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ABSTRACT: The “cone condition”, used in passing in many proofs of the ex-
istence of inertial manifolds, is examined in more detail. Invariant manifolds for
dissipative flows can be obtained directly using no other dynamical information.
After finding a condition for the exponential attraction of trajectories to such a
manifold, a cone invariance property is used to show the existence of orbits on the
manifold which track a given orbit of the flow. This leads to a concise proof which
guarantees the existence of inertial manifolds with the asymptotic completeness
property. Furthermore it is shown that the “strong squeezing property” implies di-
rectly the existence of such an inertial manifold. There follows a brief discussion of
the rôle of the cone condition in the Lyapunov-Perron fixed point method of proof,
and a comparison with previous results.
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1. INTRODUCTION

In this paper a new and concise proof of the existence of inertial manifolds is given
for the abstract evolution equation on a separable Hilbert space H,

u̇+Au+ f(u) = 0. (1)

The following class of parabolic problems is considered : it is assumed that A is
an unbounded positive self-adjoint linear operator with compact inverse, and that
the nonlinear term R(u) maps D(Aα) into D(Aβ) and satisfies, for some constants
C0, C1, and ρ

|AβR(u)| ≤ C0 ∀ u ∈ D(Aα),

|Aβ(R(u1)−R(u2))| ≤ C1|Aα(u1 − u2)| ∀ u1, u2 ∈ D(Aα), and
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supp(R) ⊂ Ωρ ≡ {u ∈ D(Aα) : |Aαu| ≤ ρ}. (2)

For technical reasons attention is restricted to the case 0 ≤ α − β ≤ 1
2 . This

problem is considered in Foias et al. [3], who have α = 1, β = 1
2 ; Temam [12], who

deals explicitly only with the case β = α − 1
2 ; and Mallet-Paret & Sell [7], who

work with reaction-diffusion equations for which α = β = 0. Chow et al. [1] cover
the more general case 0 ≤ α− β < 1 and Rodriguez Bernal [11] considers the same
problem for flows on a Banach space.

The conditions above in fact pose little restriction, and many of the well-known
dissipative partial differential equations can be reduced to this case after a careful
prepartion of the equation, for example the 1D Kuramoto Sivashinsky equation, the
2D Navier Stokes equation, and many reaction-diffusion equations (Foias et al. [3],
Mallet-Paret & Sell [7]).

Applying the results of Henry [6], equation (1) generates a semigroup S(t) on
D(Aα), such that the solution at time t through an initial condition u0 ∈ D(Aα) is
given by u(t) = S(t)u0. For t > 0, u(t) is more regular than the initial condition,
with u(t) ∈ D(A1+β) and u̇ ∈ D(Aβ). Furthermore, the solutions are unique in
both forwards and backwards time (forwards uniqueness is standard, backwards
uniqueness follows from Temam [12], pp 168–170, replacing his |A 1

2w|2/|w|2 with
|Aβ+ 1

2w|2/|Aβw|2). These regularity results make it possible to work with the
equation itself and take inner products rather than have to use the variation of
constants formula; in particular expressions such as

1
2
d

dt
|Aαu| = (Aβu̇, A2α−βu)

make sense since u̇ ∈ D(Aβ) and u ∈ D(A1+β), 1 + β > 2α− β since α− β ≤ 1
2 .

The eigenvalues of A are denoted by λj , counted according to their multiplicity
and ordered so that λj+1 ≥ λj . The corresponding eigenfunctions wj are assumed
to be orthonormal in H.

Now choose n > 0 such that λn+1 6= λn, define the projection operator Pn to
be the orthogonal projector onto the space spanned by the eigenfunctions {wj : 1 ≤
j ≤ n}, and set Qn = I − Pn. In what follows Pn, Qn will often be abbreviated to
P,Q when there is no ambiguity in the value of n. Also, when n is clearly fixed
denote λn by λ and λn+1 by Λ.

An inertial manifold M for (1) is a finite dimensional positively invariant Lip-
schitz manifold which attracts all orbits at an exponential rate,

dist(S(t)u0,M) ≤ Ce−kt,



where C = C(X) is uniform for u0 ∈ X, a bounded set in D(Aα). By restricting
attention to trajectories on this manifold, which are governed by a finite-dimensional
dynamical system, a good understanding of the asymptotic dynamics of the equation
should be obtained. If every solution of (1) approaches some trajectory on M, then
the “asymptotic completeness property” is said to hold.

Invariance properties for the cone

Cn
l = {w(t) ≡ u1(t)− u2(t) : |AαQnw(t)| ≤ l|AαPnw(t)|}

are used in many of the current existence proofs of inertial manifolds (here, ui(t)
are two solutions of equation (1)).

