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Abstract

We study vibrations of a lumped parameter system, consisting of a linear spring

and a dashpot with general implicit relationship between the damping force and

the velocity. We prove the global existence result, and discuss conditions that are

sufficient for uniqueness as well as some counterexamples.

1 Introduction

The aim of this paper is to study system of equations

mẍ + Fd + kx = F, (1)

g(ẋ, Fd) = 0. (2)

Here x is the (unknown) displacement, m is the mass (we henceforth set m = 1 for the
sake of simplicity), F is the given external forcing, and Fd is the damping force.
We are particularly interested in the cases where the damping law (2) is fully implicit,
meaning that it can be (globally) written neither as Fd = ĝ(ẋ) nor as ẋ = ĝ(Fd). There are
numerous physically meaningful examples of such dissipation; the most notable instance
being the Coulomb law friction.
Such problems are usually solved by an ad-hoc method of patching together solutions for ẋ
negative or positive, see for example [3]. The obtained result is physically correct, it is still
desirable to put the analysis on a firmer basis, by proving that the problem is well-posed
in a suitable, clearly defined sense.
The paper is organized as follows: Section 2 specifies the precise mathematical assumptions,
and collects several auxiliary results, in particular concerning maximal monotone relations.
Section 3 contains main results: we prove global existence of solution and (under slightly
stronger conditions) its uniqueness. Section 4 brings several examples where the solutions
can become non-unique.
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2 Preliminaries

We will henceforth assume that (2) is specialized to

Fd = Fc − γ(ẋ), (3)

(Fc, ẋ) ∈ A. (4)

where γ(·) is a relaxation function a Fc is Coulomb-like force, being in a general monotone
relation with ẋ. It is assumed that

γ is continuous, |γ(u)| ≤ c1(1 + |u|), (5)

and A is maximal monotone relation, meaning that

(F, y), (F̃ , ỹ) ∈ A =⇒ (F − F̃ )(y − ỹ) ≥ 0, (6)

(F0 − F )(y0 − y) ≥ 0 ∀(F, y) ∈ A =⇒ (F0, y0) ∈ A. (7)

We will also need some coercivity with respect to force:

(F, y) ∈ A =⇒ Fy ≥ c2F
2 − c3. (8)

One can see that (together with maximality) this implies that A can be satisfied for
arbitrary values the second argument.
A typical example of maximal monotone relationship of this type is the Coulomb law of
friction, given by the conditions

ẋ > 0 =⇒ Fd = φ0,

ẋ < 0 =⇒ Fd = −φ0,

ẋ = 0 =⇒ Fd ∈ [−φ0, φ0] is arbitrary.

(9)

See Figure 1. Note that such relationship is truly implicit, i.e., one can (globally) write
neither Fd as a function of ẋ, nor ẋ as a function of Fd.
Assuming that the relaxation function is bounded, increasing and γ(0) = 0, we come to a
more general model (see Figure 2).
Regarding the analysis, we would like to emphasize that continuity of γ only guarantees
existence of solutions; uniqueness requires a stronger assumption, namely that γ is Lipschitz
continuous. See also last section for several examples of non well-posed problems.
Our final assumption is that

F = F (t) ∈ L2(0, T ). (10)

Let us conclude this section with two results that will be instrumental in handling the
monotone relationship between force and velocity. Firstly, we recall a useful ”geometric”
characterization of maximal monotone graphs.

Lemma 1. Relation A ⊂ R × R is maximal monotone if and only if there exists a 1-
Lipschitz function ϕ : R → R such that

(F, y) ∈ A ⇐⇒ F − y = ϕ(F + y). (11)

2



ẋ
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Figure 1: Coulomb friction: force-velocity relationship

ẋ

Fd

Figure 2: Coulomb friction with relaxation
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Proof. See [1, Lemma 2.1].

The following result on weak closeness is also well-known and we only give the proof for
the sake of reader’s convenience.

Lemma 2. Let F n, yn converge to F , y weakly in L2(0, T ), and let F nyn → Fy in the sense
of distributions. If (F n(t), yn(t)) ∈ A for a.e. t ∈ (0, T ), where A is maximal monotone,
then also (F (t), y(t)) ∈ A for a.e. t ∈ (0, T ).

Proof. Let w be arbitrary, smooth function, compactly supported in (0, T ). We have

|F n − yn − ϕ(w)|2 ≤ |F n + yn − w|2

a.e. in (0, T ), where ϕ is provided by Lemma 1. This is equivalent to

−2(F n − yn)ϕ(w) + |ϕ(w)|2 ≤ −2(F n + yn)w + |w|2 + 4F nyn.

