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Abstract

We prove the existence of solutions to−div a(x, grad u) = f , together with appropriate boundary

conditions, whenever a(x, e) is a maximal monotone graph in e, for every fixed x. We propose an adequate

setting for this problem, in particular as far as measurability is concerned. It consists in looking at the

graph after a 45◦ rotation, for every fixed x; in other words, the graph d ∈ a(x, e) is defined through

d − e = ϕ(x, d + e), where ϕ is a Carathéodory contraction on RN . This definition is shown to be

equivalent to the fact that a(x, ·) is pointwise monotone and that, for any g ∈ [Lp′(Ω)]N and any δ > 0,

the equation d+ δ |e|p−2e = g has a solution (e, d) with d ∈ a(x, e). Under additional coercivity and

growth assumptions, the existence of solutions to −div a(x, grad u) = f is then established.

Dimostriamo l’esistenza delle soluzioni per l’equazione −div a(x, grad u) = f con opportune

condizioni al bordo, nel caso in cui a(x, e) sia un grafico massimale monotono in e per ogni x fissato.

Innanzitutto proponiamo un quadro adeguato per questo problema, in particolare per quel che concerne

la misurabilità. Queso consiste nel considerare il grafico dopo una rotazione di 45◦ per ogni x fissato.

In altre parole, il grafico d ∈ a(x, e) e definito da d − e = ϕ(x, d + e) dove ϕ è una contrazione di

Carathéodory su RN . Mostriamo che questa definizione è equivalente al fatto che a(x, ·) è puntualmente

monotono e che, per ogni g ∈ [Lp′(Ω)]N ed ogni δ > 0, l’equazione d+ δ |e|p−2e = g ha una soluzione

(e, d) con d ∈ a(x, e). Si dimonstra poi l’esistenza delle soluzioni di −div a(x, grad u) = f sotto

ipotesi di crescita e coercitività.

I. Introduction

Maximal monotone operators are hardly a new topic. Since the 1960’s, an abundant
literature has been produced in two main directions. A significant fraction of that literature
is devoted to abstract maximal monotone operators from a Banach space into its dual. This
is not our concern in the present study. An equally significant fraction examines “concrete”
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operators, the model of which is{
− div a(x, grad u) = f in Ω,
u = 0 on ∂Ω.

Whenenever a(x, ξ) : Ω × RN → RN is a (univalued) Carathéodory function which fur-
ther satisfies appropriate growth and coercivity conditions, existence is classical (see e.g.
[Le&Li], [Li]).

In this study we investigate equations of the form

−div d = f in D′(Ω),

with (grad u(x), d(x)) ∈ A(x), where A(x) is, for each x, a maximal monotone graph. That
so few results concerning this class of equations should be available came as a surprize to
us. But, in all fairness, it is a near impossible task to survey the relevant literature, so
that the results that are presented here might have been previously derived, unbeknownst
to us. If such should be the case, we will gladly apologize for the oversight, and will duly
acknowledge the anteriority of the ignored contribution.

Even more surprizing to us is the apparent absence (with the same caveat) of available
results in the case where the graph is x–independent. Note that a very simplified version
of the proofs developed below yields existence in such a setting.

To our knowledge, the only existence result available is to be found in [CP&DM&De],
Theorem 2.7]. We reproduce the statement of that theorem for the reader’s convenience.

Theorem 1.1. Assume that A(x) ⊂ RN×RN is an x–dependent graph with the following
properties:
(i) {d ∈ RN : (e, d) ∈ A(x)} is closed for a.e. x in Ω and every e in RN ;
(ii) A(x) is maximal monotone for a.e. x in Ω;
(iii) there exists 1 < p < +∞, m(x) ≥ 0 in L1(Ω), and α > 0 such that, for a.e. x in Ω

and every (e, d) in A(x)

d.e ≥ −m(x) + α(|e|p + |d|p
′
)

with and
1
p

+
1
p′

= 1;

(iv) for any closed set C of RN ,{
(x, e) ∈ Ω× RN : there exists d ∈ C such that (e, d) ∈ A(x)

}
is measurable with respect to the σ-algebra L(Ω) ⊗ B(RN ), where L(Ω) denotes the
σ-algebra of Lebesgue measurable subsets of Ω and B(RN ) that of all Borel subsets of
RN .

Then, for every f ∈W−1,p′(Ω), there exists a solution (u, d) to
u ∈W 1,p

0 (Ω), d ∈ [Lp′(Ω)]N ,
− div d = f in D′(Ω),
(grad u(x), d(x)) ∈ A(x) a.e. in Ω.
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The drawback of the above theorem is that assumption (iv), the measurability as-
sumption, seems difficult to check in concrete cases. Furthermore, its proof uses delicate
measurability selection theorems.

In this study, we propose a class of graphs for which measurability becomes obvious.
Specifically, we investigate monotone graphs Aϕ(x) of the form

Aϕ(x) =
{
(e, d) ∈ RN × RN : d− e = ϕ(x, d+ e)

}
,

for a.e. x in Ω, where ϕ(x, λ) : Ω × RN → RN is a Carathéodory contraction, i.e., is
measurable in x for every λ and satisfies, for a.e. x in Ω,

|ϕ(x, λ)− ϕ(x, λ′)| ≤ |λ− λ′|, λ, λ′ ∈ RN .

Such graphs are easily seen to be maximal monotone (cf. Lemma 2.1 below); the idea
of a 45◦ rotation of the graph as a useful tool for the study of monotone operators goes
back to Minty, who proved an analogous result without x-dependence [Mi].

If we further assume coercivity and growth in the sense of (iii) of the above men-
tioned theorem, we then prove an existence result (Theorem 2.3 below). Note that the
class we propose, although apparently different from the class of graphs considered in
[CP&DM&De], is in fact identical. This was pointed out to us by G. Dal Maso, and his
proof of the equivalence is given in Remark 2.2 below. In that respect, our existence result
is not new. Our proof is however completely different, in particular because it eschews all
the intricacies stemming from the measurability assumption (iv) of Theorem 1.1.

Section 2 details the setting and the main result (Theorem 2.3), while Section 3
proposes a first proof of that theorem with the help of a graph regularization in RN .
Section 4 proves a similar existence result under different hypotheses, namely maximality
and monotonicity in [Lp(Ω)]N × [Lp′(Ω)]N plus coercivity and growth (Theorem 4.4); note
that in this theorem the operator is not assumed to be local. Section 5 reconciles the results
of Theorems 2.3 and 4.4 by establishing a result of interest in its own right, essentially the
equivalence between maximality in [Lp(Ω)]N × [Lp′(Ω)]N plus pointwise monotonicity and
the existence of a monotone graph Aϕ(x), where ϕ is a Carathéodory contraction. At the
end of that Section we observe (Remark 5.8) that subdifferentials of convex Carathéodory
functions with appropriate coercivity and growth conditions are particular cases of the class
under investigation. Section 6 investigates variants of the existence result when a zeroth
order term is added or when ϕ, and therefore a, depends on the field u, a generalization
of the so-called Leray-Lions operators.

Finally, we do not use the maximum principle at any point in this study, and identical
results for systems or higher order equations with various variational boundary conditions
could be similarly obtained.

2. The framework and the existence result

At the onset of this section we reestablish a simple equivalence lemma which justifies
the standpoint adopted in this paper. By definition A ⊂ RN × RN is a monotone graph
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of RN × RN if and only if

(e, d) ∈ A
(e′, d′) ∈ A

}
=⇒ (d′ − d).(e′ − e) ≥ 0,

where, from now onward · denotes the Euclidean inner product on RN . Further, A is said
to be maximal if and only if, whenever (e, d) ∈ RN × RN is such that

(d′ − d).(e′ − e) ≥ 0, ∀(e′, d′) ∈ A,

then (e, d) ∈ A. In other words, there is no strict monotone extension of A.
By definition a (possibly multivalued) function ϕ defined on a subset of RN – its

domain domϕ – with values in RN is a contraction if and only if

(λ, µ) ∈ graph ϕ
(λ′, µ′) ∈ graph ϕ

}
=⇒ |µ′ − µ| ≤ |λ′ − λ|,

in which case ϕ is actually univalued.
To any A ⊂ RN × RN we associate the multivalued function ϕA defined on a subset

of RN with values in RN as follows:

(λ, µ) ∈ graphϕA ⇐⇒ ∃(e, d) ∈ A, λ = d+ e, µ = d− e.

Conversely, to any multivalued function ϕ defined on a subset of RN with values in RN

we associate Aϕ ⊂ RN × RN defined as

Aϕ = {(e, d) ∈ RN × RN : d− e ∈ ϕ(d+ e)}. (2.1)

Note that ϕAϕ
= ϕ and AϕA = A.

Then, the following lemma whose proof can also be found in [Mi], Lemma 3 and
Theorem 4, or in [Al&Am], Proposition 1.1, holds true:

Lemma 2.1. A ⊂ RN ×RN is a monotone graph if and only if ϕA is a contraction on its
domain domϕA. Furthermore, A is maximal if and only if domϕA = RN .

