighted LP—theory for the Oseen potentials, p € (1, 00]. We concentrate on the
physically reasonable cases N = 2, 3; nevertheless many results can be exten-
ded to higher space dimensions and several results will be therefore presented
generally in N space dimensions. Chapter III is then devoted to the detailed
study of the modified Oseen problem. First we show the non—trivial but expec-
ted fact that its fundamental solution has similar asymptotic structure as the
classical Oseen fundamental tensor and afterwards we give a detailed theory of
the modified Oseen problem, including the LP—theory and, in particular, the
integral representation of solutions in exterior domains. Although many proofs
are similar to those given for the classical Oseen problem in [Gal] and [Ga2],

1Tt means that the velocity decreases more slowly than outside this region as |x| — oo.



we shall, for the sake of completeness, reprove them here.

In Chapter IV, we shortly introduce the theory of the steady transport
equations. The results as well as several modifications are presented in [No2],
[No3] or [No4]. In the following chapter, we combine several results from the
preceding chapters in order to show the existence of solutions to certain non—
Newtonian models in exterior domains in Sobolev spaces. In Chapter VI, ap-
plying the weighted estimates on the integral representation of solutions to the
(modified) Oseen problem together with the weighted estimates of solutions to
the steady transport equation we show that, under certain assumptions on the
data of the problem, our solutions constructed in Chapter V obey asymptotic
properties which correspond to the asymptotic properties of the fundamen-
tal Oseen tensor. We consider only the physically interesting cases of two—
and threedimensional flows; nevertheless, the generalizations to higher space
dimensions are straightforward.

Chapter VII is devoted to a completely another problem. Unlike the first
chapters, we study unsteady problems and concentrate ourselves on the axially
symmetric flow of both ideal and viscous fluid in the whole space. It is well
known that the problem of global regularity and uniqueness of Leray—Hopf
weak solutions to the Navier—Stokes equations in three space dimensions is still
an open problem. We show that, assuming the data to the Cauchy problem
axially symmetric and regular, the Leray—Hopf weak solution is also axially
symmetric, regular and therefore unique in the class of all weak solutions. The
main contribution of this part is not the result itself but rather the method
of proof which is very simple and uses the standard results on the (unsteady)
Stokes problem. A similar method can be applied also for the ideal fluid, which
can be considered as a limit when the viscosity tends to zero.

The last chapter contains a short survey of classical results from the theory
of Sobolev and Lebesgue spaces, Fourier transform on the space of tempered
distributions and finally some classical results on the Stokes problem and its
modified version.

Parts of the results presented here has been published or are submitted for
publishing, see [Po|, [LeMaNePo] and [KrNoPo].



Preliminaries from fluid mechanics.
Basic studied models

I.1 Fluid mechanics

The continuum mechanics studies the motion and deformation of bodies. A bo-
dy B is an abstact set that consists of material points p, called usually particles.
We assume that there exists z, a smooth one to one mapping of B onto a region
of the N—dimensional' Euclidean space &,

X = z(p). (1.1)

The function z is called reference configuration. Next we assume that there
exists a smooth one to one transformation of the Euclidean space £ onto itself,
called deformation, such that

x = x(X), (1.2)

where x denotes the place occupied by the particle p, X = z(p). The deformation
gradient
F(X) = Vx(X) (13)

plays a fundamental role in the continuum mechanics.
A motion of the body is one—parameter family of deformations

x = x(X,1), (1.4)

the real parameter ¢ denotes the time. The function x(X,t) is at each time
instant invertable, i.e.
X = x"(x,1) (1.5)

and one can distinguish two approaches in continuum mechanics. Either we
study the motion of each particle p in the Euclidean space during some time
interval (¢1;t2) (the Lagrangean approach), or we fix a point in the Euclidean
space and study the particles passing through the point x (the Eulerean ap-
proach). Both approaches are for x smooth equivalent and mutually connected
by (1.4) and (1.5). In this thesis, as usually in fluid mechanics, we prefer the
latter, i.e. the Kulerean approach.

By velocity we understand the (material) time derivative? of the function

'one usually assumes N = 3
*For a given spatial field ®,(x,t), ®s5(x,t) = Ps(x(X,1),t) = &, (X,t) we distinguish
between the material time derivative
d 0

2o, = —3,,(X,
2% = g% t)‘

X=x"1(x,t)
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X in the spatial description, i.e.

v(x,t) = %x(X,t) ’X=x‘1(x7t) (1.6)
and by acceleration the material time derivative of the velocity,
a(x,t) = iv(x,t). (1.7)
dt
Let us recall that
icb(x,t) = éCID(X,t) + Vx®(x,t) - v(x,t). (1.8)
dt ot
The velocity gradient L is the tensor
L(x,t) = Vxv(x,t). (1.9)

We shall often use its symmetric part D (called also the rate of deformation)
and the skew part W (called also the spin tensor),

1 1
D:i(L+LT), W:i(L—LT), (1.10)

LT being the transpose of the tensor L.
We assume that there exists a positive function m(P), called mass, and mass
density 0° such that for any Lebesgue measurable part P of the body B

m(P) =/ 0’dX :/ odx
z(P) O(X))((Z(P))

. 0
o) = T FX.1)

(1.11)

One of the most important assumptions in the continuum mechanics are the
empirically deduced balance laws. The balance of mass says that the mass of
any part P of the body B conserves, i.e.

d
Zm(P) =0. (1.12)

From (1.12), (1.11) and (1.8) one can deduce the following differential form
of the balance of mass

0
a—f(x,t) +V - (ov)(x,1) = 0. (1.13)
Let F(P) denotes the total force extended on the part P of B. We have
F(P) = / o’fdX + tds, (1.14)
z(P) dz(P)
and the space time derivative 5 5
@,

&‘I)S = ot (th)a

see e.g. [Gu] for more detailed description.
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where f is the volume force and the stress vector t = t(X,n) depends on the
point X € 0z(P) and the exterior unit normal to Jz(P) at this point. As a
consequence of the balance of linear and angular® momentum we get that t
depends on n linearly, i.e. there exists a symmetric tensor T = T(x), called the
stress tensor, such that

6(X, t,m) | = T(x,t)n(x, 1) (1.15)

X=x"1(x,t)

and we get the following differential form of the balance of linear momentum
V-T+ of = pa, (1.16)

a the acceleration (see (1.7)).

Assuming the exterior force f being given, the system (1.13), (1.16) has still
more unknowns than the equations. We have to specify a certain dependence
of the stress tensor T on the velocity, density and its gradients.*

The apriori general dependence of T on the functions v, ¢ and their gradi-
ents will be reduced due to the material symmetry and some general physical
assumptions. Let us start with the latter.

Consider a time dependent change of variables

X" =Q(t)x+q(t) (1.17)

with Q(t) rotation and q(t) a vector. Then we say that the motions are frame
indifferent if the material relations remain the same in the sense that

T*(x*,t) = Q) T(x,t)Q(t)T,
0" (x",1) = o(x,1)
where x* and x are connected by (1.17). We shall assume that all our motions
are frame indifferent.

Let us consider a general relation between the stress tensor T and the history
of the material, expressed by the response functional® H

(1.18)

T(X,t) = Hy(x(X,t — 5),X,t), X =2(p), p € B. (1.19)

We shall localize the dependence on the motions; the apriori general depen-
dence on x(X,t — s) is reduced to a dependence on the gradient of x at the
point X,

T(X,t) = H2y(F(X, t — 5),X,1). (1.20)

We say that the material is a fluid when the group of symmetry of the
material is the whole unimodular group, i.e.

2o F(X t—3),X,t) =HX L (F(X,t — )G, X, t) (1.21)

3For the models studied here, the balance of angular momentum implies that the stress
tensor defined below is symmetric. We shall therefore not write it explicitly. This is no more
true in non-local theories like e.g. for the multipolar fluids.

4We shall not study processes when the internal energy changes; we therefore do not con-
sider the balance of energy and restrictions coming from the second law of thermodynamics.
See e.g. [Si] for a detailed descriptions of this phenomena.

Swe assume the stress tensor in the reference configuration X for a while
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for all G, tensors of second order such that |det G| = 1. Next restrictions on
(1.19) come from the so—called material constraints. Let us mention especially
the volume preserving materials; in this case it is possible to decompose the
stress tensor into two parts (see e.g. [Ir]),

T=—pIl+TF (1.22)

where the first part does zero work (pI : D = ptrD = 0) and the extra stress
tensor TF = H - o(F(X,t — 5)). We call the scalar function p the pressure. We
shall now present several models of fluids studied later on.

1.2 Ideal fluid

We assume that the response functional is reduced to a simple function depen-

dence
woF(X,t—9),X,t) =T(F(X,t),0(X,1)). (2.1)

The dependence on the density p follows from the fact that due to the symmetry
the only possible change of the response functional is connected with the change
of volume.

Combining the symmetry condition (1.21) with the material frame indiffe-
rence it is possible to deduce (see e.g. [Lei]) that

T = —p(o)l, (2.2)

where the scalar function p(p) is again called pressure. From (1.8), (1.13), (1.16)
and (2.2) we get the Euler equations

do

— +V-(ov)=0,

ot (2.3)

Q(% + (v- V)v) + Vp(o) = of .

We complete (2.3) by the constitutive relation

p="p(0), (2.4)

by the initial conditions v(x,0) = vo(x), 0o(x,0) = go(x) and by the boundary
conditions. The standard condition in this case is to assume that the fluid does
not penetrate through the solid wall, i.e. the velocity field is tangential to the
solid boundary

v-n=20.

In Chapter VII we shall study in particular Cauchy problem for the in-
compressible FEuler equations, i.e. assuming the flow isochoric the continuity
equation (2.3); reduces to V-v = 0. From (1.22) we get similarly as above that
T = —plL, p = p(x,t), ie. ﬁ;ﬁo = 0. Recalling that we study the flow in the
whole RY, we end up with

V-v=20
in (0;7) x RY

g(a—v + (v V)V) + Vp = of (2.5)

ot
v(x,0) = vo(x) in RY
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(V-vo = 0 in RY). In particular, we shall study this system in the threedi-
mensional case, i.e. N = 3. See Section VII.2 for a short survey of known results
about the system (2.5).

1.3 Newtonian fluid

We come back to (1.20), but localize the time dependence. Using the material
frame indifference together with the symmetry properties, it is possible to show
that assuming

d
T=T(F,—-F 3.1
(F, 2 F.0), (3.1)
we end up with (see e.g. [Lei])
T = T?(D, o) — p(o)I, (3:2)

where D is the symmetric part of the velocity gradient (see (1.10)), T¥ is the
extra stress tensor and p(p) is the pressure. Applying once more the material
frame indifference and the symmetry, the representation theorem for isotropic
functions (see e.g. [Gu]) yields

T = oI + 1D + D2, (3.3)

where ¢;, ¢ = 0,1, 2, are functions of ¢ and invariants of D. Linearizing (3.3)
we finally get
TF = \(trD)I 4 2uD (3.4)

and (1.13), (1.16), (3.2) and (3.4) yield, under the assumption that A and p are
independent of p, the compressible Navier—Stokes equations

do
8 g TV (ev)=0 (3.5)
o5 + (V- V)v) = AV = (u+ N V(V - v) + Vp(o) = of

We again close the system by giving a constitutive equation of the type (2.4),
the initial conditions on v, ¢ and, (if Q # R”), the boundary conditions on v.
Usually, one assumes the Dirichlet ones, i.e. there exists v, defined at 02 such
that v = v, at (0;7) x 9. In the case of a solid wall, the linearly viscous®
fluids adhere, i.e. v, - n = 0 at such parts of the boundary.

In Chapter VII we shall study Cauchy problem for the incompressible New-
tonian fluid, i.e. the system (3.5) reduces to (see (1.22))

V-v=0
in RN x (0,7),

Q(@ +(v- V)V) — pAv + Vp = of (3.6)

ot
v(x,0) = vo(x) in RV,

where o = const and vq is a given initial condition satisfying V - vg = 0. In
particular, we shall study the most interesting case N = 3, but under a special

Sthe constants A and y are called viscosities
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symmetry condition, namely the axial one. See Section VII.1 for a short survey
of known results on the system (3.6).

In this thesis we shall be mainly interested in the flow of certain classes
of non—Newtonian fluids past an obstacle, i.e. we shall assume a more general
relation between T and L than (3.4). Nevertheless, a very important role will
be played by certain linearizations of the steady Navier—Stokes equations. As-
suming the flow independent of time and the term (v - V)v neglectibly small,
we obtain the (stationary) Stokes system

V-v=0 (3.7)
—pAv + Vp = of , '

which must be completed in the case of @ # RY by a boundary condition
v = v, at 00 and, if needed, by a condition at infinity. Due to (3.7); in the
case of  bounded one requires’

/ v.-ndS =0. (3.8)
N

While for Q being a bounded, simply connected domain, the system (3.7)
seems to correspond quite satisfactorily to a slow flow of a viscous fluid, for {2 an
exterior domain due to the Stokes paradox (see e.g. [Gal]) one needs another
linearization. The Oseen linearization, presented below, acquitted itself quite
well for steady flow with v, non—zero constant velocity prescribed at infinity

(see [Os])
V-v=0 } .
in Q,

—puAV + 9(Veo - V)V + Vp = of
v(x) = v.(x) at 09,

v—0 as |[x| — .

(3.9)

As will be seen in the next chapter, this linearization corresponds much
better to a real slow flow of the viscous fluid past an obstacle (e.g. the existence
of the wake region). In this thesis, we shall study the Oseen linearization and its
modification in detail (see Chapters II and III), while for the Stokes problem,
we present only a short overview of the results needed in the text in Appendix.
We refer e.g. [Gal], Chapters IV-VI for a detailed study of the properties of
the Stokes problem.

1.4 Some models of non—Newtonian fluids

The aim of this section is to present some models of non—Newtonian fluids which
will be studied in the following chapters. We shall be particularly interested in
the models of viscoelastic fluids.

"For Q exterior domain, this condition for N > 3 can be easily skipped — see Chapter
ITI. Nevertheless, if N = 2, the technique proposed e.g. in [Gal] seems inapplicable. We shall
mention this problem later on.
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I.4.1 Maxwell and Oldroyd—type fluids

We start with a general differential model of a viscoelastic fluid. As announced
in the previous section, we study only steady flow of incompressible fluids. The
continuity equation which expresses the balance of mass reduces to

V-v=0 (4.1)
and the balance of (linear) momentum reads
o(v-V)V+Vp=V-TE 4 of . (4.2)

The symmetric extra stress tensor T obeys the constitutive equations

T =15 + TF (4.3)
T =27°D (4.4)
TV => T, (4.5)
=1
DaTi .

(see e.g. [Jo] or [BaGuSal). The constants n;(> 0), 1 < i < n and n°(> 0)
are called viscosities and the constants A\;(> 0) are called relaxation times. The
symbol % represents objective derivative of a symmetric tensor and in the
stationary case is given by

D, T;

where a € [—1;1] is a given real parameter. The tensor-valued smooth functions
B;(D,T;) are at least quadratic in their two arguments in a neighborhood
of T; = 0 and submitted to certain restrictions due to the material frame
indifference.

First, let us assume that n° = 0. For the sake of simplicity, let us assume
that n = 1, i.e. we have only one relaxation time; the more general case n > 1
can be treated in a very analogous way. We also restrict ourselves to the cases
when B;(D, T) = B(D,T) is either zero or bilinear near T = 0 and D = 0.
Some generalizations in the sense that B has one part bilinear and another (at
least) quadratic in D are possible, but we shall not study them. The technique
used in Chapter VI does not allow to study a general polynomial function in
T. Nevertheless, let us mention that our restrictions still involve several phys-
ically reasonable models like lower—convected, corotational and upper convec-
ted Maxwell fluid, certain special cases of 8—constant Oldroyd model etc.; see
[BaGuSal. In order to rewrite the system (4.1)—(4.7) into a more appropriate
form, we follow Renardy ([Re]). We multiply the i-th component of (4.2) by vj,
apply the divergence with respect to j and get

Vilo(v-V)IV)@v+Vpav—pofv] =V -[(V-T)®vV]. (4.8)
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Thanks to the incompressibility condition (4.1) we have
VI(V-T)ev]=(v-V)(V-T). (4.9)
Combining (4.7) and (4.6) and inserting them into (4.2) we have

o(v-V)v+ Vp=of+
+V - [27D — B(D,T) — A(v - V)T — A(TW — WT) + \a(DT + TD)].

Observing that thanks to (4.1)
V- (v-V)T)=VT: (VW) +(v-V)(V-T)=V-(T(VV)) + (v-V)(V-T)
and using (4.9) and (4.8) we finally get

o(v-V)v+Vp=of +V-[2nD — B(D,T) — A\T(Vv)T = Xo((v - V)v) @ v—
CAVP @V + Aof @ v — A(TW — WT) + A\a(DT + TD)].

Denoting
T=p+Av-V)p (4.10)
F(Vv,T) = - AT(Vv)! = A\(TW — WT) + \a(DT + TD) — B(D,T) (4.11)
G(Vv,T) = A(TW — WT) — \a(DT + TD) + B(D, T) (4.12)

we end up with the following system

—nAV + o(v-V)v+Vr=pof + V- [F(Vv,T) - Xo((v-V)v) @ v+
+Aof © v+ Ap(Vv)T]
Vov=0 (4.13)
p+Av-Vip=m
T+ANv-V)T+G(Vv,T) =2nD(v).

Renardy used this procedure in the study of existence of strong solutions to
(4.1) — (4.7) for small data in bounded domains. Another results to such mo-
dels can be found e.g. in [Hal, [GuSa], [Tall] and [Tal2]. See also [BaGuSa]
and the references therein. For threedimensional exterior domains see [MaSeVi]
for compressible model. To the knowledge of the author there are no results
concerning the asymptotic structure of solutions for such models.

Let us now formulate the boundary value problem for the system (4.13).
Let us assume that O ¢ RV, N = 2,3 is a compact, simply connected set and
Q=R"Y \ O. Then O represents the obstacle while €2 the part filled in by the
fluid flowing past the obstacle. We add to the system (4.13) conditions at the
boundary of 2 and at infinity.

Let us assume that there is a prescribed, non—zero constant velocity at
infinity veo. We may always rotate the system of coordinates in such a way
that v, = Beq, where e is the unit vector in the direction of x;.

Let vg be a prescribed velocity on 0f) satisfying vg - n = 0; n the outer
normal to 0. (This condition is obvious since we suppose that the velocity
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does not penetrate the solid boundary.) Denoting u = v — v, we rewrite (4.13)
as follows

RN LL NS
ox1 5
=of +V- [F(Vu, T) - Xo((u-V)u)@u—pu®u— )\gﬂ2a—; ®Rer—
0
“AoB( @ut (u-V)u) @) + Aok © (ut fer) + p(Vu)" |
1

V-u=0 (4.14)
T=p+AN(u+vs)-V)p
T+ AM(u+vs) V)T+G(Vu, T) =2nD(u).
The system (4.14) holds in © and we have furthermore
u = vg — fe; at 9N
u— 0 as x| — co.

We easily check that [y, u-ndS = 0.

(4.15)

Remark 4.1 We shall assume throughout this thesis vog = 0. If vg # 0, the
natural assumption is vg - n = 0 pointwise at 02 as we study the flow past an
obstacle. Under this assumption, everything proved here remains true for vq
nonzero, but small. We namely extend vg to €2 in such a way that V- vg =0
in ) and vy has bounded support. We then search v in the form vg + u + v
and assuming vq sufficiently small we proceed exactly in the same way as in
the following chapters.

We shall construct solutions to (4.14)—(4.15) with an appropriate asymptotic
structure by means of a fixed point argument. First, let us note that we do not
study the precise estimates on the data, under which the solution exists (due to
the technique, the data have to be sufficiently small). For the sake of simplicity,
we assume all constant except to |ve| = 3 to be equal to 1,i.e. p=A=n=1.

We denote by
A(u) = —Au + ﬁ282—u : (4.16)
Ox3
Let w, s be a fixed pair of a vector and a scalar function. Requiring that w +
Voo = 0 on 0f) we consider the operator

M: (w,s)— (u,7), (4.17)
where
A(u) + ﬂg;l +Vr =
=f+V- {F(VW,T)—((W'V)W)(X)W—W@W—
8o @w e+ (w- V)W) D) +£6 (wo+ fe) +p(Tw)] (a1

V-u=0
p+(W+ve) - Vip=s
T+ (W + Vo) - V)T + G(Vw, T) = 2D(w),,
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u— 0 as x| — o0

4.1
u = —pfe; at 99. (4.19)

Therefore searching a solution to (4.1)—(4.7) (or, equivalently to (4.14)-
(4.15)) means in fact searching a fixed point of the operator M. We shall specify
the correct spaces on which works M later on. Let us only note that for g < 1
the operator A(u) defined by (4.16) is strongly elliptic. The necessity of using
such an operator instead of the laplacian comes from the fact that the weighted
estimates for the Oseen kernels, obtained in Chapter II, are unlike the singular
integral operators not ”optimal” and we loose ”epsilon” in the weight. Therefore
the linear term must be involved in the left hand side of (4.18).

We have decomposed the original problem into two kinds of linear problems.
The equations (4.18)3 4 are scalar and tensor steady transport equations, re-
spectively. We shall study this kind of linear problems in Chapter IV. Next, the
linear problem (4.18); 2 is similar to the classical Oseen problem. For 5 < 1 it
can be expected that it will have similar properties as the Oseen problem. We
shall call the system (4.18)1 2 together with the "boundary” conditions (4.19)
modified Oseen problem and the detailed study of this problem is performed
in Chapter III. We shall verify that it has very similar (or almost the same)
properties as the classical Oseen problem which will be studied in Chapter II.
Chapters V and VI will be devoted to the study of existence and asymptotic
structure of solutions to the nonlinear problem.

Next, let us present the formulation of the problem in the case of n° % 0. We
shall study the Oldroyd type models (i.e. B = 0) or their slight generalization
(i.e. B bilinear). Unlike the previous case, it is not necessary (and, unfortunately,
also impossible) to reformulate the original problem as between (4.8)—(4.12) for
the Maxwell type fluids; we start directly from (4.2). We have

—nsAv—i- o(v-V)v4+Vp=pf+V -T
V-v=0 (4.20)
T+ A\v-V)T+G(Vv,T)=27"D,

where G(Vv, T) satisfies (4.12). Such models were studied by the above menti-
oned authors. Let us also mention the work of Videman [Vi] and the references
therein, where also problems on unbounded domains are studied, both with
compact and noncompact boundary. Nevertheless, the asymptotic structure at
infinity for such models in exterior domains has been studied neither in [Vi] nor
anywhere else® and it seems to be more difficult due to the ”epsilon” loss in the
weighted estimates, similarly to the model of the second grade fluid presented
below.

We shall proceed now as above. We add to the system (4.20) the boundary
conditions at 9 (vp = 0) and at infinity (v # 0), denote by u = v — v,

8at least to the knowledge of the author
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assume all constants (up to 3 and n’) equal to one and end up with the system

—Au+ﬂ§;+Vp:f+V-(T—u®u)

1

Vou=0 (4.21)
T+ ((u+veo) - V)T + G(Vu, T) = 2" D(u)

in  and

u— 0 as |x| = o0

u=—0e; at 0L2. (4.22)

We introduce again the operator M, which assigns to a vector function w
the vector function u, solution to

—Au—i—ﬁ%—i—Vp:f—i-V-[T(w)—W@W]

1

V-u=0 (4.23)
T+ ((W+vVe) - V)T + G(Vw, T) =27"D(w),

u— 0 as x| — o0

4.24
u = —/»e; at 9. ( )

We are therefore left with the classical Oseen problem and a (tensor) steady
transport equation. Due to the linear dependence of T on Vw we shall only
be able to reobtain the result presented in [Vi], i.e. the existence of solutions
in Sobolev spaces, for 3 and n* sufficiently small; our technique does not allow
to study the asymptotic structure of solution to (4.21)—(4.22). We shall only
mention this results in Chapter V without proving them explicitly.

I1.4.2 Second grade fluid

Before starting the study of the linear problems we shall briefly introduce ano-
ther model of non—Newtonian fluid — the second grade fluid — and show that
the system of equations describing its stationary flow can be after a proper
linearization rewritten into a similar kind of linear problems; in this case we
obtain the classical Oseen problem and the scalar transport equation.
The constitutive law characterizing the second-grade fluid has the form (see
e.g. [TrNo))
TF = 2uD + 201 A + 40D?, (4.25)

where p is viscosity, a; and asg are stress moduli and

d
Ay =D+ (Vv)'D +DVv. (4.26)
We use the condition of thermodynamical stability a; + ay = 0, see [DuFo],
and get from (4.1), (4.2), (4.25) and (4.26) in the case of the steady flow past
an obstacle
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—pAV — a1 (v - V)AV + Vp = —o(v - V)v + of +
+ V- [(VV) (Vv + (Vv)])]

V.v=0 (4.27)
v=0 at 0 = 00
V — Voo as x| — oco.

Again, assuming v, # 0 we can rotate the coordinate system in such a way
that v = fe; and denoting u = v — v, we get from (4.27)

d d
—uAu — Oél(ll : V)Au — a1BA£ + Qﬁ% + Vp =
1 1
= —o(u-V)u+ of + a1V - [(Vu)! (Vu + (Vu)")]

V-u=0
u=—vy = —fe; at 00
u—20 as |x| — 00.

Using the decomposition procedure proposed by Mogilevskij and Solonnikov
(see [MoSo]) we consider formally the mapping

M:g—(u,s)— 2z,

where

—Au—&-géafu—i-Vs =g
p Oxq
Vou=0 (4.28)
u=—/;e; at 00

u—20 as |x| — oo,

it means that the pair (u,s) satisfies the Oseen problem with the right hand
side g, and

2 32
w2+ on((u+ veo) - V)z = —o(u V)u + gf+algfa;5+
1 (4.29)
+a1V- [(VU)T(VH + (Vvu)T) + 98 9u Qu-—s (Vu)T} ,
p 0z

it means that z satisfies the transport equation with the right hand side depen-
ding on (u, s).

We meet again the same problem as in the case of the problem (4.23), (4.24).
The presence of the linear term on the right hand side of (4.29) does not allow
us to investigate the asymptotic structure of the solution.

The model of second grade fluid was studied for different types of domains
by several authors, see e.g. [DuFo|, [DuRa], [GaSe|, [NoSeVi], [PiSeVi], [Vi]. In
Chapter V, we shall present the proof of existence of strong solutions to (4.27)
for the plane flow which is taken from [Po]. The existence was also shown in
[Vi] for both plane and threedimensional flows, under slightly more restrictive
conditions on the right-hand side.



Oseen problem

In this chapter we would like to present some classical but also some new results
concerning the Oseen flow in unbounded domains. First we recall the notion of
the fundamental Oseen tensor (a little bit more precisely as it is essential for
our following study) and very briefly some existence and uniqueness theorems;
similar results will be shown in the following chapter for the modified Oseen
problem and the classical Oseen problem can be considered as a special case.
The asymptotic properties of the fundamental solution enable us to obtain the
integral representation of solutions to the Oseen problem. The last subchapter
is devoted to the study of some convolution coming from the integral represen-
tation. We give a detailed theory of LP—weighted estimates of convolutions with
Oseen kernels and apply it for a very trivial case. Such estimates will be then
essential in Chapter VL.

Let us recall that we study the following problem (2 = RN \ O, exterior
domain)

ov
—AV—Fﬂaixl—va:f }an

Vov=0 (0.1)
V=V, at 02
v—0 as x| — o0o.

Definition 0.1 A vector fieldv € Wli’cq(Q) is called a g-weak' solution to (0.1)
if for some q € (1;00)

(i) v is (weakly) divergence free in §
(ii) v assumes the value v. at O (in the trace sense)
lim |[V(R,w)|dw =0

R—o0 SN

(see Subsection VIII.1.4)
(iv) the equality
/Vv:chdx—ﬁ/v-&PdX:<f,<p>
Q Oxq
is satisfied for all
@ €0D(Q2) ={p € C5°(2),V -9 =0}.

"We use also a g-generalized solution. If ¢ = 2, we shall usually speak only about a weak
(generalized) solution.

17
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II.1 Oseen fundamental tensor and its asymptotic properties

In this part we follow [Gal] or more originally, [Os]. We denote by

0ii(x,y) = — (354 m)@(x,y) (1.1)
ej(x,y) = —;;(A—i—b\(fyl)(b(x,y), (1.2)

where i, 7 =1,2,...,N, A = g and ®(x,y) is a smooth function for x # y. We
easily check that

—(A + 2)\i)(91](x, y) -

0 0
i 'ej(x, y) = 5Z-jA(A + 2)\a—><13(x, y)

ayz Y1 (1‘3)
@OZj(X,Y) =0.

We want (1.1) and (1.2) to be a singular solution to (0.1);2. We require therefore
A(a+20 Vo y) = A(x ~y)., (1.4)
oy

where £(|x — y|) is the fundamental solution to the Laplace equation. So, par-
ticularly, for N =2 E(jx—y|) = &= In[x—y|,for N =3 E(|x—y|) = fﬁﬁ
and the right hand side of (1.3) is equal to d;;0x.> The system (1.3) must be
considered in the sense of distributions (see Section VIIIL.4).

We search the solution to (1.4) in the form

1 Yy1—x1
@(x,y):ﬁ/ [Po(T, Y2 — T2, oy Y — Tp)—

(1.5)
_(1)1(7—7 Y2 —X2,...,Yn — xn)]d7-7
where ®; and ®2 must be selected suitably. From (1.4) we get formally
0 o€
Let us choose ®2(x,y) = £(|x — y|); now it is sufficient to take
(A + zAi)cpl = AE. (1.7)
I
Moreover, from (1.4) and (1.2) we have
6506 y) = £ (fx— y) (1.9
(%, o, . )
We take
e—AMy1—z1)
®1(x,y) = ——5 [(Ax—yl),
x—y| >

Tt means for all ¢ € C§°(RY), (0x, ) = p(x).
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so by direct calculations we deduce

(A + 2/\8i)q>1(x, y) = Lﬂ [zzfu(z) o fe)
! |X;f{|222 e~ My1—=1) (1.9)
- ({T} + ZQ)f(z)} — mﬁ(f),

where z = A\|x — y| and the prime denotes differentiation with respect to z. The
equation L£(f) = 0 is the Bessel modified equation which admits two indepen-
dent solutions In-2(z) and K ~-2(2) called modified Bessel’s functions. While
I N2 (2) is regular2 for all values of the argument, K N2 (z) is singular at z = 0.

We have for z > 0 (see [KoKo)

()N =2 Ko(2) = —Inz+In2—~—1In (g) i (k:l')2 (§)2k+
k=1 V"
[e'e) 1 k 1 5
+ k; )2 (]Zl (;) -7) (5)% (1.10)

1
. o _(T\2 —2
(11)N—3K%(z)—(2z) e ”,
while for N > 4 we get the following asymptotic expansion for z sufficiently
small Yo
27 (Y) 1
KL2—2 (2) = N — 22 ZN2—2 +0(z), (1.11)

where v is the Euler constant, I' is the gamma function and the remainder o
satisfies

— =o(z 2 %), E>0, |z|—0.

In what follows we shall treat separately the cases N =2 and N = 3.

I1I.1.1 Fundamental solution in two dimensions

We start with the more complicated situation in two spatial dimensions. As
follows from (1.7), ®; must be in the neighborhood of z = 0 as singular as £ is.
So we get

1
01(x,y) = —5_Ko(Alx - y|)e M) (1.12)

and finally

1 Y1—21
q’(XJ):m/ {IOg\/T2+(l‘2—y2)2+
(1.13)

+ Ky (/\\/7'2 + (2 — y2)2) e_AT}dT.

The problem consists in the right choice of the constants which corresponds
to the right choice of the lower bound of the integral on the right hand side
of (1.13). Formally we need it to be equal to co. Unfortunately the integral in
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(1.13) does not converge, as Ky behaves regularly at infinity (see (1.23)). We
calculate formally the derivatives of (1.13) and put

Gx—-y;20) = A[log\/ y1—21)? + (y2 — w2)? +

( \/ (y1 —x1)? + (22 — yg)Q)e_’\(yl_zl)]dT, (1.14)
1 1= (y2 — 32)?
H(x —y;2)\) = —/ +
-y A Joo (y2 — 2)?)?
+ (K(’) ()\ 72 + (y2 _ 1:2)2)/\(212—_1'2)2 + (1‘15)
72 + (y2 — 22)?
/ 2 2 AT? —AT
+ EKHAT2 + (32 — 22)2) 5 )e ™ ar,
2

(72 + (2 — 12)?)

i.e G is formally taken derivative of (1.13) with respect to y;, H the second deri-
vative of (1.13) with respect to y3. First we express (1.15) in a more appropriate
way (without the integrals).

Denoting g = y» — 22 we calculate: (£ Ko(z) = K{j(2) \/%)
m24q

1 Yy1—T1 7-2_q2 Y 5 ; >\2q2
H(X—y,zA)—m/oo [m‘i‘(ffo()\\/T +Q)T2—|—q2+
72
+ K (M2 + ¢t ——— e |dr =
0 (r2 +q2)§) }

[ ) + [ 2

+ KH W7 + ¢ ij(;i e =

| P e e
+ ﬁ o [K(’)'()\\/TQ +¢)N + Kj(\ /72 + Q2))\\/T)\22Tq2_

— %KO()\\/T +q ))\}e*)‘fdr = —471)\{@1 — w;;; 13(5;2 — 932)2+
[l =+ ) i

+ Ko (A\/(yl —21)? + (y2 — 1’2)2))\] : efA(yrxl)} :

where we used that £(K() = 0 outside x =y (see (1.9)).
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We define (r =1 —21)2 + (y2 — 902)2)

On(x—y;2\)=—H(x—y;2\) =

L yn—n Ay — z1) A
:m{ 2 +(K6(>\T)T+KO(,\T)A)6 A 1)]

0
O12(x —y;20) = O21(x — y;2)) = @G(:v —Y;2)) =

1.16)
_ i Y2 — T2 / Y2 — X2 Ay1—x1) (
= 47T>é[ 3 + Ky(Ar)A e }
Ogg(x—y;Q)\):—a—G(x—y;Q)\) =

1 ryp—m ! Y1 —x1 ( )
- = — / - - ~AMy1—x
_ 4m{ St (KpmAT—= — Ko(wr)A)e 2]

o 0(x—yl) 1lyj—ay

We shall now study the asymptotic structure of O;;(x —y;2)) defined in (1.16)
near zero. Using it we then verify that (O, e) solves (1.3) in the sense of distri-
butions. From (1.16) we easily deduce the following homogeneity property

Oy(x —y32) = Oy (2A(x — ); 1) (1.18)

which will play an important role later on.
Now, let A\r — 0. Then we have from (1.10) (i)

Ko(z)=—Inz+1In2— v+ 0(z*Inz)

K{(z)= —% +O0(z1nz)

19
K§(z)= 5 + O(inz2) (1.19)
Ck)

K ()= +0G), k=23, [ -0

and therefore

1 _ _
OH(X _— 2/\) _ {yl 1 Y1~ e—)\(ylfm) _ )\ln(/\r)ef/\(ylfxl)}_’_

47 r2 r2
In2 —
+747I‘ 76—)\(241—1‘1) =+ V11 ()\7")
with
vii(Ar) =111(2) = O(z1nz)
Yy () = Oln 2)
() =0 1), k=2, |2 —0.
Thus ( )2
oy Ly — o 1 .
On(x—y;2)\) = E(T +In ﬁ) + 011 (Ar)
with

Dll(z) 20(1)
71(2)=0(nz)
Dg’f)(z) =0(z"*Y, k>2, 2—0.
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Similarly we proceed for other terms:

v _ Y2 — T2 Y2~ T2 _\(y,—mz) - .
O12(x —y;2)\) = Y ( 32 3 e ) + D1a(Ar) =
1 (yp—x2)(yr — 1) | -
4mA 2 + P12(Ar)
- _ Y1 =1 Y1 =1 _N(y1—a1)
On(x —yi2) = 41\ ( r2 2 ¢ *

In2—
—l—ln()\r))\e*)‘(ylfxl)) + %eﬂ\(yrm) + v (M) =
s

1 (y]. - x1)2 —)\(y —x ) ~ _
_E(T + In(Ar)e 177 ) + U (Ar) =

1 (g2 — w2)? 1 -
= (P ) ).

r2 2)\r
Summarizing we get

1 1 Yi —Ti)\Y; —
Oj(x = y;20) = {&j log 71—+ ( 3}2 j ])]

1 1 -
= Sij(X -y)+ Edij log n + Vij()\fr’) ,
where S;j(x — y) is the fundamental Stokes tensor (see e.g. [Gal]) and
_ o jom  (=J)
vij(z) = L
O(=1n ) (i # j)
7i;(2) =0(In z)
~k’,):O(z*k“) k>2, z—0.

FHON= )

(
ij

We are going to verify that (O, e) solves (1.3) in the sense of distributions. Let
us observe from (1.16) that

1 0& 1 09,
v = — — (x—v)— — L (x —v:2)\) —
— O1(x —y;2))
O12(x —y;20) =091 (x — y;2\) = iﬁ(x— ) — (1.21)
12 Y; =U21 Y; = 2\ D2 y .
1 09,
ooy XYY
1 o0& 1 09,
-y 2)=———(x — ——(x—y;2
O (x — y;2)) 2 o (x—y)+ 2 9 (x —y;2)),

where @1 (x —y;2)\) = ®1(x,y) is defined in (1.12). We therefore easily see that
O;j, e;j solves (1.3); for x # y. Moreover

0012 n 002
o 0yo

=0 forx #y



II Oseen problem 23
and
0011 00 1 1 (0°®;  0%*® 0P
u 21:7Ay s 21+ 21 _ 9% _
oy Oyz  2A 20\ 9y1 9y; oy
R O A TR A
22\ 0y 9 ) Onm
for x # y. Let us verify that last expression is equal zero. Evidently
1 (9 N PP\ | 0P
2A\ Oyi  O0y3 oy
1 A Y-
= (K(’)’()\r))\2 + Ko(Ar)~ — )\QKO()\T))e Ayi=21) —
for r # 0 (see (1.9)). Moreover from (1.20) we have that |[O(x—y)| < Cln|x—y|
for |x —y| < 1 (see (1.20)) and therefore
86(2? =0 in D'(R?).
It remains to verify that
- <A+2)\a> O(x—y:20) — Lei(x — y) = 6,50
8y1 i Y, ayz 7 Y) = 04;0x .
Due to the asymptotic behaviour of @ and due to the fact that
. 1
sEI(I)l+ — ej(x —y)ni(y)Fj(y) dyS = §Fj(x)5¢'
we have to check that
. 90ij(x —y) 1
1 — = F; = —Fj(x)d;; - 1.22
€—1>%1+ aBE(X) a’l’b ](y) dS 2 J(X)(SJ ( )

Namely, then we easily get

) OF;
/}R2 [Oij(x ~ Y24y #2205 ) E ()] + e (x —y) ayj- (Y)} dy =
0 oe;
= v.p. /11%2 [(—Ay — 2Aa—y1)0ij(x —¥;2)\) — 8y§ (x — y)] Fi(y)dy+
+dim 2000y m ) F ) dy S
_/ Ou(x — y: 20 (y) 22 (y)dy S+
9B+ (x) ij y; kY 8yk y)dy

90;j(x —y;2)\) (s — Vs () _

e e B S+ [ el yn () dyS] =

— lim [aoij (x —y;2))
e—0t JaBe (x) on

+ej(x — y)nz(y)} Fi(y) dyS = Fj(x)d;; .
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From (1.20) we get after straightforward calculations that

8011 1
-~ 1o
on 4y +O(lnr)
0012 0021
5 = o O(lnr)
8022 1
—_— 1
on  dxr +O(lnr)

and therefore (1.22) follows. Thus (O, e), defined by (1.16) and (1.17) solves
(1.3) in the sense of distributions, i.e. it is the fundamental solution to (0.1) in
R?.

The next part is devoted to the asymptotic properties for Ar — oo . Unlike

the Stokes fundamental tensor we get anisotropic structure here. First, let us
recall that (see [KoKo]):

Ko(z) = (=) e VX:IM(ZZ)_kjLUV(z) , (1.23)
2z k)

= kT(3
where
dkO'V k—v
k= (z"77) as z — 00, k>0
Especially
T\: _ 1 9
K =(— 11
T\s _ 3 15
K =(— l—-1- (@)
o) (22)16 E +128z2+ ) (1.24)
3 7 57
KI/ — 1 2 _—z 1
0(?) (22)16 [+8Z;_1128z222;_0(z )
KM _ TNz [ 4 L -3
7= (5;)"] 5~ Tos T OCT)]

We pass to the polar coordinates with the origin at (z1,z2). So
Y1 — T1=Trcosp
Yo — X2 =rSsing.
Denoting
s=(r+y —x1)=r(l+cosyp)
formulas (1.16) furnish:

1 rcosep 5, 3 1
Onlrpi2)) = [0 +e™ g {Acosp (-1 - gy + A0 - o) +
—l-/\l/()\r)}]

1 rsing . e [T 3
(912(r,cp;2)\):m[ " + Asingp e A,/m{—1—§+Au(Ar)}] (1.25)

1 rcose s 3 1
Ona(r, 320 ==~ [ = +e/\\/;{/\cosgo( - ) - Al - o)+

+ /\V()\r)}] ,
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where D*v(2) = O(27%2) as 2 — o0, k > 0.
Before starting the study of asymptotic behaviour at infinity, let us recall
several more or less trivial facts. We have (see also Lemma 3.1)

Os s 0s (y2 — x2) .
— = - — === —diny,
oyr 1’ Oy r v
Jp _ cosyp Jp  sing
oy 1 oy r’
2
s~r for y;—x1 >0 but SNM for y1—x1<0
T

e sin? p M= Ase (1 —cosp) < 2L,

So from (1.25) we get the following asymptotic expansion of O

1 1
2\ = — e -1
O11(r, 52X) T CO5% 4me [cosw +
1.3 1
+ ;(g cosp + §) + 1/()\7“)}
O12(7, 0;2)) = ! sinp — #6_)\8 sin ¢ {1 + 3 + 1/()\7‘)] (1.26)
T AT \r A2 8T '
1 1
Oga(r, p;2)) = ———cos ¢ + ———e ¥ [(1 + cos +
1 3 1
+ ;(g Cosp — g) + V()\T):| .

In particular we have the following uniform behaviour

C
|012(x — y;2)) |, |O22(x — y;2))| < Y
T as A\r — 00. (1.27)
Onnx—y;2)\)| < —
‘ 11( y )| N

Moreover, from (1.26); we may deduce the following anisotropic structure

[O11(x — y;2M)] < (1.28)

C
VAIrv1+ s

Now we might calculate the derivatives and get the asymptotic expansions of
them. As we are interested only in the estimates of the type (1.27) — (1.28), we
do not do it. We rather observe that

8 Y Y )\S C
. S\ — s <« 2
‘Gyl (e™™) ‘e r ‘ —r
while X
(9 —A Y . C )\
- S — SA < - - .
355 €] =l Asing | < —oe
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Moreover, as the derivatives of ¢ with respect to y; produce a sinus (unlike the
derivate with respect to y2), we get easily

R S
r(14 As)

¢

VArry/1+ s

'7011 X — y,2)\)‘

0
7011()( -Yy; 2)\)‘ <

Oa(x —y; 20|, ’3?41

‘8 (1.29)

‘7012 y;2/\)‘ ‘iom(x_}’; 2>‘)} )

IN

<
‘7022 X—Y; 2)\)‘ >\

where for the last term we used the fact that 8— cosp = M
For higher derivatives we do not need such precise estimates. We therefore

only observe that

CVA

@) 2A —_— 1.30
‘82 1(x —y; )‘ %(1+>\8) ( )
while for the other terms we have the following uniform estimate
- C
ID?0(x —y;2))| < 5, (1.31)

where D20 contains all second derivatives of @ except of & 011 . For higher
derivatives we then easily see that

kE_ 1

Ch\272

\Dk(’)ij(x — V2| < —

rz2"z

for k> 3. (1.32)

The proofs are the same as for the first derivatives. We could, certainly,
get a more precise structure of higher gradients of O including its anisotropic
structure. But as we do not need it, we skip such a study.

Another interesting task is the local and global integrability of the funda-
mental Oseen tensor. We shall mention it in the next chapter.

11.1.2 Fundamental solution in three dimensions

The study of the threedimensional Oseen fundamental tensor is from several
point of view easier than the twodimensional one. It also indicates that we may
expect the same for our problem in exterior domain.

Using again the fact that ®; must behave around z = 0 in the same way as
&, we get from (1.10) (ii) that

1 A
- _ Ayr1—z1)
D, 5 27T|X—y|K1/2()\‘X y|)e~ (1.33)

Inserting (1.33) into (1.5)

S(x,y) = — b ["T Lo e AT (g — 2)? + (s — @) + 7))
) 8w T2+ (Y2 — 22)2 + (y3 — 73)2

dr.
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Unlike the twodimensional case we may fix the constant up to which ® is defined
by taking ®(x,x) = 0. Therefore

1 AMlx=yl+y1—21) 1 — ¢~ 7

o -
(x,y) 87\ Jo T

dr (1.34)

and from (1.8) we have
1y -

T

(1.35)

We next start to calculate O;;. Similarly as in the twodimensional case we use
the anisotropic function (r = |x — y|)

s=(r+y—x1).

By direct calculation we can verify (compare also with the twodimensional case)

Os s 05 ity
oy r 0y; r
Evidently
o0 1 l—e
dy1  8tA 71
® 1 1—e My —

o® _ € BT nh (1.36)
0ya 8T S r
87@__ 1 1—e My — a3
dys  8TA s ro

We easily see that O;; is a smooth function outside the origin. This can be
verified using the fact that f(y) = % is smooth on [0,00) what follows
either by induction or by regarding its Taylor expansion around zero.

Taking derivatives in (1.36) and using (1.1) we finally get

1 ((y2—22)% 4 (ys —a3)? fAe™ (1—e )
O —v:2)\) = _ _
n(x—y;24) 87r/\{ r2 ( S 52
1— e—ks> L2 e_)‘s)}
rs rs
(y3 _ 1.3)2 )\e—)\s 1— e—)\s 1— e—)\s
w9\ = _ _
Oz (x —y;24) 87r/\{ r2 ( s 52 rs ) +
—)\s —\s —As
e ™M 1—ce -z l1—c¢
2 - Y1 1 4 }
r r r rs
1 ((y2—x2)%  de™ 1—e? 1
v\ = _ _
Os3(x — y; 23) 87r/\{ r2 ( S 52 rs ) +

—\s —As -5
e ™M 1—ce -z l1—c¢
+ _ 1 1 4 }

- s (1.37)

r r r rs
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1 e Yo —x2 11— e~ s Yo — X2
CvioN) = — _
Ora(x = y;23) 8T [ r r r2 r }
1 e ™ ys —x3 11— e As Y3 — X3
Cvio)) = _
O13(x —y;22) 87 [ , , 2 ” }
1 e (yo —x2)(ys —x3) 1— e~ s
O —y;2)\)=— — .
23(x — ¥;2A) ST\ [ s r2 s2
(2 —wa)(ys —w3)  1—e N (y2 —a2)(ys — 133)}
r2 s r3 '

As for N = 2, we study separately the asymptotic properties of O;; if A\r — 0
and A\r — oco. We have the following homogeneity property which is a con-
sequence of (1.37)

Oy5(x — y320) = 22 045 (2A(x — y); 1). (1.38)

‘We have in the case of A\r — 0:

oy L (y2 — x2)* + (y3 — w3)° 1—e ™ — s
On(x y,QA)_SW{ 3 +24 2

(yo — 22)% 4+ (y3 —23)2 (7 Ase ™ —14+e™ As+e ™ -1
+ 72 {8( A\s )+ s H
1 (y1 — 21)?
= 8?(1 + T) + Ru(Ax—yl),

where
1
k _ kL
VFR11(Ar) = A O(()\r)k)’ k>0asAr—0.

We proceed analogously for other terms and recalling that the fundamental
Stokes tensor in three dimensions has the form (see e.g. [Gal])

1/ 0 (yi — i) (y; — x5)
Sij(x—y)= 1.39
we get
Oij(x —y;2)) = Sij(x —y) + Rij(x = y; A) (1.40)
with
1
Ep (v o)) — N+~ > B
DyRU(X ViA) = A O<()\\x—y])k>’k_0as AMx —y|—0.

Next part is devoted to the study at infinity. We have

1 — 2 + — 2 1— —As
Oll(x—y;2)\) — 7{(342 x2) (y?) -’ES) (6_)\8 _ 7@)]+

o " s (1.41)
11— + i (y2 — x2)2 + (y3 — x3)2 1—e 28

A7r s 8r r2 As
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—As
Now as e ¢ < 1% Vs > 0 and

S

)2 — 12)? — y3)?
MSC for j:273<sw(m y2)” + (@5 — y3) ifyl—x1<0)
rs r
<s~7’ ify1—:c120),
we get that
Cc1-

O 2 <—7
’ ll(X Y; )| s

Analogously we proceed for other terms and ﬁnally we get the following uniform
and anisotropic decay as A|x — y| — oo:

0yx—y;20) < &
"o i,j=1,2,3. (1.42)

.. _ .2 <
101 (x = ¥ 24)| < r(1+ As)

—As

Moreover, let us observe that from (1.41) and V(e ™) < CV(1=£=) it
follows that for &k > 1

11
IVFO,(x — y;2))| < c\v’f( T> (1.43)
Recalling that
Yji — | . \/g
‘8y] ’ r ’ - ¢ r
we get
8(’)@ C1 As O/l —e ™ — Ase ™ Os
—y;2A -+ — —) <
o1 (x = )’ r2 )\s + r( As?2 ayl) -
C 1-— e_)\s A C 1
< (= ey < 2 T
_7‘2( As e >_r2(1+)\s)
0(9,4 Cl—e? (C/1—e—)se ™ 9s
y;2)\)| < = - — ) < (1.44
‘ Gy] )' —r2  Xs + 1"( As2 8yj) s (1.44)
< g(l —e n 1—e % — )\se_)‘s) <
s\ AsyT As3 -
A
< 307“ J=23.
r2(1+ As)2
Analogously we proceed for higher derivatives and get
%0, C
—y;20) | < 14
’ oy? (x —y;2))|= r3(1 4+ \s) (1.45)
20). .
POy g <20 has (1.46)
0y10yx r2(1+ As)2
%0, AC
—y2AN)| < ————=,k1=23. 1.47
aykayl (X y; ) = 7"2(1 + )\5)2 s vy ’ ( )
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For higher derivatives we need only uniform estimates,

[NIES

CA

kOy. (v _ -
v OU(X y;20)| < i

k> 3. (1.48)

<
IMES

The local and global integrability properties will be studied in the next chapter.

II.2 Oseen flow in exterior domains

This section contains several existence and uniqueness lemmas as well as the
integral representation of solutions to the Oseen problem in exterior domains.
The results are given without proof; they can be found e.g. in [Gal] and in
[No2], or (even for a more general problem) will be given in Chapter III.

Lemma 2.1 (Existence of pressure)

Let Q be an exterior domain in RN, N > 2. Let f € Wo_l’q(Q/), 1< qg< oo, for
any bounded subdomain Q' with ' ca. Then, to every g-weak solution v we
can associate a pressure field p € L (Q) such that

loc
AP .
/Q(VVV'tl)—ﬁvayl) dr = /va Pdr + (£,9) (2.1)

for allyp € C3°(RY). Furthermore, if 2 is locally lipschitzian and £ € W(;l’q(QR),
R > diamQ°, then p € LI(QR).

Lemma 2.2 (Regularity)
Let £ € W9(Q), m >0, 1< ¢ < oo and let

vEW(Q), peLf(Q)

loc

with v weakly divergence free, satisfy (2.1) for ally € C3°(2). Then

veEWRHQ), pe W)
In particular, if £ € C*°(Q), then v, p € C*(Q). Furthermore, if  is of class
C™*2 and

few™(Q), v.eW "2 090Q),

then

veW™MQ), pew Q).

loc loc

In particular, if Q is of class C* and £ € C*(Q), v, € C>®(00), then v,
p € C®(Q) for all bounded ' C .

The proof of existence of the weak solution to (0.1) is much simpler for the
threedimensional exterior domains than for the plane flow (see also Chapter
IIT). We have
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Lemma 2.3 (Existence of 3-D flow)
Let Q be a threedimensional exterior, locally lipschitzian domain. Given

fe D), v.eWz2(0Q),

there exists one and only one generalized solution to (0.1). This solution satisfies
the estimates

IVliz.0n + VILe < ea([f[-12 + (1 + B)l[Vall1 2 50)
1
Rw)dw=0(+) as R (2.2)
/93]v( ,w)dw (R) as R — oo
1Pll2,00/r < ca(lfl12 + (14 B)|V]12)

for all R > diam(2°). In (2.2)s p is the pressure associated to v by Lemma 2.1,
while ¢; = ¢;(R, Q) and ¢; — o0 as R — oo.

In the twodimensional case the study is much more delicate. Using the
procedure proposed by Finn and Smith in [FiSm] we finally get

Lemma 2.4 (Existence of 2-D flow)
Let Q be a twodimensional exterior, locally lipschitzian domain. Given®

fe Dy )NLIQ), 1<q< g

v, € W22(0Q), / Ve -ndS =0
o0

there exists one and only one generalized solution to (0.1). Moreover, for all
R > diam(€2°) this solution verifies

v e D21(QR) A DY (QR) 0 L55 (Q)

v € L7 (Q) N DM9(Q)
(9’1)1
9N ¢ pa(q
o2, € ()

pe Dh(Qf),

(2.3)

where p is the pressure field associated to v by Lemma 2.1. Finally the following
estimate holds

31)1 1
IVl + vl + B(lleall 2o+ ool + |50 )+ 0IVI 2g. + B3IV], a0 on

+HVlpg0n + Pl gan < c(lfllg + [fl-12 + (1 + B)?[vill1 5. 00)) -

where b = min(l,ﬁg) and ¢ = c(q,Q, R).

3see Chapter III for the discussion of the necessity of the compatibility condition (zero flux
of v, through 9Q) in two space dimensions
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Lemma 2.5 (L%estimates)
Let Q) be an exterior domain in RY of class C™* 2, m > 0. Given

N +1

£ e Wm™I(Q),v, € W2 19(9Q),1 < g < )

there exists one and only one solution corresponding to the Oseen problem (0.1)
such that

m

v € WSz (Q) ﬂ{ ﬂ {Dl+17s1 (Q) mDH-?,CI(Q)}}
1=0
m
pe ﬂ Dl+1,q(Q)
1=0
with s1 = %ﬁ?g, S92 ]E,]flrl);q If N =2, we also have
m,;fq ~ l+1,9
v € W (@) () (N D).
=0
Moreover, v, p verify
a1||V|lm,s, + ﬁH H + Z a2|V|ig1,6; + [V0igo,g + Plir,g) < (2.4)
< C(||f|mq + ||v*||m+277 (89))
and, if N =2,
vy
Blleally, 2o+ IV e2lbmsrg) +arlvily, g+ 8 52]|  +
m ’ (2.5)
+> (ag|vly 20+ Vl2g + [Plirrg) < lfllmg + [1Vellina-1 g 00)
1=0
with a1 = min{l,ﬁNiﬂ}, as = min{l,ﬁﬁrl}. The constant ¢ depends on

m,q, N, and 3. However, if q € (1,%) and € (0;B] for some B > 0, ¢
depends solely on m,q, N,) and B.

We denote
7T (e) =2D(e) + feil

(2.6)
T(v,p)= 2D(v) — pI.

Let us recall that the fundamental Oseen tensor @ = S + N, where DS
(the fundamental Stokes tensor) is the Calderén—Zygmung singular kernel while
D?N is locally integrable. Assuming f; = 88]; ik with F € C3°(Q), we get the
following set of integral representation formulas

Lemma 2.6 (Integral representation)

Let @ ¢ RN, N = 2,3 be an exterior domain of class C?, f; = aaf;’“ with
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F € C(Q). Let wj = {(’),]( B}, i =1,2,...,N, e; be the fundamental
Oseen solution. Let o € NV, Then we have

0
Davj = / Oij (x—y; 5)67%Dafik(y) dy+
+/ Tu(wj,e;)(x — y; 8) — BO;(x — y; B)Dvi(y)ou+  (27)
+Om (x —y; B8)Tu(D, Dap)(y)} ny(y)dS

00;i(x —y; o
D%j( ):/ WD Fir(y)dy+
Q Tk

+ / [ Dily) T(w;, e5)(x — 3 8) — B0 (x — y; B) D°vi(y)ou+  (28)
+04(x — y; ﬂml(Dam Dp)(y) + Oy (x — 3 B) D Fu(y) | mi(y) dS

B 00, (x —y:8) &
Do) = [ CEEYE D e )y +

8:1,} 856,,« 8yk)
00(x — y; N
* [](EMMD v, D%p)(y)+ (2.9)
a0 T,
9 00i;(x — y; B) 1o
D0 (y) Ty, ) (x— i B) — BZ2EE YD) po ()6 ) s
6$T 8$T
9 02Si(x — y; N
PNij(x —y:5) )
+/ 3]3:333}’ >D fik(Y)dy-‘y-CijkrD ﬂk(x)_} (2_10)
o o OTa(wj,e))(x—y;B)  00i(x—y;B) o
- [D vi(y) oz, — P D%v(y)éu+
aOZ -Yy; o o aOZ —-y; N
+ ix-y B)Til(p v,D p)(y)+MD ﬂ'l(y)]nl(y)ds
83:,, axr
@ pe *Sij(x—yiB) 9 .,
61'7«8.1‘51) K ( )_ v /Q 81’7«8.%’5 @D flk( )dy+
PNij(x = yi8) 9 pa o .
+/ T oy D Ty + cijra gD Fi(x)+ - (211)

8 82(9@ -Y; o
4 [ D0 g Tatwy. )~ i ) - 5CAE YD) pr )+

0? OU(X y; 5)
0x,0x,

+ Ta(D*v, D*p)(y)|m(y)dS

D%(x) = /Qei(x — y)aaykDafik(Y)d}"f'
" /aﬂ [D*0i(y)Ta(e)(x — y) + ei(x — y)Tu(D*v, D*p)(y) - (212)

—Bei(x — y) D*vi(y)du | nu(y)dS



34 M. Pokorny: Asymptotic behaviour . ..

/ 96X 2¥) pog, (v)dy + oD Fap(x)+
+ / ¥)Ta(e ><x y) +ei(x — y)Tu(Dv, D°p)(y)—  (213)
—Bes(x — y) D vi(y)du + ei(x — y) D Fu(y)| mu(y) S

0 a . 661(X—Y) 0 o . 9 ar
BJ:TD p(x) —v.p./Qa:Er 783/ DFiu(y )dy-l-CwaykD Fir(x)+
n [Da (y) o Ta(e)(x — )+MT (D*v, Dp)(y)— (2.14)
o vi(y oz, (e y oz, il v, LUpY :

ﬁwmvz’(ywll}m(”d&

Remark 2.1 By standard density argument we can show that the integral
representation remains valid even for a much larger class of function. Namely,
assuming that D*v € W29(Q), D*p € W,9(02) we get the following conditions:
2.7

VDF e LI(Q), 1 < g < ¥H

)
28) D°F e Li(N),l1<g<N+1
29) VD*F e L1(2),1<g< N+1

2.10) VDOF € LU(Q), 1 < g < 00

2.11) VDF € LU(Q), 1 < ¢ < 00

(
(
(
(
(
(
(2.13) D*F € L1(Q), 1 < g < >
(

)
)
2.12) VD*F € LY(Q), 1< g < N
)
)

2.14) VDF € LU(Q), 1 < ¢ < 00

The proof is a special case of the integral representation given in Chapter III.
Another method of proof (under slightly different assumptions) can be found
in [Gal].

I1.3 Weighted estimates for Oseen kernels

The aim of this section is to obtain weighted estimates for convolutions with
Oseen kernels i.e. estimates for both singular and weakly singular convolutions
which appear in the integral representation for solutions to the Oseen problem
(see Lemma 2.6). There are two kinds of kernels in (2.7)—(2.14). Those which
are locally integrable will be treated in Subsections 2.3.2 and 2.3.3. The other
ones which represent the singular integrals (i.e., in our case, integrals in the
sense of the principal value) will be studied in Subsection II1.3.1. Finally, the
last subsection is devoted to an easy application of these estimates. As will
be shown in the next chapter, all these estimates are applicable also for the
modified Oseen problem and therefore will be our main tool in Chapter VI.
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We shall use the following non—negative weights (A, B € R, § > 0, s(x) =
x| —a1):

o (x) =|x[s(x)?,

nA(x) = (1+ |x)A(1+ s(x))?

vA(x) =[x (1 + s(x))?

i (%) = (%) v () , (3.1)
ma(x; 8) = (1 +|8x))A(1 + s(6x)) 2,

vi(x; 8) = [x[4(1 + s(8x))?,
pig® (x; 3) =y~ (x; 8) v (x; 3) .

Let us note that outside the unit ball centered at the origin the weights
na(x), vg(x) and ,u‘g’w(x) are equivalent. The reason for using different kinds
of weights will be seen later; it is essentially connected with the fact that we
shall assume (3 small.

Before starting this studies, let us show some properties of the function s(x).

We take N > 2.

Lemma 3.1 If 21 > 0 then s(x) ~ %; otherwise s(x) ~ |x|. Here x' =
((L‘Q,...,{EN).

Proof: Introducing the generalized spherical coordinates (N > 3)

r1 = Rcosb;
r9 = Rsinfqcosfs
(3.2)
rN_1=Rsinf;---sinfy_scosfn_1
rny =Rsinf;---sinfy_osinfy_1,

where 601, ---,0n_2 € (0,7), Oy_1 € (0,27), we have

B _ . (Rsin6,)? <sm & )
s = R(1 —cosf;) =2 7 S0

For 1 > 0

0, € (0,7/2), ie. 2(Sm 921) c (1 1)

sin 61 2’

what implies
1 ’X, ‘ 2

/|2

|x

Analogously we proceed for z; < 0 where 0; € (7/2,7) and |x| < s(x) < 2|x|.
If N =2 we use the polar coordinates and the only change consists in the fact
that ¢ = 01 € (— 2,2)for$1>0andtp€[§ , 5] for x1 < 0.

O

Next we study the integral of n~;'(x) over the sphere for sufficiently large
= |x].
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Lemma 3.2 Let N > 2. Then for the exponents a, b € R we have

N—l)

/ nTp(x)dS ~ RNTIe it (Rif b= =) (3.3)
O0BR 2

as R — oo. Consequently, [pnn_;)(x)dx <00 <= a+ min{%, b} > N.

Proof: Using the generalized spherical coordinates (if N > 3 — see (3.2))
or the polar ones (N = 2) we get

/ n_f(x)dS = 0/ (1+R)"*(1+s) "RYY(sin0;)VN2do; =
0BRr . 0
= C/ (1+ R)™%(1+ R(1 — cosfy)) °RN(sin 6;)V~2d, .
0

Changing the variable s = R(1 — cosf) we estimate the last integral by
2R

C(1+ R / (1+5) P (V2sR — 2)N-3ds (3.4)

0

We divide the integral (3.4) into three integrals and study them separately.
Let us also note that for N = 3 (3.4) can be calculated explicitly. We have

1 _ s [l N_ _
/ (1+s)°(2sR — 32)¥ds ~RT / sz ds~ Rz )
O R O R
N-3 N-3 N—3
(1+5)°2sR—s%)"2 ds~R 2 / s ds ~

1 1
 pN—2-min(b,¥1) e N1
. R 2 (1nR1f2bR_ . )
/ (1+s)_b(2$R—32)¥ds ~ R¥_b/ (2R—s)¥ds ~ RN-2-b
R R

which shows (3.3). As n_{(-) € C(RY), the condition implying the global inte-
grability follows trivially.

I1.3.1 Singular integrals

As was shown in Section II.1, we may write the Oseen fundamental tensor in
the form

Oij(x —y; ) = Sij(x —y) + Nij(x —y; 8), (3.5)
where
1 (51']' s — Ty i — Xy
Sulx—y) = g (4 T By g -
Sl'j(X —-y) = ﬁ(él] In x i - + (yi _|iz>_(3;’j|2_ l’j)) (N=2)

and the other part N;j(x — y; ) is locally integrable up to the second gra-
dient. But it is easy to see that the second gradient of S;;(x — y)* are non—
integrable functions and therefore we must apply completely another approach

as for V2Ni;(x —y; B).

4taken in the classical sense outside x =y
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Analogously, recalling that

ei(x—y)——aa E(lx—yl), i=1,2,...,N, (3.7)
Yi

where £(|x — y|) is the fundamental solution to the Laplace equation, it is an
easy matter to see that the gradients of e;(x —y) represent again a kernel which
is not L}, .(RY). There are two (in our case equivalent) approaches how to treat
integrals of the type

02 952
Oz;0x; I(x) = D20z, /RN R(x—y)f(y)dy,

where R stays either for £(|x — y|) or for S;;(|x — y|). Let us assume for a
moment that f € C§°(R"Y). Then we have (VR € L} .(RY))

62 I( ) %RN 8R(X — y) af(y)d

8xi8xj al’j 83/1‘
oy IR(x—y)ofly) ,
= lim dy =
e—0+ J Be(x) ox; y;
PR(x —y) OR(x —y)
= i gEY) dha Sl 22 ; .
Jim [ [ AL / ot OS]
It can be shown for our kernels (see e.g. [Gal]) that
IR(x ~y)

lim
=0t Jope(x) Oz

f(y)ni(y)dS = ci5(R) f(x),

where ¢;;(R) are constants depending only on 7, j and R and can be (eventually)
equal to zero. The volume integrals of our type (i.e. in the principal value sense),

noted by
PR(x —y)

were intensively studied by several authors, see e.g. [CaZy], [St] and we have
the following result

Theorem 3.1 Let Tf = v.p. [pn K(x,y)f(y) dy, where

K(x,y) == x -y ™.

x -yl
Let [g, 2dS =0 and let
wit) = s 9(x) - QX)) (3.8)
Ix—x'|<t
Ix|=x"|=1
satisfies the Dini condition
Lw(t
/ “’5) gt < . (3.9)
0

Then the operator T maps D(RY) into LP(RYN) for all p € (1,00) and there
exists a constant ¢(p) > 0 such that

1T fllp < @) flp- (3.10)
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Remark 3.1 Using the density argument, the operator 7' can be continuously
extended onto LP(RY).

Proof: see e.g. [St].

O

Another approach uses the Fourier transform (see Section VIII.4). Let us
denote (f € C5°(RY), as above)

0? 0?
= I = —
833‘2'8.7}j (X> /RN R(X Y) 83/283/]

R as above. The kernels R and VR belong to L}, (R") and so

v(x)

f(y)dy, (3.11)

F)©) = F( [, Rl y)5-f)y) = 0 FA(FE) @7 (50) € -
= 0¥ 7 (50)O-i6) FU)E).

the product is to be understood in the sense of S’, see Section VIIL.4.
We have from Lemmas VII1.4.13 and VIII.4.14

F)©) =SS F(pE) @R=8
e i & (8.12)
f@@w=@;@ﬁﬁiaﬂﬁ@ (if R = Sp).

Let us denote .

ma(€) = ,5;%
ma(€) = &i&j k&l — Ony|€)? (3.13)

€2 g
with 4,7, k,1=1,2,..., N. We can rewrite (3.12)

F(0)(€) =m (E)F(f)(€), r=1,2 (3.14)

with m,(§) bounded functions. In such situations we can apply the following
theorems on multipliers

Theorem 3.2 Let m € L®°(RY) N C*(RV \ {0}), s = [%} + 1, be such that

sup [D*m(&)[1¢]1* < Cy. (3.15)
¢eRY
ol <s

Then m s a LP-multiplier for 1 < p < oo; it means that the operator
T:S8+— 8 defined

Tf=F"(mF(f)) (3.16)
maps S into LP(RY) and it holds
ITfll, < C(Cr,p, N)| fllp - (3.17)

T can be therefore continuously extended onto LP(RY).
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Proof: see e.g. [St].

O
Remark 3.2 It is an easy matter to see that our kernels (3.13) satisfy (3.15).

This theorem is usually called the Marcinkiewicz multiplier theorem. The
following theorem is due to Lizorkin and is in some sense a generalization of the
Marcinkiewicz theorem and will be used in order to study the LP—estimates for
both classical and modified Oseen problem in the whole RY. Let us emphasize
that even for § = 0 the functions need not to satisfy (3.15) as e.g. the second
derivative of O.

Theorem 3.3 (Lizorkin)
Let m € CN-1(RY\ {0}), ag?NagN € C(RN\ {0}) and let there exists 3 € [0,1)
such that

(DO m(€)[[€a]*1H7 .. [en]*NHT < Co (3.18)
for any multiindew a = (ai1,...,an) such that a; € {0,1} and |a| < N. Let
l1<g< ﬁ and r = ﬁ ie. T = % — . Then the operator T defined in (3.16)

maps S into L"(RY 1) and there ezists a constant C = C(Caq,q, 3, N) such that
ITfl, < Cllfl- (3.19)
T can be therefore continuously extended onto LI(RY).
Proof: see [Liz].
O

The aim of this chapter is to develop a general LP—weighted theory for
certain operators of the type (3.16) and certain class of weights and then to
apply it on the integral operators with kernels %86% and % and weights
introduced in (3.1).

There are again two approaches, one using the potential theory and the
other one using the Fourier transform. We only shortly mention the former
but we shall use the latter. The reason for this will be clear in the following
chapter, where we get some information only on the Fourier transform of the
fundamental solution to the modified Oseen problem, not on the solution itself.

Both approaches are taken from [KuWh], where also the proofs of Theorems
3.4 and 3.5 can be found.

Definition 3.1 The non—negative weight g belongs to the Muckenhoupt class
A, 1 <r < 4o, if there is a constant C' such that

1 r—
Slclgp [(M/QQ(X |Q\/ T 1dx 1} <C< oo (3.20)

if r € (1;00) and

sup 1] / x)dx < Cg(xg), Vxoe€RY (3.21)
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if 1 = 1. In the first case, the supremum is taken over all cubes Q in RY , in
the second case only over all cubes which contain xq ; |Q| denotes the Lebesgue
measure of Q. The constant does not depend on xq.

Remark 3.3
a) For r = 1, the condition (3.21) can be replaced by

Mg(x) < Cg(x) for a.a. x € RV, (3.22)
where M g(x) is the Hardy-Littlewood maximal function (see e.g. [St]).
b) In (3.20) and (3.21) it is enough to take the supremum over all cubes with
edges parallel to an arbitrary chosen cartesian system X.
Indeed, let X be a cartesian system in RY and X’ another one arisen
from X by any rotation. Then we have
1 1
—_— w
N% Q1] Jo
for any w > 0 locally integrable function. In (3.23) @’ is a cube with edges
parallel to the axes of X', Q; is the greatest cube with edges parallel to

the axes of X such that Q7 C Q" and Q) is the smallest cube with edges
parallel to the axes of X such that Q' C @2, see Fig.1 below.

1 N%
(x)dx < 1] Qlw(x)dx < @l Jo w(x)dz  (3.23)

Q2
Q/

Fig. 1

Remark 3.4 The weighted LP—spaces are defined in Subsection VIII.1.2. Let

us only note that in general there is a difference between L?g) (©) and

£p

(@) = Cr®Y) ",

where || f[|,g) = (Jg~ |f(x)|pg(x)dx)%, 1 < p < oo. Nevertheless, for our wei-
ghts defined in (3.1) and f = 0 in B1(0) both spaces coincide. Generally, this
2

is true when e.g. ¢ > C' > 0 in RY.