Here we can take the limit n → ∞, and backward manipulation yields

|F − y − ϕ(w)|2 ≤ |F + y − w|2.

By density argument, we replace w by arbitrary square integrable function; in particular,
taking w = F + y concludes the proof, in view of (11).

Theorem 1 (Uniform contraction theorem.). Let X, Y be nonempty Banach spaces; let
the mapping G : X × Y → X satisfies

‖G(x, y) − G(x̃, y)‖X ≤ α‖x − x̃‖X , (12)

‖G(x, y) − G(x, ỹ)‖X ≤ β‖y − ỹ‖Y , (13)

for arbitrary x, x̃ ∈ X, y, ỹ ∈ Y with some constants α ∈ (0, 1) and β > 0. Then for any
y ∈ Y there exists unique x ∈ X such that x = G(x, y) and moreover, the mapping y 7→ x
is Lipschitz continuous.

Proof. See [2, §1, Theorem (3.2)] for a proof of more general result.

3 Main results.

For the sake of definiteness, we start with the definition of the concept of solution.

Definition 1. By solution we understand a couple (Fd, x) ∈ L2(0, T ) × W 2,2(0, T ) such
that (1), (2) hold a.e. in (0, T ).

Note that it follows that x and ẋ have absolutely continuous representatives; in particular,
the problem is naturally equipped with initial conditions

x(0) = x0, ẋ(0) = x1. (14)
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Theorem 2. Let the assumptions (5–8) be in force; let moreover the function γ be Lipschitz
continuous. The the problem (1), (3), (4) has at most one solution, subject to initial
conditions (14).

Proof. Let (x1, F 1

d ) and (x2, F 2

d ) be two solutions with the same initial condition. Setting
z = x1 − x2, we deduce

z̈ + F 1

d − F 2

d + kz = 0.

Multiplying by 2ż, and noting that monotonicity of A implies

(F 1

d − F 2

d )(ẋ1 − ẋ2) ≥ −(γ(ẋ1) − γ(ẋ2))(ẋ1 − ẋ2),

we arrive at
d

dt

(

(ż)2 + kz2
)

≤ 2L(ż)2,

where L is the Lipschitz constant of γ. Since z(0) = ż(0) = 0, we conclude by Gronwall’s
lemma.

Theorem 3. Let the assumptions (5–8) be in force. Then the problem (1), (3), (4) has at
least one solution, subject to initial conditions (14).

Proof. Assume first that γ is a globally Lipschitz function. The relation between Fd and
ẋ can be written as

(Fd + γ(ẋ), ẋ) ∈ A.

In view of Lemma 1, this is equivalent to

Fd = ẋ − γ(ẋ) + ϕ(Fd + γ(ẋ) + ẋ).

Replacing ẋ by ẋ − Fd/n, we obtain a sequence of approximating problems

(

1 + 1

n

)

Fd = ẋ − γ(ẋ − 1

n
Fd) + ϕ

(

(1 − 1

n
)Fd + γ(ẋ − 1

n
Fd) + ẋ

)

. (15)

For n large enough (depending on the Lipschitz constant of γ), the right-hand side is a
uniform contraction in Fd. It follows from Theorem 1 that last formula is equivalent to

Fd = gn(ẋ),

and gn is globally Lipschitz function. The corresponding ODE reads

ẍ + gn(ẋ) + kx = F, (16)

and is globally solvable by the standard theory – see [4, Theorem 2.4.5], for example.
We need a priori estimates that are independent of n. Now (15) is equivalent to

(

Fd + γ(ẋ − 1

n
Fd), ẋ − 1

n
Fd

)

∈ A.
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By coercivity assumption (8),

(

Fd + γ(ẋ − 1

n
Fd)

)(

ẋ − 1

n
Fd

)

≥ c1

∣

∣Fd + γ(ẋ − 1

n
Fd)

∣

∣

2 − c2.

For n large enough it follows that

Fdẋ ≥ c3|Fd|2 − c4(ẋ)2 − c5. (17)

Hence, multiplying (16) by 2ẋ yields

d

dt

(

(ẋ)2 + kx2
)

+ c6F
2

d ≤ c7

(

(ẋ)2 + F (t)2 + 1
)

.

