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PART II. HUMANITY
§5. Competitive Equilibrium

In Section 3 we applied the Darwinian Selection Principle to the problems of evolution
and ecology, and in Section 6 we will make some attempt to apply it to human history.
This section will study another classical idea. Like the Selection Principle, it is almost a
tautology, and yet has many applications.

The Equilibrium Principle (A. Cournot, J. Nash, J. Maynard Smith).
Consider a collection of entities which are in competition or conflict with each other.
In an equilibrium situation, no single competitor can improve its own position by
changing only its own strategy.

This idea was introduced implicitly by Augustin Cournot in 1838 in the context of economic
bargaining. It was formalized by John Nash in 1949 in the context of non-cooperative game
theory, and was discovered independently by John Maynard Smith (together with G. R.
Price) in 1973 in the context of evolutionary biology. Several examples will be given in §5.4.

Some comments are necessary. First, note that this is a theory for the non-cooperative
situation in which the contestants are either unable or unwilling to negotiate with each other
in order to reach some mutually beneficial outcome. If we want to apply this theory to a
case where there is a possibility of limited communication or even binding agreements, then
this would have to be incorporated into the description of possible moves by the players.
Note also that there is an unwritten subtext: For this Equilibrium Principle to be useful, it
must be fairly common for an equilibrium or near equilibrium situation to arise.

Since rather different interpretations of this principle are needed in different contexts,
it will be convenient to discuss it first in the study of human interactions and then in
evolutionary theory.

§5.1. Economics, Politics, Crime, and War. There are many different ways that
groups of human beings can interact with each other. Many of these interactions involve
a struggle for competitive advantage which may be either subtle or completely overt, and
may be either friendly, or aggressive, or even deadly. In all such interactions, the Nash
equilibrium theory provides a fundamental tool for interpretation. (Compare Exercises
5.4a-c.) According to Ordeshook:

“The concept of a Nash equilibrium n-tuple is perhaps the most important idea in
noncooperative game theory. · · · Whether we are analyzing candidates’ election
strategies, the causes of war, agenda manipulation in legislatures, or the actions
of interest groups, predictions about events reduce to a search for and description
of equilibria. Put simply, equilibrium strategies are the things that we predict
about people.”

Sylvia Nasar, in her biography “A Beautiful Mind”1 , illustrates the dollars and cents
impact of game theoretic ideas by describing “The Greatest Auction Ever” in 1994, when
the US government sold off large portions of the electromagnetic spectrum to commercial
users. A multiple round procedure was carefully designed by experts in the game theory of

1 Nasar’s book has served as the inspiration for a film of the same name. The film is excellent as enter-

tainment, but has little relation to actual events.
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auctions to maximize both the payoff to the government and the utility of the purchased
wavelengths to the respective buyers. The result was highly successful, bringing more that
$10 billion to the government, while guaranteeing an efficient allocation of resources. By way
of contrast, a similar auction in New Zealand, without such a careful game theoretic design,
was a disaster in which the government realized only about 15% of its expected earnings,
while the wavelengths were not efficiently distributed. (In one case, a New Zealand student
bought a television station license for one dollar.)

I am indebted to Hector Sussmann for the following two examples, which show that the
equilibrium concept can play a role even in everyday social life.

Example 5.1a (compare Schwartz). At a boring party, all of the guests would like to
go home early, but no one is willing to leave before midnight unless someone else leaves first.
There is just one equilibrium point: everyone stays until midnight.

Example 5.1b. A group of twenty is going to dinner, and each one has the choice of an
adequate meal for ten dollars or an excellent meal for twenty dollars. If paying individually,
each one would choose the cheaper meal. However, they have decided to split the bill. Since
the marginal cost of the more expensive meal for each person is only fifty cents, everyone
chooses it.

§5.2. Nash’s Theorem. A major contribution by Nash was the proof that equilibria
exist under very general conditions. In order to make sense of his statement, we must first
introduce probabilistic strategies, that is strategies which may involve random choices by the
contestants. These can be desirable in many different kinds of competition. One well known
example occurs in the game of poker: A player who always bluffs (placing a substantial
bet even when holding a terrible hand) will surely lose drastically; yet a player who never
bluffs is much too predictable and will also lose in the long run. The way out of such
dilemmas, introduced by Emile Borel in 1924, was the use of randomized strategies, with
some definite probability of bluffing, even on a terrible hand. These were later popularized
by von Neumann and Morgenstern, who introduced the term “mixed strategy”.