Theorem 3.4 Let N € N, N > 2, Q € L*°(0B1(0)) satisfies the Dini condition
(3.9), faBl(O) QdS =0, Q is positively homogeneous function of degree zero,

R(x) = x|V ().

x|
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Let T be an operator with the kernel R, i.e. Tf(x) = (R * f)(x) in prin-
cipal value sense and g € Ay in RY, p > 1. Then T is continuous operator
LP(RY; g) = LP(RY; g).

As announced above, we shall prefer another approach. Namely

Definition 3.2 We say that a bounded function m defined on RN\{O} belongs
to a class M(a,l) for somea>1,1=1,2,...if

1
sup (R“'O‘"N/ |D°‘m(§)]ad§) “ <oo, Vel <I. (3.24)
R>0 R<|¢|<2R

Remark 3.5 Let us observe that if m satisfies (3.15) for s = [, then m €
M(a,l) for all @ > 1. So, in particular, our functions m;(§) defined in (3.13)
satisfy (3.24) for any [ € N and they belong to any M (a,l), a > 1,1 € N.

Theorem 3.5 Let 1 < a < 2, % <l < N and m € M(a,l), g € Ap. Let
N

% < p < oo. Let T be the operator defined by (3.16). Then there exists C,

independent of f, such that

1T fllp.g) < Cllfllp.(o)

for all f € C(RYN). Therefore, T can be continuously extended onto Efg)(RN),

T <p<oo
Remark 3.6 As follows from Remark 3.5, we may take for our kernels [ = N.

Next part is devoted to the investigation under which conditions the weights
defined in (3.1) belong to A, for some 1 < r < +o00. Firstly we recall several
general results:

Lemma 3.3
(i) If g1, 92 € A1, then for any 1 < r < 400 the weight g g%_’" € A,.
(ii) If g1, g2 € A, for some 1l < r < +oo, then for any h € [0;1], g{‘g%fﬁ €A
(iii) If g € A, for some 1 <r < +o0, then for any h € [0;1], ¢" € A,.
(v) If g € A, for some 1 <r < 400, then g € Ay for allr < p < 0.

Proof: (i) follows directly from the definition of A; and A, as

(i 7o) i o)}
1 1 —r
< C’sgp (M/ledx) sgp <@!/QdeX)l .

r—1

1 - 1
~51q12p (Q|/Qg1dx> 1sgp (@/QQQdX) =C.
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(ii) is a direct consequence of Holder inequality and (iii) follows from (ii) and
the fact that 1 € A,Vp € [1,00). The last assertion follows again from the
Holder inequality.

O

Definition 3.3 Let i1 be a non-negative Borel measure. We define the maximal
function

1
Mp(x) = ] /Q du(y) , (3.25)

where the supremum is taken over all cubes Q such that x € Q). Analogously
we define M f(x) for f € L (RY), replacing du(y) by |f|dy. (See also Re-
mark 3.3).

Lemma 3.4
(i) If My is finite for a.a. x € RY, then for any h € [0;1), (Mp)" € A;.

(ii) Let w € Ay. Then there exists a function f € Ll (RYN) such that for

loc

du(y) = | f|dy we have w ~ (Mp)" for some h € [0,1).
Proof: see e.g. [To]

d

Lemma 3.5 The weights |x|~® and (1+ |x|)~% satisfy the A1-condition on RY
for each a € [0, N).

Proof: We have that for y = dy the maximal function M pu(x) ~ x|~ and
so |x|™N" € Ay, VA € [0,1). Further, if we define u(A) = |A N B1(0)], then
Mpu(x) ~ (1 +|x|)~" and again Lemma 3.4 (i) furnishes the result.

d

Using Lemmas 3.3-3.5 we shall study conditions under which our weights
defined in (3.1) belong to the Muckenhoupt classes A,, 1 <r < oo. The three-
dimensional case was intensively studied by Farwig (see [Fal] or [Fa2]). Ne-
vertheless, as we need some generalizations of this result, we shall repeat them
here. See also [KrNoPo|, where both three- and twodimensional cases are stu-
died.

. on w®(x) = ("
Lemma 3.6 For b € (—1;2] and h € [0,1) the function wy”’(x) = ((7) ,

s(x)

x € R? is a weight of the class Ay in R3.

Proof: Let b € (—1;2]. We define the measure y by

u(A) = /A+ 2bdzy (3.26)
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where AT = {27 € R; 21 > 0: (21,0,0) € A} for A C R3, measurable.
Evidently, 1 is a non-negative Borel measure on R®. We shall show that M ~

%; then the assertion of the lemma follows from Lemma 3.4 (i).
s2

Let Q. be a closed cube containing x with sides parallel to the axes (see

Remark 3.3 b)) with the side length a > |x/|, ¢(a) = % and |x| denotes

the maximum norm of x = (1, x2, 23) = (z1,x’) € R®. We have to distinguish
several cases:

A) Let x1 >0, |x/| <1 and b€ (—1;0]. We first consider cubes @, with
|x'| < a < z7. It is enough to take such cubes that QF = [z1 — a;z1].
Then we have

1 b+1 _ _ A \b+1 1
q(a) = ——2 (mi o7 _ 5 %p( )
b+1 a b+1 T
with ( )b+1 !
1-(1—y X
oly)=——75"—, —<y<Ll
Y T

Let b < 0. Then ¢(07) = +o0, p(1) =1, ¢'(17) = +oco. We show that

there exists exactly one point yo € (0,1) such that ¢'(yo) = 0. We have

namely

(L=9)"[(b+ Dy +3(1—y)] -3
1 .

Y
Denoting the nominator in (3.27) by F(y), we easily see that F' € C[0;1),
F(0) =0, F(17) =00 and

Fly)=1-y)" 0+ D[2-by—2.

As F'(y) >0 for y € (2%17; 1) and F'(y) < 0 for y € (0; 2%1))’ there exists
exactly one point yg € (5%5;1) such that F(yo) = ¢'(yo) = 0.

¢'(y) = (3.27)

Now, recalling the properties of p(y) we observe that the point yg is the
only local (and global) minimum of ¢ on the interval (0;1). Therefore
there exists exactly one point y, € (0;1) such that ¢(yp) = 1.

If |x'| < yp - 21, then ¢ attains its maximum on [M 1) at the point ed}

x1 1
and

b N rb
x> P

If |x'| > yp - 21 then ¢ is maximal in 1 what yields

max{q(a); |x'| < a <z} = q(|x]) ~

max{q(a); [x'| <a < @1} = g(a1) ~ 2] % ~

.

Now, let us consider cubes Q, with a > z; and Q; = [0;a). Then ¢(a) =
’;:%2 is strictly decreasing in a > x1. Therefore

b

_ r
max{(a); 71 < af ~ ot < O
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B)

C)

D)
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Combining this with the fact that s(x) ~ @ (see Lemma 3.1) we get

Tb_l

My ~——o:.
s

If b = 0, then easily ¢(a) = a~2; the maximum is attained for a minimal,
i.e.

1 1
Mpy~—s~—.
a x/|2  rs
Let x; > 0, x| > 21, and b € (—1;0]. It suffices to consider cubes @,
with a > |x/| and Q = [0;a]. But then obviously

T’b_l

max{q(a);a > [x'|} ~ q(|x']) ~ [x|"7% ~ —
s
Let 1 > 0 and b € (0;2]. We can consider only cubes (), such that
a > |x'| but now, as b > 0, with Q} = [z1; 21 + a]. Therefore

1 (331 + a)b+1 _ xl{—kl

q(a) = 3 e

and since ¢(a) is evidently decreasing, we get

max{q(a);a > [x'|} = q(|x']).

. / / xb bel

Now, if [x'| < 1, then q(|x'|) ~ 2 ~ =

/‘b72 ot
S

. On the other side, if

|x'| > x1, then ¢(|x/|) ~ |x

Let 21 < 0. We can restrict ourselves on cubes Q, with a > max(|x'|, |z1])
and QF = [0;a — |x1]]. Then

_ |x1|b_2

ala) = b+1

(y _ 1)b+1

w(ﬁ) with ¢(y) = "

The function ¢(y) vanishes in 1 and, if b < 2, at infinity. Thus for b < 2
there is a point y, > 1 such that ¢ is maximal in y;, for y > 1. If |x| <
Yp - |x1], then

b—1
max{q(a);a > |x'|} = q(yp|z1]) ~ 2572 ~ T ass~r for z1 < 0.
s
But if |x/| > yp - |21/, then

b—1

_ T
max{g(a);a > x|} ~ q(x'|) ~ x| ~ —

The case b = 2 is trivial since ¢ is maximal for a — oo yielding

max{g(a);a > |x|} ~ 1~ .
S
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A similar result holds in two space dimensions:

O
on W x""% )"
Lemma 3.7 For b € (—1;1] and I € [0;1) the function wy”’ (x) = ( o} ) ,
s(x)2
x € R?, is a weight of the class A1 in R2.

in four different cases.

Sketch of the proof: We proceed similarly as in the threedimensional case.
We again introduce the measure (3.26) and study the behaviour of ¢(a)

— #(Qa)

[Qal
A) Let 21 >0, |z2| < x1 and b € (—1;0]. We start again with |zo| < a < 1
and QF = [z1 — a;11]. So we get
1 b+l b+ 1
gla) = o T IZ T L)
b+1 a? b+ 1 1
with

1- 1y |22
e(y) = 5 , S <y<l
Y T
Similarly as in Lemma 3.6 we first assume b < 0. Then we can show that

there exists a unique point y, € (0;1) such that ¢(y,) = 1.
If [z2| <y - 21, then

max{q(a); |r2| < a < 1} = q(|w2|) ~

o
|2 52
If |x2\ > Yp - T1, then
b b—1
_ r r’T2
max{g(a); |za| <a <m} =qlwr) ~v a2y v — ~ ——.
TR
The case a > z1 and QF = [0;a) is again trivial as well as the case b = 0.
B) Let x1 > 0, |x2| > z1 and b € (—1;0]. Assuming Q, such that Q; = [0;a]
we have

p—1
max{g(a);a > |v2|} ~ g(|w2) ~ w2"~" ~

: as s(x) ~ |xa| ~ .
S2

C) Let z; > 0 and b € (0;1]. We consider again squares @, with a > |z2| and
QF = [r1;21 + a]. We can easily verify that

1 (21 +a)btt — g0f!
q(a) = ( )
b+1

a2
is decreasing, and therefore max q(a) = ¢(|x2|). Now, if |z3| < x1, then
b b—1 . _ b—
q(|z2]) ~ ‘%' ~ %, while for |xa| > x1 we get q(|za|) ~ 22|’ ~ T
S

1
2

[N

S
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D) Let x; < 0. It is enough to consider a > max{|xz|,|z1|} and the squares
QF =[0;a — |z1|]. Then

‘xlyb—l ( a ) ) (y _ 1)b+1
= e th -
q(a) b+ 1 7 ] with ¢(y) "

As in the threedimensional case we can show that for b < 1 there exists a
point y, > 1 such that ¢ is maximal in yp. So if |z2| < yp - |1], then

b—1 o3

max{q(a);a > |z2[} = q(yp|21|) ~ 27 ~ —

s2

and if |x2| > yp - |21/, then

p— 1L

b—1 T2

max{q(a);a > |z2|} ~ q(|za|) ~ |22|"" ~ —5

s2

The case b = 1 is trivial since

1

r2
max{q(a);a > [z2[} ~ 1~ —.
S§2

O

The results of Lemmas 3.6 and 3.7 are applicable for the weight ag. Since
we are rather interested in the weights njé and I/é, we need the following results.

; (3) b—1\" .
Lemma 3.8 For b € (—1;2] and h € [0;1) the function w;” = (7]71 ) is a
weight of class Ay in R3.

Proof: We have to verify that (wa’))(x) < C’wgg)(x) a.e. in R® (see
Remark 3.3). Let @, denotes, similarly as in the previous lemmas, a closed
cube with sides parallel to the axes and with the side length a; R will be a
sufficiently large constant. We again distinguish several cases:

A s(x)<1, r=[x|>R

N

@) a<r
Then for all y € Q, we have that wgg) (y) ~ w§3) (x) and
[ w0y < Cladu 0.

a

B) a:%r%“’, o€ (0;4] 1
Now Q. C {y € R3; |ly| — r| < cr2t9; s(y) < ¢r?*} and proceeding
analogously as in Lemma 3.2 we get

4o 20
3) r+cr2 14 (b—1)h /CT‘ ds
dy <C d — <
/Qa wy (y> y = rfcr% - Y 0 0 (1 S)FL =

< C|Qqlr3HO-D+B-200 < 1, |0~V < cwl® (x)

asr>R>1, s(x) <1
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7) a=j
In this case all @), such that x € ), are contained in the ball By,
and therefore similarly as above

4a
/ wf’)(y)dy < C/o (14 0)> " ODhdy < C|Qula~2" |

a

Evidently,

/Q o (y) dy < C|Qalr® I < C|Qq|r®".

a

B) s(x)>1, r>R
Now, as b < 2 and s < r, we have

b—1
<1+1> SC(1+1)SC(1+1)
r r s

and so ( - (b—1)h
3 1+7)"7\h o 3
w69 < (M) <0 =Cu’6o).
So, for all y € R?® we have that wg?’) (y) < w(()?’)(y). But then, as w(()3) € Ay,
we have

/Q WP (y)dy < C /Q W (y) dy < C1Qu] i (x).

As |x| > 1, s(x) > 1, we have w(()?’)(x) < Cwi?’)(x) and the required
inequality follows.

C) r<R

a) If § <R, then trivially
3 3
[ oy < i uf ).
B) If § > R, then Q, C Bs, and analogously as in Ay)

3a
[ oPmay< [ wfmdy <o [T e+t <

‘ < O o3+ (b-2)h < C1Qula® D"

As b <2,

/Q w® (y)dy < CQal < CalQulut? (x).

In the case of the weight v (x) we have
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: (3) b—1\" .
Lemma 3.9 For b € (—1;1] and h € [0;1) the function wy’ = (1/_1 ) is a
weight of class Ay in R3.

Proof: We proceed analogously as in Lemma 3.8. The part A) remains the

same; in the part B) we use that (1 + ﬁ)fﬁ < 1 for all y € R®. The only

difference is in part C where we have to assume that wég) (x) > C > 0 for
|x| < R. This is true only for b < 1.

Next we continue with the twodimensional case.

Lemma 3.10 .
_1
(i) For b e (—1;1] and h € [0;1) the function w§2) = (771: 2) is a weight of

1
3
class Ay in R2.

N
(i) For b€ (—1;1] and h € [0;1) the function w£2) = <l/i 2) is a weight of

' 9 1
2

class Ay in R2.

Proof: The demonstration of the first assertion is completely analogous
to the proof of Lemma 3.8. Only in part Aj) the estimates are slightly more
technical, similarly as in Lemma 3.2.

The proof of the other part is then the same as the proof of Lemma 3.9.

O
Using Lemma 3.3 one can now show
Theorem 3.6
(i) Let -1 < B<p—1,-3< A+ B < 3(p—1). Then the weights na and

of are Ap-weights in R® for p € (1;00).

(ii)) Let -1 < B<p—1, -3<A+B<3(p—1) and -3<A<3(p—1).
Then the weight uﬁ is a Ap-weight in R3 for p € (15 00).

Proof: We start with the weight né; the proof for ag is exactly the same.
We have that for b € (—1;2], a € [0;3) and & € [0;1)

—a—(p—1)(b—1)h
e VO e 4, Belojp—1), A=—a—(b—1)B
ie. ng € A for

na_(é’—l)‘f‘(b—l)h e Ap Bc [_1; ()]7 A= a(p — 1) — (b — 1)B .
We have for B € [0;p — 1)

A<0-(b—1)B<2B
A>-3-(b-1)B>-3-B
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and for B € (—1;0]

A<3(p-1)—(b-1)B<3(p—-1)—B
A>—(b-1)B>2B.

Now, using Lemma 3.3 (ii) we get easily the statement. For the weight yé
only weaker results are available. Namely

b-1\"
(1/_1) €A forbe(-1;1], hel0;1).

Using that |x|7® € A; for a € [0;3) and applying Lemma 3.3 (i) we have

—a—(p—1)(b—1)h

Yn(p-1) € 4p Belojp—1),A=—-a—(b—1)B

i.e. l/g € A, for
77ci(p—l)+(b—1)h €A, Be[-1;0,A=a(p—1)— (b—1)B.

We have for B € [0;p — 1)

A< —(b—1)B<2B
A>-3-(b—1)B>-3

and for B € (—1;0]

A<3(p-1)—-(b-1)B<3(p—1)
A>—(b—1)B > 2B.

Again, Lemma 3.3 (ii) finishes the proof.

d

Corollary 3.1 Let0 <w < A, Be (—1;p—1), A < min{3(p—1),3(p—1)—B}.
Then the weight /,Lg’w is a Ap—weight in R3, p € (1;00).

Proof: It follows from Theorem 3.6 by means of Lemma 3.3 (ii).

d

In two space dimensions we have

Theorem 3.7
(i) Let —3 < B < 3(p—1), =2 < A+ B < 2(p — 1). Then the weights 13
and o are Ap-weights in R? for p € (1;00).

(ii) Let -3 < B < 3(p—1), 2< A+ B<2p-1), 2<A<2p-1).
Then the weight Vé is a Ap-weight in R? for p € (1;00).
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Proof: We proceed analogously as in the threedimensional case. Using
Lemma 3.5 and Lemma 3.3 (i) we see that (a € [0;2), b € (—1;1])

Belo:i(p-1). A=-a—2B(b-1})
na(x) € A, for
B e (—3;0], A=a(p—1)—-2B(b-3).

We have for B € [0; 3(p — 1)) that —2 — B < A < 3B and for B € (—1;0] that
3B < A<2(p—1)— B. Lemma 3.3 (ii) finishes the proof of the first assertion.
To study the weight ng1 we start again from Lemma 3.5, use Lemma 3.3 (i)
to get
Bel0;3(p—1)), -2<A<3B
l/é € A, for
B € [—3;0], 3B<A<2p-1)

and finish the proof by Lemma 3.3 (ii).

Corollary 3.2 Let 0 <w < A, B € (—3;3(p—1)), A < min{2(p — 1),2(p —
1) — B}. Then the weight qu is a A,—weight in R?, p € (1;00).

Proof: It is a consequence of Theorem 3.7 and Lemma 3.3 (ii).

We finish this subsection by summarizing

Theorem 3.8 Let

0 OR(x—y)

=4 d g =1,2,...,N,N =2
8551' RN a.’E] f(Y) Y7 Za] < 9 9 737

Tf(x)

f € C(RN). Let R stand either for £ 07’ S. Let 1 < p < oo and let g stand
for one of the wezghts 773, Vﬁ, ag or ,LLB . Let A, B,w be such that g is a
A, weight in RN . Then T maps C§°(RY) into Ll()g) (RY) and we have

1T f 1l ) -y < CllFlly () - - (3.28)
T can be therefore continuously extended onto ,C( )(RN).
Proof: As follows from (3.15); 9, we have that> D*R belongs to M (a,l) for

any ¢ > 1 and [ € N. Putting a = 2 and [ = N in Theorem 3.5, we have that
(3.28) holds whenever g € A,,. The proof is complete.

Sthe derivative is taken in the sense of distributions
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Remark 3.7
(i) As the operator T'f differs only up to the term cf(x) from

_ 270 (x —
Tf(x)zv.p./ 78 R( y)

T f(y)dy,

we easily see that Theorem 3.8 holds also for the operator T.

(ii) The kernels £ and & are f-independent and their second gradients are
homogeneous functions of degree N; moreover né(- ;8) € A, whenever
ng € A, (analogously for other weights). We can replace the weight g
by the corresponding S—dependent weight and get the same estimate as
(3.28) with C independent of 3.

I1.3.2 Weakly singular operators. Weighted L°°—estimates

The following two subsections are devoted to the LP—weighted theory of the
Oseen volume potentials. We first start with p = co. The aim of this subsection
is twofold. We shall not only develop the L>*—weighted theory for weakly sin-
gular Oseen potentials but we also prepare several estimates for the next sub-
section, where the situation p € (1, 00) will be studied.

Let us recall that similar estimates were for the first time studied by Finn
(see [Fil], [Fi2]) in the threedimensional and by Smith (see [Sm]) in the two-
dimensional cases. Their approach, generalized by Farwig (see [Fal]) in the
threedimensional situation, has been modified by Dutto (see [Du]) also to the
twodimensional case. For the sake of completeness we shall repeat here the
calculation; we shall study the general situation N > 2.

Following [Fal] we first find a constant K such that

(n—g*n_p)(x) < Kn_§(x), (3.29)

where a, b, ¢, d, e, f € R. This result is evidently applicable only for the weights
of the type ng. In order to extend the results also for other weight, we shall use
the following lemmas.

First, let I,~(x) denote the following integral

1) (x) == / v “(Y)vp T(x —y)dy = / vo “(x =¥y ' (y') dy’,
Bl(o) Bl(x)

x,y,y’ € RY. For notational convenience we denote for x # 0
In_ |x| := max{1l, —In|x|}.

Lemma 3.11 For o < N, v < N there exists a positive constant C1 =
Ci(a,v,N) such that for x € By(0)\ {0} ¢ RY
vy V%), if at+y>N
Ié{\;)(x)gCl In_ |x/, if a+y=N
1, if a+v<N.
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Moreover, there exists a positive constant Cy = Co(a, 7y, N) such that for x €
B%(0) c RV

I (%) < Cavy (%)

Proof: We divide the proof into two parts:

a) Firstly we assume |x| < 2. We will estimate integrals over sets, which union
contains unit ball Bj(0).

Bi(0) € By (0)U B (9 U { By () (B (0)U By (3)) U

2 2

U{B1(0) \ B3 (0)}
1 1 c % c
/ —aidyg—l/ rN_l_adrgﬁ, ifa< N
B0 |y[*[x=y] 1x[7 Jo | x|
2
11 e 3 cq
—7dy§—/ N1 < ———— ify < N
/Bx| ) |y [x—y[ x| Jo |x[otr=N

2

2|x|
Bajx (O\(B | (0UB ) (x)) |¥]* [x — ¥[7 x]|27 Jo x|y

2 2

1 1 4 TN—I—a
/ A v — <YV dy < C7/ ——dr <
Ba(0)\Bayx(0) [¥]* [x —y|" o |7 — X[

4 4
< cs/ (77" )’YT‘_O‘_’Y_‘_N_ld’I“ < 09/ pre N1,
T Sax] M =[x 2k

x|
here we used the inequality m <2
The last integral can be estimated by cio|x|™* "V if a + v > N, by
c11ln_ |x| if o+ = N and by some constant if a4y < N.

b) Now let |x| > 2.

1 1 1
/ _ dygcn/ adygcu.
Bi(0) |y|* [x —y] x| /By (0) Iyl x|
We get the assertion of Lemma 3.11 from these five estimates of convolution
integrals.

O

<cand a+b<c+d.

We define for pairs of real numbers [a,b] < | a
[c,d

¢, d]:
It is evident that nf(x) < CnS(x), x € RN if [a,b] <

[

Lemma 3.12 Let a,b,c,d,e, f € R and positive constant C' be such that for
all x € RV

oy T—ax = )5 (y) dy < CnZj(x), NE€N, N 22

Let g < N, h < N, [e, f] < la,b], [e, f] < [c,d]. Then there exists a positive
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constant C', such that the following inequality is satisfied for x € RY \ {0} :

) M—?’Z“”(x% if g+h>N,
Lo =) dy ST ), 6> 0 if g h=N,
p_5%(x) =n5(x), if g+h<N.

Proof: Evidently, for o, 3 € R there exist positive constants ci1, co, c3, and ¢4
such that

a) cn(x) <via(x) < cani(x) for all x € BY(0)
b) c3np(x) < np(y) < canp(x) forallx e RN y € By(x).

Let us start to deal with the convolution integral.

(=" T x) = [ M —y) T (y)dy <
<Ci / vo'(x—y)p g (y) dy + Co / n_9(x—y)pu_y (y)dy.
Bi(x) B1(x)

We will study these two integrals separately. Using Lemma 3.11 we get
v =)y )y = [ = y) v () dy <

Bl(x) Bl( )
< max n 1Y / vid(x—y)rit(y)dy <
< Jmax 0y () 0O (x —y)vo"(y)dy <
v "N (x),g+h >N
_ = B 0
L, g+h<N
1o’ (%) x € B!
plp MY (x), p G0N %), g+h>N
< Cs u:Z’_é(X), §>0,p <Cy ,u:jfa(x), §>0, g+h=N
- - 70 — 2 &
p= (%), p_7°(x) =n"P(x),9+h <N.

In the second inequality we used Lemma 3.11 and the relation b), in the last
inequality we took into account the assumption [e, f] < [a, b].
The remaining integral [, n_g(x —¥) p_y ?(y)dy we estimate for x €
R\ {0} in the following way:
—C(x _ —a,—g dv < / —C(x — —a,—9g dy =
/Bl(x) n—ax—y)poy () dy < | onzi(x—y)poy () dy
= /B n_q(x —y)vy*(y)dy + /B1 n—a(x —y)n_y(y)dy <
1
<G5 max n5(y) [, 0" )0y + Con”jx) < Co(x).
1

yEB1(x)

From these estimates follows the proof of Lemma 3.12.
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Let us start to deal with the convolutions of the type
(=5 +n75) () (3.30)

in order to get conditions under which (3.29) holds. Let us remark that the
conditions do not change if we replace the kernel n~(x —y) by

|z|™Y z e B;(0) e

K@~ { B Epla) ~r i@ <N (3.31)

(see also I below).
In the sequel we shall use the following notation

x = (21,x) ¥y = (y1,¥")
s = s(x) t=11 t=x1— 11 )
o=yl o=-yl

In order to capture the anisotropic structure of the function n_;(-) we shall
study the convolution (3.30) in four different situations:

A) R< Ry

B) z1 >0, [x'| < /x1, R> Ry

Q) 71 >0, [¥| = LR2%7, R> Ry, 0 € [0, 1]
D) z1 >0, x| > &, R> Ry or z; <0, R > Ry.

Using Lemma 3.1 we easily verify that

1, r<l1
—a r=®, r>1, t>0, o<+t
774,(}’)'\“ T_“+bg_2b, r>1, t>0, 92\/{5
roab, r>1, t<0.
3 P < (3.33)
e e, F>1, i>0, o<Vi
X =Y) ~ eragod iy P00, g3 Vi
Fed . F>1, t<0.

For notational convenience we denote v = o + % and b* = min{%,b};
analogously d* = min{+1, d}.

We start with the case A). Applying Lemma 3.2 to the halfspaces y; > 0
and y; < 0 we get that the convolution is uniformly bounded if

a+b"+c+d>N and a+b+c+d" > N. (3.34)

Next we continue with the most complicated case C). We follow Farwig (see
[Fal]) and divide RY into 16 subdomains as shown in Fig.2 below. If N = 2,
the subdomains are plane, otherwise they are cylindrical.
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Q3
s Q5 Qg b
Qo Q
Q4
Q3 h
Q12 X Q11
Qs Qy Q5
Qy
~R R B ~R
2 2
Fig. 2

We calculate the convolutions separately on each subdomain. For the readers
convenience, the results are summarized in Tab.1, Tab.2 (for N = 3) and Tab.3,
Tab.4 (for N = 2). We denote by Ij the corresponding part of the integral (3.30)
over 0, k=0,1,---,15. We shall get

Ii(x) < KR =% (x).

Unfortunately in many cases additionally logarithmic terms will appear
which will cause some losses in the weighted estimates later on.

Remark 3.8 Let A be a positive function. We denote

Iny A=max{lnA,1}.

We start to estimate the convolutions over the sixteen subdomains.

Ip We have Qp = {y ¢ RV : |t| < $R”; 0 < LR} and therefore n_j(y) ~
=41+ s(y)) 7% n=5(x —y) ~ R~¢724_ Applying Lemma 3.2 we get
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v

R
IONR—C—Qod/O (1+T)N_1—a—b* -(anrT‘, if b= %)dTW
~ R_C—Qo'd 1 * lf a+b* Z N :
RV(N=a=b") §f g 4 p* < N
InR ifa+d ZN,b?éTl
ora+b*<Nab:¥N
2R if a+b* =N, b=
) N N—1
InR ifa+b"=N,b# 5=
~ . N—1
~ RA ora+b*<N,b="5~
m?Rifa+b =N, b=

where A = ¢+ 3min{0,a + b* — N} — 20(d + min{0,a + b* — N}). The
results are summarized in Tab.1—Tab.4.

Iy The integral can be estimated in the same way by exchanging a, b for ¢,
d. Assuming the kernel (3.31) instead of n=¢ we have

Ii(x) = o) K(x — y)n_g(x)dx ~ R~
1

since v < N. Again, the summarized results can be found in Tab.1—
Tab.4.

I, We have in Qs that r ~ t € (RY;R). So n_{(y) ~ r~@ for ¢ < v/t and
n_i(y) ~ r=9=2 for o > \/t. Further § ~ R” and ¥ ~ R+ R” —r;
therefore n~G(x —y) ~ 7 T4 R=24_ Thus

—2dv R v __ ,\d—c|,.—a vr N—2
Iy ~ R dr(R+ RV —r)*¢|r 0" " “do+
Rv 0

R R
JrT’b_a /\[ QN—2—2bdQ} — R—2yd dT(R+RV 7T)d—c.
T RY
‘[Tgf%fa 4 bea(Ru(Nflbe) o Tgf%fb)} (ln% i b= N;l) -
R
~ RO [ (R Ryt

v RV
(i ifb=N3) =J.

Let us verify the last equivalence.

: N-1 : . px _ N-1
i) b> ~5=, ie b = 55+

‘We must control the term

R
/ (R + RV _ ,r)—c—i-d,rb—aRV(N—l—Qb)d,r S
R
< R(b—%)—}—y(N—l—Qb)/ (R+ RY — 7”)_6+d’l"b*_ad7".

v

But (b— £52)(1 - 2v) < 0 and the significant term is

R N 1 R *
/ (R+ R —r)~ctdp2—370dr = / (R+ RV —r)~ctdpb"=aqy

v v
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i) b< &L ie b* =

In this case, the other term must be controlled. But we have

R _
/ (R+R"—r)” ctd St —aq,. —

_/ R+RV—)C+dba de’<
< R-2v(b="51) p2o(b-554) (R + RV — r)~ctdpbaqr <
N—-1 R v
<R 20=57) [ (R4 RV —r)~ctdpb=aqy

Rl/

as b < % Therefore the significant term is the other one and

we have shown the validity of the last equivalence for R sufficiently
large.

Let us divide J into two parts J; and Jo — the integral over (RY; %) and

the other one over (g; R). We estimate these two parts separately.

R
Ji = R‘C*d—‘”(b*—%”)/Q drr? 0 (In B2 i b= L)

R
NR—(C-FG—#)—QO’( i 1+d)+( )mln(O b*—a+1)
Ing, & if b#EL a=b"+1
(Iny s, a< N‘H) (nR,a> %) if =201

2
. N+1 N-1
InR ln+1+5,1fa— 5, b="5-.

We used the fact that s(x) ~ ‘T;("Z ~ R? and In, % = %ln+ % ~

Iny l—fs . Analogously

R
Jy ~ R2(b" =5 +d)Hb —a / dr(R + R¥ — r)de.

(ln \/; ) ~
NR—(C—l-a—%) 20 (b* — &= 1—&—d) (o——)mm(Od c+1),

if b=

-(ln+1—i if c=d+1)-(Inys if b=H).
The results can be again found in Tab.1—Tab.4.

I3 We proceed analogously as for I» exchanging a, b for ¢, d.

I4 Q4 can be considered as a subset of Q9 and 3. Therefore I, can be
estimated by I» and Is.

I; We have in Q5 t ~ 7 ~ R, so n_f(y) ~ R™® (0 < V1) or n_J(y) ~
R™%b9=20 (9 > \/t), where g varies between 0 and R”. Further 7 ~ [t| €
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(R”; R). As T < 0 we have n_5(x — y) ~ [{|~~<.

R VR RY
Is ~ dr T_C_d R™¢ / N—2d + Rb—a / N—2—2bd ~
5 S A v ‘ ’)

RV
~ Ri-emdtlom ) min0l-ed) (Rt

+RV(RNTEY - RIS ) (Iny s, if b= Y7L

(In4 if c+d=1) ~

~ Rl—c—d—l—%—a—l—(o—%)min(O,l—c—d)+2a(%—b*) .

(Ing s if b=231) (Ing & ife+d=1).

Ig It is sufficient to exchange a, b for ¢, d and use the result for Q5.

I; Denoting 7 = |t| € (RY; R) we have in Q7 that t ~ 7 ~ R, o~ § ~ 7 €
(75 R). Therefore n~j(y) ~ R™**p~2 n~4(x —y) ~ p=*"% and

I ~ Rt Rd( R N—2-d—c—2bq
(B - T 0 o)~

~ Rb—a /R dr(RN-1-e=d=2b _  N-l-c-d-2b),
Rl/
(I if c+d+2b=N—1) ~ RN-abmemdy
+RNfa7bfcfd+(af%)min(O,Nfcfd72b)(1nles if c+d+2bh= N) ~

~ RN—a—b—c—d-&—(U—%)min(O,N—c—d—Qb)(ln% if c+d+2b= N)
s

Is We get the result exchanging a, b for ¢, d and using the result for Q.

Iy Analogously as in Q7 we have t ~ 7 ~ R, o~ g € (RV;7), 7 ~ T = |t| €
(R"; R); so n_3(y) ~ R™*"p~*" ng(x —y) ~ p~* " and

T

]— R—a+b Rd —d—c N*Q*de
g~ - TT 1% o] -

Ifs > %, the significant term in the inner integral will be the lower
bound and we can use I5. If b < %, the significant term in the inner
integral will be the upper bound and we can use I7. If b = %, then

R
N-—1
Iy~R 72 | 74l Zdr.
Rv

In comparison with I5 we get some additional logarithmic factors

b= s (Iny £ if e+ d <1)(Ind £ if c+d=1).

Iip As in Iy, we may use Ig for d > %, Ig for d > % and get some
additional logarithmic factors to Ig for d = %
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1558

Lo

Ly

The domain €47 is unbounded. We have 7 ~ r € (R;o00). Therefore
n_g(x—y) ~ =% nZp(y) ~ r7%(1 + s(y))”" and applying Lemma
3.2 we get under the assumption a +b* +c+d > N

I ~/ drpNTtmebimemd (In g if p = N1y ~
R

~ RN-a=b-e=d (InRif b = &H).

We proceed as in the previous case and get under the assumption a + b+
c+d" >N
Lip ~ RN7o7b=e=d" (In R if d = Y1),

The domain €213 can be considered as a subset of 217 and 15. Therefore
I13 can be bounded by I; and Iys.

In this subregion we have r ~ R, o ~ § € (R"; R). Moreover 7 ~ [t| + g,
where t € (—%R”;%). Then 7~} (y) ~ R—otby=2b, n_g(x—y) ~ (t +
0)"tp72dif { > 0 and n_G(x —y) ~ 8 ¢ if £ < 0. Let us note that
the strip £ € (—éR; 0) has no influence on the asymptotic behaviour since
0 > [t| there.

b—a R N—2—-2b—2d k2 . d—c3f

Liy~R doo (t+p)cdt ~
RY 0

Ritd=c 14+d—c>0

N—2-2b—2d Ql-l—d—c 1+d—c<0

ln% 1+d—c=0.

RV Rd
~ - 00

Now we distinguish three cases.
ada) 1+d—c>0
Ifb+d < &+ then
Iy~ RN7o7bmemd (I L if by d = ML)

while for b+ d > % we have

Ti4 ~ Rt N;Ll +20(%—b—d) (see I, 13)
adb) 1+d—-c<0

R
1'14 ~ Rbfa/ Q72bfc*d+N71dQ

and the integral can be estimated by I7.
adc) 1+d—c=0

R
Tia ~ Rbfa/ PN —2--2d B =
1—-v

R
_ RNfafbfcfd/ L2420-N 1 s
1
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Now for b+ d < %
Iy ~ RN7ombmemd (1n2 Jif p 4 d = N1
and for b+ d > 2

R

N+l c—20(b+d—N51)
Ly~R> 2 Tts

1H+
which can be estimated by Is.
I15 Interchanging a, b and ¢, d we can use the results from Iy4.

Thus we completed investigation of the situation C). The results are sum-
marized in Tab.1,2 (N = 3) and Tab.3,4 (N = 2).

The situation D) is almost trivial since we are left with subdomains of
the type Q1, Qo, Q11, Q12 and Q3. The integrals can be estimated by the
corresponding integrals in C) taking o = % ie.v=1.

Finally in the case B) we proceed as in case C) but the subdomains Q9, Q3
and €4 coincide. The other integrals can be again estimated by the correspon-
ding ones from the part C) taking o =0 ie. v = %

The study of the convolution (3.30) is therefore completed.

We now apply the results from Tab.1—Tab.4 in the study of L*°—weighted

estimates for Oseen potentials. We will use the following notation.
T5(x; \) := nE(x; \) if no logarithmic factor appears

P(In7t | Ax])

2 if there are some logarithmic factors,
P(In} " s(Ax))

N(x; A) == g (x; \) - {

where function P(-) is a polynomial of the first or the second order, see also

Remark 3.9. Similarly we define 7%(-;)). Then we have



Tab.l N =3

Dom. |t 0 t I 7 n_y (¥) Tox—y) e f log.
factors
Qo ~ T ~ |x ~ |x| InRb=1Aa<2)V
V(b#1Aa+b* =3)
(—% (05 éR“) R RY R r=e(1+s(y))~° R—¢—20d c+ %min(O,a +b* —3)|d+ %min(O,a +b*—3) In?Rb=1Aa=2)
~ T ~ x| InR(d=1Ac<2)V
[oh) V(d#1Ac+d* =3)
R RY (—%R“; %R“) (0; éR“) (0; %R“) R—a—2¢0b Fme(1+s(x—y))"%|a+ %min(O,c—l—d* —3)|b+ %min(O,c—i— d* —3) In?R(c=2Ad=1)
In %(min(1+b* —a,
~T (—%RU; ~ |x 0 <Vt a+c—2+%min b*+d—1—%min 14d—c)=0Ab#1)
Q2 ln+s-1n%
(b=1A1+d=0)
(RY; R) (05 éR“) R — RY) RY R+ RV —rlp—atbo=2b 55 \/t |F-etdp—2dv 0,14+b* —a,1+d—0¢)[(0,14+b* —a,1+d—c) |(Inys a<2)(InR a>2)
(mR I a=2)rb=1
) In %(min(l#»bfa,
(f% ~ x| ~ ~t o< T a+072+%min b+d*717%min 1+d*—c)=0Ad#1)
ln+s~1n%(d:1/\
Q3 |R—RY) RY (RY; R) (0; RY)|(RY; R) ratbR—2bv 6724 5> 7|(0,14+b—a,1+d*—¢c)|[(0,1+b—a,1+d" —c) Al+b—a=0)
(Iny sc<2)(InRc > 2)
(nR{LL c=2)nd=1
Qy see Q9,03 see 9, Q3 see 9, Q3
(Iny s b=1)
Qs ~T ~ —F ~ || o<Vt |£|—e—d a+c+d—2+%min b*—l—%min -(lnl—fsc-',-d:l)
R (0; RV) (—R;—R") |[(;RY) [(R%;R) |R™%t%9=2 o>t (0,1—c—d) (0,1 —c—d)
(Inys d=1)-
Q6 |~ —r ~F ~f [t]—a—b s< Vi a+b+c—2+imin |d* —1—1min (nf a+b=1)
(=R;—R") |(0; RY) R (0;RY) |R R—ctdg—2d t/(0,1 —a —b) (0,1 —a—b)
Qr ~p ~o,F |~p a+b+c+d—3+ —1 min(0,3 — 2b— ln% 2+c+d=3
R (I]; R) (=R;—R") |({;R) |({;R)  |R~“tPo=2 zmin(0,3—2b—c—d)| —c—d)
Qg ~ o7 ~ 0 a+b+c+d—3+ —%min(O,S—a—b—2d) ln% a+b+2d=3
(=R;—R") _|(|tl; R) R (It R) |R é Rctdg—2d 2 min(0,3 —a — b — 2d)




Tab.2 N =3

Dom.|t 0 r t 0 7 n_y(y) n_g(x—y) e f log. factors
In £ d<1
- ~G i F ~o ‘ﬂ b > 1see Qs b > 1see Qs (n1+‘gc+ )
Qg - . T ~ - Ty ~ o R—atb,—2b [ b < 1seer b < 1seeQr
R (R%;1E) |R (=R;—R?) |(RY;]i]) |(RY; R) b— 1 sc0 Qs b= 1 see O (2 £ ctd=1))Ab=1
In £ b<1
~ ~G ~ ~F ~o 7 d > 1see Qg d > 1see Qg (n1+sa+ )
Qo |, p_ po v v v |t|—e—b R—ctd g—2d d < 1see Qg d < 1see Qg s R
( R7 R) (R=|t‘) (R7R) R (R=|t‘) R d:lseeQG d:lseeﬂﬁ (ln ma"rb:l))/\d:l
Qi1 | (R;00) (0; 00) (NRToo) (—o0; —RV)| (0; 00) f(eroo) Q+7r)"2(1+s(y) 0 |r—ed a+b*+c+d—-3>00 InR b=1
Q12 | (—o0; —RY)| (0;00) (NR’fOO) (R; 00) (0; 00) ’(”RT’OO) Fa=b 14+ 1+s(x—y)" % a+b+c+d*—3>0[0 InR d=1
~T7'F ~ T ~ 0 ~ T
Q3 (R; 00) (R; 00) (Rioo) | (R;o0) see 211 and Q19 see 211 and Q12 see 211 and Q12
) F+o)-ctd52i>0 see 2, Q3 b+di1/\1+d_c>0lnl—fsb+d:1/\l+d—c>0
Q14 ~T ~ 0 ~t (_lRU-E) ~ 0 N|E|+§R_a’+bg_2b Q7 1+d—c<0
R (R";R) |R 875 2) | (Rv; R) i Q0 L +d—c=0Ab+d>1] 5 5\ o o
e < a+b+c+d—3 |0 otherwise nf g btd=1A1+d—c=
see 2, Q b+d>1AN14+b—a>0 R _
Q (_R’UE) ~ 0 |t‘+ ~T ~ 0 ~t (t+g)7a+b072bt>0 R-ctd 5—2d Qz ’ 1+4b—a<0 lnmb+d_1/\1+bia>0
15 '2) | (RY;R) °R (R¥;R) |R o—a—b t<0 e Q3 Ltb—a=0Ab+d>1), 5 m , 0 1 1 p 0o
a+b+c+d—3 |0 otherwise nt g btd=1nl4+b—a=




Tab.3 N =2

Dom. | ¢ 0 T £ I 7 n_y (¥) n_g(x—y) e f log.
factors
Qo ~ T1 ~lz2| |~ x| InR(b= % a<3)v
v(b;é + *=2)
(-3RY;£RY)|(0; RV)|(0; 3RY) | R RY R (1 + s(y)) P R—c—20d c+ 2 min(0,a + b* —2)|d + & min(0,a + b* — 2) In? R(b tna=3)
~ T ~ |za| |~ |x] lnR(d—l/\c< SV
o (d;é /\c+d*—2)
R RY R (-2RY; £RY)|(0; RV)|(0; £ RY) |R—a—20% F7¢(1+ s(x —y))~|a+ 3 min(0,c+ d* — 2)|b+ 3 min(0,c + d* —2) In? R (c— 3Aad=1)
In T(mln(l—i—b* —a,
_1po. ’ —a _ 3 1. * 11 s _ =
~T ~t (=g R ~ |x'| r o<Vt a+c— 3+ 5min b* +d— 5 — 5 min 1+d c)-O/\b;ﬁz)
Qo Iny s-1In 1f5
(b= %/\1+d—c)
(RY; R) (0; £ RY)|(RY; R) R — RY) RY R+ RV —rlr—atbo=20 5>/t [f-etdR—2dv (0,1406*—a,1+d—0¢)|(0,1+b* —a,1+d—c) |(Inys a< H(InRa>2)
(InR In ; 3)/\b*%
In ﬁ(mm(l—l—b—a
(—3RY; ~ |z2| ~F ~t e a< T a+c— 2+ Lmin b+d*— % — Lmin 1+d —c)=0Ad#1)
Iny s- lnf(d* 1/\
Q3 |R—RY) RY R+ RV — #|(RY; R) (0; RY)|(RY; R) roatbp—2bv Foetdg=2d 55 /7(0,14+b—a,14+d* —c)|[(0,1+b—a,1+d" —c) /\1+b—a =0)
(ln+sc< H(InRc> 2)
(lnR—cf 7)/\d:%
Qy see Q9,03 see g, Q3 see (o, Q3
(Iny s b—f)
Qs ~T ~t ~ —F ~ || R™% o</t |E|—e—d a+c+d—%+%min b*—%—%min -(In mc—i—dfl)
R (O;RY) |R (=R;—R") |(;RY) |(R";R) |R™“t"o=2" o>t (0,1—c—d) (0,1 —c—d)
_ _ (1n+s d= %)
Q |~ ~ |t] ~F ~t |t~ R <Vt a+b+c—3+1imin |d* — 1 — Lmin (In{ a+b=1)
(=R;—R") |(0;R") |[(R“;R) |R (;RY) |R R™tdg=2d 5> V(0,1 —a—b) (0,1—a—b)
Qr ~ 3 ~ o, F |~§ a+b+c+d—2+ —1 min(0,2 — 2b— 1n1+is 2b+c+d=2
R (Z;R) |R (=R;—R") |(t;R) |(i;R) R—atbo—2b o zmin(0,2—2b—c—d)| —c—d)
Qg ~or |~e ~o a+btc+d—2+ —3min(0,2—a—b—2d)| InL at+b+2d=2
(=R;—R") |(thR) |(thR) R (tsR) |R oot R-ctdg—2d 3 min(0,2 —a — b — 2d)




Tab4d N =2

Dom.|t 0 r t 0 7 n_y(y) n_g(x—y) e f log. factors
R
5 ' ~ 0 7l b>%seeﬂ5 b>%seeQ5 (ln1+sc+d<1)
Qg ~r N,U - ~or ~e T R—atb,—2b [ b < 5 see 7 b < 5 seely
. —R:—RV v. v, 2 _R_ _ _ 1
R (R |B|(R—RY) (R |(RY: R) A Bt O o (02 2t d=1) A=
5 1 . 7 d>lsee§26 d>lsee96 (ln%a+b<1)
Q0 |7 o |7 ﬁ - ~r ~e - |t|—e—b R—otd g—2d d < 5 see g d < 5 see (g
_D._ -t v, v ¢ 2 _R _ _ 1
(~R;—R") |(R*: 1) |(RY; R) |R (R¥: ) | 7 YRk ooty YRk ooty (0 2 0t b= 1)) Ad =}
Qi1 | (R;00) (0; 00) (NRToo) (—o0; —RV)| (0; 00) f(eroo) Q+7r)"2(1+s(y) 0 |r—ed a+b*+c+d—2>00 InR b:%
Q12 | (—o0; —RY)| (0;00) (NR’fOO) (R; 00) (0; 00) ’(”RT’OO) Fa=b 14+ 1+s(x—y) "% a+b+c+d —2>0[0 IR d=1
~T7'F ~ T ~ 0 ~ T
Q3 (R; 00) (R; 00) (Rioo) | (R;o0) see 211 and Q19 see 211 and Q12 see 211 and Q12
1
F . o\—etd ~—2d F see Q2,03 b+d>5A1+d—c>0| ) R p g1 ,714— 0
O |27 ~o |t (_1pv, By|>e ~E] + 8| R-a+b o= 2 (g rt e i>0 Q7 l4+d—c<0 R tteTanlAdTes
4 | (R";R) |R ] "2/ |(Rv;R) 4 4 o s—c—d f < 0 Qo 1+d—c:0/\b+d>% In2 B b—i—d*l/\l-l—d— —0
e a+b+c+d—2 |0 otherwise 1+s T2 €=
see Q22,03 b—i—d>%/\1+b—a>01 R pid—=L1a14p
: =1 —a>0
0 (R By |2 P s ~o ~t (t+0)7" o™ >0 | p g < o Qs 1+b—a<0 N5 btd=5Al+b—a
15 "2/ |(RY;R) %R (RY;R) |R p—ab t<0 ¢ Q3 1+b—a=0Ab+d> 3

a+b+c+d—2

0 otherwise

In? Lbtd=4A14+b-a=0
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Theorem 3.9 Let A+ B* > 1, i,j = 1,2,3. Let f € L®(R*na(-;)\). Then
Oij*f e LOO(R3,17F( ;A)), where

A—-1 for A<B*+1

E={ A=l for A>B+1,A+B<3 (i)
1 for A+ B* >3
A+ B*—1 A+ B*<3
o for A+5" < (i)
2 for A+ B*>3
with logarithmic factors
A+B*=3
I (A
ny (Alx[)  for {A:B+1,0§B§1 (iii)
Iny(As(x)) for A+ B<3,B<1, (iv)
(see Remark 3.9). Moreover we have
1055 (-5 A) * fH 00,(TE(-;0)),R3 <CA? Hf” (-;0),R3 - (3.35)
Let moreover
1<A<3, B>0, or A<B+5,1<A+B<3, BLO. (v)
Then for f € L®(R%va(-;)\)) we have Oy ;\) * f € L(R37E(-; ) and
1055 2) * Floo, i ap e < CA T F N llo wac are (3.36)

Remark 3.9 The inequalities (3.35), (3.36) must be understood in the follow-
ing sense. If no logarithmic terms appear, then

10i5 (3 2) * fllog (¢ 2y RS < ON2|flloe, )R

analogously for the weight VF( ; )\). But for A+ B*=30orA=B+1,0<B<1
we have

1035 A) = f|| iA) P(In (A1), R? <ox? 11l 00,(nA(-;))),R? (3.37)
and for A+ B < 3, Bgl
10 (-5 A) * f” 00,(nE(-3)) P(In ;" (s(A))))R® <Ox7? Hf”oo,(ng(.;,\))R?* ) (3.38)

where P(-) is a polynomial. Analogously for the weights vZ(-;\). We can use
instead of (3.37),(3.38) for ¢ >0

10352 * fllo, (=2 aprs < CX I ooy 2 - (3.37)
103N * Fllocine congs < CA 21 oy es (3.38)
respectively.

Finally, in the case of f =0 in By/5(0) (this is e.g. the case for Q C RV,
an exterior domain) we can get for the weight v4(-;\)

10 (-5 )*f”oo(,,E £(-\),R3 < oA E+6Hf|| (0),R
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Proof of Theorem 3.9: Let f € L‘X’(R?’;ng( ;1)). Recalling that O;;(x —
y;1) ~ V:11(X —y;1) we have

|0ij(-51) % f(x)] < CvZi (1) *nZp(-5 1)(x) <
< OnZi(3 1) *n2p(51)(x) .
We have therefore to study the convolution (3.39); we apply Tab.1 and Tab.2

with c=d =1, a= A, b= B and we get, under the condition A+ B* > 1
that (we skip the logarithmic factors, for a moment)

(3.39)

nZ1(5 1) *n”p(51)(x) < Cn”p(x;1)

with
A+B*—1 1 A+B-1
E < min {1, 2D Al A-1,A+B-1, ;,A+B*—1}=
2 2 2
. A+ B*—1
:mm{l, — A—1} (3.40)

E+F<min{2, A+ B—-1, A+ B"—1} =min{2, A+ B* — 1}.

We therefore easily get (i) and (ii), see Fig. 3 below:

Dy
E=A-1
E+F=A+B* -1

Dg
E=1

Fig. 3

Let us now regard the logarithmic factors. From €y we have In; (A|x|) when-
ever B =1, A< 2 or A+ B* =3 and ey = 1+%min(O,A—|—B*—3),
eo+ fo = 2+ min(0, A+ B* —3). Therefore, if A+ B* = 3 the factor Iny (\|x|)
must be taken into account. But for B =1, 0 < A < 2 we have ¢y = % > A—1,
eo+ fo=A+ B*—1= A and therefore, we can assume only In; (As(x)) here.
Next in Q1 Iny(A|x|) due to d = 1. But e; = A — } > min{1, A+E2;*_1,A -1}
and e+ fi=A+B—1. Sofor B>1 weeasilysee A+ B—1>A+B*—1,
but for 1 < A+ B <3, B<1 wehave e; + f; = A+ B* — 1 and therefore we

must assume In; (As(x)) here.
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Analogically we proceed in other subdomains and we get (iii) and (iv). The
estimate (3.35) for A = 1 is therefore shown. In order to show (3.35) for A # 1,
let us recall the homogeneity property of O;;(x —y;\). Namely, for N =3 we
have O;j(x —y;A) = A O;(A(x —y);1) and therefore

| [L0ux =y s dy| =272 [ 050 - 2)f(5) de| <

<A7? up, F@) nEAy; D 1= F (A 1) Pu(Ing (Alx])) Po(In s(Ax))

and so, as na(Ax;1) = na(x;\) we have (3.35).

Let us study the weight vf(x; ). From Lemma 3.11 we have the conditions
E > max(0,A—2) and A < 3 and therefore we get on D; that A > 1, on
Dy that A <3 and on Ds % > A—2ie. A< B+5. Finally, to show
(3.36) we proceed as in the case of the estimate (3.35). Evidently, (3.36) holds
for A = 1. Therefore

‘A;OMX—YM%ﬂwdﬂg

<A? $H%|f(Y)V§(AY?1)’V:£(AX;1)fﬁ(h1+(AVXD)f5(hL+S(AX))::
yeR
= ATEHAE 1 oo, (- 120).R3 vE (x5 A) Pr(Ing (Alx])) Pa(Iny s(Ax)).

O

Theorem 3.10 Let A+ B > 1/2, A > —1 andi,j = 1,2,3. Then for [ €
L®(R3;na(-; \) we have VO;i(-;\) x f € L®(R37E(-; ), where

A-1 for -1<A<2 A<B+1, B>0

3 for A+ B* >3 .
E=VAyB-LjorB<0, AtB<1 ®
“H‘TB for B<A-1, 1<A+B<3

A+B*  for -1<A<2 B>3
3 forA+BZ%,AZ2

with logarithmic factors

A+B*=3
A=B+1,0<B<1

Iny (Ax|) for A+B=1,B<0 (iii)

A=B+1,1<B<
In, (As(x)) for A+B=1,0<B<

[\CJ[SURNTe,

(iv)
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Moreover we have

IVO5 ) * Flacicnzs < CA W lagmacapzs - (341)

Let in addition for A, B following conditions are satisfied:

<A<

M\Ul

B>->, A<B+2. (v)

1
9’

N |

Then for f € L¥(R3v4(-;\) we have VO x f € L®°(R37E(-; ) and
IVOi;(-5A) * flloo, @B (. 2 B2 SC)‘_HA_E||f||oo,(,/}g\(-;A)),R3- (3.42)

Sketch of the proof: The theorem (as the following theorems of this sub-
section) can be proved analogically as Theorem 4.1. We shall therefore not give
the details of the proof but we only mention the most important steps.

From Tab.1l and Tab.2 we have for A+ B* >0 and A+ B > %

E<mn{3 B A A aarp- A0 A+B*}:
2’ 2 4 2
3 A+ B* 1 1
—mln{2,27A—2,A+B_2}, (343)

1
E+F§min{3,A+B*,A+B—2}.

For the weight 4 we use that F > max{A — 1,0}. Finally, the estimates (3.41)
and (3.42) follow from the rescaling argument.

O

Theorem 3.11 Let A+ B* > 0. Let R = |V20 — V2S| or R = V10. Then
for € L®(R3%na(-;\)) we have Rx* f € L®°(R37E(-;\)), where

A for —-1< A<2 A<B+1, B>0

2 for A+ B* >3 )
E=YA+B for B<0, 0<A+B<1 ®

APl for B<A-1, 1<A+B<3

A+ B* for A+ B*<3 -
ExE=13 for A+ B*>3 (i)

with logarithmic factors
Iny (A|x|) for A+ B*<3. (iii)

Moreover we have

IIV20( 5 0) = V2SO Fllos iz e < Cllflloo,mac e (3.44)
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IV1O(52) * flloo, @2 0)) ® <CA | fll, (N),R3 - (3.45)

Let in addition for A, B followmg conditions are satzsﬁed
0<A<3, B>-1, A<B+3. (iv)
Then for f € L®(R%*va(-;\) we have Rx f € L¥(R3*7E(-;)\)) and
V2001 3) = V2SO * flloo w2 e < Ol a iy zs - (3:46)
IV10C 32 # flloo,@m ¢ aprs < CA A flloo w2 - (3.47)

Sketch of the proof: From Tab.l and Tab.2 we have for A + B* > 0

A+B*+1 A+B+1 1
Egmin{2, R i e e BT - Y R
2 2 2
1 A+B*+1
A+B+ g A+ —min{2 2500 4 4 pr) (3.48)

E+ F <min{3, A+ B*, A+ B}
=min{3, A+ B*}.
For the weight v we use that £ > max{A — 1,0}. Finally, the estimates
(3.44)—(3.47) follow from the rescaling argument.

O

Theorem 3.12 Let A+ B* > 1,i=1,2,3. Then for f € L®(R3;na(-;)\)) we
have e; x f € L®(R3;7E(-; \)), where
2 for A+ B*>3, A>5
E=qA-1 for A<3 B>1 (i)
A+ B*—1 for BS%, A+ B*<3

2 for A+ B* >3
E+F=
A+ B*—1 for A+ B*<3

with logarithmic factors

B=} j<As]
Iny(Ax|) for {B=12<A<2 (iii)
A+B*=3, A>3

A+B*=3,2<A<?3

Ingy (As(x)) for {B —1,0<A<2

Moreover we have
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Let in addition for A, B following conditions are satisfied

%§A<& B>0. )
Then for f € L®(R%vg(-;\)) we have e; * f € L®°(R*TE(-;\)) and
lei * Flloo, e e < CA A E N o g re - (3.50)
Sketch of the proof: From Tab.1 and Tab.2 we have for A+ B* > 1
Egmin{z, %, A—%, %, A+B -1,

A—i—B*—l}—min{2,A—;,A+B*—1} (3.51)
E+F<min{2, A+B—-1,A+B" -1} =

=min{2, A+ B* - 1}. (3.52)

For the weight v we use that £ > max{A — 1,0}. Finally, the estimates
(3.49)—(3.50) follow from the rescaling argument.

O

Theorem 3.13 Let A+ B* >0, k =2,3. Let R = |V3,0 — V%,S|. Then for
f € LXMR3na(-; ) we have Rx* f € L®(R%75E(-; ), where

A forAS%,ASB—&-ZBZO
5o g for A+ min{B,1} >3 n
“YA+B* for B<0, A+B<2 !

A2 for B<A-2, 2<A+B<3

A+ B* for A+ B* <3 .
B+ F= 3 for A+ B* >3 (1)
with logarithmic factors

A+B*=3,B<}%
In, (\x|) for A<2B>0,A>B+2 (iii)
A+B=2B<0

A+B*<2,B<0

In, (A i
n(Asfx]) - for {2<A+B*<&A>B+2. (iv)

Moreover we have
IV30C3) = V38O * Fll ez < C M leupeanze- (3:53)
Let in addition for A, B following conditions are satisfied
0<A<3 B>-1. (v)
Then for f € L°°(]R3'V§(-'/\)) we have R x f € L®(R3;7E(-; ) and
V300G 52) = ViSOl * flloo, @ e < OO I oo, ny s - (3:54)
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Sketch of the proof: From Tab.1 and Tab.2 we have for A + B* > 0

A+B*+2 A+B+2 1
E<m1n{g +2 + , A, +2+ ,A+B+2,A+B,A+B*}:

. {5 A+ B*+2

=min§ -, —
2 2

E+F <min{3, A+ B*, A+ B} =
=min{3, A+ B*}.

For the weight v we use that £ > max{A — 1,0}. Finally, the estimates
(3.53)—(3.54) follow from the rescaling argument.

A A+ B*} (3.55)

O

Theorem 3.14 Let A+ B* > 0. Let R = |[V}{0O — V2,S|. Then for f €
L®(R3: nA(-;\) we have R+ f € L®(R3;75(-; \)), where
A for A<3, B>0
E=!3 for A+ min{B,0} >3 (i)
A+ B for B0, A+ B<3

A+ B* for A+ B* <3
E+F =

3 for A+ B*>3 (i)

with logarithmic factors

I Opl) for  {A=3FZ0 (i)
ny (\x or A+ B=3.B<0. iii
In; (As|x|) for A+ B*<3,B<0. (iv)
Moreover we have
VOG5 2) = VSO * Flloo mmc apze < C Ml macpype - (3.56)

Let in addition for A, B following conditions are satisfied
A<3, B>-1. (v)
Then for f € LOO(R?’;Vg(-;)\)) we have R+ f € L®(R3;7E(-; ) and
HIHOC5N) = VRSO * Fllae iz < O 1l e apms - (357)
Sketch of the proof: From Tab.l and Tab.2 we have for A + B* > 0

A+B +3  A+B+3
2 T 2

Egmin{?), ,A+B+1,A+B,A+B*}_

=min{3, A, A+ B*} (3.58)
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E+F<min{3, A+ B*, A+ B} =min{3, A+ B*}.

For the weight v we use that £ > max{A — 1,0}. Finally, the estimates
(3.56)—(3.57) follow from the rescaling argument.

O

We continue with the theorems in the twodimensional case. Again, the proofs
are only sketched.

Theorem 3.15 Let A+ B* > 1. Then for f € L®°(R*n8(-;\)) we have O11 *
fe LOO(]RQ,UF( A)), where

A—-1 for A<B*+1

E= A=l for A>B+1A+B<2 (i)
% for A+ DB* > 2
1 A+ B*>2
B4 F— Jor > (i)
A+ B*—1 for A+ B*<2

with logarithmic factors

I () A+ B* = ..
ny (Alx[)  for A=B+10<B<} (iii)
In; (As(x)) for {A +B<2 B<1i (iv)
Moreover we have
100 G0 * flao gz anez < CA 2 M laopenyzs - (3:59)
Let in addition for A following conditions are satisfied
1<A<2 (v)

Then for f € L®(R*va(-;\)) we have O11(-;A) * f € L¥(R%7E(-5 \)) and
10115 A) * Flloo, wz ¢ ap e < CAT A F N flle wac a2 (3.60)

Sketch of the proof: From Tab.3 and Tab.4 we have for A + B* > 1

1 A+B*-1 1 A+B-1
E<m1{ ATD Z Ao, AP Al B,
2’ 2 2 2

3.61
5 5 (3.61)

E+F<min{l, A+ B*—1, A+ B—1} =min{l, A+ B* -1} .
For the weight 4 we use that F > max{A —2,0}. Finally, the estimates (3.59)
and (3.60) follow from the rescaling argument.

At+B -1} = mn{1A+E?_1 A—l}
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Theorem 3.16 Let A+ B*>1,4,7=1,2,1-j#1, R=0;; or R=¢;. Then
for f € L®(R?%na(-; \)) we have R+ f € L¥(R%7E(-;\)), where
1 A+ B*>2
E=FE+F= Jor - 6)
A+ B*—1 for A+ B* <2

with logarithmic factors

I (Alxcl) for {f:ffBz <2, B>1 (1)

Moreover, we have
105 (52) * Flloo, iz ap ez < CA 2 1 Fllo, a2 (3.62)
lei * flloo J(TE(50)),R? <ot 11l o0,(nA(-51)),R? - (3.63)

Let in addition for A, B following conditions are satisfied
A<2, B*>0(ifR="P;) or  A<2, (if R=0y). (iii)

Then for f € L¥(R?*va(-;))) we have R* f € L®(R%:7E(-;\)) and
105 (-5 A) * flloo, @2 (. 2y m2 < CA” A £l 0o (VA1) R2 5 (3.64)
lei % Flloe. ez < O ENRI L wacoprz - (3:65)

Sketch of the proof: From Tab.3 and Tab.4 we have for A + B* > 1

A+ B 1 A+B
Egmin{1,+, - + ,A+B*—1,A—|—B—1}:
2 27 2
=min{l, A+ B* -1} (3.66)

E+F<min{l, A+ B*—1, A+ B—1} =min{l, A+ B*—1} .

For the weight v4 we use that £ > max{A — 2,0} and E > max{A — 1,0} for
the kernels O;; and e;, respectively. Finally, the estimates (3.62)—(3.65) follow
from the rescaling argument.

O

Theorem 3.17 Let A+ B* >0, A+ B > L. Then for f € L®(R*n4(-;\))
we have VoO11(-;\) % f € LOO(RZ,nF( ;i A)), where

1 for A+ B*>2
= * 1
A+2 for 1< A+B<2 A>B+1

A+ B —fforB<O A+B<1
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2 for A+B>3 A>3
E+F={A+B* for -1 <A<3 B>1 (ii)
A+B—34 for A+ B<3 B<1
with logarithmic factors
A+B*=2
Iny(Ax|) for {B=A-1,0<B<3 (iii)

A+B=1 B<0

Iny(As(x)) for A+B=1 0<B<L1. (iv)

Moreover, we have
V201105 0) * Flloo 2 a2 < CA I flloo,rac v (3.67)

Let in addition for A, B following conditions are satisﬁed
1
§<A<2 B>—f B>A-2. (v)

Then for f € L®°(R*va(-; ) we have VaOi1(-; ) * f € L¥(R%TE(-;\))
and

V201103 ) * Flloo 2 ap 2 < CATA N llog a2 - (3.68)

Sketch of the proof: From Tab.3 and Tab.4 we have for A+ B* > 0 and
A+B>1

A+ B 1 1 A+B
Egnm{L+,A—,A— ,4' LA A+ B-— ,A+Bﬁ:
2 4 27 2
A+ B* 1 1
Z = A-Z,A+B-:=
2 4t }

5 (3.69)

:mim{l7
. X 1
E+F§mm{2,A+B ,A+B—2,A+B}:

:min{Z,A—FB*,A—FB—;}.

For the weight 4 we use that F' > max{A — 1,0}. Finally, the estimates (3.67)
and (3.68) follow from the rescaling argument.

Theorem 3.18 Let A+ B* > 0 and R = |[V?0 — V28| or R = |V,0;,
(i,5,k) # (2,1,1). Then for f € L*R*ng5(-; ) R* f € L¥R:TE(-5M),

where
% for A+ DB* > 2

A for A<3, B>0, A<B+1
ABEL for 1< A+B<2 A>B+1
A+ B for B0, A+ B<1

bE= (i)
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2 A+ B*>2
E+F= for A+B" 2 (i)

A+ B* for A+ B* <2,

with logarithmic factors
Iny (A\[x|) for A+ B*<2. (iii)
Moreover, we have

IIV20(52) = V2SC) * flloo i e < C I fllos, (3.70)
19,050 M1 Fll e < CX 1 ot oy 2 (3.71)

Let in addition for A, B followmg conditions are satzsﬁed
0<A<2 B>-1. (iv)
Then for f € L®°(R%*vA(-;\)) we have R+ f € L®(R%;7E(-; \)) and
1920010 = V2SO fll o e < O Wl opepee (3:72)

IViOji (-3 M+ fll e, pre < O ENF L waconr (3.73)

Sketch of the proof: From Tab.3 and Tab.4 we have for A 4+ B* > 0

E<mm{3 A+B AL a B W,A+B*}:
2 T 2 )
A+B+1
_ min{g, % A, A+B} (3.74)

E+F <min{2, A+ B, A+ B*} =min{2, A+ B*} .

For the weight v4 we use that E > max{A—1,0}. Finally, the estimates (3.70)-
(3.73) follow from the rescaling argument.

O

Theorem 3.19 Let A+ B* > 0 and R = \V%Okl — V%Sm, (i,5,k, 1) #
(2,2,1,1) or R = |V;054], (4, k) # (1,1), (i,4,k) # (1,1,2). Then for f €
L®(R%*na(-; \) we have R* f € L=¥(R%7E(-; \)), where

2 for A+ B*>2
E=<A for A<2, B>0 (1)
A+ B for B0, A+ B<2

2 for A+ B*>2

E+F=
A+ B* for A+ B* <2

with logarithmic factors

Iny (A\[x|) for A+ B*<2. (iii)



76 M. Pokorny: Asymptotic behaviour . ..

Moreover, we have

IIV50m( 3 A) = VESuC)l * flloo @z oz2 < C M lsomac ez (3-75)
19,05 M1 Fll e < CX 1 ot oy 2 (3.76)
Let in addition for A, B followmg conditions are satzsﬁed
0<A<2 B>-1. (iv)
Then for f € L®(R%*va(-;\) we have R* f € L®°(R%:TE(-; \)) and
V%005 A) = VSO * flloomz apyrz < CX 1 f oo wac o rz (3:77)
IIViOj (-5 M| fll oo, prz < CAEULI L Lacanr (3.78)

Sketch of the proof: From Tab.3 and Tab.4 we have for A 4+ B* > 0

A+ B*+2 1 A+B+2
Egmm{2,+2jL A, A+ B+, % A+B,A+B*}:
=min{2, A, A+ B*} (3.79)

E+F <min{2, A+ B*, A+ B} =min{2, A+ B*}.

For the weight v4 we use that E > max{A—1,0}. Finally, the estimates (3.75)—
(3.78) follow from the rescaling argument.

I1.3.3 Weakly singular integrals. Weighted LP—estimates

This subsection is devoted to the LP—theory for the weakly singular Oseen
potentials; combining the results with those concerning the singular potentials
we then get the LP—theory for integral operators with kernels formed by second
gradients of the fundamental Oseen tensor.

Similarly as in the case of the L°°—theory, we give detailed proof only for
one case. The other theorems can be shown following the same lines.

Theorem 3.20 Let T be an integral operator with the kernel O;;(-; ), T :
fr= 0500« f, i,j =1,2,3 and let 1 < p < oco. Then T is well defined
continuous operator:

a) LR 5 P2 (5 0)) s LPRP 522 (5 )

for =1 <p<p-1, p/2—3<a+p<5p/2—3, =3p/2+1<a—-[F<p/2+]1,
e>0

a 2 a 2
b) LP(RY g ™2 (5 0) s LP(R% 05 22(5 )
for =1< 8 <p-1, p/2—-3<a+F<5p/2—-3, =3p/2+1<a—-F<p/2+1,
p/2—3<a<bp/2—3, €>0.
Moreover, we have for «, [ specified in a) and b), respectively
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ad a)

HOU( ) )*f” 2 P/2 (V)R 3 < CA™ 2Hf|| O‘ﬂ’/z( A)),RS’ (380)

ad b)

0550 % fll, s gy s < CX L gsmrz s (B8D)

Proof: We proceed similarly as in the case of L*>°—weighted estimates. Studying
first ng(-;A) weights we show (3.80) for A = 1, applying the homogeneity
properties of O(-;\) we get (3.80) in the general situation A # 1. Next, using
the results from a) together with Lemma 3.12 we show (3.81). Let us denote

K(xy) = 05— y:1) (5 72200) 7 (g 7200)) "
Fly) = £y) (n5 72 )) "

We easily observe that, in order to verify (3.80) with A = 1, it is sufficient to
show that there exists C' > 0, independent of f, such that

| ECYER) dpr <C|F],. (3.82)

Let L(-), M(-) be non-negative functions defined on R? such that for all
X,y € R3

Jo(x) = [ 1K (x,y)] L(y)"dy < €7 M (x)",
() = [ 1 Gey)| Mx)P dx < €7 L(y,

where C' >0, 1< p < oo and p~! + ¢! = 1. Then relation (3.82) is satisfied.

