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Preface

This book is about the potential theory of Laplace’s equation,

ﬂ_'_ﬁ_f_..._{_la_z’l—o
az? = dz2 dx%,

in Euclidean space RY, where N > 2; in brief, classical potential theory.
It involves the whole circle of ideas concerning harmonic and subharmonic
functions, maximum principles and analyticity, Green functions, potentials
and capacity, the Dirichlet problem and boundary integral representations.
From its origins in Newtonian physics, the subject has developed into a ma-
jor field of research in its own right, intimately connected with several other
areas of real and complex analysis. Over the past half-century, new lines of
investigation have emerged and come to maturity, largely inspired by classi-
cal potential theory: examples are non-linear potential theory, probabilistic
potential theory, axiomatic potential theory and pluripotential theory. For a
proper appreciation of these subjects an understanding of the classical the-
ory is essential. There is also a close relationship between potential theory
in the plane and complex analysis: concepts from potential theory are im-
portant and natural tools for the study of holomorphic functions. Further,
this connection suggests potential theoretic analogues of theorems concerning
functions of one complex variable, ranging from elementary results such as
the maximum modulus theorem and Laurent’s theorem, to the approximation
theorems of Runge and Mergelyan and the theory of prime ends.

We treat our subject at a level intended to be accessible to graduate stu-
dents. Prereguisite knowledge does not go beyond what is commonly taught
in undergraduate or first-year graduate courses. The reader will need a good
grasp of the limiting processes of analysis, some facility with calculus in
higher dimensions, and some measure theory. A few well-known theorems
from functional analysis are required, and only very basic topology and lin-
ear algebra. Some of the less elementary results that are employed are stated
in the Appendix, where convenient references to proofs are supplied. As we
sometimes indicate connections with the theory of holomorphic functions,
familiarity with the rudiments of one-variable complex analysis would enrich
the reader’s appreciation of this aspect of the subject.

We have set out to present rigorously and economically many of the re-
sults and techniques that are central to potential theory and are the everyday
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viit Preface

tools of researchers in the field. Occasionally we have taken the opportunity to Contents
present some lesser known results that we have found useful and interesting.
The collection of theorems in Chapter 3 connecting convexity and subhar-
monicity, some of which are not widely known but, have elegant proofs, falls
into this category; another example from the same chapter is the characteri-
zation of open sets in which the maximum principle holds (and, surprisingly,
these include some unbounded domains). In our own research we have some-
times needed a standard result in a form not easily found in the literature.
This is no doubt a common experience, so we have given strong and general
versions of theorems when it has been feasible to do so without excessively
prolonging proofs. For example, the Dirichlet problem is discussed for the Notation and Terminology ................ ... ... . ... ..., xiii
most general open sets possible (which, when N > 3, include all open sets), i ) )

and the main removable singularity result (Theorem 5.2.1) does not require { 1. Harmonic Functions

that the exceptional polar set is closed. Obviously, we have had to decide to “ 1.1. Laplace’sequation ........ ... ... . ... 1
omit certain topics, and among these are the notion of energy, and families 1.2. The mean value property ..................... ... 3
of capacities associated with various function spaces. 1.3. The Poisson integral foraball ...... ... .. .. .. L 6
The first six chapters are of quite a concrete character, dealing with har- : 1.4. Harnack’s inequalities ...................oo FEERRERE 13
monic and subharmonic functions and potentials, and their particular prop- 1.5. Families of harmonic functions: convergence properties .... 15
erties. Here the underlying topology is always the standard Euclidean one. 1.6. The Kelvin transform ...................... ..., 19
Each of these chapters concludes with a set of exercises, some fairly rou- 1.7. Harmonic functions on half:-spa.cesl ---------------------- 22
tine and others leading step-by-step to results from the research literature. 1.8. Real-analyticity of harmonic functions ................... 26
The material in these chapters is especially appropriate to readers seeking a 1.9, BXErCiSes ...ttt e 30
background knowledge of the subject for wider application. In the final three
chapters the level of abstraction deepens as we introduce topological concepts 2. Harmonic Polynomials
specially created for potential theory, such as the fine topology, the Martin 2.1. Spaces of homogeneous polynomials ..................... 33
boundary and minimal thinness. Our aim here is to give the reader a firm 2.2. Another inner product on a space of polynomials ....... .. 35
grounding in these more advanced topics on which to base future reading and 2.3. Axially symmetric harmonic polynomials ................ 37
research. At the back of the book we have provided brief historical notes for 2.4. Polynomial expansions of harmonic functions ............. 40
each chapter indicating, to the best of our knowledge, the original sources of 2.5. Laurent expansions of harmonic functions ................ 44
results and ideas, and pointing to further developments which lie beyond the ' 2.6. Harmonic approximation ................ . ..coiiiianna. 47
scope of this book. 2.7. Harmonic polynomials and classical polynomials .......... 53
In preparing this book we have, of course, benefitted from the work of . 2B, EROTCISBE  « oottt ittt it e e e 55
eartier authors. In particular, we acknowledge our indebtedness to Brelot [12,
1965], Helms [1, 1969], Hayman and Kennedy [1, 1976], Doob [6, 1984] and 3. Subharmonic Functions
Axler, Bourdon and Ramey [1, 1992]. Other related texts include Brelot [13, 3.1. Elementary properties .............ooeireiniiiiiiinins 59
1971], Landkof [1, 1972], Hayman [2, 1989], Ransford [1, 1995], and the older 3.2. Criteria for subharmonicity ................... .. ... ... 64
works of Kellogg [1, 1929], Radé {1, 1937] and Tsuji [1, 1959}- We are also ) 3.3. Approximation of subharmonic functions by smooth ones .. 68
grateful to Professors Hiroaki Aikawa, Ivan Netuka and Jif{ Vesely for reading 3.4. Convexity and subkarmomicity ......................... 72
various parts of the manuscript in draft form and making helpful suggestions. 3.5. Mean values and subharmonicity ....................... 75
Any defects that remain are, of course, the responsibility of the authors, Fi- 3.6. Harmonic majorants ..................eerriiaaaian... 79
nally, we express our appreciation to Michael Elliott, Sheila O’Brien, Siobhén 3.7. Families of subharmonic functions: convergence properties . 82
Purcell, Gerhard Schick and Thomas Unger for their careful typesetting of the 3.8, EXEICISS .. r«ovvnoeensen oo 84

book, and to the staff of Springer-Verlag (UK} for their courteous efficiency
and helpfulness.
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Notation and Terminology

Some general notation and conventions are summarized below. However, most,
notation will be explained as it is introduced in the course of the book, and
can be traced using the notation index.

Sets

We work mostly in the context of Euclidean space R, where N > 2, and
denote a typical point by = or (z1,...,2x). We write

”:E” = (x% +F $42’V)1/2 and (Isy) =i+ F TNy,

where y = (y1,...,yn), for the usual norm and inner product. The symbol 2
always denotes a non-empty open subset of RY . The connected components
of 2 will be referred to simply as components, and we sometimes use the
term domain as an abbreviation for “non-empty connected open set”. All
topological concepts will be relative to the Euclidean topology on RY (that
is, the topology associated with the above norm) unless otherwise indicated.
By a G; set we mean one which can be expressed as a countable intersection
of open sets, and by an F, set we mean one which can be expressed as a
countable union of closed sets. (In general, a collection of objects will be
called countable if it i3 either finite or countably infinite.)

If E C RV, then the closure, interior and boundary of E are denoted
respectively by E, E° and JE. We write the one-point compactification of
RY as RY U {co}, and use 842 to denote the boundary of 2 in RV U {oo}.
Thus oo € 3°°f2 if and only if 2 is unbounded.

The open ball of centre z and radius r in RV is denoted by B(z,r), and
S(z,r) denotes the sphere 3B(x,r). We abbreviate B(0,1) to B and 5{0,1)
to S. By a hyperplane we mean a set of the form {z € RY : {z,y) = a}, where
y € S and @ € R. A linear mapping T : RY — RY that satisfies T(S) = S
will be called an orthogonal transformation. (Thus T is orthogonal if and only
if the columns of the matrix associated with T' form an orthonormal basis of
RY.) An isometry (a distance-preserving map) of R can be expressed as a
composition of a translation and an orthogonal transformation (see Fleming
f1, 1965], p.98).

xiii



xXiv Notation and Terminology

The extended real numbers will be denoted by [—o0, +o0]. The natural
ordering and topology apply, and arithmetic involving ec and z € R will
follow the conventions:

(£oo) + (£o0) = o + (o) = (£oo) + 7 = Fo0,

(£00).(2o0) = 400, (o0).(Fo0) = —c0,

. oo fxz>0
+co + f 0
— = co B> z{too) =<0 fz=0
T Foo ifx <0, 3
Foo if z <0

Expressions such as (+oo) + (Foo) are left undefined, and quotients with 0
or oo in the denominator will be interpreted as they arise. We assign the
value +00 to inf @ and the value ~oc to sup . _

Functions and function spaces

If E C RY U {co}, then we write C'(E) for the space of all (real-valued)
continuous functions on E. If n € N = {1,2,...}, then C™(12) stands for the
space of n-times continuously differentiable functions on {2, while C*°(2)
represents the space of infinitely differentiable functions on 2. We write V f
for the gradient (8f/8z1,...,0f/8zn) of a function f whenever it exists. A
function which is continuous as a mapping from E into {—oo, +00] is said to
be continuous in the extended sense. The characteristic function of E is the
function valued 1 on E and 0 elsewhere, and is usually denoted by xg.

Given a function f defined at least on a set A, and a limit point y of A4,
we define

liminf f(z) = su inf T
z—}y,:v:EAf( ) UGE’,, (a:E(UnA)\{y} f( ))

and

limsup f(z)= inf ( sup f(I)),
TE(

z—y, €A UeNy UnAWN{y}

where A, denotes the collection of all neighbourhoods of y. (The function f,
and the suprema and infima here, may take infinite values.) Thus

li ist
m_};l:la}EAf(.'B) exists

if and only if

liminf f(z) and limsup f{x) have a common value I € [~oc, +00],
ryeeA z—y,mEA

and then

m—?l;I.l.:’rlGA flz) =1

Measures and mean values XV

If Ais the domain of definition of f, or if A € Ny , then we may drop the
qualification “r € A”.
Given a function f on 2 and a point y € (2, we say that f vanishes
continuously at y if
lim 2 flz)=0.