We will usually assume that each player has only a finite number of pure (that is non-
probabilistic) strategies. By definition, a mixed strategy assigns a non-negative probability
to each of these pure strategies, where the sum of these probabilities must be equal to one.
As an explicit example, one possible mixed strategy for a very simple poker game would be
as follows. On each hand:

With probability 1/10 , place a bet no matter what cards you hold.

With probability 9/10 , bet only if holding a pair of kings or better.

Here is a formal statement of Nash’s result. (For a proof, see Appendix B1.)

Theorem 5.2a. Suppose that there are finitely many competitors, each with a
choice among finitely many pure strategies. Suppose that each one is trying to
maximize an individual “payoff” function which depends on the choices of all of
the players. Suppose also that this payoff function is measured in units which
are linear with respect to probabilities. Then there exists at least one way (but
often many ways) for the players to choose mixed strategies so that no player
can increase his expected payoff by changing his own strategy while the mixed
strategies of the other players remain fixed.

Some words of explanation may be needed:
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The expected payoff can be defined roughly as the average payoff over a very large number
of repeats of the contest, assuming that each of the contenders follows the prescribed strategy.

The linearity assumption means for example that a player would be equally satisfied with
a certainty of gaining five units, or with a fair coin toss to decide whether the gain will be
ten units or zero units. The use of payoff functions with this linearity property has a long
history, going back to von Neumann. It is essential for the theory, but in many cases its
realism can be questioned. One case in which it certainly makes sense is for a win-lose game,
with only two possible outcomes for each player. For such cases, each player simply wants
to maximize the probability of winning, so the linearity hypothesis is completely reasonable.
Similarly, in the evolutionary context which is discussed below we can identify the payoff
with the expected number of fertile offspring, or with some similar measure of evolutionary
fitness. With this definition, linearity again becomes clear. (Of course this is the payoff only
from the evolutionary point of view. It has little to do with the wishes of the individual,
except to the extent that these wishes are shaped by evolution to maximize fitness. On the
personal level, most people would surely prefer to have two healthy children, rather than
having four children with a fifty per cent chance that each one would die early.) Even in
an economic context, the payoff should not be simply measured in money, although it will
usually be an increasing function of the monetary award. Lotteries can exist only because
many people are willing to pay more than one dollar for one chance in a million of winning
a million dollars. This is not simply a statement that people are irrational. The insurance
industry is built on similar probabilistic estimates, and most people believe that it is quite
sensible to buy suitable insurance coverage.

Another implicit hypothesis is that each player cares only about his own payoff. If some
player cares not only about his own score but also about the other scores, then this must be
taken into account in constructing the payoff function.

Note. For the special case of a two person zero-sum game, where any gain to one
contestant results in an equal loss to the other,2 Theorem 5.2a had been proved already in
1928 by von Neumann, and in special cases even earlier by Borel. In this classical case, the
equilibrium is essentially unique, so that each player has a uniquely defined optimal payoff
when optimal strategies are followed. Nash’s contribution was to introduce and study the
equilibrium concept for more general games. In this more general context, von Neumann’s
ideas were quite different, and were too convoluted for any useful application.

Nash’s Theorem leaves many open questions which have been studied by subsequent
workers. For example, which equilibrium points are likely to be reached in practice? To
what extent are these equilibrium configurations stable? (See §5.5, as well as 5.3b.)

A more serious problem with equilibrium theory is the question as to whether humans
really act like rational agents, trying to maximize some linear utility function. Actually, this
seems rather unlikely. In the economic context (and even more in the evolutionary context
which is discussed below), perhaps the more accurate interpretation is that the equilibrium
principle is a corollary of the selection principle (survival of the fittest). When there are many
competitors, some of them are bound to exploit any deviation from an equilibrium strategy.
Hence any corporation (or any species) which deviates substantially is likely to be punished.

2 Note that real world situations are almost never zero-sum. For example most commercial transactions

are mutually beneficial.
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Over the short term, this will result in diminished prosperity and, over longer periods of
time, species will die out and corporations will fold. The survivors will be those which follow
a close-to-equilibrium strategy.

§5.3. Ecology and Evolution. In an ecological or evolutionary context, consider
a population of organisms which are competing with each other for evolutionary survival.
Maynard Smith speaks of an evolutionarily stable strategy or ESS for such a population when
the equilibrium principle is satisfied, with a suitable stability condition. He writes [in 1995]:

“I was led to the idea when trying to explain ritualized behavior in animal fights.
I did not take the idea seriously until I found that it can be used to explain pecu-
liar sex ratios (as Fisher and Hamilton knew before me), plant growth, animal
migration, male mating behavior, and even the evolution of viruses.”