Often this “cone condition” is supplemented by the “squeezing” property, which
states that solutions outside the interior of the cone decay exponentially to zero,
i.e. if w(t0) /∈ int Cn

l then

|AαQnw(t)| ≤ e−kt|AαQnw(0)| (3)

for some k > 0 and all 0 ≤ t ≤ t0. Usually the squeezing property is only stated
to hold for w(t0) strictly outside the cone, but all standard proofs give decay for
w(t0) ∈ ∂C also (see [2],[4],[11],[12]).

Together these two are termed the “strong squeezing property”, which was first
used in the analysis of the Kuramoto-Sivashinsky equation presented by Foias et
al. [2]; it is usually employed to prove the exponential convergence of trajectories
to an invariant manifold, once one has been shown to exist.

A different approach is adopted here; starting with the cone invariance property
it is possible to prove the existence of an invariant manifold with no additional as-
sumptions. A new proof of exponential convergence towards the invariant manifold
is then given, which is simpler than those currently to be found in the literature.
Finally, the cone property can be used to give an essentially geometric proof that the
inertial manifold is asymptotically complete. When the strong squeezing propery
is assumed, these last two steps can be combined in a very simple way.

Once these results have been put together to give a concise existence proof,
conditions for the strong squeezing (and hence cone invariance) property to hold
will be derived, and it will be shown how this analysis relates to many of the
existence proofs to be found in the literature.



2. AN EXISTENCE PROOF BASED ON

THE CONE CONDITION

The following three propositions build into the main theorem of this paper. The
first proposition shows that the cone condition is enough to ensure the existence of
an invariant manifold. The proof uses a theorem of Hale [5] which is a generalisation
to infinite dimensional spaces of the result that, for the flow generated by a set of
ordinary differential equations, an absorbing region in IRn will contain a fixed point.

Define the space Fn
l of Lipschitz functions φ : PnH → QnH ∩ D(Aα) which

satisfy

|Aα(φ(p1)− φ(p2))| ≤ l|Aα(p1 − p2)|,

‖φ‖ ≡ sup
p∈PnH

|Aαφ(p)| <∞, and

supp(φ) ⊂ PnΩρ.

Clearly Fn
l can be considered as a closed convex subset of the Banach space

consisting of all C0 functions from PnΩρ into QnH ∩D(Aα).

Proposition 1 Provided that for some l and n the cone Cn
l is invariant under

the flow S(t) induced by (1), there is an invariant manifold given as the graph of a
function φ ∈ Fn

l .

Proof The following theorem of Hale [5] (Theorem 3.4.8) is used:

Consider a semigroup T (t) defined on a Banach space or a closed convex subset of a
Banach space. If the semigroup T (t) is dissipative, C0, and completely continuous
then T (t) has a fixed point. Completely continuous means that, for any bounded
set B and for any t > 0, the closure of T (t)B is compact.

Because of the cone condition, the flow S(t) on D(Aα) induces a flow on Fl

which will be denoted T (t) and is given by

S(t)G[φ(τ)] = G[φ(t+ τ)] = G[T (t)φ(τ)],

where the notation G[ψ] denotes the manifold given as the graph of ψ.

Indeed, any two points on Mt = S(t)G[φ(0)] must satisfy |Aα(q1 − q2)| ≤
|Aα(p1 − p2)|, and so for each value of p in PMt there exists a unique value of q,
denoted ψ(p), for which p + ψ(p) ∈ Mt. Over its domain of definition, ψ satisfies
the Lipschitz bound necessary for functions in Fl. From (2) it is clear that ψ(p) = 0
for |Aαp| > ρ. It remains to show that there are “no holes” in Mt, i.e. that
PMt = PH.



Following Foias et al. [4],M0 is clearly homeomorphic to PH; due to backwards
uniqueness and continuous dependence on initial conditions Mt is homeomorphic
to M0. By virtue of the cone condition PMt is homeomorphic to Mt and hence
to PH. Now, using condition (2), for every p /∈ PΩρ there exists a unique p̃ /∈ PΩρ

with S(t)p̃ = p, and which is given by p̃ = eAtp. Thus PMt must be equal to PH,
and consequently S(t)G[φ(0)] = G[φ(t)] with φ(t) = ψ. The operator T (t) defined
by T (t)φ(0) = φ(t) clearly inherits the semigroup properties of S(t).

If T (t) has a fixed point φ, then the manifold G[φ] must be invariant under the
flow S(t). The theorem above is now shown to apply and ensure the existence of
such a fixed point.

The evolution equation for the Q component of u is

q̇ +Aq +QR(u) = 0,

which using the variation of constants formula for q(t) gives

q(t) = e−Atq(0)−
∫ t

0

e−A(t−s)QR(u(s)) ds.