2rY,TE

If E C 8°°87 and f vanishes continuously at each point of E, then we say
that f vanishes continuously on E.

Let 29 € RY U {co} and let f and g be real-valued functions on U \ {z¢},
where g > 0 and U is a neighbourhood of zo . We say that f{z) = O(g(z))
as T — xp if there exist a neighbourhood V C U of x4 and a positive number
M such that |f(z)] < Mg(z) whenever z € V \ {z0}. Also, we say that
fix) = o{g(z)) as z — zo if f(x)/g(z) = 0 as £ — zo. (In the case of real
sequences (a;) and (b;}, where b; > 0 for all j, we write a; = O(b;) if there
exists M > 0 such that |a;} < Mb; for all j.)

Given a number or function f, we define ft = max{f,0} and f~ =
max{~f,0}. Thus f = f¥ — f~ and |f| = f* + f~. We write f|4 for the
restriction of a function f to a subset A of its domain of definition.

A function f: 2 = R is said to be locally bounded on 2 if f is bounded
on every compact subset of §2. The phrases locally bounded above and locally
bounded below should be analogously interpreted. A family F of functions is
said to be uniformly bounded on a set A if there exists M > 0 such that
|f{z)] < M for all f € F and for all z € A. Further, we say that F is locally
uniformly bounded on (2 if F i3 uniformly bounded on each compact subset
of £2. Obvious definitions apply to phrases such as uniformly bounded below,
locally uniformly bounded below, etc. A sequence (f,) is said to converge
locally uniformly on (7 if it converges uniformly on each compact subset of
2. The phrase “(f,) is locally uniformly Cauchy on 2" has an analogous
meaning. Finally, the support of f is defined by

supp f = 2\ {z € 17 : f =0 on a neighbourhood of z}.

Clearly supp f is closed relative to (2.

Measures and mean values

Let X be a locally compact Hausdorff space and suppose that there is a
countable base for the topology. The class B of Borel sets is the smallest o-
algebra of subsets of X which contains the open sets. We say that a function
f: X = [—o0,+00] is Borel measurable if the set {z € X : f(z) > a} belongs
to B for every a € R. By a measure on X we mean a countably additive set
function g, defined on B (or a larger o-algebra) and taking values in [0, +oo],
such that u(@) = 0 and u(K) < +oo for every compact subset K of X. Such
a measure g is regular in the sense that, if £ € B, then




xvi Notation and Terminology

p(E) = inf{w(U) : EC U and U is open}
= sup{u(K) : K C F and K is compact}.

{See Chapter 2 of Rudin [1, 1974] for further details.)
The support of a measure p is defined by

suppp = {z € X : u(l7) > 0 for every open neighbourhood U of x}.

It is easy to see that supp p is the smallest closed subset F of X such that
X\ F)=0.If A € B, then the restriction of u to A is defined by uj4(E) =
wENA) for all E € B.

By a signed measure on X we mean a countably additive set function
@ : B = R such that u(§) = 0. (Thus we do not allow the values +co.)
In view of the Hahn—Jordan decomposition theorem there are disjoint sets
P,N € B such that PUN = X, and finite measures p+, u~ on X such that
pt(N)=0=p"(P) and g = p* — p~. The total variation of u is defined by
[l = s+ (X) + = (X).

We use A to denote Lebesgue measure on RY | and ¢ to denote surface area
measure on a given smooth surface, usually a sphere. We define Ay = A(B)
and o = a(S). Thus

Nf2 .
T(rN /2N; (NN is even)
oIN+1)/2(N-1)/2
135, .(N=2)

(Nisodd, N > 3)

and Ay = on/N. We write the surface mean value of a g-integrable function
fon S(z,r) as

1
M(fiz,r) = / do,
ont™ ! sten d
and the volume mean value of a A-integrable function f on B(z,r) as

1
—_— dA.
AnrN ./B(z,r} f

A function f : 2 - [—o00, +00]| is said to be locally integrable on 2 if it is
integrable with respect to A on each compact subset of {2.

A(f;z,7m) =

Chapter 1. Harmonic Functions

1.1. Laplace’s equation

Our starting point is Laplace’s equation Ah = 0 on an open subset 2 of RV
where A = 8%/8z% + -+ + 8%/ 0x%,.

Definition 1.1.1. A function h : 2 = R is called harmonic on 12 if h €
C%(£2) and Ah = 0. The set of all harmonic functions on 2 is denoted by

H(R).

Laplace’s equation is simple to state but profound in its implications. In
this opening chapter we begin to explore the properties of its solutions & on
an open set {2. For example, although we require only that A is in C%(),
we will deduce that h is in C™(f2) and even real-analytic. The first main
step will be to show that, for any closed ball B{z,7) in £2, the mean value
M(h; z,7) of a harmonic function h over the sphere S(z,r) equals h(z) and,
conversely, that any function k in C'(§2) which has this mean value property
must be harmonic. The mean value property leads to the maximum princi-
ple, which is analogous to the maximum modulus theorem for holomorphic
functions. We will focus for a while on the cases where £2 is a ball or a half-
space, solving the Dirichlet problem and establishing integral representation
theorems. Harnack’s inequalities will demonstrate the rigidity of positive har-
monic functions and help us to establish convergence theorems for sequences
of harmonic functions. We will also look at the preservation of harmonic-
ity under certain transformations and discuss the close relationship between
harmonic and holomorphic functions when N = 2.

It is clear that H{f2) is a vector subspace of C(f2) and contains all the
constant functions. Further, the chain rule shows that if ¢ : RY = RV is
an isometry or dilation (¢(z} = cz, where a > 0) and h € H($({2)), then
ho ¢ € H(1?). Also, if w is an open subset of 12, then #(f2) C H(w) in the
sense that h|,, € H(w) whenever h € H(f2). The rotation-invariant harmonic
function U, introduced by the following result is known as the fundamental
harmonic function with pole y and plays an important role throughout the
book. We denote by A{y;71,72) the annular region

[zeRY :r <|e—ylf<r} (FERY;0<r <rp<+o0)




2 Chapter 1. Harmonic Functions

Theorem 1.1.2. Ify € RV, then the function U, defined on RV \{y} by

Uy(z) = { F‘ﬂﬁ;ﬁ,’ I 8:: > ;g (1.1.1)

is harmonic on RV \{y}. Moreover, if h is harmonic on some annular region
A(yimi,m2) and h{z) depends only on ||z — yl|, then h = al, + 8 for some
constants o, 3.

Proof. Suppose that f € C?(A(y;r1,72)) and that f(x) depends only on
Iz — yll. We write p = ||z — y|| and f(z) = F(p). Elementary calculations
yield Af(z) = F"(p) + (N — 1)p 1 F'(p}. Since the general solution of the
differential equation F"'(p) + (N — 1)p~ F'(p) = 0 on the interval (ry,r,) is
F(p) = ~alogp+B i N =2 and F(p) = ap®> N + g if N > 3, both parts of
the theorem follow immediately. O

The formula (1.1.1) forewarns us that potential theory in the plane differs
significantly from that in higher dimensions. In the case of the plane (iden-
tifying B?* with C in the usual way) we have extra tools available because
of the relationship between harmonic and holomorphic functions described
below. Part (i} of the following theorem may be used to write down many
examples of harmonic functions; for example, with z = z; + iz,

z} — 623 + x5 = Rez?, e cos T2 = Re(e®).

Theorem 1.1.3. (i) If f = u + v is holomorphic on o plane open set 12,
then u and v are harmonic on 0.

(i) If u is harmonic on a simply connected plane domain 2, then u is the
real part of o holomorphic function on f2.

(i) If f is holomorphic on o plane open set 2 and f # 0, then log|f] is
harmonic on {z € 12 : f(z) # 0}.

Progf. (i) We know that u,v € C™(f2), and the Cauchy-Riemann equations

give
() () e
Ef-i_@_aml Oz Bxy \Bx1 /) —
A similar equation holds for .

(it) Let g = du/0z — iOu/By. Since u € C*(2) and Au = 0, the real
and imaginary parts of g belong to C'({2) and satisfy the Cauchy-Riemann
equations. Thus g is holomorphic on (2. Since {2 is simply connected, there is
a holomorphic function # = U + ¢V on {2 such that ' = g. Hence 8U/dz =
OufOzx and 8U /8y = —8V/dz = Bu/By. Thus U — v has a constant value ¢
on {2, and so © = Re(F — ¢).

(iii) Let w be an open disc contained in {z € £2: f(2) # 0}. Then there is
a holomorphic function g on w such that f = e¥ there and so log|f| = Reg €
H(w), by (i). a

1.2. The mean value property 3
1.2. The mean value property

Let f be a C? function on an open set which contains B(x,r}. We can use
first Green’s formula and then differentiation under the integral sign (see
Appendix, Theorems A.15 and A.1) to obtain

/ Afd)\z/ 4o (0<t<r),
Bz.t) S(z.t) Oe

where 3/0n, denotes the exterior normal derivative, and then
d
/ Afdy=tV"1 / -a—f(:r +ty) do(y) =t ! pr / flz 4+ ty) do(y).
B(z.t) s Ot s

This can be rewritten as
d
ANtV A(ASf 2, t) = aNtN‘l-d-EM(f;z,t),

where A(f;z,t) denotes the mean value of f over B(z,t) and M( fiz,t)
denotes the mean value of f over S(z,t). Since oy = NAy, we obtain

N%M(f;a:, B = tA(Afiz ) (0<t<r). (1.2.1)

In particular, if Af = 0, then M(f;z, -) is constant on (0, 7] and this constant

value must be f(z) by continuity. .
The above discussion shows that if k € H(§2), then h satisfies

h(z) = M(h;z,r) whenever B(z,r) C f2. (1.2.2)

We refer to this as the (spherical) mean value property of harmonic functions.
Conversely, and rather surprisingly, we will see that any continuous function
on 7 which has this mean value property is harmonic.

Lemma 1.2.1. If h € C(§2) and (1.2.2) holds, then h € C=({1).