Proof. Let (e, d), (e′, d′) ∈ RN × RN . Since

|(d′ + e′)− (d+ e)|2 − |(d′ − e′)− (d− e)|2 = 4(d′ − d).(e′ − e),

where | · | denotes the Euclidean norm on RN , the following equivalence holds:

(d′ − d).(e′ − e) ≥ 0 ⇐⇒ |(d′ − e′)− (d− e)|2 ≤ |(d′ + e′)− (d+ e)|2.

This proves the first part of the lemma.
Consider a monotone graph A. Assume that domϕA = RN and consider (e, d) ∈

RN × RN such that
(d′ − d).(e′ − e) ≥ 0, ∀(e′, d′) ∈ A.
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Set λ := e+ d and define (e′, d′) ∈ A by{
d′ + e′ = λ,

d′ − e′ = ϕA(λ).

Since (d′ − d).(e′ − e) ≥ 0,

|(d− e)− ϕA(λ)|2 = |(d− e)− (d′ − e′)|2 ≤ |(d+ e)− (d′ + e′)|2 = |λ− λ|2 = 0.

Thus d− e = ϕA(λ) = ϕA(d+ e) and (e, d) ∈ A, which proves the maximality of A.
Conversely, assume that domϕA 6⊆ RN . Then, according to Kirszbraun’s theorem

(see e.g. [Fe], [Mi]), there exists an extension ϕ̃A of ϕA which is a contraction on all of
RN . Consider λ 6∈ domϕA and set {

d+ e = λ,

d− e = ϕ̃A(λ).

Then, for any (e′, d′) ∈ A,

|(d′ − e′)− (d− e)| = |ϕA(d′ + e′)− ϕ̃A(d+ e)|
= |ϕ̃A(d′ + e′)− ϕ̃A(d+ e)| ≤ |(d′ + e′)− (d+ e)|.

Thus (d′ − d).(e′ − e) ≥ 0, i.e., A is not maximal.

In the light of the previous lemma, maximal monotone graphs of RN ×RN are equiva-
lently defined through contractions defined on all of RN , which is the standpoint we adopt
from now onward. An identical stanpoint is adopted in [Al&Am] who discuss the fine
properties of monotone graphs of RN × RN .

Throughout the remainder of this paper, Ω is a bounded open domain in RN ,
p ∈ (1,∞) and p′ = p/(p− 1) is its Hölder conjugate exponent, m(x) a fixed non-negative
function in L1(Ω) and α is a strictly positive real number.

We define M(α,m, p,Ω) as the set of functions ϕ(x, λ) : Ω × RN → RN with the
following properties:

• ϕ is Carathéodory; (2.2)
• ϕ(x, ·) is a contraction for a.e. x in Ω; (2.3)
• if for any given λ in RN , e(x) and d(x) are defined, for a.e. x in Ω, as{

d(x) + e(x) = λ,

d(x)− e(x) = ϕ(x, λ),

then, for a.e. x ∈ Ω,

d(x).e(x) ≥ −m(x) + α(|e(x)|p + |d(x)|p
′
); (2.4)
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• ϕ(x, 0) = 0, for a.e. x ∈ Ω. (2.5)
For a.e. x in Ω we further denote by Aϕ(x) the graph associated to ϕ(x, ·) as in (2.1).
Note that, due to (2.5), (0, 0) ∈ Aϕ(x). Throughout the remainder of the study, we

will always assume that (0, 0) belongs to the investigated graphs. When ϕ satisfies (2.2)–
(2.4), it is always possible to reduce to the case ϕ(x, 0) = 0 whenever there exists some
d0 ∈ [Lp′(Ω)]N such that

ϕ(x, d0(x)) = d0(x) for a.e. x in Ω,

or in other terms such that (0, d0(x)) ∈ Aϕ(x) ; indeed defining ϕ̂, ê and d̂ by

ϕ̂(x, λ̂) = ϕ(x, λ̂+ d0(x))− d0(x), ê(x) = e(x), d̂(x) = d(x)− d0(x),

it is easy to see that ϕ̂ satisfies (2.2)–(2.5) for some m̂ in L1(Ω) and some α̂ > 0.
Observe that for Ω, p and m fixed, the set M(α,m, p,Ω) is non empty whenever α

is sufficiently small: indeed the function ϕ(x, λ) = ϕ(λ) = |e|p−2e − e, where e is defined
from λ by |e|p−2e + e = λ, belongs to M(α,m, p,Ω) when α ≤ 1 /2 and m(x) ≥ 0 (the
graph Aϕ associated to this function is {(e, d) : d = |e|p−2e} ⊂ RN × RN ). In contrast
the setM(α,m, p,Ω) can be empty if α is too large, since when α > sup ((1 /p), (1 /p′)),
(2.4) and Young’s inequality imply

|e(x)|p + |d(x)|p
′
≤ Cm(x),

in contradiction with the fact that e(x) and d(x) can be choosen such that d(x)+ e(x) = λ
for every λ ∈ RN .

Remark 2.2. As already said in the introduction, {Aϕ(x) : ϕ ∈M(α,m, p,Ω)} is precisely
the set of x–dependent graphs considered in Theorem 1.1 which satisfy the additional
condition (0, 0) ∈ A(x), as communicated to us by G. Dal Maso whose proof we reproduce
now.

Indeed, by Theorem 1.3 in [CP&DM&De], under the assumption (i), the measurability
assumption (iv) of Theorem 1.1 is equivalent to the fact that

E := {(x, e, d) ∈ Ω× RN × RN : (e, d) ∈ A(x)}

belongs to the σ-algebra L(Ω)⊗ B(RN )⊗ B(RN ). Since, by Lemma 2.1, we have

(e, d) ∈ A(x) ⇐⇒ d− e = ϕ(x, d+ e) ,

we can write

E = {(x, e, d) ∈ Ω× RN × RN : d− e = ϕ(x, d+ e)} = Φ−1(F) ,

where Φ:Ω× RN × RN → Ω× RN × RN is defined by

Φ(x, e, d) := (x, d+ e, d− e)
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and
F := {(x, λ, µ) ∈ Ω× RN × RN : µ = ϕ(x, λ)} .

Therefore, under the assumptions (i), (ii), and (iii) of Theorem 1.1, the measurability
assumption (iv) is equivalent to the fact that F belongs to the σ-algebra L(Ω)⊗B(RN )⊗
B(RN ), which by Theorem 1.3 of [CP&DM&De] is equivalent to the fact that ϕ: Ω×RN →
RN is measurable with respect to the σ-algebrae L(Ω)⊗B(RN ) and B(RN ). Since ϕ(x, ·)
is a contraction for a.e. x ∈ Ω, this measurability condition is equivalent to the fact that
ϕ is Carathéodory.

Therefore the graphs Aϕ(x) considered here are exactly those graphs of Theorem 1.1
(Definition 2.1 of [CP&DM&De]) for which (0, 0) ∈ A(x).

Our main goal in this paper is to prove the following theorem, which in view of the
above remark, is identical to Theorem 2.7 of [CP&DM&De], but with a completely different
proof:

Theorem 2.3. Consider ϕ ∈ M(α,m, p,Ω). For any f ∈ W−1,p′(Ω) there exists u and d
such that 

u ∈W 1,p
0 (Ω), d ∈ [Lp′(Ω)]N ,

− div d = f in D′(Ω),
d(x)− grad u(x) = ϕ(x, d(x) + grad u(x)), for a.e. x in Ω,

(2.6)

(or equivalently (grad u(x), d(x)) ∈ Aϕ(x) for a.e. x in Ω).

We present two separate proofs of Theorem 2.3 in Sections 3, 4 and 5, respectively. The
first proof consists in a regularization of the graph of ϕ in RN , which naturally leads us to a
strongly monotone problem in W 1,2

0 (Ω). The second proof boils down to a regularization of
a monotone graph in [Lp(Ω)]N × [Lp′(Ω)]N associated to Aϕ. Both proofs use the abstract
existence theorem for univalued, monotone, continuous, bounded and coercive operators
on a reflexive Banach space stated in Theorem 2.4 below. Note that the first proof only
uses it in a Hilbert space setting where it can be derived through application of Banach’s
fixed point theorem (cf. e.g. [Bre2], Theorem V.6, in the linear case), while the second
proof is concerned with a Banach space in which case Brouwer’s fixed point theorem is
used (cf. e.g. [Li], Chapter 2, Theorem 2.1).

Theorem 2.4. Let V be a reflexive Banach space and A : V → V ′ be a univalued,
monotone, continuous and bounded operator. Assume further that A is coercive, i.e.,

lim
‖v‖↑+∞

< A(v), v >
‖v‖V

= +∞.

Then, A is onto.

Besides this, the proofs in the present paper only use elementary tools, except in
Section 6, a short section devoted to variants of Theorem 2.3, where Schauder’s fixed point
theorem is also used.
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Concerning notation, throughout the paper ‖ ‖Lp(Ω) denotes the norm in both Lp(Ω)
or [Lp(Ω)]N depending on its argument, C denotes a generic positive constant in bounding
estimates, so that, for example, 2C can be replaced by C.

For the reader’s convenience, we should stress that from now onward the word “func-
tion” will always refer to univalued functions, while the expression “graph of E × F” will
refer to a subset of E × F , seen as a multivalued function from a subset of E into F .
Also, the notation (e, d) can be easily understood in reference to electric field and flux,
respectively.