Indeed,
| [LKCy Feay] <

< [A(L Kyl 1FoP L) dy)’l’ Jo(x)t } e <

<o [ mer [ K] FO)F L) Ty dx =
g s [F(y)[” Ji(y)L(y) Pdy < C* || F||P,

(3.83)

i.e. we get (3.83). We shall suppose the functions L(-), M(-) in the form L(x) =
M(x) =n_8(x), A, B € Rl Denoting

aoqu—F%—i-% a; = pA —

R 3.84
bo=g¢B+2 by=pB -5 (3.84)

we get that in order to verify (3.83); 2 we have to find a;,b;, i = 0,1, such that

/wa y; D) n_pi(y)dy < Cn_pill(x)
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for all x € R3. Applying Theorem 3.9 with f = n:gj(-) we get the following
set of conditions:

a; < b; +1, b; <1, a; +b; > 1, 1=1,2, (3.85)

a;, b; defined in (3.84). We take ¢ and « in such a way that

_ 25 _
pg  pq pq pq
From (3.84) we get
k<8 k< (1+p0)4
d+r<i+2k §+r<26+(a—B+3)1 (3.86)
d+r>1E §+r>(3+a+pP)E,

it means that
p 1 q . (5
max{z, (5 +a +ﬂ)7(*)} < mln{ip,

+ (14 B)q, (a—ﬁ+;) +p(x), 1+ B)g+ (a— 5+;)g}

(3.87)

»Jk\’E

2

where the sign (%) denotes that the corresponding inequality can be taken non—
sharp. From here we easily see that the conditions on a;,b; can be satisfied
for some A, B € R if, for sufficiently small € > 0, we have —1 < 8 < p —1,
p/2—-3<a+B<5p/2—3, —3p/2+1<a—p<p/2+1. Now, recalling the
obvious fact that (14 s(x))? < (1+ s(x))%* for all £ > 0 and x € R? we prove
(3.80) with A =1 for any € > 0.

Next let A # 1. As O;(x —y; ) = AO;(A(x — y); 1) we easily have

/R3 / Osi(x = yi \) F(y) dy| n 2/ (x; A) dx =
:A—%/RB /RS (’)ij(/\x—z;l)f( ) da| 5722 1) dxe <
g C)\—Qp—3/ f(;) png+p/2(z; 1) dz = C)\—Qp/

R3 R3
and we have (3.80) with \ # 1.
In order to prove (3.81) we redefine the functions K(-,-), and F(-)

F@)IP 052 (v A) dy

a—p/2; \YP ([ a+p/2, \\"L/P
K(x,y) = 05(x—y;1) (v52°(x)) " (v5 ™ (v))
@ 1/p
Fy) = () (v ") "
We will now proceed as in first part of the proof but now we search the functions
L(-),M(-) in the form L(x) = ,u:g’_G(x), M(x)=p_ g ~H(x). Denoting

co=qG+2+3 a1 =pG —

1

2
3.88
do=qH+ 2 — 3 dy = pH — i (3:88)
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we see that in order to verify (3.83)1 2 we have to find a;,b; (see (3.84), (3.85))
and c¢;,d; such that

/RS Oy(x —y; )y (y)dy < CpTp i7" (x),  xeR®\{0}.

Recalling that O;j(x —y;1) ~ v i(x —y;1) we get from Lemma 3.12 the
following two possible sets of conditions for ¢;, d;:

c <3 <9
Ci
; i+ 1>3 1
(7) c ) >0,
dz‘ZCi—2

where in both cases i = 0,1. Conditions for a;,b; are the same as in the first
part of proof. From the conditions (i) we get following additional restriction®

p/2 -3 <a<bp/2-—3.

Case (ii) gives more restrictive conditions on «, and therefore no extension
of the result. So, (3.81) is proved in the case A = 1.

Finally to get (3.81) with A # 1 we proceed as in the case of the weights
na(-; ). We have

P a—p/2
/Rs /R3 Oij(x —y; M) f(y) dY) Vﬁ_f/ (x;A)dx =
TepTo z P oa—
=z [ |0, 0 - a1 £ (%) anf' 70 1) ax <

RS
—2p—a-+p/2-3 ZN\ P a+p/2, . _
<CA / f()\)‘yﬁ (z;1)dz =

R3
X [ E@P v 50 dy

and we have (3.81) with A # 1. The proof is finished.
O

The following theorems can be shown using the same technique as above.

Theorem 3.21 Let T be an integral operator with the kernel |VO|, T : f
IVO| x f, and let 1 < p < o0o. Then T is well defined continuous operator:

a) L (R g (5 0) s LP(R% (-3 )

for =3/2< B <3p/2-3/2, =T)2<a+p<3p—-T7/2, =3p/2—-1/2<a<
3p/2—-1/2, =3p+2<a—[F<p/2+2

b) LM% 5 TR (5 0) — LR 05 (5 )

for =3/2 < 8 < 3p/2—-3/2, =7/2 < a+f < 3p—"7/2, max{—3p/2 —

1/2, =3} < a < min{3p/2 — 1/2, 5p/2 — 3}, —3p+2<a—B<p/2+2.
Moreover, we have for «, 3 specified in a) and b), respectively

5The procedure is more or less the same as above; G and H play now the role of § and k.
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ad a)
IVOC A = Tl s < O goomra s (389

ad b)

VO M £l g - R3<0)‘_§Hf” (3.90)

(5 TP R

Theorem 3.22 Let R = |V20 — V28| or R = V10. Let T be an integral
operator with the kernel R, T : f+— Rx f, and let 1 < p < co. Then T is well
defined continuous operator:

a) LP(R3; 05 P2 (5 0)) — LR g 72755 )

for =1 <p<p-1, —p/2—-3 < a+3<5p/2-3, —=bp/2+1 < a—p <p/2+1,
e>0

b) LP(R3 0572 (- 0) s LPR 052755 0))

for —1<p3<p—-1, —p/2—-3<a+p<5p/2—3, —p/2—3 < a < 5p/2—3,
—5p/2+1<a—-pF<p/2+1, 0<e<p/24+3+a.
Moreover, we have for «, [ specified in a) and b), respectively

ad a)
2 . _ vv2¢/.
V0638 = F801 Sl gy €
s¢ ||f||p,(n§+p/2(-;>\)),R3’
. -1

||V10( ’ )‘) * f‘|p,(n§+p/2_€(-;/\)),R3 < CA ||f|‘p7(7]§+p/2('§)\))7R3’ (392)

ad b)
IIV2O(52) = VESO)l = /1l S/ R S
(M) R
(3.93)

< C/\prH 0‘+P/2( A),R3?

[V1O(-5 A) * f” a+p/2 °(-\),R3 < CNo ™ HfH a+p/2 )R (3.94)

Corollary 3.3 Let T be an integral operator in the principal value sense with
the kernel V2O(-;)\), T : f+— Rx f, andlet 1 < p < oco. Then T is well
defined continuous operator:

a) LP(R3; 05 P2 (-5 0)) s LP(R3 057275 (5 )

for —1<f<p-1, —p/2—3 < a+L3<bp/2-3, =bp/2+1 < a—p <p/2+1,
e>0

b) LP (RS 3 712 0)) o P (RS, i P52 )
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LP(R3\ Q5 P2 (5 0) — LP(R% V572755 0)

for —=1<fB<p—1, —p/2—-3<a+p<5p/2—3, —p/2—3 < a <bp/2—3,
—5p/24+1<a—-B<p/2+1, 0<e<p/2+3+a, QcCR- an arbitrary
domain, 0 € Q).

Moreover, we have for «, (3 specified in a) and b), respectively

ad a)
2 .
Hv'p' (V 0(7 ) )H 0¢+P/2 E( )),R?’ < CHan(ng“’ﬂ(‘;)\)),RS’ (395)
ad b)

”T}p( ( ) )” a+p/2 s )),RS < C Hf” a+p/2 ea+P/2( A)),R3’ (396)

lo.p. (V2O(-5A) = )] <Cxr £, et (3.97)

pg PR RAQ = N).R?

Theorem 3.23 Let T be an integral operator with the kernele;, T : f +— e;x f,
1=1,2,3, and let 1 < p < oco. Then T is well defined continuous operator:

a) LP(R3; g ™72 (5 ) — LP(R% 05 0(+5 V)
for p/2—1<p<p—1, p/2—-3<a+<5p/2-3
az) LP(R3 P2 (5 ) m— LP(R3 57725 0))

for —1<pB<p-—1, p/2—-3<a+p<5p/2—-3

o 2 fo
by) LPR% 05 P2 (5 A) e LP(R% 08, (-3 \)
for p/2—-1<pB<p—1, p/2—-3<a+p<bp/2—-3, -3<a<5bp/2—3
bs) LR 0572 (- 0) — LP(R3 g P25 )

for —1<p<p—1, p/2—-3<a+p<5p/2-3, p/2—3<a<5bp/2—3
Moreover, we have for «, 3 specified in a) and b), respectively

ad ay)

les s Fllp s coanee < CA L P 0) B (3.98)
ad az)

lles * fll, o-rrz DRSS C)\*leHpv(ngﬂ/z(_;/\))’Rs, (3.99)
ad by )

lle; * f|| ()R = CA 3 ||f|| a+p/2( AR (3.100)
ad bz)

llei * f||p7(ygfp/2(_;/\))’R3 <C Hf|| VPR R (3.101)
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Theorem 3.24 Let R = |V2,0—V2,.8| k =2,3. Let T be an integral operator
with the kernel R, T : f+— Rx f, and let 1 < p < co. Then T is well defined
continuous operator:

a) LP(R% 0 P2 (5 0) s LP(R3 057275 (5 0)

for =1 <p<p—-1, —p/2—-3<a+<5p/2-3, =5p/2 < a—[<3p/2,
e>0

b) LPR? 05 P2 (5 0)) e LP(R3 05772755 0)

for —=1<gB<p—1, —p/2—-3<a+p<5p/2—3, —p/2—-3 < a<bp/2-—3,
—5p/2<a—F<3p/2, 0<e<p/24+3+a.
Moreover, we have for «, [, specified in a) and b), respectively
ad a)
2 .
[IV:O(;A) =V ks( )| * pr’(nngP/%E(.;>\)),JR3 <

(3.102)
S C ||f||p7(7]g+p/2('§/\)):R3’
ad b)
IIV2O(-5 ) = V2S()] = 1], e 3 <
(AR (3.103)
< C)\p ||f|| O<+ZD/2( )R

Corollary 3.4 Let T be an integral operator in the principal value sense with
the kernel V3,0(-;0), k=2,3, T: f+— Rx f, and let 1 < p < co. Then T is
well defined continuous operator:

a) LP(R; 07 (-5 0) s LP(RY 572755 )

for =1<pB<p-—1, —p/2—-3<a+p<5p/2-3, =bp/2 < a—L<3p/2,
e>0

b) LP(R?), g+p/2( ’)\)) — Lp(R3’Mg+p/2—s,a+p/2(' : )\))

LP(R3\ Q05 P2 (- 0)) s LP(R% 052755 0))

for =1<fB<p—1, —p/2—-3<a+p<5p/2—3, —p/2—3 < a<bp/2—3,
—Bp/2<a—B<3p/2, 0<e<p/2+3+a, QcCR- an arbitrary domain,
0cQ

Moreover, we have for «, 3 specified in a) and b), respectively
ad a)

2 .
H'U.p. (Vlk(')( ; A) * f)”p(nngp/Qfs(. ;)\)),RS S C||f”p7(ng+p/2(. ;)\)),RE}’ (3104)
ad b)

va (v ( ) )” O‘JFP/Q 5( /\)),R3 = <C ||f” ( a+p/2—e, 06+P/2( N), R3’
(3.105)
||1)p (v kO( ) * f)” ( a+p/2— 6( /\)) ]R3\Q < CAP HfH Dt+17/2( )\)),Rs‘ (3106)
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Theorem 3.25 Let R = |V30—V3S|. Let T be an integral operator with the
kernel R, T : fr— Rxf, and let 1 <p < oco. Then T is well defined continuous
operator:

a) LP(R3; 05 P2 (- 0) s LP(R3 057275 (5 )
for —1<p<p—-1, —p/2—-3<a+p<b5p/2—-3, ¢>0
b) LPR? 05 P2 (5 0)) e LP(RZ057P275 (5 0)

for —1<p3<p-1, —p/2—-3<a+p<5p/2—3, —p/2—3 < a < 5p/2—3,
0<e<p/2+3+a.
Moreover, we have for «, 3 specified in a) and b), respectively

ad a)

|||v%10( ; )\) ( )’ f” D‘JFZD/2 5( N), R3 < (3 107)
S C Hf”p, ng+?/2(.;)\))7R37
ad b)
IIVHO(5A) = VHSO * FI otorz—eg gy ps <
p(vg (57),
(3.108)

< C)\prH 04"’10/2( )R

Corollary 3.5 Let T be an integral operator in the principal value sense with
the kernel V3, O(-;\), T : f + Rxf, and let 1 < p < oo. Then T is well defined
continuous operator:

a) LP(R?; 5 72 (5 ) v LP(R3 7275 (5 )
for =1<pB<p—1 —p/2—-3<a+<5p/2—3, €¢>0

b) LP (RS 5 P12 ) s PR, P52 )

a+p/2 « 2—
LP(RP\ Q05 PP (50) s LP(RY 05270 0)
for —1<f<p—-1, —p/2—-3<a+p<5p/2—3, —p/2—3 < a < 5p/2—3,
0<e<p/243+a, QC R? - an arbitrary domain, 0 € Q.
Moreover, we have for «, 3 specified in a) and b), respectively
ad a)
[00-(TROCN) * Dl onrae gy s < O, oo gy (3:109)
ad b)

[0:0-(FHOC N, vy < C Il sy s (3-110)
(-32))s Pi(1g (A,

2 ) =
[v.p. (V110(-5 A) = f)Hpv(l,ngp/%E(.;)\))’[@\Q <CAr ”an(l,ngp/?(, 2),R3” (3.111)
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Next we formulate analogical results also in the twodimensional case.

Theorem 3.26 Let T be an integral operator with the kernel O11(-;A\) T : f —
O11(-;\) x f, and let 1 < p < co. Then T is well defined continuous operator:

a) LP(R%; 05 % (5 0)) — LPR% 05222 (5 0))

for =1/2<3<(p—-1)/2, p/2—-2<a+p<3p/2—-2, —p/2<a—[F<Dp/2,
e >0.

b) LP(R% V5P (50) — DP(R% 05 P(5 )

for =1/2 <3< (p—1)/2, p/2—-2<a+p<3p/2—-2, p/2—2< a < 3p/2-2,
-p/2<a—[F<p/2, €>0.
Moreover, we have for «, 3 specified in a) and b), respectively

ad a)

-2
00330 # £l amsia iy m < CA ISy vz e (3112

ad b)

101 C5A) * £, aorrz. a2 < OA AL s (3113)

Theorem 3.27 Let T' be an integral operator with the kernel R = O;;, i,j =
1,2,i-j#1orR=¢;T: f— Rxf,andlet1 < p < co. Then T is well
defined continuous operator:

a) LP(R?; 05 % (5 0)) — LP(R% 05772 (5 0))
for =1/2<p<(p—1)/2, p/2—2<a+[<3p/2—2
b) LP(RZ 0572 (5 0) = PR 0575 )

for =1/2 << (p—1)/2, p/2—-2<a+F<3p/2-2, p/2—-2<a < 3p/2-2.
Moreover, we have for «, 3 specified in a) and b), respectively

ad a)

. —2
HOij(' ) )‘) * f”p,(ﬁg_p/2('§>\))7R2 <CA Hf”p’(ngﬂa/?(_;)\)),R% (3'114)

—1
leix Pl v e < CX M ooz e (3:115)
ad b)

1
HOZ]( ) ) f“ Lo P/2 )),RQ <CA Hf”p,(Vngp/z(-;)\)),RQ’ (3116)

He’b *f” ( o= P/Q( /\)) RZ S CHf” a+p/2( )\))R (3117)
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Theorem 3.28 Let T be an integral operator with the kernel VoO11, T : f +—
VoO11 x f, and let 1 < p < co. Then T is well defined continuous operator:
a) LP(R% g P2 (5 0) — LP(R% 05 (5 0)
for —1<pf<p—1, =5/2<a+p<2p—5/2, -p—1/2<a<p-—1/2,
—2p+l<a—-pF<p/2+1

« 2 a—p/2
b) LP(R% v 2 (5 0) — DP(R? 5772 (5 0))

for =1 <pB<p—-1 —-5/2<a+p<2p—5/2, max{—-p—1/2, -2} <a<
min{p —1/2, 3p/2 — 2}, —-2p+1l<a—[F<p/2+1.
Moreover, we have for «, 3 specified in a) and b), respectively

ad a)

920050 % Fly g a2 < O uvorag g g (3118)

ad b)

IV2011(-5 ) * fl, o a) R <C)\_5Hf|| WA ) R (3.119)

Theorem 3.29 Let T be an integral operator with the kernel R = |V20—-V3S|,
or R=|V;Ojl, (4,5,k) #(2,1,1); T: f—Rx f, and let 1 <p < oo. Then T
is well defined continuous operator:

a) LP(R% 5 P2 (5 ) v LP(RZ 7275 (5 )

for =1/2 <3< (p—1)/2, —p/2—2 < a+(3 <3p/2-2, —3p/2 < a—pF<p/2,
e>0

b) LPR%E V5P (5 0) e LR 057275 (50)

for —1/2< B < (p—1)/2, —p/2—2 < a+f < 3p/2—2, —3p/2 < a—f <p/2,
—p/2—-2<a<3p/2—-2, 0<e<p/24+2+a.
Moreover, we have for «, [ specified in a) and b), respectively

ad a)
[IV20(32) = V2SC) 5 fll snrze oy 2 <

3.120
< Ol 073y 5 (3:120)

|||VZO]]€( )| f” O‘JFP/2 E( )R S CA™ 1||f|| O‘+P/2( ))7R27 (3121)
ad b)
H’v20( ; ) - ( )’ f“ O‘+P/2 5( )),R2 S

3.122
<cxbfl, (8.122)

(w57 2(‘ ) B>

H’Viojk(’ ) )‘>| * pr’(l,§+P/2*€(.;>\))7R2 < C)‘p Hf” a+P/2 )),R2" (3-123)
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Corollary 3.6 Let T be an integral operator in the principal value sense with
the kernel V2O(-;\), T : f +— Rx f, and let 1 < p < co. Then T is well defined
continuous operator:

a) LP(R; 5 P2 (5 ) v LP(RZ 7275 (5 )

for =1/2< < (p—1)/2, —p/2—-2 < a+[( < 3p/2—-2, =3p/2 < a—[F <p/2,
e>0

b) LP(R2 g 7725 0)) v DP(R?, i 750 )

LP(R2\ Q05 P2 (- 0)) — LP(RE 52755 0))

for =1/2<p<(p-1)/2, —p/2—-2<a+PB<3p/2—-2, —p/2-2<a<
3p/2 -2, =3p/2<a—-pF<p/2, 0<ec<p/2+2+a, QcCR?- an arbitrary
domain, 0 € €.

Moreover, we have for «, (3 specified in a) and b), respectively

ad a)

2 .
||’U.p. (v O( ) >‘) * f)Hp’(nZ*'P/?—f(_ ), R2 < CHpr’(nZ*'P/?(. ), R2? (3124)

ad b)

2 .
HU.p. (V O( ) A) * f)|‘p,(u§+p/2_€(-;)\)),ﬂ§2 < C ||f||p’(M§+P/2—E,a+P/2(.;)\)),RZ7 (3125>

2¢)(. . s
||’U.p. (V 0( ) )‘) * f)||p7(,j§+p/2—€(_;)\))7]g2\g <CAr ||f||p’(,/§+p/2(_;)\))7R2' (3-126)

Theorem 3.30 Let T be an integral operator with the kernel R = |ng0kl —
VZQJSML (Z’],kvl) 7£ (2,2’171) or R = |vo22|7 R = |V1012|,' T : f = R ox fa
and let 1 < p < oo. Then T is well defined continuous operator:

0) LP(R2; 05 % (5 0)) — LP(R%; 5 712755 )

for —1/2<p<(p—-1)/2, —p/2—-2<a+p3<3p/2—-2, >0

b) LP(R% 0525 0) = PR g7 )

for =1/2<p<(p—-1)/2, —p/2—-2<a+<3p/2—-2, —p/2—-2<a<
3p/2—-2, 0<e<p/24+2+a.
Moreover, we have for «, 3, i, j, k, | specified in a) and b), respectively

ad a)
IV Ok (3 A) = VEiSu()] Hlp,ztor2=2( a2 <

3.127
S C||f||p,(77§+p/2(';A))7R2’ ( )

. —1
|||VZOJ/€( ) A)’ * f||p7(ng+p/2*€(.;)\))7[[§2 <CA Hf||p7(ﬂg+p/2(';>\))7R2’ (3’128)
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ad b)
V50w 3 ) = VS O+ £,

<]

a+p/2 € R2 S
6D, (3.129)

(g P2 () R

H|V1(9]k( )| fH a+p/2 E( : ))JRQ § Cf)\}0 ||f|| a+p/2 : )),Rz' (3130)

Corollary 3.7 Let T be an integral operator in the principal value sense with
the kernel V?j(’)kl(- i A), (4,4, k,0) #(2,2,1,1) T : f— Rxf, andlet 1 < p < 0.
Then T is well defined continuous operator:

0) LP(R2; 05 2 (5 0)) — LP(R% g 712755 )

for =1/2<pB<(p—1)/2, —p/2—-2<a+[<3p/2—2, >0

b) LP(B23 /5 725 0)) s LP(R?, i /2752 )

(R2 \ Q, a+p/2( ’)\)) N Lp(R2; yg+p/2—5(. : )\))

for =1/2<p3<(p—-1)/2, —p/2—-2<a+F<3p/2-2, —p/2-2<a<

3p/2—-2, 0<e<p/2+2+a, QCR?- an arbitrary domain, 0 € Q.
Moreover, we have for «, [ specified in a) and b), respectively

ad a)

02 (T50uC0) # D)1, ronrie g s S OV, onrs e (3131
ad b)

||Up (v Ok}l( )*f)Hp,(VngP/Q*S(‘;A))JRQ S C Hpr7 g+P/2 504+P/2( )) R2 (3]‘32)

I1.3.4 Stationary flow of the incompressible fluid in the whole space
with non—zero velocity prescribed at infinity

The last subsection is devoted to the study of a very simple problem — the
stationary flow of a viscous fluid in the whole R . We assume that the prescribed
velocity at infinity is non—zero and we study a small perturbation of the velocity
from the steady state v = v; this perturbation is caused by a small external
force which has certain asymptotic behaviour at infinity.

We apply the results from the previous subsections and show that the solu-
tion has also certain asymptotic properties. Let us emphasize that the anisot-
ropy in the asymptotic behaviour is due to the anisotropy of the right hand side
and unlike the exterior domain problem does not come from the problem itself.
Nevertheless, the problem in the whole space easily demonstrate the estimates
of the Oseen kernels and in two space dimensions we get the expected result
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— different asymptotic properties of the first and second components of the
velocity.
We study the following system in RV

v-Vv—-—vAv+Vp=1»f
V-v=10

V— Ve as  |x|—oo.

We may, without loss of generality, assume that v, = Ae;. Moreover, we do
not study the precise condition under which the solution exists. We put, without
loss of generality, v = 1. Denoting u = v — v and assuming f = -V - G we
finally get

—Au+ A2 +Vp=-V-(G+u®u)
V-u=0 (3.134)

u—0 as [x|— 0.

We first show the existence of solution to (3.134) via successive approxi-
mation in Sobolev spaces. Then, using the integral representation of solution,
we shall study asymptotic properties of the solution. Let us emphasize that
we assume only small perturbation i.e. certain norms of G will be assumed
sufficiently small.

Theorem 3.31 Let||G||,, g € [§; 252], be sufficiently small. Then there exists
weak solution of (3.134) such that the norms ||Vul|, and ||u|| w114 are finite.
N+1—¢q

Proof: Let us denote s = 5\],\::1_)3 We shall apply the Banach fixed point theo-

rem on the system (3.134) in the Banach space B,

B= {u;u e LS(RY),Vu e Lq(RN)}

equipped with the norm”

1
[ullz = [[Vullq + A¥+ [l .
We denote by T the operator from B to B such that
Tw =u,

where
—Au+ A% +Vp=-V-(G+waw)
V-ou=0 (3.135)
Js, lu(R,w)[7dw —0 as R — o0
From [Gal] (see also Section III.2) it follows that there exists unique solution
to (3.135); moreover

lulls < CIGq +[[w @ wlq).

"The size of A does not play any role here. Nevertheless, we keep on writing \ in the norms.
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Let us assume that ||w| p < e with ¢ small. We show that for ||G||, sufficiently
small also ||ul|p < e. We have

2(1—
lw @ wlly < w3, < [w]2*[w] N%q %)
—q

where the fact that ¢ € [§; Y] was used. We easily calculate that a =

(N+1)(2¢—N)

5 and so

—N

_2¢-N
lwe wllg <OX" 0 [lwll .

Therefore for the right hand side and ¢ sufficiently small we have
[ully <e

and the operator 7" maps ball with diameter € into itself.
Next, let U = u! — u?, P = p' — p%. We have

—AU—l—)\g—g—i—VP:V-[(wl—w2)®w1+w2®(w1—w2)]
V-U=0
Js, [U(R,w)|%dw — 0 as R— o0

and denoting W = w! — w?
U5 < Cll(w" +w?) @ W, (3.136)

We proceed as above and get

1 2 | 2
(W +w) @ Wl <CA o (|wl[p + [IW7l|5) W] (3.137)
Therefore (3.136) and (3.137) yield for e sufficiently small

I0ll5 < W5

with x < 1. The Banach fixed point theorem applied on the set B. = {u €
B; ||u||p < €} finishes the proof.

d

The next aim is to study the asymptotic properties of u i.e. the estimates
of u in certain weighted spaces. Under the assumption on G stated above we
easily get

8(’)ij

uj(x) = L D (x — y; A\ (wjwg + Gix) (y)dy
8uj _ 820ij . ) (3138)
8—xl(x) = —v.p. o Dm0 (x —y; M) (wjwg, + G (y)dy+

+Cijkl(wiwk + Gik)(x) .

The proof of (3.138) follows easily from the fact that O is the fundamental
Oseen tensor and from its asymptotic properties (see Section II.1) by means of
a standard density argument.
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Recalling that we have constructed the solution to (3.134) via successive
approximation it is enough to show that, for w and Vw bounded in certain
weighted spaces, the solution u to (3.135) lies in the same ball. Then the same
holds for the fixed point constructed in Theorem 3.31.

We now study separately the cases N =2 and N = 3.

Theorem 3.32 Let G € Lp(Rz;n§£(~)) N LY(R?), p > 8,1 < q< 3 with the
norms sufficiently small. Let % <A<1,0<B< % — %, A+B<2-— %.
Then the solution to (3.134) from Theorem 3.31 has the following asymptotic

properties:
A—1L
u € IP(R% 1, ()

24-1-28
us, Vu € (R 7 ()
for any 6 > 0.
Proof: Let us assume that
(A=2)p (24-1-2)p
lwizng, *7CsMp + lwzng, 77 C5N)pt

(24-1-2)p
HVwing, (M) <e,

where ¢ is (sufficiently) small positive number. From (3.138); we have

ul(x) =
_ 901 . 0011 ) 9
= /Rz [ 91 (x —y; \)(wwe + Gi2)(y) + i (x — y; \)(wi + G11)(y)+
0091 009,

n (x —y; \)(wwe + Ga1)(y) + v

We apply Theorems 3.28, 3.29 and get

(x = y3 \) (w3 + Gaa) (y) ] dy -

(A-3) - A
lua;ng, 27 (3 Mo < CAHllwrwas ngh (-3 ) o+
A-L4k
Gz migh (-3 Ml + Nl 2 + Jwgwal + s gz, 2 (5N lp (3.139)

(A-1+k)
G|+ Gaal + Gaali gy > (3 M)l }

(k > 0) together with the conditions

—3 <Bp< Py
~34+L<(A+Bp<2p-2 (5.140)
max{—%p—l— 1,—p}<(A—B)p<p
—% < Ap < %p — % .
Next we shall estimate the quadratic terms. We have for
A>§—|—i B>0 (3.141)

P 4 2p7 —
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that
Ap (3A-5-2)p
[wiwa; ng, (-3 Mlp < Cllwrwsz;ng, (5 A)[lp <
2(A—3)p 2(2A-1-2)p
< Cllwsng, 27 (5 M) l2pllwzing, A <
2(A—3)p 2(2A-1-2)p
< Cllwismgp, 27 (5 M) 2pllwzineg, 77 (5 ll2p -

We apply the Sobolev imbedding theorem and get under the assumption
(3.141)

A - (Ail) (2A717é)p
lwrwas ngp (3 My < CAH(llwisng, =7 ()l + 1Vwing, 77 (3 A)[p)-
2(2A-1-2)p (2A-1-2)p B
(wasng, 7 C N+ IVwing, P CA)p) < ATl

Analogously we proceed for the other terms. Evidently, the most restrictive
is those with w3. We take x = % and get for A, B satisfying (3.141) and § < §

(A-14+9p 2(24-1-2)p
Nwal®mp, = 77 CMp < Mw2l?mp, 77 C5A)|p <

(24-1—-2)p (24—1-2)p
< C(llwasng, " G +HIVWing, 7 (G-

The other quadratic terms in (3.139) can be estimated

(A-3+3)p _ (A—1y
s 2 + [wiws| + [wal*sm5, 77 (5Nl < CA N (wiing, 27502+
(24-1-2)p (24-1-%)p _
Hlwasng, P CEGIEHIVWnE, T (GA)E) < O

Using the evident inequality we get for 6 < £

(A=3+2)p A
1G;sng, = 77 (5N < CIIGsng, (3 DIy

we get for ||G; ngﬁ(- ;1)||, and e sufficiently small

—_

(A-%)p

lu;np, 275 M < (3.142)

§€ .
Next we estimate the second component of the velocity. We have from
(3.138);
ug(x) =
00 o0
= / { 2 (x — yi A (wiws + G12)(y) + —2(x — y; A)(w? + G11)(y)+

oy
00
2 (x = y; \) (w3 + Ga2)(y) fdy

(x —y; M) (wiwg + Go1)(y) +
Theorem 3.29 yields

(24-1-%)p _
lusing, (5 My < CAHJllwn|? + Jwrws |+

(24-1) (24-1) (3.143)
w2 D+ NG G A |
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and the conditions
<Bp<th
p—2<(2A+B)p<3p—2 (3.144)
0<(2A—-B)p<2p.
We now proceed as above and get for A, B satisfying (3.141) and

A<1 (3.145)

1
2

that
(24-1-2)p

_ (A-3)
luz; np, (3 Mlp < CA M (lwismg, 27 C3A)p+

(24—1-9)p (24-1-2)p
Hlwasng, PTG IVWinG, TG+

A
HIG; n (5 M)
i.e. for the right hand side G and ¢ sufficiently small

A-1 1
Juzi gy 250l < 32 (3.146)

Finally we use the integral representation for the gradient of u. We apply
Corollary 3.6 to get

(24-1-2)p
IVasng, "7 (5A)p <

24—1 24—1
< O(llwr]? + lwiwa| + w2l n5e P (5 M)y + 1G5 P A1)

under the assumptions (3.144) together with

1 p—1
——< B —_—. 3.147
5 <Bp <=5 (3.147)
As above, we easily verify that
24-1-2 1
IVusng, "N < g5 (3.148)

Collecting (3.142), (3.146) and (3.148) we get the desired estimate. The
conditions (3.140), (3.141) (3.144), (3.145) and (3.147) furnish the restrictions
on A and B. The condition 2 — % > % implies p > %. As ng(x) > 1 for A, B
non-negative, we can take § > 0, arbitrary.

O

The situation in three space dimensions is somewhat easier as there is no
difference between the first and the other components of u.

Theorem 3.33 Let G € LP(R3;77§§(')) NLIR?), p> 3, 3 < q <2 with the
norms sufficiently small. Let 0 < B < 1—%, 1<A< min(3—%—B, 1+%—|—B).
Then the solution to (3.134) from Theorem 3.31 has the following asymptotic
properties:
1
we 1R, 2" ()

A9
Vu e LR ny 7" ()

for any 6 > 0.
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Proof: From (3.138); and from Theorem 3.21 we get

(A-3) - A A
g, 27 CsN)p < CATHIWmEh( s Ml + COVGs ngh (-3 1),

for 5 5
—5<Bp<3(p-1)

~3p+2<(A-Bp<l+p

(3.149)
—I+2<(A+Bp<ip-1
—p—%<Ap<2p—%.
We proceed as in the twodimensional case and get
A 2A-1
Ilw /sy (s Ml < Iwi g, 75 V1,
provided
A>1, B>0. (3.150)

Then for § < £

(A-1 A-1)
HIWIQ;néi(-;A)IIp < C([[w;np, P N2+ IIVW;nfgp PPN <

p —
(A-1) (A=2)p
< C(wsmg, 2PCNIR+IVwing, 7 (5012

Combining this with the assumptions on the smallness of the right hand side
we get
A1
luing, 275Xl < 3 (3.151)
_1 A—S
provided £ > Hw;nj(BAp 2)p(‘;)\)Hp + ||VW3771(Bp ”)p(‘;)\)Hp is small enough.
Next, for (3.138)y we get from Corollary 3.3

(A-2)p _
IVusng, 7 (5 < CA 1H|W|2§77££('§)\)||p+C()\)’|G;7lgg('§1)|’p

under the conditions
—1<Bp<p-—-1
—2p+1<(A-B)p<p—+1 (3.152)
-3<(A+B)p<3(p—1).

As above we can get

A—S
||Vu§771(3p p)P(,;)\)Hp < ie (3.153)

provided ¢ is sufficiently small. The estimates (3.151) and (3.153) prove the
theorem. Collecting (3.149), (3.150) and (3.152) we get the restrictions on A,

B. The condition 3 — % > 1 implies p > % Again, due to the properties of

na(x), d can be taken arbitrarily large.



Modified Oseen problem

As was shown in Chapter I, the problem for the viscoelastic fluid (its elliptic
part) can be rewritten as

—Au—&-ﬁQa 2+ﬁ +V7r N(u, T(u),p(u,),f)
V-u=0

(see (I.4.18)), where the right hand side N(u, T(u),p(u,7),f) contains terms
which are either nonlinear or contain the external force. In Chapter II we gave a
detailed theory to the Oseen problem i.e. to the problem (II.0.1). The problem
(0.1) differs from the Oseen problem due to the presence of the term ﬂQgQT‘%.

(0.1)

Evidently, in order to have the operator

,0%u

A(u) = —Au+p 922 (0.2)
elliptic, we need to assume (§ < 1. Evidently, it would be easier if we could put
the term 52 on the right hand side of (0.1) and use the fact that it is small
(6 will be assumed small). In such a way we could get existence of solution
in Sobolev spaces (compare also with an analogical situation for the second—
grade fluid, see (1.4.28)—(1.4.29)). Nevertheless, as follows from Corollaries I1.3.3,
11.3.6, in such a case we would not be able to show the asymptotic structure of
the solution as we loose € in the weight. Therefore this chapter is devoted to
the detailed study of the following problem

A(u )+ﬂ7+vp f

(0.3)
V.-u=0
with o e o
u u u
Au) = — 2 <u<1

which we shall call the modified Oseen problem. (For = 0 we get the (classical)
Oseen problem which can be therefore considered as a special case). We shall
first study the fundamental solution to (0.3) and show that it can be divided
into two parts — one which is the fundamental Oseen tensor and the other one,
which has at least the same asymptotic properties. We shall be therefore, in
particular, allowed to use the Li—weighted theory developed in Section II.3.
Next we shall study L?-estimates to (0.3). We proof several results which
can be regarded as analogues to the results given for the classical Oseen problem
in Section II.2. Moreover, as the classical Oseen problem can be treated as a
special case of (0.3) with u = 0, we in fact proof also Lemmas I1.2.1-11.2.6.

94
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II1.1 Fundamental solution

This section is devoted to the study of the fundamental solution to (0.3). Let
us consider in RY

_ [A _ uii + QAi]OZ‘.‘.(x —y;2)) — iej(x —y) = ;0%
BXY Ay 1 Ay (1.1)
004 (x ~¥;2) _

0y; ’

where the derivatives are taken in the sense of distributions and dx denotes the
Dirac d—distribution supported at x.
We search O" in the form

O'(x —y;20) = O(x — y;2)) + E(x — y;2)), (1.2)

where O;;(x —y;2)) is the classical fundamental Oseen tensor (see Chapter II)
and 0? 0 0?
A—p=s+ 22— | Bl = p=—
[ "o 8y1] 9o
in the sense of distributions. We also easily see that the ”fundamental pressure”
ej is exactly what we obtained in Section II.1, i.e.

Oij (1.3)

0
ej(x—y) = —@5(|X—YI) (1.4)
(see (IL.1.8)).

Let us start to study the solution to the problem (1.3). Recall that the second
derivatives of the fundamental Oseen tensor behaves like second derivatives
of fundamental solution to the Laplace operator. We must add to (1.3) the
assumption that

L}

Ay
in the sense of distributions. We cannot require it directly as such problem does
not have, in general, solution. But we shall verify later on that (1.5) is satisfied.
The advantage of the problem (1.3), which we shall call the Oseen problem
without pressure, is that we may use a change of variables in such a way that
A(-) becomes the laplacian and we may study (1.3) via the same lines as the
classical Oseen problem. This was impossible directly in (0.3) because of the
pressure.

We can easily verify that for

(1.5)

Y, = Y1 X, = z1

1—p V1—
 j=2,- N X;=u; j=2,---,N

(1.6)

=

we have from (1.3)

22 0
)

(AY+ %1_M87Y1

EL(X —Y;2)) =

v
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We denote X = —2— and finally get

ik
v 0 " ) _n O )
(Av + 2A8T/1)Eij(x ~Y;20) = - u@YfO”(X —Y;2)). (1.7)

Before starting to study the problem (1.7) let us shortly mention the change of
variables (1.6). We easily see that

VI=lX| < x| < [X]. (1.8)
Moreover, as a consequence of Lemma I1.3.1, we get (s(X) = |X| — X1)

Corollary 1.1 Let X; > 0. Then

v 12_ P o(x) < 5(X) < 25(x) (1.9)
Let X1 < 0. Then . 0
§s(x) <s(X) < = MS(X) (1.10)

Proof: We proceed as in Lemma II.3.1 and get for 21 > 0

_ x| 1 r T
s(x) = [ T fcosd’ where x' = (z2,---,2n), 0 € {—5,5} for 1 > 0.
As |x'| = |X'|, we have
112 X/2 1 X/2 1 2 2

= = S
x| 7 X[ VI-p T X[ 1+4cosdVI—p VI—p

Analogously we get the other inequality in (1.9). For 21 < 0 we use the evident
fact that
x| < s(x) < 2[x|

and apply (1.8).

d

From (1.8)—(1.10) it follows that whatever we get for the asymptotic pro-
perties in the variables X, the same holds also for the variables x and therefore,
although we shall calculate the behaviour in the new variables X, Y, we can use
finally the result for the original variables x, y. We come back to the problem
(1.7). We have

Lemma 1.1 The fundamental solution to the Oseen problem without pressure
(1.7) is
N

E*(X -Y;2)\) = —N%ZOM-(X—YQX), (1.11)
=1

where O(X — Y;2)) is the fundamental Oseen tensor.
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Proof: We proceed as in Section II.1. We search singular solution to

—_ 0 N B B
(A+2)\a—Y1)E (X-Y)=6x =AE(X-Y]).

We suppose E* in the form
E'(X-Y)=A%(X-Y)
and so 5
(A+20-)AB(X — Y) = AZ(IX - Y]). (1.12)
oY1

We see that we get the same equation for ® as (II.1.4). So we calculate ® in
the same way as we did in case of the Oseen problem. Finally from (II.1.1) we
see that A® = N;_ll i]\il O;;. The proof is finished.

d

Before constructing the solution to (1.7) we first show several integrabi-
lity properties of the fundamental Oseen tensor which are a straightforward
consequence of its asymptotic structure.

Lemma 1.2
a) Let N = 2. Then!

(i) O11 € LP(R?) for p € (3;00)
(i) Oi; € LP(R?) for p € (2;00), i+ j >3
(iii) %1 € LP(R?) for p € (3;2)
(iv) VO except of g—;;, and regular parts of the second gradients of @ € LP(R?)
forpe (1;2).

b) Let N = 3. Then

(i) Oy € LP(R®) forp € (2;3), 4,5 =1,2,3

(ii) %05 € P(R?) forp € (43), k=23, i,j = 1,2,3

(iii) aa(?jij and regular parts of the second gradients of © € LP(R?) forp € (1;3).

Proof: It is a direct consequence of the asymptotic properties established
in Section II.1 and Lemma II1.3.2.

O

Corollary 1.2 We have for N = 2 that E* € LP(R?) for p € (3;00) and
%E* € LP(R?) for p € (1;2). For N = 3 E* € LP(R®) for p € (2;3) and
ainE* € LP(R?) forp € (1;3).

Lunder the regular part of V2@ we understand V2@ — VS
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Remark 1.1 It is possible to show that E* ~ e for r sufficiently large.
This follows for N = 2 easily from (I1.1.25) and for N = 3 either from (II1.1.37)
or, easier, from (II.1.34) recalling that

1 1 1 Ax=yl+yr1—21) 1 — 7

Fr=—— A= —— A
N -1 N —18t\ Jo T

Nevertheless, even with this asymptotic behaviour at infinity we can only
show the integrability proved in Corollary 1.2. In what follows we shall only use
that E* ~ |O| and we shall not use this better properties in s — it is sufficient
for our purposes.

dr.

We can now proof the following

Theorem 1.1 The solution to (1.7) can be expressed as

iogeony — M 0 9 o vy
Bz = 1 |5z B Y052 dY, (113)

where the convolution can be understood in the usual notion of the LP—spaces.

Proof: First, let us check that the convolution in (1.13) is well defined. We
have that both 32-E* and 32-O belong to LP(R") for p € (1,2), N = 2 and
p € (1; 2), N = 3. Applying the Young inequality (see Theorem VIII.2.1) we
get that the convolution belongs to the LP(RY) for p € (1,00) if N = 2 and
for p € (1,3) if N = 3. We have therefore to verify that Ej; defined by (1.13)
satisfy (1.7) in the sense of distributions.

The convolution (1.13) is well defined in &’. Using the definition of convolu-
tion in S’ we have for ¢ € S(RY) (the brackets denotes the duality between S
and S', E x F the direct product in &', 73(X,Y) — 1 in C(R?*") — see Section
VIIL4)

( Z],(A+2)\8§1) ) = lim “<88X1E*(X 2X) x a‘;ow(Ym),

k—oo 1 —

(a+ 2A£{) (X +Y)m(X,Y)) =
I

. . ) ,
= lim f<a—X1E (X;2)) x oy Cu(Y52)),

(X,Y) = 22p(X +Y)

0
ax,”

(X+Y) (X,Y))+

X, Nk
lim = M<Oij(Y; 2)) x E*(X; 2N),

o2 0

oz (8 + Dy ) (X )X, Y)) =

X1
2
= lim (04(Y;20),

6X2( o(X 4+ Y)ne(X,Y)) \ X:0> —

~(pgoutvan S50,

where we used the fact that the convolution ainE* * %(’)ij exists. The theorem
is shown.

d
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II1.1.1 Asymptotic properties of the fundamental solution

Having the fundamental solution for the modified Oseen problem expressed by
(1.2) and (1.13), we can start to study its asymptotic properties. Our aim is
to show that the decay at infinity is at least the same as for the fundamental
Oseen tensor. Secondly, we want to show that EZ and its gradient are locally
integrable while the second gradient has one part which is regular and the other
part which represents a singular integral operator and can be studied (in our
case) by means of the Marcinkiewicz multiplier theorem (see Theorem I1.3.2).

We start to study the decay at infinity and as usually, we proceed separately
for N =2 and N = 3. Moreover, we put 2\ = 1 and finally show an analogue
to the homogeneity property of O;;.

Lemma 1.3 Let N = 2. Then we have for k > 0,e > 0 arbitrarily small, and
IX|>R>1:

1+k

VFEL(X;1) < T (14 s(X)" 2 . (1.14)

Proof: Let |X| > 1. We divide the convolution (1.13) into three parts:

p _ 0 e 0 i
E(X,1) = - (/()8X1E(X Y1) 530 (Y3 VI = p) dY+

+/ iE*(X vi1)-2 0i;(Y; V1 —p) dY +
B

1(x) 0X1 OY (1.15)
0 0
+ (X - Y1) 0,i(Y; /1) dY
ko500 OX1 v, % 9 d4Y)
=L+ 1+ 13.
We have easily (E* ~ Oj; at infinity)?
1 1 C
L <C 3 Ty Y S o3 T
0) X - Y|2(1+s(X - Y))z [Y| X2 (1 4 s(X))2
for |X| sufficiently large.
1 1 1
|| <C dY =

x) X =Y |y|? (1+s(Y))2

11 1 c
—cf o : LdZ< :
Bi1(0) |2 |X — Z|2 (14 s(X — Z))2 1X|2(1 4 s(X))2

for |X| sufficiently large.
Finally, the third part can be estimated as

[SIE I

_3 _
|13\<C/ XYy

(Y) dY
and applying Theorem I1.3.18 (or, equivalently, Tab.3,4 from Chapter II)

[13] < Cn_

3
f+a(X) ,€ > 0, arbitrarily small.
2

2see also Remark 1.1
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Summarizing the estimates for I, Io and I3 we have

TorNe SE) | [ p———
X[F(1 1 5(X))?

for |X| sufficiently large, i.e (1.14) for £ = 0. Next we start to estimate the
derivatives of E#. We use again (1.15) and take the derivative with respect to
X, 1=1,2. We get

o0l o 0 0
< X —Y:1)||-Z0,(Y; VT=p)| dY <
5% < [ O, 0%, (1 ’ )Uanoﬂ( C“)‘d <
<C dY

o X—YEA+sX-Y) Y] = XE(1 +s(X))

for |X| sufficiently large.
Next, in Io we first change variables and get

01y 0 0 0
<C RN (Z1)-2-0,:(X — Z: /T —p) dZ| <
0xX;! = 10X; /Bl(o) 074 Z; )aZI i 2 ‘_
0 5
< 2 (Z:1)||—L—0,(X —Z: /T— )| az <
= 31(0)’321 ( )HaXz‘3X1OJ( M)‘d -

= XP{+ (X))

for |X| sufficiently large.

Before starting to estimate \aiXiIg\, let us have a look on Tab.3,4 in Section
I1.3. It is clear that in order to get e % greater, it is not sufficient to take either a
orc % greater. Nevertheless, we can proceed as follows. In domains g, 29, Q¢, (2
and 4 (and the corresponding situations in 4, Qg, Q19 and Q14_15) we simply
take the derivative of I3 — we therefore increase ¢ and d. Otherwise, we first
change the variables as in the case of I and therefore we increase a and b. So
we get exactly what we want, i.e.

013
0X;

< C
T XPEA A+ s(X)H

where the e-loss comes from some logarithmic terms. For £ > 1 we can proceed
similarly. The theorem is proved.

In the threedimensional case we have

Lemma 1.4 Let N = 3. Then we have for k > 0, > 0 arbitrarily small, and
IX|>R>1

4+k—e 2+k

VFEL(X;1) <COIX|™72 (14s(X) 2 . (1.16)

Proof: It is more or less the same as in the twodimensional case. We only
use the fact that %XlE*(X; 1) ~ %Oij(X; 1) ~ | X|72(1+5(X)) L for | X]| > 1,
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instead of Theorem I1.3.18 we apply Theorem I1.3.11 and use Tab.1,2 instead
of Tab.3,4.

O

If we compare (1.15) and (1.16) with the asymptotic behaviour of O;;, we
see that up to the first derivatives we have better behaviour of EZ than those of
the fundamental Oseen tensor. For the second and higher derivatives we have
still better behaviour than the worst terms from the higher gradients of the
fundamental Oseen tensor.

The technique used in Lemmas 1.3 and 1.4 is not able to capture the different
structure for the derivatives with respect to X; and with respect to X;, j > 2.
Using the fact that E* behaves exponentially in s(X), wo could establish also
this faster decay for derivatives with respect to X;. Nevertheless, we do not
need it.

The next question is the behaviour for |X| small. The crucial problem is
whether we can again divide the second gradient of EZ‘; into two parts — one
which is regular and the other one, which can be treated by theorems from
Subsection I1.3.1.

We shall take the advantage of the very easy structure of E*(X) near zero.
We have namely for N = 2

1 1
S S2)(X) = —(1+log —
(S11 + S522)(X) 27r< + log \X])
and for N =3 11
S S S33)(X) = — —.
(S11 + S22 + S33)(X) 27X
Therefore we have (see I1.1.20 and I1.1.37)
a) N=2
OE* 1 X3
= — *(1X 1.1
T = 3 (XD (117)
with
v(R)=0(In R) }
0 et for R =|X| — 0%
o) =0(3)
b) N =3
OE* 1 X3
= *(1X 1.1
with 1
v(R)=0(—
<}%) for R — 0.
As we cannot treat directly the convolution I%ﬁ*%& (X—Y) (more precisely,

the derivative of this convolution), we proceed as follows. We denote by gn(X)
function which is equal to méﬁ on B3(0) and zero on B*(0) and is
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continuous and continuously differentiable up to certain order which will be
specified later. This we adjust e.g. by taking

1 X;
D R

gn(X) = (1.19)

where P(|X|) is equal to 1 on B3(0), equal zero on B*(0) and is a polynomial

for 3 < |X] < 4, satisfying certain continuity assumptions for |X| = 3 and 4.
Now let |X| < 2. We have

05i;
BA(Xi1) = / X_Y Y)dY +
G = 7], o VX YIGHEY)
00,
+ / av(X — Y)vy(Y)dY + / AX - )20 Y)Y+ (1.20)
B4(X) B3(X) 8Y1

3
OE* 00,
* o (axl —gv)(X-Y) oy () ay) .

We denote the integrals in (1.20) by I; —I4 and estimate each of them separately.
We need estimates up to the second order derivatives. The most crucial term is
I ; we leave it for a moment and start with the easier ones. The integral I, is very
easy; as 0 € By(X) we have no singularities and assuming gy € C*(RY \ {0})
(we shall require much more later, actually) we have easily

ID°I(X)| < C for X[ <2, |o] <2 (1.21)

Next we study the convolution I5. Using (1.17) we have easily for N = 2

11(X)| < c/ m|X - Y| — dY < C (1.22)
B3(X Y|
and for N = 3, using (1.18) and Lemma II.3.11
1
I3(X)| < —— dY < Cn|X]. 1.2

We can easily verify that we may interchange integral and derivative. We the-
refore have for N = 2

1 1

013(X)
<C —— 1 dY.
‘ 0X; ‘ T e (XYY
Applying Lemma I1.3.11 we have
Is(
‘a 3(X \<01 X|  for [X| #£0. (1.24)

Analogously, using Lemma I1.3.11 we get also for NV = 3 that
’ 8[3

] < ’X| (1.25)

But we cannot calculate the second derivative as we cannot interchange the
integral and the derivative in this case. Nevertheless, we can look at the second
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derivative of I3(X) as on the first derivative of I; and therefore use the result
for g—)l(li which will be obtained later.

In order estimate Is, we can use the change of variables
B = [ g(Zw(X - 2)iz
B4(0)

and proceed analogously as in the estimate of I3(X).
We are left with the most difficult term [;(X). First we may easily verify
that analogously as in the case of g—)l(?i, we have for 0 < |X| <2

IL(X)| < Cl|X|, N=2

c
< — = .
|1(X)] < x| N=3

(1.26)

Nevertheless, similarly as for the second derivatives of I3(X), we cannot inter-
change the derivative and the integral. Let us extend g (X) by 0 outside B4(0).
We may rewrite I;(X) as

oS
oY,

LX) = C/RN gn(X —Y) 22 (y)dY . (1.27)

As I;(X) € L] _(RY), we have I;(X) € S'(RY). We can therefore calculate the

loc
Fourier transform of I;(X) in the sense of S'(RY). Moreover, as g has compact

support, we have in S’ (see Lemma VIII.4.12)

N 0S;;
F(1)(€) = (2m) 2 Fon) O F (57 ©). (1.28)
Using Lemma VIII.4.14
0S8, N 0ylEP = &g
.’F( 8Y1])(€) = —(2m) "2 Wlfb

ie. f(%‘gﬁlj) € L} .(RY) . Moreover,

f(g‘;ﬂ) e C>(RN \ {0})
and 08, o
}D f( oY; )‘ = |¢[lel+1
on RV \ {0}.

As gn(X) has compact support and is bounded, we can calculate its Fourier
transform directly.
We choose the polynomial P(]Z|) in such a way that

P(3)=1
P(4)=0 (1.29)
DFP(3)=DFP(4)=0 k=1,2...n,n€N.
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We have therefore 2n + 2 conditions — there exists exactly one polynomial
with deg(2n + 1) satisfying (1.29). In fact, for N = 3 we shall require one
more condition which will be precised later on. We first calculate the Fourier
transform of gy (X) in two space dimensions. We have

Flg2)(6) = C(/B 21 iz8) g7, 4 7

21 p1Z)e %9 az) .
5(0) |Z[? /B4<0)\Bs<o> |ZJ? (12]) )

It is more convenient to work in the polar coordinates; we need in fact some
estimates of F(g2)(§) in terms of |¢]. Denoting |£| = s, |Z| = R, ¢ the angle in
Z—coordinates and 6 the angle in {—coordinates we get

3 2w . . .
]:(gz)(s,G) — C/O /0 cos cPest(cosgacos@-i—smapsme) dpd R+
4 2w . . .
+ / / COS (,OP(R)GZRS(COSL‘@COS 0+sin ¢ sin 6) ngdR —
3 JO

3 r2r . 4 27 .
= C(/ / cos pe'ftseos(e=0) q,d R —I—/ / cos pP(R)e! s cos(v=0) d@dR) .
0o Jo 3 Jo
Moreover, as cos ¢ = cos(p — 6) cos — sin(p — 0) sin§ and
2 .
/ sin(gp _ e)estcos(go—O) dp =0,
0
we get (the integrals are evidently independent of 0)

3 r2m )
]:(92)(3,0):00059(/0 A COSQerRSCOSWdQOdR—}—

4 r2r A (1.30)
+ / / cos pP(R)e' 5% dp dR) .
3 Jo

We shall need some estimates of F(g2)(s,6) and of its derivatives in terms of
s. We easily see from (1.30) that

[ F(g2)(s,0)] < C
1

and (8%1 cosp = gsin2 0, %cosgp = —%sin@cosG)
VEF()(s,0) < O(5 +1), keN, (1.31)
13 ’ = Sk )

We shall prove a bit sharper estimates, namely for s € R™ we show that3

k c C
IVEF(g2)| < Ao = 0T EDEr” k <n (1.32)

3We have from (1.30) that

Flan)(©) = 6D
Therefore (1.32) follows if we show that
d*G(s) c
dsk | = (1+s)sk’
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(see (1.29) for the definition of n). Using Fubini’s theorem in the first integral
of (1.30) and integrating by parts in the second one we have

2 1 .
Flga)(5,6) = Coosp( [ (€% 1) dp
LT [P(R)emsCOW]O4 d:os—l / [T PRy apdR)
is Jo 3 is /3 Jo '

Recalling that P(4) = 0 and P(3) = 1 we finally get

C cos

4 27 .
|27 + / / P/(R)e e dpd )
3 JO

Combining this with the fact that |g;(s,0)| < C for s — 0" we have

‘7:(92)(37 0) =1

C

Flga)(.0) < -

(1.33)

To show (1.32) for k < n, we combine (1.31) with the result of the following
lemma.

Lemma 1.5 We have for 0 <k <n

akf(gz) C}

— k
W(&Q)_COS@(@—F
. j derivatives
k+1 4 rom )
+ Skf1/3 /0 (..(P(R)RY ... R) "% dpdR) |
j=1

, (1.34)
where CY, are constants depending only on j and k.

Proof: We have shown (1.34) for £ = 0. We proceed by induction. Let (1.34)
hold for some k € Ni', k < n. Then

o 0kF o , Ch Mly , i
as(as(zcm)zcose[as(skﬁ)+;as<skfl)'

4 2 .
/ / (...(P'(R)- R) ... R)'e"5¢% dod R+
3 JO
k+1 C]jg

4 27 .
+ / / iRcos (... (P'(R)-R) ...R) ¢ftscos® d@dR} .
3 Jo

k+1
j=1°

We have to calculate the last integrals. We get

j derivatives

4 21 .
// iRcos@(...(P'(R)-R...R) 5% dudR =
3

0
1 2" / / ! iRscosp 4

= g/0 (.. (P'(R)- R)'...R) Re dcp}gd@—
1 2 o4 / 1 ! iRscosp

_E/o P B R dpdR.

j+1 derivatives
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We therefore only need to check that the boundary terms disappear. As k+1 < n
and PW(3) = P(l)(4) =01=1,2...,n, the proof is complete.

d

Remark 1.2 The conditions (1.29) say that our extension of |))((|1N is of the
class C*(RM \ {0}).

We next start to calculate the Fourier transform of g3(X). Before doing this
let us observe that é{(—f?, =— 839(1 (le) Therefore

Z Z :
F =C / (’E)dZ+/ Z))e'Z9 dZ) =
(92)6€) <Bs (0) IZI36 Bu(0)\Bs(0) |2 PllzDe )

1
- uZ8) gz, — / — 28 (Z
C(/ ‘Z|Z§1€ d DBa 0 ‘Z|€ 711( )dS+

1 )

+/ Z)) = + P(|Z))i&1 ) e %8 dZ+
B4(0)\Bs(0) !ZI( A D\ZI (12D )

1

+ PUZNE® ny(2)dS _/334 7 P(|Z)é'@9ny(2) dS )

9B3(0)

Using the assumptions on P(|Z|) we have

, oi(Z.6) oi(Z.6)
F(g3)(§) = iC& / dZ+/ P(|Z])dZ
Bs(0) |Z| B4(o>\33(0) |Z|

Pz Az,
Z

[§]

¢
B4(0)\B3(0) |Z|

It is clear that there exists Q(R) such that Q'(R) = %. We require also
Q(4) = Q(3) = 0. This gives us one more condition on P(R) (the other one can
be justified by a proper choice of a constant). We can always find a polynomial
P(R) with deg 2n+2 such that the above mentioned conditions will be satisfied.

Integrating by parts in the last integral we get

' ei(Z.€) (2.6)
Flg)©) =ice( [ P(|Z))dZ + &' @9Q(|2/)dzZ) (1.35)
Bi(0) |Z B4(0)\B5(0)

The two integrals in (1.35) represent (up to a multiplicative constant) the
Fourier transform of a radially symmetric function. It is well known (see Lemma

VIIL.4.7) that the Fourier transform of such a function is again radially sym-
metric and we have in spherical coordinates

F(g3)(s,p,8) = Ccos psinF(s) (1.36)

We come back to the calculation of F(g3). Similarly as in two space dimensi-
ons, we change variables and use the spherical ones. We have

2m
F(g3)(s,p,0)= /// cos 1 sin? k-

1Rs(cos K COS 9+sm K sin O(cos ¢ cos P+sin @ sin w))dd)dFLdR-i-

4 e 2T
+ / / / cossin® kP(R)-
3 Jo Jo

_eiRs(cos Kk cos O+sin k sin 6(cos ¢ cos P+sin ¢ sin w))dwdeR) )
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We now apply (1.36); without loss of generality we may choose 6 = 5, ¢ =0
and get
™ _ 2 iRs sin k cos ¢
F(g3)(s,0, —) =F(g)(s cos 1 sin? ke dydrd R+

2
—l—/ / / coswsm HP(R) ifts Sm’{cowdwdfﬁdR)

As in the twodimensional case we have

d*F(g)(s)
o <C, s elo0), k=01,

and therefore, as F(g3)(§) =

4 r
g

9°F(g3)(§) 1

T§<C(l+w), la| > 0. (1.37)

We shall prove a stronger result. We have

F(|¢]), F bounded including all derivatives,

2m
.7'_(9)( _ZS / / sm/-f 31Rsmncos¢ )d?/)d/-i—l—

27

+/ / Slnﬁ stsmncosw]gdwdﬁ_
2r .

- / / / sin £ P/ R)e’Rssm’“OSwdwdfde}.
3 JO JO
Using (1.29) we get finally
iC 4 prm 27 . .
F(g)(s) = - [47r—|—/ / / sin/-sP’(R)e"RSS‘“”COS¢d¢d;~@dR]
3 JO JO

and therefore

Floa)s,.0) < 7

Now, repeating mutatis mutandis all steps of the proof of Lemma 1.5 we
finally get

(1.38)

¢
(1+ €Dl
Now we can come back to the study of (1.28). We know that

[D*F(g3)(£)] < lal <n. (1.39)

F(S0) ) € Lhu®Y)

and
Fgn)(€) € L*RY), N=2,3.

Therefore we easily verify that (1.28), which was written in the sense of &', is
in fact a regular tempered distribution. We have namely for ¢ € S

(F(G2)Flan)w) = (F(52). Flan)o) =

NNy (1.40)
:/RN f(gi’f)f(gN)sodS
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as f(%) € LL.RY), Flgn)e € L®(RY) and decays sufficiently fast at
infinity. We can therefore define a new functional on S by (1.40). Moreover, it
is an easy matter to see that

f(gij)f(gzv) e LYRYN) for g € (%;N) ,

We shall now reconstruct the decay properties of I1(x) due to its Fourier
transform. In two dimensions we have the following statement:*

Lemma 1.6 Let F(G) € C™1(R?\ {0}) be such that
A = sup [¢H(L+ [E)IDF(G)(E)] < oo
o <m+1
£cR?

Then G € C™(R?\ {0}) and

sup  [x|*|D°G(x)] < C(m)A

0<[Bl<m
xcR?
sup |ln (i + 1) ‘_1G(X) <CA.
x€R? ’X|

Proof: We fix ® € C§°(R?) such that ®(£) = 1 for |§] < 1 and ®(¢) = 0 for
|¢] > 1. For 8 € N? we put for A >0
F(up) = (i) F(G)(€)2(NE)
Flwa) = ()" F(G) ()1 — B(AE))

and we easily see that F (v g+wy g) = (i)’ F(G)(€) = F(DPG)(£).5 Moreover,
we have F(vy 5) € L'(R?) and therefore

A8l
1+7r

dr.

Blel—1 -1
ol [ el v le) g < |

If |3 = 0 then |vyg| < C'ln(1 + 1), otherwise vy g < CA7Il. Now let us take
p € N? such that |p| = |3] + 1. We shall show that xPw) 5 is a continuous
function which tends to 0 as |x| — oo, satisfying

xPwy 5(x)| < CA A~ I1Bl+Ipl

The function F(wy g) has its support outside a ball with diameter % We have
easily that DPF(w) g) € L'(R?) as it is a combination of

b 3Ia\@(§) olrl
ocx 9T

(1-2(X)),

“see e.g. [Bou] for a similar result, but under slightly different assumptions
Sthe derivative is taken in the sense of S’
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where a+q¢+r = p, ¢ < 8. If r # 0 then its support lies between two balls
with diameters % and % Therefore

e (2)) 1<l <At P DR (@) ()l <

< AN |g|181-lal=lel=2q¢ <
(2N ~r<fg<at

< CA Nritla+lel=I8l < ¢ 4 A\lPI=181

If » = 0 then

¢|IBl-lal=lel=2q¢ < A / ¢|73de <
/(2/\)1§§‘ | (2>\)*1SI£I| |
< CA |\|PI=181

Now, setting A = |x| we get for |x| # 0

1
Gx)=vyo+wyo<Cln(—=+1),
(|x\ )
while for |G| > 0
DYG(x) = vap +wrp < Clx| 7.

As [p| < m+1, we get |3] < m.

O

In particular we have shown that I;(X) ~ In(X) for |X| small; that we have
already known. Moreover, we also obtained that for 0 < |3| < 2 we have outside

X=0
1

X

For |3| = 1 we have easily that the derivative in the sense of distribution and
the classical derivative coincides®. We have therefore that the integral operator

DPI(X)

ol
X-Y)f(Y)dY
L e X =Y)r(y)
is well defined on C§°(R?) and can be (eventually) extended due to the density

argument onto some L9(R?).
Finally let us consider the integral operator

2
T(X) = /R (X - Y)%é?}? dy

for f € C§°(R?). Evidently, we have that

F(TF)(E) = (27)7 F(L)(E)(—&&)F (),

Stheir difference is supported at 0 and (see Lemma VIIIL.4.1) they may differ only up to the
d—distribution or its derivative; but the Fourier transform of D?I; tends to zero as |£| — oo
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where the multiplication is to be understood in the sense of S’. Nevertheless,
thanks to the properties of F(I7)(£) it is an easy matter to see that

F(TF)(E) = —2m) 266 F()EF(£)(€) = mEF(£)(©),

where m(£) € L®(R?). Moreover, we have for |a| < n (see (1.29) for the
definition of n) that

D) < oy for €] £0.

Therefore, assuming n = 2 for N = 2, we have in fact shown that m(§) is a
LP—multiplier, 1 < p < oo (see Theorem 11.3.2) and m € M(a,2) for a € (1, 00)
(see Definition I11.3.2).

We can therefore summarize the decay properties of E}:(X;1) for |X| small
in two space dimensions. (In order to get the required information about the
second derivative of I1(X), we have to take n = 3 in (1.29).)

Lemma 1.7 Let N = 2. Then for 0 < |a| < 2 we have for |X| < 2

El(X;1) < Cn[X|
DBl (X;1) < C|X| 7l

Moreover,
EL(X;1) = [(X) + L(X),

where D*I5(X) < % for |X]| <2, |a] =2 and [;(X), representing the singular
part of the second gradient of EZ (X;1), has the following property:

f(/R L(-=Y)D*f(Y)dY) () = m(EF()E), ol =2,

where m(§) represents the LP—Fourier multiplier, 1 < p < oo. Therefore the
integral operator T,

THX) = [ WX =Y)D*(Y)aY

maps C§°(R?) onto LP(R?), 1 < p < 0o and

1T fllpr2 < CIIfIlp R
1T, ()2 < ClIflp, () R2

for all g, weights from the Muckenhoupt class A,,.

Next we continue with the threedimensional case. We have the following
lemma which forms an analogue to Lemma 1.6; we prove it in N space dimensi-
ons, N > 3.
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Lemma 1.8 Let F(G) € C™*N=LRN\ {0}), N > 3 be such that

A= sup [glFNTA 4 €Y DUF(G) ()] < 0.
|a|<m+N-1
¢ceRN

Then G € C™RN \ {0}) and

sup  |x|PHN=2DPG(x)| < C(m, N)A.
0<|BI<m
x€R?

Proof: It is essentially the same as for N = 2. For v) g we get

| !<C/A1T|B|+N2
v dr
M 1+7r

and therefore, unlike the twodimensional case, no logarithmic factor appears.
In the estimates for w) g, we have to take |p| = 3] + N — 1 in order to justify

the integrability of
/ |§|\5|—p—2d§'
@3 ~1<pl

O

Now we can proceed exactly as before Lemma 1.7 in order to verify the
assumptions of the Marcinkiewicz multiplier theorem. Let us only remark two
things. Unlike the twodimensional case we have different assumptions in The-
orem II.3.2 (the Marcinkiewicz multiplier theorem) and Theorem II.3.5 (the
weighted estimates via Kurtz and Wheeden). We therefore have to take n = 3
(see (1.29)) in order to have m(§) € M (a,3) while for the multiplier theorem it
is enough to have n = 2. The other remark concerns the behaviour of the type
m for F(I1)(&). This type of behaviour was essential only in two dimensi-
ons in order to have F(I1)(£) locally integrable. For N = 3 (and eventually
N > 3) it is enough to have behaviour of the type ﬁ

We can now summarize the properties of EZ (X;1) in three space dimensi-
ons. Let us also mention that in order to get the required information about
the second gradient of I;(X), we need to take n =4 in (1.29).

Lemma 1.9 Let N = 3. Then for 0 < |a| < 2 we have for |X| < 2
DYEX(X;1) < C[X| Il

Moreover,

EL(X;1) = [(X) + L(X),

where D*I5(X) < % for|X| <2, |a| =2 and I;(X), representing the singular
part of the second gradient of EZ (X;1), has the following property:

F( [ C=YID* (Y)Y )(©) = m@F(NE), (lal =2).
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where m(§) represents the LP—Fourier multiplier, 1 < p < oo. Therefore the
integral operator T,

TI(X) = [ H(X = Y)D"J(Y)dY

maps C$°(R3) onto LP(R?), 1 < p < oo and

171, k2 < CllSIl, g
ITAN,, )2 < CllSp, 072

for all g, weights from the Muckenhoupt class A,,.

In order to show that O* = O + E* represents the fundamental solution to
(1.1) we have to verify that

aEﬁ‘j

dyi
in the sense of distributions. Before doing this we have to proof the following
lemma; we know (see Lemma VIII.4.12) that

=0

Flg = h) = (2m) F(g)F(h)

is well defined (in 8’) when e.g. g € 8’ and h € D' with compact support. We
shall extend the result for g and h belonging to certain Lebesgue spaces. See
also e.g. [St] for a similar kind of result result, nevertheless, not applicable in
our situation.

Lemma 1.10 Let g € LP(RY), h € LYRY), p, q € [1;2], %4— % =1+1>3

Then gxh € L"(RY) and F(gxh) = (2%)%f(g).7-"(h) , where the multiplication
can be understood either in S’ or in the a.e. sense.

Proof: We have clearly g * h € L"(RY) from the Young inequality (see
Theorem VIIL.2.1). Moreover, as r < 2, we have from the Hausdorff-Young

r

inequality (see Lemma VIIL.4.10), r’ = -5

[F(g = h)[l < Cllg*hlly < Cllgllplhllg -
Now, let h,, € C3°(RY), h, — h in LI(RY). Then
Flg+ hn) = (27) 2 F(9)F (hn) (1.41)

as g € S’ and h,, € Cg°(RY) ¢ D'(RY) has a compact support. The product in
(1.41) is well defined in both &’ and the a.e. sense. Moreover, we have

1F (g hn) = Fg* W)l = 1F (g * (hn = W)l < Cligllpllhn — hllg — 0

1 1
=L+3

as n — co. It means that F(g*h,) — F(g*h)in L (RV); L=1-1= 7t

Moreover

3 =

1F(@)(F(hn) = F) e < [F (@)l 17 (hn) = F(W)llg < Cllgllpllhn = hllg — 0
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i.e. F(9)F(hn) — F(g)F(h) in L (RY). The lemma is shown.
O

‘We shall now show that %E{; =0 in S’. We start to calculate its Fourier
transform. We have in &’

F(5-B)(©) = ~i6F(BL)(©). (1.42)

Moreover, as E# € LI(RY) for g € (1,00) if N =2 and ¢ € (1,3) if N = 3,
we have that the product can be understood in the a.e. sense (F(E*) € LP(RY),
p € (2;00) from the Hausdorff-Young inequality). Recalling that

0 0
—FE*, —0O e LYRY 1, —
oy E g, 0 € L®Y). e (L)
we have due to Lemma 1.10
0 0
L EF(L0,), 1.4
F(EL) = O]—"(ayl )f(ayloj) (1.43)

where the product can be understood either in S’ or in the a.e. sense. The first
distributional and classical derivative? of 0;; coincide in S’ and we have

9 .
f(a—yloij) = —i&1 F(O4), (1.44)

where, in general, F(0O;;) € &’ is not a regular function. Nevertheless, we have
for all ¢ € S(RY)

(F(g5:5) 0) = C(F (5,,0u) 67 (5,5)e) =

(1.45)
= CO(F(0y), fzflf(—E*) ).
Let us recall that a%l_(?ij =0 in &’. Therefore
<f(((;)%0ij)7¢> = (F(0y), ~i&ip) =0 Y € SRY). (1.46)

Moreover, as (%_Oij € LP(RY) for some p € (1;2), we have that f(ai%(’)ij) €
LI(RY) for some g € (2;00) and the first duality on the left hand side of (1.46)
can be extended for ¢ € LOO(RN ) with sufficiently fast decay at infinity. The
same holds also for the duality on the right hand side. Coming back to (1.45)
and recalling that §;F ( -E*) € L™ (RY) (see Lemma VIIL.4.16) we finally get

9
(F(5,,P)-e) =0
for all ¢ € S(RY), i.e. ]—"(B%Z_Efj) = 0 € &' But the Fourier transform is
isomorphism on &’ and therefore also aiyiEij =0 in §’. We have shown that
Lo g
Ol = Ef; + Oy

is the fundamental solution to (1.1).