Proof. We define ¢ : R = R by

Cye '/t (t>0)
¢(t)={0~ 120,

where the constant Cv is chosen so that
1
UN/ tV1g(1 — t2)dt = 1.
[+}

It is easy to verify that ¢ € C°°(R). For each n € N we define ¢, on RY by
$n(z) = n"N (1 — n?||z||).




4 Chapter 1. Harmonic Functions

Since a composition of smooth functions is smooth, ¢, € C®(RY ). We write
2n = {z € 2:dist(z,002) >n 1} if 2 #RY and 2, = RY otherwise, and
we define

Ho(z) = /ﬂ bn(z — DY) dAY) (= € 20).

Since ¢, and all its partial derivatives are bounded on RY and vanish outside
B(0,n~!), we see that H, € C®(2,). Also,

-1

H,(z) = f aV (1 — n%t?) h dodt
0 8(z,t)

-1

= h(:l:)crN/ nNtV (1 — n?e?)dt
0
1
= h(x)o'N/ TN (1 — 72)dr = h(z),
0
in view of (1.2.2). Hence h € C®(f2), since 2 =J,, §2,. ]

We established (1.2.1) for any C? function f on an open set containing
B(z,r). Integrating this equation we obtain

t
N{M(fi,0) = @) = [ rAAfszr)dr
i)
and, since A(Af;z,7) = Af(z) as 7 — 0+,
Af(a) =2N fim "H{M(f;3,0) - f(z)}. (1.2.3)

We are now in a position to show that the mean value property (1.2.2) char-
acterizes the harmonic functions among all continuous functions on 2.

Theorem 1.2.2, The following are equivalent:

(a) h € H(12);

(6) h € C(12) and h{z) = M(h;z,7) whenever B(z,r) C 2;
(c) h € C(1?) and h(z) = A(h;z,r) whenever B(z,7) C £2.

Proof. We observed at the beginning of this section that (a) implies (b).
Conversely, if (b) holds, then h € C*°(§2) by Lemma 1.2.1, and (a) follows
from (1.2.3). To prove the equivalence of (b) and (c), let h € C(£2). Then

N A(k; z,7) =N/ tN "I M(h; ) dt (1.2.4)
(1]

.wher.lever B(z,7) C 12, so (b) implies (c). Conversely, the continuity of h
implies that the integrand in (1.2.4) is continuous as a function of ¢, Thus, if
(c) holds, we can differentiate (1.2.4) to obtain (b). 0O
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Corollary 1.2.3. If h € H(£2), then h € C*°({2) and oll partial derivatives
of h are in H(12).

Proof. Lemma 1.2.1 and Theorem 1.2.2 together show that h € C°°(f?). The
second part follows by induction from the observation that A(8h/8z¢) =
(8/8xx)(Ah). o

Parts (i) and (ii} of the next result, with “maximum” in place of “ex-
tremum”, and the second inequality of (iii), are all forms of the mazimum
principle for harmonic functions; the remainder of the result is referred to as

‘the minimum principle for harmonic functions.

Theorem 1.2.4. Let h € H(f2) and z € (2.

(i) If h attains a local extremum ot x, then h is constant on some neighbour-
hood of .

(ii) If 12 is connected and h attains en extremum at x, then h is constant.
(iii) If h € C(2U 8°N), then infgen h < h < supgeg h on N

Proof. (i) We may assume that h attains a local maximum at z. We choose
r small enough so that B(z,r) C £2 and h < h(z) on B{z, ). Since h(z) =
A(h; z,7), continuity implies that h = h{z) on B(z,r).

(ii) From (i) the set {y € £2 : h(y) = h(z)} is open, and continuity implies
that it is closed relative to {2, so by connectedness it must be all of 2.

(iii) Let w be a component of 2. Since A is continuous on the compact set
w U 8%w, it attains finite extrema there. If either of these occurs at a point
of w, then by (ii) k is constant on w and hence on w U d*w. Otherwise both
extrema occur on 0®w. Since 8w C 8°° (2, the result follows. O

Remark 1.2.5. (a) We note, for future reference, that the proof of Theorem
1.2.4 remains valid under the apparently weaker hypothesis that h € C({2)
and that, for each = € {2, there is a positive number 7, such that h(z) =
A{h;z,v) whenever 0 <7 <ry.

(b) We will see later that harmonic functions are real-analytic. It will then
follow that, in (i) above, h is constant on the component of {2 which con-
tains .

The following result is an analogue of the classical result of Liouville
concerning holomorphic functions.

Theorem 1.2.6. If h € H(RY) and h is bounded below (or above), then h
is constant.

Proof. We may suppose that A > 0. If z,y € RY and p = ||z — yl}, then
B(z,r) C B(y,r + p). Hence
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nz) = Alh;z,r) < (ANTN)-lf hdA
B{y,r+p)

= (1 + g)Nh(y) = h(y) (r = +o0).

Thus h{(z) < h{y). Similarly we obtain h(y) < h(z), so h is constant. O

1.3. The Poisson integral for a ball

The Dirichlet problem is one of the classical problems of potential theory.
In its simplest form it can be stated as follows: given a continuous function
f:0812 = R, find a function h € H{f2) such that A{z) — fly) as z = y for
each y € 812. A detailed account of this problem will be given in Chapter 6,
but we can deal now with the special case where (2 is a ball. We will also
give below important integral representation theorems for certain classes of
harmonic functions on a ball.

Definition 1.3.1. The Poisson kernel of B{xg,r) is the function

1 r? ||z — zolf®

anr Nz —ylI¥ (v € S(zo,r);z € RV \{y}). (1.3.1)

Kz‘o.f‘(mi y) =

It is clear from (1.3.1) that, if y € S(zo,7}, then Ky (- ,y) is posi-
tive, zero and negative, respectively, on the sets B(zg,7), S(zo,r)\{y} and
RN\ B(zg,r). Also, if we write on7K 1, (z,y) as the product of 72 — ||z — |2
and ||z —y||~" and use the identity A(uwv) = udv+vAu+2(Vu, Vv), we see
after some calculation that K, (-, 1) € H{RY\{y}). In what follows we use
the functions {Kz,,(-,y) : ¥ € S(zo,r)} as “building blocks” to construct
more general harmonic functions on B(zo, ).

Definition 1.3.2. If 4 is a signed measure on S(zo,7), then the Poisson
integral of p is defined by

lhsor®) = [ Kepelon)duly) (€ Blaom). (132
S{zg,r)

In the special case where du = fdo for some c-integrable function f on
S{zp,r) (that is, the case where p is absolutely continuous with respect to
o), we write Iz, r instead of I, 5, -. When there is no risk of confusion we
write K for K, r, and I, and [y for the corresponding Poisson integrals.

Theorem 1.3.3. (i) If p is a signed measure on S(xo,r), then I, €
'H(B[:cu,'r)).
(ii}) If f is a o-integrable function on S(xzg,7), then
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limsup I;(z) < limsup f(z) (y € S(zo,7)); (1.3.3)
Ty, 2EB(zp,1) z—+y,2E€5(20,1)

further, if f is continuous in the extended sense at y € S(zo,7), then

Ii(z) > fy) (= = v;7 € B(zo,7)). (1.3.4)

Proof. (i) Since the function (z,y) ~ K(z,y) and all its partial derivatives
with respect to the coordinates of z are bounded on B(xo, p) % S(zo,r) when
0 < p < r, we may pass the Laplace operator A under the integral sign in
(1.3.2) to see that I, € H(B(zo,7)).

(ii) We first show that I = c for any finite constant function ¢. By (i),
I, € H{B(zo,r)), and I.(z) clearly depends only on ||z —zq||. Since I, is finite
at zg, it follows from the latter part of Theorem 1.1.2 that [, is constant on
B{zg,7). Hence I, = I.(z¢) = ¢

To prove (1.3.3), we suppose that

limsup f{z} < A<4o0 (1.3.5)
z—ry,zE€5{z0,7)

and will deduce that
limsup J¢(z) < A (1.3.6)

=y, 26 B{xp,r} -
From (1.3.5) there exists § > 0 such that f(z) < A whenever z € B(y,28) N
S(xq,r). I z € B(y,8)NB{zq,r), then by the result of the previous paragraph
If(z) — A= I;_alz)

<

[ K(z, 2)|f(z) — Al do(z)
S(:l:(] !r]\B(y-zJ)

+/ K(z,2){f(z) — A} do(2).
S(xo,7)NB{g,28)

The second integral here is negative, and the first does not exceed

1 T2 - ”(C —30”2

5 [ I 1D a2

aNT

which tends to 0 as x — y. Hence (1.3.6) holds.
If f is continuous at y, then (1.3.4) follows by applying (1.3.3) to f and — f.
O

Corollary 1.3.4. Ifh € C(B(xg,r) lﬂ'H(B(mg,'r)), thenh = Iy, on B{zo, 7).

Proof. By Theorem 1.3.3, h — I, is harmonic on B(zo,7) and tends to 0 at
each point of S(xo,r). Hence, by the maximum principle, h — I, = 0. g
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Theorem 1.3.3 shows that the Poisson integral solves the Dirichlet problem
{in the form stated above) for a ball: if f € C(S{zo,7)), then I} is harmonic
on B(xzg,r) and satisfies (1.3.4) for each y € S(zy,7). Further, it follows from
Corollary 1.3.4 that [y is the unique solution.

We give below some applications of Theorem 1.3.3. The first adds two
further equivalent conditions to Theorem 1.2.2.

Theoremn 1.3.5. Let b € C(2). The following are equivalent:

(a) h € H(£2);

(b} for each £ € 2, there exzists a positive number r, such that h(z) =
M(h;z,7) whenever 0 < r < rg;

(¢} for each T € 12, there exists a positive number r, such that h(z} =
A{h;z,r) whenever 0 < r < 7.