Hence

|Aαq(t)| ≤ |Aαq(0)|e−Λt + C0

∫ t

0

‖Aα−βe−AQ(t−s)‖ ds.

The integral can be bounded by using expressions found in Foias et al. [3] for
example, by I0, say, so that

|Aαq(t)| ≤ |Aαq(0)|e−Λt + I0C0,

and so

‖φ(t)‖ ≤ ‖φ(0)‖e−Λt + I0C0 (4)

which ensures that the flow T (t) is dissipative.

It further follows from (4) that T (t) maps bounded sets into bounded sets.

Now, due to the Lipschitz property of functions in Fl, any subset is equicon-
tinuous. A bounded subset of Fl is certainly bounded in C0, and thus by the
Arzelà-Ascoli theorem for Banach spaces (Naylor & Sell [8]), any closed bounded
subset of Fl is a compact subset of C0(PΩρ, QH ∩D(Aα)). But the topology on Fl

generated by its norm coincides with that of Fl as a subset of C0, and Fl is complete
with respect to this norm, so a closed bounded subset of Fl is also compact in Fl.
Therefore T (t) is completely continuous.



Thus T (t) satisfies the conditions of the theorem and there exists an invariant
manifold for the flow S(t) given as the graph of a function φ ∈ Fl.

Note that although the cone condition ensures that manifolds given as the
graphs of C1 functions stay C1 provided R is smooth, the space C1

l of functions
whose derivatives satisfy ‖AαDφ‖ ≤ l is not complete. Its completion is the space
Fl used above and so the simple method used for proposition 1 cannot be applied
to yield a C1 invariant manifold, and more complicated arguments are necessary
(see Mallet-Paret & Sell [7], Raugel [9]).

For the invariant manifold to be an inertial manifold, trajectories must converge
towards it exponentially. A condition for this is given in proposition 2.

Proposition 2 Suppose equation (1) possesses an invariant manifold M given as
the graph of a function φ ∈ Fn

l , and define µ by

µ = Λ− C1(Λα−β + lλα−β). (5)

Then provided µ > 0, trajectories of (1) converge to M at an exponential rate, that
is

|Aα(q(t)− φ(p(t)))| ≤ |Aα(q0 − φ(p0))|e−µt.

Proof The time evolution of the quantity δ(t) ≡ q(t) − φ(p(t)) is given by the
equation

δ̇ +Aq +QR(p+ q) + φ̇(p)(p,q) = 0,

whenever φ̇ exists. (Compare this approach with that of Chow et al. [1] who use
the variation of constants formula).

Now, φ is a Lipschitz function defined on a finite dimensional space, and thus it
is differentiable almost everywhere. However, this does not preclude the possibility
that φ(p(t)) is nowhere differentiable along a trajectory, and so it is not possible to
replace φ̇ by Dφ · ṗ and obtain an equation valid for almost all t. However, it is
clear that Aαφ(p(t)) is Lipschitz in t, since it is Lipschitz in Aαp and

|Aαṗ| ≤ −λ1|Aαp|+ λα−βC0,

which implies that Aαp(t) is Lipschitz in t. Thus φ̇(t) exists for almost all t (Young
& Young [13]).



Since the manifold M is invariant, δ̇ = 0 when q = φ(p), so the following
expression, valid for almost all t :

Aφ(p) +QR(p+ φ(p)) + φ̇(p)(p,φ(p)) = 0,

can be subtracted from the equation for δ̇ to yield

δ̇ +Aδ +QR(p+ q)−QR(p+ φ(p)) + (φ̇(p,q) − φ̇(p,φ(p))) = 0.

Taking the inner product with A2αδ produces

1
2
d

dt
|Aαδ|2 ≤ −|Aα+ 1

2 δ|2 + C1|A2α−βδ||Aαδ|+ |Aα(φ̇(p,q) − φ̇(p,φ(p)))||Aαδ|.

If φ were C1 then φ̇ = Dφ · ṗ, and the final term could be bounded by

|AαDφ(p) · (PR(p, q)− PR(p, φ(p)))| ≤ l|Aα(PR(p, q)− PR(p, φ(p)))|

≤ C1lλ
α−β |Aα(q − φ(p))|

= C1lλ
α−β |Aαδ|.

The same bound can be obtained for Lipschitz φ by the following procedure:
for each t where the two derivatives are defined, denote by ū(τ) the trajectory with
initial condition ū(t) = p(t) + φ(p(t)). Then

|Aα(φ̇(t)(p,q) − φ̇(t)(p,φ(p)))|

=
∣∣∣∣ lim
δt→0

Aα(φ(p(t+ δt))− φ(p(t))− φ(p̄(t+ δt)) + φ(p̄(t)))
δt

∣∣∣∣
=

∣∣∣∣ lim
δt→0

Aα(φ(p(t+ δt))− φ(p̄(t+ δt)))
δt

∣∣∣∣
≤ lim

δt→0
l

∣∣∣∣Aα(p(t+ δt)− p̄(t+ δt))
δt

∣∣∣∣
= l

∣∣∣∣ lim
δt→0

Aα(p(t+ δt)− p(t)− p̄(t+ δt) + p̄(t))
δt

∣∣∣∣
= l|Aα(ṗ(t)− ˙̄p(t))|

= l|Aα(PR(p+ q)− PR(p+ φ(p)))|

≤ C1lλ
α−β |Aαδ|.