"taken outside of the origin
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Remark 1.3 The reason why we used such a complicated method to verify
that the fundamental solution has zero divergence is that we could not verify
the assumptions in order to interchange the derivative and the integral.

Finally we shall study how EZ’”; behaves for 2\ = 3 # 1. Recall that we shall
assume (3 < 1. We have

vx-vig =P [ 9 p(x—v_z-P2 2 0z
BX-YiB) = 100 [ o P (X-Y-12 m)azlo”(z’ﬁ)dz'
Recalling that
0i;(Z; B) = BN 204(8Z; 1)
we easily get
EL(X-Y;p8) =
B B T e S AL B S A
T oz (px =) -2 m)azlo”(z’l)dz
(1.47)
and therefore, for p < 1,
.3y — gN-2 .
EL(X -Y;0) =" EL(B(X - Y);1). (1.48)

We can now summarize the results form this section. We have

Theorem 1.2 Let N = 2,3, u < 1. Then the fundamental solution to (1.1)
can be written in the form

O!(x; B) = O(x; B) + E(x; ) ;

here O(x; 3) denotes the fundamental Oseen tensor and the remainder E*(x; (3)
has the following properties:

a) for |x| > R>1, |a| >0

N+1+|al _ N-1+|o]
2

Do‘Efj(x; 1) <Clx|77 2 (1+s(x))
b) for|x| <1
Ei”j(x; 1) <Clhnlx| N=2
Eli(x1) <Clx[™! N=3
DEli(x;1) < Clx* NIl ja] =12, N =2,3.
Moreover, El-”j(x; 1) = I;(x) + Ix(x), where D¥I3(x) = C|x|*™¥, |a| = 2

for |x| <1 and D*I1(x), |a| = 2, representing the singular part of the second
gradient of E¥(x), defines a singular integral operator

1) = [ hx=y)D°f¥)dy. o] =2

which maps LP(RY) onto LP(RY) and LP(RY; g) onto LP(RY; g) for1 < p < oo,
g € Ay (Muckenhoupt class). Moreover,

E'(x; 8) = BV 2EF(Bx;1) .
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Remark 1.4 We shall use our fundamental solution O* for u = 32 with 3
sufficiently small. Therefore we shall have
2 _ 32 1
07 (x;8) ~ BN 2O(Bx; 1) + WEQ (x; 8)

with E2 (x;08) = ﬁN*2E% (6x;1). Moreover, the remainder E: (x;1) has at least
the same asymptotic properties as O(x;1) and, therefore, all theorems proved
in Subsection I1.3.2 and I1.3.3 for the Oseen kernels can be used also for the
modified Oseen kernels. Let us also recall that we used the fact that having
asymptotic properties in X means the same asymptotic properties in x; here
the relation (1.6) is supposed.

III.2 Modified Oseen problem in RY

This section is devoted to the study of existence, uniqueness and LI— estimates
of the problem (0.3) in the whole space. For our purpose, we shall need more
general problem; namely

Ou
AW+ 85+ VP =1 4 gy (2.1)
V-u=g
where f and g will be given functions from C§°(RY), A(u) = —Au + ,u%.
1

As we already know from Section II.1, one possible construction of solution to
(2.1) consists in the use of the fundamental solution to (0.3). We may search
the solution in the form

u=u'4u?, (2.2)

where
u' = V(Ex*g), (2.3)

£ fundamental solution to the Laplace equation, and u? solves

1
AW?) + 55—+ Vp=f - A(u') - 53‘; (2.4

We can rewrite the right hand side of (2.4);

2

£ uv(aax%(g +9)) - ﬁv((;zl(g #9)) + Vg

and so the solution to (2.4) can be sought in the form

u?(x) = (O} * fi)(x)

2 2.5
b= € 1))~y (E )0~ B ) g
1

ZL‘j 8901
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This form is not convenient for the L%—estimates. We therefore use another
approach and later on identify our solution with those from (2.2), (2.3) and
(2.5). For the sake of simplicity we take 3 = 1. Later on, using the replacements

we get estimates with constants independent of (.
We search solution to (2.1) in the form

1

u(x) = — [ UEe "*0d¢ = FH(U)(x)
(2m)= 7R

X) = e X8 qe = F1 X).

p(x) ) /RN P(g) d§ = 77 (P)(x)

Inserting (2.7) into (2.1) we get (&' = (&2,...,&N))

(1= )&+ 1€ = i&1)Up, — i€ P = F(fm)
_meUm = f(.g) .

Solving (2.8) we have

PO = (S F RO + [ F0))
with h(€) = (1 — pu)&2 + |¢'|? — i&1. Denoting
2 _
Vi) = e Sn) 25
Wn(®) = (57 (9)(€)
1) = P (0O
7(6) = n PO
we can rewrite (2.9) as
U(§) = V() +W()
P(§) =11(§) + T(§)
and
u(x) = v(x) + w(x)
p(x) = m(x) + 7(x)

(2.6)

2.7)

(2.10)

(2.11)

(2.12)
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with

The advantage of (2.11) and (2.12), respectively, is that v and 7 represent
the solution for ¢ = 0 while w and 7 the solution for f = 0. Moreover , it is an
easy matter to see that u and p are C°(R).8

In order to get Li—estimates of u and p, we shall apply the Lizorkin mul-

tiplier theorem, see Theorem I1.3.3. A principle role will be played by the term

Vmk = %. We start with some observations.

Lemma 2.1 If N > 2, m,k=1,2,...,N. Then the assumptions of the Lizor-
kin multiplier theorem are satisfied

a) by Ymp with = NLH
b) by &bmk with B = A and 1 € {1,2,... N}
¢) by &1hmy with B=0
d) by §Esthmr with =0 and l,s € {1,2,...,N}
For N =2 and |,k € {1,2} we have also the assumptions satisfied
e) by o with 3 =3

f) by &oy with B = 0.

Proof: Let us recall that we need to get

8/{
e g | < © (213)

L 0e

for some 0 < 5 < 1, k; € {0,1}, k = Y K; < N. We easily get that the left hand
side is bounded by

Cl) (17 1c1\?
&
e+ e (LT19)
for any 0 < x < N, k,m € {1,...,N} and any p € [0,1). We can therefore
apply Lemma VIL.4.2 from [Gal].
O

We can now start to estimate the solution to (2.1). Let us start with v
and 7. Observing that the function ?é% satisfies the assumptions of Lizorkin

8The crucial fact is that the function m is locally integrable; see the proof of Lemma
VIIIL.4.15.
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multiplier Theorem I1.3.3 (or, equivalently, those of Marcinkiewicz multiplier
Theorem I1.3.2) we get with help of Lemma 2.1 ¢) and d) that

H ], vl g < Clilg, g € (1500). (2.14)
Moreover, for N = 2 we also have from Lemma 2.1 f)

\\Hﬂwﬁwmw

14 < Cllfllg, g€ (L;00). (2.15)

Now we must restrict the values of q. We have for 1 < ¢ < N + 1 with help of
Lemma 2.1 b)

(N +1)q
Vo SClfly. 5= g 2e . g€V (210
and for N = 2 also
[v2| 20 < Clifllg, g€ (152). (2.17)
—q

Moreover, observing that é% satisfies the assumptions of Theorem I1.3.3 with

0= %, we have also

7 o < Clifllg, g€ LN). (2.18)
—q
Finally, assuming 1 < ¢ < % we get from Lemma 2.1 a)
 (N+1)q N+1
e L1 L[5t BCRT)
Let us now estimate the pair w, 7. We have easily
wli, <C
who <Clalh 220)
[wla,r < Clgl1r
and
71 < Cliglhe, e (L00). (2.21)

Moreover, using the fact that éﬁ satisfies the assumptions of Theorem I1.3.3

with g = %, we get

|w| v < Cllglfr
N—r

re(l;N). 2.22
g < Cllglpe + gl "€ BN 22

Next, as ||g]ls; < Cllglli,q, 51 = (Nﬂ)q q € (1;N + 1), we have from (2.20);

N+1—-
(Wlis < Cllglhe g€ (LN +1). (2.23)
N+1 : Nr o _
Fj\r/lally, ifl<g< , we choose in (2.22); the exponent 7 such that = =
1
]E, ;11)2(1 and get
N(N +1)q N+1
< C ) = ) € e
Iwheo < Cllglln s 71 = vy =0 7q (175-)
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and using the imbedding W1 4(RY) — L™ (RY) we have

(N +1)g 7 (1 M)
N+1-2¢q 2
Combining estimates (2.14)—(2.24), applying (2.6) we have
Theorem 2.1 Let f € W™I(RY), g € WHL(RN) m > 0,1 < ¢ < oo be

given. Then there exists a pair of functions (u,p),

Wm+2,q (RN) Wm+1,q (]RN)

loc loc

(Wls, < Cllgllig, s2= (2.24)

satisfying a.e. the modified Oseen problem (2.1). Moreover, we have following
estimates forl € {0,1,...,m}

ou
6‘871‘1 Lo +ulip2.q + Pliv1g < CEl1g + 19li41,4 + Blalig) - (2.25)

If N =2, then

6u1 ‘

Bluzliti,q + 5‘ Fuliz,g + [Pl < CIEllg + 1916 + Bl9lig) - (2:26)

Ifl<qg<N+1, s = %lel)g, then

1 ou
BNF|ufy1,s + ﬁ’(‘?ixl‘l . + [ufip2,4 + pliv1g < (2.27)
< C(’f‘l,q + ‘g|l+1,q + ﬁ‘g l,q) .

If 1 < q< N, then

1 ou
— <
BN+1 ’u‘l‘l’l,Sl + ’p‘lvNNi_qq + ﬂ‘ 83:1 l7q + ’u‘l+2,q + ‘p’l‘i’l,q — (228)
< C([fli,g + 191414 + Blglig) -
Moreover, if N = 2, then for 1 < g < 2

aul
5|U2‘l 24 +5|U2|l+1,q+53\u|l+1 2L +!p|l 2 +5‘ +

+|u|l+2,q + pli41,g < C(|f|l,q + |9|z+1,q + ﬁ|9|z,q)

_ (N+1)q
N+1-2¢

(2.29)

N+1

Furthermore, if 1 < g < , we get for sg =

B4 s+ 75 10 +lply o+ 8|5, +
+|u‘l+2,q + ‘p|l+1,q < C(‘ﬂl,q + |g|l+1,q + ﬂ|g|l,q) :

Finally, especially for N =2 and 1 < ¢ < % we have

(2.30)

ﬁ‘uﬂl 24 +/8’u2‘l+1,q+53‘u‘l 3q +/8 ‘u’l-s-l 3q +|p‘l 20

8U1 = (2.31)
+ﬂ‘?1 Lq + ‘u|l+2,q + |p’l+1,q < C(|f’l,q + ’g‘l+1,q + ﬂ’g’l,q) .

If w,T is another solution to the same data such that ‘aa%:’lm |W|112,4 are finite
for somel € {0,1,...,m} (or, equivalently, |W|i124 and |T|;41,4 are finite), then

e (v =W, =W =l =7~ pliag =0,

l,q
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Proof: The estimates for f, g smooth and 5 = 1 were shown above. To get
the estimates for £ € W™4(RY), g € W™+tL4(RY) only, we use the standard
density argument. Next, for 3 # 1 we use (2.6). Let us only sketch the proof.
Let U, P solves

ou
Ay(U)+ ~—+VyP=F
oy
Vy-U=G.
Now, U, P satisfy the estimates (2.25)—(2.31) with § = 1. Taking F = %

G =4, P =% andy = (x we get that u, p with u(x) = U(y), p(x) = P(y)
satisfy the original problem (2.1) and
N_j—2
[Ulit2,0 = B “[uligag
N_j-1
[Uli1,g = B aliyig
N_j_oy 1
Ulist,er = B0 5T ulig
N g4 2
’U‘l,sz — fa T |u|l+1,82
N_j-2
[Plit1,g = B¢ “[Pliv1g
N
and the estimates with 8 # 1 follows easily by multiplying ﬂ”zf?. We are
therefore left with the proof of the uniqueness part. We denote z = D%(w —v),
s = D*(1T — p), |a] = l. The pair z, s solves
0z
A(z)+ﬂ8T+Vs =0
1
V-z=0

(2.32)

a.e. in RY. We multiply (2.32) by the standard mollifier w.(|x — y|), x € RY
and integrate the variable y over RY. We get

07,
A € e =
(z )Jrﬂagc1 +Vs.=0 (2.33)
V-z. =0,

where z., s. are infinitely times differentiable functions and, moreover, V?z.,
g—fci € Lq(RN) what implies Vs, € LQ(RN) (or V?z., Vs, € L‘I(RN) imply

ggi € LY(RY)). We can apply the divergence to (2.33); and get

As, =0 inRY. (2.34)

Moreover, as Vs. € LI(RY) we have that Vs. = 0 Ve > 0 and therefore Vs = 0
a.e. in RY. To show this, let us apply V on (2.34), multiply it by 7z Vs.|Vs.|972,
nr the standard cut—off function (see Section VIIL.2), and integrate over RN,
We get

0 :/ A(Vs)npVs:| Vs |7 2dx =
RN

_ 1
= —(a=1) [, IV Vsl 2ndx — - [ VIVs.|#Vindx
R q JRN
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and therefore finally
q(q — 1)/ (V25 2| Vs |7 2npdx = / |Vse|?Angdx .
RN RN
As supp Ang = B2r(0) \ Br(0) and |Ang| < %, we have

. 2 2 q—2 _
RILH;O o V=57V se|9 “nrdx = 0.
Therefore V2s. = 0 in RV and so Vs, = const. But as Vs, € LQ(RN), we have
also Vs, = 0.

We return to (2.33). Let w. be any component of V?z.. Then

e _ oy RN, (2.35)

A(wa) =+ /88351 =

Denoting

N
|wE|A=Jz(§jj)zu(§;"j)2 (2.36)

=1

we get after multiplying (2.35) by |w.|?"2w.nr and proceeding as above

[l Bidx < © [ (Angl + [Vag)wltdx (237)
R R
i.e. passing with R — oo

Vw.=0 inRY = w.= const.

Again, as w. € LQ(RN), we get w, = 0 in RY Ve > 0 i.e. w = 0 a.e. in RY.
Proceeding analogously for any |a| = [ we finish the proof.

O

Corollary 2.1 Let f, g € C°(RY). Then u, p, the solution to (2.1), con-
structed by (2.7) and (2.9) has the following decay properties for |x| sufficiently
large:

N—1+|a| N—1+|al
2

[D*u(x)| < Clx|~> (14 5(x))~

k>0. (2.38)
|D°p(x)| < Clx|~(NV1HeD
Proof: Let us denote by U, P the solution constructed in (2.5). We know
that U, P € COO(RN ) and moreover, as the right hand side has a compact
support, we have also that U, P behaves exactly as O* and V&, respectively.’
Therefore we have in particular that U, P satisfy (2.38). So (see also Lemma
1.2) D*U, VP, gTUI € LY(RY) for all ¢ > 1. Applying Theorem 2.1 we therefore
get that
IV(P ~ p)ly = IDA(U ~ |, = 0.

N—-1 _N-1 .
27 (14 s(x))” "= for |x]| sufficiently large.

“Note that VE(x) ~ |x|'™V < |x|”
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where u, p is the solution constructed by (2.7) and (2.9). Moreover, as both
P, p and U, u are r—integrable function for some r’s € (1,00), we get P = p,
U = u and therefore also (2.38).

d

Next we shall study weak solutions to (2.1). We say that the pair (u,p) €
WEIRN) x LL (RY) is a g-weak solution to (2.1) if'°

C loc

_ ou Jy Ju Op; ,
/RN(Vu.th H(‘)xl 8x1+68x1 <p)dx /RNpﬁazidx_<f’(p>

V-u=g ae inRY.

First, let us assume that f, g € C5°(R™). We can therefore construct a
solution by means of the Fourier transform as we did above. Moreover, without
loss of generality, we can write f and ¢ in the divergence form (see e.g. [Gal])

oFy;
1560 = 5 2x)
Ly
(2.40)
() = T2 (x)
x)=—(x
g 81‘[
in such a way that
f]-1.4 < IFllg < calf-14
914 < Gllg < c2lgl-14 (2.41)
|Glig < esllgllq-

We have therefore F(f;) = —i§F(F;), Flg) = —i§gF(Gp) and we can

proceed as before Theorem 2.1. Moreover, using

Lemma 2.2 Let g € LY(RY) n Dy " (RY), 1 < ¢ < oo. Then for any e > 0
there exists g. € C°(RY) such that

|ga _g|—1,q + ||9€ _qu <Ee.

Proof: see [Gal], Lemma VII.4.3.

we have

Theorem 2.2 Let N > 2, f € Dy "4(RY), g € LY(RY) N Dy "(RN), 1 < ¢ <
oo. Then there exists at least one q—weak solution to (2.1) in the sense of (2.39).
This solution satisfies

lu

1+ HPHq < C(‘f|—1,q + ﬁ‘g|—1,q + Hqu)

. (2.42)
Blluzllq + Malrq + llplly < CUf|-14 + Blgl-14 + llglle) if N =2,

Othis is slightly more general definition than in the case of Q an exterior domain; see
Definition 3.1
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(N+1)q
NT1q

and if l<qg< N+1, s1=

_1
AR ulls, + lulig +lplly < C(f]-1,4 + Blgl-1,4 + ll9ll4)

(2.43)
Blluzllg + Bllull 2o + [ulrg +lplly < CIfl-14 + Blgl-14 + llglla)

if N = 2. Finally, if (w,T) is another q—weak solution to (2.1) corresponding
to the same data f, g such that Vw € LIRY), 7 € LYRY), then w = u + ¢
and T = p.

Proof: The estimates (2.42) and (2.43) are for f, g € C5°(R™) obtained in
the same way as in Theorem 2.1. Then, using the standard density argument
together with Lemma 2.2 we can pass to the limit with non-smooth data.
The uniqueness part is proved in the same lines as in Theorem 2.1. Denoting
z=w—vV,s=7—pwe have that Vz, s € LI(R") and

. 0z Oy 0z B 0y;
/]RN (Vz.ch uaxl 01 +68:c1 (p>dx_/RN58xidX
Vo € C°(RY)

V-z=0 ae. in RV,

Taking in particular ¢;(y) = we(|x —y|), ¢ = 1,2,..., N, € > 0, the standard
mollifier, we get for z. = z x w. € COO(RN), Vz € Lq(RN) and s, = s*xw, €
C>®(RY) N LIY(RY) that

0z,
Alze) + 85 -+ Vse =0 gN, (2.44)
V-z.=0

Now, applying the divergence to (2.44); we have
As. =0 inRY (2.45)

and therefore, multiplying (2.45) by s.|s:|972nr with nr the standard cut—off
function and arguing as in Theorem 2.1 we get thanks to the integrability of s,
and s that s. = s = 0 a.e. in RY. We are therefore left with

0z
A(Zs) + Baixj =0

and again, arguing as in Theorem 2.1, we get Vz. = 0 and consequently z =
const a.e. in RV,

O

We finish this section by proving a more general version of the uniqueness
lemma

Lemma 2.3 Let 1 < ¢,r < N + 1 and let (ul,p') € WEU(RY) x LL (RVY)
and (u?,p?) € VVZIOCT(RN) x L7 (RN) be g— and r-weak solutions, respectively,
corresponding the same data f, g such that Vu®) € LIRY), Vu® e L"(RY).
Then

u=ul —u® =ceR¥
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Proof: The couple (u,p) satisfies

8u lp

for all ¢ € C3°(RY) with zero divergence. Therefore, due to the density (see
Remark VIII.3.4) also for all

e HL W (RY) = {p e WM RN)n W (RY); V-9 =0in RV},
Let us consider an auxiliary problem
0z
A@) =B -+ VT =8 4 gV (2.47)
V-z=0
with
£ CPRY) = {ue CSO(RN);/NudX:O} c DyM(RYN) vg>1.
R
Theorem 2.2 guarantees existence of a couple (z,7) such that z € LI(RY)
Vg € (P 00), (Vz,7) € LI(RY) Vg € (1;00) — a weak solution to (2.47). Evi-
dently, this solution is also strong, in particular C°°(RY). We multiply (2.47);

by ulg, (g the Sobolev cut—off function with R > e? (see Section VIIIL.2) and
integrate over R

0z Ou
/]RN (Vz:Vu—Mam1 Ere ﬁ— z CRdx—/ £ -ulpdx—

0z 0
(o

The second term on the right hand side can be bounded by
C([uVVCrllg + [0 VR (1Vallgnr + 2lgnr + I7llgar)

and tends to 0 as R — oo (see Lemma VIII.2.2). We may therefore apply the
Lebesgue dominated theorem to get

dz 0
/RN (Vz Vu—,uaxz 8:;11 ﬁ— zZ dx—/ €-udx. (2.48)

The left hand side is thanks to (2.46) equal to zero and we are left with

/RNg-udx:o Ve € T (RY).

This implies u = ¢ € RY and easily we get also p = a € R. Let us finally note
that the condition min{¢’,7'} > 23! implies max{q,7} < N + 1.
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III.3 Modified Oseen problem in exterior domains

In this section we shall study

V-u=0
u=1u, atoN

ou
Al + 057 +Vp:f} in 0
(3.1)

u—0 as|x|— o0

with A(u) = —Au+ ,ug%l, 0<p<1 QcRY, N =23 an exterior domain
1
to a compact body B = Q¢ We can assume, without loss of generality, that
B1(0) C B C B;(0). Using the results from the two preceding sections we shall
2

prove existence, uniqueness, L9—estimates as well as asymptotic properties at
large distances for solutions to (3.1).

Definition 3.1 We say that the vector field u : Q@ — RY is a g-weak solution
to (3.1) if for some q € (1;00)

(i) u € DH(Q)
(ii) u is (weakly) divergence free in Q
(i) u/m = u, in the trace sense
() imp oo [g, [0(R,w)[dw =0
(v) for all € C(RY) with zero divergence in RY we have

. ou  Op _
/Q(Vu.vzp—ua7 o ﬁa—ml. o)dx=(f,0).  (32)

Remark 3.1 Let us note that here we use a bit different definition of the weak
solution than in the whole space.

If f has some (mild) degree of regularity, we can associate to every g—weak
solution the corresponding pressure field

Lemma 3.1 Let Q ¢ RY be a locally lipschitzian exterior domain in RY,
N >2. Letf € W_l’q(QR) VR > diamQ°. Then to every weak solution u to
(3.1) we can associate a pressure field p € L} (Q) such that

loc

ou
/Q(Vu Vo — g 8:61 ﬁ— w)dx:/S)pV-deHfﬂm (33)

for all @ € CP(RY).
Proof: see Appendix, Theorem VIII.5.3
O

We shall also use several times the following result on the local regularity
of g—weak solutions.
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Theorem 3.1 Let f € W,2%(Q), m >0, 1< g < oo and let

ue W,d(Q),p € L, (Q)

loc

with u (weakly) divergence free satisfying (3.3) for all ¢ € C3°(). Then

ue W), pe wrth(Q) .

loc loc

In particular, if £ € C*°(Q), then u, p € C*(Q). Furthermore, if Q is of class
C™2 and )
fe W), u. € W 2490),u e WLI(Q),

then

ue WQ), p e wi(Q).

loc

In particular, if Q is of class C* and f € Coo(ﬁ/) for all bounded ' C Q and
u, € C®(09), then u, p € C>() for all bounded ' C Q.

Proof: It si an easy consequence of Theorem VIIIL.5.4. We can assume the
system (3.1) as the modified Stokes problem with the right hand side f — ﬂg—;l.

O
We have the following uniqueness results

Theorem 3.2 Let 1 < ¢ < N + 1 and u be a g—weak solution to (3.1) with
f = u, = 0 such thatu € L"(Q) for some 1 <1 < co. Let Q € C? be an exterior
domain in RY. Then

u=0, p=acR,

where p is the associated pressure to u due to Lemma 3.1.

Proof: From Lemma 3.1 we get the existence of the pressure field p €
L (). Applying Theorem 3.1 we see that u, p € C*(Q2) and u € W2i(9),
p € VVllog(Q) Let n € C§°(B2r(0)) be the usual cut—off function, n = 1 in
Br(0), R > 1. Then

v=u(l-mn)
=p(1—mn)
is a g—weak solution to
ov
A(V)+ﬂ8701+V7T:F in RV (3.4)
V-v=_G
where
du & on
F=2 — 22—t pu(An— p—r) — fu—=t- —
VuVn = g u(An “axf) 0 ey ~ PV
G=—-u-Vn,

i.e. evidently F, G € C3°(RY). Moreover, we know that v € L"(RY), Vv €
LI(RN), 7 € LL (RY). Now, let (V,P) be solution to (3.4) constructed by

loc
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(2.9). Then, by Theorem 2.1 V € L{RY) vt € (§;0), VV € L3 (RY)
Vs € (83 00) and P € LY(RY) Va € (25; 00).

Lemma 2.4 gives us therefore (as both v and V are integrable) v .=V
and T — P = a € R. We put pV) = p — a. Evidently, p() is again a pressure
field and (u,p(M)) satisfies (3.3) for all ¢ € C§°(RY). Moreover, p(1) € L*(Q),
a € (x¥7;00) since p() and P coincide on B2(0) and p € W,,%(%2). The couple
(v, 7MW with 7() = p((1 — ) is a g—weak solution to

or1

Y 1) — p@@)
()‘i‘/B +V7T F inRN7
V-v=G

where F()) = F 4 aVn € C3°(RY). We easily see that!!

uc LY(Q), 1te(M )

N-1’
Vue L(Q), € (%;oo)
P(l) eL*(Q), ac (%, oo) .

Now, let N = 3. As (3.2) evidently holds (from the density) also for functions
¢ from W7 (Q) with zero divergence and (3.3) makes sense if moreover Vv €
LP(Q) for some b < 3, we can use as test function in (3.3) ¢ = ulg, (g the
Sobolev cut—off function with R > e2. We get

Y [ (e 0ud 0w
/Q(Vu.Vu ,uax 8x1)CRdX /Q(u oz, 83:1 — pu 21 axl)dx—i—

+ [ o0 Venax+ 5 [ upSen

The right hand side of (3.5) can be estimated by
CIVull2 + [lp™M 2) Va2 + [[ulls [uVer] s

81‘1
(3.5)

and tends to zero as R — oo (see Lemma VIIL.2.2). Hence Vu = 0 a.e. in R®
and since u is summable, u = 0. Now easily p) = 0 and therefore p = a € R.
In two space dimensions, we have

ueLt(Q), t € (3;00)
S 3.
Vu e L%(Q), 5€<§,oo>
pM e LY(Q), a€(2;00).

Therefore, unless r < 3 or ¢ < 2, we cannot control the term [, |u]26CR dx. In
such situations, we use as a test function

¢ = ulu’Cg,

the integrability at large distances follows from the properties of V and the fact that

u = V in B*/(0). Concerning the integrability near 9Q, since u € W,4(Q), we have due to
Ngq

Theorem 3.1 that u € W29(Q), i.e. u € WlocN 7(Q), ¢ < N. After finite number of steps we
have u € WL7(Q), r € [1; oc].

loc
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where ¢ > 0 is sufficiently small. Instead of (3.5) we have

ou Ou ou OCr ou 0Cgr
2 — YR Ysn . 1)
/Q<]Vu\ 'ué)a: e )|u\ Crdx = /Q(,uu 00, Oy u 9, O Z)\u| dx—+

OCr o Oug
+/QP(I)U'VCR|11’6(1X+?/ \u|2+6£+5/}0 Duful’ 2%7(}%*
_5/ Bu] 8uk our, Oug

— pU U }(R|u|‘S Zdx.

T Ox1 01

Passing with R — oo and using
R
244 146
1 2 e < 2V allage
we get

Ju Ou
2_ 7= 7= d (1) (14410 5 2
. <
(vl = 22 uffax <6 [ (0)ul’ [Vl + [uf’ [ Fuf)dx
Finally we pass with 6 — 0 and using the Lebesgue dominated convergence
theorem we get, as in the threedimensional case, u =0 and p = a € R.

O

Remark 3.2 If ¢ > 2, then Theorem 3.2 holds also for Q € C%! an exterior

domain. Then we have namely Vu € L2 () and the first term on the left hand
side of (3.5) is finite.

We start to construct weak solutions to (3.1). As the methods in two and
three space dimensions are significantly different, we study each case separately.
As ) is unbounded, we expect that the compatibility condition

/ u, - ndS (3.6)
o0N

might be omitted. This is evidently true if N = 3 but if N = 2, the method
presented in [Gal| seems not to work as well as some modifications of it. We shall
mention the crucial problem later on. Therefore, for N = 2 we shall suppose
the condition (3.6) to be satisfied. For our application, the condition is trivially
satisfied in both two— and threedimensional cases.

I11.3.1 Threedimensional modified Oseen problem

Theorem 3.3 Let ) be a threedimensional exterior, locally lipschitzian do-
main. Let

fe D), u, e W22(0Q) .
Then there exists (2-) weak solution to (3.1). This solution satisfies the esti-

mates
[all2.0p + [ulr2 < C(f[12 + w1 5 (90)

/ lu(R,w)|dw = (%) as R = |x| — o0 (3.7)

Hp||2,QR/]R < C(|f|=12 + |uf1,2)

for R > diam$)¢; p is the pressure associated to u by Lemma 3.1.
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Proof: We look for the solution in the form

u=v+w+to, (3.8)
where ® 1
0] :/ u, -nds.
o0

Further, v € W12(Q) denotes the divergence free extension of u, —a of bounded
support in €, see Theorem VIII.3.1.12 We have

1
UZO(W) as |x| — oo.
Finally, (w,p) will be 2—weak solution of the problem

ow
A(W)—Fﬁaixl—va:F )
V-w=0
w=0 at o

(3.9)

with F=f—- A(v+o)— ﬁa%l(v + o). Then, easily, u € DV?(Q) is divergence

free, u /9 g = W in the sense of traces, u satisfies (3.2) and

[ (g \dw</ w(R |dw—|—O(R2>

From the properties of w it follows that [q, [w(R,w)|dw << 7 for R = [x] su-
fficiently large, see Lemma VIII.1.12. We are therefore left Wlth the proof of
existence of 2—weak solution to (3.9); moreover the condition (iv) from Defini-
tion 3.1 is trivially satisfied.

Let us introduce an auxiliary problem. For any ¢ > 0 we look for w*® & ﬁzl (Q)
(see (3.13)) solution to the problem

(W) = (F,p) Vo € Hy() (3.10)

with

ows ¢ ow*
VVE VVVE . \/ - _|_ VVE . Sp d
(W", ¢)) /Q ( p—H 01 8301 583:1 ¢ Jdx

The space H(Q) = HL(Q) is a Hilbert space with the scalar product
(w,p) = / (Vw : Vo +ew - p)dx
Q

and ((w*,¢)) is for any p € [0,1) a continuous sesquilinear form on H3 ().
To see this let us recall that [, %‘% - dx = 0 due to the density of C3°(Q) in

12Evidently, the compatibility condition fan(u* —o)-ndS =0 is satisfied.
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VVO1 2(Q). Lax-Milgram theorem (see Theorem VIII.1.1) thus yields existence of
a unique w® € HJ (), the solution to (3.10). Thus we have

Vw2 < CF[ -1, (3.11)
with C independent of . Moreover, easily

Fl12 < (12 + [uall1 5 90)) - (3.12)

Therefore, at least for a chosen subsequence, there exists w € ﬁzl(Q) such that
w® —=w in L5(Q)
Vw® — Vw in L}(Q).
From (3.10) we get

ow

+ 683:1

T i ) <)

Using the Holder inequality we easily have
1 1
[wll20, < [Qr[3|lwlls < ClQR[3|W]12.

Finally, we can come back to the weak formulation of (3.1) and using Theorem
VIIL.5.3 we get

[Pll2,00/r < C([f[-12 + [[ull2.0p + u12) <
< CBR)([fl-12 + [u

1.2)
which finishes the proof.

d

Corollary 3.11 Let Q be an exterior threedimensional locally lipschitzian do-
main, u, € W22(0Q) and f € C°(Q). Then the solution, constructed in The-
orem 3.3 has the following decay properties for |x| sufficiently large:

IDu(x)| < Clx| "5 1+ s(x) 15 Jal >0

(3.13)
|Dp(x)| < Clx|>71* || > 0.

Remark 3.3 We can add to p such a constant that (3.13) holds also for |a| = 0.

Proof: Theorem 3.1 implies that solution, constructed in Theorem 3.3, is
of class C*(Q). Let us recall that we also have u € L%(Q), Vu € L?(Q) and
p € L2 (). The couple (U, P) € C>°(Q), U=u(l—1n), P=p(l —n), n asin
Theorem 3.2, is a 2-weak solution to

ou
A(U)—i—ﬁaixl—FVPZF

V.-U=d(

(3.14)
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with F, G € C3°(R?),

du 0 0
F=(1-nf+2VuVy - 2“875187.:1 + uA(n) — ﬁuﬁTZ —pVn

G=-u-Vpg.

(3.15)

Clearly U € LS(R?), VU € L?(R?) and P € L2 (R?). Theorem 2.2 guaran-
tees existence of another solution (W, II) such that W and VW have the same
integrability as U and VU, respectively. So, due to Lemma 2.3 U = W and
P=II-a.

We take pY) = p + a, denote P = (1 — 5)pM). Then the pair (U, P()
solves the system

A(U) + ﬂgf +vph =W
1
V-U=G

(3.16)

with F() = F — aVn. Due to Lemma 2.3, (U, P(l)) coincides with the solution
of (3.16) constructed in Theorem 2.1 and therefore, by Corollary 2.1 we get the
asymptotic properties of (U, PM). As (u, pM)), solution constructed in Theorem
3.3, coincides with it outside Bagr(0), we get (3.13).

O

Remark 3.4 Using the same procedure as above for the twodimensional case
we are not able to control the behaviour of u at infinity and therefore we cannot
apply Lemma 2.3.

I11.3.2 Twodimensional modified Oseen problem

As announced in Remark 3.4, we cannot easily use the technique from the
threedimensional situation. We therefore follow the ideas of Finn and Smith (see
[FiSm)]; see also [Gal] Section VIL5). Let us consider the following modification
of (3.1)

V-u=0
u=u, atofN

ou
A(u)+ﬂaxl+5u+Vp:f} in Q
(3.17)

u—0 as|x|— o0

with § > 0. We first prove the existence of a solution to (3.17) in certain L9—
spaces and get some d—independent estimates which will allow us to pass with
d to zero and therefore get solution to the original problem (3.1). The proof
will be similar to the threedimensional situation. We therefore first consider
the following non-homogeneous version of (3.17)1 5 in R?

3:61
V-u=gyg

Ou
A(u)+ﬂ+5u+V7r:f} MR (3.18)
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We denote
(u,v) = /2u-vdx
R
u Ov (3.19)
au(w,v) = (Vu, V) = (5 5=

Lemma 3.2 Let f € LI(R?), g € WLCI(R?) N Dy (R?), 1 < q < 3. Then for
all § € (0,1] there exists a solution (u’,7°) to (3 18) such that
1,34 _3q_
u’ € W2(R?) N Dy " (R?) N L5 (R?)
vl € LI(R?)
uf € DYI(R?) () L4 (R?)

ouq
— ¢ LY(R?
9, (R7)
and
5 5 2 5 15 ouj
Bllugll 2o + Bluslig + B3[u’]} 3¢+ B3[u’]] a0 +ﬁ\ || T
2—q 73-2q ’3—q q

+ul2g < C([fllg + [gl1.q + Bllgllg) (320)
’775’1,11 < C(Hqu + |9’1,q + BHqu + 5’9’—1761)

with C independent of 6 and B. Moreover, if w, T are such that
o) we WI2(R), r € L}, (R?)

b) for all 9 € C§°(R?)
0w + (5 ) + 0w ) = (1T ) — ()

and V -w = g a.e. in R?,

then necessarily w = v’ and T = 7° + const a.e. in R2.

Proof: The proof is very analogous to the proof of Theorem 2.1. We again
assume first § = 1 and use finally rescalling in order to obtain the constant
independent on f3; for this purpose we must take ﬁQ instead of 5. We can again

calculate the Fourier transform of u® and 7°. Denoting U = F(u’), P = F(n%)

we have
2 _ z
REAET T lep 1)
P(e) = Sk 7 (g ) + M& )f<g><§>,

!5!2 13§

where h(€,6) = (1 — p)é? + €2 — iy + %. It is an easy matter to see that

(6’“}’?@ 5 §m§k) satisfies under certain conditions the assumptions of Lizorkin mul-

tiplier t eorem moreover Lemma 2.1 can be applied to show that the constants
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do not depend on %. We can therefore easily get the estimates for u’ from
Theorem 2.1. Moreover we can show that u® € W19(R?). We have namely that

1 2
M@® ;3
€0 = Vo

IA
> Q

g

S

and therefore
[l1q < CO)UEllg + gll1g + l9]-14) -

Without having g € D™19(R?) we do not have any estimate of the gradient
of the pressure; this is caused by the term ﬁ]—"(g). But for g € D™19(R?) we
can similarly as in Theorem 2.2 get the estimate (3.20)s.

It remains to prove the uniqueness part. Let us set v=w — u‘s, pP=T— .
Then v obeys the identity

au(v, @) + 5(5;, @) +3(v,0) =0 Vg e (D(R). (3.22)

We know that u® € W?29(R?) and therefore, by imbedding, u’® € W12(R?).
Moreover, V - u® = 0 and we can easily extend the validity of (3.22) for ¢ €

H}(R?), by density (see Remark VIIL.3.4). Therefore we may use v as the test

function in 3.22 and get (recall that (v, 8‘9—;’1) = 0 by the density argument)

CIIVvIE+ VI3 < 0
i.e. v =0 in H}(R?). Therefore
(0, V-9) =0 WpeCFRY,
which implies p = const and 7 = 7% + const in R2.
O
Remark 3.5 Assuming more regularity about f and g we easily get

IV7°l] 2o < C(Ifll 2 + V9l 2o + Bllgll 2o +dllglly) (3.23)
—q 2—q 2—q 2—q

This follows from the fact that |§T2 satisfies the assumptions of Theorem II1.3.3
with 8 = 3.

The next step consists in proving the existence of a generalized solution to
(3.17). We call u® 2-generalized solution to (3.17) if the conditions (i)-(iv) from
Definition 3.1 are satisfied with u®, ¢ = 2 and

u5
0u(,0) + 5(5 ) + 00, 0) = (£ (3.24)

holds for all ¢ € ¢D(Q2).
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Lemma 3.3 Let Q be a locally lipschitzian, exterior domain of R? and let
f e Dy (Q),u, € W22(0Q) .

Let moreover
/ u,-ndS =0.
o0

Then V6 € (0,1] there exists a generalized solution u® to the problem (8.17).
We have

olu’llz + [lullzq, + [ulrz < er(fl-12 + (1 + B)llusll1 5 o0)) (3.25)
with ¢ = c1(R, Q). Moreover, denoting p° the associated pressure field, then

1P’ 2,00/ < ca(|fl-12+ (14 B)[u’[12) (3.26)
for all R > diamQ°, co = co(R, Q).

Proof: The proof is analogous to the proof of Theorem 3.3; we only cannot
extend u, with nonzero flux over the boundary to a square integrable function;
the extension would behave like ﬁ for |x| sufficiently large, see also Remark
VIII.3.3. Therefore we must assume the condition (3.6) to be satisfied.

We search the solution in the form

u(5 — V(S + W(S
with v® a divergence free extension of u, with bounded support in Q and
wo € H3(9), solution to

owd

1
(IH(W 7‘P)+5(Tx1><ﬁ

) + (5(W5,<p) = (F,p) Ve e D) (3.27)

with F =f — A(v%) — 3 (%lv‘s —6v°. Applying the Lax-Milgram theorem in the
same manner as in the proof of Theorem 3.3 we get the existence of a unique
solution to (3.27). Moreover, using the properties of v? we also have

ollw?l2 + [w’

12 <C(f|-12+ 1+ /B)HU*H%Q,(E)Q)) .

Again, as in Theorem 3.3, we get estimates (3.25) and (3.26). We finish the
proof by verifying the condition (iv) from Definition 3.1. Actually we have for
§ > 0 that u® € W2(Q) and so, putting |x| = r and

2w
J(r) = / ’ué(n 0)[>dd, r> diamQ°,
0

We recover dj
J(r) € L} (1, 00), - € LY(1, 00)
T

which implies lim, o, J(r) = 0.
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Lemma 3.4 Let$2 be locally lipschitzian, £, u, satisfy the hypothesis of Lemma

3.3 and further, let f € LI(Q), 1 < ¢ < % Then the solution u® from the

preceding lemma satisfy in addition for all R > diamQ°
W’ e D2I(QR) 0 pYate (QF) N L9 ()
€ DH(QF)
W € DM(Q) N L7 (Q)
ous

— 2 q
2, € L1(Q)

along with the estimate

2—q ’ 8.%' q ’ ’3—2q

1
+33 \u6|1,33%q,QR + [0y g0r + P |1q0n <
< O(|Ifllg + [f] 12 + (1 + 5)2HU*H%,2,(89))

with C' = C(q, <, ).

Proof: We take n = nr the usual cut—off function with R > 2diam Q¢ and
2
setting

we have that

ou
A(U) + 6871 +dU+VP=F R (3.20)
V.-U=G
with
on ou® an
F=(1-nf—Anu’+2 o=t — pu’ L —p°
(I—mn) (mu® +2VnVu Hoe oo~ P B p°Vn
G=-u’ V.

Asl<g< %, we easily see

IF(lg < CllIfllq + 1+ )0l 205 + 1P°]l2,05]
1Glq < Cllu’|l2,05
|Gl1,q < Cllull12,04
Gl 14 < ClI0 |20, + [l 1 2, 00)]
The last estimate follows from the fact that [, 90 W - ndS = 0 and therefore

there exists w € W12(Q¢) such that V-w = 0 in ¢, w = u, at 9Q° = 9Q (see
Lemma VIII.3.1) and denoting

B {uinQ
u=

w in Q°
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we see that w € W12(Bg(0)) for any R > 0 and

(Gl =] [, V- (npdx]| <
< Cllullap + el 5 00Vl

for any ¢ € C5°(RY). Therefore we get

1,22 _3q_
U € Dy*(R?) N DF(R?) N Dy’ ™ (R?) N L7 (R?)
2
Uy € DYH(R%) N L7-4 (R2)
8U1 2
— c LR
5, (R?)
P € DY(R?),

U, P satisfy the estimate corresponding to (3.20). We finish the proof by recal-
ling that

0
5,

10’ll 20 g, + lu3l1qn + | ]2y g, < Ol 2,
—2q

O

Combining Lemmas 3.3 and 3.4 we are in a position to prove

Theorem 3.4 Let Q) be a twodimensional exterior locally lipschitzian domain.
Then for

_ 3
feDy P ()NLIN),1<q< 3
u, € W22(9Q)

there exists a generalized solution u to (3.1). Moreover, for all R > diam Q¢ we
have

u € D>1(QR) 0 DY51(QF) N L75 ()
p € DM(QR) N L2 (QR)
up € DMI(Q) N L7 (Q)

8u1

8:61

with p, the pressure associated to u by Lemma 3.1. Finally we have

e LI(Q)

[ull2,0p + |U|12+ﬁ(||u2|| 2o ugli,q + H(%IH )

+ min{1, ﬁ3}|u|1 S +
+ﬁ§\u|173%7ﬂ,% +ulg g ar + 1Pl g0r + [Ploor/r < (3.30)
< C(Ifllg + (1 + B)fl-12 + A+ B)%[[ w1 2 00)

with C = C(q,Q, R).
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Proof: We have that for all § > 0 the functions u® satisfy
5 3u5
au (0, 9) + (5. 0) +8(us.0) = (£.9) Ve € 0D(Q).
x1
From (3.25) and (3.28) we see that there exists at least subsequence such that

Vu® =~ Vu in L*(Q)
u’ —u in L32(Q)

ou’ -0 in L*(Q)

and 9
u
an(w,9) + (5 9) = (F.9) Yo €oD(®),

i.e. the condition (v) from Definition 3.1 is satisfied. The estimates (3.25) and
(3.28), thanks to the weak compactness of L"(2), remain satisfied and we get
(3.30). We easily observe that u is divergence free and assumes the value u* at
0% in the sense of traces. It remains to verify the property (iv) from Definition
3.1. We shall prove even something more; namely that

lim u(x)=0. (3.31)

|x|—o0
We have that u € D*7(QF), 1 < g < 3 and therefore u € Dl’Z%qq(QR). Thus
u e DY (QR) 0 L35 (QF)
and (3.31) follows from Theorem VIII.1.17 and Remark VIII.1.11.

O

Corollary 3.2 Let u, and ) satisfy the hypothesis of Theorem 3.4. Moreover,

let £ € C5°(Q2). Then the solution, constructed in Theorem 3.4, has the following
decay properties for |x| sufficiently large:

1+|o] 1+|o]

[D*u(x)| < Clx|™ 72 (1+s(x))" 2
[Dp(x)| < Clx|~T Ja] > 0.

>0
lof 2 (3.32)

Remark 3.6 We can add to p such a constant that (3.32)y holds also for
la] = 0.

Proof: From Theorem 3.1 we know that our solution, constructed in Theo-

rem 3.4, is infinitely times continuously differentiable in §2. Recall that we have
constructed the solution in such a way that u € L%(Q), Vu € L?() and
p € L2 (). The couple (U, P) € C>°(Q), U=u(l—n), P=p(l —n), n asin
Theorem 3.2, is a 2—weak solution to

ou
A(U)—i—ﬁaixl—FVPZF

V.-U=d(
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with F, G as in (3.15). Clearly U € L7-% (R?), VU € L*(R?) and P € L, (R?).
Theorem 2.1 guarantees existence of another solution (W, II) such that W and
VW have the same integrability as U and VU, respectively. So, due to Lemma
23U=Wand P=1I —a.

We take p{') = p+a and denote P() = (1—7)p™). Then the couple (U, P(V)

solves the system
A(U) + ﬁa—U +vpl = M)
6901
vV.-U=¢G
with F()) = F — aVy. Evidently, (U, P1) coincides with the solution to (3.33)
constructed in Theorem 2.1 and therefore, by Corollary 2.1 we get the asympto-

tic properties of (U, PM). As (u,p™), solution constructed in Theorem 3.4,
coincides with it outside Bag(0), we get (3.32).

(3.33)

O

We finish this subsection by proving the following uniqueness result.

Theorem 3.5 Let Q be an exterior domain'® of class C? in RN, N = 2,3. Let
1 < g < N+1. Then there exists at most one q—generalized solution to (3.1) in
the sense of Definition 3.1.

Proof: Let (u!,p') and (u?,p?) be two different g—generalized solutions to

(3.1) with the same data. Denoting v = u! —u?, 7 = p! — p? we have that (v, p)

is a generalized solution to

0
A(v)+5a—;+vp:o
V-v=0
v =0 at 0.

Applying Theorem 3.1 we have that v, p € C*°(2). Proceeding as in the proof
of Corollaries 3.1 and 3.2 and using that Vv € L9(€Q2) and v tends to 0 in the
sense of Definition 3.1 (iv) we have that v satisfies the decay properties (3.13)
and (3.32), respectively. So we have that u € LP(Q®) ¥p > 2 (N = 3) or Vp > 3
(N = 2). Due to Theorem 3.2 we have v =0 and p = const.

I11.3.3 Estimates in L?—spaces

In this subsection, we shall study once more the solution obtained in the last
two subsections and we shall extend the existence theorems to more general
situations.

Theorem 3.6 Let ) be an exterior domain of class C™ 2, m > 0. Let N = 2,3

and
N +1

2

f e Wm™a(Q),u, € W2 0900),1 < g <

13if ¢ > 2, then it is sufficient to take Q € C%!, see Remark 3.2
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Then there exists one and only one solution (u,p) to the Oseen problem (3.1)
such that

ue wm2(@)N{ ﬁ DL (@) DI2(@) |

=0
m
pe (D)
1=0
with s1 = (N+1)g S92 — (NVHl)g If N =2, then also

N+1—q’ 2= N+1-2¢"

uy € W™ (Q) ﬂ{ ﬁ D”l’q(Q)}.

140
Moreover
<
ay|[ullm,s, + ﬂH H + Z laz|uliy1,s, + [Uli42,4 + [Plir1,e] < (3.34)
< C(Hmeq + el o1, 00))
and if N =2,
8u1
B(]luz ﬁq+HVWWmmO+GNUWmf+M‘ o
+ Z[az\u!lﬂ,sl + [ufiy2,q + Plig1,g) < (3.35)

=0
< C(|[f][m,q + ||u*Hm+2—%,q,(aQ))

with a1 = min{l,ﬂNLH}, as = min{l,ﬂﬁ}. The constant ¢ depends on m, q,
N, Q and 3. However, for q € (1, %) and 3 € (0; B] for some B > 0, ¢ depends
only on m, q, N, Q and B.

Proof: The uniqueness part follows easily from Theorem 3.5 as ¢ < & +1

implies s1 < IV + 1. In order to prove the existence part, let us start to con51der
the problem (3.1) with data

feCs@),u, e W' 0900),1 < ¢ < co.

Combining Theorems 3.1, 3.3 and 3.4 with Corollaries 3.1 and 3.2 we may
construct a solution (u,p) such that

e WU Q) NC®(Q), pe W, H@Q) N C®(Q)

loc loc

and (u, p) have at large distances the asymptotic properties as the fundamental
Oseen tensor and V&, respectively.

Let 1 be the usual cut—off function equal one in Qr and zero in QF, R >
2 diam Q°. Denoting U =u(1 —n), P =p(1 —n) we get2 that

A(U )+66—U+VP F

VUG

(3.36)
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with
Ju On an
F=(1-n)f+2 oL wA®) - fu—L —
(1-=n)f+2VuVyp how 0y O (n) ﬁuaxl pVn (3.37)
G=—-u-Vn.

As F, G € C°(RY), there exists (w,7) such that (see Theorem 2.1)

w e ﬂ Dl+2’q(RN), e m Dl+1’q(RN)

=0 =0
~ N +1)q
DHFLsyRN _ WHba N+1
weloo (RY), 51 NTii_g’ <qg< N+
q
N +1)q N+1
w2 (RN _ Wi ba —.
weloo (RY),  s2 NT1_2 <4< —

Moreover, due Corollary 2.1, (w, 7) have the asymptotic structure of the funda-
mental Oseen solution (see (2.38)). As U and P coincide with u and p outside
Br(0), respectively, we have the same structure for U and P and therefore,
applying Lemma 2.3 together with the integrability properties of U and w, we
get w=U and 7 = P + a, a € R. Theorem 2.1 yields

2 1 ou
ﬁN-‘rl ’u‘l782,QR + /BN-‘rl ’u‘l—&—l,shQR + ,8‘87‘ + ‘u|l+2,q,QR+

21 11,g,0F (3.38)
Hplip 1,907 < Cflg + 1+ B)[ulig0r + [ufit1,6.08 + [Pligor)
with s1, s9 defined above, and if N = 2
2 1
g3 |u’173§7‘§q7QR + B3 |UIH_L33qu + |u’l+2,q,QR + ‘p’l—&-l,q,QR"i'
duy (3.39)
+ﬁ(‘87:1:1 Laar T |u2lif1,q,0r + \U2’l,22qu7QR> <

< C(|f|l,q + (1 + 5)|u’l,q79R + |u’l+17Q7QR + |p’va7QR) :

We shall now estimate u, p in Qg. From Theorem VIIL.5.4 (the term ﬁg—; is
put on the right hand side) we can get applying Corollary VIII.1.2

lalmt2g0e + IPlntra0e < CI1€lmnagen + 0slmia—1 g @0+

Ju (3.40)
) gy lrn 1822 o) + IPllaan + I¥llg0n] -
From the trace theorem (see Theorem VIII.1.6) we easily get
||u”m+2—%,q(aBgR) < C(’u\m+2,q,QR + ullm+1,6,008) - (3.41)

As Js,]iiri)qu < N]X %q, k=1,2, N > 2, we have from the imbedding theorem (see

Theorem VIII.1.2)

m

allmss.00 + Y10l .05 < Cllullmizgon (3.42)
=0
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and for N = 2, also
HuHm’;qu’QR < C||u||m+1,q,QR . (343)

Collecting (3.38)—(3.43) yields

01|t 50,0 +6H o I +Z [asfulis1 o0+
44
uliszgn + phngal € Cllflmaat (3:44)
and for N =2
Ml o+ [Vl sl o0+ 9530 e
+Z)me1mQ+mmmn+wHumg (3.45)
=0
< CIf g + 11022 g o) + A+ Bulit10.00n + 1Plng.0zr)
with a1 = min{l, 8%}, ay = min{1, F¥}, s = §EDI 5, = (UL

Applying several times the interpolation inequality (see Theorem VIII.1.11) we
have for ¢ sufficiently small

_1
;fé;RllpHn"{fl,q,gm < ellplim+1.0.0:5 +c(E)Plg0op - (3:46)

1pllm,g.0: < Cllp

After modifying p by a suitable constant, we have also from Theorem VIII.5.3
(recall that LY(Qag) — D™ 19(QaR))

12llg.0:n < C((A+ H)llull1g0:r + Ifllg) - (3.47)

and so (3.44)—(3.47) yield

ammm&@+MBmwMQ

+ Z lag]uliy1,s1,0 + [Ulir2,g0 + Plit1g0] < (3.48)

=0
(Hmeq -1 g o0) + A+ B)l[ullmiro9:r)

and for N =2
Allluzll,, L0 + [[Vuzllm+1,00 + a1||11|| 240 + ﬁHaxl quﬂ
+Z azluf 2ot [ulir2,0.0 + [Pliti,g0l < (3.49)
1=0

CIElm,q + Hu*HmH_é,q,(am + 1+ O)ullmt1,q.0:)

with a1, ag, s1 and s defined above.
We are now looking for an inequality of the type

[allms1,g.0:0 < CUEmg0 + l0llyi2-1 g 00))
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for a constant independent of u, u, and f. We show this by a contradiction
— 1

argument. Let {fi} C C5°(Q2), {u.}x C W™ 29(9Q) be such that, denoting

by (ug, px) the corresponding solution to the Oseen problem with data fy, (u.)x,

we have

1
[0+ N0kt o < 70 J0bntia =1 (3:50)

Now, let k — oo. From (3.48) we have that uy, is bounded in L®2(2) N D%51(Q),
V2u;, in W™4(Q) and pp in DY9(Q). Therefore, at least for a chosen sub-
sequence, uy — u in L%2(Q) N D*1(Q) N D?9(Q), pr, — p € DH4(Q) and u is
a s;—weak solution to the modified Oseen problem (3.1) with f = 0. Moreover,
up — u in WtL9(Qyr) and therefore u assumes the zero trace at 09, i.e.
u is a s;—weak solution to (3.1) with zero data. Applying Theorem 3.2 we see
that u = 0 and p is a constant. But up — u € W™tL4(Q,r) and we get a
contradiction to ||ug||m+1,4,0,5, = 1. Therefore, (3.34) and (3.35) are shown.

Unfortunately, the constants in (3.34) and (3.35) depend apriori on 5. We
shall show that if N =3 and ¢ € (1, %), the constant can be taken independent
of 8. Let 8 € (0,B], B > 0. Let the constant be dependent on . Then there
exists sequence {fy} C C5°(Q), {us}x C Wm+2_é’q(8Q) and (3 € (0; B] such
that

ou
A(ug) + Brg— bV =t
1
V- Uy = 0
u; = (u,)r  at 09

and
1

[Eellme + 1@k sat ggom < 5o [kl Laun = 1.
So, there exists § > 0 such that (6, — (3, at least for a chosen subsequence.

If B > 0, we can deduce as above u;y — u, pr — p and u = 0, p = const,
yielding a contradiction.

If B = 0, we can no longer proceed as above as a1,a2 — 0 and we cannot
control the norms of u in L*2(Q) N DY1(Q). Nevertheless, as for each fixed k
u; and Vuy, tend to zero uniformly (see Theorem VIIL1.17, ¢ < &), we have
forl <g< %

ol sy < OVl < M.

We proceed as above and get that there exists u € L5 (2) and Vu € L5 (),
u;, — uin L%(Q) N Dl’%((l) N D%4(Q), pr. — p in DH4(Q) and (u, p) solves
the modified Stokes problem
A(u)+Vp=0
V-u=0
u=0 atoQ

in the weak sense. Recalling that ¢ < %, we get from Corollary VIII.5.4 u =0,
p = const and we get as above a contradiction. In order to finish the proof for
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general f € W1(Q) only, we use the standard density argument.

O

Next we consider weak solutions to (3.1) in the sense of Definition 3.1. We
have the following

Theorem 3.7 Let Q@ C RY be an exterior domain of class C%. Moreover, let
1

f e Dy (Q), u, € W al(90), 5 < g < N + 1. Then there exists exactly
one g—generalized solution to (3.1). Furthermore

(N +1)q
L2 (Q =
uc ( ) , S92 N11_ P
p € LYQ)
and if N =2
Ug € Lq(Q) .
Finally
azllulls; +Julig +llpllg < CUEI-1q + Il _1 4 (90)) (3.51)
and if N = 2

Blluallg + azlfull s + [afrg +llplly < COEl-1q +ll0sllio1 g 00)  (352)

with ¢ = ¢(N,q,Q, ) and ag = min{l,ﬂﬁ}, IfN=3andq¢€ (%;3), then for
B € (0; B] the constant ¢ depends only on N, q, Q and B.

Proof: We start with f € C§°(Q), u, € Wl_%’q((?(l) N W%’Q(ﬁQ). Due to
Theorems 3.4 and 3.3 there exists (u, p), the unique solution to (3.1). Moreover,
due to Corollaries 3.1 and 3.2 and Theorem VIIL.5.4

ue WhiQ)NC>(9Q)
pe Ll ([@NC=(Q).

loc

We proceed as in the proof of Theorem 3.6. Let @ be a cut—off function with
support in Bg(O), ¢ =1 € BE(0) with R > 2diam Q°. Then

w = Yu

T =p

solves in RY (3.36)—(3.37) and satisfies (due to the uniqueness, see Lemma 2.3)

-
AR |wls + |w

Lg T lI7llg < C(F|-14 + Blgl-14 + llglla) »

N=>2s = 5@?1133

1
Bllwallg + A3 wll 20 + |Wlig + [I7llg < C(Fl-14 + Blgl-1.q + llglla)
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N = 2 (see Theorem 2.2). As ¢ > -, we havel

1.4 + Blgl-1.4 + l9llq < C(Fl-1,¢ + (1 + B)[[ullg0r + 1P -14,05)

and so
B |ull, 0 + [ul; g + |7 g0n <
< O(fl-14 + Blullogn + Ipl-100:), (N 22)
Blluzll g + 55 [ul g + [l ggn + pllgan <
< O(lfl-1q + L+ Blullgn + pl-100:) (N =2).

Next, we have "near the boundary” (see Theorem VIII.5.5)

allg0r + lIPllgn < CUF-10 + 0l -1 g 90)+
L+ Dlulgen + 1P1-1000 + ulli-1 yo8,)

where the obvious inequality
£l 1007 < [fl-14

was used. As ||u|]17%7q,(aBR) < C||“||1,q,ﬂ§R’ we easily get due to the fact that

[l

S7QR S CHUHLQ,QR

az|[ulls0 + [ufig0 + 70 <

< O(f]-1 + ellyt g 00y + L+ Dllllgn + ol 1400), (¥ 22)
Blluzllge + alal ge g + [aliga + Iploa <
< CUf 10+ Il oy + (L Dl + 7l -1000), (N =2).

We finish the proof by arguing as in Theorem 3.6; thanks to the uniqueness of
solution to the Oseen problem

lallgor + IPll-10.00 < CUfl-1q + i1 4 00)) -
Finally, if ¢ € (%, 3), the constant ¢ can be taken independent of (3 as
[l xg < Clufig
N—q

and in this case and we may apply Theorem VIIL.5.7.

Me.g. (recall ¢ < N)

Hvuvn”*Lq = SupthDé’q/ (RN) |fRN VuVmpdx‘ S

<sup, st v,y Clullll e < Cllull
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II1.4 Integral representation of solutions

The most important tool in the weighted estimates of solutions to the modified
Oseen problem will be their integral representation. For our purpose, we can
directly assume the right hand side in the divergence form, i.e. we study the
following problem

Ju
V-ou=0 (4.1)
u=1u, atoN

u—0 as|x|—oo.

Let us assume for a moment that G € C§°(2), the domain Q € C%! and
u, satisfy such conditions that there exists a unique solution to (4.1), e.g. u, €
W32 (092). We first show the integral representation for such right hand sides.
The standard density argument enables us later on to weaken the assumptions
ongG.

Let us denote
ou

Ou;  Ouy ;
T — kd J\ _ i — T 4.9
i(up) (8xj + ax) Pdij = Hij 5 - (4.2)
We easily see that (4.1); can be rewritten as
0
YTy + B =g, (43)
83:1

where we used the fact that u is divergence free.
Let D be a bounded domain in RY. We easily get for u, v smooth divergence
free vector fields and p, m smooth scalar fields

ov

/D (V'T(u,p) —ﬁgyul) -vdy = —/D (T(u,p) : Vv — pu- ay1>dY+

—i—/aD(v -T(u,p) -n—pPu-vny)dyS

ov ov
V- -T(v,— —-d:—/T,— :Vu—[fu-—)d
/D< (v 7r)+ﬂay1) udy D( (v,—7) : Vu— fu 83/1) y+
+/ u-T(v,—7) ndyS,
oD
(4.4)
where nqy = n - e; is the first component of the outer normal to D.
Recalling that for divergence free smooth vector fields
/ (T(u,p) : Vv —T(v,—m): Vu)dy =0,
D
we get from (4.4)
Ju ov
V-T(u,p)—B—) - v—(V-T(v,—7)+ F-—) -uldy =
LUV T - 50 ) v = (VT ) 85wy )

= / (v-T(u,p) —u-T(v,—7m) — fu-ver) -ndyS.
oD
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We take in particular
D = Qg’x) =Qr\{y;|x —y| <e},e < dist(x,090)

v(y) = wilx ~y) = (O (x ~ y: ). ... O, (x — y: )
w(y) = ej(x —¥) = o (x ),

J
j=1,2,...,N. Then T(v,—7)(y) = —T(wj,ej)(x—y), 0D = 0QUIBr(0) U
0B#(x). Moreover %Tik(wj, ej)(x—y)— ﬁ% = 0j;0x, where the derivatives
are assumed in the sense of distribution, dy is the Dirac distribution supported
at the point x . Moreover, let (u, p) satisfy (4.3). Then

/Q(m —(V-6(y)) - w;(x —y)dy =

= (wi(x —y) T(wp)(y)+ (4.6)
OQUOBR(0)UOBE (x)

t+u(y) - T(wj, e5)(x —y) — fu(y) - wi(x — y)er) - n(y)dy S .

We shall first pass with ¢ — 07. Due to the properties of w; = {O}; N,
(see Theorem 1.2), the integral on the left hand side converges to the integral
over Q. Next, let us regard the surface integral over 9B (x).

Due to Theorem 1.2 we easily check that for any smooth functions (u, p)

i (wi(x—y) T(u,p)(y) — Buly) wi(x—y)er ) n(y)dyS = 0. (4.7)
Due to the definition of the fundamental solution we have for any smooth
vector u (see also Subsection II.1.1 for N = 2)

OO (x —
uj(X) — lim (M_
e—0t JoBe(x) any (4.8)
04 (x —y)
() e (x— y)n(y) Juily)dy S
Y1
Therefore
sl—iggr OB ( )u(y) -T(wj,e;)(x —y)n(y)dyS =
. aogj(x -y) (49)
= —u;(x) — lim ———u;(y)nk(y)dy S

e—0+ JaBe(x) Oyi
Let us check that the limit on the right hand side of (4.9) is equal to zero. Let

u be smooth, divergence free vector field with compact support in RY. Then
due to the asymptotic properties of O

0?u;(y) L ou;(y) 0y (x —y)
= L (x—vy)dy = — L J dy =
RN Oy Oy Ohy(x ~y)dy é@ Oy 0yi Y
8(’)k (x—y)
= i ()T (y)dy S—
Jm | e M) g )y
POy (x —y)
— u(y)—2t———(x —y)dy| =
[ )T )y
00! (x —
= — lim ui(y)Mnk(y)dyS.

e—0" JoBe(x) yi
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Therefore (4.9) implies

uj{x) = — lim S u(y) - T(wy, e;)(x — y)n(y)dyS

and combining this with (4.7)

0
/ Oi(x—yiB)5 - By I Y)Y+
- /89 [“i(Y)Tik(Oja ¢;)(x = y; ) = BOG; (x — y; B)ui(y) o1+
+0};(x —y; ﬁ)Tik(u,p)(y)} ng(y)dS + (4.10)
" /aBR(O) i ()T (@) ) (3¢ = y30) — BOY (x — 33 )iy )ouit
+O5(x = y; B) Tir(u, p)(}’)]nk(y)dS.
Now let x € RY, N = 2,3 be fixed. We want to pass with R — oo and show

that the boundary terms over Br(0) tend to zero. As G € C§°(Q), we may use
Corollaries 3.1 and 3.2, together with the properties of OZ We have

u(y) ~ Ol (x = y;1) ~ R 7 (14s(y) 7
Vu(y) ~ VOi(x —y;1) ~ R 3 (1+s(y)) "%
ply) ~ej(x—y) ~ RN
for R = |y| sufficiently large. We get
RNfl

/BBR‘BO%<X_y)UZ( ()08~ [ T sEav 1w~ R =0

for R — o0, see Lemma I1.3.2. Analogously, even easier, we may show that also
the other terms vanish for R — oo. Therefore

Theorem 4.1 Let Q € C%', an exterior domain, G € C$°(Q) and (u, p) be the
unique solution to the Oseen problem (4.1). Let T be defined in (4.2). Then
/ 7(9“ —¥; 8)Gir(y)dy+
+ i) L@ )k — i) - BO (x -y Dui(y)out+  (411)
+O¢;<x y3 B) T (W, p)(y) + O (x = ¥ )G (y) | () S

/ DRO(x — y,ﬁ)aijkgm(y)dﬁ
+/ag {ui(Y)DxTik(O-j’ ej)(x —y; 3) — BDLOL(x — y; B)ui(y) o+ (4.12)
+D3OL (x — 5 ) T (w,0) () | i (y) dS
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if ol =1,

8./\/'“ -V
Da’LLj( ) /Da Y ﬂ)gzk(Y)dy_’_

* g [ui(y)DxTik(Oj, e;)(x —y;8) — ﬁDg Ol (x -y Buily)du+  (+13)
+DR Ok (x — y; )T (w, p)(y) + DROY (x — y; B)Gix(y) | ni(y) dS

if |of = 1,

Do (x) = APV . g) + / DEN (x — 3 8) dy+
+ [ () DETa(@ ) 0x 3 9) - 8D ij<x—y,ﬁ>ui< Vot (414)
o0

+DEOY (x = y; )T (w,p) (v) |k () dS

8gzk( )
Yk

if |a| = 2, where A§i)’a are operators which map L1(QY) into L1(Q), E‘(Ig)(ﬂ) into
L‘(Ig)(Q) for 1 < q < oo and g > 0 weights from the Muckenhoupt class A,.

Proof: The formula (4.11) follows from (4.10), using the Green theorem
(see Theorem VIII.1.15) and passing with R — oo. In order to get (4.12), we
first pass with R to infinity in (4.10) and then take the first order derivative
with respect to z;. Next, let us continue with (4.13). We have the volume term

0Gik
Q Oy

DO‘C’)Z»(X —y)dy.

Let us recall that the first derivative of O is locally integrable while the second
derivative (in the sense of distributions) can be written in the form

DO = D°S* + DN*, |a| =2,

where the part D®S* represents the singular and D*N* the weakly singular
part. As D®N* is locally integrable (see Section II.1) and D*S* satisfies the
hypothesis of the Marcinkiewicz multiplier theorem and the Kurtz—Wheeden
theorem (see Theorems I1.3.2 and II.3.5), the formula (4.13) is shown. Finally,
to show (4.14), we proceed analogously.

O

Remark 4.1 The representation formulas (4.11)—(4.14) are not the only ones
which may be proved. Evidently, instead of (4.13) we could get for example

agzk

x) = [ DROlx - yi0) 5 (v)dy+
+ /m | D5ui(y) T (O ;) (x — y3 8) - 505( —¥; B) DSui(y) o1+
+0lj(x = ¥3 A)Tie(Dgu, Dyp)(y) | s ()45

|a| = 1 etc. As such formulas are not convenient for our purpose, we shall not
write them explicitly out.
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The formulas (4.11)—(4.14) are valid also for less smooth functions G. We
can apply the density argument to get

Corollary 4.1 The mtegml representation formulas holds for a.a. x € Q if
Ve Wlicq(Q) pe W, ’q( ) for some 1 < ¢ < oo and

a) (4.11)ifGe LI(N), V-GE L (Q),1<g<N+1,1<r<oo
b) (4.12)if V-Ge LI(Q),1<g< N+1 .

¢) (4.13) if Ge LY(Q), V-Ge L] (Q), 1< q,r <oo

d) (4.14)if V-Ge L1(Q), 1 <g< oo .

Proof: We have that VO* € L"(RY) for r € (83; %) and therefore the
convolution is well defined whenever G € L4(2) with % +1>1ieg<N+1.
In order to have well defined the trace G- n on 0f2, it is enough to have V-G €
L7 (Q) for some 1 < r < oo, see Remark VIIL.3.6. Analogously for (4.13) and

loc

(4.14) we use the fact that

NEEL™(Q) forge (17 m) .
O

We now start to study the integral representation of pressure. Let f €
C§°(2). We denote

We have

Lemma 4.1 Let Q € C%! be an exterior domain, f € C5°(Q). The functions
W and S are infinitely differentiable functions in  and for all x € Q we have

A(W)(x) + ﬁaazv(x) +VS(x) =f(x).

Proof: As ej(x —y) = gf (x —y) and VO is locally integrable, we have

oW, , 05 _ L
AW+ 85, T oz, =0 51k/~‘>am/ﬂmoij(x y; B)fi(y)dy+

48 [ 2 0h -y B)i(y)dy + o / iex—ym(y)dy:

17”51’“ /70# ’ﬁ)afl y; B) fily)dy+
afi
+/ ax _ fdy+(1—/$51k)/89 Og(x—y;ﬁ)fi(y)nk(y)dyg _
J
or 004 (x ~ y: )
871'3( x —y)fi(y)ni(y)dyS _,51_1,%1+ o5+ ) [(1—#511:)]8T+

—i—ej(x - y)ni(y)}dys + v.p./Q { (1-— M(Slk)aa 88 o (x —y:8)—

80%(X_Y;/8) 8(:’]'

g = g L=y fi)dy = £i0).
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We used the fact that the pair (O*,e) is the fundamental solution to the mo-
dified Oseen problem, see (4.8). The differentiability follows easily.