Proof. Theorem 1.2.2 shows that (a) implies (b), and (b) implies {c), by
{1.2.4). We now suppose that (c¢) holds. It is enough to show that, if B(y, p) C
f2,then h =1, ,on Bly,p). Wedefine H =h—1I , ,on B(y,p)and H =0
on S(y,p). By Theorem 1.3.3, H € C(B(y, p)} and for each = € B(y, p) there
exists p, > 0 such that H(z} = A(H;z,r) whenever 0 < r < p,. It now
follows from Remark 1.2.5(a) and Theorem 1.2.4(iii) that H = 0 on B(y, p),
as required. 0

Theorem 1.3.5 is the key to the following result concerning harmonic con-
tinuation across a flat boundary. For each point # = (z1,...,zx) in RV, we
denote the point (z;,...,zx—1) in R¥~! by 2/, and we write T = (¢, —zn)
for the image of z under reflection in the hyperplane {y € RV : yy = 0}.

Theorem 1.3.6. (The reflection principle) Let {2 be such that T € 2
whenever x € 2, and let 11y, (2, - denote the sets of points = in 2 for
which Ty is respectively positive, zero, negative. If h € H(f2}) and h{z) — 0
as £ — y for each y € §2y, then the function h, defined by

h(z) = h(z) (z € 124), h(z)} =0 (z € ), h(z) = —h(Z) (z € ),
is harmonic on (2.

Proof. The continuity of % is clear, and it is easy to see that h(z) = M(h;z,7)
if B{z,r) C 24 or B{z,r) C f2_ or if x € (% and B(z,r) C 2. By Theo-
rem 1.3.5, this is sufficient to show that h € H($2). a

The next application of Theorem 1.3.3 is a removable singularity result
for harmonic functions. It involves the fundamental harmonic function intro-
duced in Section 1.1.
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Theorem 1.3.7. If h is harmonic on B(xg,r)\{zo} and h(z}/U.,(z) = 0
as T — Tg, then h has a harmonic continuation to B(xzg,r).

Praof. Fix p € {0,7) and let I, denote the Poisson integral of h in B(zq, p).
It is enough to show that A = I, on B(zg,p)\{zo}. Let U = U, - en,
where the constant ¢y is chosen such that I/ = 0 on S(zy, p). For each real
number «, define H, = h — I, + aU. Then H, € H({B(zo,7)\{z0}) and by
Theorem 1.8.3, Hy(z) = 0 as ¢ — y for each y € S{zg,p). f a > 0, then
H,(z) = +00 as ¢ — mp and so H, > 0 on B(xzg, p)\{ze} by the minimum
principle; similarly, H, < 0 on B{zg, p)\{zo} if @ < 0. Hence, letting & — 0,
we obtain h = I, on B{zq, p)\{zn}, as required. g

We know from Theorem 1.3.3 that, if u is a signed measure on 5(zg, r),
then I, € H(B(zo,7)). Next we characterize those elements of H (B(zo,))
which are equal to {, for some such g; in particular, we show that all positive
elements of H(B(zo,r)) can be represented in this way with u > 0. The set
of all non-negative harmonic functions on {2 will be denoted by H4.(£2).

Theorem 1.3.8. (Riesz—Herglotz) Let h € H(B(zo,r)). The following
are equivalent:

(a) there exist hy, he € Ho(B(zo,7)) such that h = hy — hy;

(b) there exists ho € H(B(zo,7}) such that [h| < hg on B(zo,7);

(¢) M(|h|;zo, - ) is bounded on (0,7);

(d) h = I,, for some signed measure p on S{zp,r).

Further, if any of the above holds, then p is unigue, and p > 0 if > 0.

Proof. If (d) holds, then p is the difference of two (positive) measures and
h is the difference of their Poisson integrals, so (a) holds. If {a) holds, then
[h| < h1 + hy on B(zp,r), so (b) holds. If (b) holds and 0 < t < 7, then
M(A]; 2o, t) < Mho; To,t) = holzo), so (c) holds. We next show that (c)
implies (d). It is enough to deal with the case where 29 = 0 and r = 1, for
the general case then follows by means of a simple transformation.

Suppose that (c) holds and let h(z) = h(tz) when 0 <t < 1 and ||| <
t~1. Then h; is harmonic on B(0,7'), so hy = Ix, by Corollary 1.3.4. Let g
denote the signed measure on the unit sphere S defined by

dpi(y) = hs(y)do{y) = h(ty)do(y),

and let [|u|| denote its total variation. By hypothesis there is a constant M
such that
llpssll = on M(|R];0,8) < M (0 <E< D).

Hence (see Appendix) there is a signed measure g and a sequence (t,) such
that t, T 1 and

[ b dpe, - [ vdu (€ C(S)). (13.7)




10 Chapter 1. Harmonic Functions
Thus, for any « in the unit ball B, we obtain as desired
h(z) = lim h (z) = lim / Ko (z,y) dus, () = Iu(2).
n—od n—oo s
To prove uniqueness, suppose that v is another signed measure such that

I, =h Ifz,y€Sand0<t<1,then lly —tz| = [ty — 2lj, so Ko, (tz,y) =
Ko (ty, z). Thus, if ¢ € C(S), then

[ v = [ wihiea) dota
5 5
— [ 4@ [ Koatton) ds0) do(@)
= [ [ Koattn, 219tz dota) dvty)
s/s
= [ Law)
5
- [ v @10,
using first Fubini’s theorem and then Theorem 1.3.3(ii} and dominated con-
vergence. In view of the uniqueness of g in {1.3.7), we have v = .
Finally, if h > 0, then g, > O for all { and so p > 0. (W
We can similarly characterize those harmonic functions on a ball which
are expressible as the Poisson integral of an integrable boundary function.

Convex functions will be discussed in Section 3.4. For now we simply recall
that a real-valued function ¢ on an interval J is called convez if

t —
ty —

#0) < b + o) utedin<t<n)

ta

to — t
Theorem 1.3.9. Let h € 'H(B (:50,1')). The following are equivalent:

(a) there is a conver increasing function ¢ : [0,+0) = [0, +00) such that
t~14(t) =+ +00 as t — +oco and M(¢o |h|;zo, -) is bounded on (0,7);

(b) h = I; for some integrable function f : 5{zq,r) = [—00, +a].

If h > 0, then o further equivalent condition is that h is the limit of an
increasing sequence of bounded non-negative harmonic functions.

Proof. We again give the argument for A € #H(B). Suppose first that (a)
holds. Then there exists ¢ > 0 such that £ < ¢(t) + ¢ for all ¢t > 0, and so
M(|A4];0, -) is bounded on (0,1) by hypothesis. Thus, by the Riesz—Herglotz
theorem, there is a signed measure p on S such that k= I,,. We will show that
p is absolutely continuous with respect to (see Appendix, Definition A.2).
Let ¢ > 0 and a, = sup{¢/¢(t) : t > £7/2}. Then [t| < a:¢{lt]) +&e71/2

1.3. The Poisson integral for a ball 11

on B Let 4. be a relatively open subset of S such that ¢(A.) < € and let
¥ : S — [0,1] be a continuous function such that % = 0 on S\ A.. Then

‘ [ vt da(w‘ < /S (o) () doy)
< /S (1h(ew) )9 (w) do(y) + &7 [A 9ty doto).

We let p — 1— and use (1.3.7) and the facts that ¢ < 1 and o(4.) < ¢ to

obtain
[ dp
s

Hence any measurable subset A of A, satisfies

< agon sup M{go |h|;0, -} + el/?,
(0.1}

u(A)] < acow ?up)M(sﬁ o |R[;0, -} +&'/2.
qQ,1

Since a, — 0 as ¢ — 0, by the growth hypothesis on ¢, it follows that
is absolutely continuous with respect to ¢, and (b) is proved in view of the
Radon-Nikodym theorem (see Appendix).

Conversely, suppose that (b) holds and let

Sn={y€.5':n—1_<_|f(y)|<n} (n € N).

Then Y, no(S,) < +co, and it follows that there is an increasing sequence
(by) of positive numbers such that b, & +oc and ) nb,o(S,;) < +oc. Let
¢ : [0,+00) = [0, +0c) be the function whose graph consists of line segments
joining the points {(0,0), (1,b1), (2,51 + b2),(3,b1 + b2+ b3),...}. Then ¢ is
convex and increasing, t~1¢(t) = +oo as t - +oo and

o do = o

f¢ |fldo gfscb fldo
<Y $(n)o(Sa)
n=1

<Y nbao(Sy) < +o0. (1.3.8)

n=1

Next we note that ¢( [ gdv) < [ ¢ogdy for any unit measure v on S and any
integrable function g : §.— [0, +oc}. (This is known as Jensen’s inequality,
and follows from the fact that by convexity ¢(t) = sup, g(et + ), where
the supremum is over all o, € R satisfying at + § < q'ﬁ(t) when t > 0.)
We can use this inequality with g = |f] and dv(y) = K(z,y)do(y), since
v(S) = I1{(z) = 1. Thus

¢(Is(®) < Lyoisi(z)  (z € B).
Ustfedn! knihovna

materm. tyz, fakuty UK
odd. matematické
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Hence
M(golh];0,) < M(goljz;0,-) < MUgois1;0,7) = Ige)(0) = oN [¢°Ifld0

on (0,1), and so (a) holds in view of (1.3.8).

Finally, we consider the special case where h 2> 0. If (b) holds, then
(suitably redefining f on a set of g-measure 0) we may assume that f > 0, and
(Imin{f,n})n2>1 is an increasing sequence of bounded non-negative harmonic
functions with limit k. Conversely, suppose that i = lim Ay, where each Ay, is
a bounded non-negative harmonic function and (hy) is increasing. For each
n in N we use the fact that (a) implies (b) to see that h, = Iy, for some
integrable function f, on 5(zo,7). Further, since hpt1 —bn = I —gas 1t
follows from the final assertion of the Riesz—Herglotz theorem that (fn) can
be chosen to be increasing. Hence A is the Poisson integral of lim frn and so
{b) holds. O

Later, in Theorem 4.6.6, we will see that the function f in condition (b)
of the above result is determined at g-almost every point z € §(zo,7) by the
limit of h{x) as z approaches z in a “non-tangential” manner.

Corollary 1.3.10. If h is a bounded harmonic function on B(zg,r), then
there is a o-measurable function f on S{zo,r) such that h = Iy and sup |f| =
sup |k|.