With this bound,

1
2
d

dt
|Aαδ|2 ≤ −|Aα+ 1

2 δ|2 + C1|A2α−βδ||Aαδ|+ lC1λ
α−β |Aαδ|2.



Now consider the other two terms

−|Aα+ 1
2 δ|2 + C1|A2α−βδ||Aαδ|

which occur on the right-hand side above. Since α+ 1
2 > 2α− β this expression is

bounded by
−|Aα+ 1

2 δ|2 + C1Λα−β− 1
2 |Aα+ 1

2 δ||Aαδ|.

Observe that −X2 + cX is decreasing for X > c/2, and so provided that

|Aα+ 1
2 δ| > Λ

1
2 |Aαδ| > C1Λα−β− 1

2 |Aαδ|/2

which reduces to
Λ1−α+β > C1/2, (6)

the following expression is valid :

d

dt
|Aαδ| ≤ −(Λ− C1(Λα−β + lλα−β))|Aαδ|.

The result follows at once, noting that µ > 0 ensures condition (6).

It remains to prove the asymptotic completeness property of the inertial mani-
fold, which ensures that any trajectory can be approximated, to within an exponen-
tially decaying transient, by a trajectory lying within the manifold. This is stated
more precisely in the following proposition.

Proposition 3 If trajectories of (1) converge exponentially towards an invariant
manifold given as the graph of a function φ ∈ Fn

l and the cone Cn
m is invariant for

some m > l, then for any trajectory u(t) of (1) there exists a point u0 ∈ M such
that

|Aα(u(t)− S(t)u0)| ≤
1 +m

m− l
|Aα(q(0)− φ(p(0)))|e−µt.

Proof The proof is based on that in Foias et al. [4] with considerable simplifica-
tions. Consider the complement of Cm centred at the point u(t) of a trajectory, and
denote this by K(u(t)), so that

K(u) ≡ {v ∈ D(Aα) : |AαQw| > m|AαPw|, w = v − u}.

In the language of Foias et al., this cone casts a “shadow” V(u(t)) on the inertial
manifold,

V(u) = K(u) ∩M.



FIGURE 1

This constuction is illustrated in figure 1.

Denote by V (u) the closure of V(u) so that

V (u) = {v ∈M : |AαQw| ≥ m|AαPw|, w = v − u}.

As the distance of u(t) to the manifold decreases so does the distance between u

and all points in V (u); a bound on this distance implies that V (u) is compact. This
is the content of lemma 1.

Lemma 1 Consider u ∈ D(Aα) with u /∈ M. Then V (u) is compact, and for all
v ∈ V (u), the distance in D(Aα) between u and v is bounded according to

|Aα(u− v)| ≤ 1 +m

m− l
|Aα(q − φ(p))|.

Proof For u = p+ q and v ∈ V (u) with v = π + φ(π), π ∈ PH,

|Aα(u− v)| = |Aα(p+ q − φ(p) + φ(p)− π − φ(π))|

≤ |Aα(q − φ(p))|+ (1 + l)|Aα(p− π)|.

Now suppose that |AαQ(u− v)| = γ|AαP (u− v)| with γ ≥ m. Then if π = p+ rω

for some r > 0 and ω ∈ PD(Aα) with |Aαω| = 1,

|Aα(φ(p+ rω)− q)| = γr.

Therefore

|Aα(φ(p+ rω)− φ(p) + φ(p)− q)| = γr



and using the Lipschitz property of φ

lr + |Aα(q − φ(p))| ≥ mr

so that
|Aα(p− π)| = r ≤ |Aα(q − φ(p))|

m− l
.

This ensures that V (u) is compact (it is a closed bounded subset of the finite
dimensional manifold M), and provides the bound

|Aα(u− v)| ≤ 1 +m

m− l
|Aα(q − φ(p))|.

Write Kt,Vt, Vt for K(u(t)),V(u(t)), V (u(t)). It is now necessary to show that
there exists a point within V0 which remains within the shadow for all time. This
will provide the trajectory on M that tracks u(t).

Since both M and the complement of Kt are positively invariant, trajectories
can only leave the shadows Vt. Taking the limit of a sequence of points S(−tn)v(tn)
with v(tn) ∈ Vt will give the required point in V0. This is lemma 2.