Finally, the calligraphic character A will always refer to a graph of RN × RN (M, to
a set of functions associated to graphs of that type), while the slanted character A will
refer to a graph of [Lp(Ω)]N × [Lp′(Ω)]N (M , to a set of such graphs).

3. Proof of Theorem 2.3 by a graph regularization in RN

In this section, we propose a proof of Theorem 2.3 which uses a regularization of the
pointwise graph of the operator.

Consider a Carathéodory contraction ϕ(x, λ), that is a ϕ that satisfies (2.2), (2.3),
and also assume that ϕ(x, ·) is a strict contraction for a.e. x in Ω, i.e., that

|ϕ(x, λ)− ϕ(x, λ′)| ≤ θ|λ− λ′|, λ, λ′ ∈ RN , (3.1)

with 0 < θ < 1. Then,

Lemma 3.1. If ϕ is a strict Carathéodory contraction ((2.2), (3.1)), then for a.e. x in Ω,
Aϕ(x) is the graph of a strongly monotone (single valued) function a(x, ·) defined on all of
RN . Furthermore a(x, e) is Carathéodory on Ω×RN and Lipschitz in e, almost uniformly
in x ∈ Ω.

Proof. According to (2.1), if (e, d), (e′, d′) ∈ Aϕ(x), then

|(d′ − e′)− (d− e)|2 ≤ θ2|(d′ + e′)− (d+ e)|2,

that is, upon setting

Cθ :=
1− θ2

2(1 + θ2)
> 0, (3.2)

(d′ − d).(e′ − e) ≥ Cθ(|d′ − d|2 + |e′ − e|2), (3.3)

which immediately proves that Aϕ(x) is the graph of a single valued, strongly monotone,
Lipschitz function denoted by a(x, ·); in other words, the mapping e 7→ d is single valued,
and d = a(x, e).

The domain of a(x, ·) is all of RN , as well as its range; indeed, for every e ∈ RN ,
a(x, e) is the unique d such that d−e = ϕ(x, e+d), because it is the only fixed point of the
mapping d 7→ e+ϕ(x, e+ d), a strict contraction on RN for almost every x ∈ Ω; similarly,
for every d ∈ RN , a−1(x, d) is the unique e such that d− e = ϕ(x, e+ d), because it is the

8



only fixed point of the mapping e 7→ d−ϕ(x, e+ d), a strict contraction on RN for almost
every x ∈ Ω.

It merely remains to prove that a(x, e) is Carathéodory. Fix e in RN , then a(x, e) is
the fixed point of the Carathéodory mapping

d 7→ Φ(x, d) := e+ ϕ(x, d+ e),

which is given as the almost pointwise limit of the sequence{
dn+1(x) = Φ(x, dn(x)),

d0(x) = 0.

Since Φ is Carathéodory, each dn(x) is measurable on Ω hence a(x, e), their almost point-
wise limit.

Remark 3.2. Note that the previous lemma does not use (2.4) nor (2.5).
Consider now ϕ ∈M(α,m, p,Ω) and define, for η > 0,

ϕη(x, λ) :=
1

1 + η
ϕ(x, λ). (3.4)

Then ϕη satisfies (2.5) and (3.1) with θ = 1/(1 + η).
According to Lemma 3.1, the associated aη(x, e) is Carathéodory, Lipschitz and

strongly monotone since it satisfies, for the constant cη := C1/(1+η) (cf. (3.2))
(aη(x, e′)− aη(x, e)).(e′ − e) ≥ cη(|aη(x, e′)− aη(x, e)|2 + |e′ − e|2),

with
cη
η
→ 1

2
when η → 0.

(3.5)

Furthermore, since ϕη(x, 0) = ϕ(x, 0) = 0, aη(x, 0) = 0. Consequently, aη(x, ·) is mono-
tone, 2-coercive, and Lipschitz, almost uniformly in Ω for η fixed. Then, the assump-
tions of Theorem 2.4 are trivially met by Aη : W 1,2

0 (Ω) → W−1,2(Ω) defined as Aηu :=
−div (aη(x, grad u)), so that, for any g ∈ [L∞(Ω)]N there exists a (unique) solution to{

− div (aη(x, grad uη)) = −div g in D′(Ω),

uη ∈W 1,2
0 (Ω).

(3.6)

Set {
eη(x) = grad uη(x),
dη(x) = aη(x, grad uη(x)).

Then eη and dη are elements of [L2(Ω)]N and, a.e. in Ω,

dη(x)− eη(x) = ϕη(x, dη(x) + eη(x)), (3.7)
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which means (1 + η)(dη(x)− eη(x)) = ϕ(x, dη(x) + eη(x)). Defining Eη(x) and Dη(x) by
Eη :=

(2 + η)eη − η dη

2
,

Dη :=
(2 + η)dη − η eη

2
,

(3.8)

we have 
Dη(x)− Eη(x) = (1 + η)(dη(x)− eη(x)),
Dη(x) + Eη(x) = dη(x) + eη(x),
Dη(x)− Eη(x) = ϕ(x,Dη(x) + Eη(x)),

a.e. in Ω and recalling (2.4) we obtain

Dη(x).Eη(x) ≥ −m(x) + α(|Eη(x)|p + |Dη(x)|p
′
) (3.9)

almost everywhere.
Integration of (3.9) over Ω yields

α
(
‖Eη‖p

Lp(Ω) + ‖Dη‖p′

Lp′ (Ω)

)
+
η

2

(
1 +

η

2

) (
‖eη‖2L2(Ω) + ‖dη‖2L2(Ω)

)
≤ ‖m‖L1(Ω) +

(
1 + η +

η2

2

) ∫
Ω

dηeη dx,
(3.10)

which establishes, along the way, that Eη ∈ [Lp(Ω)]N and Dη ∈ [Lp′(Ω)]N . On the other
hand, the use of uη as test fuction in (3.6) and the definition of Eη yield∫

Ω

dη.eη dx =
∫

Ω

geη dx =
2

2 + η

∫
Ω

gEη dx+
η

2 + η

∫
Ω

gdη dx, (3.11)

so that, recalling (3.10), we obtain

α
(
‖Eη‖p

Lp(Ω) + ‖Dη‖p′

Lp′ (Ω)

)
+
η

2

(
1 +

η

2

) (
‖eη‖2L2(Ω) + ‖dη‖2L2(Ω)

)
≤ ‖m‖L1(Ω) +

(
1 + η +

η2

2

) (
2

2 + η
‖g‖Lp′ (Ω)‖Eη‖Lp(Ω) +

η

2 + η
‖g‖L2(Ω)‖dη‖L2(Ω)

)
,

which implies, since p > 1, that (for η bounded)

‖Eη‖Lp(Ω) + ‖Dη‖Lp′ (Ω) ≤ C < +∞, (3.12)

√
η‖eη‖L2(Ω) +

√
η‖dη‖L2(Ω) ≤ C < +∞. (3.13)

At the possible expense of extracting subsequences (still indexed by η) we are thus at
liberty to assume that, as η ↓ 0+,{

Eη ⇀ e weakly in [Lp(Ω)]N ,

Dη ⇀ d weakly in [Lp′(Ω)]N .
(3.14)
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Recall definition (3.8) of Eη and Dη. Defining p := min(p, 2) and q := min(p′, 2),
(3.13), (3.14) imply that {

eη ⇀ e weakly in [Lp(Ω)]N ,

dη ⇀ d weakly in [Lq(Ω)]N .
(3.15)

Since eη = grad uη with uη ∈ W 1,2
0 (Ω), Poincaré’s inequality yields the existence of

u ∈W 1,p
0 (Ω) such that

uη ⇀ u weakly in W 1,p
0 (Ω), (3.16)

with grad u = e. Furthermore, in view of (3.6),

−div d = −div g in D′(Ω). (3.17)

Since e ∈ [Lp(Ω)]N and u ∈ W 1,p
0 (Ω) with grad u = e, u ∈ W 1,p

0 (Ω) whenever ∂Ω is
smooth. At this point we assume that such is the case, but will remove the smoothness
restriction later. Also, by (3.14), d ∈ [Lp′(Ω)]N .

It remains to prove that

d(x)− e(x) = ϕ(x, d(x) + e(x)), a.e. in Ω.

Recalling (3.7) and the contractive character of ϕη, we obtain, for every λ ∈ [L∞(Ω)]N ,

|dη(x)− eη(x)− ϕη(x, λ(x))|2 ≤ |dη(x) + eη(x)− λ(x)|2, a.e. in Ω, (3.18)

or still

|ϕη(x, λ(x))|2 − 2dη(x).ϕη(x, λ(x)) + 2eη(x).ϕη(x, λ(x))

≤ |λ(x)|2 − 2dη(x).λ(x)− 2eη(x).λ(x) + 4dη(x).eη(x), a.e. in Ω.
(3.19)

Since ϕη is a Carathéodory contraction, ϕη(x, λ(x)) ∈ [L∞(Ω)]N and the integration
of (3.19) over Ω is licit. We obtain∫

Ω

|ϕη(x, λ(x))|2 dx− 2
∫

Ω

dη(x).ϕη(x, λ(x))dx+ 2
∫

Ω

eη(x).ϕη(x, λ(x))dx

≤
∫

Ω

|λ(x)|2 dx− 2
∫

Ω

dη(x).λ(x)dx− 2
∫

Ω

eη(x).λ(x)dx+ 4
∫

Ω

dη(x).eη(x)dx.