Proof. Let M = sup|h|. Since M{(h%*z0,") € M 2 it follows from Theo-
rem 1.3.9 that there is an integrable function f on S(zg,r) such that h = Iy.
Further, I;4p = h+M > 0,50 f+M >0 almost everywhere (o) on S(zo,r)
by Theorem 1.3.8, and we can redefine f on a set of zero o-measure so that
f > —M. Similarly we can arrange that f < M. Thus sup |f] < sup|h|, and
the reverse inequality is clear from the fact that I; = 1. O

If h € H(B(z,r)) and h is integrable on B(z,r), then it follows from
Theorem 1.2.2 and dominated convergence that h{z) = A(h; z,r). Thus, if
[ is a ball of centre z,

1
h(z) = m/ﬂhdf\ (1.3.9)

for every integrable harmonic function on 2. We conclude this section by
exploiting the properties of the Poisson kernel to prove a converse result.

Theorem 1.3.11. If z € 2 and A(2) < +oo and if (1.8.9) holds for every
integrable harmonic function h on 12, then §2 is a ball of centre x.

Proof. We choose r > 0 such that B(z,r} C {2 and S(z,r) NN £ 0. Let
y € S(z,r) N 812 and let h = Kz (- ,y). Then h € H RY\{y}) and h is
bounded on RN \B(y,1), and the function z + ||z — y|| ~1h(z) is bounded
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on B(y,1). Hence h is integrable on 2. Clearly h > 0 on B(z,7) and h < 0
on R¥\B(z,7). If {\B(xz,7) # @, then

b 1 1
TOTRCER O MIRLES coe ) MRS

which contradicts (1.3.9). Hence B{z,r) C {2 C B(z,r} and so 2 = B(z,7).
O

1.4. Harnack’s inequalities

We will now use the Poisson integral representation to make important ob-
servations about the “rigidity” of positive harmonic functions.

Theorem 1.4.1. (Harnack’s inequalities) If h € H. (B{zg,7)}, then

(r = llz — zolr2
G e — 2ol VT

for each € B(zg,r). In particular, if 0 < a <1, then

(r + |jz — o)V 2
e e

(zo) < h(z) < (1.4.1)

e E0) S he) < T oihle) (o€ Blao,an). (142

Proof. The Riesz-Herglotz theorem shows that h = I, for some measure y
on S{xp,r) and clearly

S(zo,7))
h{zq :/ K{zo,y)d =M(—’-—. 4.
) steam) (zo,y) dply) pom (1.4.3)
The Poisson kernel K satisfies
r— ||z — Zol r+ ||z — zol|

< K(z,y) <
N—1 = ] —_
GNT("""”-'B_WO”) '

onr(r—|lz - .'Eo”)N_l

when = € B(xg,r) and y € S{zo, r). Integration with respect to du(y) yields
(1.4.1) in view of (1.4.3), and (1.4.2) follows easily. O

Corollary 1.4.2. If h € Hy(B(zo,7)), then [[Vh(zo)| < (N/r)h(zo).
Proof. From (1.4.1),

r—llz — PN-2

(r+ Iz — zol)r™ 2

B { r—|lz —zol)¥1 1} h{o),

s
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so that

|h(z) — h{za)] < {(N/)liz — zol| + Ol — zoll*)}h(zo)  (z = 2o),
and the conclusion follows. O

Corollary 1.4.3. Let E be a compact subset of 12 and D be a linear partial
differential operator with constant coefficients. Then there is a constant C,
depending only on E, 2 and D with the following property: if h € H{f?) and
|h] < M on 02, then |[Dh| < CM en E.

Proof. Let w be a bounded open set such that F C w and @ C {2, and let
r > 0 be such that B(z,7) C {2 for each z in w. If h € H(12) and || < M on
2, then (h+ M) € H4(w) and we can apply Corollary 1.4.2 to the function
h+ M to abtain

Bk a(h+ M)

N 2N
5 @)= |y @[ ST +M) <TM L e
This implies the result in the case where D = 8/0z;. The general case follows
using Corollary 1.2.3 and induction. O

Corollary 1.4.4. If 2 is connected and E is a compact subset of {2, then
there is a constant C such that

C'h(z) < h{y) < Ch(z}  (zy € E)
for every h € Hy(92).

Proof. We treat first the case where E is a 2-point set {w,z}. Let zp = w
and let B(zy,2r1), ..., B{zn,2rs) be open balls in 2 such that =, = z and
z;_1 € B(zx;,r;) when j € {1,...,n}. I h € H({2), then we apply (1.4.2)
with o = 1/2 to obtain
h(w) = h(zo) < Cih(z1) < C2h(z3) < --- < CTh(z,) = CTA(2),

where €, = 3.2¥-2, Thus the result holds when E is a 2-point set and hence
when E is finite. In the general case let {B(yx,tx) : k=1,..., m} be a cover
of E such that B(yx, 2tx) C {2 for each k. By the finite case, there is a positive
constant Cy such that h(y;) < Coh(yx) when j, k € {1,...,m}. lfz,y € E,
then we choose j, k such that = € B(y;,t;) and y € B(yg, tx). Then, again
using (1.4.2) with & = 1/2, we find that

h(z) < Cih(y;) < C1Cah(ye) < 3V Cah(y)-
O

Remark 1.4.5. The first part of the above proof shows that if, in the general
case, for each pair of points w,z € E there exist n balls B(z1,2r1),.--
B(zn,2r,) as described, n being independent of w and z, then we can take
the constant C in Corollary 1.4.4 to be (3.2V7%)™.
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1.5. Families of harmonic functions: convergence
properties

We take as our starting point the following simple result.

Theorem 1.5.1. If (h,) is a sequence in H(§2) which converges locally uni-
formly on 12 to a function h, then h € H($2). If, further, D is any linear
partial differential operator with constant coefficients, then (Dhy) converges
locally uniformly on {2 to Dh.

Proof. By local uniform convergence i € C(£2) and h{z) = M(h;z,r) when-
ever B(z,7) C 12, so h € H(§2). Now let E be a compact set and w be a
bounded open set such that E C w and @ C 2. If £ > 0, then |h, — h| < ¢
on @ for all sufficiently large n. Hence, by Corollary 1.4.3, |Dh,, — Dh| < Ce
on E for all such n, where C' depends only on E, w and D. This completes
the proof. O

Definition 1.5.2. Let F be afamily of functions from a set E into [—o0, +-o0c].
Then F is said to be up-directed if for each pair of functions f, fo in F there
exists f in F such that max{f;, fz} < f on E. Also, F is said to be down-
directed if {—f: f € F} is up-directed.

Theorem 1.5.3. Let {2 be connected. If F is an up-directed family of har-
monic functions on {2, then either sup F = +oc on §2 or sup F € H(S2).

Proof. Let H = sup F and suppose that H £ +co. We choose =g in §2 such
that H{zg) < +00. Let E be any compact subset of {2 and for each n in
N choose h, in F such that h,(zo) > H(ze) —n~!. Let h € F. Since F is
up-directed, for each n there exists g,, € F such that max{h,,h} < g, on §2.
Hence, by Corollary 1.4.4, there is a positive constant C, depending only on
Tg, £ and {2 such that

h{y) — ha(y} < gn(y) — hn(y)
< C{gn(ﬁﬂo) - hn(xﬂ)}
< C{H(zg) — hn(z0)} <Cn™' (y € E).

Taking the supremum over all h € F, we obtain H — h, < Cn~ ! on E. It
now follows from Theorem 1.5.1 that H € H{f?). O

Corollary 1.5.4. If 2 is connected and {h,) is en increasing sequence in
H{12), then either lim h,, = +o0 or lim h, € H(12).

Proof. The family {h, : n € N} is up-directed. O
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Definition 1.5.5. A family F of real-valued functions on a set £ in RY is
said to be equicontinuous at x € E if for each £ > 0 there exists ¢ > 0 such
that |f(9:) - f(y)l < ¢ for each f € F and each y € E N B(z,d). Further, F
is called equicontinuous on E if it is equicontinuous at each point of E.

The family F is said to be uniformly equicontinuous on E if for each e > 0
there exists 8 > 0 such that |f(z) — f(y)| <& whenever f € F and z,y € E
and ||z —y| < ¢

Lemma 1.5.6. Let §2 be connected and F be a family of harmonic functions
locally uniformly bounded below on 2. Then either sup F = +oo on {2 or F
is uniformly bounded and uniformly equicontinuous on each compact subset

of 12.

Proof. Suppose that supF # oo on {2 and choose zo € (2 such that
(sup F)(zo) < +co. Let E be a compact set and let w be a bounded con-
nected open set such that E U {zo} C w and @ C {2. Then F is uniformly
bounded below on &. By adding a suitable constant, we may assume that all
members of F are positive on w. By Corollary 1.4.4 there is a constant C
such that 0 < A < C on E for all h € F and so F is uniformly bounded on
E. Let r > 0 be such that B(z,r} Cwfor all z € E. If £ > 0, then by (1.4.2}
there is a positive constant «, depending only on € and N, such that

(1 - e}h(z) < h(y) < (1 +)h(z) (y € B(z,ar);z € E)
for all h € F. Hence
|h(z) - h(y)| < eh(z) <Ce  (y € B(z,ar);z € E)

for all h € F, and so F is uniformly equicontinuous on E. O

Lemma 1.5.7. If (fn) is a uniformly equicontinuous sequence of functions on
a bounded set E in BRY and (f,) converges pointwise to a function f : E 2 R,
then f is uniformly continuous on E and fo — f uniformiy on E.

Proof. We start with the uniform continuity of f. Let £ > 0 and let d be as
in the definition of uniform equicontinuity. If z,y € E and |jz - y|| < 4, then
for some n we have

|£(@) = £@)] € |£(2) = fal@)] +| fal@) = fal)]| + | faly) — F()] < 32. (1.5.1)

To prove the uniform convergence of (f,), let z1,...,%Tm be points of £
such that £ C | J; B(z;,d). There exists no such that |fa{z;) — f{z;)] < ¢ for
alln > ng and all j € {1,...,m}. Hy € E, then y € B(x;, ) for some j and

|£aly) = F@)| € |Fa(®) — falms)| + | Fales) — Flz)| + £ (25) - f(v)]

<e+e+3e=25¢ fn > ng),
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by {1.5.1). - G

Theorem 1.5.8. If (k) is a locally uniformly bounded sequence in H(2) and
(hyn) comverges pointwise on {2 to a function h, then (ha) converges locally
uniformly on 2 and h € H({2).