Moreover, we have that the pair (u,p) solves
Ou
A — =f.
(w)+2 9z, VP

Using the integral representation of u (see (4.11)) and the fact that f =V -G,
we have

0 oW 0
g = A G / . {=8(4+ 65, )05 =y Bui(y)ou+

a$]’
+uily )(A+ﬁ )Tl ) (x — y)+

(At ﬁa—xl)(’)g(x - y;ﬁ)Tiz(u,p)(Y)}m(Y)dyS-

Therefore we have

_(fai- - _gj; + /dﬂ {- 5(A+5(;)OZ(X —y; B)]ui(y)du+
uily >(A+6 )0 ¢))(x ~ y)+ (4.15)

(A + 6—)0"( )Til(uap)(Y)}nl(Y)dyS'

We shall calculate the boundary terms. We easily check

86 oe;
(Aw—)o“( —y) =5 >= K (x—y)
Yi 1‘3 i
8 00;
_ H __ .
(A+5 ) (O, e)) = (A+ B )[ axz — e — o 1}
Denoting
B oe; dey dey de;
Ta(e) = on oz, il +M8 ~ 5 M51l6 o (4.16)
we get
0 " 0
(A + ﬂaixl)jj’il(o‘jﬁ ej) = _37:1:]'7;[(8) -
We have from (4.14)
dp 08 0 A A
bz, ~ 0z, o, /asz [~ Bouelx =yl + (4.17)

+ui(y) Ta(e)(x — y) + ei(x = ¥)Tu(w, p)(¥) | mu(y)dy S .

We can always add to p such a constant that p — 0 as |x| — oo. Therefore
for such p we have
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Theorem 4.2 Let Q € C%!, an exterior domain, G € C5°(Q) and (u, p) be the
unique solution to the Oseen problem (4.1). Let T;(e) be defined in (4.16) and
Tij(u,p) in (4.2). Then

p(x) = v.p. /ﬂ 66"(5;]: y) Gir(y)dy + cinGir(x)+
+ [ @) Tale) = y) + eitx = y) Tl p)(¥)- (4.18)

—Bei(x — y)ui(y)ou + ei(x — ¥)Ga(y)| m(y) dy S

Op(f) :v_p.L%gzk( )dy+cwa Gik (x)+
(

+/<99 {u’(y)aa Tu(e)(x —y) + )Tz(u,p)(.Y)— (4.19)

—‘%j”wwm¢mw®&

Proof: To get (4.18) it is enough to apply the Green theorem (see Theorem
VIIL.1.15) on (4.17) and recall that due to the choice of an appropriate constant
we have p(x) — 0 as |x| — co. The formula (4.19) can be obtained from (4.18)
differentiating with respect to z; and using the same procedure as in the proof
of Theorem 4.1 and Lemma 4.1.

O

Similarly as in Theorem 4.1, using the density argument one can extend
Theorem 4.2 for less regular right hand sides.

Corollary 4.2 The integral representation holds a.e. in Q) if v € VVlicq(ﬁ),
pE V[/lif(ﬁ) for some 1 < g < oo and

a) (4-18) ifGe LIQ), V- Ge LI (Q), 1< qr <o

b) (4.19)if V-Ge LI(Q), 1 <g<oo .

Proof: It is completely analogous to the proof of Corollary 4.1.

III.5 Modified Oseen problem —
Li—estimates independent of 3

The last section of this chapter is devoted to the study of the modified Oseen
problem in exterior domains. We shall mostly study the case Q C R2, but the

last theorem is devoted to the threedimensional flow. The aim is to develop

an analogue to Theorem 3.5 for R3, where we got for 1 < ¢ < % estimates

independent of 3. The study of such estimates in two space dimensions is more
delicate; the essential tool will be the integral representation of solutions (see

Theorems 4.1 and 4.2).
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Lemma 5.1 Let Q be a twodimensional exterior domain of class C? and let
for some q € (1;2]
1
u, € W a9(0Q).

Let (u,p) be the corresponding solution to

ou
A _ =
(U)+ﬁax1 +Vp=0
V-u=0
(5.1)
u=u, atof)

| 1|im u(x)=0

and let T be defined in (4.2), p = O(|InB|™1) as B — 0. Then there exists
B >0 and C = C(Q, B) such that for all0 < 3 < B
| Pp) - nds] < Pl sy g ooy (5.2)

Proof: Putting the term /8%11 on the right hand side, multiplying (5.1); by
a cut—off function which is equal to one in Bg,(0) and vanish outside of Bg, (0),
Ry > R; > diam Q¢ we get from Theorem VIII.5.4

lullzq.0r, +lIPl1008, < Cllligan, +Plogr, + a1 460) -  (5:3)

Applying the trace imbedding theorem (see Corollary VIII.1.1) we get for all
1<qg<2

||11*”%,2,(39) < Cllu*llz,%,q,(an) :

Moreover, in Theorem 3.4 we have shown the existence of a constant C,
independent of 3, such that

s < CO+ Al pom < 0+ Al s gm0
Applying the Friedrichs inequality (see Theorem VIII.1.10)
[ullon, < CUVgan + s g on) € CEQ By s oy (5:5)
q q

for all B € (0, B]. Moreover, from Theorem VIIL.5.3 together with (5.4) and
(5.5) after modifying the pressure by a suitable constant we have

1Pllg.0r, < CHu*HQ—é,q,(BQ) (5.6)
and (5.3) together with (5.4)—(5.6) imply
[l 20, + Ipl0 020, < Cltllz s 4 o0 (5.7

Let us recall that
OZ- =0 + EZ ,



III Modified Oseen problem 153

where |EJ(x; 8)] < CulOy(x; 8)| for x| < 1 and O(-; ) is the fundamental
Oseen tensor. We have for x € Qg?, y € 09

O5(x—y;8) =R(x—y[) +Cln 3

5.8
| DXOY;(x = y; 8)| = DR(|x — yl) %

with R(|x —y|) + DER(|x —y|) < C(B); we used here that p1n 3 < C(B). Since
lej(x—y)| < Cin ng, denoting J(5) = |In G| [5q T(u, p) -ndS| we have from
(4.11)

T < Cllae)|+ [ fulds +¢ [ Twpas]. (5.9)

where the constant C' depends only on B, but not on 3. Using the trace theorem
(see Theorem VIII.1.6) we find out

[ Tplas < [ (Vullp)ds < C(Vuligng, +plians,)- (510
Combining (5.9) with (5.10) and (5.7) we have
J(B) < [u)[ + Clludly_1 4, 90)
Integrating the inequality over ng and using the Holder inequality we get
T(5) < Clllgon, + Il 1 g 00) < Cll s g oo

The lemma is proved.

Let us denote for 1 < ¢ < g

Cy = {u € L35 (@) n D9(Q) N DV54 (Q);

N (5.11)
up € L7 (Q); Vuy € Lq(Q)}.

2
Remark 5.1 If u € C; thenu € Dl’ﬁ(Q) NL5% () (see Lemma VIII.1.12)
and therefore from Theorem VIII.1.17 and Remark VIII.1.11

| 1|im u(x)=0

uniformly.

We shall investigate the L9—estimates of solutions to the modified Oseen

problem for 1 < ¢ < g. Let us first assume the right hand side equal to zero.
We have
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Lemma 5.2 Let Q C R? be exterior domain of class C? and let

_1 6
u, € W? 27Q(an),1<q<5.

Then for any B > 0 there exists a unique solution to the modified Oseen problem

ou
A(u)+ﬁ87$1+vp:0 in Q
V-u=0
u=u, atof)

lim u(x)=0
|x|—00

such that u € Cy, p € D(Q). Let p = O(|InB|71) as B — 0. Then there
exists o > 0 such that for all B € (0, Go]

2 1
(Wpq = B(lluzll 20 + [uzl1,q) + B3 [ull_se + B3[uf; 54 <
2—q 3—2¢q ’3—q

1 B (5.12)
< | m gl 1||11*H2_%,q,(an)
with C'= C(Bo, q, ).
Proof: As 33%1(1 <3 <= q< %, the uniqueness follows from Theorem 3.5.

Moreover, from Theorems 3.4 and 3.6 we know that there exists a pair (u,p)
such that (u)g, is finite, u € D*9(Q) and p € DY9(Q). Analogously as in
Lemma 5.1 we show that (see (5.7))

[u

2,09 1 [[Pllg0 < C||U*H2_§,q,(an) (5.13)
and therefore, by imbedding theorem (see Theorem VIII.1.2)

Jual 2 g, + uzh g+l 34, +uly 52 o, < Cllulzge,
_1 1 6
and as 2(1 — 2) < 3 for ¢ € (1, %)

_1 6
<u>ﬁ7q < Cﬂz(l q)"!‘EHU*HQ_aq’(aQ) (5 >0forl< q < g) .

Next we give estimates of (u)g, in Q2. We have

uj(x) =Z(u) - w;(x; 3) + /BQ [— Bwj(x —z; () - u.(z)er1+
. (2) - T(wjo ) (x — 2 8) — [w;(x — 7 8) + w,(z: )] - T(u, 7)(2)] - n(2)dS

with
T(u) = / T(u,p) - ndS
[2)9]
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(see (4.13) and (4.2)). Applying the mean value theorem we have (recall that
Q° C B1(0))

[ ()] < [Z(w)l[w;(x; 8)] + A sup {Blw;(x — 2 B)|+

zeM (5.14)
+le(x — 2)| + |Viw;(x — 7 8)] |

;O < [T [Vw; (6 9)| + A sup {5]Vsw; (x = 73 5)|+

(5.15)
[Vxe(x — 2)| + [Vaw;(x — 2 8)|}

with

A = [[Vully @a0) + IPll1,00) + a1, @0) -

Using the rescalling (see Theorem 1.2) we get from (5.14) (y = (x)
uj ()| < [Z(a)][w;(y; 1)+

+CBA sup {Iw;(y = z: )|+ le(y — 2)| + [Vyw;(y — 7 1)}

and

lujllt e < CB2[IZ () w; (y; DL gat

Lptat / sup {|w;(y — 2 1)|+ (5.16)
ly|>28 |z|]<p .

+le(y —2)| + |Vyw;(y —z1)|} dy|.
We have that w;(-;1) € L!(R?) for t € (3;00) if j = 1 and ¢ € (2;00) if j = 2
(see Lemma 1.2 and Theorem 1.2). Therefore

| s fwily —z1)[fdy <
ly|>20 |z|<8

< / sup [w;(y —z1)['dy + sup [w;(y —z;1)['dy .
42]y|>26 |2|<p ly|z4 |z/<1

The first integral can be estimated as follows
o s wyly —z D)y <
4>|y[>20 |2|<3

<C sup (|In|y —z|[ + 1)'dy <
4>y|>28 |z|<8

<C (\ln|y||+1)tdy§(]1,
4>|y|>2p

where C does not depend on (3. Using the fact that for |y| > |yo| (large enough)

sup |w;(y —2z;1)| < |w;(y;1)| + sup [Vw;(y —vz;1)[, ~€(0;1),
|z|<1 |z|<1

we can estimate the second term

[ swiwily—aidy < [ (wiy Dl + [yl )dy+
ly|>4 |z|<1 ly[>yo

sup |w;(y — z; 1)|*dy,
4<]y|<[yol |z|<1



156 M. Pokorny: Asymptotic behaviour . ..

where r; =11if j =1 and r; = % if j =2. As wj(y — z;1) is locally regular, we
have

/ sup |w;i(y —z 1)['dy < C (5.17)
ly|>28 |z|<p

with C independent of § and ¢ > 3 if j = 1 and t > 2 if j = 2. We continue
with the pressure term on the right hand side of (5.16). We have for ¢ > 2

[y, s ey — )y <
Yy

< C(/ ly|"dy +/ sup [y — z|'dy) < C(5 " +1).

4>|y|>28 [¥/24 2)<1
Analogously

[, sup Vywily —m Dy < [ sup [Vyw,(y - 2i1)['dy+

1¥1226 |2 <p 12|y1>28 |a|<p
w [ sw Vywiy —mfdy <0 [ fy[ldy+

[¥/242)<1 4zly[>28
+ Vyw;(y — 2z 1)|'dy + (IVyw;(y; DI+ [y]7)dy
4<]y|<lyol Iy |=lyol

with sj:%iszl, s; = 2 if j = 2. Therefore we have for ¢t > 2 (if j = 1) or
t>1 (it j = 2)

/ sup |Vyw;(y — z;1)|'dy < C(1+ 8271). (5.19)
ly|>28 |z|<8

Combining (5.17)—(5.19) we finally have
_2 t=2
[ujlls,02 < CB™FZ(0)| + AL+ 577)) (5.20)
for all t > 2 if j =2 and ¢ > 3 if j = 1. Therefore for all 5 < Gy

lujllor < C(Bo)(B7F [ T(w)| + A).

Setting t = 22qu (j=2)and t = SE—%Q (j = 1) we have
_ _1 2
Blluzl 21 oo+ B3lull sy ga < CB)E 1 VIT()] +554).  (5.21)

For gradients we have from (5.15)
w17 702 < CB™2[[Z@)]7|Vw; (-5 1)||7 o+
w7 AT [ sup {[Vywily - m )]+ (5.22)
ly|>28 |z|<8 .
+|Vye(y —2)| + [Vaw,(y — 2 1)|} dy].

Now, [[Vw;(-; 1), g2 < Cif 1 <7 <2(j =2),5 <7 <2(j =1). As

Ve(x —y) ~ Viw;(x —y;1) ~ —> and Vw;(x —y;1) ~ |xiy|

x—yl*
small, we get as above

[ujl1r0e < C(B7FZ(w)] + AL+ 7 + ) < C(Bo)(8'7 [Z(w)| + A)

for |x —y|
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and again, setting 7 =¢ (j =2) and 7 = ;’qu (1 =1,2)
_1 1
B3l s o+ Bluzlyqox < (BB | Z(w)| +554). (5.23)

Moreover

A < C(Hqu,q,Qz + lIpll1g0: + ||u*\|2_§,q,(ag)) < Clludly—z 4, 90)

(see (5.13)) and (¢ > 0 for 1 < ¢ < &)
1
(g < OBV ()] + B lluelly-1 g 00) -

Applying Lemma 5.1 we finish the proof.

O
Remark 5.2 If g = g, we could show analogously as in Lemma 5.2 that
1
< 3 .
(W) e <OB3[ludz s 50
Next we investigate the situation when u, =0 and f # 0.

Lemma 5.3 Let Q € C2? be an exterior domain in R%. Let f € L10),1<q<
g. Then there exists exactly one solution to the modified Oseen problem!®

ow
A(w)+ﬂaxl+V7:f} in Q)

V-w=0
u=0 at o
|l‘im w(x) =0

such that w € Cy, 7 € DY(Q). This solution satisfies
(W)s.q < ClIllq
for all 5 € (0,Bo] and C = C(Q,4q, fo).

Proof: Extend f by zero outside of 2. We put

W=V-+12z
T=p+r,
where 5
v
AW+ +ve=fl yw (5.24)
V.-v=0

15 As usually, if w1, 71 is another solution to the same data with (w1)s 4 finite, then w; = w
and 71 = 7 + const
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and 5
Z
A(z)+ﬁaTcl+Vr:0 i O
V-z=0

u=-v at o0 (5.25)
lim w(x)=0.
|x|—00
From Theorem 2.1 we have
(V)p.q + [VI2g + Pl < allfllq (5.26)

with ¢; independent on 3. Moreover, from Lemma 2.3 we have that v, defined
x) = [, Olx~y:D)fi(y)dy (5.27)

is equal to v a.e. in R2. To show this, it is enough to verify that ¥ € L% (R?) N
DL2(R?) for 1 < ¢ < 3,1 < q; < oo. But

v < ||@O* flly,, —=—+4+--1
H ||Q1 — H HPlH ||q q11 pll

Vv < ||O* flly,, —=—+4+--1
H ||Q2 — ” ||p2|| ||q Q1 P2 q

and we may apply Lemma 2.3 as, evidently, ps € (%;2) and so we can find

for any ¢ € (1; g) such ¢o that g2 < 3. Moreover, both functions are globally
integrable and therefore ¥ = v a.e. in R%.
From (5.27) we have

VGOl < ClEl [ 10%(B0c—y): )| dy

and therefore
IIVIIq, o) < CBRIENY
what implies
IVllg 5oy < COT272 £, (5.28)

We pass to the problem (5.25). We apply Lemma 5.2 to get the existence of a
unique couple (z,7) such that for all 5 € (0; 5o]

_1
(@)p.q < CB VIl 00 -
q

The trace and interpolation theorems (see Theorems VIII.1.6 and VIIL.1.11)
imply
IVlla-1 . 00) = CllVlizg0: < CUIVIlg0 +Ivi2g0.)-

Since ¢’ > ¢, (5.28) and (5.26) yield

_1 _9(1-1
(2 < O (572070 1) |Ielly < C(0)IIEll

The lemma is shown.
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Remark 5.3 The same result holds also for g = %.

Now, let (u, ) solves

)
A(u)+ﬂa—;1+V7r:f

Vou=0 (5.29)
u = u, at 90
u— 0 as |x| — oco.
Combining Lemmas 5.2 and 5.3 we get
Theorem 5.1 Let Q be a C? exterior domain in R?, 1 < ¢ < &. Let u =

6
5
O(|Ing|™Y) for B — 0F. For a given £ € L4(Q), u, € W27%’q(8ﬂ) there exists
a unique solution to the modified Oseen problem (5.29) such that u € Cy, ™ €
DY4(Q). For By > 0 sufficiently small there exists C = C(q,$, Bo) such that for

all 5 € (0; Bo]

2(1-1 _
(W < C1A V1A ually-1 g o0y + 1]l (5.30)
Remark 5.4 For q = % we have

_1
(Wsg < C[B Iy 4 o) + £ -

Next we prove the following extension of Theorem 5.1.

Theorem 5.2 Let Q € C*2 be an exterior domain in R?, f € Wh(Q), u, €

Wl+2_%’q(89), q € (L; %), [l =0,1,.... Then the unique solution to the modified
Oseen problem (5.29) satisfies for all 5 € (0; Bol, Bo sufficiently small,

_1
< Cu[lIElly + B4 (g + el 1.0, 00)] -

1
D[Vl + V7| <
[ ! ] (5.31)

Moreover, if the right hand side f € WH(Q) N W*P(Q), p € (1;00), k =

0,1,..., the boundary condition u, € Wl+2_%’q(8ﬂ) N Wk+2_%’p(8ﬂ) and Q) €
CQerax{k,l}’ then

2(1-1
B[Vl + 197l + 1920l + 197ll) <
2(1-1
< ColIEllg + 82 (Elq + €11kt (5.32)

il g, 00 + ellksz-1 po0)] -

Especially, if

and k > 1, (5.33)

2q
D>
-2
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then!®

G D1V ullig + 197 llg + [ Vullks1p + lIllki1p)] < .
< Cal1Ella+ 8" (€l + 1€lp + 10 lls2-1 1 00)] .
where the constants C; = C;(0o,q,p, 2, N).

Proof: Let us first show that (5.32) implies, under the assumptions (5.33),
the inequality (5.34). From Lemma VIII.1.12 we have that there exists wy € R

2
such that for all p € (1;00), w € Dl’ﬁ(g)

Jw = wolly < Cluly 2

Evidently, p > ]% and ¢ < z% = p > ;—fq. From Theorem 3.7 we easily

check that the solution to the modified Oseen problem is such that Vu €
3
LSqu(Q) whenever 1 < ¢ < 3. Therefore

IVally < CliVully 2 < C([IVull2p + [|Vallag)

Analogously for m we have
I+ mollp < Clmlip + I7l1q) -

As the pressure is determined up to a additive constant, we can take 7 = w + m
in such a way that 7 € LP(Q) is a new pressure. Finally, applying the trace
imbedding theorem (see Corollary VIII.1.1) we have

Mslliyo-1 4, (00) < Clluellyia-1 5 00)

for k > [l and g < }% < p. We are therefore left with inequalities (5.31) and

(5.32). We proceed as in the proof of Theorem 5.1. We search the solution (u, )

in the form
u=v-+w

T=p+rT,

where

ov
AV)+B-—+Vp=0| .
01 in (5.35)

V-v=0
v = u, at 9N
and 5
w
A(W)—l—ﬂaixl‘FV’l“:f 0
V-w=0
v =20 at 0Q2.

(5.36)

As in Lemma 5.1 (see (5.7)) we may show that

[Vllst2t0n + Plst1t0r < Cllusllgo1,

(69)

16we add to 7 a suitable constant such that 7 is integrable
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with s >0, 1 <t < 0.
Next, let ¢ € C$°(R?) such that p(x) = 1 in B(0), ¢(x) = 0 in Bz (0),
2

g > diam Q°. Let us put U = v, P = pp. Then the couple (U, P) solves in
the whole space

ou
AU)+pB-—+VP=F
8.1‘1
V-U=d¢
with 30 8 3
v
F = A(p)v —2VpVv + 2”87;;018731 + ﬂE)TiV +pVep
G=v-Vop.

As supp F and supp g C Br(0), and

IF ez + 1Gl 2 < CUIVIst1L08 + Plst08)

we have due to Theorem 2.1 that
IV?Ull, g2 + VP, 52 < CUIVIst100k + [1Plst05)

and V2U, VP coincides with V2v, Vp in QF (see Lemma 2.3). Arguing as e.g.
in Corollary 3.2 we have

||V2VHs,t,Q + HVpHs,t,Q < CHU*HSJ@*%’@(@Q) 5 (5.37)

5>0,1 <t < oco. Next we study the problem (5.36). We extend f onto R? in
such a way that

€1l 2 + [1Ellg 2 < CUEls 1.0 + £l p.0)

and similarly as in Lemma 5.3 we search (w,p) as a sum of a solution to the
modified Oseen problem in R? with the extension of f and of a solution to the
modified Oseen problem in €2, i.e.

ow!
1 1 _
A(w )—i—ﬂ—@xl +Vr = f} i R (5.38)
V-w=0

and )
ow
2 2 __
A(w )+B78x1 +Vr<=0 n O
V-w?=0

w2 = —w'! at 99.

(5.39)

We have from Theorem 2.1 that

172 2 + V7 g2 < Ol (5.40)
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Moreover, as in Lemma 5.3 we can show that for 1 < ¢ < %
_92(1-1
19! 20 < €828 (5.41)
and from (5.37)
||V2W2

st + V2 see < Clwl o1 o0 (5.42)

Let us put in (5.40) and (5.42) s = [, t = q and s = k, t = p, respectively.
We have to control the boundary terms |w! Hl+2—§,q,(8§2) and ||w! ”k+2—%,p,(89)'

Applying the trace and the imbedding theorems (see Theorems VIIL.1.6 and
VIIL1.2) and recalling that ¢ < 3 ie. ¢ < ¢

le”l—&-2—é,q,(8§2) < Clw 11240, < Cr(lw!llg.a + VW g0,)

leHk—&—Q—%,p,(QQ) < C(IWHlp.ar + IV [kpoy) <

| . (5.43)
< CO(w 2 g0 + IVW [k p0,) <
< C(Iw g + 1V g0y + VAW [k p) -
Combining (5.40)—(5.43) we finally get for 1 < g < 2,1 <p < o0
2 —-2(1-1)
IV Wligo + Vrilige < CB 2 |Ellg + 1)
(5.44)

_ _1
1V2Wllkp0 + [V7llkpa < C((14 872 D) Ely + []kp) -
The estimates (5.37) and (5.44) finish the proof.
O

Finally we get similar result also in three space dimensions. Here, the si-
tuation is much easier. We have namely

Theorem 5.3
(i) Let £ € Dy "2 (Q) NWHP(Q), 1 < p < o0, k >0, Q be a threedimensional

1
exterior domain of class C**t2, u, € Wk+2_P’p(8§2). Then the unique

solution to the modified Oseen problem (5.29) (u, ) satisfies
1
Biflulls+[ufrz + 7]z + [ VZull, + (| V7

<O (|12 + |1

k,p <
(5.45)

|k + Hu*||k+2—%,p,(8ﬂ) + ||u*”%,2,(ag)) ‘

(ii) Let £ € LI NWFP(Q), 1 < ¢ < 3,1 <p <oo, k>0,Qbea
threedimensional exterior domain of class C**2, u, € Wk+2_%’p(8§2) N
1
W2_5’q(0ﬂ). Then the unique solution to the modified Oseen problem
(5.29) (u, ) satisfies
aaljul 2+ azfuly se + V20l + [ 920l + [Tl <

(5.46)
< C(Hqu + €]l + ”u*Hk—i—Q—%,p,(BQ) + Hu*HQ—é,q,(BQ))

with a; = min{l,ﬂ%}, as = min{l,ﬁ%}_
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Proof: We proceed as in Theorem 5.2 and combine the estimates with
Theorems 3.7 and 3.6. We can assume that p > % if k = 0 (otherwise, we can
apply directly Theorems 3.6 and 3.7). We have to estimate w', solving in R3

ow! =
A(w! — +Vrt=f
(W) + 5, +Vr
V-wl=0

with f, an extension of f in some WP (Q) space.
In the case (i) we apply Theorem 3.7 to get

lw'

20q < ClW'llsn, < CIW'| s < Clfl-12 < C(f| 12+ f

k»P) ?

since, denoting ¢! and ? the parts of ¢ supported in B*(0) and Bs(0), re-
spectively, we have

sup (f,¢) < sup ((f, ")+ (f,9%) <
lpl1,2<1 lol1,2<1

| Tup<1(|f\71,2|¢1|1,2 + £l s 5y 19%l6,8200) < Cfl-12+ [If]ls),
pl1,2<

where the evident inequality [|¢?(|g 5,(0) < [l@llgrs < |l1,2 was used. We apply
this estimate instead of (5.41).
In the case (ii) we use the integral representation to get

)l

W'l < 6] [0 (Bx —y)i DEy)ay| < C [ ]

and due to the Sobolev theorem on weakly singular integrals (see Theorem
VIIL.2.4) we have B
Iwls < ClIElly

with1< g < 2 and s = 337‘12(]. Then we use this inequality instead of (5.41) and

in the estimate of the solution to (5.39) we have

”v2w2

‘k,p,ﬂ < CHWIHkJrz_%,p,(aQ) < leHk+2,p,Bl(0) <
C(|lw!

5.81(0) + IV Wl p 51 (0)) -



|V

Steady transport equation

IV.1 Definitions, basic properties

We shall now consider the other linear problem needed for the study of the
stationary flow of viscoelastic fluids. The results presented in this chapter are
mostly taken from [Nol]; see also [No2|, [No3] and [No4|. Nevertheless, some
extensions are added; see Theorems 2.3 and 2.5.

Let © c RY be an exterior domain of class C%! or let Q = RY. We study

M +w-Vz +az=f inQ, (1.1)

where the unknown function is z; A is a (without loss of generality positive)
constant, w € CL (), a € Ce(R2) and f are given functions.

Remark 1.1 Although we study only scalar equation, all results presented in
this chapter can be without changes applied also on the system

N m
8,22- .
)\Zi—l—szjT—l—Zaist:ﬁ, 1=1,2,....m, (1.2)
j=1 -
where z = (z1,...,2p) are unknown functions, while {w;;}, i =1,...,m, j =

1,...N, {a;s}, i,s = 1,...,m and £ = (f1,..., fi) are given functions. The
norms of vector—(eventually tensor—)valued functions are the maxima of their
components.

Let us first take f € VVlicq(Q)

Definition 1.1 The function z € VV;’E(Q) is called a strong solution to (1.1)
if (1.1) is satisfied a.e. in €.

In the case of lower regularity we have to modify the definition.

Remark 1.2 If f € DY9(Q), then f € VVZ%)Cq(Q) and we can again use Definition
1.1.

Definition 1.2 Let f € L] (). Then z € L] () is called a g-weak solution
if

/z()\go—w-Vgo—}-(a—V-w)ap)dx:/fgpdx Vo € C5°(9) . (1.3)
Q Q

164
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Remark 1.3 We define the distribution w - Vz € D'(Q)
(W Vz,0) = 7/ AW Vo+V-we)dx Ve € D(Q). (1.4)
Q

We can rewrite (1.3) as
w-Vz =f—-Xz —az, (1.5)

where the equality (1.5) is assumed in D’(Q2). Having z € L] (Q) we see that

loc

w-Vz € L] (Q) and (1.1) is fulfilled a.e. in . Therefore any weak solution
in the sense of Definition 1.2 is also a strong solution in the sense of Definition
1.1. Analogously to (1.1) we can define

w-VVE=V(w-VE) - Vw-VE  for € € WEHI(Q) (1.6)
i.e.

(w-VVE p) =— /Q(apr + Voew) - Védx VYo € D(Q). (1.7)

In order to construct solutions to (1.1) we follow [Nol]. Our method is
essentially based on the following classical lemma, which is due to Friedrichs
(see e.g. [Mis]). By Ch(RY) we understand the set of functions continuously
differentiable on RY which are together with the first derivative bounded.

Lemma 1.1 (Friedrichs)
Let1 < qg< oo, we OLRY), z€ LYRY). If w-Vz € LYRY), then

w-Vz, »w-Vz in LY(RY),
where zp, stays for z x wyp, wy, the classical mollifier.

Proof: Since w - Vz € LI(RY), we have easily (w-Vz), — w - Vz in
LI(RY) and therefore it is sufficient to verify that w - Vzj, — (w - Vz), — 0 in
LY(RM).

Applying (1.4) we have
(W - V2)u(x) = (W Vz)(-),wn(x =) = — /RN 2(¥)Vy - [W(y)wn(x — y)ldy -

So

o= [ [wxx)z(y)Z”hf;‘x;y) - 2(3) 3y (x = )y =
= [y 205 [01() — wi)n e~ y)]y =

RN
= [ ) = 260 - [(wily) — i nx — ) a

where the last equality follows from the fact that wp has compact support in
RY. Therefore

1601 < [ 12(9) = 2(x)on(x = ¥) [Tw(y) ldy-+
+ [ 12) = 200 Ve = 3) [wiy) = wlx)ldy = 11(x) + La(x).
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We easily estimate

/RN |1 (x)]%dx < C/]RN (/RN |2(y) — 2(x)|wn(x — y)dy)qu <
< C/ / |z(x — h&) — z(x)|‘1d§(/Bl(0) |W1(§)\q/d§)$dx.

RN JB;(0)

Using the p—mean continuity and absolute continuity of the integral (see e.g.
[KuFuJo]) we easily verify that for any ¢ > 0 we can assure that

[ 1ol < > (1.8)

for h sufficiently small. Similarly, as |[w(x) — w(y)| < C|x — y|, and for any
r € (1;00)

_ X—=Y¥Y\Ir
x —y||Vywr(x—y)|)'dy <h" N/ Vywi dy <
[, o= ¥V =) o [7vn (55F)
<[ Vaa@ldaz<c,
B;(0)
we easily verify that
5‘1
Ly Gofidx < (19)

for h sufficiently small. Therefore (1.8) and (1.9) imply that [|I(-)||; — O as
h — 0% and the lemma is proved.

O

Corollary 1.1 Let 1 < ¢ < oo, 2 € C%', w € CYQ), w-n/y, = 0. Let
z€ LY(Q) and w-Vz € L1(Q). Denote

() = {z(x) if x€Q
B 0 if xe RV \ Q.

Then
w-Vz, —-w-Vz inLi(Q),

where f;, denotes the standard mollification of f.

Proof: Let W € C'(RY) be any extension of w onto RY (see Remark
VIII.1.3). Then by (1.4) for @ = RY we have for all ¢ € D(RY)

(W-Vf,go):—/Nz(w-vcergoV-W)dx:
R
:—/Z(W-V(p—l—(pV'W)dX:/(V-(ZW)—ZV'W)godX-i-
Q Q
+/ w - nz edS :/[V-(zw)—zv-w]godx.
89 Q

We used the fact that w-Vz € LI(Q), z € LI(Q), w € CH(Q) imply V- (2w) €
L%(Q), we may apply the Green theorem and the trace w - nz is well defined
(see Remark VIIL.3.6 and Lemma VIII.3.3). So

(W - VZ, )] < lelly mv IV - 2W)llg.0 + 12V - wllg.0)
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and W - Vz € LY(RY). Lemma 1.1 yields
w-Vz, »w-Vz in LY(RY)
and therefore, particularly,
w-Vz, —-w-Vz in LY(Q).
]

Remark 1.4 Let the hypothesis of Corollary 1.1 be satisfied, f € L4(f2), 1 <
g < oo. If z is a weak solution to (1.1) in the sense of Definition 1.2, then (1.3)
holds for all ¢ € LY (Q) such that w- V¢ € LY (Q). To show this, it is enough to
observe that (1.3) holds for any ¢ € C5°(2) and w-n = 0 at 9, i.e. (1.3) holds

also for ¢ € C§°(€2). This can be shown by means of Corollary 1.1, Remark 1.3
and Lemma VIIIL.3.3.
Similarly, if

/ z(Ap —w-VVp+ (a—V-w)ch)dx:/ [Vpdx (1.10)
) )

holds for all ¢ € C§°(f2), then (1.10) holds for any ¢ € Wol’q,(Q) such that
w- Vo € Wh'(Q).

Corollary 1.2

(i) Let 1 < ¢ < 00, 2 € C¥' w e CY(), w-n/y, = 0 and z € LI(N),
w-Vz e LYQ). Then

1
/W-Vz |2]9 2 zdx = —f/ V- wlz|%dx. (1.11)
Q 4./

(i) Let the assumptions of (i) are satisfied and let moreover z € WH4(Q),
w-Vz € Wh(Q). Then w-VVz € L) and

/W-V(&>|Vz]q2azdx:—1/ V- -w|Vz|ldx. (1.12)
Q Ox; Ox; qJa

Proof: Easily, the assertion (ii) follows from (i). We show therefore only
(1.11). We have for R > diam Q¢

1
W-Vzhyzh|q‘2§hdx: f/ w - V|zp|9dx =
1 o 1 470 1
:—7/ V- Wiz ddx + W - n|z,|"dS +7/ W - nz|%dS .
q JQgr q JOBR(0) q Jo

Since w -n = 0 at 99, z, € LY(2) and W is bounded, we have that

lim (/ W-n\?hlqu—&—/ W - nfz7,[1ds) = 0.
R—o0 \ JOBR(0) o0
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Then, Corollary 1.1 and the well-known properties of the mollifier yield (1.11).

O

We now apply the above obtained equalities in order to prove the apriori
estimates of solutions to (1.1). Although our main interest is devoted to the

study of €2 an exterior domain, due to the technique we must include also the
case 0 = RV,

Lemma 1.2 Let 1 <g<o0, k=0,1,..., Q=R"Y or Q e C%'. Suppose that
(i) k=0, we CHQ), w-n/y, =0 (QL#RY), a € C°Q)
(i) k>1, we CFQ), w-n/y, =0 Q#RY), a e C¥Q)

and f € WR(Q). Then there exists ag(k) > 1 such that if z € W*9(Q) is a
solution to (1.1), then

Allz

siq S fllsq +aobollzllsg s=0,1,....k, (1.13)
where

V-w + ||la k=0
o — 89 (0. ) — {H oo+ lalles

IVWliges + llalloe k> 1.

Lemma 1.3 Let 1 < ¢ < o0, k=1,2,..., Q =RY or Q € C%', an exterior
domain, f € WFk4(Q). Let w € C*(Q), w -n/yq =0 (Q #RY), a € C*1(Q)
and
Vka € LI(Q)  forkq> N
VFae LN(Q) forl1<qg<N.

Then there exists ag(k,q) > 1 such that if z € W*4(Q) is a solution to (1.1),
then

(1.14)

Mzllsg < [[flls,g + 0billzlls,g s=0,1,...,k, (1.15)

where i = 1,2 corresponds to (1.14)12 and

0, = 60 (q, ) = | IV Woelomr 1 VEally =1
R IVw, all e + [ V¥ally i =2.

Lemma 1.4 Let 1 < g < o0, k=2,3,..., 2 =RY or Q € C%, an exterior
domain, f € Wh(Q). Let w € C*1(Q), w-n/yq =0 (L #RY), a € CF1(Q)
and*
VFw,VFa € L9(Q)  for (k—1)g > N
VFw e LN(Q),VFa € L9(Q)  for1<q< N,kg> N (1.16)
Vkw,VFa e LN(Q) forl<g<N.

Then there exists ag(k,q) > 1 such that if z € W*4(Q) is a solution to (1.1),
then B
Mzlls,q < 1 flls,g + @0billzlls,g s=0,1,....k, (1.17)

!Some other combinations like a € C*(Q), w € C*71(Q), VFw € LY (Q) etc. are also
possible. But we do not need them.
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where i = 1,2,3 corresponds to (1.16)1 23 and

VWl or-2 + [lallcr-1 + [VFa, VEwll, i=1
;= 0" (a,w) = { IVWlcrz + lallorr + [VEallg + [[VFW|n i =2
VW b2 + lallcer + |[VEa, VEw|y i =3.

Lemma 1.5 Let 1 < g < o0, k=1,2,..., Q =RY or Q € C%, an exterior
domain, f € I/VIIZ’CQ(Q), Vf e Whr14Q). Suppose that w € CH(Q), w-n/y, =0
(Q #RY), and one of the following conditions be satisfied

a=0
1.18
acCFYQ),VFac LN(Q) forl<qg<N. (1.18)
Then there exists ag(k,q) > 1 such that
AVzlls—1,g IV Flls—14 + a0l Vzlls—1g s=1,2,....k (1.19)

(i) for any solution z € VVIIZ’Cq(Q) such that Vz € WF149(Q) (case (1.18),)

(ii) for any z € ﬂ/l]Z’cq(Q) such that Vz € WF149(Q) and such that the
Sobolev—Poincare inequality

[2]] xa < C(g,N)|[Vzllog
N—q
holds (case (1.18)2).
Here i = 1,2 corresponds to (1.18)12, o is from Lemma 1.8 and

IVWlors i=1

0; = 01" (a,w) = e
IVw,allcrk-1 + [|[V¥a|ny i=2.

Lemma 1.6 Let 1 < g < o0, k=1,2,..., Q =RY or Q € C%, an exterior
domain, f € VVZIZ’Cq(Q), Ve Wk14(Q). Suppose that w € C*~1(Q),

Vikw e LN(Q) forl<q< N

(1.20)
Vkw € L9(Q)  for (k—1)g> N,
W n/y, =0 Q# RY), and one of the following conditions be satisfied
o=0 (1.21)
a€CF1(Q),VFka e LVN(Q) forl<qg<N. '
Then there exists a(k,q) > 1 such that
MVlootg < 197 - 1g + 008, [ Vellsry 5= 1,20k (122)

(i) for any solution z € W/ZIZ’CQ(Q) such that Vz € WE=L4(Q) (case (1.21))
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(ii) for any z € ﬂ/l]Z’cq(Q) such that Vz € WF149(Q) and such that the
Sobolev—Poincare inequality

2l yo < Clg, N)[[V2llog

holds (case (1.21)s).

Here i = 1,2 corresponds to (1.21)12, j = 1,2 corresponds to (1.20); 2, o is
from Lemma 1.4 and

VW cr2 + |[VEwW|y i=1,j=1

[V wllgn—2 + [[VFW]g i=1,5=2
IVW]ck-2 + lallgr-1 + [|[VEW | § + [VFally i=2,5=1
IVwllgn2 + llallgr-r + [VF*W]g + [VFaln  i=2,5=2.

(k) _
(%J (a,w) -

Proof of Lemmas 1.2-1.6: Differentiating (1.1) we find

AWie=—-w-V(V'z)— Z Viw -VV/z —V'w-Vz—V'az —

i+j=r

1<j<r—1 . Z ViaVz TV f (1.23)
i+j=r
0<i<r—1

r=0,1,...,s, a.e. in Q. We multiply (1.23) scalarly by |V"z|7"2V"z, integrate
over {2 and get

6
NIV2lls < 571,
i=1
Applying Corollary 1.2 and the Holder inequality we can estimate each term as
follows

1
L = ‘/QW . V(vrz) : (|v7"2;’Q*2vTZ)dX‘ < 5”v . WHCOHVTZHZ (124)

j- ‘/Q > Viw - U(Viz): (V721297 2)dx] <

4= (1.25)
0<ir 1 < O IVwlers V211,
Is = ‘/QWTW -Vz): (|VTZ|q_2VTz)dx’ <
Vwlon Vel 1<a<oo g0

< VIV WINIVEl e [V72]57 1<g<N
—q

IV Wl V2llcol V72 I3~ 1< g<oo

I, = ‘/Qz V'a: (\Vrz|q*2v7"z)dx‘ <

\vil q 1<g<
|| aHCOHZHT,q 7= 00 (127)
< CIViallwlal o 19720157 1<g< N
—q

IV allgll2lloo V72 371 1<g<oo



1V Steady transport equation 171

q—2
V'z)dx| <

Is = ‘/Q Y (ViaViz) : (|V'z

o (1.28)
ot < O aller V2121,
o= [ VF s (V72T < VA9 (1.29)

In order to prove Lemma 1.2, let kK = 0 first. Then r = 0 and I = Iy = 0.
We sum up (1.24), (1.26)1, (1.28), (1.29) and get (1.13) with s = 0. Next, for
kE > 1 we use (1.27);, sum it up with (1.24), (1.25), (1.26);, (1.28) and (1.29)
forr=0,1,...,s and get (1.13). Lemma 1.2 is proved.

To show Lemma 1.3 we use for s = k the estimate (1.27)2if 1 < ¢ < N and
(1.27)3 if kg > N and apply the Sobolev imbedding theorem (see Theorems
VIII.1.2, VIII.1.3). Summing up (1.24)—(1.29) we get (1.15).

Next, let k > 2. For s = k we use the estimate (1.26)2 (for 1 < ¢ < N) or
(1.26)3 (for (k—1)q > N) and apply the Sobolev imbedding theorems VIII.1.2,
VIIIL.1.3. Summing up (1.24)—(1.29) we get (1.17) which proves Lemma 1.4.

Further, let us observe that if a = 0, then (1.19) easily follows by summing
up (1.24), (1.26), (1.25) and (1.29). If @ # 0, we use (1.27)3 together with
the Sobolev—Poincaré inequality. The estimate (1.19) follows by summing up
(1.24)—(1.29) for r =1,2,...,s.

Finally, combining the proofs of Lemmas 1.4 and 1.5 we get Lemma 1.6.

O

IV.2 Existence of solution

This section is devoted to the construction of solutions to (1.1). We first con-
struct the solution in the whole RY and then take its restriction onto Q — this
restriction evidently solves (1.1) in Q. The following lemma enables to extend
the data onto RY.

Lemma 2.1 Let Q@ C RY (exterior or bounded) domain of class C%'. For any
s=0,1,...,k and pgs),...,p,(:_)l , 1< pgs) < oo, we define Xs(§2) the Banach
space of functions with finite norm

k—s
lellx.@) = [0l ey + 3 170l

i=1

and for 1 < p; < oo we define X(Q2) as a space of functions with finite norm

k
1ol x@) = D IV, -
=1

Let py—s > pp—s—1 = ... > p1 (or px = Pk—1 = ... > po). Then there exists
a common extension E from X(Q) to X(RY) and X4(Q) to X (RY), s =
0,1,...,k, respectively. It means that

[Eull y @y < Ok, 2, {pi}) ullx ()

(2.1)
| Bully vy < Ok, 5,9, {pi})lullx. o) -
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In particular
|Bull, vy < OOk Dull o) (2:2)
Proof: It is an easy consequence of Lemma VIII.1.7 and Remark VIII.1.3.
O

We start with the construction of solutions in R¥.

Lemma 2.2 Let k=0,1,...,a =0, w, f € CRY). If ao(k)ﬁ(()k)(o,w) < A,
then there exists a unique z € ﬁ1<q<OOWk’q(RN), the solution to (1.1), which
satisfies the estimate

fllk,
ol < FLEL 1< <oc 23)

with ag, Oy from Lemma 1.2.

Proof: Let € > 0. We consider the problem
((ze,9)) = / (eVzeVo+ Azep+w - Vzp)dx = / feodx (2.4)
RN RN
for all ¢ € C°(RY). Provided
1
§||V cWlco < A (2.5)
the bilinear form ((-,-)) is continuous and coercive on W1H2(RY); namely
1
((2,2)) Z el V2[5 + (A = SV - Wleo)ll2]5 -

Therefore, under the assumption (2.5) there exists a unique z. € Wh2(RY), the
solution to (2.4). This solution satisfies

—eAze +Aze = f—w-Vz, (2.6)

in the sense of distributions. Moreover, as f — w - Vz. € L*(RY), the local
regularity of elliptic systems (see [AgDoNi]) gives z. € VVli’f (R™) and, on boot-
strapping, z. € C®(RM).

Since w, f € C3°(RY) and 2. € C®°(RY), we see that

g=f-w-Vz. e WF(Q) Vk eN{§,qel[l;00].

Applying the Fourier transform in (2.6) we see that a (generally different) so-
lution to (2.6), Z., can be written as

F(9) )

|
== g1 x
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and therefore, by the Marcinkiewicz multiplier theorem (see Theorem II.3.2) we
have z. € WF4(RY) for all k € N§, ¢ € (1, 00). But W12(RY) is the uniqueness
class and therefore Z, = z.. Further we estimate z.. We have

—eAV 2. + AV 2. =V f —w - VV'2. — Z Viw - VV7 2. (2.7)
i+j=r
0<5<r—-1
for any r = 0,1,..., k. Similarly as in Lemmas 1.2-1.6 we can get

k
clg=DY [, IV IV 2t A, <
r=0

- k
<N lgllzelld, + ao(k)65” (0, ) 212, -

(2.8)

The hypothesis (2.5) is trivially satisfied if apfy < A. From (2.8) we deduce

[1f1]1.q
_ (k)
A —ao(k)fy” (0,w)

l|2elk,q < , l1<g<oo, (2.9)

i.e. an estimate independent of . From (2.9) we easily get that for any 1 < ¢y <
t] < oo there exists z € WhH(RN) n WhH (RY) such that

Ze — z in Wk7q(RN) Vq € [to; t1]

£z, — 0 in WFLZ(RY)
at least for a chosen subsequence ,, — 0. The diagonalisation procedure yields

ze, =2z in WR(RYN) vge (1,00),

at least for a chosen subsequence e — 0. Easily z solves (1.1) and from
Lemma 1.2 we conclude (2.3). Since the solution is unique in the class where
(2.3) holds, we even conclude that the whole sequence z. — z in W*4(RY).

O
Next we weaken the assumptions on w

Lemma 2.3 Let k = 0,1,..., a = 0, f € CRY), w € CLRY) (k = 0)
orw € CERYN) (k > 1). If ao(k:)ﬁ(()k)(o,w) < A, then there exists a unique
2 € NicgeoWFHI(RYN), the solution to (1.1), which satisfies (2.3).

Proof: Let € > 0, nr the usual cut—off function (see Section VIIL.2) and
denote

WRe = (WNR)e
i.e. the mollification of wng. Then wg . € Cg° (RY) and evidently w Re — WIR
in CE(RY), Hék)(O,wR,a) — 96k)(0,wnR) as ¢ — 0. Finally Hék)((),wnR) —
QSk)(O,W) as R — oo. Therefore if ao(kz)e(()k)(o,w) < A, there exist Ry > 0 such
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that ag(k)0S” (0, wng) < A for R > R and eo(R) > C(Rg) > 0 such that
ao(k)ﬁ(()k) (0,wge) < A for 0 < e < go(R). We consider the problem

A2 +Wpe-Vz =f

with R, e satisfying ao(k)G(()k) (0,wre) < A. From Lemma 2.2 we conclude the
existence of a unique solution zr . which satisfies

1/ llk.q
A — ao(k)ﬁ(()k) (0, WaR)

12R,e kg < 1<g<oo. (2.10)

We pass with ¢ — 0" and R — oo and get as in Lemma 2.2
2pe —2zp  in WRIRYN)  ase—0F
zp — 2z in WEYRN)  as R — o0,

at least for chosen subsequences. The limit function z satisfies for all functions
oo (N
p € C°(RY)

/ [)\ch—z(w'Vgp—V~W<p)]dx:/ fedx,
RN RN

i.e. z is a weak solution to (1.1),—0. As any weak solution is the strong solution
(see Remark 1.3) and z € W*4(RY), we conclude (2.3) from Lemma 1.2. The
proof is complete.

We keep for a moment f € C§°(RY) but we add the function a.

Lemma 2.4 Let f € C’(‘)’O(RN) and k, a, w and q satisfy the assumptions of

Lemma 1.2 with Q = RY. Let ao(k‘)ﬁ(()k)(a,w) < A. Then there exists a unique
2 € NictcaaWFHRY), the solution to (1.1), which satisfies the estimate

HZHSJSAH_‘HJ;O’;O Vs =0,1,...,k, te(l,00). (2.11)

Proof: Let us consider the equation
Az —w-Vz =f—ar inRY (2.12)

with 7 € WhoRN) n Wk (RY), 1 < ¢ty < t; < oo and w, a satisfying
apby < A. Using the standard density property together with Lemma 2.3 we
show that there a exists unique z, € W*(RN) 0 WH{(RY), the solution to
(2.12) satisfying the estimate

(k

Mzllig < [1Fllkg + ao(k)0§” 0, w) 12l + lalorllTlleg Vo € [to;ta]

Therefore the operator T : Wt (RN) 0 Wkt (RY) s Whito(RV) 0 Whi (RY)
which assigns to 7 z;, the solution to (2.12), is well defined. We shall show
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that T is a contraction operator. Let 7 and 75 be two different functions from
Whio(RV) 0 Wkt (RY) and z;, 23 the corresponding solutions. Then

Mz = 22]lkg < a0 (k)05 (0, w)l21 — 22

ka +lallexllm = 7llkg -
As ap(k) > 1 and ag(k)(||lal|cr + QSk)(O,W)) < A, we have

A — ag(k)0S (0, w)
Oéo(k)

and the operator T is contraction in W*4(RY) for any ¢ € [to;t1]. Denote by
z its (unique) fixed point. Then z € W*4(RY), ¢ty < ¢ < t1, and solves (1.1).
Since tp, t; can be taken arbitrarily and Lemma 1.2 guarantees (2.11), Lemma
2.4 is proved.

laller < <A —ag(k)8 (0, w)

O

We are now in a position to prove the existence of solution to (1.1) for
f € Wka(RY) and for Q an exterior domain in RY.

Theorem 2.1

(i) Let q, k, Q a, w and f satisfy the assumptions of Lemma 1.2. Then there
exists a(k) > (k) such that if

a(k)08 (a,w) < X,

then there exists a unique solution z € W*4(Q) to the problem (1.1) which
satisfies the estimate

1/ 11k
A — 04000

(for the definition of ag see Lemma 1.2). If @ = RN, then a = ay.

ellg < (2.13)
(ii) If moreover f € Wé’q(Q) for somel=1,2... k and
(w,Vw,...V7lw) s = 0
in the sense of traces, then also z € Wé’q(Q).

Proof: Let us first note that it is enough to prove the theorem for Q = R¥.
Suppose that the theorem holds true for Q = RV, i.e. there exists A > 0 such
that for any W, A satisfying

A0 (4, W) < A
and F € W*4(RY) there exists Z € W*4(RY), solution to the problem

N +W.-VZ +AZ=F iRV,
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Let us extend w, a and f to the whole RY due to Lemma 2.1 and denote
their extensions by W, A and F', respectively. Moreover, from (2.1) and (2.2)
it follows that

074, W) < MO (a, w).

Suppose that w, a satisfy
max{ao,AM}Qék)(a,w) <A
Then certainly
A0 (4, W) < A

and according to our assumptions, there exists Z € Wk’q(RN ), a unique solution
to (1.1) in RY. Then 2z = Z/, belongs to W*4(Q2) and solves the transport

equation (1.1) in Q. In particular ao(k)egk) (a,w) < X and (2.13) follows from
Lemma 1.2.

Now the statement (i) for Q = R¥ follows easily from Lemma 2.4 by the
standard density argument. To prove (ii), let us observe that we have at 02

w-Vz =(w-t)(t-Vz)+ (w-n)(n-Vz)

with t and n the tangent and normal vectors to 0, respectively. If I = 1, then
(w-n)=(w-t) =0 at 9Q and from (1.1) we see that

AN—a)z=0

in the sense of traces at 9. As A\ > ||al|co, we have z = 0 at 9. For higher
derivatives we proceed analogously.

Theorem 2.2

(i) Let q, k, Q a, w and f satisfy the assumptions of Lemma 1.3. Moreover,
for (1.14)1, let Va € Wk=14(Q). Then there exists a(k,q) > ag(k,q) such
that if

a(k, q)@l(k) (a,w) < A

(i =1,2, see Lemma 1.3), then there exists a unique solution z € Wk’q(Q)
to the problem (1.1) satisfying the estimate

[ £1lx,
121k, < A—iaoqe-' (2.14)

IfQ =R, then a = ap.
(11) If moreover f € Wé’q(Q) for somel=1,2... k and
(w,Vw, .. .Vl_lw)/ag =0

in the sense of traces, then also z € Wé’q(Q).
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Proof: Analogously to Theorem 2.1 we can show that it is sufficient to
prove the statement (i) for @ = R" and use Lemma 2.1 in the case of Q # R,
Let us start with Va € WF14(RN) kg > N.

Let (r be the Sobolev cut—off function with R > e, see Section VIIL.2. Put
are = (alg)e, € > 0 (the mollification). Then ag. € C§°(RY) and for fixed
R>¢

ARe — alr in Cgﬁl(RN)

—0t.
vk(aR,a) _ vk(aCR) in Lq(RN)} as € 0

Therefore 9§k)(aR,€, w) — Hgk)(aCR, w) as ¢ — 0T. Since Va € WFL4(RY), we
have also due to Lemma VIII.2.2
HkaCRHq - Hvkqu

el o _ as R — oo (2.15)
VPl Vicpll, — 0 1=1,2,....k

and therefore
IVF(uCr)llg — [VFull;, as R — oo,

Moreover
laCr|lcr—1 — [la]|ck-1  as R — oo
and therefore

9§k)(aCR7W) — QYC)(CL,W) as R — 00.

Let w, a be such that ag(k, q)Gik) (a,w) < A. Then there exists Ry such that
for any R > Ry
ao(k, )0 (aCr, w) < .

Furthermore, for any R > Ry there exists ¢g(R) > Cp(Rp) > 0 such that for
any 0 < e < go(R)
ao(k, )0 (age, w) < . (2.16)

Let us consider the problem
2 +w-Vz +agpez = f (2.17)

for €, R discussed above. Now two possibilities may happen

a) W, ap. are such that ag(k, q)9§k)(aR,5, W)+ago)(k)9(()k) (aRe, W) <A, a(()o),

Qék) are defined in Lemma 1.2. Then by Theorem 2.1 there exists a unique
solution zg . € W*4(RN) and according to Lemma 1.3

1£l1x.q
A — ap(k, )0 (ap.., w)

IzRellkq < (2.18)

b) if ao(k, q)@%k) (aRe, W) +a(()0)(k:)9(()k) (are, w) > A, then there exists Ag > A
such that ag(k, q)9§k)(a3,5, w) —|—a60)(k:)9(()k)(a375, w) < Ao. Let us consider
the equation

Mz +w-Vz +arez = f+ (Mo — )\)T (2.19)
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for 7 € W*4(RY). Applying Theorem 2.1 to (2.19) we easily conclude that
there exists a unique solution 2z} _ to (2.19) together with the estimate

()\() — Oé()(k, q)Hgk)(aR,aa W)) HZ}-%,E

kg < I fllkg + o = MI7llrg - (2:20)

From (2.16) we have \g—aq(k, q)&ik) (are, W) > Ao—A and therefore (2.19)
defines a linear mapping 7 +— z% . which is due to (2.20) contraction in

Wh4(RN). We denote its unique fixed point 2Rr and from Lemma 1.3 we
conclude that it satisfies the estimate (2.18).

We may therefore pass with ¢ — 0% and then with R — oo to get z €
Wk(RN) such that

Zpe —2zp i WRIRY) ase—0F

zp—z in WFIRN) as R — oo,

at least for chosen subsequences. Moreover, it is an easy matter to verify that
the function z satisfies

/ z()\cp—w'Vgo—i—(a—V'W)dx:/ fedx (2.21)
RN RN

for all ¢ € C§°(RY) together with the estimate

£ llk.q
A — ag(k. q)0™ ’
O[()( 7Q) 1 ((I7W)

I2[lrq < (2.22)

i.e. z is a weak (and therefore also a strong) solution to (1.1).
The proof of the statement (i) for V¥a € LY (RY) can be done analogously.
Only instead of (2.15) we have

||VkaCRHN — ||Vka||N as R — oo
[VE9aVIiCr|n =0 asR—o00,j=1,2,...,k

due to the properties of the Sobolev cut—off function (see Section VIII.2). We
have namely for [ > 2 that V(g is in LV (RY) bounded by a constant which
tends to 0 as R — oo. The uniqueness follows from the estimate (2.22). The
statement (ii) can be shown as in Theorem 2.1.

O

Remark 2.1 Let us note that for k£ > 2, kg > N we can weaken the assumpti-
ons on a. Let mg > N. Then it is enough to take V*~"*+2q ¢ W™m=24(Q) for
m < k — 2 and to proceed as above. Indeed,

IV aVirllg + ... + [V eV ™ g, — 0
due to Lemma VIII.2.2 and
IV*=™aV " Chllg + - . + [|aVFCrlly — O

due to the fact that ||V"(g|l; — 0 as R — oc.
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Theorem 2.3

(i) Let q, k, Q a, w and [ satisfy the assumptions of Lemma 1.4. Moreover,
let Va € WF14(Q) if kg > N and Vw € Wk-14(Q) if (k —1)g > N.
Then there exists ok, q) > ap(k,q) such that if

a(k, )0 (a,w) < A

(i = 1,2,3, see Lemma 1.4), then there exists a unique solution z €
WF4(Q) to the problem (1.1) satisfying the estimate
k
120k < Mg (2.23)
A — Oé()@i

IfQ =R, then a = ap.
(i) If moreover f € Wé’q(Q) for somel=1,2... k and
(w,Vw,...VI7lw) s = 0
in the sense of traces, then also z € Wé’q(ﬂ).

Proof: It is essentially the same as the proof of Theorem 2.2; instead of
are we take wr . € Cg° (RN ), use Theorem 2.2 for the existence and pass with
e — 07, R — oo. Instead of Lemma 1.3, we apply Lemma 1.4.

O

Remark 2.2 Similarly as in Remark 2.1, we can weaken the assumptions on
wif k> 2and (k—1)g > N.

Remark 2.3 We can prove even a bit stronger version of the uniqueness. We
have:

Let 1 < p,q < oo. Let 21 € LY(Q) and 29 € LP(Q) be two (apriori different)
weak solutions to (1.1) with f € L9(2) N LP(Q). Let w, a satisfy assumptions
(i) of Lemma 1.2 and aOG(()O)(a,W) < A. Then z; = 23 a.e. in €.

Proof: Again, it is enough to consider @ = RY. Let f, € C5°(2) be a
sequence such that f, — fin LI(Q)NLP() and z, denotes the unique solution
(by Lemma 2.4) to

A +w-Vz +az=f,.

But f, — fin LY(Q)NLP(Q) and LI(Q2) and LP(Q2), respectively, are uniqueness
classes, hence z, — 21 in LP(Q2) and z, — 2o in LI(Q2), i.e. z; = 29 a.e. in RN,

O

Theorem 2.4 Let a, k, 2, a, w and f satisfy the assumptions of Lemma 1.5.
Moreover, let f € LP(2), 1 < p < co. Then there exists a(k,q) > ao(k,q) such
that if

a(k, )0/ (k, q) < A (2.24)
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(i = 1,2, see Lemma 1.5) then there exists unique solution z € LP(Q2) such that
Vz € WF19(Q) satisfying the estimates

[
< AP
HZHP — )\ _ 050‘90 (2 25)
||VZH < ||vf||k—1,q '
k=l = A— 04092 '

IfQ=R", then a = ay.
Proof: Let us note that there exists a sequence f,, € C§°(f2) such that

Vi, — Vf in WkLa(Q)
fo—f inLP(Q).

Moreover, (2.24) implies that aoﬁ(()o)(a,w) < A, ag, 9(()0)(a,w) from Lemma 1.2.

Therefore for any n € N there exists z,, solution to
A +w-Vz +az=f, inQ

(see Theorems 2.1 and 2.2) and Lemmas 1.2 and 1.5 imply

In
[ g— 2
A= ao(0)b " (a, w)
Hvankfl,q < an”kfl,q

X —ag(k, )0, ") (a,w)

i = 1,2. Passing with n — oo and recalling that z, — z in LP(Q0), Vz, — Vz
in Wk=14(Q) (the whole sequences) we easily verify that z solves (1.1). The
estimates (2.25) follow from Lemmas 1.2 and 1.5.2

O

Theorem 2.5 Leta, k, ), a, w and f satisfy the assumptions of Lemma 1.6.
Moreover, let f € LP(Q2), 1 < p < co. Then there exists a(k,q) > ao(k,q) such
that if

a(k, q)8,%) < A (2.26)

(i,7 = 1,2, see Lemma 1.6) then there exists unique solution z € LP(Q) such
that Vz € Wk=149(Q) satisfying the estimates

1f1lp
< WP
el < 5=l o
”VZHk—l < ||vf”k—17q ’

4= )\_QOG;J '

IfQ =R, then o = .

2Let us note that if z € LP(Q), 1 < p < 0o, and Vz € W*™19(Q), 1 < ¢ < N, then the
Sobolev—Poincaré inequality ||z|]| ~q¢ < C(g, N)||Vz||q holds.
N—q
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Proof: It is essentially the same as the proof of Theorem 2.4.

O

We finish this section by studying the weighted estimates of solutions to
(1.1). Let g : © — R be a weight function such that

g€ Ck(Q), g>0in (2.28)
and denote
0(y) (@, w) = 057 (a = w - Ving,w). (2.29)
(k

Let us suppose that 0, | (a, w) < co. We define Wl;’q(Q) as follows

)
u € WH(Q) <= ug € Wh(Q). (2.30)

Then 17[7(]; ’)q (Q) is a Banach space with

[ellk,q,(9) = llugllkg - (2.31)

Moreover we suppose that g is such that

W) ¢ Whe(Q), (2.32)

ie. g > Cq as |x| — 00, g > Oy as |x| — 0N and the same assumptions on the
derivatives of g. Then we have

Theorem 2.6 Let k, q, 2, a, w, f satisfy the assumptions of Theorem 2.1.
Let g be such that (2.28)—(2.30) hold. Let f € W(];)q(Q) and

ao()(0™)  + 60 (a, w) < A. (2.33)

(9),0
Let z € Wk4(Q) be the solution to (1.1) guaranteed by Theorem 2.1. Then

z € W(]CQ’;J(Q) and

||f||kq(g)
< 2 2.34
||Z”k,q,(g) — )\ _ aoe(g)’o ( 3 )
Proof: Let us solve
X+w-VE+(a—w-Ving)l = fg inQ. (2.35)

Theorem 2.1 guarantees the existence of a unique solution to (2.34) in W*4(Q)
together with the estimate

191k,
||f’ k.q < (k)q : (2-36)
A — ag(k)O(g)’O(a, w)
The function n = % € W(];’)q(ﬁ) C Wk4(Q) and solves
Mm+w-Vn+an=f. (2.37)

But denoting by z the unique solution to (2.36) in W*4(Q), we easily deduce
that n = z i.e. £ = zg. The estimate (2.34) follows from (2.36).
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Existence of solutions in Sobolev
spaces

This chapter is devoted to the construction of solutions to the problem (I.4.14)—
(I.4.15) in two and three space dimensions. We shall combine results from the
last two chapters — the estimate on the modified Oseen problem and transport
equation. In the following chapter we then prove some auxiliary estimates in
order to study the asymptotic structure of solutions. The method of demon-
stration is a perturbativ one — we study only small perturbations with respect
to the rest state u = 0, p = const caused by a small external force and by
a small velocity prescribed at infinity. The method is based on the following
version of the Banach fixed point theorem (see e.g. [Vi])

Theorem 0.1 Let X, Y be Banach spaces such that X is reflexive and X — Y.
Let H be non—empty, closed, convex and bounded subset of X and let M : H —
H be a mapping such that

[M(u) = M)|ly < &llu—vly Vu,veH,
0 <k <1. Then M has a unique fized point in H.

Proof: Let u, € H be a sequence strongly convergent to v in Y. As H is
weakly closed and X is reflexive, there exists {uy, }, subsequence chosen from
{un}, and v € H such that u,, — vin X. But X — Y and therefore u,, — v
in Y. The uniqueness of the weak limit implies © = v and therefore u € H. We
see that H is closed in Y and the result follows from the Banach fixed point
theorem.

We shall study separately the three— and twodimensional flows.

V.1 Threedimensional flow

We shall prove several existence theorems under different assumptions on the
right hand side f. We start with some auxiliary lemmas.

Lemma 1.1 Let Q be an exterior domain in R® of class C%'. Then we have

5 3 %Jrs 3¢
lulloo < Cllullilul3s + Cle)ullfTul3, (1.1)

182
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ue LYQ)ND*2(Q),0<e <3

ulloo < Cllullg™*ulfy, + C @) lullg™ |ulg,® (1.2)
u€ LIN)NDYY(Q), p>3,1<q< o0, a:ﬁ%, 0<e<a
lully < Cllullguli,” (1.3)
1, _ _3(—q)
ue L) NDWP(Q), p>3,1<q=<p, a=z 0
Tp—12 3p
lulla < Cllulls™* Julyy (1.4)
2 1, 12
ue LY(Q)NDP(Q), p> =
lull 22, < Cllully™fulf, (1.5)

we LNQ)NDWP(Q), a = 2%, 2 <p<4.
Proof: It is a consequence of Theorem VIII.1.13 and Remark VIII.1.10.
O

Let us recall that we study the following system

Ou
A(u) + 5({')7(131 + Vm = N(fv T(u)vp(ﬂ—a u)a u) in Q
V-u=0 (1.6)
u—0 as|x|— o0
u=-—v, at 9N
p+((ut+ve) -Vp=m (1.7)
T+ ((u+ V) V)T +G(Vu, T) =2nD(u),

i.e. we search a fixed point of the operator M : (w,s) — (u, ), where

A) + 4% = B(E, T(w), pls, w), w)
1
u—0 as|x|— o0
u=—-—vs at 90
and
p+(WH+ve) -V)p=s (1.10)
T+ (W+vs) V)T +G(Vw,T) =2nD(w). (1.11)
Moreover

N(f,T,p,w) =f+ V- [F(vw, T) + p(Vw)T — (w-V)w) ® w—

0
—w®w—ﬁ(%®w+((w-V)w)®e1) —I—f®(w—|—ﬁe1)} =f+V.g,
1
(1.12)
where F(-,-) and G(-,-) are bilinear functions, v, = const = (Je;.
We first start with the right hand side f € D0_1’2(Q) NW*2(Q), k > 2. From
Theorem IV.2.3 we have
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Corollary 1.1 Let Q € C%! be an exterior domain in R3. Let |[Vw|or-2,

|Wlp3 and voo = [er be sufficiently small. Then for k > 2 the solution to
(1.10) and (1.11) satisfies

[Tk < CIIVW|k2
Ipllk2 < Cllsllk,2 -

(1.13)

Next we study the modified Oseen problem (1.9). We first need some esti-
mates of the right hand side.

Lemma 1.2 Let Q € C%! be exterior domain in R3, 1 > 2. Then for u, v
sufficiently smooth we have

[uvlliz < [lullizllvll2 (1.14)
u,v € WH(9Q)
[uvll1,2 < [lull12][v][2,2 (1.15)
uw e WhH3(Q), v e W22(Q)
luvlliz < (lulls + [Vulim2)l[v]l2 (1.16)
u € LAQ), Vu € WI=L2(Q), v € Wh2(Q)
[uvl[1,2 < ([[ulla + [[Vull2)||v]2,2 (1.17)
u € LAQ), Vu € L3(Q), v € Wh2(Q)
uvllie < ([Julls + [[Vulli-2)(Jolla + [Volli-12) (1.18)
u,v € L4(Q), Vu, Vv € Wi=12(Q)
luvflr2 < (Julls + [[Vull2)([v]ls + [[Voll12) (1.19)

u,v € L*(Q), Vu € L?(Q2), Vv € WL2(Q).

Proof: The inequality (1.14) follows directly by means of the imbeddings
|lullee < Cllull2,2, |[ulla < C||u|1,2, while for (1.16), (1.18) we also apply Lemma
1.1, inequality (1.1). Similarly we show the other inequalities with [ = 1.

O
We can now prove the first existence theorem:

Theorem 1.1 Let f € Dy 2(Q) n W 2(Q), k > 2, Q € C*1 and let By and
If|—12 + ||f|lg,2 be sufficiently small. Then for any 0 < B < [y there exists a
solution to the system (1.6)—(1.8) such that

uec (), VumpeWwWhq)!

'Let us recall (see Chapter I) that 7 plays the role of the effective pressure; the real pressure
is p.
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Proof: We define the operator M : Vi — Vj
Vi = {(u,p);u € LY(Q), Vu, 7 € WF?3(Q)},
M : (w,s) — (u,m), where the pair (u,n) solves (1.9) and T, p solves the

transport equations (1.10) and (1.11) with G(-,-) a bilinear tensor function.
We denote for (u, ) € Vj

1
[(w, m)llyr = Billulls + [[Vuallkz + (7,2
and show first that for sufficiently small § > 0 the operator M maps
Bs = {(u,m) € Vi; || (w, m) [y < 6}

into itself.
Applying Theorem II1.5.3 (i) we get (see (1.12))

1w, m)[lye < C(INJ-12 + [[N[le—12 + [[Voo g1 3 2, 50)) <
< CO(f|-12 + [fllk-1,2 + [I8llk2 + B) -

We have to estimate g in W*?2(Q). Lemma 1.2 and Corollary 1.1 yield for &
small enough (||V*w||3 + |[VW| k-2 < C||VW|r2 < C9)

lglle2 < CIT Ikl VWlle2 + [Pl VWlle2 + [V ([wlls + | Vw]|k-1.2)*
+(IwWlla + 1VWllk-1.2)% + B VW2 ([ Wlla + [ VW]lk-1,2)+
HEll 28 + [[Wlla + VW lk-1,2)] <
< Cll(w, )R, (877 + 8) + [[(w, )3, (872 + 1)+
HIEk2 (B + (1 + 57w, 5) 4]

We put § = 4% and assume ||(w,s)|]y, < J. The exponent « is positive and
will be specified below. Then

1w, m)[lv < C[’f\—m + |fllk—1,2 + 5+ e262%(B7 % + B)+
+E¥FUB7E + 1) + [k 2(B+ 2671+ 679))].

Taking ¢, 3, |f|—12 + ||| sufficiently small and 1 < a < 1 we get

[, m)llv, <eb% =6

and the operator M maps Bj into itself. We have to verify that M is a con-

traction in Bs in the topology of Vi_1. Let (w!,s!), (w2 s%) € V; and (ul,7!),

(u?, 72) be the corresponding images of the operator M. Denoting U = u! —u?,
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D=r'—72, W=w!—-w? 5 =s'— 5% we have

A(U) + 522 + VII =
= V- [F(VW!, T! = T?) + F(VW, T?) + (p' — p*)(Vw')+
(VW) — (W-V)wh @ow! — (w*- V)W) @ w!—

a((2w2~V)W2)®WW®W1 w2®W5(8&‘Z®W1 (1.20)
—%®W+((W~V)w1)®e1+((w2-V)W)®e1) +fo W]
V-U=0
U =0 at 092
U—0as |x| = o0
Pt =P+ (W' +veo) - V) (! =p%) = 5 — (W - V)p? (1.21)

T! - T? + (W' + Vo) - V)(T' = T?) + G(VW!, T! - T?) =
=2D(W) — (W -V)T? - G(VW, T?).

Corollary 1.1 applied once on (1.21), (1.22) and once on (1.7), (1.8) yield toge-
ther with Lemma 1.1

||p1 - p2\|k—172 < C(|ISlk=1,2 + [|[(W - V)pQHk—1,2> <
1
< CI(W, v, (Iw?, 8%y, 877 +1)

(1.22)

(1.23)

IT! = T?|[j-12 < C(IVW 1,2 + [W - VT?||—1,0+
_1
HIG(VW, T?[|5—12) < CI(W, 9)|lv;_, (Iw?, s* v, 871 +1).

We now estimate (1.20) applying Theorem II1.5.3 together with (1.23) and
(1.24) and Lemma 1.2. Let us consider k = 2 (the case k > 2 is much simpler;
we can proceed as above for the space V).