Since ϕη(x, λ(x)) tends to ϕ(x, λ(x)) almost everywhere in Ω and remains bounded, it is
immediate in view of (3.15) to pass to the limit in all terms of the previous inequality,
except in the last one. But, by virtue of (3.6) and (3.15)∫

Ω

dη(x).eη(x)dx =
∫

Ω

g(x).eη(x)dx→
∫

Ω

g(x).e(x)dx.
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Since d ∈ [Lp′(Ω)]N , using in (3.17) the test function u (which, as said before, belongs to
W 1,p

0 (Ω) when ∂Ω is smooth) yields∫
Ω

d(x).e(x)dx =
∫

Ω

g(x).e(x)dx,

so that ∫
Ω

dη(x).eη(x) dx→
∫

Ω

d(x).e(x) dx.

Collecting all limits yields∫
Ω

{
|d(x)− e(x)− ϕ(x, λ(x))|2 − |d(x) + e(x)− λ(x)|2

}
dx ≤ 0. (3.20)

For any r > 0, choose

λ(x) =

{
d(x) + e(x) if |d(x) + e(x)| ≤ r,

0 otherwise.

Then (3.20) becomes∫
{x:|d(x)+e(x)|≤r}

|d(x)− e(x)−ϕ(x, d(x)+ e(x))|2 dx− 4
∫
{x:|d(x)+e(x)|>r}

d(x).e(x) dx ≤ 0.

Since d.e ∈ L1(Ω), we are at liberty to let r tend to +∞ in the previous inequality, which
finally yields ∫

Ω

|d(x)− e(x)− ϕ(x, d(x) + e(x))|2 dx ≤ 0,

that is
d(x)− e(x) = ϕ(x, d(x) + e(x)), a.e. in Ω. (3.21)

At this point, the existence of u, e and d such that
u ∈W 1,p

0 (Ω), d ∈ [Lp′(Ω)|N , e = grad u,

− div d = −div g in D′(Ω),
d(x)− e(x) = ϕ(x, d(x) + e(x)), a.e. in Ω,

has been established for any g ∈ [L∞(Ω)]N when ∂Ω is smooth.
Consider now the case of a general bounded open set Ω and of a general f ∈W−1,p′(Ω).

We approximate Ω by a sequence of open sets Ωn with ∂Ωn smooth and Ωn ⊂ Ω such that,
for every compact K of RN with K ⊂ Ω, K ⊂ Ωn for every n sufficiently large. Since
f = −div g with g ∈ [Lp′(Ω)]N , we approximate f by

fn := −div gn, gn ∈ [L∞(Ω)]N , gn → g strongly in [Lp′(Ω)]N .
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Let un, en and dn be a solution to
un ∈W 1,p

0 (Ωn), dn ∈ [Lp′(Ωn)]N , en = grad un,

− div dn = fn in D′(Ωn),
dn(x)− en(x) = ϕ(x, dn(x) + en(x)), a.e. in Ωn.

(3.22)

For every ψ in Lp(Ωn) or Lp′(Ωn), we define its extension ψ̃ to Lp(Ω) or Lp′(Ω) by

ψ̃ = ψ in Ωn, ψ̃ = 0 in Ω\Ωn.

Then ũn ∈ W 1,p
0 (Ω) with ẽn = (grad un)∼ = grad ũn. In view of (2.4), the use of un as

test function in (3.22) yields, at least for a subsequence (still indexed by n),
ũn ⇀ u weakly in W 1,p

0 (Ω),

ẽn ⇀ e = grad u weakly in [Lp(Ω)]N ,

d̃n ⇀ d weakly in [Lp′(Ω)]N ,

while, by the above mentioned property of the sequence Ωn,

−div d = f in D′(Ω).

It remains to prove that

d(x)− e(x) = ϕ(x, d(x) + e(x)), a.e. in Ω.

For every λ ∈ [L∞(Ω)]N we have

|dn(x)− en(x)− ϕ(x, λ(x))|2 ≤ |dn(x) + en(x)− λ(x)|2, a.e. in Ω,

and the rest of the proof is very similar to that which led from (3.18) to (3.21) since∫
Ωn

dn(x).en(x)dx =
∫

Ωn

gn(x).en(x)dx =
∫

Ω

gn(x).ẽn(x)dx

→
∫

Ω

g(x).e(x)dx =
∫

Ω

d(x).e(x)dx.

The proof of Theorem 2.3 is complete.

Remark 3.3. The previous proof easily extends to the case of equations (or even sys-
tems) of higher order, as well as to different boundary conditions for which a variational
formulation holds.

4. Graph regularization in [Lp(Ω)]N × [Lp′(Ω)]N
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In this section, we prove an existence result similar to Theorem 2.3, when the graph
under consideration is now a monotone graph of [Lp(Ω)]N × [Lp′(Ω)]N which is not neces-
sarily pointwise monotone.

From now onward, j and ̂ : RN → RN are defined respectively as

j(e) = |e|p−2e, ̂(d) = |d|p
′−2d.

We consider, for α > 0, µ ≥ 0, and 1 < p < +∞, the set M(α, µ, p,Ω) of graphs
A ⊂ [Lp(Ω)]N × [Lp′(Ω)]N with the following properties:
• A is monotone, that is, for any (e, d), (e′, d′) in A,∫

Ω

(d′ − d).(e′ − e) dx ≥ 0; (4.1)

• A is ̂-surjective, that is
for any δ > 0 and any e ∈ [Lp(Ω)]N ,
there exists a (unique) element (e′, d′) ∈ A,
such that e′ + δ̂(d′) = e;

(4.2)

• if (e, d) ∈ A, then ∫
Ω

d.e dx ≥ −µ+ α

∫
Ω

(|e|p + |d|p
′
) dx, (4.3)

• (0, 0) ∈ A. (4.4)

Remark 4.1. The set M(α, µ, p,Ω) is equivalently defined as the set of all maximal mono-
tone graphs A ⊂ [Lp(Ω)|N × [Lp′(Ω)]N such that (4.3), (4.4) hold; indeed, according to
[Bre1], Proposition 2.2, in a Hilbert space setting, or to [Ba], Theorem 1.2, in a reflexive
Banach space setting, the maximality of a monotone graph A is equivalent to the surjec-
tivity of either A+ δj or A−1 + δ̂ for any fixed δ > 0. Our bias towards (4.2) is dictated
by a wish not to appeal to any non-elementary result besides Theorem 2.4. The reader
who is familiar with the theory of maximal monotone operators should thus feel at liberty
to replace hypothesis (4.2) by the maximality of A.

Remark 4.2. If (4.2) is satisfied, then A is maximal (this is the easy part of the result
quoted in Remark 4.1). Indeed, take B to be a monotone extension of A and (e, d) ∈ B.
Then, according to (4.2), there exists a unique (e′, d′) ∈ A such that

e′ + δ̂(d′) = e+ δ̂(d).

But, since A ⊂ B, (e′, d′) ∈ B so that
∫
Ω
(d′ − d).(e′ − e)dx ≥ 0. Multiplying the latest

equality by d′ − d and integrating on Ω yields, since δ > 0∫
Ω

(d′ − d) · (̂(d)− ̂(d′))dx ≤ 0,
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which immediately implies that d = d′, hence that e = e′, and finally that (e, d) ∈ A. Thus
B = A.

Remark 4.3. The graphs in M(α, µ, p,Ω) are not necessarily “pointwise monotone”, but
only “functionally monotone” in the sense of (4.1), in contrast to the graphs considered
in Section 3. An example of a graph which satisfies (4.1)–(4.4) without being pointwise
monotone is, in the case p = 2,

A := {(e, e+ ρ

∫
Ω

ρe dx) : e ∈ [L2(Ω)]N},

with ρ ∈ L2(Ω).
However every graph of [Lp(Ω)]N × [Lp′(Ω)]N defined pointwise through a function

ϕ of M(α,m, p,Ω) belongs to M(α, µ, p,Ω) with µ = ‖m‖p
L1(Ω). Conversely Corollary

5.3 below shows that every pointwise monotone graph of M(α, 0, p,Ω) is associated to a
function of M(α, 0, p,Ω).

We now prove the

Theorem 4.4. Consider A in M(α, µ, p,Ω). For any f ∈W−1,p′(Ω), there exists u and d
such that 

u ∈W 1,p
0 (Ω), d ∈ [Lp′(Ω)]N ,

− div d = f in D′(Ω),
(grad u, d) ∈ A.