Proof. By Lemma 1.5.6, (h,) is uniformly equicontinuous on every compact
subset of 2. Hence, by Lemma 1.5.7, the convergence of (hy) is locally uniform
on £2, and by Theorem 1.5.1, h € H(12). a

Definition 1.5.9. Let F C C(f2). We say that F is normal if every sequence
in F has a subsequence which converges locally uniformly on 2.

Lemma 1.5.10. Let F be a family of real-valued functions on §2 which is
uniformly bounded and uniformly equicontinuous on each compact subset of
2. Then F is normal.

Proof. Let (fn) be a sequence in F, let £ C {2 be compact and let {z; :
j € N} be a dense subset of E. Since (fn(:)) is a bounded sequence of
numbers, it has a convergent subsequence (fi(z1)). Similarly ( fin(z2))
has a convergent subsequence ( f21n(.’52)), and in general there are sequences
(fmn)nz1 such that (fmn(zm)) converges as n — oo and (fraim)n>1 IS &
subsequence of (fm n)n>t. Let g, = far for each n. Then (gn(z;)) converges
for each j.

Now suppose that y € E and £ > 0. Let 4 be as in the definition of uniform
equicontinuity. Since {z; : § € N} is dense in E, we have [lz; — gl < d for
some j. Since (gn(z;)) converges,

|9x (%) — 9 (¥} < |ge(¥) — 9u()] + |9r(z;) — gal@;)| + |gn(zs) — 9a )]
< 3e

when n and k are sufficiently large. Hence (gn(y)) is Cauchy and therefore
convergent. It follows from Lemma. 1.5.7, applied to arbitrary compact sithsets
E of £2, that F is normal. O

Theorem 1.5.11. Let 2 be connected and let F be a family in H({2) which
is locally uniformly bounded below on 2. If (hy,) is a sequence in F, then there
is a subsequence (hy;) such that either (hy;) is locally uniformly convergent
to @ hermonic function on 2 or im hn, = 400 on (2.

Proof. Let (h,) be a sequence in F. By Lemma 1.5.6, either sup hp = 400
on 1?2 or (hy) is uniformly bounded and uniformly equicontinuous on each
compact subset, of 2. In the latter case, it follows from Lemma 1.5.10 that
there is a subsequence (hn;} which converges locally uniformly on 2toa
function h, and h € H(1?) by Theorem 1.5.1. In the case where sup iip, = +0
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we fix xo € 2 and choose (hy,;) such that hn (z0) = +oo. Given z € 22 we
choose a bounded connected open set w such that z, 29 € w and @ C 12, and
choose M € R such that h, > M on w for all n. By Corollary 1.4.4, with
E={x,20},

b (z) ~ M > CHhn;{z0) — M} = +oo,

50 hn,{z} = 400 as required. O

We conclude this section with an application of Theorem 1.5.8. We denote
a point of RN~ by z' and write A’ for (N —1)-dimensional Lebesgue measure.

Theorem 1.5.12. Let 2 = RY~! x (a,b), where —00 < @ < b € +oo. If
h € H{2) and the function

e |h(z’, )| dA (") (a<t<b)

RV-1

is locally bounded on (a,b), then the equation
L{h;t) = / hiz',t) dX'(z") (e <t <b)
RN—1
defines a polynomial £(h;-) of degree at most 1.

Proof. For each m € N we define

ez = [ K X)) € )
¥ “Ely'lj<m

By dominated convergence, Ay, is continuous, and using Fubini’s theorem to
justify a change of order of integration, we see that h,, has the mean value
property. Hence h,, € H(f2). Also

(@2l < [ eI G)  m e N € ),

so the sequence (hy,) is locally uniformly bounded on f2. Since
hm{s oy} = L{h;TN) as m — o0,
it follows from Theorem 1.5.8 that the function
(', zn) = Ll zn)

is harmonic on 12 and therefore £{h; ") is a polynomial of degree at most 1.
[
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1.6. The Kelvin transform

We begin by observing that, in the plane, harmonic functions are preserved
under composition with holomorphic and anti-holomorphic functions.

Theorem 1.6.1. Let (21, {2 be plane domains, let f : {1y — (1 and let
h € H($%). Then ho f € H{{21) if either f or its complex conjugate f s
holomorphic on {1

Proof. If f is holomorphic, then it follows from the Cauchy-Riemann equa-
tions and the harmonicity of Re f and Im f, that

A(ho f) = ((8R) o f)IF > =0
on {23, and a similar argument applies if f is holomorphic. O

In all dimensions we know that, if ¢ : RY — RY is an isometry or
dilation, and if h € H($(£2)), then ho ¢ € H({2). However, the inver-
sion map ¥(z) = ||lz|| ">z on RY¥\{0}, which is potentially so useful for
mapping between bounded and unbounded domains, fails to preserve har-
monicity when N > 3. Indeed, even in the special case of a spherically
symmetric harmonic function h{z) = allz|*~" + b, where a # 0, we see
that (ko ¥)(z) = allz||Y~2 + b, which is not harmonic. To obtain a har-
monic function in this case, we would instead have to consider the function
z > |1z||2= (hoy){z). We will see below that this formula is the appropriate
one even when h is not spherically symmetric.

Definition 1.6.2. Let S(y,a) be a fixed sphere in R . If z € RV \{y}, then
the inverse of z with respect to S(y,a) is the point

az
=Wty

*

Thus z* lies on the ray emanating from y and passing through z, and is

determined by the condition |jz—yl|[|z* —y|| = a* (see Figure 1.1). The inverse

of a set E in BY with respect to S(y, a) is the set B* = {z* : z € E\{y}}.
If f is a function defined at least on E, then we define f* on E” by

o N—2

F@) = (——) 1.
@)= e =l

The mapping f — f* is called the Kelvin trensform {with respect to S(y,a)).
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Figure 1.1.

If £ € R¥\{y}, then clearly (z*)* = . Hence, if y ¢ E, then (E*)* =
E. The inverse of a sphere or hyperplane is a sphere or hyperplane {not
necessarily respectively), possibly with one point deleted. This can be seen
in the case where y = 0 by observing that a set E in RY is a sphere or
hyperplane if and only if

E={ceR" allel? + (z,2) + 8 =0},

where o and f are real numbers, z € RN and ||z[]* > 4a8. Under inversion
with respect to S(0,a) the image of this set E is

E* = {z € RV\{0}: Bllzl? + {z,a%2) +a*a = 0}.

This establishes the claim with y = 0, and to deal with the general case, we
can apply a translation.

Theorem 1.6.3. If f € C*(§2) and f* is the image of [ under the Kelvin
transform with respect to S, then

Aft(e) = el 7PN (AHED) (2 ) (1.6.1)

Proof. By definition z* = [Jz]| ™%z and f*(x) = llz||>~~ f(z*) when & € £2~.
Writing f; for 8f/8x; and fi; for 8% f }dx;0zy, we have for j € {1,...,N}:

1.6. The Kelvin transform 21

. N
- (a7) = el 15) = 2l 3 fule”) (16.2)

k=1

62 N
B—:E?f(x*) = —dazjl|z]| "~ fi(=*) - 2lf] ; zx fr(2")

N
+ 822 lel ™0 D we fulz")

k=1

N
+ izl fisdm) — dagllzl T T fri(a)

k=1

N N
+ 423|272 Y0 Y zan fun(a)- (1.6.3)

k=1n=1
Summing (1.6.3) over j, we see that
N
Alf(=") = @ —2N)al™* Y i f3(2) + Il (AF) =), (1.6.4)
j=1
From (1.6.2) we obtain
N 5 _ P . o N .
> (i) (5 ) = (¥ =2l Yahle) 169

Using (1.6.4), (1.6.5) and the harmonicity of the function z — lz]|*~" on
R¥\{0}, and applying the identity A{uv) = vdv + 2{Vu, Vo) + vidu, we
obtain

N
A7) =23 (o llell ™) (1) + el A7)
=1
~ el (AR &),
that is, (1.6.1) holds. O

Corollary 1.6.4. If h € H{{2) and h* is the image of h under the Kelvin
transform with respect to S(y,a), then h* € H{2).

Proof. By means of a dilation and an isometry we can reduce the proof to
the special case S(y,a) = S, which is contained in Theorem 1.6.3. O
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1.7. Harmonic functions on half-spaces

In this section we will study the Poisson integral for the half-space I given
by {z = (z1....,%n5) : o5 > 0} and obtain analogues of some of the repre-
sentation theorems in Section 1.3. In particular, we will see how the Kelvin
transform can be used to obtain an analogue of the Riesz-Herglotz theorem
for I.

Definition 1.7.1. The Poisson kernel K of D is defined by

2
K(z,y) = EII—LU%H—N (y € 0D;z € RV \{y}).

If 4 is a measure on 3D, then the Poisson integral 7, of i is defined by

Z.(z) = o K(z,y)duly) (z€D)

We note that K( -,y) € H4(D) for each y in 8D; the harmonicity here
follows from the observation that K(z,y) is a multiple of 8U,/8zn.

Theorem 1.7.2. Let u be a measure on 8D, If

1
/{;D 1—-%“_” du(y) < +oo, {1.7.1)

then Z,, € H(D); otherwise T, = +00 on D.