(1.24)

(UM y; < C{llet, T p', w") — g(f, T2, % w?) 12} <
< C{IVWIls + W) [[E]l22 + | T = T2[|1 o[ Tw? 2.0+
| T? |22 VW12 + Ip" — p* 12| VW |22 + D% |22 VW 1.2+
(W g+ [ VW)W - V37|55 + [ VW1 W w |22+
H(IWla + VW [l2) (w14 + [V [1,2)+
+B[ VW 1w 22 + (IW]la + VW ) [ Vw7 ]]5,5)] } <
<CO+B7T+473)[(W, )|y

[o(®) + w5l + 12, 5%y, + [, " [us (|7, 7 2]

1,2

i,7 = 1,2). Recalling that ||w?, s'[|y, < 8%, a € [3;1) we can always choose

2
e, 3 sufficiently small such that

(U, ID[lv; < &[[(W,5)l[v2 (1.25)
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with x € (0;1), (w',s%) € Bs, § = £3%. Analogously we get for k > 3 the
same inequality in Vj_1. Therefore M is a contraction in V;_; and Theorem
0.1 finishes the proof.

O

We have required quite high regularity on the right hand side — f € W22(Q)N
D61’2(Q) at least. Applying Theorem II1.5.3 (ii) with p > 3 we can a bit weaken
the assumptions on the right hand side — f € D0_1’2(Q) N L3(Q) N WhP(Q),

€ (3;4]. We shall show the existence of solution in this situation; analogously
as in the proof we proceed for f € Dy () N L2(Q) N WFP(Q), k > 2 and get
smoother solution. The proof is similar to the case k = 1 and therefore, we shall
not do it.

Theorem 1.2 Let f € Dy 2(Q) N L2Q)NWHFP(Q), k> 1,3 <p<4, Q¢
CF+L. Let |f|—12 + ||fll2 + |fllkp and Bo be sufficiently small. Then for any
0 < B < By there exists solution to the problem (1.6)-(1.8) such that
uc LY(Q)n DM (Q)
p,m € L*(Q)
V2u, Vp, Vi € Wh=br(Q).

Proof: We show the theorem for £ = 1. As in Theorem 1.1 we define the
operator M : V] — Vi, where now

Vi = {(u,n);u € L*Q),r, Vu € L*(Q), V?u,Vr € LP(Q)}
and )
1w, )l = B3 [lulls + [ Vullz + [|7l2 + [[Vull, + V7], -

We show that M maps sufficiently small balls in V; into itself and that M is a
contraction in V; in the topology of Vj, where

Vo ={(u,m);u e LYQ), 7, Vu € L*(Q)}
1
”(u77T)HVO = 54 Hu||4 + ||VUHQ + HT('HQ

Theorem I11.5.3 yields (recall that p > 3, i.e. Wz_%’p((‘)Q) — W%Q(E?Q))

10w, m)lhvi < CON|—r2 + N[l + l[Voollz—1 (o)) <

(1.26)
< C([f[—12 + £l + gl + IV - gllp + 5) -

We have to estimate ||gl||2 + ||V - g]|,. We easily get due to (1.2) with ¢ =2
and 4 and (1.3) with ¢ =2

lglls < C((IT ]2 + Ipll) (1wl + [V2w],)+
HIVWl2 (Wi + Vw3 + [ V2wl3)+ (1.27)
+BIVWo(Iwlls + 1 Vwlly) + w3 + Bl + [wlal€]1,) -




188 M. Pokorny: Asymptotic behaviour . ..

Now for |[V2wl||, + |[Vw||2 small enough (||Vw|co is bounded by this) we

have
[T][2 < CIVW||2

IVTllp < ClIVW1p < CUIVW2 + [ Viw],)
Ipll2 < Cllsll2
Vel < ClIVsllp

(1.28)

(see Theorems IV.2.1 and IV.2.4) and therefore

lgll2 < C(B7% + B)l[(w, )3+ (572 + 1)l (w, 5)I[},+
+B1£ll2 + B (w, 5)lvs €]l -
Next we estimate
IV - gllp < (1Tl + VRl (VW + VW loo) + V2w 1w 2+
HIVW]2 (1YW loo + B8) + VW [1pl[Wlloo + (8 + [[Wlloo) [[£l]1p -
Again, applying (1.28), Lemma 1.1 and standard inequalities we end up with
IV -gll, <CB2+8)(w, )|, + (372 +1)(w, )|+
+BIIE] 1+ 877 (W, )i £l

Assuming the norms of f and [ sufficiently small, § = 8¢ for £ small and
o € [3;1) we get as in Theorem 1.2

(1.29)

[(a, m)[lvy <6 =ep®,

whenever [|(w, s)|[y, <.

Now let (wl, s!) and (w?,s?) be two elements of V;. Denoting (u’, ) the
corresponding images of the operator M and U, II, W and S as in Theorem
1.1 we have

||(U7H)HV0 < CHg(fleaplvwl) - g(fv T2,p2,W2)H2 . (130)

As in (1.23) and (1.24) we have to estimate first T! — T? and p! — p?, solutions
to (1.21) and (1.22). We have for sufficiently small € and 3 (i.e. sufficiently small
norms of w and s)

lp" = p?[l2 < (ISl + W - VpP[l2) < C(|S]2 + HVPQHpHWH%)-
As%24<=>p§4,wehavefor3<p§4

lp* = p*ll2 < CUIS |2 + VPl (IWls + [VWI|,)) <

a1 5 o (1.31)
<O+ B3+ D)W, %) lvi) [ (W, 5)]lvg -
Analogously, for 3 < p <4
IT" = T?|l2 < C(IVWIl2 + [|(W - V)T?|l2 + [G(VW, T?)]}2) < (1.32)

<O+ (BT + D)W D)) (W, 8)]lvs -
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We have

1(U ) v, < C [T = T[] VWl og + [ VWI|o]| T2[loc+
Hlpt = P2 VW oo + [ VWIl2 [P+
HIVW 2w oo [W2[loo + W la(llw! la + [[w?]l4)+

+B(IIVW2(1w oo + W2 loo) + Wl (| VW |14 + [ Vw2]14) )+
HIW 4w - Vw4 [ (w2 - V)w2]]) + €]l W]

The estimates (1.31), (1.32) and definitions of the spaces finally yield

(U, ) v < CIHW, ) lvo [ 1w, 5 v (87 + B)+

o 1 1.33
+H(wh, ), (877 +1)] 3%

and taking e, 3 sufficiently small we end up with

H(U7H)||VoSRH(st)H%? 0<kr<I,

i.e. the operator M is a contraction in V. Again, Theorem 0.1 finishes the
proof.

O

The assumption f € D~12(Q) together with the restriction p < 4 can be
replaced by f € W14(Q) for some 1 < ¢ < %. We have in this case

Theorem 1.3 Let Q € C*1 be exterior domain in R3.

(i) Let £ € WH(Q)NWHP(Q), k> 1, p€ (3;00), q=14 (g= 5 if k =1).2
Let By and |[f]|1,q + |||k, be sufficiently small. Then for all 0 < B < By
there exists solution (u,p) to the problem (1.6)-(1.8) such that

29 1.-4a
ue L2=4(Q)N D4 4(Q)
VZu, Vp, Vrr € LI(Q) N WE-1P(Q)
p,TE L%(Q) .

(i1) Letf € Wl’%(Q)ﬂW’“Q(Q), k > 2. Let By and HfHL%—i-HfHkQ be sufficiently
small. Then for all 0 < 3 < By there exists solution (u,p) to the problem
(1.6)-(1.8) such that

u e L4(Q)n D3 (Q)
V2u, Vp, Vr € L3(Q) N WE12(Q)
p,TE L%(Q) .

I f € LU NWHP(Q), g € (158) (g € (155)), then £ € L9Q) N L=(Q), be. £ € LE(Q)
(L (@).



190 M. Pokorny: Asymptotic behaviour . ..

Proof: We show only the most difficult case (i) with k£ = 1. Let us denote
Vi = {(um);u € L¥9(9) n DY (@),
6
Vi, Vr € LUQ) N L/(Q);1 < q < 7.p > 3

and
(w,m)|lv, = 52 |u] 20 + 1| V| fot

+||V2ul|, + ||v2u||q IVl + IIlelp

Let us note that due to the fact that 7 is generally determined up to an additive
constant we may assume due to the imbedding theorem (see Theorem VIII.1.2)

3
that 7 € L34 together with the inequality
7]l 2 < C@IIVlq-

As in Theorems 1.1 and 1.2 we define operator M : V; — V; and show
that M maps sufficiently small balls into itself. Theorem IIL.5.3 (ii) yields (for

B<1)
1w, m)llvy < C([[Ellg + [1Ell, + 1V - gllg + V- &l +5) -

We have for 1 < g < 1—72, p > 3 due to Lemma 1.1 and standard inequalities
19 &l < CIVTI VW e + [Tl V2w [, + [ V8],V

+HIVPwpllwl + (V2w + HVWH24q MW lloo + W lloo [V w][p+
+B((IV2 W[l VW oo + IV 2w ]2 + !!Vw!!24qq)
HIVEp(IWloo + 8)] -

Using the estimates of the type (see Theorems IV.2.1 and IV.2.4)

Tl < CIVwlip < OV s+ [V3w]))
IVpll, < ClIVs|p

IVpllq < ClIVsllg
[Pl e < Cllsll 50
3—q 3—q

we finally get

IV - gllp < C[llw. )3, (5% +8) +1(w, )1}, (57 + D+
+B1VElp + CE+ B72)[(w, 5)|lw] -

Analogously for 1 < ¢ < 3 (i.e. 4—‘7(] <2)

IV - gllg < C[IVT oI TWlloo + [ Tllool V2Wlly + VPl Voot
V2w gl w1 + Vw3, + W] 2o [[Vw]lz+
+B(IIV2w [ wlloo + 17w I3, ) + [VEl([Wloo + B)] <
< Cll(w, ) [} (57 +8) + [[(w, ), (87 + 1)+
+BVEl, + C(E)B[[(w, 5) ]
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and therefore

[ IR, < ClIw, )} (875 +8) + l(w, ) [} (87" + 1) + C(£) + 5]

Again, assuming [|(w, s)|ly; < 6 = 8%, a € [3;1) we get for 3, e sufficiently

1
small
[(u,m)llv; <eB® =46

and M maps again sufficiently small balls into itself.

The definition of the space on which M is a contraction, is a bit more
complicated now. Let us note that it is not possible to take just a subset of V;
such that we skip the LP—norms. But we can take

Vo ={uc L*Q);Vu,rc L*(Q)}.
Taking (w', s') C Vo N V4, we have
I(U, )|y, < Clig(t, T p', wh) — g(f, T2, p%, w?)]|2. (1.34)
Moreover we can easily verify that V; < V. We have3

Il < CB)[Iul 2o + alloo + [ Vull o+ [Vuloot
Hlel go + limlloe] < CO8) [l 2 + IV2uly + [Vl s +
IVl + [V7ly] < C@)l i

We have to estimate ||(U,II)||y;, by means of (1.34). For p < 4 we can proceed
exactly as in the estimate (1.33) and get for &, 3 sufficiently small

(U, Mlv, < &l[(W,5)llvg

for 0 < k < 1 and the operator is contraction in V4. If p > 4 we use instead of
(1.31)

IWVP? (2 < [W]la|VP?[la < W VP? [l VP,

and again verify that M is a contraction. Analogously we proceed in (i) for
k > 2 and in the case (ii); we shall show that M is a contraction in Vj_1,

29 1. 49
Vi = {(u, m);u € L2=a(Q) N D 3-a(Q),

6
V2u, Vr € LUQ) N WELP(Q);1 < g < g}

with p > 3 in the case (i) and p = 2 in the case (ii).

O

3Let us note that exactly here we have to restrict ourselves, because of pressure, on g < g.



192 M. Pokorny: Asymptotic behaviour . ..

V.2 Plane flow

This section is devoted to the study of the twodimensional flow. Unlike the
threedimensional flow, we do not have any G—independent estimates for f €
D~14(Q); we can dispose only with Theorems II1.5.1 and IIL.5.2. As in the

previous section, we start with some auxiliary interpolation inequalities.

Lemma 2.1 Let Q C R? be exterior domain of class C%'. Then we have for
l<g<$ 2<p<oo

q
—2q

[ulloo < ClIVully|[ul ;7(2 + C(€)HVUIIS’EHUI|13§7“+E, (2.1)
—<q

— 2p(3=29) <
where o = Tt 0<e<a.

Proof: See Theorem VIII.1.13 and Remark VIII.1.10.

Let1<q<g,p>2,k20.Wedenoteby

Shq = {(wm);us € L¥4(Q), Vup € LI(Q),u € LT7(Q2),
Vu € L1 (9) 0 LP(Q), V2u, Vir € Wha(@) nwhr()} .

and

2 1
(Wpq = Bllluzll 2o +[Vuzllg) + B3 |[ull 2+ 53[[Vul 20 (2.3)

3—2
_1
[0, )]k = B0 (V2] 1g + | Vallg + [Vullisrp + [ Vallky)  (24)
_1
l(w,m)lllo = (w)g,e + B (IV2ully + | V7lg) - (2.5)
We shall show the following

Theorem 2.1 Let f € W2(Q)NWHP(Q), 1 < ¢ < S, k> 2 and let ||f||z,q +
|f|lxp and B be sufficiently small. Let Q@ C R? be an exterior domain of the
class C**1. Then there exists solution to the problem (1.6)-(1.8) such that

(u,p) € S;,f,q.

Before proving the theorem we first show some more auxiliary estimates.

Lemma 2.2 Let v, w be divergence free* and sufficiently smooth fields. Let

1 <q< g, 2 < p < oo, k> 1. Then the following inequalities hold with

constants independent of v, w and [3.
(v V)wlly < 8772070 (v) g o (W) (2.6)
[(w - V)Wl < 375720 w)g o[ (w, )0 + 47D [|(w, )F-y] 27)

4

IV2wiw ke, < €820 2 |(w, ) [573 (w)3, + 570w, (28)

it is fundamental only for the inequality (2.6)
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V2wlw[2|1y < €520 |(w, )1 [575 (w3, + 57w (29)
[w92wli, < €722 |(w, e [575 (W)a + 6720w, ) lkot] (210)

wV2wl g < O80T [(w, )i [BF (W) + 5720w, )] (211)

_ _1
1[VW[2 o1 < CB D (w, )12 (2.12)
_6(1—1)2=4 6(1—1) 6-4q
IVwVwl, < 08700 (w) (W, )] * (2.13)

IV2viw(2llg < 82O D)(v, )l [67F (w3, + 574w, )] (219)

wlN

V2w v wlly < CO 3 (v [B75 7070w gll(w
+67 40D (w, ) 3]

(2.15)

[vV2wlly < CBE (V) [575 (W)ag + 6720 (| (w, ) o] (2.16)
[w92vlly < 872 DN(v, o[58 (whay + 57200 |(w, )] (217)
IVvVwlly < CB5(v)a g[8 5 (Wha g+ 80 (w, )[]1] (2.18)
IVEwlly < CB™5 (W) o[ IVE]ly + [ VE]] (2.19)

IVEWlip < ClElks1,[5F(W)a 0+ 87 DN W, Mmaxray]  (2:20)

VEWly < O[5 5 Whae + 870w, )] (221)

Proof: The first inequality is classical, nevertheless, we repeat the proof
(see also [Ga2]). We have

Owsy owy Owsy Ows )

(v-V)w = (_”lax2 Ty e T o,

where we used that V - w = 0. So we have

(v - V)wllg < flvall 2g_[[Venlls + HvzH3HVWH g <

3
q

6_
"t el sy zq Hvzllqsq IVwl 2 <

q —q 3—2¢q

<pl- 2<1-a><v>g,q<w>ﬂ,q-

< Hvlll%qllvmllq K IIszll

The other inequalities are easier and follow from Lemma 2.1, imbedding
WLP(Q) < L>®(2) and the following inequalities
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W VWlikp < [IVWIlkp[wllk oo
IV wlw[lkp < [IV2W ]k WIIE o
V2w w |y < [VPwllgwliZ + 1 V2wl W]l oo [ VW]l
WV Wl < V2w 1 [Wllk,00
1g S IVl Wloo + V2wl [ VW]l
VW kep < IV kpll VW] 11,00
IV2vIwl?llg < Vv gl w12
[VEw v wly < VI _ag [IV*Wls [Wloo < V]| _sg_(IV*wllg + VW) [[wlloc
v Viwlly < (V] sy HVQWH:% < vl 2g (\\V2W||p+\|V2WII )
- 72v]ly < [ V2] W]l
[VvVwly < IVl so [VWls < V] o (1V2Wlp + [[79]] 50 )
IVEvllg < HVH 2 [VEllg < Ivil 5 (HVqu+ IVE]p)
[VE w1, < V8] L T
IVEWlLg < [V ]g[[Wlloo + [|VEll | VW /o

|wV2w

O

Theorems I1V.2.1, IV.2.2 and 1V.2.4 imply the following estimates

Corollary 2.1 Let T, p solves (1.10) and (1.11), respectively. Let 2 < p < oo,
1<qg<2,k>1.

(i) Let |Vwl||i,p be sufficiently small. Then
IT(kp < CIIVWIkp (2.22)
IVPllk-1p < ClVsllk-1,p- (2.23)

(ii) Let |[Vwl|c1 be sufficiently small. Then

[T} s < Cl[VW]| 50 (2.24)
3—q 3—q

IVT|1q < ClIVAWllLg (2.25)

IVpllig < ClIVsll1g- (2.26)

Proof: To show (i), we have to verify that ||Vw|ci-1 + ||[VW|x, are su-
fliciently small. But W1P(Q) — C°(Q) and so |[VW| k-1 < C||VW]|x,. The
estimates (2.22)—(2.23) follow directly from the above mentioned Theorems. Let
us only emphasize that for ¢ < 2 we can apply Theorem IV.2.4 and get (2.25)
while for p > 2 we only have (2.22).
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Lemma 2.3 We have for w, s satisfying the assumptions of Corollary 2.1

IVpTwlly < B D (w, ) Jolll (. 9)lll (2.27)
IVpVwl, <032 1—*>< w)g4lll(w, 5)[l (2.28)

IV VWl 1p<Cﬂ_4 Dl(w.5)|]2 (2.29)
Vw1 <A |(w,)[lill[(w. 5)]llo (2.30)
IVTVwl, <Cp 0" *>[|<w, Molll(w,)lllo (2.31)
IVTVw, < 05732070 (w) gl (w. o (2.32)
IVTVwlle, < C5~ 0| (w,)[]7 (2.33)
VTVwli,<Cp "0 n(w, I (2.34)
ITVwl, <063 72070 (w)z,4[I(w, ) [lo (2.35)
TVwl, < OB D (w, )13 (2.36)

Proof: The inequalities (2.27)—(2.36) are easy consequences of Corollary 2.1
and the estimates

T ClIVpllql| VW ]|oo
W

PYWla =1 ¢|vplls)|vwl| s
IVpVw|, <

VPV wlig < C(HV%HqHVWHoo + HVquHV?wHOO) )

analogously for T and VT.

d

We can now start to prove Theorem 2.1. Unlike the threedimensional case,
the balls in Sﬁ’q must be chosen very carefully.

Proof of Theorem 2.1: As for the threedimensional flow we define ope-
rator M : (w,s) — (u,7), where (u, ) solves (1.9)—(1.12). We show that M
maps for €, (3 sufficiently small and o € [%, 1) the ”ball”

B0 =L (w,5) € Sk i (w)g < e [fw, sy < 2000

into itself end that M is a contraction in the norm |||(+,-)|||o. Applying Lemmas
2.2 and 2.3 together with Theorem II1.5.1 we have

L1+ 8) + 77207 (w2 +
+575" *q< w)3 ll(w, >rh+6*%*4<1*%><w>5,qu<w,s>H%+
+ 837200 (w) g, [[(w, )11 + 575 (W) o (IVE]], + [VE])+
+ﬁ*4< Dll(w,9)[J3] < eg? 0T

_1 _
< >Bq<c[ﬁl+2(1 q)|lnﬂ| 1+||f|

(2.37)
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if €, 3 are sufficiently small and (w, s) € B5.
Next, Theorem II1.5.2 reads

[, 7lJi < C[UEllq + 1V gllg + 5D (Ellkp + IV - gllip +6)] - (238)
Again, Lemmas 2.2 and 2.3 employed in (2.38) yield
[lu, ]k < C{ (f )+51+2(1*%) +5—172(17%)< > o
573w llw )+ 67w )] < e

and M maps B%? into itself.
Next we show that M is a contraction in B%# in the norm ||| (-, -)|||lo. Let W,
s, i = 1,2, belong to B? and u’, 7" be the corresponding solutions to (1.9)-
(1.12). Denoting U =u! —u?, I =7! — 72, W = w! —w? and S = s! — s? we
have that (U, II) solves (1.20)—(1.22) and Theorems II1.5.1, IT1.5.2 imply
2(1-1

(U)o < O+ )| Vg (£, T ' wh) Vg, T2, 7wy (2:39)

We first estimate T! — T? and p! — p? solving (1.22) and (1.21), respectively.

V(" =)y < CIVSlly + [VWVR |y + W22, ] <
<c[||van+uvwn 2198l + W g 19297 ;| < (2.40)
< CII(W, S)llo 572071 + (57520 Dy 53R Dy, 2k -

Completely analogously

Iv(T 1—T2)Hq
< ClNW, )lla520D + (53200 4 g im20-bype, 2] Y
Moreover, we have also
IT" =% 30 < COl[VW] a0 + [WVT?| 2 | <
< CIVW] a0 + W] sy [ VT?[ls] < (2.42)

1 —2_9(1-1
< Cl|(W,s)lllo[ 875 + 87570 [w?, 8%[Jo] .
Now, from Lemmas 2.2 and 2.3 we can estimate (2.39) as follows

—92(1—1)y—
(T, Mo < C[872 271 I(W, S)llo((Wh) g + (W)s)+

—2(1-1)-% W.S 1 2 2
+87 20D TE (W, 9)llo((wh) g + (W)s.0)*+

_9(1—-1y_2
+687 2075 [(W, 9) lo((wh)g g + (W2)pg)+

_2
+873 (W, lo(IVElly + [ VEllp) + V(0" = p)llgl| 7w [loc+
HIVWI 2 VP13 + V(T = T)]]g | Vw0 oot
HIVWI 2 VT[54 [T = T2 s [V 3 4+ [ VW T
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The most restrictive term,

B DT (W, 9) lo(wh) g + (W) s)

comes from the convective term. Using (2.40)—(2.42) we finally have ¢, § suffi-
ciently small

(0. D[l < € (= + o)) I(W. S)lo < &l (W. )]l

with x € (0;1). The operator M is a contraction in S'? in the norm [||(-, )]0
and Theorem 0.1 finishes the proof.

O

Remark 2.1 Using the same procedure as above in two and three dimensions,
we could establish the existence of solutions to the problem (I.4.20) under the
assumption that n”’, 3 and certain norms of f are sufficiently small. But due to
the presence of linear terms on the right hand side we are not able to control
the asymptotic behaviour of such solutions and therefore we shall not study
this model.

V.3 Plane flow of second grade fluid

As already mentioned in Chapter I, our technique does not allow to show the
asymptotic structure of velocity and pressure field of second grade fluid flowing
past an obstacle. Nevertheless, we show at least existence of solution to the
problem (I1.4.27) in Sobolev spaces in two dimensions. The proof is taken from
[Po]. See also [Vi], where more restrictive assumptions on f are used.

We start form the reformulation (I1.4.28)—(1.4.29) and prove

Theorem 3.1 Let k > 1, ¢ € (1;2) and ||f||r, be sufficiently small. Then
there exists (o such that for all B € (0;0] there exists at least one strong

solution to (I1.4.28)-(1.4.29). Moreover, Vv € Wk4(Q) Vv € L;quI(Q) and
3
V — Voo € LT (Q), Vp € Wha(Q).

We denote )
[(u,8)]x = B2~ (| V2u

kg T [Vs]

ko) (3.1)

and (u)g, will be as in (2.3). As in the preceding sections we first need some
auxiliary lemmas.

Lemma 3.1 Let u has finite norms (-)g,4 and [(-,-)]o. Let u= —(3,0) on 0.
Then?

(3.2)

3—2q 3(g—1) 3(q—1)}

lulloo < C((, )05 T (w857 +6 7

Swe could also use Lemma 2.1
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Proof: We denote by w the function which is equal to u inside of 2 and
—(3,0) outside of 2. The function w belongs to W14(R?) and the interpolation
inequality from Theorem VIII.1.12 gives us

Iwlloo < ClIDW gollwl

TR2 ’
where 0 = a(X — 1) 4+ (1 —a)l. We put r = 33‘]2q and s = 22—_‘1(]; soa = 3_(]2(1. As
w =u on {2 and Vw = 0 outside of (2, we have
3(q 1) —1) 3—2q
Jullso < C{lul S ]IV 4o
The inequality (3.2) follows from the definitions of the norms.
O

We next estimate the quadratic terms on the right hand side of (1.4.29).

Lemma 3.2 Let u be sufficiently smooth. Then we have the following estima-
tesS with C independent of u and 3

1 _1
(- V)ull, < ()3 67070

-2 _o(1_1y(3=a
[(w-V)ulkg < Cl(u, )] * [(0,)]k-18 20=9) 7.
(), U 4 D) k>
3—2q 72(171 34
[uVFull, <Cl(u, )] * [(u,)]k—20 q

_1
YD B0 ko

3—2q 1\3—¢q

|uv2u|kq <Cf(w, )" [(u,)]ps 2T

L)y @200 4 g0 1+C[< I I

I7ul3, < P, )y g00—D% &2)
IVuVkul, < Clu, al(w, Yeoaf 07, k> 2
VuV2ul, < Cl(u, 6070, k=1

IV2ul)3, < Cl(u, )35~

1V < Of(w, )2, 57077
IVEsVully < Cl(w, $)li[(w, )]k 07 k>
IVsVEull, < Cl(u, )1 [(u, )1 87070,k >2
VsV, < Ol(w, 2674070, k>1

5Some of the inequalities were already shown in Lemma 2.2. Nevertheless, we shall repeat
them as some of them differ due to the use of Lemma 3.1.
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Proof: The first inequality has already been shown in Lemma 2.2; see also
[Ga2]. The other ones are easy consequences of Lemma 3.1, standard imbedding
and interpolation inequalities and definitions of the norms.

d

We are in a position to show that the operator M maps sufficiently small
balls in W14(Q) into themselves.

Lemma 3.3 Let |[f||;, and B be sufficiently small. Then there exists 6(3) >
such that the operator M maps Bs = {g € WH9(Q); ||g|l1.4 < &} into itself.

Proof: Let us take g € W9(Q), 1 < ¢ < £, |ig|l1,¢ < 6 small enough (will
be precised later). We solve (1.4.28) and use the estimates from Theorems I11.5.1
and III.5.2. Now, let us assume (will be demonstrated below) that ||Vul/co is
small enough. Let z be solution of (I.4.29) with the right hand side depending
on (u,s). Then

2.0 < CIF(,5)]

We need therefore to assure the smallness of ||Vu|co and to estimate F(u,s)
by means of the norms (2.3) and (3.1). Easily

1,q-

IVallco < C(IVul| s + IV2ull1q) < C(8)llgllLq (3.4)

and for ¢ sufficiently small, | Vu|co is small. Now from (I.4.29) we see that

[F(u, )]l <C(|(u- V)ullrg + [|[DuD?ul|14 + GlluD?ul|y 4+
+ | DsDul|14 + [[f]l1,q + 82 D?ul14) -

Lemma 3.2 reads

I R (Y A e
) (sl ) 0034 gy

3—q 1

F (9l + )y )F 2D (14 g+
([, 9)]2 + [, 8)a[(w, 9)]o(1 +8)5 77+
o [1l1.q + [, )2 67200}
Employing Theorems I11.5.1, II11.5.2 and IV.2.1 we get finally (we assume
[In | > 1)

6(1—* L
q

”lem<CIIF||1,q§0{||gH2 B0 4 g ¥

+87207D5(1 4+ 8) + ﬂ“““( 1+ 8)]+

(3 q) 1, 6—5q 2
—2(1-1)=>=> 2
+lgls 2095 <1+6>+Hg||1,qﬂq+
1 6—5
+61+2(1 |ln5| 2 2(1-) qq+

+ ﬂ““*a)T(l +0) + 621+ 5) + HfHLq} '
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1
Therefore assuming § = 651+2(1—5)’

1
|zll1g < ept 200 =5

Let us emphasize that

—1— _1 1 1 1
HgHiqﬁ 172029 < 023! 2070) < Egglﬂ(l )

for € small enough and

B0 m |2 < %@ﬁ”w‘%)

for g small enough. Lemma 3.3 is proved.

O

Now it remains to show that the operator M is a contraction in the space
L9(€2). It means we are about to show that there exists J small enough such
that for all g1, g2 € Bs there exists x € (0,1) such that

Mg — Mgallg < rllg1 — g2llq-
Let us first reformulate the problems (1.4.28) and (1.4.29). We have easily

B ou; —uy
A(U-l 112) + Q;Tm
V- (u1 - llg) =0 (3‘5)

111—11220 at@Q

+V(s1—s2) = g1 — g2

u —uy;—0 as |x| — oo

w(z1 — z2) + a1((u1 + veo) - V)(2z1 — 22) =

(3.6)
=F(uy,s1) — F(ug, s2) —ai(u; —u2) - Vza = G,
where
F(ul, 81) —F(UQ, 82) = —Q((u1 — 112) . V)ul — Q(Ug . V)(ul — LIQ)-l-
+ V- {(V(u; —u)T [Vu; + (V) 7]+
+ (Vu) ' [V(ug — u2) + (V(ug — u2))? ]+
+Q§§Zi ® (w1 — ugp) +Qﬂ8(113$—1112) ® ug— (3.7)

— (51— 52) (V)" — 55(V(ug — up))" }+

Lﬁ282(u1 —uy) .

+ o
Y Ox?

Our aim is to show that ||z; — z2||; < k[/g1 — 82| with x < 1. For (3.5) we
have
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(w1 —u2)g4 < Cllgr — g2l

(3.8)
[(u1 —ug, 51 — s2)Jo < Clg1 — g2ll¢

while for (3.6)
I = 22l < ——-Gl,. (3.9)
Similarly as in Lemma 3.3 we can show that 1}, is small if § is small enough.
We start to estimate G in L9(€2) by means of (u; — us)g, and [u; — uslo.
The constants in the estimates will depend on (u;)3,4 and [u;]; and will be small
for 6 small. We shall give the estimates of the terms on the right hand side of
(3.7).

[((a1 —u2) - V)z2|ly < [[lur — uzf[eo| V2|4 <
3=2q 1-1)

< 55_2(1_%)3%[111 - 112]0 ¢ (ug — u2>0( <

< ept 209 — gl

Let us note that for g € (1, g) the exponent by ( is strictly positive.

_1_9(1_1
(a1 = w2) - V) llg < A7 7070w — wz) pgfm) g <
<O(Im g~ +¢)llgr — g2l
The same result holds also for the term ug - V(u; — uy).

BlluaV2(ur —uz)|lg < BV (a1 — us)llq HU2||oo <

2-2(1—1)3=4
<o DT o) g -l + P +e o)l — gl
Completely analogously we can estimate

Bll(ur — w) DPwy, < 2720705 (14 ) g — ol
Moreover )
B2V (a1 —w2) [y < CB9lgr — gollq -
All the other terms can be estimated by the same term

IV (w1 = u2) V2uyllg < [[V (a1 — us)| 2 V202 < Cﬁ ‘1 +e)le — gl
V2 (a1 — u2)Vuillg < [[V2 (w1 — ua)lq I\Vuzlloo < Cﬂ f1+e)le — gl

IV (s1 — 52)Vuallg < [V (51— 2) gl Vi e < B (1 +e)llgr — g2llq
IVs2V (a1 —wp)llg < [[Vsallaf|V (w1 —u2)]| 20 < CBT (1+2)g1 — g2l

From the calculations above we conclude

1+2(1-1)

Lemma 3.4 Let 3, € be small enough, § = (3 Then there exists k €

(0,1) such that
[Mg1 — Mgallq < kllg1 — 82llq
fOT’ all g1, go € Bs.

Analogously we can proceed for k > 2. Combining Lemmas 3.3 and 3.4 with
Theorem 0.1 we finish the proof of Theorem 3.1.
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Weighted estimates

Using a version of the Banach fixed point theorem (see Theorem V.0.1) we pro-
ved the existence of solutions to the system (V.1.6)—(V.1.8) in Sobolev spaces.
This chapter will be devoted to the study of weighted estimates of this solutions
in order to show that the solutions obey certain asymptotic structure. Due to
the construction of solutions it is enough to verify that the operator M defi-
ned in Theorems V.1.1-V.1.3 and V.2.1 maps balls in certain weighted spaces
into themselves. Namely, it will be an easy matter to see that such balls have
non—empty intersection with balls used in the above mentioned theorems. Then,
taking (w?, s) in this intersection, we have that any (w’,s?), i € N, defined

(wh,s)) = M(w 1t s, i=1,2,...

remains in this intersection and due to the weak compactness of such sets we
have the same result for the solution; due to the uniqueness' of the fixed point
constructed in Theorem V.0.1 we therefore get that solution constructed in the
last chapter have the asymptotic structure implied by the weighted spaces.

A fundamental role in this weighted estimates will be played by the integral
representation of solutions to the modified Oseen problem (see Section III.4)
and by the weighted estimates obtained in Section II.3 for the Oseen kernels.
Let us recall that due to the similar asymptotic properties of the fundamental
solutions to the modified Oseen problem and to the (classical) Oseen problem
the estimates from Section I1.3 are applicable.

We shall combine these estimates with the weighted estimates to the trans-
port equation (see Theorem IV.2.6) and also with some results from Chapter
V. As usually we shall study separately the threedimensional and plane flows.

VI.1 Threedimensional flow

Let us recall that the weight
py (x5 8) = [x[*(1 + ] 8x[)*7 (1 + s(6x))" (1.1)

behaves outside the unit ball as the weight vj'(x; 3), see Section II.3. We define

3
Vs = {u € L®(Q (-3 8)); Vu, V2u € L7 (31 (- (1.2)
2
2-4 )
T, Vo e L"(Qpy " (- 75))}

Lin sufficiently small balls

202
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with the norm

1, ™)l = Nl e .0t

+||Vu; v2u|y + || wu . (1.3)
H/ ( ;B))v lu‘() ( 7ﬁ))

wleo w\r.o
Sl %\w

where r € (1;00) is a sufficiently large power and w > 0 will be precised later.
Our aim is to show that the operator M (defined below) maps sufficiently small
balls in Vj into itself for 3 sufficiently small. We define M : Vg — Vj

0
A(u)_‘_ﬁai;_‘_v']-‘-:vg(f?WaPaT)

in
u=—0e; at o
u—0 as|x|— oo,
P+ ((W+vVe) - Vip=s, (1.5)
T+ (W+vVs) V)T +G(Vw,T) =2D(w), (1.6)
where

G(f,w,p,T) =h+F(Vw,T) + p(Vw)T — (w-V)w) @ w—
ow (1.7)

—w®w—ﬂ(8—xl®w+((w-V)w)®e1) +f® (w+ fer),
V-h=f. (1.8)

From Theorem IV.2.6 we easily get

Lemma 1.1 Let |[w| 2 and 3 be sufficiently small.> Then for any 1 < r < oo
and any 0 <w < a, 0 <b and p, T solution to (1.5) and (1.6), respectively, we
have

1Dl 2 38y < ClIsllruo (. 8)) (1.9)
1211,z 58y) < Cllsllnr e 1)) (1.10)
1Ty e )) < CIVWL o)) (1.11)
T “(58)) <C||VW||1T,(,% (-38)) - (1.12)

Proof: From Theorem IV.2.6 it follows that we have only to verify that
[V Inpy“ (-5 8)|lcr is independent of 3 for 3 sufficiently small. But (y = 6x)

|V In ™ (x; B)] <

Blx|“(1+ [Bx])* (1 + s(6x))"
= (L4 Bxpre + s(68)x]))bfx|
Blx|(1+[6x])* (1 4 s(6x))" ' Vys(y)
(1 + Blx|)e== (1 + s(Bx]))b[x|~
wlx[“ 71 (1 + [Bx])* (1 + 5(8x))"

1
A= sy < S )

*We can replace this condition by ||w|/c1 + || V2w]|, + 3 small, p > 3.

+
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with C independent of § (recall that Bi(0) C Q¢). Analogously for higher
2
derivatives. The proof is complete.

Remark 1.1

(i) There exist C; = C;(Q,a,b,r), i = 1,2, independent of 3 such that for
any a, b >0, 3 <1 and any g € W1 (;n%)

C1 w8 S [Mllgug o+ w13
+||Vg||n(u§’“’(-;ﬁ))} < Collglla e 50y -
In order to verify (1.13) it is sufficient to show that
91l (wpz=( 8 (L& (-38)) - (1.14)

Then namely

gl r e 58y) < NGl e my) + Hv.gHr(ub ¢ip)t
gl wuze oy < ealllgll e, (B 5))

and
IVl ey < Vg™ (5 8)) + gV (5 8)llr+

Hlgllvwug=) < c2lgllire=c ) -

To show (1.14) we proceed as in the proof of Lemma 1.1. Indeed,

[ 196V (a7 s 8))x < € [ 1)1 arugy ™7 )+
Q Q

+orVys(y )MZI”{(X B) + mﬂ( i (x: 9)) | dx <

< [ [0 s ) + Lyl o ) ax <

|

< Cliglly g 38y »

where we used the fact that 0 € Q° and |Vys| = %

(ii) We have for r > N
g™ (%3 B)lloo < Cllgry™ (x; B)l|1,r (1.15)
and therefore, by (1.13) also

lgpy™ (x; 8)]l00 < C(

(ycon)- (116)

a,w/ |
)
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From Theorem II1.4.1 and Corollary I11.4.1 we have

00;;(x —y; ) ow Ow;
(x)= [ —9 = T p 4 Fp(Vw, T) + p—r — Z
uj(x) /Q a‘”% [ 1; K(Vw, T) +p a0~ %,
w; w;
—wjwg — . =) i 0 d
WiWg ﬂ(wk o +w; a lk) + fi(wg + 3 k)} (y)dy+ (1.17)
T /asz [ — BOL(x — y; B)ui(y)dix + uwi(y)Tin (0%, e5) (x — y; 6)+
+0};(x — y; 8)Ti(u, ™) (y) + O (x — y; ﬂ)gik(Y)] ny(y)dyS
fori,j =1,2,3.
Let us suppose that
[(w, s)[lv, <0 =ep, (1.18)
where a will be precised later. Moreover, let also
||(‘A,7S>||‘/k2 §66a7 Z: 172737 (119)

where o can be taken in [%; 1) (see Theorems V.1.7), kK > 2, i = 1,2, 3. Let us
recall that

1
lw. 9)llvi, = B3Iwlla + IVWlli2 + 15l
1
lw,9)llvi, = B31Iwlla + IVWll2 + lslle + 192Wle-1 + V5],
1 1
1(w,5) i = BHWl 2 + B3IV Wl ag + [Vl + (V2w l1p+ [ V5],

We start to estimate the L°°—norm of uui’w(- ; 3). Let us denote by u;/ the
part of u; which corresponds to the volume integrals, ujs the part corresponding

_3
to the surface integrals. As VO* ~n 3(-;3), we apply Theorem II.3.10 in the
2

estimate of the volume terms.
‘We have
1%
[u” |l

vy = Y96 B) e < OB 02 g)

3
OO,(,ul Jkw ’

oo, (i (+38))
w>0,(k—1)w <1, k>0, where we extended G by zero outside of 2. We
estimate each term in (1.17) separately. We assume for a moment that f and
h are sufficiently smooth and decay sufficiently fast at infinity; we collect the
precise assumptions in the main theorem.

€ a w
IRl < 558 il (1.20)

3
(7 (+38))

due to the above mentioned assumptions. Next

IF(Vw, T)[ 5., <ITI s, VW] 5, <
oo,(ui " (+38)) OO:(#% (38)) 007(/% (38))
<CIT| sy VW[ e
I,T,([.L% 3 )) I,T,(H% (76))
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Applying Lemma 1.1 together with Remark 1.1 we get for r > 4 (% — % > %)

F(Vw,T 35, < Ce2p?e . 1.21
IF( )”oo,(u?z i) (1.21)

Completely analogously

I[pVw 5, <
00 (2" (-15)) L9
<lpll s VW[ s, <Ce2p% (1.22)
oo,(11” (+38)) oo,(11” (+38))
2 2
Further
lwvwl 5., <wi? 5, (VW]
oo, (ui " (+58)) oo,(ut"
2
But (see (1.19))
Vw22 i=1

IVW]loo < C{ VW2 + V2w,  i=2} <ep®
19wl s + V2w, i =3

and therefore

w|?Vw 3 a0 < oedprate 1.23
oWl e € (1.23
Next we have
WP gen  SIWIP 5, < CE2p% (1.24
oo, (12 (-38)) oo7(u% (-38)) )
2
Easily also for r > 4
IBwOw| 4. <
ol 5 2 n2a+1 (1.25)
< /BHWHOO’(M?W(-;’B))HVWHOO,(‘U‘O%’M . < Cep
and finally
fw 3. + || Bt 3 < Wl oo (b f 1 +
I Hoo,mf’ (-38)) H ”oo,mf(-;ﬁ)) ¥lee o | Hoo,(ﬂoz CA) - (1.26)
HBIE_ < OB+ B)8
Ny s

due to the assumptions on f. We can summarize now

Huv”oo,(#i’w(';ﬁ)) < ngﬁQa—l-i-w + O(ﬁQa—H—W) ) (1‘27)

Therefore we see that we need a > 1 — w.

Next we continue with the surface integrals. We denote the surface terms in
(1.17) by (1)—(4) and the corresponding parts of u® by u”!-u**. We distinguish
three situations

a) x| <1
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b) 1< x| <5 (B<1)
c) Blx| > 1.

In the case a) we shall not use the integral representation; we rather apply the
results from the previous chapter and get for i = 1

[uflcc,00 < Cllullz2,0, < C(llull2, + [IVal12.0,)

and for i =2
[ullse,y < C(ull2g, + IVullp0,)-

Applying the Friedrichs inequality (see Theorem VIII.1.10) on ©; we have

C(llperlli, o0 + [[Va
[ufloo,0, <
C(lIBelli o0 + [[Va

12,.)

p + V20 }Scmeﬁa)

pvﬂl)
and therefore, as ,ui’w(x;ﬂ) ~1on O
HU-HOO,(M}W(. :3)),1 < Cef” +o(B%).
Combining this with the volume integrals we have
S
19 ot sy < €28 +0(5%) (1.28)

Next we continue with the case b); we shall use from now the integral
representation. We have

Sy} e )] < (o6 9) [ 10 (e = 1 9)|[u)ldy S <
< Bt (x: 9) B0 (i D) + 8 [ 10%(x = 33 8) = 0 (x; 9)|dy 5] <
< CA x| (1 + 6x])' (1 + s(5x))-
[lom(axs )1+ [ VO (x — ty)m 1)y
Using |x —ty| < |x]| — |y| < % and the fact that |0x| < 1 we have
WS ()1 (3 8)] < O(L+ |8x])' (L + 5(8%)) (8° %[~ + CB%|x[7?)
and therefore (w < 1)

H“S’l||oo7<ui’“(-;ﬁ>>7ﬂlé <Cp?. (1.29)

Next

a2 (x) 1 (x; B)| < CBuy™ (x; B)([VO" (x5 B)| + le(x)|+
HV2OH(x — ty; B)] + [Ve(x — ty)]) < CBJx|*(1 + [8x])' (1 + s(6x))-
62 1 Cﬂ3 C
[ieE 3 T R S
< CB(L + |8x)1 (1 + s(8x))(|x| 72 + x| 73+%) .
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Asw < 1, we get
”uSQHoo,(Mi’w(' ;/8))791% <CB+ O(ﬁ) . (1.30)

The third term can be estimated as follows?
w0l (i )] < Cut (o 9) (0% 9)| | (17l +|l)as+
+ [ (9ul+ 17 (0" (x— 33 8) — 0 (x; 9)) dS <

< Clx|“(1+18x]) (1 + 5(5X))[ (IVualli2.0 + Il 2.0)+

1
) [x]
o IVulhze +rlhaa)]

Recalling that ||Vu|

12,0, + I7ll1,2,0, < €B* (see Theorem V.1.1) we get

oo b .y, S CE07 (1-31)
B

Finally
)} o 9)] < Pl (1 4 81+ 5(5%)
X
(10"(x: )| + 70" (3:8))) [ 16-nlas.

We easily get that (see Theorems V.1.1 and Remark VIIIL.3.6)*

/BQ G - nldS < C[Ilhllz,m +[IV-hl20, + [TVW([120, + [PVW]l2,0,+
HIVoVWliz0, + 82| Vwll12+
+62 + Bl 10,0, ] < C(£) + Ce262 + 0(62)
(1.32)
and therefore
|4 oo sy, < Ce*B* + o(3*). (1.33)
B

Collecting (1.28)—(1.33) we get

¥l i .00 < CeB* +0(B%). (1.34)

=

1
Next we continue with the case x € Q8. We study again the four terms
separately.

S ()t (x; 8)| < OB (x: B)(10" (x )| + [VOH (T3 8)) <
< CAx|“(1+ |Bx])' (1 + s(Bx)):
[ T
(1 +[8x)(1+s(6%)) (14 |8x])2(1 + s(8x))2

3If 4 = 2, then the norms of u and 7 are replaced by ||Vullz,0, + |V2ullp.0, + ||7ll2,0, +
|V7|p,2, and instead of Theorem V.1.1 we apply Theorem V.1.2; similarly for i = 3.
4similarly also in the case of Theorem V.1.2 and Theorem V.1.3.
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Therefore

S | < OBV 4 o(BPY). (1.35)

oo(y,i’“%.;ﬁ)),ﬂﬁ o
The second term we estimate as follows
w52 ()1 (x; B)] < CuL™ (33 8) | [VO" (x; B)]| + le(x) |+
2 E E 3 | |W 1—w .
HV2O!(5:0) |+ [Ve(5)1] < OOl (1 + [8x])' (1 + s(5x))

| ! TR a + ﬁ]
(1+[8x))2(1+s(Bx))z 6% (1+[Bx[)*(1+s(8x))?  |Bx[3

[u

and so

(SRl < OB +o(F77). (1.36)

1w <
00,(n1 (+38)),.28

The third term gives us
w3 (x)up (x; B)] < Clx|(1 +[8x])' (1 + s(Bx))-

(190 ) + e + V0% (358 + Ve (3 )1) [ (¥l + [m)as.

As Joo(IVul +[x])dS < [Vull12.0, + |7

12,0, < B, we have®

S,3H

|u < CefBtwte 4 o(plmwte). (1.37)

Q=

OO?(M?W(' ;ﬁ))vﬂ

Finally, as in (1.32) we estimate

/6 |G- 0(ds < C|blba, + IV Blog, + ITYW]i0, + [pVW]i20,+
BV wlh 20, + 57+ Blfl12.0, ] < C(E) + C26 + o(52)

and therefore

HuS,4 L < C€2I81—w+2a + O(ﬁl—w—I—Qa) ) (1.38)

00,(11" (-38)),Q7

Collecting (1.35)—(1.38) we have

[u® < Ceflwta 4 o(glmwtey (1.39)

@l

Oo:(/u'i’w(' ;ﬁ)):ﬂ

So, (1.27), (1.28), (1.34) and (1.39) imply for e, # and the right hand side
sufficiently small (we choose a = 1 — w)

1 -
allog gt sp.0 < 5551 v

Let us recall that a € [%; 1) i.e. for any 0 < w < 1 we may take « in such a way
that 1 —w <a < 1.

Ssee footnote above
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Next we study weighted estimates for first and second gradient of velocity.
We shall study together also the estimates for pressure and its gradient. We
have from Theorems II1.4.1 and I11.4.2

D% ( ) 1a) -i-/Da z] ﬁ)gzk( )dy+
+ [ [~ 8070k (x ~ i Buily)oue + uily >Dam<0j, ¢j)(x —y; )+ (140)
o0
+DO% (x — y; B) T (w, p)(y) + DOl (x — y; )ik | mx(y)dy S

for |a| =1 and

(2a — G,
Douj(x) = A VG+/DN yil) Gk (y)dy+

+ / — BDYOL (x — y; B)ui(y)dus + us(y) DT (O, e) (x — yi B)+ (L41)
+Da0¢;<x—y;ﬂm(u,p)(y)]nk(y)dys

for |a| = 2. For the pressure

r(x) / ot (= Y (y)dy + G+

/ YW+ T - y)+  (142)
tei(x = ) Tu(w, m)(y) + ei(x = ¥)Gu(y)| mu(y)dy S

om(x) de; Gk, Gk,

o, = v.p. N X—y) i (y)dy +c¢ i D (x)+

Gei(x -y) oT;
+ /89 [* ﬁa%yui(}’)&l + ;i (y) (%Jl (;;(x -y)+ (1.43)
ik

+861‘(x—y)T o (%),

S Talw m)()|m(y)dyS + ey
J
where 7 (e) is defined in (I11.4.16), G in (1.7), Ajlfa and Aj’ are singular integral
operators satisfying the assumptions of Theorem II.3.5 and D2J\/Z-‘; = DQO% -

D?S}; are weakly singular operators such that D*N/j(x) ~ n_3(x) for x| large.
We start with the estimates of the volume terms. We have from Corollary
I1.3.3 and Theorem II.3.8 that for kK > 0

ID*0" s £l gope o SCBCTDUA opcnie
; _ CB ) WHfH —27 ' (1.44)
“(38)) 2T 8))

for any f such that the norms on the right hand side are finite and f has
support outside of the origin®, § > 0 sufficiently small. The convolutions on the
left hand side are to be understood in the following sense

(D0 « )(x) = A(f) +f () + (A" » 1))
(Dex f)(x) = vp. [ Velx—y)f(y)dy +cf(x).

Ssee Chapter II, Remark 11.3.4

sw

0-2

Bl u> ﬂ\»—‘s\w

HDe*fII

‘:
o w i w\w

(1.45)
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the convolution on the right hand side of (1.45) is now defined in the classical
sense, for a.a. x € RY. We need therefore estimates of all terms in contained

inGand V-Gin L"(; ,ul Mkw( ;) and L" (€ ,u,o ;’kw( ;3)). We estimate

each term separately. We have

h 5
| Hn(nfj*%ﬂ))
€]
O AN CE R Oy (1.46)
L =10
13 "
f 4
Hn(ni T (38))
Next
ITVW[ 5 5 50 < |7l 1. Vw|o :
| N A OT)) | oo,y T3 (38)) )
2r 2 4dr 2 4dr
Now using Remark 1.1 (ii) we have for r > 4
T 1, < C(|T 1, + [|[VT 1
| ”oo,(u;g () (T r(ny 73 568) IVEI ulljg-;m))
2 A4r 2 A4r 2 Ar
i.e., employing Lemma 1.1,
TVW| 5 5 50 < C||Vw .
| ‘r,wff;*‘s’z (38) Ve, 1%;"% ()
o ” 1.47
LT - U e R
ll% T% ('? ) N%_T% (7/6))

Completely analogously we have

HVTVWHT 2—2£+6,2w + HTV?WH 2——-»—5 2w <

P M) )
2r 2'r2 (148)
Clvwl oy VW] < Ot
) %:‘% (38)) U%7T4l (+38))

The same kind of estimates gives us

HTVWII (2t m)+
(1 ¥
HIVETW)| oga S CEER (1.49)
(k17 (5P)
p(Vw)T 5 5o + [[p(Vw)T _4
PP, g H I, g
+HIVp(VW)T | L s s +||Vp(Vw g < 1.50
|| p( ) ”7“7(11?723 16,2 1) || p( ) || 2 2 (38)) ( )
2r
§052ﬁ2_2w~

The trilinear term can be estimated very easily; namely using
k k
IIw*VEw |, < VW]l [lwll3,  (k=1,2)
IIVwwl < VW[ VW] W]l
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we get as above

2
wi2Vw 5 sal + llw|*Vw +
L = T
HIVIWEYW apisan, A IVIWEYW o, < (151
VPO, 2 g+ IV >||W5 boe gy S (15D
" <C€353—3w.

A little bit another technique must be used in order to estimate the con-
vective term. We have for » > 4 and ¢ sufficiently small

= WL (]2 R (L () R
Q

w1 s o
Wy

; (-38)
2r —546r _pr—3
< IWIZ ey [+ 185D 507 (1 s(80) 7 R <
-3 2r
< OBl gty

HIWI2H” >don T

(H’O (75))
_ 2r 2wr 2r—4—2wr -3 2r
= [T (R < O w2

and using the obvious estimate

lw - Vwll, < [[wlloo[[ VWi,

we end up with

3
IWwowW| o 50, S OSFTRTE
N A ET))

2r

[(w - V)wl| e < g
(@

g ¢iB) (1.52)
W R W 4, < O2p22w7
el g, SO
w-V)w L4, < Cep“ .
H( ) ”r( 2-42 (8)) ﬁ

(Mg ]

%+6,2w
3
2r

The next term can be estimated very easily

Bw - Vw R + |6V (w - V)w 5 s +
| ” 2- P 46,2 38)) | ( ) ||T7(“?_?+6,2 (:8))
+||fw - Vw 20 + ||V (W - V)w _,T " < (1.53)
I5 H (38)) 159( ) HT»(M(Q) »e (38))
< 082/83—20.).

1_1

Finally, for the last term we have

Ewll oo+ BNBEN s < Cep

h(qu T (:8) 171 (-38)
Viw - + B37¢||pVE St < Cep
IVEw] oy O || oA -
IIfWII + 87| Bf || 4 < Cef

o "C(9) o (38))
IIVfWII N WIIﬂVfH 4

(-38)) 77(2) " (s

< (Cep.
) &
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Therefore, combining (1.44) with (1.46)—(1.54) we have for ¢ and [ suffici-
ently small

HVU-VH 3.3, +||V2 V|| 3.3,
rg 17 C3) r(u3 1)
+||7TV|| o4 +IVaY s, < (1.55)
g " (-;ﬁ)) (g T (38))
1— —w
< 205

Next we have to estimate the boundary terms. As above, we distinguish
three cases, i.e. x| < 1,1 < |x| < % and |x| > % In order to estimate the
second gradient of u (first gradient of pressure) we have to require some more
regularity on f — either f € W*2(Q) N D~%2(Q), k > 3 (and use Theorem
V.1.1) or f € WFP(Q) N D=12(Q) N L2(Q), k > 2, p € (3;4] (and use Theorem
V.1.2) or finally £ € Wh(Q) N WHE(Q), k > 1, ¢ € (1;%] (and use Theorem
V.1.3). In the first case we have

|Vu, V|| 5.3, < C[|Vu, V?ul|so 0, <
r(n: 1 CB))n
< O|Vu,Vulla20, < C|Vulz2 < Cep®, ae [Z; 1) :
Analogously for the second case
IVu, V2ul| 5 s, < C|[Vu, Vw0, <
7’7(“;71 (';ﬂ))vﬂl
5 3 (1.57)
< OV, Vg, < ClVully < O, ac [[i1).
In the last case we have directly (r > 3 > 3 q, 1<qg< )
[Va, V*u| s s, < C[|Vu, Vull.g, <
0 B Q) Kok (1.58)
2 o '
< CIViullrq, +[[Vu xe))

s < C(IVullrg, +[|V*a
3—q

4
as Vu € Lﬁ(Q). Therefore we get in all three cases for r sufficiently large
(r>3)

<C0ef*, ac [i 1) . (1.59)

2
|Vu,V u|| 1

(e

nojce I\J\OJ
Sh= ﬂ\w

TTY8),

Exactly in the same way we can show”

3
w, V7 4, <CeB*, ae|—;1). 1.60
| ”n(ui ) b [4 ) (1.60)

As analogous estimates are valid for Vu", V2u", 7¥ and V#", we get
inequalities (1.59) and (1.60) for the surface parts Vu®, VZu®, 7% and Vr*,
Let us now consider the case 1 < |x| < % for § < 1. As above, we de-

note the corresponding surface integrals by Vu®! and 7% i = 1,2,3,4 and

"We use the fact that the pressure tend to zero for |x| — oo and therefore the Sobolev—
Poincaré inequality holds
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V2u¥t, VSt i =1,2,3, respectively. We shall estimate each term separately,
analogously as in the case of L°°—estimates. Moreover, it is enough to estimate
only Vu and 7 in the corresponding weighted spaces. Then V?u and V7 can
be estimated easily by the same terms — the asymptotic structure of higher
gradients of O* and e is better than those of the lower gradients.

S,1 23w
Vut ()i 1 (x0)] <
s s, 51y 1 B
< OBt 33 -1
< OB (1 +18xD3 (1 5(8x)3 7 ((5m + 1)
i.e.
VSt g < OB [ (x| x|,
n(ug_g’ (wﬁ))@% 9%
(1 [Bx]) 7" (1 4 (%)) 2" M < (1.61)
1
< Cﬁ(ﬁlfw)rf?)/ |y’wr72r+2d|y’ < 0527"'
B
Analogously
5.9 3-3 .y w 3_, 3 3_1
Va2 (g1 (x: 0)] < CBJx[(1+ [6x])2 7 (1 + s(8%))2 >
B 1 g1
(1 + TP * Tt * )
i.e.
VS oy = OB [ (x| x|,
, ug_i’ (wﬁ))ﬂ% 9%
(L |Bx) G770 (1 + 5(x)) " Mdx < (1.62)

1
< Cﬁ(4_w)r_3/ ’y’wr—3r+2d’y’ < CIBT‘.
B

3

IVuS(x)yes [ s 0)] < CBIxI(1+ |x]) 3 (14 s(0x))
X
(V0 G )] + (920" (5:8)1) | _(19u]+ [x)as.

3=

As in the part |x| < 1 we get either

[ (9ul+ [7)dS < C(IVul1aq, +nlza) (F € Dg™(2) N WH(@)

or
6
ﬂ;@vﬂ+hw¢9SCWV%MMrHW%Mn)(fGW&%Q%1<q§5%

Then (see (1.18))

[Vu?| < Cep”. (1.63)

3
—~
=
S 3lw
—~
=
=
=
2

nojco Nl
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Finally, the last term can be estimated

!VHSA(X)M?%W(X; B)| < Clx|“(1+ |Bx[)2 ™7 (1 + s(Bx))2 ~-

(VO (x; )] + (V20" (3:8))) [ 16+ nids
o0
The surface integral can be estimated (see (1.32))
/ G- n|dS < O(F) + C262 + o(52°)
o0

and therefore

Va4 s, < ce2ge (1.64)
r?(/”/gii (7ﬁ))7911
2 r B
Next we estimate the pressure. We have
T s B)] < O (1 + [8x])2 ™ (g + =)
° T x> |x[?
i.e.
[Ea <
Tv(:u‘o " (7ﬁ))701l
1 p (1.65)
< Cﬂ2r/ﬁ(|x|wr72r+2 4 ’X’wr73r+2)d‘xl < CB2T-
1
Next
2fé,w w4 _ _ _
T2 () (x5 B)| < OB (1 +[8x]) 77 (x| 72 + x| 72 + [x[7%)
and
[ <

r(y T (58).94
B

1 (1.66)
< B [l 4 [l I dx < CF
1
The last two terms can be estimated as above
[l e s, <
g T (58))QY g T (38)).04
5 s (1.67)

< c/ (IVu| + |7| + |G - n|)dS < C(e8* + £252) .
o0

We can overcome to the last part where |x| > % We have

Sl

“(x; B)| < CA%Ix|“(1+ |Bx[)7 77 (1 + s(Bx)) 77
) 3 33 }
{u 1B (L4 s(Bx)F | (TN + 5(5%))2

Vu (x)u

[ N[N
3= W
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and so
(AT 1 <
T?(Mg_i (';B))vﬂﬁ
< 0 [T (14 8x) 0T (L4 s(8%) xRl < (168)

R e.¢]
< CpUI [T (1 g1+ s(y)) ] < €
1

!VuS’Q(x)ug iw(x; B)| < CAYx|“(1 + |Bx[)2 ™7 (1 + s(x)) >+
{ 1 n 1 B 5 }
L+ 1BxI2(1+s(Bx))?  [5xP (1+[8x|)3 (1 + s(Bx ))% |5x|4

and therefore easily

3

HvuSQH < opiwI—3 (1.69)

Again the most restrictive is the third term. But

€

(IVu®*(x)] + [V (x))u

£
=
IA

[SI[SSEN V)
331w

< CAx(L+ |8x) 37 (L4 5(8%)3 7 [ (IVal 4[] +1G - n])ds:
1 o0 3
'[(1 +18x))2 (1+ s(Bx))2  (L+18x)*(1+ s(ﬁx))Q}

and therefore easily

HVuS?’II w0 +HVuS4II

(1.70)
< Cﬁ2+a7w7% )

Let us finally estimate the boundary terms for the pressure. Easily

S,1 27%#) . 2 w 2—w—2 1 1
w5 Ge)p ™o B)] < OBl (1 +18x)" 7 [ 5 + 5]
and therefore

||7I‘S’1

T e, <O / ly| iyl < ottt (1)
T?(.ufo T ('?B)):Qﬂ 1
The other terms can be estimated in the same way

IIWS’2IIT 2t

. , < opitmwr=s / y|2dly| < Cptr3 o (172)
(g " (-38)),Q8 1

(here we use that the lower order term in 7;; is (e, see (II1.4.16))

I [ IR
(e " (50), a7 N (Mo T (30)),9F
<cpe( [, |ax"ax)” [ (Ve +lxl+ (G nds  (LT3)
B3 (0) a0

3
< 0625270.)7; .
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Summarizing the estimates (1.56)—(1.73) we get for ¢, 3 sufficiently small

1
IIVuSII 3.3, + [|[V*u SII 3.3, < —eplv
uéi (-:8)),0 u;; e T 10

™ r 1
S S 1—w
i _a, Y4 a4, < —ef
I (2T ) .0 | Hn(ui e T 10

and therefore

Theorem 1.1 Let f =V -h and one of the following conditions be satisfied
(i) he L2(Q), f ¢ WF2(Q), k>3
(ii) h € L2(Q), f € L2(Q)nWkP(Q), k > 2, p € (3;4]

(iii) h € L} (), f e Wh(Q)nWk"(Q), =S ifk=1,q9=1% ifk >2

with the corresponding norms sufficiently small. Let Q € C**! be an exterior
domain in R3. Moreover let

h,f, Vf € L= n%(+)) (1.74)

and let B = |Voo| and ||h, f, VE|| ) be sufficiently small.

Then (v,p), solution to the pmblem (1.4.14)—-(1.4.15) constructed in Theo-
rems V.1.1-V.1.3 has the following asymptotic properties

U=V - Ve € L¥(Qni())

3_
Vv, V2v € L"(% ng (1) (1.75)

4
p,Vp € U(Q;no "(4),

where T € [4;00) is in the cases (i) and (i) arbitrary while in the case (iii)
corresponds to the integrability of the right hand side.

Proof: It follows from the calculations done above. Let us only note that
whatever regularlty we get for 7r the same has also p. Finally the condition

h,f e L"(%; 771 23T+5( ) N L7 (€ 770 ;( -)) follows easily as e.g.

r r 2r— —+6r
I 2 g, S SR <

1,i

< I 0 /err*”fms( x))Hx < CIEIL o0
O

Remark 1.2 Going through the calculation before Theorem 1.1 it is an easy
3_3

matter to show that if h, f, Vf € L>®(;12 (-)), then Vv, V2v € L"(Q; n (),
2 T

3

3.3
while for h,f,Vf € L>(Q;n3(-))we have Vv, Vv € L"(%n} 1 () and p,

3 4

Vp e L"(§; n ~7(+)). In both cases, v — Voo € L¥(;11(+)).

NN
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Moreover, (1.74) implies evidently h € L"(Q), f € W17 (Q) for all 7 > 1 and
in particular, we can apply Theorem V.1.3 in order to construct solution with
the required asymptotic properties without any other assumption on higher
gradients of f. Nevertheless, we prefer to keep the formulation of Theorem 1.1
as done above; theorems from Section V.1 then give eventually some additional
information about the regularity of the constructed solution.

V1.2 Plane flow

This section is devoted to the study of plane flow of the viscoelastic fluid. As in
the preceding section, we study the asymptotic properties of solution to I.4.14—
1.4.15 constructed in Theorem V.2.1.

Unlike the threedimensional case, the fundamental Oseen tensor (and funda-
mental solution to the modified Oseen problem) has more complicated structure
— O] differs from Ow’ i+j > 3. As a consequence we expect different asympto-
tic behaviour in u; and wug, similarly as in Chapter II for the flow in the whole
R2. This must be taken into consideration in the choice of spaces. Moreover,
unlike the threedimensional case (cf. [Sm]) we shall not get exactly the same
structure for the solution as the fundamental solution has; we loose one logari-
thm term. We denote for the sake of notational convenience

o (% 6) = g™ (3; )| (2 + |5} "
Let us consider
Vo= {(@ i € I¥(@pi“(:0) w € LXUmb(39)).
Vu, Vu e L@y 15 0), (21)
m Ve D' " 18))}
together with the norm

lwm)ly, = ol o+ |ru2\|oo,@g,w<.;ﬁ»+

1
00, (12" (-38))
2

+ ||, V7TH
(-38) Mo “(38)

2.2
IV, 9% (2:2)

sw

1—
M17

?\»—tﬂ\l\:}

As in the threedimensional case, our aim is to show that for |v.| = 8 and
for the right hand side sufficiently small, the operator M : Vi3 +— V3 defined
by (1.4)—(1.8) maps sufficiently small balls into itself. The power r > 2 will be
specified later on. Nevertheless, the idea is to have r as large as possible.

Lemma 2.1 Let |w||c2 + 3 be sufficiently small.® Then for 1 < r < 0o, 0 <
w<a, 0<b we have

121l (e 58y) < Cllsllr 58

p T ﬂ,,L/.J <C 7.

1Pl 1 2 (-, 180117, ug (-3)) (2.3)
1T e ) <CIIVWII (-36))

I'T

8As in the threedimensional case, we can weaken the conditions; see Lemma 1.1.

“(38)) <C||VW||1n(ub (-38)) -
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Proof: As Lemma 1.1, it is an easy consequence of Theorem IV.2.6.

O

Remark 1.1 holds also in this case, so the weighted W17 () norm is equi-
valent to the weighted L"(2) norm of the function and its gradient (see (1.13))
and the Sobolev imbedding theorem can be used (see (1.15) and (1.16)). We
shall again suppose that

H(W’ S)HVg <d= 5ﬁl_w

and show that

[(w, m)][v; <6
for e, 3 sufficiently small. Moreover, from Theorem V.2.1 we have also
(W)g,q < €ﬁ2(1_%)+1 (2.4)
(see (V.2.3))
_1 2
Iw, )l < 62707 a e [2:1) 25)

(see (V.2.4)).

The main tool will be again Li-weighted estimates (¢ € (1;00]) of the
Oseen potentials. We therefore use again the integral representation. Unlike
the threedimensional case we must distinguish very carefully the components
of (’)Z We start from (1.17), now for j = 1,2. We first consider j = 1 and
study the L°°—weighted estimates of u;. Let us recall that we have to study
80! ook, a0Y, 80k . .
separately 8y;1’ then 8y111’ 8y22’ ayzl and finally the third group is formed by
all the other first derivative of O* (see Theorems I1.3.17-11.3.19).

Therefore we have? due to Theorem I11.3.17 and Theorem 11.3.18

| <

1w
oo,(u3" (+:8))
2

(-38)) + ||911;g21;922||oo(

1
2
7#’1
2

e (2.6
< CaF |G :

<-;ﬁ>)} ’

1,kw
(py
2

where 0 > 0, can be taken arbitrarily small, 0 < w < %, k =0,1,2,3. The

presence of § is caused by the logarithmic factor in Theorem I1.3.18, A = B = %

In fact, we can here estimate all terms in L*°(€2; ,ull’kw). We have namely
2
h < )
| Hoo,(nl%(-ﬂ)) = %ﬂ (2.7)
due to the assumptions. Next, for r >4 (1—2 > 1)
IF(VW, T)llo 2oy SITIH e VW] g <
(kg™ C58) o3 () o,(ny (56)
<cTf a. o VW4l <
L3 (8) L™ (58) (2.8)
2
<CIvwl g HIVEW 4L <ot
rv(uz (-38)) 7’7(#; (-38))

v

9We again use the notation u"’, u®?, see Section VI.1.
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Analogously, for r > 5

[PVw]]

<ol

OOH’S )

l\)

)HVWH
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o0, (1 (-59) <

< 052527201 )

,w

o0, (1 .

[SEe

As usually, the trilinear term causes no problems

llw[*Vw]

where p > 2 is taken from the definition of [|(-,)|]x

1,2
00,(17 7 (+30))
2

< 08362 2w+

< [lw]®

00, (p

[Vwl1p <
(38) ?

w

NIRRT

easily estimate the convective term

lwiwpl o r2o gy < WP, < CSp272
S S 0.(n3“(30)
Further
pwVw| o 1ow o < Bllw 1, :
1T S O e
(VW g FIVWIL e ) < O3
r(n:" (38)) (127 (58)
4 4
and finally
EW oo, ity + 1B lloo oy cpy S MWI g I 4
g by ) o3 (36 o
f < © 2w
et ) € s

E

(2.10)

(see (V.2.4)). We can also

(2.11)

(2.12)

(2.13)

due to the assumptions on the right hand side. Collecting (2.6)—(2.13) yields

1%
gl

for e, 3 sufficiently small.

Next we estimate the L>®-weighted norm of wuy .

1., =
oo,o@’ (s8) — 10

00
sentation the term ayél does not appear, we have

1%
[z |l

00, (g™ (- 38) P| In(2+2| Bx])

1y S OB G

(1™ (-38))

(2.14)

As in the integral repre-

(2.15)

where P is a polynomial of first or second order (see Remark I1.3.9). The most
delicate term in G will be wjw;. We therefore write (2.15) in a bit different way,

namely

y
[ |l

0o, (g™ (+38)P| In(2+2|5x|)
—|—Cﬁ(k_1)w_1 ||g/ ”OO

[—1) < Cﬂoﬁk

1||w1w1\|oo

(1o ™M (-38))

b (e T

(2.16)

where § > 0, ggj = G;j + wiw101;01;. Therefore the power of the polynomial
P is determined by the term % * (wiwy). From Tab.3 and Tab.4 Chapter II
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we see (c=2,d =0, a =1, b=1) that the logarithmic term comes from the

domain € — i.e. the power is 1.

Moreover
i (2.17)

||w1w1‘|oo7(u(1)’2w('§ﬁ)) - oo,(/,LO%w('EB))

So we have
_ k—1)w—
13 [l oo 1 3y < CE26' 7 + CpETD 1Hg'uoo7(ué+5,m(,; ~ (2.18)
We can now estimate all the other terms in the weighted L*°—spaces, analo-
gously as in (2.7)—(2.13). It can be easily checked that the estimates (2.7)—(2.13)
were not ”optimal”. We only have to restrict a little bit more the values of 7,
namely r > 5. We get
14 1-w
142 o, @b 58y < 1065 (2.19)
We can continue with the estimates of the boundary terms. Similarly as in

the threedimensional case we distinguish three cases (5 > 1)

(i) x[ <1
.. 1
(i) 1<|x[< 3

(ii)) 5 < |x|
i=1,2,3,4, the corresponding surface integrals in (1.17).

and denote uf
First, let x| < 1. Then

u qvgl) g

lullsc.0, < Cllufl2g0, < Cllullge, + V7
< Cllhull 2 o, + IVullg.0,) -

Now, employing the Friedrichs inequality (see Theorem VIII.1.10) and Lemma

VIIL.1.12

[ulloc.0y < C(lullen) + 1Vul 20 g+ 1V*ulla0,) < CG + [ Vull0)

and therefore
[afloc,0, < C(B+e8%).
Taking @ > 1 — w, using (2.14) and (2.19) we get for [ sufficiently small

(py” (x;8) ~ 1in Q)
(2.20)

1
S 1—w
R g, o 1 g < 558

00,(p

[NV
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Next, let 1 < [x| < % We have!?