In this context, the concept of a “strategy” doesn’t seem to make any sense at all.
Perhaps lions may have some conscious hunting strategy, but insects surely do not. Yet this
equilibrium principle is often quite successful in explaining evolution in species as diverse as
lions or insects. In fact, the strategy of a population of organisms must be defined, not as
any conscious set of choices, but rather as the physical capabilities and instincts which are
built into its members. (Compare Appendix A.10.) Maynard Smith writes in [1982, p.10]:

“A ‘strategy’ is a behavioral phenotype; i.e., it is a description of what an indi-
vidual will do in any situation in which it may find itself. An ESS is a strategy
such that, if all the members of a population adopt it, then no mutant strategy
could invade the population under the influence of natural selection. The concept
is couched in terms of ‘strategy’ because it arose in the context of animal behavior.
The idea, however, can be applied equally well to any kind of phenotypic varia-
tion, and the word strategy could be replaced by the word phenotype; for example,
a strategy could be the growth form of a plant, or the age at first reproduction, or
the relative numbers of sons and daughters produced by a parent.”

Such a strategy must be compared with alternative strategies, that is with different
instruction sets or physical capabilities which are attainable by small modifications of the
existing ones. Here the word “attainable” must be emphasized. Again from Maynard Smith

1982 [p. 7]:

“Clearly not all variations are likely for a given species. · · · In some cases,
the possible range of phenotypic variation may be quite sharply circumscribed;
for example Raup (1966) has shown that the shapes of gastropod shells can be
described by a single mathematical expression, with only three parameters free to
vary. Further, the processes of development seem to be remarkably conservative
in evolution, so that the evolution of legs, wings and flippers among the mammals
has been achieved by varying the relative sizes and, to some extent, numbers of
parts rather than by varying the basic pattern, or bauplan.”

Of course it would be advantageous for an organism to be simultaneously stronger and
faster, with sharper senses; but in practice a gain in one area is usually balanced by a loss
in another. To give one explicit example, L. Donehower and his colleagues have recently
discovered that the “p53” protein in mice (and presumably in humans) works to suppress
cancer. (Compare Ferbeyre and Lowe.) Yet mice with too much p53 will age prematurely.
Thus a gain in one area is balanced by a loss in another. As another example, the sickle
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cell gene (described in 3.12c) conveys a definite advantage in leading to greater resistance to
Malaria, but also a definite disadvantage in leading to a proportion of the population with
a debilitating anemia. Thus again a gain in one area is balanced by a loss in another.

To explain the concept of ESS in mathematical terms, let me use the notation E1(s , t)
[respectively E2(s , t) ] for the expected payoff to the first player [or to the second player]
in a two person contest where the first player follows strategy s and the second follows
strategy t . For the moment, I consider only games which are completely symmetric between
the two players. By definition, this means that they have the same set of possible strategies,
and that the expected payoff E2(s , t) to the second player is precisely equal to E1(t , s) .

Consider the situation in which randomly chosen pairs from a large population engage
in a two person competition, and where all of them follow the same mixed strategy s . In
order for this to be an equilibrium against a possible invasion by the alternative strategy a
we must have the following:

Equilibrium Condition 5.3a. The inequality E1(s , s) ≥ E1(a , s) is
satisfied for every possible mutant strategy a . (This says that no single player
can obtain a larger payoff by switching to the strategy a .)

However, if equality holds in 5.3a, then some fraction of the population may adopt strategy
a by random genetic drift. To avoid this, Maynard Smith also requires the following:

Evolutionary Stability Condition 5.3b. If equality holds in 5.3a, then
E1(s , a) > E1(a , a) . (This says that a player whose opponent plays a
will definitely do better to adopt the equilibrium strategy s .)

By definition, the strategy s is an ESS if both 5.3a and 5.3b are satisfied.

Maynard Smith emphasizes that there are two radically different ways of interpreting
this equilibrium theory. There is the mixed strategy interpretation, where all members of
the population are identical, and each one follows a randomized strategy. Alternatively
there is the polymorphic interpretation, which each individual follows a pure strategy, but
there is some mixture of individuals with different pure strategies in the population. In any
detailed study, for example of stability, it is important to be clear as to which interpretation
is intended. Of course, in real world examples, some combination of these two interpretations
would usually be closer to the truth.

This study of a single population is only the beginning of the important applications of
game theoretic ideas to population biology. In more complicated situations, one often has
several quite different populations interacting, for example in a predator-prey relationship.
Even within a single homogeneous species, there can be complicated interactions between
male and female, and between children and adults, which can usefully be described in game-
theoretic terms.