Proof. Let 2 be a bounded open set such that 2 ¢ D. Then there is a
positive constant ¢’ such that

C_l—l—-— < K{z,y) <C

T €2,y € dD).
Tl S (& € Dy D)

1
1+l

It follows that Z, is non-negative and finite-valued on £2 if (1.7.1) holds, and
I, = +oo on {2 otherwise. Also, in the former case, by Lebesgue’s dominated
convergence theorem, Z,, is continuous on {2, and taking a ball B{zg,r) in (2,
we can change the order of integration and use the harmonicity of K(-,y) to
see that M(Z,;xo,r) = Zu(zo)- Thus T, € H 4 (£2). The conclusion follows in
view of the arbitrary nature of {2. a

Theorem 1.7.3. If h € Hy (D), then there exists a measure y on aD and a
number ¢ > 0 such that

hiz) = Z.(z) +czn (z € D). (1.7.2)
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Proof. Let z = (0,...,0,—-1)and w = (0,...,0,—-1/2). We will deduce this re-
sult from the Riesz—Herglotz theorem using the Kelvin transform with respect
to the sphere $(z,1). Thus z* = z+||z—z||7*(z—2) and ||z* —z|| = |z —z||~*
whenever z # 2, and

lla* — yll* = =" = 2l* + lly = 2l = 2(=" - 2,y - 2)

_ i + 1 _ 2($—z,y’—z)
lz—zl  lly* —2> iz —2lPlly* - 2Ii?

lz = 21 +|ly* = 21> = 2(z — 2, 9" - 2)
llz = zl1Ply* — 2

iz — y*If?
= Tz = 2Py — 2l (z,y € RV\{z}). (1.7.3)
Noting that w* = —z, we obtain from (1.7.3) that
1 . a1 stz
gl T e
—(z,m) TN
ST et LA OB

It follows from (1.7.4) that zx > 0 if and only if [lz* — w|f < 1/2 and
so D* = B(w,1/2). Similarly, the mapping = — z* takes S{w,1/2}\{z}
homeomorphically onto 8D, (See Figure 1.2.}

B(w, /2 -

Figure 1.2.
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Suppose now that h € H (D), and let h* be the image of h under the
Kelvin transform. By Corollary 1.6.4, * € H, (B(w, 1/2}) and hence, by the
Riesz—Herglotz theorem, there is a measure » on S(w,1/2) such that

14— " - ul?
b (z* =f 2= — Wl gy s € D). 1.7.5
G P P L ) @eD) (1.75)

Writing the integral in (1.7.5) as an integral over S(w, 1/2)\{z} plus an in-
tegral over {z} and using {1.7.3), (1.7.4), we obtain

— lly* — z”N N-2
Rt (z*) = zn|lz—2|| 2/ s dv(y)+r{{z})rnllz-2 .
===l SNz} T =y Il ({=}) I

Since h(z) = ||z — 2|2~V h*(z*}, this yields
Ma) = o | Iy =20 ey 4 v(Pon. (176)
sty 1z =yl
If we define the measure p on 3D by writing
u(B) = on/2) [ I ==l dvto)

for each Borel subset E of 8D, and also put ¢ = »{{z}), then we can rewrite
(1.7.6) as (1.7.2). 0

The remainder of this section is concerned with the boundary behaviour
of Poisson integrals of functions. Let A’ denote (N — 1)-dimensional Lebesgue
measure on 8D (which can be identified with RY-1). If f is a non-negative
measurable function on @D then we write Zy in place of Zyx . If f is measur-
able on 4D and

DI
/aD T o W) < +eo, (1.7.7)

then Z;+,Z;~ € Hy(2), by Theorem 1.7.2, and we can define Ty = Tp+ —1y-.
Thus Iy € H($2).

Lemma 1.7.4. I; = 1.

Proof. By considering spheres in RN of centre (1,-..,ZNn—1), We see that

_2 [ AN v
80 = 5 fp T YO @D

B 2aN-1 +co :L.NtN—‘z

T on _[0 (x% + £2)NV/2

YoN_1 oo SN_2 4
ON /0 (1 + s2)N/2 .

dt

(1.7.8)
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where on_; is interpreted as 2 when N = 2. Denote the integral in (1.7.8)
by J(N). Easy calculations yield J(2) = 7/2 and J(3) = 1. Integration by
parts shows that J(N + 2) = N~Y{N — 1)J(N). These equations give
1.3.5.. (N = 3)
2N/2(N/2—1)!7r (N even; N > 4)
J(N) =
2AN=32((N — 3)/2)!
135...(N—2)

(N odd; N > 5).

Hence, using the explicit value of ox (see p. xvi}, we see that J(N) =
on/(20n-1), and 50 1) = 1. Qo

Theorem 1.7.5. Let f be a measurable function on 8D satisfying (1.7.7).
Then
limsup Z;(z) < limsup f(z) (y €3>D). (1.7.9)
r—y,sED z—y,zE€0D
Further, if f is continuous in the eztended sense at y € 8D, then Is(z) —
fly) as z = y; also Zp{z) -> lim.0 f(z) as & — 00 if f has a limit (finite
or infinite) at oo.

Proof. Once (1.7.9) is established the rest of the theorem will follow by
applying this inequality to f and —f. In proving (1.7.9), we suppose that
limsup,_,, f(z) < A < +oo and show that limsup,_,, Ts(x) < A. We treat
the cases y € @D and y = oo separately.

Suppose first that y € &D. There exists 6 > 0 such that flz) < A
whenever z € B(y,28) N D. i z € B(y,6) N D, then by Lemma 1.7.4

Ip(x) — A =T;_a(z)

5[ K(z,2)|f(z) — A]dX'(2)
AD\ B(y.28)

+ / K(z,2)(f(z) — A)dXN(z). (1.7.10)
aDNB(y.26)
The second integral here is negative and the first does not exceed

e,
¢ ”fw T e

where C' depends only on y, & and N. Hence the right-hand side of (1.7.10)
has non-positive upper limit as ¢ — y and therefore lim sup,_,, 7¢(z) < 4,
as required.

Now suppose that y = co. There exists R > 0 such that f{z) < A when

z € 8D\B(0, R). Hence, if z € D\B(0, R), then




- p——

|
|
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T,(z) — A < f Kz, 2)(f(2) - A) dN'(z)

8DNB{0,R)
2a N

B
on{llzll — R)" JopnB(O.R)

—+0 (z = 00).

|£(z) — A] aX'(2)

Thus lim sup,_, ., Zr(z) < A again. O

In formulating the Dirichlet problem for unbounded open sets 2, it is
usual to work with a continuous function on the boundary 8°°2 in the com-
pactified space RN U {co} rather than the Euclidean boundary 812. If 642
is used instead, then uniqueness of solutions will be lost if there are non-
constant harmonic functions on {2 which vanish on 82, when 2 = D, an
example of such a function is  — zn.

Corollary 1.7.6. Let f : °D — [—00, +00] be continuous and suppose that
(1.7.7) holds. Then there ezists h € H(D) such that h(z) = f(y) as = = y
for each y € 8°D. Further, if f is finite-valued, then h is unique.

Proof. By Theorem 1.7.5 the function h = Zy has the required properties.
The uniqueness assertion follows from the maximum principle. a

Note that uniqueness fails if f is allowed to take infinite values. For ex-
ample, if f(yo) = +0o for some yo € D and if h € H(D) is a solution of the
Dirichlet problem in the sense that h(z) = f(y) as z — y for each y € %D,
then A + aK( - ,7) will be another such solution for any a > 0.

1.8. Real-analyticity of harmonic functions

Real-analyticity of functions on open sets in RV is defined in terms of multiple
power series, so we will first discuss these. If & = (o, ..., a ) is a multi-index
{an ordered N-tuple of non-negative integers), then we write

|a|:a1+.,.+aN, a!:all...aN!,
2% =g --zly, D= Aol joxsr .. x5y .

By a multiple power series we mean a series of the form 3" anx®, where the
coefficients a, are real numbers and the sum is over all N-tuples o. We need
to consider only the case where such a series is absolutely convergent and so
the ordering of terms need not be specified.

Lemma 1.8.1. If the coordinates y1,...,yn of a point y are positive and
T |ao|y® converges, then 3 |aa@®| converges uniformly on the set E = {z:
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lz;| <y; for each j}. Further, for any multi-index 3, the series 3 laa DBz
converges locally uniformly on E° and

DAY ez = auDz® (€ E°). (1.8.1)

Proof. The uniform convergence of 3 |a,z%| on E follows immediately from
the Weierstrass M-test. For the convergence of 3 |a, D?z?|, it is enough to
work with the case where |3| = 1, since the general result will then follow
by induction. Without loss of generality we work with § = (1,0,...,0). Let
E,={x:cx € E}, where ¢ > 1. If &; > 1 and || is large enough, then

laa DP2| = |age;2°77| < laglarc' 1oy 'y < aaly® (= € Eo);

if @y = 0, then DPz® = 0. It follows from the M-test that ) |aqDPz|
converges uniformly on E., and hence locally uniformly on E° in view of the
arbitrary nature of ¢. Equation (1.8.1) now follows by repeated application
of a well-known result on term-by-term differentiation of series of functions
of one real variable. O

Definition 1.8.2. A function f : 2 —+ R is called real-analytic on {2 if for
each y € (? there exists 7 > 0 such that f has a representation of the form

flu+m) =) az® (1.8.2)

when ||z|| < v and the series is absolutely convergent for such z.

In view of Lemma 1.8.1 we can differentiate the series in (1.8.2) term by
term, and then take & = 0, to see that f € C°(¢2) and DP f(y) = Blay for
each multi-index . The series in (1.8.2} is called the Taylor series for f at
Y.

Lemma 1.8.3. If f is real-enalytic on a connected open set §2 and f =0 on
a non-empty open subset of 12, then f =0 on §2,

Proof. Let {2 be the set of points z in §2 such that f = 0 on some neighbour-
hood of z. Then 2y is open and non-empty. If ¥ € 25 N 2, then f and all its
partial derivatives vanish at y by continuity. Thus the Taylor series for f at
y vanishes identically and so y € §25. It follows that (2 is relatively closed in
2 and hence 2y = 12 by connectedness. 0

In fact, the space of real-analytic functions on {2 is strictly contained in
C>({2). For example, the function f : BY — R defined by

0 (1 €0)
exp(—z7') (21> 0)

)= {
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belongs to C° (RN ), but is not real-analytic on R in view of Lemma 1.8.3.

Tn order to prove that harmonic functions are real-analytic, it is enough to
show that ball Poisson integrals are real-analytic (see Corollary 1.3.4). With
this in mind we first study Poisson kernels.