3 B)] + sy ()™ (% B)] <
1+ 5(8x))% |04 (x; B)| + CIV Ol (53 6) ]+
+32 1] (1 + |8x))' | (2 + |8x)) |10k, (x: 8) | + CIV Ol (53 8) ] <

c o
< CF Il (|Infoxll + ) < €67,

S,1
Uy ( )
< BIx]“(1 + |Bx[)7 ™

A w\»—'l\w—‘

where we used the fact that |5x|¥|In|5x]|| is bounded for |5x| < 1. Therefore

. + [us L SCBY. (2.21)

Copay 0 o))
B

0o, (e

[SENT

The second term can be again estimated very easily

Juy? (x )u1 “ (3 0)| + s (0)g ™ (%3 8)| <
< CAIXI(1+ |Bx) (1 + s(8x))} | VOl (x: 8) |+
V201 (5:8) 1+ le(x)| + Ve (3] +
+CBIX[ (1 + [Ax[) 1 n(2 + | B])| [Iv%(x;ﬂ)\ + V20l (5:8) 1+

Hle(o)l + 1ve(3)]] < cg(| = Xéw) <cp

and therefore

S,2
b gl LO YRR < CB. 2.22
; (-38)),Q Iz ”007(“0 (-38)),2 (2.22)

1
1
B

Unlike the threedimensional case, we must proceed very carefully in the
estimate of the third term. We assume u = ‘u+ /u where ‘u solves the Oseen
problem with zero right hand side and non-zero boundary condition while //
solves the Oseen problem with zero boundary conditions and non—zero right
hand side. Then we have

a1 < | [ o=y Telu) m) + T )] (1 (v)dy 8]
From Lemma III.5.1 we have

| Tl m@Ina()dyS| < Ol g~ [l g ooy < OB (2:23)

"We write only the most restrictive terms; for u; it is O%,, for uz then O%,.
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and so
G (s 9)] 4 [ (o (3 )] <
ClO* (x; B)[x[“(1 +IBXI)LW[( +|5X|)l!1n(2+!ﬂ><|)l‘1+
+(1 + s(Bx) )
+CIVOH (5 8) lIxl(1 + o [(1 + |6x1)2 | In(2 + |8x])| '+
+HL+ s8] [ (19u]+ [pl)as <

C 10 BxlbxlBl10 B + 80Pl )]

l\J

("0 ) ()i () dy S|+

Therefore . s3 . s3
|7 uy | + [T uy |

! ()9 2
<Ol (B + 1),

where we used the fact that

00, (71 (-58)),92%
(7o (38)) 1 (2.24)

/ (IVu| + [x)dS < C([[Vull 20 + IV?ullge, + 7]l 20 o, + IV7llg0,)-
oN 2—¢q’ 3¢’

Moreover, due to the asymptotic properties of 7

Hﬂ'”ﬂgl < CHWHL;Q < C|V7|g.a (2.25)
2—q’ 2—q’
and

| (val+mpas <os” D CuS Mo < comp T (226)

(see Theorem I11.5.1, recall that /f = 0).
Analogously we have

[
00, (1 1
—wa—=20=Yyp a1 01 —w—2(1-1)
<CpTp VN (Fu, m)]lo < OB IV -Gllg-

g

“Copey, T @ cop oy S

1
1
8

SN

We estimate V - G in L?((2), using (2.4) and (2.5).
IV Gllg < C[lEllg + [VTVW]g + [ TVwl]|, + [|VpVw ]+
HIw V2wl + [w Vw2l + [[Tw[]l + w7 2w |+
+BIVE g + [VEW] + 7wy + [|(w - V)wl]y] -

The most restrictive term is the last one. But (see Lemma V.2.2, inequality

W W -1 1
H( . Y7) Hq < 6_1_2(1 q)<W>27 < 2ﬁ1+2(1_5) .

Applying Lemma V.2.2 also on other terms we get

IV -Glly < C[e26" 2070 4 22 4 235200 4 ()| (2.27)
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i.e.

HIIuiS'B‘ al < Cg2ﬂl_w . (2.28)
B

II1_S,3
+ [T Hoo,(ﬁé’w(-;ﬂ))

The last term can be estimated as follows

S,4 S,4 —
uf 15 s, <7 [ 1G-mlds.
B

sw

[SEAN T

(- 75))7Qi
B

oo, (1
Using the fact that
| &-nds < gl + 19 -gll)
o0
for any ¢ > 1 and g € ﬁq (see Remark VIIL.3.6) we have

/ G- n|dS <
a0 a1 ) ) (2.29)
< C{Hh”q,ﬂl + [|fllg + (1 +8)8 [l(w, s)[lo + B+ Blf

1,9

and therefore
S,4 S,4 _
™l 1 s g b sy, < CH (2-30)

B

Combining (2.21), (2.22), (2.24), (2.28) and (2.30) yield

L < St (2.31)

S
gl @ecmpon = 10

,w

Q=

(- ?B)):Ql

Q=

Now, let |x| > % We study again the four terms separately.

1

" ()™ (6 0)] < OB (1 + [Bx])2™(1 + s(5x)) 7
I
1

(041 8)| + VO (F38)]) < OB + 557)..

Analogously for ]ug’l(x)ﬁé’w (x; 3)| the significant term is Of, and therefore for

6<1
, < OBV (2.32)

[ .
00,(fiy“ (+38)),027

5.1
+ [Juy

@l

] ()9
The second term is estimated similarly
15 o
[y ()3 (s 8)] + [y () g (3 9)] <
< CBIx(1+ |Bx]) 2 [(1 + s(8x))2 + (1+ |8x]) 27| In(2 + | 5x])| ]
. m . 2y § §
10" (x; 8)| + [e(x)| + V20" (T:8) | + Ve ()] <

- 1 (1+ ()2 »
62 w 1 1 + T + ln 2 + /BX
<(1+|5X|)2(1+8(ﬂx))2 (1+|8x|)z | In( |8x])] )

<C
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and therefore

S,2

l,w 1 + ||'LL2 —1,w 73

OO,(,U,i (7ﬁ))79ﬁ 007(“'0‘ (’ﬁ))’Qﬁ
2

<cprv. (2.33)

=

In the estimate of the third term we must proceed as above — divide the
surface integral into two parts where the first corresponds to the part with zero
right-hand side, the other one to zero boundary condition. We have

<

S, 573
by + ™l

1 1 1
00, (12 (-3)),027 00, (g “ (+38)),02 P
<cp[| [ T(ulm)-nas|+ 509 g,

m\»—t L\)\»—A

and (2.23) together with (2.27) yield

+ [z 1 <

“Comalt 7 oo b ()07 (2.34)
CA" I B M (e* +1).

The fourth term is then estimated by

S,3
[Jug™|]
oo, (3’

m\»—tm\»—-

5.4
v 1+ [lus™|

, 1 <5 [ 1g-mjas.
oo,(,u; (-:8),QP 00,(fiy (+38)).2 0

Q=

But [, |G-n|dS is estimated by (2.29); combining this with (2.20), (2.31)—(2.34)
we have

[ (PN U7 e e (239)

2

>>Q—1o

Recalling the estimates of the volume parts we finally have

v + [Juzl]

1 1-w
m,(u%’ (+38)),2 oov(ﬂ(l),w('§ﬁ))79 < ggﬂ ’ (236)
2

[

We continue with the higher gradients of the velocity and the pressure, the
L"—weighted estimates. As in three dimensions we get the integral represen-
tation for higher gradients with the right hand side defined in (1.7). Neverthe-
less, for the first gradient we must be more careful.

x )
Duj(x) = 1“) (G +/ Dawgékdw
o0t
* Q 01
+ui(y) DgTir(O%e;) (x — y; B) + DLOJ (x — y; B) ik (u, ) (y)+  (2.37)

+Df§0§§(x -y ﬁ)gék} nk(y)dy S,

L(x —yi ) Dyun) ¥y + [ [ BDROk(x ~yi Bui(y)ou+

where G/, = G, + wiwmuélk (This follows from the fact that ng € A,, the
Muckenhoupt class, for 3 < 51 and we could not get the estimate with the
weight (-3 3)).
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We start with the volume integrals.
Applying Theorem I1.3.8 and Corollary I1.3.6 we get

D?*OF « f 2 < C|D?*O* s« f|| a2 <
H | ui 1) | Hr “; 68
!
<Cﬁ’“)‘“f 525k 0<d<— 2.38
171 ’@ Bebio 5 (2.38)
De x 3. cptk—bw 3 4 .
1P 71, it oy < 71, 20y

(The convolutions are to be understood in the sense as shown in (1.45)). As
in the threedimensional case, we estimate all terms in G’ and V - G’ in the
corresponding L"—weighted spaces.

h 3 2 < ||h 3 < J6] 2.39
=, n;,i”(-;m) | Hoo,(ng(~;ﬁ)> 20 (2.39)
g
Il gz <|If]l s < —p (2.40)
n;f‘s(, )) i)~ 20
&
h| . s < |h < 9.41
[ ”r,m; 2 oo o0 < 57 (2.41)
£ ) < N lloo, i (58 < 2oﬂ (2.42)

and all the terms are sufficiently small due to the assumptions on the right hand
side.
Next, using Remark 1.1 (ii) we easily estimate for r > 2

||TVW|| 3 20 <
u; (-38)
[||T|| s HIVTEL gl ]HVwH e S
,U«l ) l/«l “38)) Hq (7/6))
4 4 4
9 2
sclivwl ge  HIVWI gl
r(pg “(58) r(py’ “(58)
4 4
and therefore
ITVwl| 4. < 2w (2.43)
i “(38))
2
Analogously
||VTVW|| 3 20 +TV?w]| 5. <
2 2.44
{||V2W|| 3.0 +||VW|| 3.0 } < Ce?p*i=+) (249
ug (-30)) ’é (-38))

TVw| 3,  +|V(TVw 3., < Ce2p20-) 2.45
| IIWé Bav g IV ( )”r,(u; bau o B (2.45)
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p(VW)| s, +HIVE(VW)TI| s =
Ip(Vw) Hr,(MfZ (-:8)) [Vp(vw) HT’(MEQ ¢35

2
HpVWT o aa A IROW)T e < (2.46)
Ip(Vw) Hr,(ué ) IVp(Vw) Hﬁ(ﬂ(l) )

S 06262(1—«)) )
Next, using

k k
Iw*VEw (e < V¥ w ]l llwZ,

IIVwwlly < [IVwl VWl wlo, > 2

we get as above
+[|IV(|w|*Vw 3 90, +
(137 ¢38) IV )”r,mf (-3))
1
0

+[w? Vwl e g F IV(lw*Vw)|
o (38)) 7 (p
< 05363(1—(4)) )

lwl*vwl

2w

= w\w

< (2.47)
(38))

Slw

2w

Concerning the convective term we have now to distinguish two cases. If
i-j # 1 we have easily (see Lemma I1.3.2)

gl g-2esn < Cllunllg o gylonl

8)
"< (2.48)

2
1 00, (1

Nl pof=

(-38))
([ +10x)724(1 4 s(0%0) 7 n((2 + |9x) [ dx) " <
< 052527&057; .

But for : = j = 1 we do not apply the Green theorem (see Theorem VIII.1.15
and so we estimate by means of Theorem II.3.29

|5+ a9 <
wl w ~2 <
391 ! T’(ﬂi,f (-38))
<C * (w1 Vawy 3.5 . <
H oy ( ) r(n3 Z(58)
o 277 (2.49)
<O N un V|| s 2., <
T G1))
<CF el 4. IVl <
- (@“m)) (g TUC38) T
Qﬁl—w
The other estimates are easier
VWl . <
u;i (38)) 250
<lwl e VWl e <0207 (2:50)
oo,(u; (-38)) (g T (58))
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Wi;W; _3 90 <
| j”r,(ué T(58)
1 , (2.51)
<wl? oy (i) ax) T < cspoe?
oo,(ug" (+38)) /R
[w - Vwl| (“1_§2w( =
(1 .3
<l g VW g SO0 2
0o,(ug " (+30)) Ho " (58)
Finally, the last terms can be estlmated easily combining the estimates above
6w - Vwll 5 200 ANEVW-VW) g 2psn,
A CT) R S CT)
+[[Bw - Vw E + |8V (W - Vw 3, < (2.53)
I I rng T (58) 1v¢ . (g T C5)
< 052,83_2w
fwl 3 2.5, + [|[VEw 3.2 500 +
I gy + ITE, s -
HiEwl s, HIVEW| s, < CEB.
T O ))) (g " (58)
Therefore, combining (2.39)—(2.54) we have for ¢, [ sufficiently small
HVHVH 2. [V VII 2., F
, /»‘17% ( i8)) y /"‘17% (7ﬁ)) ) (255)
s _3 ., + ||Vr _3, < ﬁ v
” ”nmé By T ”r,mé ety S 10

Next we continue with the boundary terms. We denote as usually the corre-
sponding surface integral by Vu®? i = 1,2, 3,4 and distinguish three cases

(i) [x <1

.. 1
(i) 1 <|x[< 3
(iif) § < [x]-

As the weighted estimates are equivalent to the standard L9—morms for |x| <1

and
Vu, V2ull0, < C(IV2ully + |Val 2 g,) <

< C(IIVullip + [V2ullg) < Cep®
|7, V|, < C(VT|1p + ||77H2%’Ql) <
< C(|Vr|lip + IVT|lq) < CeB®,

we have
e TR A (A I
Pl 10, ) CS (2.56)
< Cef°, aE[g;l)

Now let 1 < |x| < 5 , B < 1. Clearly as in the threedimensional case it is

enough to get estlmates for Vu®, ©°; those for V2u®, V7° are much easier.
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Va1 0 0)] <

101 B
< CAx|“(1 + |Bx|) r1+s )7 (e +
S 1) (4 s (30) ™ (3 + 1)
and so
VoS, 305(3‘W>T/ (18|~ 4 57| px|(=2)r).
T7(/‘1 1 (:B)):Q:% %
(1 + |Bx)) =D (1 + s(Bx))ldx < (2.57)
1
< Cﬁ?’T_WT_Z/ ‘y‘wr—r+2d’y’ < 0/827“_
3
Analogously
||Vll 2. < 16(3—0.))7’/1 (|BX|(w—2)r+6r|ﬁx‘(w—3)r>'
T(ul% “(38), @ 2 2 (2.58)
(14 |8x)) 7R (1 4 s(Bx)) " Ldx < CB% .

Combining the estimates in the threedimensional case with (2.26) and (2.29)
we get

[Vu®3| ui_%w(-;,@)),ﬂll+Hvuw“n(uij’w(-;,8))7% <
< (1 +18) ' (L (80~ [V0 e D+ 2.59)
+v20" (Z:8)]] / (IVu] + || + |gr>ds < C[||V?ul +
HIVrlly + () + 57 + [|(w, )35 D] < o,
i.e.
\|Vu57v2uSHT7(Mi i (~;,6)),Q% <Op~. (2.60)

Next we estimate the pressure terms in Q}
B

75 oy )] < COxI 1+ [xl) = (le()| + [Ve(3)])

and so
5,1 2
SUY <Ccp. 2.61
I, it o | (261
Analogously
5,2 1-2w
|7[' ’ (X),u() (X’5)| <
w3 X
< CAIx|“(1 + |Bx|)' =+ (ﬁ\e(X)! +[Ve(x)| + !V2e(§)\)
and

2 <C . 2.62
Il (e T 8.9 & (2.62)
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5.3

The terms 72 and 754 can be estimated as Vu®? and Vu®*; therefore

||7TS3|| Sl PR W <
7‘ (’ﬂ)) 5 T,(/LO " (7/8))791%

<c / (IVul + || + G- n)dS < CB(e6 +26)
o0N

(2.63)

Summarizing (2.61)—(2.63) yields

SH <£ 1—w'

™
|| T H/O ( 75)) Ql n 20

(2.64)

Finally let |x| > % Now
1-2 0 w —w— Tr
Vu (), 3 (x5 B)] < OBl (L + |Bx])! 77 (1 + s(8%)) 7

e e ]
(1 +[8x[)(1+s(8x)) ~ (1+ |Bx|)2(1 + s(8x))?

and

IN

IVu~

1

“(-38)),07
< BB 1+ |8x[)” Bx)) " x|dx| < CpB-IT=2,
1

B

ﬂh—‘ﬂ\l\!

1—
(“1
(2.65)

VS ()1 (6 B) < B (1 + [Bx]) T E (14 (%))
" 1 1
3 —"_
st 1P
3

s(0x))? !ﬁXI?’}

L+ px)?

T px)?

1+
(ﬁ
(1+

and

|Vu>

(2.66)
< Cﬁ(S—w)r—Z/ ]y]_Q(l + s(y))_ldy < CB(B—w)r—Q )
B

Analogously

IV 2 3+ Ve

2 1
rﬂ(ﬁﬁ_i’ (’ﬂ))’ﬂﬂ 7"7(H1_£ (’ﬂ))vﬂﬂ

w2 _ _ 7 / 2.67
<cp ([ o Y20 5 a) | (vul+ I+ 1g'hds < 267

< C/Bl—‘roc—w—%
and collecting (2.56), (2.60), (2.65)—(2.67)

HVuSH + [V SH

“58).0

%\H%\w
ﬁ\»—tﬁ\m

"‘;
._.H

1—
#1
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for 3, e sufficiently small, « sufficiently close to 1. The pressure terms are treated
in the same way

7S g+ (o ) < B (1 + [8x)' 0 (e + o)

x| [x[?

i.e.

|| 3 <
-3 Q
o (50 “(:8), ’ s (2.69)
<3 W”/ (]ﬁx| L BI8x| T H)dx < CRBIr2
Next
5.2 1-3w
T2 () " (x58)] <
st B 1 1
<CBIx[“(1+|px)er | =+ — 4+ —
x| (1 + |8x]) [,X| P |X|3}
and ,
5,2 (3—w)—2
T i, , <C " 2.70
| ‘r,mé Lo py b 6 (2.70)
Finally
[ S Iy L <
7(”0 ( 7/6)) Q’B 1 ’(.U‘O ( 76))7QB
<cpt=e ([ iyly) [ (Vul+ e +ighds < 27D
B1(0) o0
< Cﬁl+a_w_% .
Collecting (2.56), (2.64), (2.69)(2.71)
1
S S 1—w
s Vr _3, < —¢f , 2.72
==l rug T (58).0 * Hr(é ¢~ 10 (2.72)

where €, 3 must be assumed sufficiently small. We have proved

Theorem 2.1 Let f = V -h and let h € L} (), f € W29(Q) N WFP(Q),
€ (1; 5), k > 2 with the norms sufficiently small. Let Q € C**! be an exterior
domain in R%. Moreover, let

h,f, Vf € L™ (Q;n (2.73)

[SIEENI
~—~
SN—
SN—

,n2

Then (v,p), solution to the problem (1.4.14)—(1.4.15) constructed in Theo-
rem V.2.1 has the following asymptotic properties

and let = |vVoo| and ||h, f, VE|| ( 3 5 be sufficiently small.

up = v — fe; € L=®(Q;n3(4))
v € LX)l n(2 +)/)
1-2 (2.74)
Vv, Vv e L'(%n, i ()

1—3
p,Vpe L' (smy "(4)),

1
2
ni
2

where 1 € (5;00).
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Remark 2.1 From (2.74) it follows that our solution has almost the same

asymptotic behaviour ar the fundamental solution to the Oseen problem (for

u9 up to a logarithmic term, for Vu, p up to a very small power for r sufficiently

large). If we are not interested in the precise asymptotic structure of Vv, we

can weaken the assumptions on f. Namely for h,f, Vf € L>°(£;71(+)) (indeed,
2

with a sufficiently small norm) we would get (2.74); 24 and instead of (2.74)3
_2
only Vv, V2v € L' (Qm: 4 ().
2 7
Using Remark 1.1 (i.e. the imbedding theorem) we easily see that we have
2

Vv e L”(Q;nti(‘)), i.e. in other words, Vv € L>®(Q;ni~2%(-)) for any £ > 0.
J 1—¢

Analogously p € L*(£2; 1, °(+)) for all € > 0. Unlike the threedimensional case,
the assumptions (2.73) are not sufficient in order to assure the existence of
solution; we must add an assumption on the second gradient of f.
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Axially symmetric flow of the ideal
and viscous fluid in R’

This chapter is devoted to the study of non—steady axially symmetric flow in
the whole R3. We especially deal with the ideal incompressible fluid (i.e. the
Euler equations, see (1.2.5)) and the viscous incompressible Newtonian fluid
(i.e. the Navier—Stokes equations, see (1.3.6)). In Section VIL.1 we study the
viscous fluid and obtain for axially symmetric data (the right hand side and
the initial condition) that the corresponding solution exists on any compact
subinterval of [0;00) and is regular as the right hand side and initial condition
allow. Next, using this result we get some estimates independent of viscosity,
pass with it to zero and obtain analogous result for the Euler equations. Let us
mention that the part dealing with the viscous fluid is taken from [LeMaNePo]
while the other part has not been published yet.

Definition 0.1 A scalar function @ written in cylindrical coordinates is called
azially symmetric if it is independent of 0, i.e. p = @(r, z).

A wvector function § = (&,&9,&.) is called axially symmetric if {g = 0 and
& and &, are axially symmetric.

VII.1 Viscous fluid

In the early thirties J. Leray studies the Cauchy problem for the Navier—Stokes
equations (see [Ler|) and shows that in two spatial dimensions there exists
uniquely determined solution while in three dimensions he only shows the exis-
tence of a ”turbulent” solution (in fact, weak) and the question of its uniqueness
(in the class of weak solutions) as well as its regularity remains open. In fifties
and sixties, Hopf and Ladyzhenskaya (see [Ho] and [Ladl]) extend his results to
the boundary value problems. However, the situation remains the same; in two
spatial dimensions the solution is unique and regular as the data of the problem
allow, in three dimensions only the existence of weak solutions was established.

J. Leray in [Ler| even proposed a possible construction of a singular solu-
tion for regular data. This construction was recently excluded in [NeRuSv]; see
also [MaNePoSc] or even for a larger class of solutions [Ts]. The question of
regularity! and uniqueness of weak solutions in three space dimensions rema-
ins still one of the most fundamental problems in mathematical theory of fluid
dynamics.

!Evidently, here we speak about global-in-time regularity. The local-in-time regularity for
sufficiently smooth data can be shown easily, see also Theorem 1.1.

233
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However, if only axially symmetric flows are permitted then it is possible
to show global-in-time existence of regular solution (see Theorem 1.2 below).
As well-known, this solution is unique even in the class of all weak solutions
considered for axially symmetric data only (see Theorem 1.3 below).

At the world congress of mathematics in Moscow (1966) O.A. Ladyzhen-
skaya presented new apriori estimates concerning the axially symmetric flow of
viscous fluid in the whole R3. The proof of existence of global-in-time regular
solution to the Cauchy problem for the Navier—Stokes equations for axially sym-
metric data was then presented in [Lad2]; the same idea was used by Uchovskii
and Yudovich in [UcYu], the latter was even published some months sooner
than [Lad2] and contained also the study of axially symmetric flow of the in-
compressible ideal fluid. Surprisingly, their results do not seem to be known
in the wide Navier-Stokes community, situation which might be caused by the
technicalities occurring within the proof (for example a special basis in cylindri-
cal coordinates on bounded balls with increasing radius is constructed in order
to define convenient approximations).

The aim of this paper is to give another proof, following an elementary and
clear method. We first consider a viscous fluid; this enables us to build our
proof on known (and nowadays standard) results on existence, uniqueness and
regularity of a weak solution to the evolutionary Stokes system. Starting from
this, we present (in Subsection VII.1.1) local-in-time existence and uniqueness
of smooth axially symmetric solution to the Navier-Stokes system.

Subsection VII.1.2 is then devoted to the derivation of some “global” esti-
mates, which allow us to extend the smooth solution to arbitrary time interval.
We wish to emphasize that the crucial trick in this procedure is due to Lady-
zhenskaya.

VII.1.1 Axially symmetric solution on a short time interval

The Navier-Stokes equations in R?, written in cartesian coordinates x1, z2, 3,
have a non-dimensional form

V-v=10
ov (1.1)

E—F(V-V)v—uAv—i—Vp:f,

where v = (v1, v, v3) : (0,00) x R® — R? and p : (0, 00) x R® — R are unknowns
and £ = (f1, f2, f3) : (0,00) — R3 is prescribed. System (1.1) is completed by
an initial condition

v(0,x) = vo(x), x €R3,  where V-vy =0.

In cylindrical coordinates given by x1 = rcosf, xo = rsinf, x3 = z, equati-
ons (1.1) are transformed into the system
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t or TR T TR T g
ROy L0 O v 20U,
r Or T@T r2 002 022 r2 299l "
%+U%+lv%+v%+lm+l@_
ot " or N g“ r 90
10 (")U@ 1 0°vg  0°vg vy 2 Ovy
- = —-—+ = = 1.2
{rﬁr( 8T)+7“2 892+8z2 r2+r2 39} fo (1.2)
v, ov, 1 Ov, Ov, Op
at "o %0 T Ta.

10, Ov, 1 0%v, 0%v,
a0 a) e T2 =
ov, v, 10vy Ov,

o T T T ez =0.
If £ stands instead of v, v or f above, then by (&, &p,£.) we mean the vector
(&1 cosb + Easinf, —&; sinf + &2 cos b, E3).

The objective of this subsection is to show that if vy and f are axially
symmetric, then there exist a ¢ > 0 and the axially symmetric solution (v,p)
of (1.1) defined on (0, t) satisfying the initial condition. First, we deal with the
evolutionary Stokes system.

Lemma 1.1 Let T € (0;00), I = (0;1) and let k > 1, k € N. Let us assume
that vo € WF2(R3) and F € L*(I;WF=L2(R3)) are azially symmetric. Then
there exists exactly one weak (and also strong) solution to the Stokes problem
(in I x R3)

aa‘tf—l/Av—l—Vp:F, V-v=0,
v(0,x) = vo(x), x € R?,

such that v € L(I; WH2(R¥) 1 L(I; W1 (RY)), 9 € L2(I; W1 (&%) and
Vp € LA(I;WFL2(R3)) (k> 2).
Moreover, v and p are axially symmetric.

Proof: The existence and uniqueness as well as the energy estimates are
classical, in the whole space we can directly apply the difference-quotient me-
thod to obtain the following energy inequalities (J = (0;t), t € I)

VI sz < VO3 + / F () 3dr
1DV a2 < 1DV OIB+ S [ IDF B ()
- 2 (13)
/HD v(r)li3dr < /HVF 7)[Bdr + | D*(0)]3

L1 iar< £ [M IR Bir + D VOB, k20,
Moreover, the pressure p solves

Ap=V_-F,
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which leads to the regularity for p.
It remains to show that the solution is axially symmetric. Transforming the
Stokes system into the cylindrical coordinates we obtain

vy [1 o Ovy 1 0%v, O%*v, v, 2 avg} Op
—y =

a hale) Y eee Tar e ral ta T
Ovg 10, Oug 1 0%vg O%*vg v 2 Ov, 19p
vrvo |12 Y .20 = _ Y, “ R
at V{rar(rﬁr)—i_ﬂ 902 T 92 22 80}—'—7"89 0

ov, 10, Ov, 1 0%v, O%v, dp
I Bl = LT _F
ot V[rar(rﬁr)+r2 002 + 8z2}+3z

avr_i_vl_i_l%_i_avz
or r r 00 0z
We see that all the differential operators on the left-hand side of this system
commute with the operator %. Denoting

=0.

u

((%T Ovg 8vz> Op
90’ 00’ 96/’

and using the assumptions on axial symmetry of F and vg, we obtain (after
returning to the cartesian coordinates)

ou
- .u=
’ vAu+ Vqg=0, V-u=0,

u(0,x)=0, x € R3.
Therefore, thanks to the uniqueness of square integrable solutions to the Stokes

system, u = 0 and ¢ = 0. Substituting back this fact into the equation for v
and p in the cylindrical coordinates we get

ov, 10  Ov, v, vy Op
2 22

ot Ve e ) T e el T
g 0?vy ve]

F,

190 0vy
et et e e
ov, 10,6 0Ov, 9%v, Op
ot V{rar(r 81")+ 822} 0z

ov, v, Ov,
or * r + 0z
and vo = ((vo)r,0, (v0)). Since vy occurs only in the second equation above,
again the uniqueness argument implies that vg = 0. Thus the solution is ne-
cessarily axially symmetric.

F,

=0

d

We now construct axially symmetric solution to the full Navier-Stokes sys-
tem. Let ¢ > 0 and J = (0;¢). We set

X=X = {u € L®(J; W*2(R3)); u axially symmetric} :

Further, let vo € W22(R?) and f € L?(0,00; WH2(R?)) be axially symmetric,
V :-vyg = 0. Take v € X and define an operator S : X — X in such a way
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that u = S(v) solves the evolutionary Stokes system With the initial value vy
and the right-hand side f — vp5— a . Notice that f — v 5— a o is axially symmetric.?
Consequently, by Lemma 1.1, we observe that u € X (f (t) for all t € (0;00) and
p is axially symmetric.

We will show that for ¢ sufficiently small S is a contraction in X. The
Banach fixed point theorem gives then the existence of unique solution to the
Navier—Stokes equations on (0;¢); the solution is moreover strong as belongs to
X.

In the sequel we will frequently use the classical interpolation inequality

Nz < ezl vl

12]la < [|zll5""[Iz]s

and also two inequalities of Agmon’s type (see Theorem VIII.1.12)

1/4 3/4
|20 < cuzuz/ HV2 13/

1.4
|2]loo < c[|Vzly V223> (14

Theorem 1.1 Let f € L2 (0,00; WY2(R?)) and vo € W*2(R?) (divergence
free) be azially symmetric. Then there exists exactly one solution (v,p) such

that v € L=(J;W22(R?)) N L2(J; W3(R?)), ¥ € L2(J;WH2(R?)), Vp €

L>®(J; L*(R3)) solving the Navier-Stokes equations on (possibly short) time
interval J = (0;t). Moreover, v and p are azially symmetric.

Proof: It is easy to see, with help of (1.3), that for C' = [|vo||35+1 there is
a tg > 0 such that ||S(v)||x < C whenever ||v||x < C. Then it remains to verify
that S : X — X is a contraction. For this purpose fix vi € X, ||[vi|x < C,
i=1,2. As S(v?) — S(v!) satisfies the Stokes system with zero initial condition
and the right-hand side g = —v% g;’k + v}ﬁg—;’;, it is sufficient to estimate g and
Vg in L%(J; L?(R?)) (cf. (1.3)). We have (with help of (1.4))

[ 1vemz dT</ V(2 = VHIVY] + Vv () [ drt
+ [ (162 = VYDA + IV D2 v ()R ar <
/HVv =)@ (199(7)
+ 162 = OB () B+
+ [ 1D = )OIV () Badr <

< KO t|v? = vI[% .

T2+ IIVVI)T 2)dr+

*Indeed, transforming the convective term into the cylindrical coordinates (cf.(1.2)) we
have

_ Ovy 1 Ov, vy u§
Kr - raair + i ge + Vz 682 - 7
Vo Vo Vo VrUg
Ky = r - vy z
o=v or + r ve 90 v 9z T
Oov, 1 Ov, vy
K. =v, +

— + -v v

ar 7" TV .
It is an easy matter to see that, for v being axially symmetric, the convective term is again
axially symmetric.
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Analogously we get the L?—estimates of g and again it is an easy matter to see
that for ¢t > 0 sufficiently small (¢ < t¢) we obtain an estimate of the type

IS(v?) = S(vHllx < sllv? = v x

with xk < 1.

Banach fixed point theorem then gives the existence and uniqueness of
v € X solving the Navier-Stokes system. From (1.3) we obtain the additio-
nal regularity for v stated in Theorem 1.1. Similarly, there exists p such that
Vp € L®(J; L2(R3)) N L2(J; WH2(R3)). The proof of theorem is complete.

O

VII.1.2 Global axially symmetric solution

Provided that vg and f are axially symmetric we know, by Theorem 1.1, that
there is a t > 0 and an axially symmetric solution (v, p) defined on (0;¢) and
solving

ovr O %+@_V[1Q(r%)+@_q _
ot " or 0z or ror. Or 022 r2l
ov, ov,, ov, Op 10, 6 Ov, d?v. _ 1.5
B torge tug it g v g Y G| = ) (15)
ov, v, Ov, 0

or * r * 0z
We denote by ¢t* supremum of all ¢ > 0 for which Theorem 1.1 holds, i.e.

t* = sup {t; there is an axially symmetric solution
to (1.1) on (0;t) belonging to X} .

Then either t* = co or t* < co. The aim of this section is to exclude the latter
case. Let us assume that ¢* < co. Then necessarily®

litmts*up v ly22gs) = o0 (1.6)

(Otherwise we could define v at ¢* by the limit and take it as a new initial
value. As v(t*) € W22(R?), we could extend, by Theorem 1.1, (v, p) behind ¢*,
which would contradict to the definition of ¢*.)

Let t < t* be arbitrary, I = (0;¢) and (v,p) be a solution on I given by
Theorem 1.1. Because of regularity we can take curl of (1.5). Thanks to the
axial symmetry the vector w = V x v has the only nonzero component wy given

by wg = %"ZT — 85’;. For lucidity, we denote wy by w. We see that w solves

Ow Ow n ow vy 0w n 0w n 10w w

— 4 — 4y ———w—V|lat st — =

ot "or " oz v or2 022 ror r?
where g = (V x ).

We will need the following lemma on equivalence of norms for w and v.

|=9. @7

3Note that v € C(0,t; W*?(R?)) for all ¢ € (0;¢*). This is a direct consequence of the facts
that v € L?(0,t; W*2?(R%)) and % € L2(0,t; Wh2(R?)), see Theorem VIIL.1.21.
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Lemma 1.2 Let v be a smooth, divergence free, axially symmetric vector field
and w = (V x v)g. Then

(i) ||wll2 is equivalent to |Vv|z,
(ii) |Vwllz + |22 is equivalent to | D?*v]|s .
(iii) | D*wll2 + 15 ()2 + 155 (D)l2 < C|1D?V]|2.

Proof: Lemma is proved in Appendix, even for a more general settings; see
Theorem VIII.4.1.

O

Now we would like to multiply (1.7) successively by %, w and %—‘2’ and in-
tegrate over R? with the aim to derive apriori estimates for w which, combi-
ned with Lemma 1.2 (ii), would yield the contradiction to (1.6). Although the
multiplication by ;5 is the key step in the proof of Ladyzhenskaya and also
Uchovskii and Yudovich, we do not know if % € L*(I; L?(R?) here. However,
we can multiply (1.7) by —3% with ¢ > 0 arbitrarily small, as follows from the

next lemma.
Lemma 1.3 Let w = (V x u)g, u € X(t). Then
(i) == and Tll_ag—‘;f belong to L*(I; L?(R3)) for all € > 0;

(i6) let gu(n) = [ (P12 ) (1, 2) dz and ga(n) = [ (10|2212) (1, 2) dz, then
g1 and gy are bounded for any § € (0,2).

Proof: To prove (i) we first observe that, by Lemma 1.2, ¥ and %(%)
belong to L?(I; L?(R3)). We then define g € W12(R?) in such a way that g = 2
for » <1, g = 0 for r > 2 and [|g|12 < C|%|]1,2. For € > 0 fixed, the Hardy
inequality (see Theorem VIII.1.16) yields

o0 o0
/ / r*1+2€]g]2drdz§
OO_OOOOO
< (2>2/ / 142
T \e —00 J0

Moreover, for r > 1 we have

Y —w_ Qrdr dz < = o 2rdr dz.
—oJ1 T —c0 J1 r

In a very similar way we can show that

1 0
=%

Thus (i) is proved. To verify (ii), let n > 0 and ¢ € (0;2). Then

== [ S ara <
< [T e a2 5 () fara <

—0o0

0
< |zl I (Ml

%faras < oo w2

| <cia2

r Hl,z'
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Thus ¢1(n) is bounded for all 7 due to (i) and Lemma 1 2 (i ) The boundedness
of gy is proved analogously starting from — [ f ( 5| “|?)drdz and using
Lemma 1.2 (iii).

Corollary 1.1 For everye >0

- (%:7_3)(77,2) dz=0.

Proof: For fixed € > 0, we have

/_o:o (%%)(n, 2)dz <

< ([T (5[ maa) " ([

[e.9]

lim
n—0+J o0

w2 1/2

w2, e/2 d €/2
(MT )(n,z)dz) 2,
which gives the assertion thanks to Lemma 1.3 (ii).

O

Now, we are going to multiply (1.7) by -z%z and integrate over R? with
the aim to let finally ¢ — 07. The 1ntegrat10n over R? is clearly allowed as all
integrals are finite; for example (by [ we mean [ [7° in what follows) it holds

Y R

and the right-hand side is finite due to Lemma 1.3 (i).

Lemma 1.4 Let vo € W22(R?) and f € L2 (0, 00; WY2(R3)) be azially sym-
metric and let t < t*. Then it holds

2 < oo (18)
o (t)]2 +1// (193 + ] )dT < C(vo, f) (1.9)
/ ‘ (Ive ()3 + H*H ) < C(vo, 1), (1.10)

where C(vo, f) denotes a quantity depending on ||vo||2,2 and fo I£(t)]|1T 2 dt, t* <
T < oo, arbitrary.

Proof: We will split the proof into three steps.
Step 1. In order to prove (1.8) we multiply (1.7) by -3 with ¢ > 0 small and
integrate over R® with respect to the measure rdrdz which is allowed due to
Lemma 1.3 (i). We will obtain

62 w

s [l v o [ (9 )+ = il v -

W2
—/ rdrdz—l— 5 % —rdrdz. (1.11)
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Indeed, the term including %—‘;’ is elementary. (We can use e.g. the theorem on

derivative of integral depending on a parameter.) The convective term gives

/ (vrafw +v,—=— Ow — wi) 2 rdrdz =

or 70 r ) )
v, 0(w?) s 1 Up w B
/ 2 8T 7'1_ ) + 2 (‘zz (7‘1_5) B rrlgf)drdz N

ov, O0v, Up\ W e vy w
_77\/(87" +87+7>17€d7‘d2** 77‘176(17’(12 =

2
e [V w
= —7/7701—_6d7“dz. (due to (1.5)5)

Let us note that the boundary terms disappear due to the integrability (at
infinity) and due to an analogue of Corollary 1.1 (at 7 = 0). The elliptic term
requires precise investigations

_V/(%+(32<,u+16w_ w>r2 _rdrdz = — [ - a—widzr:m—k

or?2 022 ror r? oo Or r1=¢ "Tlr=0

o () B R 0= ) e

and the boundary term vanishes due to Corollary 1.1 and due to the integrability
of w.
Now we can estimate the right-hand side of (1.11). Since

0 r 0 z w 0
/(8]; B 8£)r2 ardeZ:_/(fT (rl 5) fz (7"1 a))deZ—

:_/(fremi(l‘”eﬂ) fz€2a(1i€/2) ngTs/Z /2)d7’dz

we have by the Hardy and Young inequalities (see Theorem VIII.1.16 and
Lemma VIII.1.1)

[ raras] < HTli/aH (752l + 5l ) <

. +2 o+l

= 2” rl- 5/2 '73 /2

Further, by means of (1.4), we have

Putting all calculations together and integrating the result with respect to time
we obtain for all 7 € (0;¢)

rdrdz\@”vrllw\lrz 7l <

< &l + el 2 -

20,

rl—e/2

< ¢(f, v +€/ [Vv(s )”12Hr1 5/2H ds

The Gronwall inequality (see Theorem VIII.1.20) then implies

2

Hw(T)

Tlfa 2

< c(f, vo) exp (5 /Ot HDzv(T)Hng) .
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The right-hand side is finite by the assumption on v, which allows to pass to

the limit as € — 0 at the right-hand side. As |*1| is bounded by || for
€ (0;1), and by |w| for r > 1, we can let € tend to 0 at the left-hand side by

the Lebesgue dominated theorem, and we obtain (1.8).

Step 2. The next estimate (1.9) is obtained by multiplying (1.7) by w (and

integrating over R3). The elliptic term gives

/82w Pw 10w w
—y (

or2 1022 ror 12

0 [[(2) 4+ (22 raraz = (19l + | 2]1)

)wrdrdz =

Since

1d 9
/—wrdrdz 5&”(,‘)”2

and
[ gwrardz <2 [ 181(190]+ |2 [)rardz < 20l (19l + | 2])

we can concentrate ourselves on the estimate of the convective term. We have

/ (’UT Oww + Jrvz &u — orw? )rdrdz =
or T
2 2

_/ vr - ;Z (uﬂ) o ]rdrdz—

6% v, vypw?
/2(—5—5—27—7)7“&“&5:—/ " rdrdz .

Adding all computations, integrating over (0;¢), using the Agmon inequality
(1.4), the above shown estimate (1.8) and Lemma 1.2 (i), (ii) we obtain

t ¢
2 2 2 v 2 w12
lw@B+C [ ID*vmlBar+ % [ (Ivetn)B+]2];ar) <
t
< C’/ /\w T \%w\drdz—i—(}’(vo,f) <
/ v ( 7)lladr + C(vo, ) <
(1.12)

< C(vo. f / ||Vv||”2||D2vu”2||w||zdf+c<vo,f> <

< g/ HD2V||2dT+C(VO,f)/ IVv|2dr + C(vo,£) <
0 0

t
< < [ ID*viar + Ovo 1),
0

where we use (at the last step) the classical first energy estimates

t t
IvOIE+ [ IVvmIRdr < [vol3 +¢ [ IE@3ar. (113)
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Step 3. The last estimate (1.10) is obtained similarly. Now we multiply (1.7)
by S+ It yields

51 +~V(HWH2+H*H ) <

<2‘dt Oow VpWw ow

> / Ur*‘f‘vz*— +g)8f7“d7“dz’§

<5 H at \ +/\v\ \Vw!2+H )rdrdz—l—HfH12 <
<3 H o H IIQ(IIlengrH;HQ) +[1£]12,.

We must only pay attention to the elliptic term, as we do not have enough regu-
larity (%Vu} ¢ L*(I; L*(R?) generally). Nevertheless, using Theorem VIII.1.19
we can prove that

[ Bt i
::5NthH2+H;th—HVwmm%—H$mAE)
Again, by (1.4), (1.12) and (1.13) we see that

! 2 2 ¢ 2
| V@I < o(Ivola: [ 161 ar)
The Gronwall inequality finishes the proof of (1.10). Lemma 1.4 is proved.
O

The task to exclude (1.6) is now very easy. By the equivalence of the norm
(cf. Lemma 1.2 (i), (ii)) we see that (1.8)—(1.10) can be rewritten as

¢
HWN%SCNW%AMﬁﬂﬂ
valid for all ¢ < t*. Passing to the lim sup at the left-hand side we obtain

lim sup Hv(t)||%72 < 0.
tst*—

Thus (1.6) does not hold and consequently ¢* = oco. We have proved

Theorem 1.2 Let T € (0;00) be arbitrary, and let vo € W22(R3), V- vy = 0,
and £ € L*(0,T;WH2(R3)) be azially symmetric. Then there exists (global)
azially symmetric solution to the Navier-Stokes equations (1.1) satisfying
v e L>(0,T; W»*(R?)) N L2(0, T; W32 (R?))

ov
— € L*0,T; w2 )

e 12 ®?)

An easy consequence of Theorem 1.2 is the following statement.

Theorem 1.3 Let vg and f be as in Theorem 1.2. Then global azially sym-
metric solution to (1.1) given by Theorem 1.1 is unique in the class of weak
solutions to (1.1).

Proof: Compare with [CoFo], Chapt. 10 or [Se].
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VII.2 Ideal fluid

Next we study the incompressible Euler equations, i.e. the system (cf. (1.2.5))

ov
E—F(V-V)V%-Vp:f (2.1)
V-v=20
completed by the initial condition
v(0,x) = vo(x), x€R? (2.2)

with V - vy = 0. For the incompressible Euler equations similar problems as for
the Navier—Stokes equations appear. The local-in-time existence is known for
quite a long time (see [Lic]), in two dimensions we have that the solution with
finite initial energy exists for all time (see e.g. [BeKaMa| or [Maj]). But in three
dimensions it is still not clear whether solutions with finite initial energy may
blow up or not (see e.g. [Maj] for a discussion of the numerical experiments in
this context). Nevertheless, there exists a precise characterisation of the time
instant, when the the energy blows up. Namely, denoting w = V x v, we have
(see [BeKaMal))

Lemma 2.1 The interval [0, T*) with T* < oo is a mazimal interval of smooth
existence if and only if the energy accumulates so rapidly that

t
/0 1w () ||loodr — o0 as t — T*. (2.3)

Here [0,7) is a maximal interval of smooth existence provided the function
v e C([0;T); W*2(RY)) and [|[v(t)||s2 — o0 ast — T, s > & + 1.

We shall use this lemma in order to show that for axially symmetric data
(2.3) cannot happen and therefore the solution (axially symmetric) exists glo-
bally in time, is smooth and therefore unique.

Let us also recall that similar result have been proved by Uchovskii and
Yudovich in [UcYu] by means of a quite different technique. Further, in the
paper of Beale, Kato and Majda [BeKaMa] another approach can be found.
They prove the global existence of smooth solution under different assumptions
(the non—negativity of the initial condition).

Let us start to study (2.1) under the assumption of the axial symmetry of
the data. First, let us present some auxiliary lemmas.

Lemma 2.2 Let v € W42(R?) be azially symmetric. Then “ € L (R?), where
w=(VXxv)g.

Proof: From Lemma VIII.4.17 in Appendix we have
|=]. < clpv)w
T oo
The rest follows from the imbedding theorem,

ID*v]joe < CD?*]l22.
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Definition 2.1 We put
32,00 _ Jazar oyl w2
WOO” :W,,GI(R) OO,
where, for axially symmetric function v,
w
IVlhysez = lIvlisz + | =

and W4’2"”(R3) denotes the set of all axially symmetric functions belonging to
W42(R?).

Remark 2.1
3,2,ax 3,2 (T3 . <19
W% C {u € W*#(R”); u axially symmetric, —H < —1—00},
T oo
the opposite inclusion being not clear.
We shall assume from now that*
vo € W2ar £ ¢ L2 (0, 00; W327) (2.4)

and denote by vg, 9 their approximations (in the space variables) in the sense
of Definition 2.1. We have

Lemma 2.3 Let vj € W42(R3), £ € L2 (0, 00; W42(R3)) be the approzimati-

loc
ons of the data. Then there exists unique

vor e L2 (0, 00; W32(R3)) N L5S,(0, 00; WH2(R?))

loc loc

v 2 3,2/1p3 2.5
ot € Lloc(oaoo;W ’ (R )) ( ’ )

Vp™ € L},.(0, 00 W*2(R?))

solution (axially symmetric) to the Navier-Stokes equations (1.1).

Proof: The proof is completely analogous to the proof of Theorems 1.1 and
1.2. Using this method we get solution which belongs to L2, (0, 00; W32(R3)) N
fgc(O,oo;WQ’z(R?’)) and which is axially symmetric. The higher regularity
follows from the fact that the above proved regularity implies the full regu-

larity of the solution to the Navier—Stokes equations, see e.g. [Te] or [He].

d

The next aim is to obtain some estimates which are independent of the
viscosity.

4The assumptions on the time integrability of f can be further weaken, nevertheless, we
shall not do it.
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Lemma 2.4 Under the assumptions of Lemma 2.8 we have on a sufficiently
short time interval J = (0,t), t = t(vo,f),

HVHLOO(O,E;W‘I’Q(RS)) S C((Vg7 fé,f)
< C(vp,£,1) (2.6)

|5
Ot 1L2(0,5;w32(R3)) —
VPl 20 w02 (rey) < C(vE £°,7)

where the constant C' does not depend on the viscosity v. Moreover,
HVHLOO(Oj;Wz’»J(R%) < C(Vo, f, Z)
ov -
7 < 2.7
H 8t ’ L2(O,E;W2,2(R3)) — C(VO7 f;t) ( )
HVpHLQ(O,E;W?,?(R?*)) < C(Vo, f, f) s

where the constant C' can be taken independent of v and §.
Proof: We multiply first the equation (1.1); by v and integrate over R>:

1d
gz Ivllz + v VI3 < [IE[l2]lv]l2
ie.

”V”LOO(O,E;Lz(R3)) < CHfHLl(O,E;LQ(R?’)) + [[vollz -
Analogously we proceed for higher derivatives. Let us mention only the highest
derivatives. We use the fact that (V-v =0)

/ VF(v - Vv)VFvdx < / VR 2|V |dx+

R3 R3

+/ |v’fv|yv’f*1v|yv2v|dx+...+/ Vv % Vv]dx
R3 R3

for k=3
/Rg V3V Vv]dx < VPV ]3] VVle < CVV]3 5
and for £k =4
/}R3 VAV Vv]dx < [VAV]3 VY] < CIVV]3 -
Therefore 1d
§%HVH§,2 <OV s + 1€ la2)via2 (2.8)
and 1d
V152 < ClIvIE2+ £ ]s2lv]ls,2 - (2.9)

2dt
On the interval where ||v(t)||42 > 1 we have

d 1

S S A T
&t TVOlls = 1 a2
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and the first inequality follows by integration over sufficiently short time inter-
val. Next, taking the divergence of (2.1);

Ap=V - £+ V. ((v-V)v)

and
VPl L2 zwa2@e) < CllEll2ozws2 @)+

+||(V . V)VHLZ;O,Z;W?’YZ(RS)) S C(fé, Vg,%) .

Analogously, directly from the equation, we have the estimate for the time deri-
vative. Now, using (2.9) we can easily obtain (2.7); namely ||v§|z2 < C|vol|3.2
and ||f6HL2(0,Z;W3«2(R3)) < C|[fll 2(0,7,ws2r?)) With the constant independent of
d. The proof is finished.

O

We may now pass with with » — 07. So we get solution to the Euler
equations with the above mentioned regularity.>
Lemma 2.5 Let v§ € W42(R?), £0 € L? (0,00; W4%(R?)), be azially sym-
metric. Then there exists t > 0 such that on (0,1) there exists solution azially
symmetric to the Euler equations and the estimates (2.6) and (2.7) hold.

Up to now we did not use the crucial fact that the data and the solution are
axially symmetric. Let us again denote by w the only nonzero (the #) component
of the V x v, cf. Section VII.1. We have

ow Ow Oow vy

E‘i‘vra‘i‘vz&_?w:g7 g:(va)97 (210)

together with the continuity equation

ov, v, Ov,

or r 0z =0

Let us first recall the regularity of w on I = (0;¢). We apply Theorem
VIIL.4.1 together with Lemma 2.4 and standard imbedding theorems. First we
start with estimates which are d—independent.

ow

— e L*(I; L*(R®) N L%(R3

w (7. T2(T3 6 (3 "
6 8(.0 L2 I L2 R?) w 8T r 9 3 3 (211)
ooy € L LLARY) — € L¥(LL*(R*) N L¥(R%)

v,Vv e L®(I; LAR3 N L2[R3) g

Z e LX(I; L*(R®) N L=(R3)).
ge ILIAR)NI*®RY)

5As the equation contains nonlinear term and we study the equation on a non—compact
domain, we must proceed a bit more carefully. We multiply the equation by a smooth function
with compact support and pass to the limit in this equality. Applying the Cantor diagonal
argument we get a subsequence which converges weakly in L?(0,%; W*?(R®) and strongly in
L?(0,% W?3?%(Bg) for all R > 0 (due to the Lions—Aubin lemma, see e.g. [Lio]) to a function,
satisfying the Euler equations a.e. in (0;¢) x R® together with the above mentioned regularity.
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The following estimates blow up if § — 07

W pareey) 2% e g swe)
7("} o] 0 (T3 78 co/71. 76/M3
o € LU(LLYRY) 5= € L(LLORY).

Now let I = (0;t) with ¢ < t*,

t* = sup {t > 0; 3v axially symmetric ,v € L>®(I; W42(R?)),
ov
E €
By a contradiction argument we shall show that necessarily t* = oco. Let t* < oc.
Then Lemma 2.1 implies

°(I; W32(R3)) solving (2.1) in I x R3}.

t*
Anmmumzm.
In what follows, we shall exclude this possibility by showing that

[l oo 0,520 3y < €

where the constant C' remains bounded for ¢t — t*. We multiply the equation
(2.10) by %|%|p_1sign ¢ and integrate rdrdz. We have® for p > 2

T i f (02 0.5 )P

-1
= /g‘g‘p sign Ldrds. (2.13)
T r

Due to the regularity of v on I we easily verify that all integrals in (2.13) are
finite. Moreover, let us show that the convective term is equal to zero. We have

namely

/ (Urafw + Uzafw — ﬁw)‘g‘pilsign Edrdz =
T

or 0z
1 0 0
L A s
_/ vy 7‘ /((981: +(9avz —i—vr)‘—‘ rdrdz = 0.

We used the fact that V- v = 0 (see (2.1)2) and similarly as in Section VII.1
we may show that the boundary terms disappear. We have

Lemma 2.6 Let v{, £ be as above. Then

;jt/‘:‘prdrdzg /g’%‘pilrdrdz (2.14)
and
H;HL‘”(I;U’(H@)) < Olvo) + Hg‘ LY(I;LP(R?)) VD € [2;00]. (2.15)

5As in Section VII.1, ffdrdz denotes ffooo fooo f(r,z)drdz.
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Proof: The inequality (2.14) was shown above. Now

sl =l < LI
pdtlrilp = liplplyllp 7

i.e.

SR
dtlhrllp = lrllp

integrating over the time interval I and passing with p to infinity we get the
result.

Remark 2.2

(i) Analogously to the case when 2 is bounded we have that if ||f||, < C
with C' independent of p, then f € L®°(RY) and ||f|lc < C. Moreover,
if f e L2(RY)NL>®(RY), then lim sup, ool fllg < [ flloc- The proofs are
similar to those in bounded domains (cf. e.g. [KuFulJo]).

(i) The above shown inequality enables us to pass with § — 0" and use
only the information vo € W22 f € L?(I;W329%). We get again the
existence of strong solutions to the Euler equations and the inequality
from Lemma 2.6 holds true.

Now we multiply (2.10) by |w|P~!signw and integrate rdrdz. We have

/%:|w|plsignwrdrdz + / (Urgw + vzgw - &w) wlP~ signwrdrdz =
r z T
:/g[w\pflsignwrdrdz. (2.16)

We can again easily verify that all the integrals are finite and that we may
apply the Green theorem on the convective term. So we get

/ (vra—w + vza—w — vjw) |w[P~sign wrdrdz =
362 r

= p/(vrm|w\p+vzaaz|w]p)rdrdz

—/vrlw\prdrdz = —/UT\w]pdrdz.

1d
_ p
Sl

W
< Ivlsllolz ™|

S/\erw\p*l‘g‘rdrdz—i—/\g\]w\p*lrdrdzS
r
p—1
R PR
i.e.

d
g lwlls < Clivilp +ligllp - (2.17)
We first use (2.17) for p = 4. We have (see Theorem VIII.1.12)

1—- 1—
[vlla < CllviizVvlls™ < Cillviizflwls™
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with a = % and therefore, using the first energy inequality ||v|| rerrz@®?)) < O,

d -
Zplwlla < Coflwlls™ +lglla-

So we have’
HWHLOO(I;LAL(R?’)) < C(f,vy). (2.18)
Now 1 6 16
[Vlleo < ClIvIZIVVIL < CrllvliZlIwld
(see Theorems VIII.1.12 and VIIL.4.1) and therefore

Voo 10ty < €
We return to the inequality (2.17)
1d
=Ll g/\vr||w|1’—1\f\rdrdz+/|g||w|z’—1rdrdz <
pdt" P r "
< IVl g iz p 172 + N loliolls™
ie. p
w
- < ol .
alells < 7| +lally

Integrating the inequality over the time interval I we get

HWHLOO(I;LP(R3)) < C(f, vo)
and in particular the constant does not depend on p. We may pass with p to oo
to get
@l oo (15200 R3y) < C(F;v0) 5
which excludes the possibility of an blow up. We have therefore
Theorem 2.1 Let f € L} (0,00, W329%) v € W32 with V - vo = 0. Then

loc
there exists solution to the incompressible Euler equations (2.1)-(2.2) on any
compact subinterval of (0;00). This solution is regular and unique in the class

of all weak solutions to the Euler equations. More precisely, we have
v € L5.(0, 00, W2(R?))
0
o € Li(0,00 W2A(RY)

Vp € L},.(0, 00, W*2(R?)).

Proof: We have only to show the uniqueness, the rest being proved above.
Let us assume that u is another weak solution to the same data; using the
mollification of the difference w. = (u — v). as a test function, we easily get
after passing with e — 0

1d , , i
5%/}1@ |w|*dx < /}R3 |w|?|Vv|dx < ||VV||L°°(1;L<><>(R3))”W||2-

As w(0) = 0, the Gronwall inequality finishes the proof.
O

If |w(7)|la < 1, the inequality is trivial; if [|w(7)[la > 1, we have ||w(7)||}™* < ||w(7)||4 and
we can apply the Gronwall inequality.
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Appendix

VIII.1 Function spaces, basic inequalities

Let Bgr(x) denote an open ball with diameter R centered at x,

Br(x) = {y e R";|y —x| < R} (1.1)
and B (x) the exterior part to a closed ball,

Bfi(x) ={y eR";|ly — x| > R}. (1.2)

If x = 0, we shall write usually only By and BT, respectively.

Let Q ¢ RY be a bounded or an unbounded domain. In the latter Q@ = RV
or () is an exterior domain. It means that there exists O = Q¢ compact, simply
connected set, such that Q = RV\ ©. Without loss of generality we shall suppose
that B% C O C Bj. For € unbounded we denote

Qr =QNBg
Qf=qnBk (1.3)
Qgé = QR2 \QRl‘

The bounded domain 2 is called a domain of class C° (a domain with con-
tinuous boundary) if there exist « > 0 and M cartesian systems of coordinates
(g e Try_ys Ty ) = Xy 2y ), 7 =1,..., M and M functions a,(x}.), conti-
nuous on

A ={x;|2n | <a,i=1,2,...,N—1},r=1,2,.... M

such that for all x € 9N there exists r € {1,2,..., M} and x|, € A,, x =
T, (x.,a,(x.)), T, : X, — X. Moreover, we suppose that there exists 5 > 0
such that if

Vi ={(x}, 2ry ); %) € Aryar(x)) < Ty < ar(x)) 4+ 8}
Vi = {(X;?xTN);X;’ € Aryar(x;) — B < Try < ar(xlr)}’

then T,.(V,") € Q and T,.(V,7) Cc RV \ Q.

If in addition a, € C**(A,)!, r = 1,2,... M, then we say that Q € CFH,
k>0, pe (0;1].

For Q an exterior domain we say that Q € C*# if the domain int O € CkH,

Lsee below for the definition of Holder—continuous functions

251
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By u(x) we denote a scalar—valued function from Q to R. Vector- and
tensor—valued functions are printed boldfaced, i.e.

v(x) = (v1(x),...,v5(x)) .

We also use the summation convention i.e. we sum up over twice repeated
indices, from 1 to N. For example, the divergence of a vector field v will be

written as
ov; ov;
v o0x; 12: ox;’
while for the tensor field ST N
T — i
V.T { Py } o
Next, for ¢ a scalar field
_(Op dyp

while for a vector field

Vv—{g;);} i=1,....k,j=1,...,N.

The curl of v will be denoted by
curlv =V x v.

By u - v we understand the usual scalar product of two vector fields, while

Vu: Vv = Ou; Ov;
al'j (%cj
denotes the scalar product of two tensor valued functions. Moreover,
0 0 0z; 0
x—y)=—f(z =——f(z
aylf( Y) aZj ( ) zZ=X-y 3% 0z ( ) Z=X—y

We recall one useful inequality

Lemma 1.1 (Young)
There exists C = C(e,p) such that for any p € (1;00), any a, b € RY and any
e>0

ab < ea? + CH’

with * + ,—1

and the classical Lax—Milgram theorem on the existence of solutions to an
abstract problem

Theorem 1.1 Let a(u,v) be a bilinear, continuous and V —elliptic form on a
Hilbert space V. Let f € V*, the dual space to V. Then there exists exactly one
solution u € V' to the problem

a(u,v) = (f,v) YveV.
Proof: See e.g. [Ne].
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VIII.1.1 Continuous and continuously differentiable functions.
Hoélder—continuous functions

Let Q be as above. Then we denote
C%Q) = C(Q) = {u: Q — R;u is continuous on 0}
C(Q) = C(Q) = {u € C(Q);u is bounded and uniformly
continuous on Q}
CH(Q) ={ue C(Q); D c C(Q)V|a] <k}, keN
C*(Q) = {ue C*(Q); D% € C(Q)V|a| <k}, keN
@) = () CHQ)
keNg
C> Q) = ﬂ cr@Q).
keNg

(1.4)

All derivatives are understood in the classical sense. Let us recall that u € C'(Q2)
if and only if there exists a uniquely determined continuous extension of u up
to the boundary.

We denote for k € Ny and u € C*(Q)

lullery = 3 10%ullpogg - (1.5)
o<k

where HUHCO@) = Supyeq |u(x)]. Then C*(Q) becomes a Banach space with the

norm | - || o -
Let
suppu = {x € Q;u(x) # 0} . (1.6)
Then
CE(Q) = {u € C*(Q);suppu C Qg} (1.7)

for some R sufficiently large. For € bounded (1.7) means that suppu C .
Moreover, if 2 is an exterior domain, we denote

CF(Q) = {u € C*(Q);suppu C Qr} (1.8)

for some R > diam ¢ and some k£ € Ny or k£ = oc.
For u € C*(Q) we take

7 (1.9)

la| <k, p € (0;1]. Then C**(Q) denotes the set of all functions from C*(€2)
such that

Z He p(u) < oo.

la|=k

The space C*#(Q) is a Banach space equipped with the norm

[ull iy = S Hagelw) + ull o (1.10)
|a|=k
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Remark 1.1 If k = 0 and u € (0; 1), we usually call the functions from C%*(Q)
Holder—continuous, while for g = 1 Lipschitz—continuous. See e.g. [KuFuJo] for
more details.

Let us furthermore note that we shall not distinguish between C*(Q) and
Ck(Q)N. It means that we shall write

uecCchQ),

which means that u; € C*(Q) for i = 1,2,..., N. The same holds also for other
spaces defined above and below.

VIII.1.2 Lebesgue spaces

Throughout the whole thesis, all integrals are understood in the Lebesgue sense.
Let 1 < ¢ < oo. Then

L1(Q) = {u measurable;/Q lu(x)|?dx < oo} . (1.11)

The standard assumption ©v = v <= u(x) = v(x) a.e. in Q yields us a
Banach space (if ¢ = 2 a Hilbert space) equipped with the norm

fulloe = ( [ Jutorax) . (112)

If no misunderstanding can appear, we skip €2 in the norm. For ¢ = oo we
denote

L>°(Q) = {u measurable ; |u(x)| < K a.e. in 2} (1.13)
and
ulloe.c = esssup [u(x)] = inf  sup_[u(x)| =
x€N EcQ X€EQ\FE
\El=0 (1.14)
= inf {|u(x)| < o a.e. in Q}.
acR

We have the following classical result

Lemma 1.2 (Holder’s inequality)

Let u € LY(Q), v e LI (Q), é—k % =1(¢ =1ifqg=0o0). Then uv € L'(Q) and

Juvlly < flullgllvllq - (1.15)
Using the preceding lemma we can easily demonstrate

Lemma 1.3 (Interpolation in q)
Let u e LP(Q)NLI(N), 1 <p<qg<oo. Thenu € L"(Q) for all r € [p;q] and

el < Tl lleellg™ (1.16)
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Let us moreover recall that for 1 < ¢ < o0
L9(Q) = WH llg.2

and therefore L({2) is separable for 1 < ¢ < co. Moreover, using the following
lemma which characterizes linear continuous functionals on the Lebesgue spaces
we may easily show that L4(2) is reflexive for 1 < ¢ < oc.

Lemma 1.4 (Riesz)
Let F € (L9(Q))*, 1 < q < oo. Then there exists exactly one f € L9 (Q),
% + % =1 such that for all g € L1(Q)

mmzkmw.

Moreover

1 E N zacayy- = I1fllg -

Proof: See e.g. [KuFulJo|.

O
We denote
L () = {u; u € LYK) VK C Q, K compact} . (1.17)
Especially for 2 exterior domain
LL.(Q) = {w; u € LI(QR) VR > diam Q°} . (1.18)

Finally, let ¢ be a measurable non—negative function on 2. We say that u
belongs to the weighted Li—space (u € L‘(JQ)(Q)) if

/ lu(x)[9g(x)dx < o0
Q

We denote by
1
[l = ( ] [ux)7g(x)dx) (1.19)

and by N
Ll @) =Cr@) . (1.20)

VIII.1.3 Sobolev spaces

By W*P(Q) we understand the set of all functions from LP(2) such that all
distributional derivatives? up to the order k belong to LP(2), 1 < p < co. As
usually, putting

u=v <= u(x) =v(x) a.e. in )

2see Section VIII.4
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we get a Banach space (for p = 2 a Hilbert space) equipped with the norm

1
kao=( D IDu)g)". (1.21)

o] <k

[l

The spaces W*P(Q) are separable for k& > 0, p € [1;00) and reflexive for
k>0, pe (1;00). We have

Lemma 1.5 Let Q be a bounded domain of class C°, 1 < p < oo, k € N. Then

———= " llep.0

WkP(Q) = C>(Q)
Proof: See e.g. [Ne].

For QQ unbounded we have

Lemma 1.6 Let Q be an exterior domain of class C°, 1 < p < oo, k € N.
Then

ool lkp.0

WhP(Q) = C3° ()

Proof: It is an easy consequence of Lemma 1.5 and properties of the Lebesgue
integral.

O
Remark 1.2 The space W>(Q) is isometrically isomorphic with C*~11(0Q).

For Q sufficiently regular we can always extend a function from W*P(Q)
onto the whole RY in such a way that it remains in the same regularity class
in RV,

Lemma 1.7 Let Q be bounded or exterior domain of class C%', 1 < p < o0,
k € N. Then there exists operator E from W*P(Q) to WRP(RY) such that
(1) (Eu)(x) = u(x), x € Q

(ii) | Eullyymy < C(k,p, Q)lu

‘k,p,ﬂ
(iii) Eu has compact support in RY if Q is bounded

Proof: See [St].
(]

Remark 1.3 The assertion of Lemma 1.7 holds true also for the spaces C*(Q)

or _
X7 Q) = {u € C*(Q); D € LP(Q), s < |a] <k},

1
lullxp = lullge@ + (D 1D*ull2)”

s<|]a|<k
For Q € C%! there exists again operator E : C*(Q) — C*(RY) (X7 ,(Q) —
X7 (R™)) such that the properties (i) and (iii) remains true and we replace the

norms in W*P by the norms in C* (X7 ). The proof follows easily from the
proof of Lemma 1.7 presented in [St].
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The following two lemmas are fundamental in the study of imbedding from

WHP(Q) into L9(2) and C%#(Q). For the proofs see e.g. [Ev] or [KuFuJo.

Lemma 1.8 Let 1 <p < N. Then there exists C = C(p, N) such that

||U||NL3P,RN < Ol Vull, g~

for all u € C°(RY).
Lemma 1.9 Let p > N. Then there exists C = C(p, N) such that

o g, < Cluly e

for all u € C°(RY).

Combining Lemmas 1.8, 1.9 together with Lemmas 1.7, 1.6, 1.5 and 1.3 we
easily obtain

Theorem 1.2 (Imbedding I)
Let Q € C% be a bounded or an exterior domain. Let kp < N. Then there
exists a constant C = C(2, N, k,p,q) such that

[ullgo < Cllullkp.0

for all u € WFkP(Q), q € [p;p*], where p* = NNf’;p; it means that
WkP(Q) — LI(Q).

Remark 1.4 If Q is bounded, then ¢ € [1;p*].

Theorem 1.3 (Imbedding IT)
Let Qe CY, p>1, kp > N. Set

N
=k—-— k——<1
b b
p <1 if k—-—=1
N
=1 k——>1
p

Then WkP(Q) — CO*(Q), i.e. there exists C = C(N,k,p,Q) and a represen-
tative w = u a.e. in §) such that

1l < Cllullipe.

Remark 1.5 If kp = N, then it can be shown that W#P(Q) is not imbedded
into (1), see e.g. [KuFuJo]. We have therefore only W*?(Q) < L4(Q) for
all ¢ € [1;00) for Q bounded, WH*?(Q) — Li(Q), q € [p;00) for Q exterior. See
e.g. [KuFuJo] for further details.
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For 2 bounded we can even show that in certain situations the imbedding

is compact.

Theorem 1.4 (Imbedding IIT)
Let Q € %! be a bounded domain in RY . Then we have

(i) for kp < N, WkP(Q) << L1(Q) for all q € [1;p*)
(i3) for kp = N, WkP(Q) < LI(Q) for all q € [1;00)
(iii) for kp > N, WkP(Q) —— C(Q) .

Proof: See e.g. [Ne].
a

Let © be a bounded or an exterior domain of class C%!. We define?

L1(0Q) = {u measurable on 0€;

M M
;mw&m=;AdM#WM<w}

Then L9(05) is a Banach space equipped with the norm*

1
el o = Z/!w )irax; )"

We have

Theorem 1.5 (Traces I)
Let Q € C%! be a bounded or an exterior domain, kp < N, p € [1;00). Then

there exists operator T : WFP(Q) s LI(0Q), q € [1;p7], p* = % such that

(1) [ITullg,00) < Clg, N, 2k, p)l|ullk p

(ii) Tu = u/8Q for u € C®(Q).

3see the definition of a domain with smooth boundary;

ru(xy) i= u(T (X5, ar(x7)))

4Let © C UM, V.F UVasyg, see the definition of a domain with smooth boundary. Then we

define u
=3 [ hrras =3 [ (a2 (3))

r=1"4Ar

It is easily seen that thanks to the fact that |[Va,| < C a.e. on A,

u) ~ Iz (u Z/ [ru|?dx,. .
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Proof: See e.g. [Ne].

O

Remark 1.6 If kp = N, then WP (Q) < L(99) for all ¢ € [1;00); if kp > N,
then from Theorem 1.3 W*P(Q) < LI(9Q) for all ¢ € [1; oc].

In general, it is not true that the range of T' coincides with Lp#(aﬂ) for
kp < N. It is possible to show that the range of 7" is closed subset of Lp#((?Q)
and can be characterized using the spaces with non—integer derivatives.

Let s € (0;1) and ¢ € [1;00). We put

’q
a0 = /BQ /{99 ly — X|N+qs 1 o~ wiNtgs—1 Wy dSx (1.22)

and denote by W#7(9Q) the set of all functions from the space L9(9f2) such
that ((u))sq,90) < o0. We get a Banach space with the norm

1ulls,q,00) = lullg,0) + ((U)s.q.00) - (1.23)
Similarly for s > 1 we define W*49(99). Let Q € Cl*h1 [s] being the inte-

ger part of s. Let ,u(x]) be as above. We denote by W*9(9Q) the set of all
measurable functions on 92 such that

[l s.00) = (an 19 0 an) " <0

Q=

where

|-

1
‘S,Q,(Ar) = Z HDaru”q A, ‘ + <<TU>>s,q,(Ar)
a,(Ar)

0<|a]<[s]

— D% u(x')|?
(eaian = ( X / / |y —x/yN+qs i)

la|=[s]

1
q

The proof of the following theorems can be found e.g. in [Ne].