Lemma 2 There exists a point u0 ∈ V0 such that S(t)u0 ∈ Vt for all t ≥ 0.

Proof Consider a sequence of times {tn} with tn → ∞ as n → ∞, and choose
for each tn a vtn ∈ Vtn . Set u(n) = S(−tn)vtn ; since points can only leave Vt this
sequence will be contained in V0. Using lemma 1, V0 is compact, so there exists
a subsequence of u(n) which converges to a point u0 ∈ V0. This point must be
contained in Vt for all t ≥ 0, for if not there exists a neighbourhood N of u0 in M
and a time t0 such that for all t ≥ t0, S(t)N is disjoint from Vt, contradicting the
definition of u0.

The trajectory of u0 tracks u(t) exponentially, since using lemma 1,

|Aα(u(t)− S(t)u0)| ≤
1 +m

m− l
|Aα(q(t)− φ(p(t)))|

≤ 1 +m

m− l
|Aα(q(0)− φ(p(0)))|e−µt.

Combining propositions 1-3 yields the first theorem of this paper.

Theorem 1 If for some n the flow induced by equation (1) leaves the cone Cn
l

invariant, and the eigenvalues λ = λn and Λ = λn+1 satisfy

Λ > C1(Λα−β + lλα−β) (7)



then there exists an inertial manifold given as the graph of a function φ ∈ Fn
l .

If in addition the cone Cn
m, for some m > l, is invariant, the inertial manifold is

asymptotically complete.

3. AN EXISTENCE PROOF BASED ON THE

STRONG SQUEEZING PROPERTY

The aim in section 2 was to produce an existence proof given only the existence
of certain invariant cones. However, if the strong squeezing property is assumed,
propositions 2 and 3 can be combined in a concise way.

First note that the strong squeezing property includes the cone invariance nec-
essary for proposition 1 and hence ensures the existence of an invariant manifold
given as the graph of some φ ∈ Fl, which will be denoted by M. The following
argument can then be applied to provide a tracking trajectory within this manifold.

Proposition 4 If the strong squeezing property holds, then for every trajectory
u(t) there exists a point u0 ∈M, such that

|Aα(u(t)− S(t)u0)| ≤ (1 + l−1)(|AαQu(0)|+ ‖φ‖)e−kt. (8)

Proof Define V(u) as in proposition 3, except set m = l. The first stage is to
show that V (u) is compact for u /∈M. Since V (u) is by definition closed, it suffices
to show that V (u) is bounded. Because V (u) ⊂ M, this is equivalent to PV (u)
bounded in PD(Aα). Indeed, for v ∈ V (u) with v = π + φ(π),

|Aα(p− π)| ≤ l|Aα(q − φ(π))|,

and as |Aα(p− π)| ≥ |Aαπ| − |Aαp|,

|Aαπ| − |Aαp| ≤ l(|Aαq|+ ‖φ‖),

which gives the bound on |Aαπ|,

|Aαπ| ≤ |Aαp|+ l(|Aαq|+ ‖φ‖),

ensuring compactness of V (u). Therefore lemma 2 can be applied to give an initial
condition u0 ∈ V0 which satisfies S(t)u0 ∈ Vt for all t ≥ 0.

Now the squeezing property is used: since S(t)u0 ∈ Vt for all t, the difference



w(t) = S(t)u0 − u(t) lies either outside Cl or on ∂Cl for all t ≥ 0, and so

|Aα(u(t)− S(t)u0)| = |Aαw(t)|

≤ (1 + l−1)|AαQw(t)|

≤ (1 + l−1)|AαQw(0)|e−kt

≤ (1 + l−1)|AαQ(u(0)− u0)|e−kt

≤ (1 + l−1)(|AαQu(0)|+ ‖φ‖)e−kt,

which is “exponential tracking”. In particular the manifold is exponentially attrac-
tive,

dist(S(t)u(0),M) ≤ C(X)e−kt C(X) = (1 + l−1)(%+ ‖φ‖), (9)

uniform for u(0) ∈ Ω%.

Therefore propositions 1 and 4 provide an extremely concise existence proof,
summarised as

Theorem 2 The Strong Squeezing Property ensures the existence of an asymptot-
ically complete inertial manifold, given as the graph of a function φ ∈ Fn

l .

4. VERIFYING THE CONE CONDITION

The natural question to ask now is “when does the cone invariance property hold?”.
In the following proposition a condition is given which will in fact ensure that Cl

satisfies the strong squeezing property.

Proposition 5 If there exists an n such that the eigenvalues λ = λn and Λ = λn+1

satisfy
Λ− λ > C1{(1 + l)λα−β + (1 + l−1)Λα−β} (10)

then the cone Cn
l is positively invariant, and if w(t0) /∈ int Cl then

|AαQnw(t)| ≤ |AαQnw(0)|e−kt,

with k = Λ− C1Λα−β(1 + l−1), for all 0 ≤ t ≤ t0.