Note also that equilibrium theory is far from the final answer. Hofbauer and Sigmund

write [1998, p. xxiii]:

“The definition of evolutionarily stable strategy (if the residents adopt it, no mu-
tant can invade) is based on an implicit dynamics. It is easy to make this dynam-
ics explicit, by assuming that like begets like. This yields the replicator equation
describing the evolution of the frequencies of different strategies in a population.
Thus dynamics is not merely a prop to sustain arguments from equilibrium the-
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ory. For many games, equilibria alone do not suffice to describe what happens,
and a static outcome cannot be expected. · · · ”

They emphasize that, in an ecological context, actual equilibrium may be too much to
expect. We should be equally satisfied with a periodic or chaotic situation, provided that
the populations of the various species remain bounded away from zero.

For examples illustrating some of the ways in which equilibrium theory theory can be
applied in evolution, see Exercises 5.4d-g below.

§5.4. Some Examples. Here are seven mathematical models, presented as exercises
for the reader, which illustrate the equilibrium principle in various contexts. All of these
models are highly simplified, to illustrate the essence of the competitive situation. The first
three are taken from classical economic theory and from political science.

Exercise 5.4a⋆ . Pricing Spring Water (or Oil). Cournot, in 1838, described a
mathematical model which is rather unsophisticated, but which non-the-less may help us to
understand the power of cartels. He considered n competitors, each able to produce very
large quantities of some commodity at negligible cost. The example he chose was spring
water; but perhaps today the pricing of oil in the Middle East would be an even better
example. Cournot assumed that everything placed on the market would be sold, but that
the price p(s) per unit quantity would be a decreasing function of the total supply s .
Thus, if the i-th producer decides to supply the quantity si , then his or her profit will
be the product si p(s) where s = s1 + · · · + sn is the total supply. In an equilibrium
situation, show that

∂ (si p(s1 + · · · + sn))

∂si
= p(s) + si p

′(s) = 0 .

If the price function p(s) has been specified, this yields the equation

s1 = s2 = · · · = sn = s/n = −p(s)/p′(s) ,

which must be solved for s .

Cournot points out that the producers can usually greatly increase their profits if they are
able and willing to cooperate to limit production. Here is a somewhat exaggerated example.
Suppose that p(s) = 10000/es , so that the price p(s) decreases from p(0) = 10000 to
zero as the total supply s increases from zero to infinity. Show that p(s)/p′(s) = −1 ,
so that at equilibrium we have s1 = · · · = sn = 1 , and s = n . Thus each producer
gets a profit of only si p(n) = 10000/en . On the other hand, with cooperation, show that
their best strategy would be to choose s1 = · · · = sn = 1/n , with total supply s = 1 ,
so that each would obtain a profit of si p(1) = 10000/(ne) . As an example, with twelve
producers, for the equilibrium solution each one obtains a profit of 10000/e12 ≈ 0.06 , but
with cooperation each could get 10000/(12e) ≈ 307 , or almost 5000 times as much.

Exercise 5.4b. Ricardo’s Law of Comparative Cost. This is a fundamental law
which helps to explain the economics of international trade. Suppose that two nations X
and Y both require, and can both produce, two commodities C1 and C2 . (As examples,
these might be wheat or clothing or computer chips.) Suppose that one unit of Ci takes
xi man-hours of work to produce in X , and yi man-hours to produce in Y . As a

⋆ Starred exercises require the use of calculus or infinite series. The unstarred ones are more elementary.
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numerical example, these production costs might be:

x1 = 2 and x2 = 1 man-hours per unit in X ,

y1 = 3 and y2 = 4 man-hours per unit in Y ,

If country X needs the commodity C1 and country Y needs C2 , then their manufacture
would require 2 hours per unit, respectively 4 hours per unit. But if they simply trade on a
one-for-one basis (and if shipping costs can be ignored), then X would need only 1 hour
per unit and Y would need only 3 hours per unit. Thus each country can save one hour
per unit by such a trade.

More generally, whenever the ratio x1/x2 is different from y1/y2 , show that both
countries can profit from a trade. More explicitly, suppose that both nations have the
option only of accepting or rejecting an offer to barter c1 units of C1 , shipped from Y
to X , for c2 units of C2 shipped from X to Y . If the costs of transportation are
negligible, show that acceptance is an equilibrium strategy if and only if

x1

x2

≥
c2

c1

≥
y1

y2

.

This has the consequence that it may be worthwhile for both parties to ship a commodity
from Y to X even if (as in the example above) it takes more man-hours to produce in
Y . This may seem surprising, but helps us to understand why labor intensive products are
so often produced in the third world.