Theorem 1.6 (Traces II)
Letp>1, k€N, Qe C* 11 be a bounded or an exterior domain. Then there
exists a unique continuous linear mapping Tp, : WHP(Q) — Hf;ol Wk_l_%’p(ﬁﬁ)
such that

ou oF 1y
on’ " 871’“*1)

for all u € C>(Q); there exists C = C(k,p,Q, N) such that

Tw = (u,

Z 1(Tew)ill s 1p09) S Cllullgpa - (1.24)



260 M. Pokorny: Asymptotic behaviour . ..
Remark 1.7 Evidently, (1.24) can be replaced by

k—1
Z H(,];Cu)lHk—l—%,p,(BQ) < C(k7p7 oV, N)HUHIC,HV ) (125)
=0

where V = Qg with R > diam Q¢ for Q exterior and V = UM, V" with V"
from the definition of a domain with smooth boundary.

Theorem 1.7 (Inverse theorem on traces)
Letp > 1, k€ N, Q € C* be a bounded or an exterior domain. Then there

exists a continuous linear mapping Ty, : H;:Ol Wk_l_%’p(aﬁ) — WkP(Q) such
that for each (ug,u1,...,ux—1) € H;:Ol Wk_l_%’p(aﬁ); T (up, 1y ..., ug—1) =0
implies T(%) =wu; on 0,1 =0,1,....,k—1, T defined in Theorem 1.5. It
means that there exists a constant C = C(k,p,Q, N) such that

k-1

llepe < C 3 Nl 00) - (1.26)
1=0

If Q) is an exterior domain, then v can be chosen with bounded support.
Remark 1.8 If k = 1, we can take 2 € C%!. See e.g. [Ne] or [KuFuJo].

As an easy consequence of Theorems 1.6 and 1.7 we have

Corollary 1.1 Let Q € C*! be a domain in RY. If k > | and % >1_ %,
then

_Q

WET9(90) — WP (09).

Proof: Let u € Wk_%7q(6Q). Then there exists v € W*4(2) such that v =
1
(u,0,...,0). But W*4(Q) — WHP(Q) and therefore (7)o = u € Wl_ﬁ’p(ﬁﬂ).
Inequalities (1.24) and (1.26) finishes the proof.

We denote by
W(;s,p(ﬂ) _ W” k.0 .

Let us note that for Q = RV, Wéc’p(RN) = WHkP(RY). Otherwise we have

Theorem 1.8 Let Q € CK1. Then

Wo(Q) = {u € WHP(Q); Tu=T% =... =

Proof: See e.g. [Ne].
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Remark 1.9 If k = 1,2, then we can take Q € C%!, for k = 3 it is enough to
have Q € C11; see [Ne].

Lemma 1.8 implies

Lemma 1.10 Let Q2 be a domain. Then there exists C = C'(N,q) such that for
all w € Wy (Q)
lull xo < ClIVullg,
N—q

1 < g < N. If moreover § is bounded, then
1
[ully < CIQN [Vl
for all1 < g < .

Applying Theorem 1.4 (i) we can show

Theorem 1.9 (Poincaré)
Let Q € C% be a bounded domain. Then there exists C = C(Q, N, p,q) such

that )
(/ \uf/ udx|qu)E < C||Vullp
Q Q

for allu € WHP(Q) and q € [1;NN—_’;] ifp<N,q€e[l;00) if p>N.

Theorem 1.10 (Friedrichs)

Let Q € C%! be a bounded domain, T C 9Q be a part of boundary with positive
Lebesgue N — 1-dimensional measure. Then there exists C = C(2,p, N, q) such
that

Jullsr < C(ITullp+ | Julds)

for allu € WHP(Q) and q € [I;NN—_’;] ifp< N, qe[l;00) if p> N.

Theorem 1.11 (Interpolation in s)
Let Q € C%! be a bounded or an exterior domain, 1 < r < co. Then

1 1
Vwlly < Cllwl|# lwll3, (1.27)

for all w € W2 (Q). Especially, if @ =R, then
1 1
[Vwl|l, < Cllwl|? [ Vw]|? . (1.28)

Proof: The inequality (1.28) in case Q = R¥ is proved in [Mar]. If @ € CO1,
we can extend the function from W27 () onto RY due to Lemma 1.7. Let us

recall that
[wll, gy < Cllwllro

IV2wl]], gv < Cllwllzrg -

Then (1.27) follows easily from (1.28) and (1.29).

(1.29)

From Lemma 1.1 and Theorem 1.11 we get
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Corollary 1.2 Let w € W27(Q). Then for all ¢ > 0 there exists C(e) such that
IVwlly < ellwllz + Ce)lwll -

The following interpolation inequalities are proved in [Mar].

Theorem 1.12 Let Vw € L*(RY), w € LIRY), N > 2, s € [1;00], ¢ > 1.
Then there exists C > 0 such that for a € [0;1] and s € [1; N)

oll, < { Ol Vuwlgllwlly™  a < 7%
ClIvuwlilwly a= 7,
. e { (4 35
(35 d]
Moreover, for s € [N;o0], r>q (N >1)
lwllr < ClIVwlgllwlg™, a€[0;1)

=a( —§)+(1-a); ¢<FZ

—1-a(t-h) e gz

e N

and L =a(l - %)—l—(l—a)%.

Theorem 1.13 Let @ ¢ RY, N > 2, Q € C%! be an exterior domain. Let
Vw € L*(Q), w € LY(Q). Then there exists C = C(r,s,q,a) > 0 such that

lwll, < ClIVwllgwlg™,

where if s € [1;N), then
e M T
[vsid r=0-aG-3)+5 ¢z

a € [0;1] and if s € [N;00), then r € [¢;00) and
a€[0;1).

Remark 1.10 Theorem 1.13 does not hold for r = co. Nevertheless (see [Mar]
Remark 2.3)

[wlloo < CIVw||glwlly™ + C(e)[Vw|ls = Jw]lg+
for all € € (0;a].
Similarly to the Lebesgue spaces we denote
VVl]Zf ={u;u € Wk’p(K); VK C Q, K compact} .

Next we shall characterize the dual spaces to VV(;g P(Q2); We shall denote them
by (I/VéC P(Q))*. Let us consider in (VV(;C P(Q))* the linear subspace constituted
by functionals of the form (G,u) = (f,u) = [, fudx, f € L7 (). We set

[fl-kp = sup [(G,u)| (1.30)

llulle,p<1

and denote by W kap! (Q) the space obtained by completing L? (Q) in the norm
(1.30). Then
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Theorem 1.14 The spaces Wo_k’p,(Q) and (Wg’p(ﬂ))*, 1 < g < o0, are alge-
braically and isometrically isomorphic.

Proof: See [Lax] or [Mir].

Let us finish this subsection by recalling two useful results.
Combining the imbedding and trace theorem we can prove the following
generalization of the classical Green formula (see also e.g. [Ne|)

Theorem 1.15 Let 2 € C%! be a bounded domain, u € W1P(Q), v € Whi(Q)
with%+%§%,for]\f>p21, N >q>1, withq>1 forp> N and with
p>1 forq>N. Then

Ou vdx = / uvn;dS — / u v ax,
o Ox; o9 o Oz
where n = (ny,...,ny) is the outer normal to Q.

Finally, the Hardy inequality is an important tool in the weighted estimates
(see [HaLiPo])

Theorem 1.16 (Hardy’s inequality)
Let f € C1([0;00)). Then

[ irorera < (L) [Tiropea.

which holds for e > p—1if f(oc0) =0, fore <p—11if f(0) =0.

VIII.1.4 Homogeneous Sobolev spaces

In exterior domains we often meet situations when the classical Sobolev spaces
are not applicable. We therefore introduce the homogeneous Sobolev spaces

D™4(Q) = {u € L,.(Q); D € LI(Q), V|a| = m}
. e (1.31)
Dy (@) = o) ™

where

b = (3 1D%u2)? (1.32)

|a|=m

We easily have that if w € D"™9(Q), then u € W,24(Q) and, for Q € C%!,
also u € W,"%(Q). Especially for 2 € C%!, bounded, the spaces W™(f2) and
D™4(Q) coincides.

Assuming u; = uy whenever |u; — ug|pm g = 0 we get?

5it means that u; = us whenever they differ by a polynomial of degree m — 1 a.e. in
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Lemma 1.11 {D™9(Q);] - |;mq} and {Dy"?(2);] - |mq} are Banach spaces
which are separable for 1 < q < oo and reflexive for 1 < ¢ < co.

Proof: See e.g. [Gal].

d

Next we shall study the asymptotic structure of functions from D4(£2) with
Q2 an exterior domain. By [g f(R,w)dw we understand surface integral over
the unit sphere Sy.

Lemma 1.12 Let Q ¢ RN, N > 2, be an exterior locally lipschitzian domain
and let uw € DY9(Q). Let 1 < ¢ < N. Then there exists a unique u* € LI(Sy)
such that

lim |u(R,w) — u*(R,w)|%dw = 0.

R—o0 SN

Moreover, for

uoz(NwN)_l/ u(Ryw)dw, w=u—uy wy=I|SN|N-1
SN

we have for all R > diam ¢

I

andw € L*(Q), s = NN—_qq,

w(R,w)|%dw < C(q, N)RQ*N/R |Vul|?dx
Q

[wlls < Clg, N)wlg -

If ¢ > N, then
/ u(R,w)[%dw = h(R)o(1) as R — oo,
SN

where h(R) = (In R)N~! if g = N, while h(R) = R"N ifqg> N.

Proof: See [Gal].

Next we have

Theorem 1.17 Let Q@ C RY be an exterior domain and let
we DY) NDY(Q),1<r<oo, N<qg<oo.
If r < N, then there exists uy € R such that

lim |u(x) —up| =0
|x|—00
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uniformly; if r = N
uniformly. Finally, if
it holds that

uniformly.
Proof: See [Gal].

O

Remark 1.11 The condition u € D'"(Q), 1 < r < N can be replaced by
u—ug € L9(N) for some g € [1;00).

Now, let us study the question of approximation of functions from D'4(Q)

by functions from C§°(£2). We want to give the conditions, under which the
space C°(Q) is dense in DM, i.e.

Vu € DY(Q)Fu, € C°(Q)  |up — ul1q — 0 for n — co. (1.33)

Lemma 1.13 Let Q € C%' be an exterior domain. Then the condition (1.33)
holds for ¢ > N. For 1 < q < N the condition (1.33) holds if and only if the
constant ug from Lemma 1.12 is zero. Moreover, for 1 < q < N, u € Dé’q(Q) if
and only if the trace® Tu = 0 and ug = 0, while for ¢ > N u € Dé’q(ﬂ) if and
only if the trace Tu = 0.

Proof: See [Gal].
O

Let 1 < ¢ < co. By (Dy?(€2))* we denote the dual space to Dy4(€) (Q ¢ RY,
either an exterior domain or RY). We consider the functional

(G.u) = (fou) = [ fudx., (1.34)
f € Co(2), Q exterior domain. We have by Lemma 1.10
(G, )| < Cl[fllglulrq
and so we set

Gl-1.q = sup [(G,u)

[ul1,4=1

Ssee Theorem 1.5
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and by D Ld (©2) we denote the completition of Cy(€2) in this norm. We can
show for 1 < ¢ < oo (see [Lax]) that Dal’q/(Q) and (Dy?(Q))* are isometrically

and topologically isomorphic.
In the case of @ = RY we have for ¢ < N

(G, < IfI ot [ul wvg < ClFI o [ulrq
N+ N-a N+d’

and we proceed as above. If ¢ > N the elements of Dé’q(RN ) are equivalent
classes determined by functions that may differ by constants. Therefore the
functions f must satisfy

/RNde:0.

Then (supp f C Bg for some R > 0)

q,Br -

(G )| = ‘/ fudx| = ‘/ f(u+ C)dx| < |flg pallu+ C
Br Br
Choosing C' in such a way that
/ (u+C)dx =0,
Bgr

we can apply the Poincaré inequality (see Theorem 1.9) to obtain

|<g’u>| < C”fH / RNHUHLQ’BR < CHfH / ]RNHu”l RV -
q, q, »d,
We have

Theorem 1.18 Let Q C RY be either an exterior, locally lipschitzian do-
main or the whole RV, Then, functionals of the form (1.34) are bounded in
(Dé’q(Q))*, 1< q < oo with f € Co(RQ) and [, fdx =0 if Q =RY and ¢ > N.

Moreover, if 1 < q < oo, then their completition Dal’q/(Q) is isometrically
isomorphic to (Dy4(€))*.
VIII.1.5 Bochner spaces. Abstract continuous functions

Let X be a Banach space. We say that u : I — X, strongly measurable function,
belongs to LP(I; X) if

() fdr < oo

here I C R™. We usually assume I C R as such spaces play an important role in
the evolutionary equations. Moreover, we say that v € C'(I; X) if for all ¢ty € I

lim |lu(t) — u(to)||x =0.

t—to
Again, we shall use such spaces for I C R. We have in particular
Theorem 1.19 Let I be a compact interval, p € (1;00), k > 0. Then
(i) the space C3°(I x RN) is dense in LP(I; WFP(RN))
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(ii) the space C®(I; C3°(R™N)) is dense in C(I; WFP(RN)) .

Proof: See [Lio] or [KuFuJo|, where also more detailed description of such
spaces can be found.

In Chapter VII we also need
Theorem 1.20 (Gronwall’s inequality)
Let I C R be an interval, n € R, s € I, o, £ : I — R. Let ¢ be a integrable
function, o(t) >0, £(t) >0 fort € I, n > 0. Let
t
€0 <+ [ olo)(o)do
forallt € I. Then
t
&(t) <mexp (/ g(a)do)
fortel.
Proof: See e.g. [Ku].

O
Let uw € LP(0,7; X). Then g € LP(0,T; X) is the weak derivative of u,
u =v,

provided fOT O (Hu(t)dt = — fOT @(t)u(t)dt for all functions ¢ € C§°(0;T). We
have

Theorem 1.21 Suppose u € L?(0,T; W2(RYN)), with the time derivative u' €
L2(0,T; W~ L2(RY)).

(i) Then
u e C([0; T); L*(RY))

(after possible being redefined on a set of measure zero).

(ii) The mapping
t = Ju(t)]3

is absolutely continuous, with

lu(e) 3 = 20 (6), u(r)

for a.e. t € (0;T).

Proof: See e.g. [Ev]. More general version of such a result can be found e.g.
in [GaGrZa).
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VIII.2 Some remarks on integral operators. Cut—off functions

A general integral operator 7' with kernel K can be written in the form
(TN = [ Kexy) /)y, 1)

Q C RY. We shall study such integral operators only in the case when (2.1)
represents convolutions, it means that K(x,y) = K(x —y). Two important
situations will be considered: either K (-) is locally integrable function, or K(-)
has a special form and the convolution (2.1) must be studied in the principal
value sense.

Let us start with the former. First, we can without loss of generality take
Q = RY.” We have

Theorem 2.1 (Young)

Let K € L°(RY), 1 < s < oo. If f € LYRY), 1 < ¢ < o0, % > 1—%, then
KxfelL'(RY), 1=14+1—1and
K fllr < 1Kl fllg - (2.2)

The Young inequality (2.2) can be e.g. proved using the Riesz—Thorin in-
terpolation theorem which will be also needed in Section VIIL.4. For the proof
see e.g. [BeLo] or [StWe].

Theorem 2.2 (Riesz—Thorin)
Let T' be an operator such that for some (p;,qi), i = 1,2, 1 < qa,

1T fllp: < Cill flla; (2.3)

for all f from some dense subset of L‘”(RN)E;. Then T can be continuously
extended onto all LY(RY), ¢ € [q1; ¢2] and

ITfllp < C1CIIflg (2.4)

where + = L 4 1=t

1 t .
p D1 P2’ q ,tE[O,l].

ot 1
_Q1+QQ

Proof of Theorem 2.1: We have evidently

M flloo < I Is[]flls
I flls < [IEsNA

Therefore

1 flle < KNSl

where
11—t 1 t 1—¢

r s qg s 17

"Otherwise, we can extend K and f by zero outside of Q.
8e.g. from C§°(RY) if ¢; € [1;00), or it contains all characteristic functions of all Lebesgue
measurable sets with finite measure if ¢; = oo
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i.e. 1 1 1
—=14+=--=.
q r s

The condition ¢ € [0; 1] yields % >1-1

Next, let
k(x—y)

K(X_Y): ‘X—y‘)‘ )

(2.5)
where k(-) is a given regular function. We have for 0 < A < N

Theorem 2.3 Let f € LI(RY), 1 < ¢ < 0o and K be of the type (2.5) with

A > N(1-— é), 0 < A < N. Then the integral transform defined in (2.1) with

Q =R" belongs to L*(RY), where L = 2 + % — 1. Moreover
ITflls < Clfllg (2.6)
with C' = C(q, N, \).

Proof: See e.g. [St].

In the case of €2 bounded we get a stronger result

Theorem 2.4 Let Q be bounded, K of the type (2.5) and f € L1(Q), 1 < g <
o0o. Then for A < N(1 — %) the integral transform (2.1) belongs to CO*(Q),

—mi 1
where p = min{1, N(1 - ;) — A} and
1T fllcon < Cillfllg

with C1 = C1(diam Y, N, q, \). Moreover, if A\ = N(1— %), then Tf € L"(Q) for
all r € [1;00) and
ITfllr < C2ll g

with Co = Co(diamQ, N, q, \).
Proof: See e.g. [Gal].

O

Another important case, if A = N, was discussed in subsection I1.3.2, where
also another types of singular integral operators are studied (using the Fourier
transform). Let us only recall that we must add some assumptions on k(-) and
the integral transform (2.1) has to be considered in the principal value sense,
ie.

(06 = v [ Kix=y)f )y = i [ K= y)7(v)ay.
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Next we study the so—called cut—off functions. Let n(z) € C§°(R) be such
that

suppn C B2(0),n(z) =1in B1(0),n(z) <1in R.
We shall study two kinds of cut—off functions. We put

nr(x) =n(Rlx|), R>0

Inln |x]|
Cr(x) = 77( o R
where we define n(—r) = 1 for r > 0. We call the function ng the usual cut—off
function and (g the Sobolev cut—off function.
We shall often use the following property of the cut—off functions

(2.7)

), R > e,

Lemma 2.1 Let u € L} _(Q), Vu € LYQ) and ug be defined in Lemma 1.12.

loc
Let Q be an exterior domain or Q = RY.

(1) If1 < q < N, then
|(w—uo)Vnrllg — 0 as R — co. (2.8)

(i1) If ¢ > N, then
luVnrllq — 0 as R — oo. (2.9)

Proof: Let us start with the case (i). We have for R > diam Q¢ due to
Lemma 1.12

C 2B
o= o) Fnitax < [T ([ o) dr <
N

C (2R C (2R
< ﬁ/}% r? 1</BT ]Vu|qu)d7“ < E/R 74 ldrHVquﬂR
< €|Vl gn — 0

as R — oo. Next, let ¢ > N. Again, applying Lemma 1.12

C [2R
q - N-1 q
/RN [uVng|%dx < T /R r (/S |ul dw)dr <

N

1 2R
< Oéq) /R rildr < o(1)

as R — oo.

Remark 2.1 If ¢ = N, then
N C oy N
/RN luVng| dxgo(l)R—N/R N (Inr)N

and we cannot control the integral for R — oo.

Lemma 2.2 Let u € L] (Q), Vu € L4(Q) and ug be defined as in Lemma

loc
1.12. Let Q be an exterior domain or Q = RV,
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(i) If 1 < g < N, then

|(w —uo)VCrllg = 0 as R — 0. (2.10)
(i) If ¢ > N, then
|uVCrllg — 0 as R — oo. (2.11)
Proof: We have o )
ViCr < Inln R |x|*In |x]

for |x| and R sufficiently large, k£ > 1. Let us first consider the case (i). We have
for R > diam 2¢ due to Lemma 1.12

2R

C eln
—_ 9H4qx < — = N—g-1 —-q,
/RN |(u — 1) V(R|%dx < (nln )7 /R T (Inr)
C en? R
. —upl? -1 —q q
(/SN lu — up| dw)dr < (nln By /R r(lnr) (/BT |Vul dx)dr <

C In®> R B
< (lnlnR)q/lR £9dt[Vul? e — 0

as R — oo. Next, let ¢ > N. Again, applying Lemma 1.12

eln? R

C
q N-1—-q —q q
/]RN [uV{p|9dx < (nn )7 /R r (Inr) (/SN |ul dw)dr.
Now, if ¢ = N,

0 1 eln R B B
/]RN [uV(p|%dx < (lnln(;ﬁN/ (In7)~Lr=tdr <

R
o(1)
R N —
S a1 Y
as R — oo. If ¢ > N, then
2
0(1) eln R 3 .
UUx < ———~2 1 I~ dr <
/]RN |[uV{g|9dx < (inln R)7 /R (Inr) 9 dr <

o(1) /ln2R 1 o
1

< N7 il
- (]nlnR)q—l nr t9
as R — o0 (¢ > N > 2).

VIII.3 The problem V -v = f.
Function spaces of hydrodynamics

Before defining the special function spaces with zero divergence, we start with
an auxiliary problem. Let Q@ ¢ RY be a bounded domain, N > 2. Let f € L4(Q)
be given. We search a vector field v : Q — R such that

V-v=f inQ
v e WyiQ) (3.1)
Ve < Cllfllq
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where C' = C(N, ¢, ).
Evidently, the right hand side f must undergo a certain compatibility con-
dition. Namely,

/ fdx=0. (3.2)
Q
Since 2 is bounded, we have (see Lemma 1.10) that (3.1)3 is equivalent with

Vle < Clifllq- (3-3)

Solution to (3.1) is evidently non—unique.

Theorem 3.1 Let Q be a bounded domain® in RY of class CO'. Then, given
f € L), 1< q< oo, there exists solution to the problem (3.1). Furthermore,
if 0 = Bg(0)!°, the constant C in (3.1)3 can be taken independently of the size
of Q.

Proof: See [Bog] or [Gal].

Concerning the regularity of solution we have

Theorem 3.2 Let Q € CO! be a bounded domain in RN, N > 2. Given
Fewy™(Q), m>0, 1<g<oo,
satisfying (3.2), there exists v € W(;nﬂ’q(Q) verifying (3.1) and
VY lm.g < Cllfllm.g (3.4)

where the constant C behaves like the constant in Theorem 3.1. Moreover, if

f has compact support in Q, then v can be taken also with compact support.
Especially, if f € C3°(2), then v € C§°(Q2).

Proof: See [Bog] or [Gal].

d

Remark 3.1 If f € W™ (Q) n Wy (Q), 1 < ¢,r < oo, m > 0, satisfying
(3.2), then the solution v € Wy""4(Q) n W " (Q) and

IVVling < Cllfllmg
HVVHm,T < CHme,T-

(3.5)

9The condition can be further weaken; it is enough to take € satisfying the cone condition,
see e.g. [Bog].

YThe precise estimate for Q general is given in [Gal] or [Bog]; we need such estimate only
for Q a ball.
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Lemma 3.1 Let us consider a generalization to (3.1), namely
V-v=finQ
v e Whi(Q) (3.6)
v = a at 0N,

Qe O, feriQ), ae W' 19(09), 1< q < oo satisfying

/fdx:/ a-ndS.
Q o0

Then there exists at least one solution to the problem (3.6) such that
¥llq < CULF o+ a1 4 o) (3.7)

Proof: Let us denote by A an extension of a onto {2 due to Theorem 1.7.

Denote by u solution to
V-u=f-V-A

ue W,(Q).
Due to Theorem 3.1 there exists solution to (3.8) such that
lallig < CUfllg + 11V - Allg)

(3.8)

and as
v=u+A

1Alo < Cllal 1, on).
the proof is complete.

O

For Q exterior domain we can skip the condition (3.2). Namely, considering

the problem
V-v=f in{Q

v e D) (3.9)
|V|1,q < C||f||q,

we have

Theorem 3.3 Let Q ¢ RY, N > 2 be a C%'—eaterior domain. Then for any
feLiYN), 1< q< oo, there exists a solution to the problem (3.9).

Proof: See [Bog] or [Gal].

Remark 3.2 Let us only note that for f € C5°(Q2) we have
v=Vy+w,

where A1) = f in RY and w has bounded support. Therefore even for such f the
solution does not have bounded support and behaves at infinity like V(€ * f),
& being the fundamental solution to the Laplace equation.
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Remark 3.3 Analogously to the case Q bounded we have that for f € L1(Q)N
L™(92) the solution to (3.9) belongs to Dé’q(Q) N D(l)’r(Q) and

|v

Lg < Cllfllg vl <CIFl (3.10)

Studying the problem
V:-v=/finQ
v € DM(Q)
v =a at 0}
Vl1g < OOl + ally 1 on)

(3.11)

we can verify that there exists solution to (3.11) such that the constant C' =
C(N,q,9Q) in (3.11)4. Let us note that the condition [, fdx = [, a-ndS is no
more required. If f =0 and [, a-ndS = 0, then the solution to (3.11) can be
taken with bounded support.

In the theory of incompressible fluids the spaces with zero divergence have
a great importance. We denote by

0D(Q) ={ue C(Q);V-u=0in Q} (3.12)
and
HY Q) ={ue Wy (Q);V-u=0inQ} (3.13)
1 () = [oD(@)]) ™ (3.14)
Dy(Q) = {u e Dy'Q); V-u=0in Q} (3.15)
DY) = [oD(@)) . (3.16)

We shall show that for 2 bounded or exterior domain with sufficiently smooth
boundary, namely € C%! the spaces defined by closure coincides with the
spaces PAI; (©) and ﬁé’q, respectively. See also [Gal] or [LaSo].

Let us start with Q bounded. We have

Theorem 3.4 Let Q € C% be a bounded domain'* in RN, N > 2,1 < ¢ < co.

Then N
Hy () = Hg(Q)

_ g7l
=y
Dy’ = Dy(Q) .

Proof: As for Q bounded Dy%(Q) = H}(Q) and Dy(Q) = ﬁ[;(ﬂ), it is
enough to proof the result for H, C} (Q).

Evidently, H;(Q) C f[;(Q) Now, let u € ﬁ(}(Q) and ug be the approxima-
tive sequence of u from C§°(€2) in W14(Q), 1 < ¢ < co. Let f, = —V - u. As
Jo frdx =0 and fi € C3°(2), there exists vi, € C§°(€2) such that

Vv = [k
l1g < Cllfillg = CIV - urllg

[V

1The condition can be further weaken, e.g. Q satisfying the cone condition.
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(see Theorem 3.2). Denoting wj, = uy, + v, then easily V- wj = 0 in €2, and

[wi —ull1g < [Jup —ullig + [Villig <
< luk —ufli,g + CV-ugllg — 0.
We have therefore constructed an approximative sequence of u from (D(2) and
the proof is complete for 1 < ¢ < oo.
Now, let ¢ = 1. It is sufficient to show that each continuous functional F'
defined in H{(Q), vanishing in H{(f2), is identically zero. But since H,(2) C
H{ () and ﬁql(Q) = H, () for ¢ > 1, we have that F € S, where

S ={G € (HXQ)*;(G,v)=0forall v € H}(Q)}
and hence F' = 0.

d

In the case of ) exterior we must restrict ourselves on ¢ € (1;00). We have
again

Theorem 3.5 Let Q € C%! be an exterior domain in RN, N > 2,1 < ¢ < cc.

Then R
Hy(9Q) = Hy(9)

_ gyl
— Mg
1, 1,
Dy? = Dy(Q).
Proof: We again show the assertion only for H}(Q); the case Dé’q(Q) can
be treated analogously and is even easier. As above, it is enough to verify that

H 4(Q) C H; (%), the opposite inclusion being trivial.
Let ¢ € CH(R) with ¢(€) = 1if [¢] <1 and () = 0 if [§] > 2. We set

vr(0 = (). R > diamor.

Let v € ﬁI(} (Q) and w(f) be solution to
V-wil) = —v.Vyp in QY

w(B e Wy U(QF,) (3.17)

!W(R)h,q,agR < Ci|lv-Vig

005
Evidently,

/ V-VwRdx:/ v-ndS =0
QF OBFR

2R

and thus there exists a solution to (3.17). Moreover, by Lemma 1.10

R R
[w P lly0n < eRWP on <

< aR|lv - Vg, on < Co

v ‘ ’ q,QgR
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as |[Vyg| < %. Both Cy and Cs are independent of R. We extend the function
w(®B by zero outside of QfR and denote

viB = yppv +wll)

As v ¢ ﬁ;(QgR) and Qo € C%, for each £ > 0 there exists vo® € ¢D(Qar)
such that
IV =By g0, < e

Thus
v = v g < v - V(R)Hqﬂ + (v - V(R)HQQ =

<e+ (1= vr)Vlge + Wil qn, -

Taking R sufficiently large we get for any 6 > 0

|v — vt lg0 <6,
ie. vof — v in L9(Q). Analogously we can show
v — VE’R‘l,q,ﬂ —0

as € — 07, R — oo, which completes the proof.

O

Remark 3.4 It is an easy matter to see that Theorem 3.5 holds also for Q =
RY.

Theorem 3.6 Let Q € C%! be a domain in R, N > 2. Assume
(i) v € Hy(Q) N[Ny L™(Q)]
(ii) v € DYU(Q) 1 [N, L7 (%)
for some q, r; € (1;00). Then there ezists a sequence v" € ¢D(Q) such that
(3) Nimy oo ([[V" = Vl1g + 35y [V = Vlr,) =0
(1) Tttty —oo (IV" = V]1g + 320 [IV" = v][r,) = 0.
Proof: See [Gal].
]

Next, let us mention the Helmholtz—Weyl decomposition of L?((2). Namely,
we investigate whether

LI(Q) = Gy (Q) & H,(Q) (3.18)

where

Gq(Q) = {w € LY(Q); w = Vp for some p € VVZ%)C‘Z(Q)} (3.19)
We have
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Theorem 3.7 Let Q C RY, N > 2 be either a domain of class C? or the whole
space. Then the Helmholtz—Weyl decomposition (3.18) holds for any q € (1;00).
Remark 3.5 If ¢ = 2, then Theorem 3.7 remains true for Q@ ¢ R", any domain.
Proof: See e.g. [Gal].
O

The space H,(2) can be further characterized. Let us consider for u €

Cr(@) 1
Fu(w) = / wu-ndS, wew 77 (99). (3.20)
o9

We denote by Yun the linear map that to each u € C§°(Q) prescribes the
corresponding form Fy, i.e.

Yan = Fu -
We then have

Lemma 3.2 Let Q € C%, be a domain in RN, N > 2. Then
Hy(Q) ={ueLi(Q);V-u=0,vn =0 at 0Q}.

Proof: See [Te].'?

O
Finally, let
,() = {u € Lb,(@): [ul 5, < oo}, (3.21)
where
lall z, = lally + [V - allg. (3:22)
Furthermore, let
Ho, = (G 1 (3.23)
Then
Lemma 3.3 Let Q € C% be a domain in RY, N > 2. Then
LF e L EU;
(i) Hy={Cg°(@)} ™
(i) Hoy={u € Hy;Yun =0 at 90} .
Proof: See [Te].
O

12The proof in [Te] is done for ¢ = 2. Nevertheless, we may demonstrate the general case
1 < g < ¢ in the same lines.
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Remark 3.6 Let ¢ be an extension of w (see (3.20)) in W9 (Q). Then due to
the Green theorem (see Theorem 1.15)

[Fu(w)| = ’/Q(u -Vt V- u)dx’ <
<l el < Clallz Il 3, oo

for u € C§°(£2). As a consequence of Lemma 3.3 (i) we have that the operator
Yun is well defined for u € H,(§2) and

anll -1, < Clulg,

(692)

VIIL.4 Distributions. Fourier transform

We denote for 2 a domain
D(Q) =CF(Q), QCRY.

We say that
D
Pn — P
if there exists Q' cC Q (i.e. Q' € @/ C Q) such that supp ¢, C ' for all n € N

and
D%, D%, n—oo YaeNV, (4.1)

We say that T is a distribution on (7' € D'(Q)) if T is a linear continuous
operator on D(Q), i.e. T : D(Q) — R, T is linear and

(T, ¢r) — (T,¢) whenever py A Q.

The distribution T is called regular if there exists a function f € L} (Q)
such that

(1¢) = [ fodx

for all ¢ € D(€2). We shall denote the regular distribution represented by a
function f by T.
We say that T, — T in D'(Q) if

(T, ) = (T, ) Vo eD(Q).

It is possible to show that the space D’(Q) is complete (see e.g. [V1]).
A very important notion on /() is the weak derivative. We call a functi-
onal G € D'(2) the weak derivative of T, G = DT, if for all ¢ € D()

(G, 0) = (~1)l*NT, D). (4.2)

It is an easy consequence of the definition that any distribution has deriva-
tives of all order; moreover D**AT = DA+T for any «, # multiindices. If the
distribution 7} is regular with f € C*(Q), then

DTy = Tal,

Oz
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for all |a| < k.
Let T € D'(Q). We say that T has finite order, if there exist K and m
independent of €’ such that!3

(1.0 < Klellmey, Yo eDE@), ¥ c@co.  (43)

The smallest m satistying (4.3) is called the order of T.
We say that T has compact support in Q (i.e. T € £'(Q)) if there exists a
compact set K C €2 such that

(T,0) =0 VpeDO\K).

A special case of such distributions are those with support containing only one
point. We easily see that e.g. the Dirac d—distribution is such an example. On
the other side, we have

Lemma 4.1 Let the support of T € D'(Q) contain only one point x = 0. Then
it can be uniquely written as

T(x) = Z CoD¥6(x),
la|<M

where M is the order of T and C, € R.

Proof: See e.g. [V1].

O

For more detailed description of the space D'(Q), see e.g. [V]]. For our
purpose we shall need rather the space of tempered distributions.

The function ¢ belongs to the Schwartz class S(RY) = S, if ¢ € C®°(RY)
and the function, together with the derivatives of all order, decays at infinity
faster than any power of |x|. It means that

Cop = sup [x*Dp(x)| < oo Va,3e€NV.
xeRN

Evidently, D(RY) c S(RY).
We say that
Ok S0if x*DPpi(x) 0as k — oo. (4.4)
By S8’ we denote the space of linear continuous functionals on S; the space

&' is usually called the space of tempered distributions.
Let p € Ng. We put for p € S

D
lells, = sup (14 [x[*)2|D%(x)] . (4.5)
e <p
|x|eRN

3In general, not all distributions have finite order. Nevertheless, the relation (4.3) is satisfied
for all T € D'(Q) with K, m depending on '.
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We get in such a way a countable number of norms in §. We can close the
space S in the norm S,; denoting the closure by S, we evidently havel4

Sp—i—l — Sp, p€Np. (4.6)

We say that the tempered distribution 7" has finite order, if there exists a
constant K, independent of ¢, such that for all p € S

(T, )| < Kllolls, (4.7)

for some p € Ny. We have
Lemma 4.2 Every element of S’ has finite order.

Proof: See [V]].

O

Due to Lemma 4.2, each tempered distribution can be continuously extended
onto some Sp; moreover e.g. a regular distribution!®

Tp) = [ Fodx (48)

can be often extended onto much larger class of functions in dependence on the
integrability properties of f.

By analogy with D’ we can define the weak derivative on S’; we only require
that (4.2) holds for any ¢ € S.

Let a € C®(RY) has at most polynomial behaviour at infinity including all
derivatives. We define for T' € S’

al €8 (aT,¢) = (T,ap) Vo €S. (4.9)

As any tempered distribution has finite order, we can always extend the
class of S’~multipliers using the right-hand side of (4.9).

We can further define another type of product. Let T'(x) € S'(R"), G(y) €
S'(R™). We define the direct product T'(x) x G(y) as

(T(x) x G(y), ) = (T(x),(G(y), ¢(x,y))) VYo e SER™™). (4.10)

It is possible to show (see e.g. [V]]) that T x G € &'(R"*™).
Another very important notion (especially in connection with the Fourier
transform, see below) is the convolution. If f, g € D(RY), then

(P96 = [ Jx=y)gidy = [ ox—2)f(z)aa.

We want to extend the convolution to &’. Let us recall that in general it is not
possible to define the convolution for any elements from S’.

“Moreover, see e.g. [V1], the imbedding is compact.
15Unlike the case D’, we must add some slightly restrictive assumptions on f at infinity; f
must behave like some polynomial at infinity i.e. |f(x)| < C|x|° for some s € R as |x| — oco.
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Let us first take 7', G € D'(R"™). Let T(x) x G(y) admits the extension
(T'(x) x G(y), ¢(x+y)) on functions ¢ € D(R") in the following sense. For any
sequences 7 € D(R?™) tending!® to 1 there exists

lim (7'(x) x G(y), m(x;¥)p(x +y))

k—o0

and does not depend on the sequence 7. We call the convolution 7T x G the
functional

(TG, ) =(T(x) x Gy), p(x+y)) =

- kILH;O<T(X) X G(Y)a T]k(X; Y)QO(X + y)> ,p € 'D(Rn) ) (4.11)

Now, as S'(RY) ¢ D/(RY), we can define 7'+ G in D'(R") in the same way.
The question is when T x G € S'(RV)17.
We have

Lemma 4.3 Let T € S'(R"), G € E'(R"). Then the convolution TG € S'(R")
and

(TxG,p) =(T(x) x Gly),n(y)e(x+y)), VeeSR"),
and n € D(R™), n =1 in the neighborhood of supp G.

Lemma 4.4 LetT € S'(R"), g € S(R"). Then the convolution TG, € S’'(R™)

and
(T xGy,0) =(T,g*p(—%)), VYpecSR")

TxGy=(T(),9(x="))-

Proof: The proof of both lemmas can be found e.g. in [V1], where also other
cases are studied when the convolution exists; either in D’ or in §'.

O
VII1.4.1 Fourier transform
Let © € S. Then we define
Fe)e) = 2m)F [ | pxeOax (1.12)
and
FUo0) = (2m) % [ @) ™9z (4.13)

We easily check that F~1(p)(x) = F(p)(—x) = F(¥)(x), where ¥(§) =
(=€) for all £ € RV,

The following properties of the Fourier transform on S are classical and can
be found e.g. in [StWe].!8

%ie. VK C R®", compact, there exists ko(K) € N such that nx(x) = 1 for all k& > ko,
x € K, and ny, together with all derivatives, is uniformly bounded, |D%ng(x)| < Ca, x € R?",
k=1,2,...

7 generally, of course, for any T, G € D'(RN), we cannot define T *x G € D/(RN), see e.g.
V1

18T et us note that the authors use a slightly different definition of the Fourier transform.
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Lemma 4.5 Let f, g € S. Then we have
(a) F(Df)(§) = (—i&)*F(f)(&)
(b) DF(F)(€) = F((ix)*f)(£)
(c) F and F~1 are linear isomorphisms of S onto S and for all f from S

FAF(f) =FFN =1

(d) Forall f, g€ S
F(Dgdx = [ IF(9)dx

RN

(e) Parseval equality: for all f € S
112 = IIFCH)l2

(f) Forall f,ge S
N
Fl

F(f*g)=2m)z2F(f)F(9)

(9) Forall f €S
[F (Moo < 2m)" 2| f]]1-

We can now use Lemma 4.5 in order to extend the Fourier transform onto
larger spaces. First, due to (g), we easily observe that the Fourier transform as
well as its inverse can be defined on L'(RY) by (4.12) and (4.13). We then have
(see e.g. [StWe])

Lemma 4.6 Let f € LY(RY). Then
(a) F(f) is uniformly continuous on R
(b) F(f) 0 as|x| — o0
(c) if F(f) € LYRY), then FLF(f) = FFYf) = f a.e. in RV,

Remark 4.1 Generally, f € L'Y(RY) does not imply F(f) € LY(R"™) and
therefore F is not a linear isomorphism of L'(RY) onto itself. Nevertheless,
some properties of the Fourier transform on S are kept also for functions from

LY(R™M); namely (d), (f) and (g). Moreover, if both sides have sense in L*(R"),
then also (a) and (b).

We also have on both S and L'(RY)

Lemma 4.7 The Fourier transform commutes with orthogonal transformati-
ons, i.e. for T orthogonal

F(H(TE = F(F(T)E) VYfeL'(RY). (4.14)

In particular, if [ is radially symmetric, then so is F(f).
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Proof: It is an easy consequence of properties of scalar product, see e.g.
[StWe].

O

Now, using the Parseval equality (see Lemma 4.5 (e)) we can extend the
Fourier transform onto L?(R™). Using the fact that S is dense in L*(R"), we
define for f € L2(RY)

F(f) = lim F(fn), (4.15)

where f, — f in L*(RY), f, € S; analogously also F~'(f). It is possible to
show that the definition does not depend on the approximative sequence and
we have (see e.g. [StWe])

Lemma 4.8 The Fourier transform is an isometric isomorphism of L2(RN)
onto itself; we have

FUF) = FFN) =

a.e. in RY.
Whenever f € LY(RY) N L2(RY), both definitions coincide.

Remark 4.2 Lemma 4.7 holds also in case f € L*(R™). Moreover, if f €
Wk2(RY), then the assertion (a) from Lemma 4.5 is true; the derivative of f
is to be understood in the weak sense. Therefore we have on W*2(RY) the
following equivalent norm

£z = 111+ ) EF A2 (4.16)
see e.g. [Ev].

Finally, we use the property (d) and extend the Fourier transform onto &'.
Let T € §'. Then we call the functional F(7T') the Fourier transform of 7" if

(F(T), ) = (T, F(¢)) Vp€ES. (4.17)
Evidently, whenever T is a regular distribution with f € &, LYRY) and
L*(RY), then the corresponding definition in S, L'(RY) and L?(R"), respecti-
vely, coincides with the definition on &’ in the sense of equality on S’.
We also define on S’ F~1(T) by
FUT)=F(T(-x)), TeS. (4.18)

Then we have

Lemma 4.9 The Fourier transform F and the inverse Fourier transform F 1
are linear isomorphisms of S’ onto S’. Moreover, for any T € S’

FYFT) =F(F N T) =T, (4.19)

where the equality (4.19) holds in the sense of S’.
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Proof: Since S is dense in &’ (see e.g. [V]]), it follows from the assertion
(c) of Lemma 4.5.

O

Now, as LP(RY) C &' for all p € [1; 00|, we have defined the Fourier trans-
form on all Lebesgue spaces; for the values of p € [1;2] we can show that
F(T)" is a regular function from LP (R™). If p > 2, then there exists always a
function from LP(RY) such that F(T}) is not a regular tempered function (see
e.g. [StWe]).

Lemma 4.10 (Hausdorff-Young)
Let f € LP(RN), p € [1;2]. Then F(f) € LP (RY) and

1F Py g < C s N1l o - (4.20)

Proof: As S is dense in LP(RY), 1 < p < 2, it is enough to show (4.20) on
S. But due to Lemma 4.5, properties (e) and (g) we have

IF(H)lloe < ClIflly
IF(Nll2 < ClIfll2

and the inequality (4.20) is an easy consequence of the Riesz—Thorin theorem
(see Theorem 2.2).

O

Using again the fact that S is dense in &', we can easily verify that (the
operations like product and derivatives are to be understood in the sense of S’)

Lemma 4.11 Let T € S'. Then
D*F(T) = F((ix)*T)
F(DT) = (—i&)*F(T).

Remark 4.3 Using the definition of F together with Lemma 4.11 we easily
verify that (0 is the Dirac distribution)

F(x%) = (=i)lelDar(1) = (—i)lel(2r) =2 D2s
. . _N
F(D?6) = (i) F(0) = (—i§)*(2m) "= .
Finally, we want to extend the validity of property (f) from Lemma 4.5

to &’. As mentioned above, it is in general not true that for T, G € S’ the
convolution T * G has sense in &’. Nevertheless, we have

9for the sake of brevity, we shall write only F(f) in such a case
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Lemma 4.12
(a) Let T € S', Ge &' ThenT xG e S’ and

F(T+G) = (2r)2 F(T)F(G), (4.21)

where the product is to be understood in the sense of S’.

(b)) Let T €S', g€ S. ThenT xGy € S’

N
2

F(T+Ggy) = (2m)2 F(g9)F(T), (4.22)

where (4.22) holds in the sense of (4.9).

Proof: See e.g. [VI].
(]

In Chapter III we gave a small generalization of (4.21) for Ty, T, with f, g
from some Lebesgue spaces. See also e.g. [StWe].

VIII.4.2 Some applications

This subsection is devoted to some applications of the Fourier transform needed
in Chapters II, IIT and VII. We calculate the Fourier transform of O;;, E*, S;;
and &, defined in Chapters II and III. We start with the simplest situation.

Lemma 4.13 Let £ be the fundamental solution to the Laplace equation. Then
it holds*

F(DE) = —(2m)" 2 (_‘g‘?a (4.23)

with
(a) |a| >0 for N =2
(b) |a] >0 for N > 3.
Proof: We have that

_N
2

~[¢PPF (&) = (2m) (4.24)

(a) Let N = 2. Since ﬁ is not locally integrable function in R?, we cannot easily

divide (4.24) by |¢|>. We calculate the Fourier transform of the first derivative
of £&. We have in &'

o0&
627 (5,) = Gl F ).

Employing (4.24) we have

(~PF (5 ) ) = (~kEF(E) )e) =

= ((2m) 7 &) = ((2m) Ni&, ) Ve €ES.

20The derivatives are taken in the weak sense.
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Hence 5
EN _ ik .
2 _ s !
€] .7-“((9%)*27T in §’.
Now, as éﬁ € L} (R?), we have
o€ i& 1
(5r) = fepar + 1

where H € &' is supported at 0. As any element from S’ has finite order, we
get from Lemma 4.4

H= Y C,D%

la| <M
with M € N. Using the fact that g—i = %‘jg'g in &' we easily observe that
H =0 and
o€ i &
F = — in S’
(8@) 2r g7

Now, applying Lemma 4.11 (b) we easily get the result for N = 2.
(b) If N > 3, we can divide directly in (4.24) and get

_n~v 1
2 —

13§

where H is again a tempered distribution supported at 0; therefore we have
H = ZIaISM CoD*d. We can modify the proof of Lemma II1.1.6 to show that

F(&)=—(2n) +H,

C
-1 2-N

7 () 0| = Ol

for x # 0. Since £(x) ~ [x|> " as |x| — oo and |x| — 0, H = 0. (See also [V]]
for another argument). The rest is obvious.

O
Lemma 4.14 Let S be the fundamental Stokes tensor. Then®!
N, a0 &
F(DS;j) = (2m) 2 (—if) [| §|92 - ﬂj] (4.25)

with
(a) |a| >0 for N =2

(b) |a] >0 for N =3.

21gee footnote above
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Proof: We proceed as in Lemma 4.13. Recalling that

Oe;
—ASZ'j + a;j = (5”5
and (r = |x])
o€
eilx) = ox;
i{&'jln1 wixj] HN=2
e\ ) A r2
SZ] (X) - 1 51] Iil‘j .
we get »
_N iSj
27 (S,) = 2m) oy - (4]

For N = 2 we again cannot divide by |£|?; nevertheless, we calculate the Fourier
transform of the first derivative of S;; and get (4.25) for || > 0.
For N > 3 we can divide by |£|? and argue as in Lemma 4.13.

Lemma 4.15 Let O be the fundamental Oseen tensor. Then
5%]‘5‘ —&i&j

F(D0y(30)) = @m) ™% (=€) [t e (4.26)
with || >0 and N > 2.
Proof: Due to the definition we have
—(A-py - )(9” 10 g,

D
where e; = %7 O;;(-; B) see Chapter II. We have

fz‘fj)
€12/

Unlike the Stokes problem, we can now divide by h(¢) = i8¢ — |€]? as ﬁ IS
L} (RYM). Let us demonstrate this for N = 2; if N > 3, the proof is much easier.

Wo b
€ nave
a¢ &2 + Blel]
/Blm G <C/ Ve T et s

<C// r +6T COS¢|rdrdgp.

4 +1r2cos? p

(1€ = iB&) F(Oy) = (2m) 7= (85 —

Now

™

2 cos ¢ 2 1
————dpd :/ arct do < C
/ / 1"2 + cos? p " 0 e cos Y=

/ / 7dg0d7’ = — +/ cos ¢ arctg 7dg0 <C.
r2 + cos? p

As O;; 0 for x| — oo, we have (4.26). The proof is complete.




288 M. Pokorny: Asymptotic behaviour . ..

Lemma 4.16 Let E* be the fundamental solution to the ”Oseen problem wi-
thout pressure”. Then

_y (i)
F(DYE*(-; = (2m) 2 4.27
( (38)) = (2m) = ifE (4.27)
with || >0 and N > 2.
Proof: Let us recall that
—AE* + ﬁaE =4

i.e.
N

(€ — iB&)F(E*) = (2m) = .

Now, arguing as in Lemma 4.15 we get the result.

O

We finish this section by proving a general version of Lemma VII.1.2. For
the notion of axially symmetric functions, see Chapter VII.

In what follows v is a smooth vector field from R? into R3, usually divergence
free and axially symmetric. The vector w = (w,, wy, w;) is V x v in cartesian
coordinates. The components of its representation in cylindrical coordinates
are denoted by w,, wy, w,. If v is axially symmetric, then the only non—zero
component of w in cylindrical coordinates (f—component) is denoted by w.

Theorem 4.1 There exist constants C;, i =1,...,6, such that for all v smooth
divergence free and axially symmetric vectors and any p € (1;00)%
Crp)IDv]p < [lwllp < CollDv]lp (4.28)
)10Vl < [Vl + || < CulD?vll, (4.29)
10
s 5os ], + Ll 5, + [ 1, + 15521, < 12w, <
0 10

< a5l * ol 150, + I3 N, + 1552], - a0

The proof will follow directly from the following two lemmas.

Lemma 4.17 There exist constants K;, it = 1,...,6 such that for any smooth
azially symmetric vector v with V x v = w and any a € R?, a? + a3 > 0 we

have
Kilw(a)| < \W(a)! < K2\W(a)| (4.31)

Ks|Dw(a)| < \agia)\+] \+\ ]<K |Dw(a)| (4.32)

22 du  Ou  du : Ow  Ow
By Du we understand the vector (871, Bas %), while Vw denotes (32, 52).
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0w( 0?w(
K < |D*w(a)| <
5’ (97“2 ’ ‘8T@Z‘+‘ 622 ‘ ’87” r ‘ ’82 r ‘ | (a)] <
w(a) 0%w(a) 0%w( (a) 0 w(a)
< Kg — 4.
‘ or? + 87“82’ ‘ 822 ‘ 87’ r ‘+’8z ro (4.33)
where r = \/a3 + d3.
Proof: We have
W = —Wgsinf + wy cos b,
0 = wy cos O + wy sin b,
ie. w, = —wsinf, wy = wcosf, and the inequality (4.31) follows.

Further we have

i.e.

aawx:—gSIDHCOSG—I-SIDHCOSQ
T r r
(98w$ = —g—w sin? 6 — COSQG,
Y r
% g—:cosQ@—l-—smzm
%—%:Sinﬁcose—:sinecosﬁ,
2 2
882;0; = —22:2) sin # cos® § — aar(w>(s1n 0 — 2sinf cos? ),
0wy
&xgy = —Z—Q sin? 0 cos 6 — %(%) (cos® @ — 2sin? f cos 0)
O*w Pw . 4 0 (w
Y — _Z " gin 0—3—( )sin9c0520
oy? or? 0 ’
(92%1) QQwT 0 rwr
8x2y = Wcos 39+ 38—(;> sin290050,
32wy 0w 0 jw
= 2 Y sinfcos? 0+ — ( )(sin30—2sin9cos2c9)
0xd or? 0 ’
w9 9
8y2y = ﬁsm 20 cos + E(T>(00830—28in290089),
gw: _8(;01 sin9+aawy(3080,
z z
0 0 0
a—o:— gjf’ cos G—I—O—u;smGCOSH—%sm@cos@—alsm 0,
%: %sin@cos@—l— %sinQG - %ZE 0?6 — %’cos&sm@,
2 2
(f) 3811;3/ cos f(cos® ) — sin? 0) + aU;x sin #(3 cos® § — sin® 0)+
r Y X
2
+288:2y sin? @ cosf ,
2 2
g;; = aa;gy sin? 0 cos 6 — 486;}; sin 6 cos? 0+
82wy 2 ) 2 T .
+ 92 cos f(cos” 6 — sin“ ) — 0y sind,
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which gives (4.32) and (4.33).
O
The proof of Theorem 4.1 is now split into two parts. First one is simple,
we just observe that the second inequalities in (4.31)—(4.33) lead to the se-

cond inequalities in (4.28)—(4.30). Second part of the proof of Theorem 4.1 is
formulated in the following lemma.

Lemma 4.18 There ezist C1(p), C2(p) and Cs(p) such that for any smooth
divergence free vectors v and p € (1;00) we have

Ci)IDvllp < [wllp (4.34)
Co(p)ID*v |, < [[Dw]l, (4.35)
C3(p) | DV, < [ D*wll; (4.36)

Proof: We use the Marcinkiewicz multiplier theorem (see Theorem I1.3.2).
As (4.35) is more complicated than (4.34), we just concentrate on (4.35); (4.36)
can be proved following lines of the proof below.
We denote by F(v,), F(vy), F(v.) the Fourier transform of the component
Vg, Uy, U, and put
Ay = &16F (vz) — 6%.7:(’031) A7 = &&6F (va) — &1&3F (vy)
Ay = 61&F (vy) — E16F (v2) Az = EF (vy) — L263F (vy)
Az =61&F (vg) — E§F(v2) A9 = EF (v2) — E163F (v2)
Ay=EGF(v,) — &1&F(vy) Ao = EF(vz) + £16F (v) + £163F (v2)
As = 683 F (vy) —EF(v2) A= E6&F (v2) + EF (vy) + E263F (v2)
Ag = E8F (vz) — E16F (v2) Az = E16F () + E2863F (vy) + EF (v2)
i.e. Ay — Ag are (up to the sign) the Fourier transforms of VV x v, A1 — A2
are the Fourier transforms of —VV - v. We shall calculate F(v;), F(vy) and
F(vz) by means of A;:
§o A1 + &3A3 + §1 410 = GIEPPF(ve)
§oAy + &1 A1 4 E34s = SIEPPF(ve)
§1A12 + E2A7 + E34g = &€ F (vz) -

Therefore we get

1

= W(&@Al +61&343 + E5 Ay + L83 A6+

+Eab3 Ay + €3 Ag + E2 Arg + €162 A11 + E163A12)

F(vg)

Similar expression we obtain for F(v,) and F(v,). Denoting by D?*v the vector
of 18 components (all different second derivatives with respect to the spatial
variables) and by A the vector (A; ... Aj2), we have

F(D*v)=TA, (4.37)
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where

T:RYZ+— R"™
ag¢bee
£1|§‘24§3 with a,b,c € Ng, a + b+ c = 4,
i.e. they are bounded and the I-th order derivatives can be bounded by C|¢|~".
We may apply the Marcinkiewicz multiplier theorem (see Theorem II1.3.2) to
obtain the desired inequality. The inequality (4.36) follows similarly.

has non—zero components of the type

O

Remark 4.4 In Chapter VII, we need the inequality (4.1) only for p = 2. This
case does not require the use of the multiplier theorem, it follows directly from
(4.37) by means of the Parseval equality, see Lemma 4.5 (e).

VIII.5 Modified Stokes problem. Existence of pressure
Finally we shall investigate the modified Stokes problem, i.e.
Au)+Vp=f~
(u) P } in Q

V-u=0
u = u, at 90

(5.1)

and if  is an exterior domain,
u— 0 as x| - o0

with A(u) = —Au+ p 28 8 2 , 1t € [0;1). We shall not develop a general theory for
such a problem; we shall only prove some estimates needed in the theory of the
modified Oseen problem which are completely analogous with similar results
for the classical Stokes problem.

There are two approaches; we can either use the fact that the system (5.1)
is elliptic in the sense of Agmon, Douglis and Nirenberg (see [AgDoNi]) or
under more restrictive assumptions on p, use the results on the classical Stokes
problem (see e.g. [Gal]). Unfortunately, we were not able to develop the theory
for the modified Stokes problem directly, following [Gal] for the classical Stokes
problem.

We denote by

(u,v) /Vu Vvdx—u/ e 695
1 1

see Chapter III. Then we say that u is a g—weak solution to (5.1), if
(i) ue DY)
(i

i) u is (weakly) divergence free
(iii) u = u, at 99 in the sense of traces
)

(iv) for all ¢ € ¢D(Q2)
aﬂ(“? ‘P) = <f7 ‘P> :
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Moreover, if {2 is an exterior domain, then also

(v)
/ lu(R,w)|dw — 0 as R — oo.
SN

As in Chapter II for the Oseen problem, the weak formulation formally
excluded the pressure. We shall show now that in fact we can reconstruct the
pressure using the weak formulation. We give several results here. Some of them
are applicable for the Oseen and modified Oseen problem, another only for the
Stokes problem and its modified version. We start with a general lemma from
functional analysis.

Lemma 5.1 Let A: X — Y is a continuous operator, D(A) = X, A™! exists
and is continuous. Let X, Y be reflexive Banach spaces. Then

R(A*) = (ker A)*,
where R(A*) denotes the range of the adjoint operator to A and

(ker A)t ={f e X*;(f,u) =0 Yu Eker A}
ker A = {u € X;Au=0}.

Proof: See e.g. [Tay].

Now, using the results from Section VIII.3 we have

Theorem 5.1 Let Q2 be such that the problem

V-v=f
v e D) (5.2)
IVl1q < Cllfllq

is solvable for all f € L) (if Q bounded, then [, fdx = 0). Let G be a

continuous linear functional on Dé’q(ﬂ), 1 < g < o0, such that

<g7g> =0

for all g € ﬁé’q(Q). Then there exists exactly one p € LY (Q) (if Q bounded,
then [opdx =0) such that

G.g) = /Q PV -gdx Vg € DI(Q). (5.3)

Proof: Let us consider the linear operator

A:veDyi(Q) -V -veLi(Q).
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Evidently, A is bounded, linear and R(A) = L4(Q2) (L4(Q2)/R if © is bounded).
We have (see Lemma 5.1)

(ker A)t = R(A").

Since ker A = Dy(2), (Dy?(Q))* = R(A*) and G € R(A*). As R(A) = LI()
(L9(2) /R if © is bounded), using the Riesz representation theorem (see Lemma
1.4)

(F,g) = / pAgdx = / pV - gdx
Q Q
for all g € Dé’q(Q).

d

Corollary 5.1 Let Q be a bounded or exterior domain of class C%1(Q2) and
N > 2. Then each lineAar continuous functional on Dé’q(Q), 1 < q < o0, which
is identically zero on Dé’q(Q) can be written in the form

(Fo) = /Q PV -dx Vi € DYU(Q)

forpe LY(Q) (p e LY (Q)/R if Q is bounded).

Corollary 5.2 Let Q C RN, N > 2 be a domain and G be a lingar continuous
functional on Dé’q(ﬂ’), 1 < ¢ < o0, which is identically zero on D(l)’q(ﬂ’) for all

Q' C Q bounded, ¥ C Q. Then there exists p' € qu;C(Q) such that
F) = [V -dax Ve CF@.

We next estimate the pressure for the modified Stokes problem. Let us
assume that f € Do_l’q(Q), Q) € C%!, a bounded or an exterior domain. Let u
be a g—weak solution to (5.1). Then due to the condition (iv) and due to the
fact that £ € Dy "(Q) we have that

<F7¢> = a#(uv"/)) - <fa"/)>

is a functional bounded on D(l)’q/ (©) which is identically zero on ﬁé’q (©). Apply-

ing Corollary 5.1 we get the existence of p € LI(€Q) (LI(2)/R if 2 is bounded)
such that

au(up) = (£.9) = [ pV-sdx Vepe DY (). (5.4)
Let now €2 be bounded. We consider the following problem in 2
q—2 1 q—2
Ve =p|""p— 15 [ [p|" “pdx
€] Ja

e Dy (@) (5:5)
lle < Clipllg™
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Then, using such 9 in (5.4) we get ([, pdx = 0)

Ipllf < CIfl-1.q + [ul1) W]y < ClplE™ (£]-1q + [ul1g)
and we have

Ipllg < C(If]-14 + [u1q)- (5.6)

If we skip the condition [, pdx = 0, we get instead of (5.6)
inf [lp+ clly < O] 10+ uly). (57)

If Q is unbounded, we can instead of (5.5) consider directly
V= I[pl*7%p
e Dy (@) (5:8)
Ylig < Cllpllg"

Proceeding analogously we show again (5.6).
We therefore have

Theorem 5.2 Let u be a ¢g-weak solution to the modified Stokes problem (5.1)
in Q@ € C% a bounded or an exterior domain. Let f € Do_l’q(Q). Then there
ezists a unique function p € LY(Q)?, called pressure, such that

a(u$) — (€9) = [ pV-pix Yy @),
Moreover, there exists C = C(q, N,Q) such that ([ pdx =0 if Q is bounded)
IPllq < Cllulrg + [£]-1,4) -

For the Oseen problem and its modified version, Corollary 5.1 is not appli-
cable. We have namely the functional (u = 0 for the classical Oseen problem)

(Go, %) = a,(u, ) + ﬁ(ﬁjlw _(£9)

and therefore, even for f € D, 1’q(Q), we do not have apriori the corresponding
pressure p € L1(Q), only p € L?OC(Q)M. Nevertheless, we can get

Theorem 5.3 Let u be g—weak solution to the modified Oseen problem (II1.0.1),
Q € C%, a bounded or an exterior domain. Let f € Dal’q(Q). Then there exists

scalar function p € L?OC(Q), called pressure, such that

0w + 05 b) — (E4) = (0.7 )

23unique up to an additive constant for  bounded

?4see Theorem II1.3.7 for the estimates giving the global integrability for the pressure for
an exterior domain
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for all € C§°(2). Moreover, if Q is bounded, then there exists C = C(q, N, )

such that ([, pdx =0)

Ipllg < C([ull1g + [£]-1,4) (5.9)

and if Q is an exterior domain, then there exists C = C(q, N,Q) such that for
all R > diam)°

IPllg.0r/r < Cllullgan +[alig +[£l-14) - (5.10)

Proof: We proceed as for the Stokes problem. The only difference consists
in the presence of the term (g—;, ). If Q is bounded, we have for %, solution to

the problem (5.5),
0 N
(ar®) = (0 55)

and we easily get (5.9). If © is unbounded, we can no more control the L9—norm
of u. We therefore consider instead of (5.8) the problem (5.5) with 2 := Qp
and get (5.10).

d

Let us come back to the modified Stokes problem. We shall study existence,
uniqueness and regularity of g—weak solutions to the problem (5.1). First we
have

Lemma 5.2 Let Q1 be a bounded domain in RN of class CO', N > 2, f €
DO_I’Q(Q), u, € W22(09), [oqus-ndS =0, 0 < pu < 1. Then there erists
exactly one 2-weak solution to (5.1). Moreover

[all12 + [Iplla/r < CUE[-12 + (el 1 2 50)) - (5.11)
Proof: Searching the solution in the form
u=v-+w

with w a divergence free extension of the boundary data we easily get the
existence of solution combining results from Section VIII.3 due to the Lax—
Milgram theorem (see Theorem 1.1).

O
Lemma 5.3 Let lee an exterior domain in RN of class CO91, N > 3, f €
DO_I’Q(Q), u, € W22(0Q). Then there exists exactly one 2-weak solution to
(5.1) such that [g  |v|dw — 0 as R — oo. Moreover
N
lall2.0p + |ufi2 + [lplls < C(f[-12 + w1 5 50)) » (5.12)

where C' = C(Q, R, N).
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Proof: It is analogous to the proof of Theorem III.3.3. We search the solu-
tion in the form
u=v-+w-+o,

where

o=-VE& u, - ndS,
0N

w is a divergence free extension of u, — o with bounded support and v is a
2—weak solution to

V-v=0
v =0 at 0f)

Jsy [V(R,w)|dw — 0 as R — oo.

A(v)+Vp:f—A(a+W)} -

(5.13)

Again, the existence of a unique solution to (5.13) can be established using the
Lax—Milgram theorem.

d

Next, let us recall that the system (5.1) is elliptic in the sense of Agmon,
Douglis and Nirenberg (see [AgDoNi]). We therefore have

Theorem 5.4 Let Q € C™*2, a bounded domain, £ € W™4(Q), m >0, 1 <
q < oo. Then there exists C, independent of £ and u, such that if u is the
q—weak solution to (5.1) and p the corresponding pressure, then

[allm+2.q + [Plm+1q < CClElmg + l[0llnio-1 460 + lullig +lplg) . (5.14)

Theorem 5.5 Let Q € C? be a bounded domain, f € Wo_l’q(Q), 1 <qg<

00, Uy € Wl_%’q(aQ). Then if u is a g—weak solution to the modified Stokes
problem, then

[l

g HlIPllg/m < CUIEN-1q + llulli1 g o) + ullg +lIpll-14), (5.15)
where p denotes the corresponding pressure from Theorem 5.2.
We get (see e.g. [Gal] for the classical Stokes problem)

Theorem 5.6 Let Q € C? be a bounded domain. Let u be a g—weak solution
to (5.1) with zero data. Then u =0 and p = const in Q.

Proof: If ¢ = 2, the result follows from Lemma 5.2. If ¢ > 2, then any
g—weak solution is also 2-weak solution and u = 0. Finally, if ¢ < 2, then
due to Theorem 5.4 u € W24(Q), p € WhH4(Q), i.e. u € Whr(Q), ry = NN—fq.
Repeating this argument several times we get after finite number of steps that
u € WH2(Q) which implies u = 0. Next, easily, p = const.
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Corollary 5.3 Ifu is a g-weak solution to (5.1), Q € C™*, bounded domain,
then

[l + [2lms1g < CUElmg + 0o 1 gon) - (5:16)

Proof: We have to show that |[ul1 4+ |[pllq < C(|f]lm.q+ Hu*||m+27%7q7(89)).

Let us assume the contrary, i.e. that there exists (u.)x, fx and (ug,py) the
corresponding solution to (5.1) such that

lakllrg + lIpelle > E(€kllmg + 1@kl pi2-1 g 00))  VE €N

We can take without loss of generality ||uy|1,q + |[pxllq =1, [oprdx = 0. We
have due to (5.14), at least for a chosen subsequence,

u;, — u in Wmt3(Q)
pr — p in WHHI(Q)
fi, — 0 in W™9(Q)
(W) — 0 in W™ 29(9Q)

where (u, p) solves (5.1) with f = u, = 0. Due to Theorem 5.6, u = 0, p = const
but [, pdx = 0 implies p = 0. The compact imbedding W%4(Q) << W14(Q)
(Wh4(Q) < L4(Q)) yields us up — u in W9(Q), p — p in L4(2), but
llulli,q + |Ipllg = 1, yielding a contradiction.

Next we consider N > 3 and () an exterior domain. We have

Theorem 5.7 Let 1 < g < N, Q € C? be an exterior domain in RN, N > 3.
Let f = u, = 0. Then the only g—weak solution to (5.1) is such that u =0 and
the corresponding pressure p = 0.2

Sketch of the proof: We shall not give the details of the proof as they
are quite technical and long but completely analogous to the classical Stokes
problem (see e.g. [No3]). Firstly we construct the fundamental solution to the
modified Stokes problem (more precisely, its Fourier transform) and using the
Lizorkin multiplier theorem (see Theorem II.3.3) we show L?—estimates of the
solution to the modified Stokes problem in the whole RY which are completely
analogous with the estimates for the classical Stokes problem.

Next, using the structure of the Fourier transform of the fundamental so-
lution and its derivatives it is an easy matter to verify that the fundamental
solution together with all derivatives have the same asymptotic properties as
the fundamental solution to the classical Stokes problem.

Then we show that if u;, uy are two (apriori different) solutions to the
modified Stokes problem in RY, Vu; € LP(RY), Vuy € LI(RY), 1 < p,q¢ < N,
then u; = us + const, p;1 = ps + const. The proof is the same as the proof of
Lemma II1.2.3 for the modified Oseen problem.

25We add to p such a constant that p € LI(RQ).
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Finally, let u be a g—weak solution to the modified Stokes problem with the
right hand side of bounded support in 2, 1 < ¢ < N. Then we easily verify
that u has the same asymptotic properties as the fundamental solution. Now,
if u is a g¢—weak solution to (5.1) with zero data, we can use as test function
ungr with ngr the usual cut—off function. Due to its asymptotic properties we
get Vu = 0 a.e. in Q and since u — 0 as |x| — oo in some (weak) sense, we
have u = 0. Then easily p = 0, where we added a constant to p in such a way
that p € LI(Q).

As a consequence we have

Corollary 5.4 Let u be a strong solution to the modified Stokes problem such
that V2u € L1(Q), Q € C? eaterior domain in RN, 1 < ¢ < % such thatu — 0
as |x| — oo in some (eventually weak) sense. Let v be another solution with
the same properties. Then u = v a.e. in ().

Proof: Denote w = u — v. Then V2w € L9(1Q), solves the modified Stokes
problem with zero data. As w tends to zero as |x| — oo in some sense, we have
that w € L*(Q2), Vu € L"(Q), 1 < s < o0, 1 < r < N. Applying Theorem 5.7
we see that w = 0. Moreover, if p,, py are the corresponding pressures from
Theorem 5.2, we have py, — py = const.

O

Remark 5.1 Let us finally note that the estimate (5.14) or, more precisely,
(5.16) can be shown without use of the Agmon—Douglis—Nirenberg results. We
can namely look at the solution to the modified Stokes problem as a fixed point
of the operator T': w — u

*w
V-u=0
u = u, at 0f)

and for p sufficiently small we get its existence together with all estimates.
Unlike the procedure introduced above, where we assumed only p < 1, we shall
get much stronger restriction on the size of u.



Conclusions

In the presented work two different problems were solved. In the first part, the
questions raised in [Du] and [Vi] were successfully answered. We have shown
that, at least for certain classes of non—Newtonian fluids, the velocity and the
pressure obey for non—zero velocity prescribed at infinity the same asymptotic
properties as the fundamental solution to the Oseen problem; in particular, the
velocity shows the existence of a wake region behind the obstacle.

Moreover, we have also verified that under the assumption of sufficiently
fast decay of the right hand side, its smallness and the smallness of the velocity
prescribed at infinity itself, we can show the precise asymptotic structure not
only for the velocity itself, but also for its first gradient.

Such studies made us do precise investigations of weighted estimated of
both singular and weakly singular integral operators with Oseen kernels; for
the sake of completeness we gave also results for the kernels not used in this
work. Another problem, coming in fact from the weighted estimates, was the
necessity of investigations of certain perturbation to the Oseen problem, called
here the modified Oseen problem. The most crucial problem were the asympto-
tic properties of its fundamental solution. Again, for the sake of completeness,
we then presented complete theory of this linear problem in both two and three
space dimensions (the extension to higher space dimension is straightforward),
combining the approaches from [Gal], [Ga2] with [No3].

The other problem, treated in this work, was the axially symmetric flow
of both linearly viscous and ideal fluid in the whole R3. The proof presented
here has several advantages in comparison with the original proofs presented
in [Lad2] or [UcYu]. Unlike the above mentioned papers we essentially use the
fact that we study the problem in the whole space and therefore we do not have
to construct complicated basis in weighted spaces on the balls with growing
diameters.

Finally, let us mention several problems which were either not attached or,
in spite of certain attempts, remained unsolved. To the former belong study
of asymptotic structure of problems in higher space dimensions or study of
compressible viscoelastic fluids. Both problems seem to be only a little bit more
technical but solvable in a similar way.

The problem of study of asymptotic structure to the second grade fluid se-
ems to be much more difficult. It is essentially connected with the optimality
of LP—weighted estimates for kernels representing second gradients of the fun-
damental Oseen tensor. In order to exclude the disturbing logarithmic factors
completely another technique must be used; the fact that the second gradient of
the fundamental Oseen tensor represents LP—LP Lizorkin multiplier should be
employed. This problem may serve as a starting point for further investigations.
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