Proof. Define, for any ε > 0, the mapping Aε : [Lp(Ω)]N → [Lp′(Ω)]N , by

Aε(e) = d,

where {
e′ + ε̂(d) = e,

(e′, d) ∈ A.
(4.5)

The mapping Aε is well defined in view of (4.2) and it is monotone; indeed, if e and e are
elements of [Lp(Ω)|N , with {

e′ + ε̂(d) = e, (e′, d) ∈ A,
e′ + ε̂(d) = e, (e′, d) ∈ A,

then ∫
Ω

(d− d).(e− e) dx =
∫

Ω

(d− d).(e′ − e′) dx+ ε

∫
Ω

(d− d).(̂(d)− ̂(d)) dx. (4.6)

Therefore, by virtue of (4.1) together with the strictly monotone character of ̂, Aε is
monotone. Further, Aε(0) = 0 by (4.4).
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Recalling (4.3), (4.5) and the definition of ̂, we have∫
Ω

d.e dx =
∫

Ω

d.e′ dx+ ε

∫
Ω

d.̂(d) dx

≥ −µ+ α

∫
Ω

(|e′|p + |d|p
′
) dx+ ε

∫
Ω

|d|p
′
dx

= −µ+ α

∫
Ω

(|e− ε̂(d)|p + |d|p
′
) dx+ ε

∫
Ω

|̂(d)|p dx,

which implies that ∫
Ω

d.e dx ≥ −µ+ α

∫
Ω

|d|p
′
dx+ β

∫
Ω

|e|p dx (4.7)

with β depending only on p and α, provided that ε ≤ ε0 (for some ε0 depending only on
p and α) so that α|z − εy|p + ε|y|p ≥ β|z|p.

Therefore, Aε is coercive (uniformly in ε), i.e.,∫
Ω

Aε(e).e dx ≥ β‖e‖p
Lp(Ω) − µ,

and, upon application of Hölder’s inequality, it also satisfies a growth condition (uniformly
in ε), i.e.,

‖Aε(e)‖Lp′ (Ω) ≤ C(‖e‖p−1
Lp(Ω) + 1).

Finally, Aε is continuous for every fixed ε. Indeed, let en converge to e in [Lp(Ω)]N ;
then dn = Aε(en) is bounded in [Lp′(Ω)]N in view of the latest inequality. Recalling (4.6),
we have∫

Ω

(d− dn).(e− en) dx =
∫

Ω

(d− dn).(e′ − e′n) dx+ ε

∫
Ω

(d− dn).(̂(d)− ̂(dn)) dx,

so that
ε

∫
Ω

(d− dn).(̂(d)− ̂(dn)) dx −→ 0.

Since ̂(d) = |d|p′−2d, it is well-known that the above limit implies in turn that dn converges
(strongly) to d in [Lp′(Ω)]N .

Summing up, we have shown that for ε small enough, Aε is a monotone, bounded,
continuous and coercive operator from [Lp(Ω)]N into [Lp′(Ω)]N . Define{

Aε : W 1,p
0 (Ω) →W−1,p′(Ω),

Aε(u) = −div (Aε(grad u)).
(4.8)

Theorem 2.4 applied to Aε then implies, for any f ∈W−1,p′(Ω), the existence of u with{
uε ∈W 1,p

0 (Ω),
− div (Aε(grad uε)) = f in D′(Ω).

(4.9)
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We now let ε tend to 0 in (4.9). In view of the uniform coercivity and growth properties
of Aε and of Poincaré’s inequality,

‖uε‖W 1,p
0 (Ω) ≤ C < +∞,

‖Aε(grad uε)‖Lp′ (Ω) ≤ C < +∞,

so that, at the possible expense of extracting a subsequence, still indexed by ε,{
uε ⇀ u weakly in W 1,p

0 (Ω),

dε := Aε(grad uε) ⇀ d weakly in [Lp′(Ω)]N ,

with
−div d = f in D′(Ω). (4.10)

Consider, for any pair (E,D) ∈ A, the function Eε(x) defined as

Eε(x) = E(x) + ε̂(D(x)),

which converges to E strongly in [Lp(Ω)]N , and remark that, by the very definition of Aε,

Aε(Eε) = D.

Then, 
0 ≤

∫
Ω

(Aε(grad uε)−Aε(Eε)).(grad uε − Eε)dx

=
∫

Ω

(dε −D).(grad uε − Eε)dx.
(4.11)

In view of (4.9), (4.10),∫
Ω

dε.grad uε dx = < f, uε >W−1,p′ (Ω),W 1,p
0 (Ω)

−→ < f, u >W−1,p′ (Ω),W 1,p
0 (Ω)=

∫
Ω

d.grad u dx,

which allows one to pass to the limit in (4.11) and yields

0 ≤
∫

Ω

(d−D).(grad u− E)dx.

But, according to Remark 4.2, A is maximal, so that (d, grad u) ∈ A.
The proof of Theorem 4.4 is complete.
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Remark 4.5. As stated in Remarks 4.1 and 4.2 above, the definition of M(α, µ, p,Ω) im-
plies that every A ∈ M(α, µ, p,Ω) is a maximal monotone graph in [Lp(Ω)]N×[Lp′(Ω)]N . It
would be tempting to prove Theorem 4.4 above by establishing that the graph
A ⊂W 1,p

0 (Ω)×W−1,p′(Ω) defined as

(u, f) ∈ A ⇐⇒ f = −div d with (grad u, d) ∈ A,

is maximal monotone. However, we were unable to prove this assertion directly, although
it is certainly true: indeed, a proof similar to that of Theorem 4.4 would show that the
equation {

u ∈W 1,p
0 (Ω), d ∈ [Lp′(Ω)]N , (grad u, d) ∈ A,

− div
(
d+ δ |grad u|p−2grad u

)
= f in D′(Ω),

has a (unique) solution u for any δ > 0 and any f ∈W−1,p′(Ω). This surjectivity property
easily implies maximality as mentioned in Remark 4.2.

5. A characterization of pointwise monotone maximal graphs in
[Lp(Ω)]N × [Lp′(Ω)]N

In this section we compare the apparently disconnected assumptions of Theorems 2.3
and 4.4 and show that there are in fact identical when the graph A ⊂ Lp(Ω)]N × [Lp′(Ω)]N

considered in Theorem 4.4 is further assumed to be pointwise monotone, that is such that,
for any (e, d) and (e′, d′) in A,

(d′(x)− d(x)).(e′(x)− e(x)) ≥ 0, a.e. in Ω.

Specifically we prove the following

Theorem 5.1. A graph A ⊂ [Lp(Ω)]N × [Lp′(Ω)]N with (0, 0) ∈ A is pointwise monotone
and ̂-surjective in the sense of (4.2) if and only if there exists a Carathéodory contraction
((2.2), (2.3)) ϕ: Ω× RN → RN with ϕ(x, 0) = 0 such that

A = {(e, d) ∈ [Lp(Ω)]N× [Lp′(Ω)]N : d(x)−e(x) = ϕ(x, d(x)+e(x)), a.e. in Ω}. (5.1)

Remark 5.2. In the spirit of Remark 4.1, Theorem 5.1 may be rephrased as follows:
A graph A ⊂ [Lp(Ω)]N × [Lp′(Ω)]N containing (0, 0) is pointwise monotone and maxi-

mal if and only if it is given by (5.1) for some Carathéodory contraction ϕ : Ω×RN → RN

such that ϕ(x, 0) = 0.
Adding coercivity and growth assumptions, Theorem 5.1 has the following immediate

corollary:

Corollary 5.3. A graph A ∈ M(α, 0, p,Ω) is pointwise monotone if and only if there
exists ϕ ∈M(α, 0, p,Ω) such that

A = {(e, d) ∈ [Lp(Ω)]N × [Lp′(Ω)]N : d(x)− e(x) = ϕ(x, d(x) + e(x)), a.e. in Ω}.
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Note that in the above Corollary both the function m and the constant µ are set to 0.
Corollary 5.3 immediately implies that Theorem 2.3 and 4.4 are identical, when

m(x) = µ = 0. The proof of Corollary 5.3 is based on the following locality lemma
for pointwise monotone graphs.

Lemma 5.4. If A ⊂ [Lp(Ω)]N × [Lp′(Ω)]N is a pointwise monotone graph in such that
(4.2), (4.4) are satisfied, then A is local, i.e.,

(e, d) ∈ A =⇒ (eχB , dχB) ∈ A, for any measurable set B ⊂ Ω,

where χB is the characteristic function of B.

Proof of Lemma 5.4. By pointwise monotonicity, together with (4.4), if (e, d) ∈ A, then,
for any (e′, d′) ∈ A and for a.e. x ∈ Ω, we have{

(d′(x)− d(x)).(e′(x)− e(x)) ≥ 0,
d′(x).e′(x) ≥ 0.

Thus, for any measurable B ⊂ Ω, we get, by integration of the two inequalities above over
B and Ω \B respectively, ∫

Ω

(d′ − dχB).(e′ − eχB) dx ≥ 0.

But (4.2) is satisfied, so that A is maximal according to Remark 4.2, and the previous
inequality then implies that (eχB , dχB) ∈ A.