In the real world, things are more complicated, since both sides would try to bargain for
the most favorable exchange ratio c2/c1 . As long as x1/x2 6= y1/y2 there is ample room
for bargaining. (Perhaps the fairest ratio would be the geometric mean

c2

c1

=

√

x1

x2

y1

y2

.

Of course, in practice one also has to worry about shipping costs, tariffs, and monetary
exchange rates. If three or more nations are involved, then the situation becomes even more
complicated.)

Exercise 5.4c. The Median Voter Theorem (Ordeshook [1992]). Consider a two
candidate election in a perfect democracy where the candidates know the positions of the
voters, announce their own positions, and where the voters trust the candidates to carry out
their announced policies. If the object of each candidate is to win, if the possible positions are
simply ordered, and if each voter prefers a candidate as near as possible to his own position,
show that there is a unique equilibrium strategy where both candidates take the position of
the median voter. Ordeshook comments:

“· · · people who complain about the fact that political parties in the United States
often fail to offer the electorate meaningful choices on important issues miscon-
strue the purpose of elections. That purpose is not necessarily to provide mean-
ingful choices; rather it is to select public policy in accordance with majority rule
principles and to assure the rejection of radical candidates.”

Of course we cannot apply this Median Voter Theorem literally to the real world, since
disinformation and moneyed interests (bribes under the guise of political contributions)
play such an important role, at least in the United States and presumably in much of the
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world. Furthermore, the spectrum of possible political positions is not at all simply ordered.
(Ordeshook discusses many of these problems. For more about the theory of elections, see
Saari.) Nevertheless, the theorem does have real meaning in helping us to understand actual
political positions.

Exercise 5.4d⋆. “Tit for Tat”: the Iterated Prisoner’s Dilemma. Perhaps the
most famous example of a non-cooperative game has applications to human behavior, but
is also important in evolutionary theory. The classical Prisoner’s Dilemma game can be
described as follows. Each the two players has the choice of either cooperating (strategy C )
or defecting (strategy D ). The payoff can be described in terms of numbers T > R > P >
S , as follows. If both players choose strategy C , then each one receives a payoff of R (the
reward), while if both choose D , then each one receives P (the punishment). But if the
players choose different strategies, then the defecting player receives T (the temptation)
while the cooperative player receives S (the sucker’s payoff). Show that there is a unique
equilibrium point, with both players defecting.

Now suppose that this game takes place many times with the same two players. To
make this precise, suppose that after each round there is some fixed probability p < 1
of there being at least one more round, where p is independent of the number of rounds
already played, and is independent of the wishes of the players. Suppose also that the total
payoff to each player is just the sum of the payoffs to this player in the individual rounds.
Evidently larger values of this probability p are more likely to encourage cooperation. If
the probability of further rounds satisfies p ≥ (T −R)/(T −P ) , show that there is not only
the (very unfortunate) equilibrium point at which both players always choose D , but also
a much more satisfactory equilibrium point with the strategy for both players as follows:

Grudging Cooperation. Keep playing the cooperative strategy C as long as
the other player does so. But as soon as the other player defects, switch to D
for all subsequent rounds of the game.

If both players follow this strategy, note that they will actually cooperate on every play.
However, it is a rather terrible strategy in practice, because of its unforgiving nature.

Now suppose that p also satisfies p ≥ (T − R)/(R − S) . Show that there is then a
more forgiving equilibrium strategy as follows:

Tit for Tat. Play the cooperative strategy C on the first round, and henceforth
mimic the strategy of the opponent, choosing D or C according as the opponent
has chosen D or C on the previous round.

As an example, suppose that T = 4 , R = 2 , P = 0 , S = −1 , so that the “temptation”
is relatively rather strong. Nevertheless, show that the Grudging Cooperation strategy for
both players forms an equilibrium point provided that p ≥ 1/2 , while the Tit for Tat
strategy for both players constitutes an alternative equilibrium point if p ≥ 2/3 .

Experimental tests by Robert Axelrod in 1980 showed that the Tit for Tat strategy can
be quite effective in practice. Both Allied and German troops seem to have used something
like it during trench warfare in the first World War. (For further discussion, see Flake.) In
fact, animal experiments have shown that even birds and fish can sometimes be observed to
follow something like this strategy. (Compare Milinski.) Such results are of great interest
in evolutionary theory since they help to explain the apparent paradox that animals (and
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humans) often cooperate with each other, although a naive understanding of the selection
principle might predict total selfishness.