Proof The proof is simple (see also Rodriguez Bernal [11] and Temam [12]). The
difference w of two solutions satisfies the equation

ẇ +Aw +R(u1)−R(u2) = 0. (11)

Set p = Pw and q = Qw. Then the P component of (11) reads

ṗ+Ap+ PR(u1)− PR(u2) = 0,



and taking the scalar product with A2αp yields

1
2
d

dt
|Aαp|2 ≥ −λ|Aαp|2 − C1λ

α−β |Aαw||Aαp|,

or when |Aαq(0)| = l|Aαp(0)|,

d

dt
|Aαp|t=0 ≥ −(λ+ C1λ

α−β(1 + l))|Aαq|/l.

For the Q equation,

q̇ +Aq +QR(u1)−QR(u2) = 0

the same device as was used in the exponential convergence proof must be employed.
Take the scalar product with A2αq to obtain

1
2
d

dt
|Aαq|2 ≤ −|Aα+ 1

2 q|2 + C1|Aαw||A2α−βq|,

and consider the derivative when |Aαq(0)| = l|Aαp(0)|. The equation becomes

1
2
d

dt
|Aαq|2t=0 ≤ −|Aα+ 1

2 q|2 + C1(1 + l−1)|Aαq||A2α−βq|.

Apply the argument of proposition 2 to give

d

dt
|Aαq|t=0 ≤ −(Λ− C1Λα−β(1 + l−1))|Aαq|

provided that

Λ1−α+β > C1(1 + l−1)/2. (12)

Then at t = 0

d

dt
(|Aαq| − l|Aαp|)t=0 ≤ −(Λ− λ− C1(1 + l)λα−β − C1(1 + l−1)Λα−β)|Aαq(0)|,

which is negative provided that condition (10) holds, and so Cn
l is invariant. Note

also that (10) implies (12).

The squeezing property follows directly from the Q component of the equation
with |Aαq| ≥ l|Aαp|.



5. AN INERTIAL MANIFOLD THEOREM

An immediate corollary of proposition 5 is the following

Theorem 3 If for some n the eigenvalues λ = λn and Λ = λn+1 satisfy

Λ− λ > C1(λ
(α−β)

2 + Λ
(α−β)

2 )2 (13)

then there exists an inertial manifold with the asymptotic completeness property,
given as the graph of a function φ ∈ Fn

l , where l = (Λ/λ)(α−β)/2.

Proof Condition (13) is obtained from

Λ− λ > C1{(1 + l)λα−β + (1 + l−1)Λα−β}

by minimising the right hand side with respect to l. This minimum occurs at
lmin = (Λ/λ)(α−β)/2. Condition (13) is therefore the least restrictive version of
(10) to ensure the strong squeezing property and hence an asymptotically complete
inertial manifold.

6. COMPARISON WITH OTHER METHODS OF PROOF

It has been shown that the cone condition, supplemented by the attraction of trajec-
tories to the invariant manifold, or the strong squeezing property alone, is sufficient
to provide a concise existence proof. It is interesting how the method above is
related to those employed in the papers mentioned in the introduction, where the
cone condition plays an often unacknowledged rôle.

The most explicit use of the cone condition is in the paper Mallet-Paret & Sell
[7] on reaction-diffusion equations. They consider the linear variational equation
along a trajectory, which is

ρ̇ = DF (u)(ρ, σ)

σ̇ = −Aσ +DG(u)(ρ, σ)

in their notation, where F (u) = −Ap + PR(u) and G(u) = QR(u). The cone
condition is expressed as V̇ < 0 whenever |ρ| = |σ|, where V ≡ 1

2 |σ|
2 − 1

2 |ρ|
2.

This implies invariance of the cone C1 (see [7]). For reaction-diffusion equations,
α = β = 0, and smoothness results can be obtained under the stronger assumption
that V̇ ≤ −ξ|σ|2. Generalising this condition gives

Definition The V -condition : with V ≡ 1
2 (|Aασ|2 − l2|Aαρ|2), one has V̇ ≤

−ξ|A2α−βσ|2 whenever |Aασ| = l|Aαρ|.



The invariance of the cone Cl is ensured by Ẇ < 0 on the boundary of Cl, where
W ≡ 1

2 (|Aαq|2 − l2|Aαp|2) with p = Pw, q = Qw, and w = u1 − u2. Strengthening
this to a uniform condition yields

Definition The W -condition : with W as above one has Ẇ ≤ −ξ|A2α−βq|2 when-
ever |Aαq| = l|Aαp|.