Proof of Corollary 5.3. The proof of Corollary 5.3 is immediate. Indeed, according to
Theorem 5.1, if A ∈ M(α, 0, p,Ω), there exists a Carathéodory contraction ϕ: Ω×RN → R
with ϕ(x, 0) = 0 such that

A = {(e, d) ∈ [Lp(Ω)]N × [Lp′(Ω)]N : d(x)− e(x) = ϕ(x, d(x) + e(x)), a.e. in Ω}.
It remains to show that ϕ satisfies (2.4) withm(x) = 0. But, since A is pointwise monotone,
A is local in view of Lemma 5.4, so that (4.3) holds true with any measurable B ⊂ Ω in
lieu of Ω itself. Since µ = 0, (4.3) becomes

d(x).e(x) ≥ α(|e(x)|p + |d(x)|p
′
), for a.e. x ∈ Ω,

and ϕ ∈M(α, 0, p,Ω). The converse is obvious, provided Theorem 5.1 holds true.

The proof of Theorem 5.1 reduces to that of the two following lemmata:

Lemma 5.5. If ϕ is a Carathéodory contraction with ϕ(x, 0) = 0, then, for every δ > 0 and
every f ∈ [Lp′(Ω)]N and g ∈ [Lp(Ω)]N , there exists a unique solution (e, d) ∈ [Lp(Ω)]N ×
[Lp′(Ω)]N to {

d+ δj(e) = f,

(e(x), d(x)) ∈ Aϕ(x), a.e. in Ω,

and to {
e+ δ̂(d) = g,

(e(x), d(x)) ∈ Aϕ(x), a.e. in Ω,

(see (2.1) for the definition of Aϕ(x)).
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Lemma 5.6. If A ⊂ [Lp(Ω)]N × [Lp′(Ω)]N is a pointwise monotone graph in such that
(4.2), (4.4) are satisfied, then there exists a Carathéodory contraction ϕ with ϕ(x, 0) = 0
such that

A = {(e, d) ∈ [Lp(Ω)]N × [Lp′(Ω)]N : d(x)− e(x) = ϕ(x, d(x) + e(x)), a.e. in Ω}.

Proof of Lemma 5.5. Upon changing (e, d) into (d, e), p into p′, and ϕ into −ϕ, the first
result immediately yields the second one. Let us prove the first result.

We define ϕη as in (3.4) as

ϕη(x, λ) =
1

1 + η
ϕ(x, λ),

so that ϕη is a strict Carathéodory contraction and that, according to (3.5), the associated
aη(x, e) is Lipschitz and strongly monotone with associated constant cη ∼ η /2.

In a first step, we fix f ∈ [L∞(Ω)]N and show that we can uniquely solve, for any
δ ≥ 0,

aη(x, e) + δj(e) = f,

with e in [L∞(Ω)]N . In a second step, we impose δ > 0, let η tend to 0 and, in a third
step, we consider f in [Lp′(Ω)]N in lieu of [L∞(Ω)]N .
Step 1. Let (eη, dη) be the measurable pair defined, for a.e. x in Ω, as{

dη(x)− eη(x) = ϕη(x, f(x)) = ϕη(x, dη(x) + eη(x)),
dη(x) + eη(x) = f(x),

or equivalently as {
dη(x) + eη(x) = f(x),
dη(x) = aη(x, eη(x)).

Note that eη and dη are elements of [L∞(Ω)]N . Therefore one can define a mapping
Tη : [L∞(Ω)]N → [L∞(Ω)]N by

Tη(e) = e,

with
aη(x, e(x)) + e(x) = f(x) + e(x), a.e. in Ω.

If e and e′ are in [L∞(Ω)]N , then in view of (3.5)

|(Tη(e)− Tη(e′))(x)| ≤ 1
cη + 1

|(e− e′)(x)|, a.e. in Ω,

so that Tη is a strict contraction on [L∞(Ω)]N . The Banach fixed point theorem implies
the existence of a unique e ∈ [L∞(Ω)]N such that Tη(e) = e, or in other words of a unique
e ∈ [L∞(Ω)]N with

aη(x, e(x)) = f(x), a.e. in Ω. (5.2)
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Let us now prove that, for any δ ≥ 0 and any f ∈ [L∞(Ω)]N , there exists a unique
solution to

aη(x, e) + δ i(e) = f, (5.3)

with i : RN → RN , i monotone, i(0) = 0 and i Lipschitz, with Lipschitz constant Li. To
this effect, let us assume that, for some δ ≥ 0 and for any f ∈ [L∞(Ω)]N , we were able to
prove the existence of a unique solution e ∈ [L∞(Ω)]N to

aη(x, e(x)) + δi(e(x)) = f(x). (5.4)

A fixed point argument identical to that which proves the existence of a unique solution
to (5.2) would then yield a unique solution e ∈ [L∞(Ω)]N to

aη(x, e(x)) + (δ + ε)i(e(x)) = f(x), a.e. in Ω, (5.5)

provided that 0 < ε < cη/Li (just look at the mapping e → e with aη(x, e) + δ i(e) =
f − ε i(e)). Since ε is independent of δ and since, by virtue of (5.2) we know how to solve
(5.4) with δ = 0, we conclude to the existence of a unique solution to (5.3) for any δ ≥ 0
and any f ∈ [L∞(Ω)]N .

If p ≥ 2, choose

jR(e) =

{
j(e) = |e|p−2e, |e| ≤ R,

Rp−2e, |e| > R,

which is Lipschitz with jR(0) = 0. Note that jR is monotone, as derivative of the C1

convex function ψR defined as

ψR(e) =


1
p
|e|p, |e| ≤ R,

1
2
Rp−2|e|2 +

(
1
p
− 1

2

)
Rp, |e| > R.

According to (5.3), there exists a unique solution to

aη(x, e) + δjR(e) = f, (5.6)

for any f ∈ [L∞(Ω)]N and any δ ≥ 0.
Multiplication of (5.6) by e yields

|e(x)| ≤
‖f‖L∞(Ω)

cη
, a.e. in Ω,

so that if we choose R > ‖f‖L∞(Ω)/cη, then jR(e) = j(e) and we have solved

aη(x, e) + δj(e) = f. (5.7)

The solution to (5.7) is unique since aη is strictly monotone.
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If now p < 2, choose

jR(e) =

{
Rp−2e, |e| < R,

j(e) = |e|p−2e, |e| > R,

which is once again a Lipschitz monotone function with jR(0) = 0. According to (5.3),
there exists a unique solution to

aη(x, e) + δjR(e) = f, (5.8)

for any f ∈ [L∞(Ω)]N and any δ ≥ 0.
Assume first that f is piecewise constant, i.e.

f(x) = Σ χk(x)fk,

with χk the characteristic function of the set of points x ∈ Ω where f(x) = fk ∈ RN . Then
the solution e(x) to (5.8) is of the form

e(x) = Σ χk(x)ek(x),

with
aη(x, ek(x)) + δjR(ek(x)) = fk. (5.9)

If fk = 0, then clearly ek(x) = 0; if fk 6= 0, then, in view of (5.8), and because of the
specific choice for jR,

|fk| ≤
1
cη
|ek(x)|+ δ|ek(x)|p−1, a.e. in Ω.

The mapping t ∈ R+ → 1
cη
t+ δtp−1 is monotone increasing; thus if we choose R such that

|fk| ≥ 1
cη
R+ δRp−1 for every k with |fk| 6= 0, we have

|ek(x)| ≥ R,

so that we have solved

aη(x, e(x)) + δj(e(x)) = f(x), a.e. in Ω, (5.10)

for any piecewise constant function f and any δ ≥ 0.
Consider now an arbitrary element f ∈ [L∞(Ω)]N . Let fn be a sequence of piecewise

constant functions on Ω which converges a.e. to f in Ω, and define en as the solution to
(5.10) associated to fn.

Fix x to be a point in Ω such that aη(x, ·) is continuous, fn(x) n→ f(x), and such that,
for all n,

aη(x, en(x)) + δj(en(x)) = fn(x).
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Then en(x) and aη(x, en(x)) are bounded sequences in RN . Thus there exists a subsequence
{k(n)} of {n} with k(n) ↗∞ (this subsequence depends on x) such that for some ex ∈ RN

ek(n)(x) → ex.