Remark. By definition, the players in a non-cooperative game do not communicate
with each other. The idea is that, if some communication is possible, then this possibility
should be incorporated into the description of the set of pure strategies. In practice, animals
surely do communicate with each other, by body language and scent as well as by sound. It
must be very difficult to take such effects into account.

Exercise 5.4e. Sex Ratios. Here is a classical example, studied already by R. A.
Fisher. Consider a reasonably stable population made up of P males and P females.
Is it more advantageous to have a male child or a female child? Assume, to simplify the
discussion, that, in the next generation, each female will have an average of two children,
and that all of the males will have equal chances of being the father of each child. Show then
that the expected number of children for each male is 2P /P . Thus, if the object is to
have as many grandchildren as possible, then it is better to have a male child if P < P ,
but is better to have a female child if P > P . The only evolutionarily stable strategy for
the species is to have equal numbers of males and females.

Note: Many populations do have roughly equal numbers of males and females, but there
are certainly exceptions. One notable exception, among the social insects, actually serves
as a vindication of the theory, since the entire mechanism for sex determination is quite
different, and leads to a different prediction. However, sex ratios in human populations are
also sometimes very far from the 50:50 norm. (Compare Hrdy.) The causes appear to
be social rather than biological: In some cases, the explanation seems to involve selective
abortion or even infanticide, while in others it is simply a matter of better care for male
children.

The last two examples, due to Maynard Smith, are described in an evolutionary context,
but are also relevant to some kinds of human competition.

Exercise 5.4f. Aggression or Appeasement. Consider the following two pure strate-
gies, for example for a contest between two animals of the same species.

“Hawk” Strategy:3 Always fight to the finish, gaining a payoff of W with
a win, but incurring damage of L in case of a loss so that the payoff will be
−L , where L > W > 0 . Assuming that each of the two contestants is equally
likely to win, the expected payoff for a hawk in confrontation with another hawk
is equal to the average of W and −L , that is (W − L)/2 < 0 .

“Dove” Strategy: In case of a confrontation between two doves, the two animals
glare at each other until one gives up. Thus the winner gains a payoff of W
while the loser gets zero, so that the expected payoff to each is W/2 > 0 . In
case of confrontation with a hawk, the dove runs away, so that the hawk wins
W and the dove gets zero.

Let h be the proportion of hawks in the population, and let 1 − h be the proportion of
doves. Show that the expected payoff to a dove in an encounter with a random member of the
population is (1−h)W/2 , while the expected payoff to a hawk is (1−h)W +h(W −L)/2 .

3 Here the words hawk and dove are used as political terms, and have little or no relationship to the

behavior of the birds with these names.
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Conclude that it is better to be a hawk if h < W/L , but better to be a dove if h >
W/L . Thus there is a unique equilibrium situation where the proportion of hawks is exactly
h = W/L . In this stable situation, note that any animal, hawk or dove, has an expected
payoff of (1 − W

L
) W

2
> 0 from each random encounter.

Remarks. For fixed W , if we increase the threatened loss L , note that W/L , the
equilibrium proportion of hawks, will decrease. This seems intuitively reasonable, since the
hawk strategy becomes less desirable as L increases. Paradoxically, it is true to such an
extent that the equilibrium payoff (1 − W

L
) W

2
to both players actually gets larger as L

gets larger with W fixed, even though the expected payoff Ej(s1 , s2) to either player is
either fixed or gets smaller as L increases with s1 and s2 fixed.

Note that the best result for all animals involved would occur if there were no hawks at
all, so that the expected payoff in each encounter would be W/2 . However, as is common
in equilibrium theory and in human affairs, such an idyllic strategy would be inherently
unstable. In a population consisting mostly of doves, any hawk would prosper dramatically.

Exercise 5.4g⋆. A “War of Attrition”. Two animals of the same species will some-
times compete with each other, without actually fighting, simply by wearing each other down
until one of the two gives up, say after time T . Suppose that there is a benefit of +1 to
the winner, but suppose that both animals incur a cost of kT for the time and effort spent
in contesting, where k > 0 is some constant. In other words, suppose that the net payoff to
the winner is 1− kT , while the net payoff to the loser is −kT . Let us consider a strategy
s in which the probability of giving up during a time interval of length dt is equal to
p(t)dt , where p(t) > 0 is some smooth function with

∫

∞

0 p(t)dt = 1 . If animal number
2 follows such a strategy s with probability distribution p2(t)dt , and if animal number 1
chooses the strategy of giving up at time T , let E1(T , s) be the resulting expected payoff
to animal 1. Show that

E1(T , s) =
∫ T

0

(1 − kt) p2(t)dt − kT
∫

∞

T
p2(t)dt ,

where the first and second derivatives with respect to T are given by

E′

1(T , s) = p2(T ) − k
∫

∞

T
p2(t)dt , and E′′

1 (T , s) = p′2(T ) + k p2(T ) .