This is equivalent to the V -condition :

Proposition 6 If R is C1, the W -condition holds if and only if the V -condition
holds.

Proof That the V -condition implies the W -condition can be shown using the
following argument from Mallet-Paret & Sell [7]. Setting p = p1−p2 and q = q1−q2
for two solutions u1, u2 of (1), p and q satisfy

ṗ = F (u1)− F (u2)

q̇ = −Aq +G(u1)−G(u2).

Using the mean value formula,

ṗ =
∫ 2

1

DF (uθ)u dθ

q̇ = −Aq +
∫ 2

1

DG(uθ)u dθ,

where uθ = u1 + (θ − 1)(u2 − u1). For each value of θ the V condition states that
when |Aαq| = l|Aαp|,

(A2αq,−Aq +DG(uθ)u)− l2(A2αp,DF (uθ)u) ≤ −ξ|A2α−βq|2.

Integrating this over θ yields Ẇ ≤ −ξ|A2α−βq|2 as required.

For the converse, set p = ερ and q = εσ with |Aαρ| = l|Aασ|, and then

(A2αεσ,−Aεσ + F (u1)− F (u1 + ε(ρ+ σ)))

− (A2αερ,G(u1)−G(u1 + ε(ρ+ σ))) ≤ −ξε2|A2α−βσ|2.

Letting ε→ 0 gives

(A2ασ,−Aσ +DF (u1)(ρ, σ))− (A2αρ,DG(u1)(ρ, σ)) ≤ −ξ|A2α−βσ|2

which is the V -condition.

Note that although V̇ < 0 implies that Ẇ < 0, the action of taking limits in
the proof of proposition 6 would yield only V̇ ≤ 0 from Ẇ < 0. Thus requiring
Ẇ < 0 is slightly stronger than the simple cone invariance condition for Cl.



To show the existence of an invariant manifold in [7] the Hadamard or “graph
transform” method is used. The flat manifold PH evolves with the flow, and the
cone condition implies that S(t)PH = G[φt] as in proposition 1. It is then shown
that φt converges to some φ∗ as t → ∞, the graph of which is invariant for S(t).
A condition similar to (5) ensures this convergence. From proposition 2 it is clear
that given (5)

‖φt − φ∗‖ ≤ ‖φ0 − φ∗‖e−µt

and hence a similar construction will work in this case. It should also be possible to
adapt their smoothness proof to the more general case considered here, assuming
that the V condition holds (see Raugel [9]).

The method used in all the other papers cited above ([1], [2], [3], [4], [11], [12])
is to reduce the search for an invariant manifold to a fixed point problem. For a
given φ ∈ Fn

l , consider the finite-dimensional equation for p ≡ Pnu

ṗ+Ap+ PR(p+ φ(p)) = 0, (14a)

and denote by p(t) the solution for which p(0) = p0.

Suppose that G[φ] were an invariant manifold. Then the evolution of q ≡ Qnu

on the manifold would be given by

q̇ +Aq +QR(p+ φ(p)) = 0, (14b)

with |Aαq(t)| < ‖φ‖ and so bounded for all time. From Temam [12] such a solution
is unique and can be written, using the variation of constants formula, as

q(t) = −e−At

∫ t

−∞
eτAQQR(p(τ) + φ(p(τ))) dτ, (15)

so that in particular

q(0) = −
∫ 0

−∞
eτAQQR(p+ φ(p)) dτ.

If G[φ] is in fact invariant, then it must be the case that q(0) = φ(p0). Therefore
define an operator T acting on the space Fl by

Tφ(p0) = −
∫ 0

−∞
eτAQQR(p+ φ(p)) dτ, (16)

and solutions of the fixed point problem Tφ = φ will be invariant manifolds for (1).

In proving the existence of a fixed point for T , two methods can be employed;
either the Schauder fixed point theorem (since Fl is convex) or the contraction



mapping theorem. In both cases it is important to show that Tφ ∈ Fl whenever
φ ∈ Fl. This is where the cone condition can be employed.

The properties of the operator T are clearly related to the dynamical properties
of the family of equations

u̇+Au+R(p+ φ(p)) = 0 (17)

for φ ∈ Fl (this is equations (14a) and (14b) combined). Indeed,

Proposition 7 If all members of the family of equations (17) leave the cone Cn
l

invariant, then T maps Fn
l into itself.

Proof Using proposition 1 equation (17) possesses an invariant manifold given
as the graph of a function ψ ∈ Fl. The trajectory on this manifold with u(0) =
(p0, ψ(p0)) satisfies equation (14a) and |Aαq(t)| ≤ ‖ψ‖ for all time. Thus from the
uniqueness of such a solution, q(t) must be given by (15), and so Tφ = ψ ∈ Fl.