We now show that ex does not depend upon the subsequence {k(n)} of {n}. Indeed, if
{k′(n)} is an other subsequence of {n} with k′(n) ↗∞ such that

ek′(n)(x) → e′x,

then, since

aη(x, ek′(n)(x))− aη(x, ek(n)(x)) + δ
(
j(ek′(n)(x))− j(ek(n)(x))

)
= fk′(n)(x)− fk(n)(x),

we obtain, having multiplied the above equality by (ek′(n)(x)− ek(n)(x)) and passed to the
limit in n,

(aη(x, e′x)− aη(x, ex)).(e′x − ex) + δ(j(e′x)− j(ex)).(e′x − ex) = 0;

since aη(x, e) is strictly monotone in e, we conclude that ex = e′x, hence the result.
Consequently the whole sequence en(x) converges to ex; since x is an arbitrary point

in Ω (up to a set of zero measure) we conclude that e(x) := ex is measurable (and actually
belongs to [L∞(Ω)]N ) and that we have solved

aη(x, e(x)) + δj(e(x)) = f(x), a.e. in Ω, (5.11)

for any f ∈ [L∞(Ω)]N and any δ ≥ 0.
Step 2. We have thus established in (5.7) and (5.11) the existence and uniqueness of the
solution (eη, dη) ∈ [L∞(Ω)]N × [L∞(Ω)]N to

dη + δj(eη) = f,

dη(x)− eη(x) =
1

1 + η
ϕ(x, dη(x) + eη(x)), a.e. in Ω,

for any f ∈ [L∞(Ω)]N and any δ ≥ 0. Provided that δ > 0, multiplication of the first
equation by eη implies that eη is bounded in [L∞(Ω)]N , independently of η, because
j(eη).eη = |eη|p. Then an argument identical to that which led to (5.11) shows the existence
(and uniqueness) of (e, d) ∈ [L∞(Ω)]N × [L∞(Ω)]N with{

d+ δj(e) = f,

d(x)− e(x) = ϕ(x, d(x) + e(x)), a.e. in Ω.
(5.12)

Step 3. Consider now f ∈ [Lp′(Ω)]N and approximate it by fn ∈ [L∞(Ω)]N . Once again
the very same argument used to derive (5.11) implies the existence (and uniqueness) of
(e, d) ∈ [Lp(Ω)]N × [Lp′(Ω)]N with{

d+ δj(e) = f,

d(x)− e(x) = ϕ(x, d(x) + e(x)), a.e. in Ω,

provided that δ > 0.
The proof of Lemma 5.5 is complete.
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Remark 5.7. We could have limited the result of Step 1 to piecewise constant functions
without prejudice for the subsequent steps.

Proof of Lemma 5.6. Since by assumption (4.2) is satisfied, we consider the mapping
Aε : [Lp(Ω)]N → [Lp′(Ω)]N defined as in the proof of Theorem 4.4 by

Aε(e) = d
ε
,

with {
eε + ε̂(d

ε
) = e,

(eε, d
ε
) ∈ A.

As already established at the onset of the proof of Theorem 4.4, Aε is a single-valued
monotone continuous bounded operator from [Lp(Ω)]N into [Lp′(Ω)]N .

In a first step we show that, for any f ∈ [L∞(Ω)]N , there exists a unique solution
eε ∈ [L∞(Ω)]N to

Aε(eε) + eε = f.

In a second step we pass to the limit in ε and conclude to the existence of a pair (e, d) ∈ A
such that for any f ∈ [L∞(Ω)]N

d+ e = f. (5.13)

The final step is devoted to the construction of ϕ, starting from (5.13).

Step 1. We define

`R(e) =


e if |e| < R,

|e|p−2e

Rp−2
if |e| ≥ R,

and note that it defines a strictly monotone, continuous and bounded operator from
[Lp(Ω)]N into [Lp′(Ω)]N , so that, Aε+`R has the same properties. Application of Theorem
2.4 permits to conclude to the existence of a unique solution eε ∈ [Lp(Ω)]N to

Aε(eε)(x) + `R(eε(x)) = f, (5.14)

for any f ∈ [Lp′(Ω)]N . If f ∈ [L∞(Ω)N ], and if we choose R ≥ ‖f‖L∞(Ω), (5.14) reduces
to

Aε(eε) + eε = f ; (5.15)

indeed multiplication of (5.14) by eε immediately yields that, if |eε(x)| > R,

|eε(x)|p−1 ≤ Rp−2|f(x)| ≤ Rp−1,

so that |eε(x)| ≤ R, which is a contradiction. Moreover we have

‖eε‖L∞(Ω) ≤ ‖f‖L∞(Ω). (5.16)
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Step 2. We now pass to the limit in (5.15) as ε ↘ 0+. By virtue of (5.16), and since
Aε(eε) = f − eε, there exists a subsequence {ε′} of {ε} such that{

eε′ ⇀ e weak-? in [L∞(Ω)|N ,

Aε′(eε′) ⇀ d weak-? in [L∞(Ω)|N ,
(5.17)

with
d+ e = f, a.e. in Ω. (5.18)

Consider an arbitrary element (e, d) ∈ A and set

eε = e+ ε̂(d),

so that
eε → e strongly in [Lp(Ω)]N , (5.19)

and
Aε(eε) = d. (5.20)

Then, since Aε is monotone,∫
Ω

(
Aε′(eε′)−Aε′(eε′)

)
.(eε′ − eε′) dx ≥ 0. (5.21)

But, in view of (5.15), the weak lower semicontinuity of the L2-norm, and (5.18),

lim
∫

Ω

Aε′(eε′).eε′ dx = lim
∫

Ω

(f − eε′).eε′ dx ≤
∫

Ω

f.e dx−
∫

Ω

|e|2 dx =
∫

Ω

d.e dx,

while all the other terms in (5.21) pass to the limit by virtue of (5.19) and (5.20). We
obtain ∫

Ω

(d− d).(e− e)dx ≥ 0. (5.22)

But, according to Remark 4.2, A is maximal, so that (5.22) implies that (e, d) ∈ A.
Recalling (5.18), we have thus proved the existence of (e, d) ∈ A ∩ ([L∞(Ω)]N ×

[L∞(Ω)]N ) such that
e+ d = f

for any f in [L∞(Ω)]N .
Step 3. Define the mapping T : [L∞(Ω)]N → [L∞(Ω)]N by

T (f) = d− e. (5.23)

The pointwise monotone character of A immediately implies (see the beginning of the
proof of Lemma 2.1) that, for any f, g ∈ [L∞(Ω)]N ,

|T (f)− T (g)|(x) ≤ |f − g|(x), a.e. in Ω. (5.24)
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Define, for λ ∈ QN ,
ϕ(x, λ) = T (λ)(x), a.e. in Ω.

Except maybe on a set of zero measure,

|ϕ(x, λ)− ϕ(x, λ′)| ≤ |λ− λ′|, λ, λ′ ∈ QN ,

so that, for a.e. x in Ω and every λ ∈ RN , ϕ(x, λ) is well defined as the (unique) limit of
ϕ(x, λn) with λn ∈ QN and λn → λ. Further, ϕ(x, λ) is clearly Carathéodory on Ω×RN .

For a fixed f in [L∞(Ω)]N , consider a sequence fn of piecewise constant functions
such that

fn → f, a.e. in Ω.

By virtue of (5.24)
T (fn) → T (f), a.e. in Ω. (5.25)

But, if fn is constant on a measurable subset ω of Ω, it is immediately seen, by the
definition of ϕ, that

T (fn)(x) = ϕ(x, fn(x)), a.e. in ω.

Since ϕ is a Carathéodory contraction

ϕ(x, fn(x)) → ϕ(x, f(x)), a.e. in Ω,

which, together with (5.25), implies that

T (f)(x) = ϕ(x, f(x)), a.e. in Ω.

We have thus shown so far that, for any (e, d) ∈ A ∩ ([L∞(Ω)]N × [L∞(Ω)]N ),

d(x)− e(x) = ϕ(x, d(x) + e(x)), a.e. in Ω. (5.26)

Equality (5.26) remains true if (e, d) ∈ A. Indeed, according to Lemma 5.4, A is local, so
that, for any integer n,

(en, dn) :=

(eχ{x∈Ω:|dn(x)|+|en(x)|≤n}, dχ{x∈Ω:|dn(x)|+|en(x)|≤n}) ∈ A ∩ ([L∞(Ω)]N × [L∞(Ω)]N ).

Further,
(en(x), dn(x)) −→ (e(x), d(x)), a.e. in Ω, (5.27)

while, according to (5.26),

dn(x)− en(x) = ϕ(x, dn(x) + en(x)). (5.28)

Passing to the limit in (5.28) is obvious in view of (5.27) because of the Carathéodory
character of ϕ.

The proof of Lemma 5.6 is complete.
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We conclude this section by showing that a well-known class of monotone operators,
namely, the subdifferentials of convex Carathéodory functions on RN with appropriate
coercivity and growth assumptions are associated to elements of M(α,m, p,Ω) for an
adequate choice of α,m, p. This is the object of the following

Remark 5.8. Consider Ψ : Ω × RN → R, Carathéodory, convex in its second argument,
and such that, for some m ≥ 0 ∈ L1(Ω) and some α, β > 0,

α|e|p ≤ Ψ(x, e) ≤ m(x) + β|e|p.

Then the subdifferential ∂eψ(x, e) belongs to the class M(γ,m, p,Ω) for

γ = inf(α,
1
p′

(
1
βp

)
p′
p )

.
Indeed, if Ψ∗(x, ·) denotes the Legendre transform of Ψ(x, ·), then

Ψ∗(x, d) = sup{d.e′ −Ψ(x, e′)} ≥ sup{d.e′ −m(x)− β|e′|p} = −m(x) + C|d|p
′
,

for C =
1
p′

(
1
βp

)
p′
p . Since, for a.e. x ∈ Ω,

d ∈ ∂eΨ(x, e) ⇐⇒ d.e = Ψ(x, e) + Ψ∗(x, d),

we obtain that for d ∈ ∂eψ(x, e),

d.e ≥ −m(x) + α|e|p + C|d|p
′
. (5.29)

Further, consider

J : e ∈ [Lp(Ω)]N →
∫

Ω

Ψ(x, e(x)) dx.