Consequently, the sequence (F n
d , ẋn) of solutions to (16) is, at least for n large enough,

bounded in L2(0, T ) × W 2,2(0, T ), and there is a subsequence (not relabelled) such that

F n
d → Fd, ẍn → ẍ weakly in L2(0, T ), (18)

ẋn → ẋ, xn → x uniformly on [0, T ]. (19)

Obviously, the limiting couple satisfies (1); it remains to verify the relationship between
Fd and ẋ. But this is straightforward: we have for each n

(

F n, yn) ∈ A, (20)

F n = F n
d + γ(ẋn − 1

n
F n

d ), (21)

yn = ẋn − 1

n
F n

d . (22)

Obviously, F n → Fd + γ(ẋ) weakly, and yn → ẋ strongly in L2(0, T ), and thus (Fd +
γ(ẋ), ẋ) ∈ A by Lemma 2.
Finally, if γ is a general continuous function, we can approximate it by a locally uniformly
converging sequence of Lipschitz functions γn, which can be chosen to satisfy (5) with the
same constant c1. The corresponding a priori estimates and passage limit are analogous to
the above and we omit further details.

4 Some examples of nonuniqueness

The aim of this Section is to look at some examples showing that our problem can lack
the property of uniqueness, should one go beyond the assumptions of Theorem 2.
Consider, as a first example, a generalized Coulomb law of friction, given by

ẋ > 0 =⇒ Fd = φ0,

ẋ < 0 =⇒ Fd = −φ0,

ẋ = 0 =⇒ Fd ∈ [−φ1, φ1] is arbitrary,

(23)
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Figure 3: Generalized Coulomb law

where 0 < φ0 < φ1. This relationship between Fd and ẋ is not monotone (see Figure 3).
It corresponds to a physically meaningful situation, where the static friction is larger than
a dynamics friction. However, a possible drop of the friction force at the onset of motion
means that the problem is not uniquely solvable.
Consider the data

x(0) = ẋ(0) = 0,

k = 1, F (t) ≡ φ1.
(24)

Clearly, Fd ≡ φ1, x ≡ 0 is a solution on arbitrary interval [0, T ]. On the other hand,
Fd ≡ φ0 and

x(t) = (φ1 − φ0)(1 − cos t),

is also a solution, subject to the same data, at least on the interval [0, π] where ẋ ≥ 0.
As a second – and perhaps a more interesting – example we consider constitutive relations
(3), (4), where A is the standard Coulomb law (9), and for the relaxation function we take

γ(u) = 3
3
√

u2 sgn u.

Note that γ grows steeply close to 0 (see Figure 4). This lack of Lipschitz continuity gives
rise to nonuniqueness of solutions, as we will presently see. Consider the following data:

x(0) = ẋ(0) = 0,

k = 1, F (t) ≡ φ0.
(25)
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Figure 4: Coulomb law with steep relaxation

Then the function Fd ≡ φ0, coupled to any x satisfying

ẍ + x = 3 3

√

(ẋ)2, ẋ ≥ 0,

x(0) = ẋ(0) = 0,
(26)

gives rise to a solution to our problem. Thus, it remains to consider the reduced problem
(26). Obviously, x ≡ 0 is solution on arbitrary interval [0, T ].
We will now construct a second, nontrivial solution by the means of a fixed point argument.
Set

Y =
{

x ∈ C1([0, δ]); x(0) = ẋ(0) = 0, at3 ≤ ẋ(t) ≤ t3 ∀t ∈ [0, δ]
}

The constants a, δ > 0 will be determined below. We introduce operator

T : Y → C1([0, δ])
[

T x
]

(t) = y(t), t ∈ [0, δ]

where y solves

ÿ = 3 3

√

(ẋ)2 − x,

y(0) = ẏ(0) = 0.

Let us show that an appropriate choice of constants a and δ implies T (Y) ⊂ Y . Indeed,
for any x ∈ Y one has

at4/4 ≤ x(t) ≤ t4/4, t ∈ [0, δ],
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hence

ẏ(t) =

∫ t

0

ÿ(s) ds =

∫ t

0

3(ẋ(s))2/3 − x(s)ds ≤
∫ t

0

3s2ds = t3.

Similarly,

ẏ(t) ≥
∫ t

0

3a2/3s2 − s4/4ds ≥
∫ t

0

(

3a2/3 − δ2/4)s2ds =
(

a2/3 − δ2/12
)

t3, t ∈ [0, δ].

So it is enough to have
a2/3 − δ2/12 ≥ a,

which can be satisfied for arbitrary a ∈ (0, 1), taking a small enough δ > 0.
Finally, we observe that T is compact in virtue of a bounded second derivative of y, and
the set Y is convex. By Schauder’s theorem ([2, §6, Theorem (3.2)]), T has a fixed point
y ∈ Y , which is the desired nontrivial solution to (26).
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