If the choice of strategy s for both contestants is an equilibrium, then the function
T 7→ E1(T , s) must be constant, so that E′

1 = E′′

1 ≡ 0 . Show then that

p2(t) = ke−kt and
∫

∞

T
p2(t)dt = e−kT .

Since E1(0 , s) = 0 and since the derivative E′

1(T , s) is identically zero, it follows
that the expected payoff E1(T , s) is identically zero. Thus, against an opponent choosing
the strategy s , the expected payoff will always be zero, regardless of what strategy is chosen.
It follows that there is an equilibrium situation in which all of the contestants follow this
strategy s . In fact Maynard Smith [in 1982] notes the sharper statement that this is the
unique equilibrium, and that it is evolutionarily stable.
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Remarks. This same probability distribution, with exponential decay of probabilities,
occurs in the study of radioactive decay. Note that the associated half-life, that is the unique
number H such that there is a 50% chance of giving up by the time H , is inversely
proportional to the constant k . (More precisely, H = ln(2)/k .)

As often happens with non zero-sum games, this equilibrium strategy is not at all ad-
vantageous to the contestants. Against this equilibrium strategy s , the expected payoff
E1(T, s) is zero for every possible stopping time T ; but if the two animals were willing and
able to cooperate so that one of the two would give up immediately, then each could have a
fifty percent chance of winning, and the expected payoff would be 0.5 > 0 . A more puzzling
problem with this equilibrium solution is that it seems to be rather unstable. Compare the
discussion in 5.5c below.

§5.5. Stability. Considerations of stability in equilibrium theory are clearly important,
but are also rather subtle, and depend very much on context. Thus Maynard Smith’s discus-
sion of stability is concerned with the case of a large population of individuals who all choose
the same mixed strategy, with pairwise competitions between randomly chosen individuals.
Different interpretations would be appropriate in an economic context, and quite different
interpretations in a game with only two players.

Let me consider the relatively simple case of a (not necessarily symmetric) game between
two opponents who are trying to outwit each other. Intuitively I would like to describe a
Nash equilibrium point as “stable” if any deviation from the equilibrium strategy is likely
to be punished, and “unstable” if at least one of the players may be strongly tempted to
deviate. Here is an attempt to make this precise.

Suggested Definition. A Nash equilibrium point will be called strategically
stable if any player who deviates from his equilibrium strategy will either have
an immediate reduction of expected payoff, or can be punished by a change in
strategy by the opponent which decreases the expected payoff for the deviating
player while increasing the expected payoff for the opponent.

Thus, with notation as in 5.3, the equilibrium pair (s1 , s2) is strategically stable if, for
every alternate strategy a1 6= s1 by the first player, either

E1(a1 , s2) < E1(s1 , s2) (5 : 1)

so that the change is immediately disadvantageous, or else equality holds but there exists a
counter-strategy c2 so that

E1(a1 , c2) < E(s1 , s2) and E2(a1 , c2) > E2(a1 , s2) ; (5 : 2)

with similar inequalities when the roles of the two players are interchanged. This is quite dif-
ferent from Maynard Smith’s evolutionary stability condition 5.3b. Here is a simple example
which illustrates the difference.
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Example 5.5a. Trying to be Different. Each of two players chooses either M or
F. The payoff is +1 to both players if they make different choices, but −1 if they make
the same choice. This game has three equilibrium points, namely the symmetric equilibrium
with an expected payoff of zero, where each players flips a coin to decide, but also two pure
strategy equilibria where one player chooses M and the other chooses F. If we think of this
as an evolutionary game, then the symmetric equilibrium is the unique ESS. (This can be
thought of as a simplified version of the sex ratio game of 5.4e.) However, if we think of it
as a simple contest between two players, then the two non-symmetric equilibria are much
more satisfactory, and are the only “strategically stable” equilibria.

Example 5.5b. Rock-Scissor-Paper. Consider the children’s game in which each of
the two players simultaneously chooses either R, S or P (Rock, Scissors, or Paper); where
R wins against S , while S wins against P , and P wins against R . The payoff
is to be +1 to the winner and −1 to the loser; or zero to both players in case of a tie.
Suppose that Player 2 follows an announced mixed strategy, choosing:

R with probability r , S with probability s , or P with probability p ,

where r + s+ p = 1 . Then if Player 1 chooses R then 1’s expected payoff will be s− p ,
and similarly if he chooses S or P , his expected payoff will be p − r or r − s . Thus
if any one of these three differences is positive, then 1 can make a choice so as to win on
the average. It follows that the only way that 2 can prevent 1 from coming out ahead is
to choose the mixed strategy with r = s = p = 1/3 , so that all three differences are zero.
There is a unique equilibrium point in which both players use this mixed strategy; and this
equilibrium point is clearly “strategically stable”, since any deviation from equilibrium can
be punished by the other player.