The functional J is convex and continuous. For any f ∈ [Lp′(Ω)]N and any δ > 0, the
functional

I : e ∈ [Lp(Ω)]N → J(e) +
δ

p

∫
Ω

|e|p dx−
∫

Ω

f.u dx,

admits a unique minimum e ∈ [Lp(Ω)]N that satisfies 0 ∈ ∂I(e); equivalently, there exists
d ∈ ∂J such that, for a.e. x ∈ Ω

d(x) + δ|e(x)|p−2e(x) = f(x). (5.30)

But d ∈ ∂J if and only if d(x) ∈ ∂eΨ(x, e(x)), a.e. in Ω, so that, by virtue of (5.30), there
exists d ∈ [Lp′(Ω)]N such that, for a.e. x ∈ Ω,{

d(x) + δ|e(x)|p−2e(x) = f(x),
d(x) ∈ ∂eΨ(x, e(x)).
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In other words, the graph

AΨ := {(e, d) ∈ [Lp(Ω)]N × [Lp′(Ω)]N : d(x) ∈ ∂eΨ(x, e(x)), a.e. in Ω}

meets the hypotheses of Theorem 5.1. In conclusion, there exists a Carathéodory contrac-
tion ϕΨ(x, e) such that, for a.e. any (e, d) ∈ AΨ,

e(x)− d(x) = ϕΨ(x, e(x) + d(x)), a.e. x ∈ Ω,

which, together with (5.29), proves the result.
A classical computation moreover yields the following expression for ϕΨ in terms of

∂eΨ(x, e):
ϕΨ(x, λ) = λ− 2(I + ∂eΨ(x, ·))−1(λ).

6. Miscellaneous results and extensions
The possible non-uniqueness of the solution u to (2.6) in Theorem 2.3 can be cured

by the addition of a zeroth order term in (2.6). Specifically, consider j(λ) = |λ|p−2λ; then
the following theorem holds true:

Theorem 6.1 Consider ϕ ∈M(α,m, p,Ω). For any f ∈W−1,p′(Ω), there exists a unique
u ∈W 1,p

0 (Ω) and a (possibly non-unique) d ∈ [Lp′(Ω)]N such that{
− div d+ j(u) = f in D′(Ω),
d(x)− grad u(x) = ϕ(x, d(x) + grad u(x)), a.e. in Ω.

(6.1)

Proof. We recall that the proof of Theorem 4.4 also provides a proof of Theorem 2.3 since
any function of M(α,m, p,Ω) is associated to a graph of M(α, µ, p,Ω) (see Remark 4.3),
and we use this proof. The operator{

J : W 1,p
0 (Ω) →W−1,p′(Ω),

J(u) := j(u),

is clearly monotone, bounded, continuous, and compact, so that Theorem 2.4 applies to
Aε +J with Aε defined in (4.10) and yields the existence and uniqueness of uε ∈W 1,p

0 (Ω)
with

−div (Aε(grad uε)) + j(uε) = f in D′(Ω). (6.2)

Passing to the limit of (6.2) as ε tends to 0 is performed exactly as at the end of the proof
of Theorem 4.4 once it is observed that

f − j(uε) → f − j(u) strongly in W−1,p′(Ω).

The uniqueness of u is immediate in view of the strict monotonicity of j.
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Remark 6.2. Note that the proof of Theorem 2.3 presented in Section 3 would be more
technical to generalize to the above setting because the regularization used there introduces
an L2-setting which is ill suited to accomodate additional terms of the form j(u) if p 6= 2.

Remark 6.3. Any continuous, bounded, strictly monotone mapping h : [Lp(Ω)]N →
[Lp′(Ω)]N would do in lieu of j in Theorem 6.1; in particular, δj, with any δ > 0, is a valid
candidate.

We now propose to extend the results of Theorem 2.3 and 6.1 to u dependent graphs.
Specifically we consider ϕ : Ω× RN × RN → RN such that

• ϕ is Carathéodory; (6.3)
• {

|ϕ(x, u, λ)− ϕ(x, u, λ′)| ≤ |λ− λ′|,
λ, λ′ ∈ RN , for a.e. x in Ω and any u ∈ R;

(6.4)

• if for any u ∈ R and any λ ∈ RN , eu(x) and du(x) are defined, for a.e. x in Ω, as{
du(x) + eu(x) = λ,

du(x)− eu(x) = ϕ(x, u, λ)

then, for a.e. x ∈ Ω,

du(x).eu(x) ≥ −m(x) + α(|eu(x)|p + |du(x)|p
′
); (6.5)

• ϕ(x, u, 0) = 0, for a.e. x ∈ Ω and any u ∈ R. (6.6)

The following generalization of Theorems 6.1 and 2.3 holds true:

Theorem 6.4. Assume that ϕ : Ω × R × RN → RN satisfies (6.3)-(6.6). For any f ∈
W−1,p′(Ω), there exists u and d a solution such that

u ∈W 1,p
0 (Ω), d ∈ [Lp′(Ω)]N

− div d+ j(u) = f in D′(Ω),
d(x)− grad u(x) = ϕ(x, u(x), d(x) + grad u(x)), a.e. in Ω.

(6.7)

Furthermore, the same result holds true if the zeroth order term j(u) is dropped from
the equation.

Proof. Fix f ∈W−1,p′(Ω) and for any v ∈ Lp(Ω) define ϕv : Ω× RN → RN as

ϕv(x, e) := ϕ(x, v(x), e).

Then ϕv ∈ M(α,m, p,Ω), so that Theorem 6.1 yields the existence of u ∈ W 1,p
0 (Ω),

d ∈ [Lp′(Ω)]N , with uniqueness for u, such that{
− div d+ j(u) = f in D′(Ω),
d(x)− grad u(x) = ϕv(x, d(x) + grad u(x)), a.e. in Ω.

(6.8)
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We define the mapping T : Lp(Ω) → Lp(Ω) as

T (v) = u,

where u is the unique solution to (6.8).
This mapping is continuous on Lp(Ω). Indeed, if vn tends strongly to v in Lp(Ω), then

a subsequence vnk
of vn is such that

vnk
(x) → v(x), a.e. in Ω.

Since ϕ is Carathéodory,

ϕvnk
(x, e) → ϕv(x, e), a.e. in Ω,

for every e ∈ RN . If unk
is the solution to (6.8) (with ϕvnk

replacing ϕv), the coercivity
and growth condition (6.5) and Poincaré’s inequality immediately imply the existence of
a subsequence of {nk} (still denoted by {nk}) such that

unk
⇀ u, weakly in W 1,p

0 (Ω) and strongly in Lp(Ω),

dnk
⇀ d, weakly in [Lp′(Ω)]N .

(6.9)

Further, straightforward continuity yields

−div d+ j(u) = f in D′(Ω). (6.10)

Also we have

dnk
(x)− grad unk

(x) = ϕvnk
(x, dnk

(x) + grad unk
(x)), a.e. in Ω,

and therefore, for any λ ∈ [L∞(Ω)]N ,

|dnk
(x)− grad unk

(x)− ϕvnk
(x, λ(x))|2 ≤ |dnk

(x) + grad unk
(x)− λ(x)|2, a.e. in Ω.

From here onward the argument is exactly that used in deriving (3.21) from (3.18) and it
will not be repeated here. We obtain

d(x)− grad u(x) = ϕv(x, grad u(x)), a.e. in Ω,

which, together with (6.9), (6.10) implies that T (vnk
) → T (v), strongly in Lp(Ω). But T (v)

does not depend upon the actual choice of subsequence of vn, so that the whole sequence
T (vn) converges to T (v) in Lp(Ω).

Further, the mapping T is compact. Indeed, as already used in (6.9), if u satisfies
(6.8), then because of the coercivity assumption (6.5),

‖u‖W 1,p
0 (Ω) ≤ C < +∞, (6.11)
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with C only depending on ‖f‖W−1,p′ (Ω), ‖m‖L1(Ω) and α. Rellich’s theorem immediately
implies the result.

Finally note that T sends all of Lp(Ω) into the closed convex compact subset of Lp(Ω)
defined by (6.11). Appealing to Schauder’s fixed point theorem, we conclude that T admits
a fixed point u which thus satisfies (6.7).

Let us now consider the case without zeroth order term. Let (un, dn) be a solution to
to 

un ∈W 1,p
0 (Ω), dn ∈ [LN (Ω)]N

− div dn +
1
n
j(un) = f in D′(Ω),

dn(x)− grad un(x) = ϕ(x, un(x), grad un(x)), a.e. in Ω.

Such a solution exists according to (6.7) with j replaced by 1
nj (see Remark 6.3). The

same elementary estimates that were used before imply that, for a subsequence {nk} of
{n}, {

unk
⇀ u, weakly in W 1,p

0 (Ω), strongly in Lp(Ω), and a.e. in Ω,

dnk
⇀ d, weakly in [Lp′(Ω)]N ,

with
−div d = f in D′(Ω).

The result is obtained as for proving the continuity of T upon noting that, for every e in
RN ,

ϕ(x, unk
(x), e) → ϕ(x, u(x), e), a.e. in Ω.

This completes the proof of Theorem 6.4.

Remark 6.5. As a final note, we observe that all our results extend to the case of equations
and systems of higher order, and to different sets of variational boundary conditions.

Acknowledgements. The authors express their gratitude to Gianni Dal Maso for many
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