The action of T is thus to pick out the invariant manifold for equation (17);
indeed, if the nonlinear term R depends only on p :

Proposition 8 The equation

u̇+Au+R(p) = 0

possesses an invariant manifold given as the graph of the function φ, where

φ(p0) = −
∫ 0

−∞
eτAQR(p(τ)) dτ

and p(t) is the solution of

ṗ+Ap+ PR(p) = 0 p(0) = p0.

Proof Tφ = T0 for all φ. In particular, T 20 = T0, so T0 is a fixed point for T .

It would be satisfying if the cone invariance property for (1) ensured that the
condition of proposition 7 were fulfilled, but generally this need not be the case.
Indeed, the simple two-dimensional system{

ẋ = −λx+ µy
ẏ = −Λy + µx



leaves C1
1 invariant for any Λ > λ and for all µ. Here, R(x, y) = µ(y, x); setting

φ(x) ≡ 0 gives an equation in the family (17){
ẋ = −λx
ẏ = −Λy + µx

which does not satisfy the cone condition if Λ− λ < µ.

However, results like proposition 5 which rely only on the Lipschitz bound of
R(u) will carry over, replacing R(u) by R(p+ φ(p)) throughout.

It is worthy of note that T is always continuous (Robinson [10]), and so Propo-
sition 7 ensures a fixed point for T by the Schauder fixed point theorem, in other
words an invariant manifold for (1). This comes as no surprise, since if the assump-
tion of proposition 7 holds the cone Cl is invariant for (1); for any u1, u2 whose
difference lies on ∂Cl use the W -condition for (17) with pi = Pui (i = 1, 2), and a
φ with φ(pi) = Qui (which can be found since |AαQ(u1 − u2)| = l|AαP (u1 − u2)|)
to ensure that d

dt (|A
αq|2 − l2|Aαp|2) < 0.

It can therefore easily be seen why these two different methods of proof furnish
the same constraints on the eigenvalues of A. For comparison, the conditions from
the papers mentioned in the introduction are now given (re-worked into a more
explicit form) and condition (13) is best re-expressed (and slightly coarsened) as

Λ− λ > 2C1(Λα−β + λα−β). (18)

Unless otherwise stated, the conditions are shown to ensure the existence of Lips-
chitz manifolds with no asymptotic completeness.

Chow et al. [1] have the tightest condition

Λ− λ > 4C1(Λα−β + λα−β)

which they show also ensures that the manifold is C1 if the nonlinear term R is C1,
and asymptotic completeness.

Foias et al. [3] obtain, for the case α = 1 and β = 1
2 ,

Λ− λ > 18C1(Λ
1
2 + λ

1
2 ),

the same in form as (18) but with a larger constant.

The results of Mallet-Paret & Sell [7] are not directly comparable, as the aim
of their paper was to find conditions to ensure cone invariance when a spectral gap



like (18) could not be verified. However, using the “principle of spatial averaging”,
they show that for reaction-diffusion equations

u̇+ ν∇2u+ f(x, u) = 0

there exist C1 inertial manifolds for all ν and various boundary conditions in : all
domains in IR, rectangular domains in IR2 of the form (0, 2π/a1)× (0, 2π/a2), and
the cubic domain (0, 2π)3 in IR3, the last result requiring f to be C3.

The conditions of Rodriguez Bernal [11] become equation (7) above and the
extraordinary two inequalities

δ2 − λ ≥ C1(1 + l)λα−β + (Kα−βC1(1 + l−1)Γ(1 + β − α))
1

1+β−α

λα−β−1C1l + δα−β−1
2 Kα−βC1Γ(1 + β − α) < 1,

where δ2 = Λ(1 − ε) and Kθ = θθε−θe−θ. Λ has to be replaced by δ2 < Λ since
remark (iv) on page 100 is incorrect; indeed, Kθ arises in the bound ‖Aθe−AQt‖ ≤
Kθt

−θe−δ2t, which holds for no Kθ when δ2 = Λ.

Temam [12] allows 0 ≤ α− β ≤ 1
2 yielding two conditions

Λ− λ > 56C1(λα−β + Λα−β) Λ > C2
1 (20 + 8e−

1
2 )

which reduce to
Λ− λ > 56C1(λ

1
2 + Λ

1
2 )

when β = α− 1
2 . This is (18) again with a very inflated constant.

Thus equation (13) is less restrictive than all the above cases, although the
asymptotic conditions necessary to ensure the existence of inertial manifolds for all
ν > 0 in the equations

u̇+ νAu+R(u) = 0

are identical.

The two existence proofs presented here highlight the importance of the cone
invariance and squeezing properties, and in their argument simplify those in the
literature. That the condition obtained to ensure existence is essentially identical
to those found previously is explained by the relationship of the cone condition to
the properties of the operator T used in the fixed point method.
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