On the other hand, this equilibrium is not an ESS. Since this is a zero-sum game, it
follows by symmetry that E1(a , a) is zero for every possible a . Since E1(s , a) is also
identically zero, this shows that the equilibrium solution (s , s) is not evolutionarily stable
in Maynard Smith’s sense. Hofbauer and Sigmund comment as follows [1998, p. xxiv]:

“It used to be thought that the rock-scissors-paper game was just a conundrum de-
vised for the amusement of theoreticians, until it was found that lizards do play it:
one of their species has three different types of male with different mating strate-
gies (they are conveniently distinguished by their throat color). Type A keeps one
female and guards it closely; Type B keeps several females and necessarily guards
them less closely; and C guards no females at all and looks out for sneaky mat-
ings with unguarded females. The three types can invade each other cyclically.4

Similar ratchets can occur in parasitology.”

Example 5.5c. Stability in the War of Attrition Game. The unique equilibrium
described in 5.4g is evolutionarily stable, but is far from “strategically stable”. To see this,
for every positive constant ℓ let σℓ be the strategy with probability distribution pℓ(t)dt
where pℓ(t) = ℓ e−ℓt . Thus, for the equilibrium situation both players choose the strategy
σk , taking ℓ = k . But suppose that one player deviates from the equilibrium by choosing
σℓ for some constant ℓ < k . (Thus, on the average, the deviating player will hold out
for longer than an equilibrium player.) There is no immediate penalty for this, since against

4 More precisely, C can invade B , which can invade A , which can invade C .
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the equilibrium strategy the expected payoff is always exactly zero. However, computing
E1(T , σℓ) and its derivative E′

1(T , σℓ) as in 5.4g, we find that

E′

1(T , σℓ) = (ℓ − k)e−ℓT < 0.

In other words, against this deviant strategy, the longer a player waits the lower his ex-
pected payoff will be. The best that the victimized player can do in this situation is to give up
immediately, obtaining the equilibrium payoff of zero for himself, but yielding a payoff of +1
to the deviating player. Thus a contestant will be strongly rewarded for deviating from the
equilibrium strategy. I am quite puzzled as to what choice a rational contestant should make
in a game of this sort, where the only known equilibrium point is so strongly unstable.

§5.6. References and Remarks. The theories described here have their origins
in the classical works by Cournot, by Nash, and by Maynard Smith and Price. For
some refinements of Nash’s work, see Weibull §1.4; and for more about Nash, see Nasar

and also Milnor 1995. For a fuller presentation of Maynard Smith’s work, see his 1982
book which includes studies of the underlying dynamics, information transfer, bargaining,
cooperation, and stability. More recent presentations emphasizing both the dynamic and
the game theoretic approaches to evolution have been given by Weibull, and by Hof-

bauer and Sigmund. For a less technical discussion of game theory, see Flake, and for
less technical expositions of evolution, including some game theory, see the various books
by Dawkins, for example “River out of Eden”. For the evolution of cooperation, see Ax-

elrod, or Nowak, May and Sigmund, or Ridley 1996, as well as other publications of
Sigmund. For the complicated dynamics associated with predator-prey situations, see May,
and for an observed example see the discussion of lynxes and hares in Leaky and Lewin.
For applications of equilibrium theory to political science, see Ordeshook; and for an ex-
position of the view that human economic behavior is actually highly irrational and chaotic,
see Ormerod, or Thaler, as well as Lewis. For stability in classical economic theory, see
Arrow and Hahn.

If there is a moral to this section, it is the following fairly obvious one: Unrestrained
competition or conflict is usually bad for all concerned—that is why we have laws. Ideally,
a major focus of game theory, in the analysis of economics and politics, should be to study
the extent to which changes in the rules of the game, that is changes in law, can mitigate
this effect and help to promote the general welfare. Of course, in practice things are not so
easy. Even if one could develop a clear and almost universally accepted theory, it would be
very difficult to put such changes into effect. Any change in rules is bound to disadvantage
someone; and in practice, much more effort is spent in studying how to bend or modify the
rules in order to benefit particular individuals, or corporations, or political organizations.