Lemma 1.8.4. The Poisson kernel K of B{zo,r) has an ezpansion of the
form

K{zo + z,9) (lzll < (v2 - 1)r;y € S(zo,7)), (1.8.3)

= Z aq(y)z®

where ag(y) is a polynomial in the coordinates of y and E|aa(y "| is uni-
formly convergent on {(z,y) : z € B(0,cr),y € S(xo,7}} f0 << V2-1.
Proof. Let y € S(zg,7) and z =y — Zo. Then
ontK (g0 + 2,y) = (% — X llzll? +r* — 2z, 2)~/*. (1.8.4)
If ||z} < (V2 — 1)r, then
lllzlf? - 2(z, 2)| < ll=i® + 2zl 2l < 72
and hence
2 z,2)\"
(lll? + 72 — 2z, 20}V =1 Zd (ﬂ-—z)) . (185)
n=0

where the d,, are binomial coefficients. Further, if [|z]| < er, where e < V2-1,
then

N
2 3 + 22 b 2] < €*r® + 20r?,

so that (||z|]* — 2(z, z))/r is the sum of 2N monomial terms the sum of
whose moduli is less than ¢ + 2¢ < L. Since 3 dn(c* + 26)™ < 400, we see
that (1.8.5) yields an expansion of the form

=5 baly)a®,

where ba{y) is a polynomial in the coordinates of y and ¥ |ba (y)z*| con-
verges uniformly on B(0,cr) x S(xo,7). The corresponding result for K is
now obtained from (1.8.4). O

(J=li* + 2 — 2,z

Theorem 1.8.5. If h € H(S2), then h is real-analytic on 2.

Proof. If B(zq,r) C {2, then h is equal on B(xo,7) to its Poisson integral:

h(zo +2) = L Ko+ zh)de) (el <)

oy
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If ||lz|| < {v/2=1)r, then (1.8.3) holds with the stated convergence properties.
Integrating term by term we obtain h(xo + ) = > dax®, where

do= [ aoly) A2 oo
S(zo,7)
moreover 3 |daz*| converges uniformly on B(0,cr) when ¢ < V2 -1 ]

It foliows from Theorem 1.8.5 and Lemma 1.8.3 that, if k is harmonic
on a connected open set 2 and h = ( on some ball in §2, then A = 0. Thus
the improvement of Theorem 1.2.4(i) promised in Remark 1.2.5(b) is verified.
Another consequence of Theorem 1.8.5 is the following result which will be
improved in Chapter 2 (see Theorem 2.4.4). We recall that a polynomial P
in z1,...,zn is homogeneous of degree j if it is a finite linear combination of
monomials & where || = j.

Corollary 1.8.6. If h € H({2) and ¢ € {2, then there is a unique sequence
(H;) of harmonic polynomials such that H; is homogeneous of degree j, and
such that for some positive number r,

Z Hj(z)

=0

h{zg + ) = (=]l <) (1.8.6)

and ¥ |H;| converges uniformly on B(0,r).

Proof. By Theorem 1.8.5 and Lemma 1.8.1, there exists r > 0 such that
h(zo + ) = ¥ aaz™ when ||z} < r and } |asz®| converges uniformly on
B(0,7). Let H;{z) = 3 |,)=j 0a®®. Then (1.8.6) holds and | |H;| converges
unifoermly on B(0,r). To show that each H; is harmonic, we differentiate
under the summation sign in (1.8.6}, using Lemma 1.8.1 for justification, and
obtain

= (Ah)(zo+2) = ) _(AH;)(@) (=]l <7).
=0
I 0 < ||z|]] <7 and —1 < ¢ < 1, then by homogeneity
o0
0= (AH;)(tz) = Etf ~2(AH;)(x).
§=0 j=

Hence, by the uniqueness property of single-variable power series, AH; = 0
on B(0,r) for each j. Thus each H; is a harmonic polynomial.

For the uniqueness assertion it is enough to show that if ¢); is a homo-
geneous polynomial of degree j and ¥ Q; = 0 on some ball B(0, p), then
Q; = 0 for each j. Since }#Q;(z) = 3 Q;(tx) = 0 when ||zl] < p and
—1 < t < 1, the result again {ollows from the uniqueness property of single-
variable power series. D
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1.9. Exercises

Exercise 1.1. Show that, if h € H(B), then

lim inf A{ry} < +00
r—1—

for o-almost every y € S. (Hint: consider M (h; 0, r,,) for a sequence (r,,) with
limy, =1.)

Exercise 1.2, Let {y,) be a dense sequence of points in 9, and let k be
defined on B by

s.v)
h=> " 2""Ko1(yn)-
n=1
Show that h € H,;.(B) and limsup,_,, h(z) = +oo for each y € S. Deduce,
using the result of Exercise 1.1, that limg ., h(x) fails to exist for o-almost
every y € 5.

Exercise 1.3. Let D = {z € RY : 2 > 0}, and let h be defined on D by
T1IN

) = ey

Show that:

(i) h € H(D),

(ii) limg— 04 h{z’,t) = O for each ' € RN,

(iii) h has no harmonic continuation to RY.
(This shows that in the reflection principle, Theorem 1.3.6, limits along nor-
mals to 8D cannot replace limits.)

Exercise 1.4. Suppose that h € H(D) and h{x} = 0 as z — y for each
y € 8D. By using the reflection principle and considering the harmonic func-
tion Oh/Oxzn, show that if t71A(z1,...,z8_1,t) = 0 as ¢ - 0+ whenever
T1,-..,TN—1 are rational, then A =0,

Exercise 1.5. Let A be harmonic on the open unit disc and suppose that
h =0 on RB; U Ro, where R, R are radii of the disc meeting at an angle ar
{0 < a < 1). Use the reflection principle to show that if ¢ is irrational, then
h = 0. Show also that if «v is rational, then h need not be identically zero.

Exercise 1.6. Let P = {z ¢ RV : |zn] =1}

(i) Give an example of a function A € H(RY),h £ 0, such that h =0 on P.
(ii) Show that if I is a harmonic polynomial and H = 0 on P, then H = 0.
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Exercise 1.7. Suppose that h € H(B{zo,r)) and |h| < M. Show that for
each multi-index a there is a constant €, depending only on ja| and N, such
that

|D®h(xo)| < CMrlol,

(See Section 1.8 for notation.)

Exercise 1.8. Use the result of Exercise 1.7 to show that, if & € H(R") and
jr{z)| < AQ1 +}|z||)™ for all z € RY and some constants A > 0 and m > 0,
then h is a polynomial of degree at most m.

Exercise 1.9. The Harnack metric. Let {2 be connected, and let d be
defined on {2 x {2 by

d(z,y) = log(inf{C > 0: C™" < h(z)/h(y) < C for all h € Hy (D\{0}}).
Show that d is a semi-metric (that is,
d(z,z) =0 < d(z,y) = dy,z) < 400, d(z,2) <d(z,y) +dly, )

for all z,y,2 € 2). Show further that, if 2 is bounded, then d is a metric.

Exercise 1.10. Transfer of smallness. Let {2 be connected and let K, w
be non-empty subsets of £2 with K compact and w open. Show that for each
£ > 0 there exists § > 0 with the following property: if h € H{{2),|h| <1 on
? and |h| < 6 on w, then |h| < £ on K. (Hint: suppose not and let {Ay) be a
sequence in H({2) such that |h,| < 1on §2, |k, <n7! onw and |hu(z,}] > €
for some z, € K.)

Exercise 1.11. Let 2 be unbounded and connected. Using the result of
Exercise 1.10, show that there exists a continuous function 7 : [0, +00) —
(0,1] with the following property: if h € H($2) and |h(z)| < n{}|||) for each
x € §2,then h=0.

Exercise 1.12. Spherical reflection. Let w be an open set such that w M
S # 0. Suppose that h € H(wNB) and h(z) = 0 asz — y for each y € wNS.
Use the Kelvin transform and the reflection principle to show that h has a
harmonic continuation to some open set containing w N B.

Exercise 1.13. Suppose that & € H(RY\B) and h(z) — 0 as x — oo, Show
that the image h* of h under the Kelvin transform with respect to S has a
harmonic continuation to B, and deduce that ||z||Y~2h(z) has a finite limit
as z — ©0.

Exercise 1.14. Suppose that & € H4(RV\{0}) and h{z) —= B as z — oo
Show that h{z) = ¢|lz]|*~" for some constant ¢ > 0.
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Exercise 1.15. Show that if & is the Poisson integral on ) = RV~ % (0, +o0)
of a finite measure on 8D, then the function

L h(y', )dX' (y')
RN-1

is constant on (0, +00).

Exercise 1.16. Let N = 2 and let f be an integrable function on 8D such
that f(£,0) = 0 as £ = +oo and f(£,0) = 7 as £ =& —oo. Show that the
Poisson integral of f on D satisfies

lim Z;(rcosf,rsind) =6 (0 <8 <m).

r—-Hoo

Exercise 1.17. Let D = RV-1 x (0, +00) and suppose that & € H, (D} and
h{z) — 0 as = — y for each y € OD. Write

hiz) = Z.(z) + czn {x € D)

as in Theorem 1.7.3. Let K be a compact subset of 8D. Show that 7, has
a harmonic continuation & to BRY and that H(z) — 0 as £ — oo. Deduce
that h{x} = cxn.

Exercise 1.18. (i) Let h € #4(B). By considering functions of the form
z = h(rz), show that h is the limit on B of some sequence of bounded
elements of H4(B).

(i) We say that h € Hy(B) is guasi-bounded if h is the limit of some
increasing sequence of bounded elements of H+ (B). Let K(-,y) denote the
Poisson kernel of B with some fixed pole y € S. Show (without using Theorem
1.3.9) that K(-,y) is not quasi-bounded. (Hint: show that if h is a bounded
element of H4 (B) and h < K(:,y), then h = 0.)

(ili) Let b € H(B). Using Theorem 1.3.9 or otherwise, show that f is the
Poisson integral of an integrable function on S if and only if there exists a
quasi-bounded function ho € H4(B) such that |h| < hg on B.

Exercise 1.19. Let & € C{f2) and suppose that for each z € {2 there exists
a positive sequence (ry,) with r, — 0 such that A{z) = A(h; z,rs) for each
n. Show that h satisfies the maximum and minimum principles (that is, h
is constant in some neighbourhood of any local extremum). Deduce that
he MH(12).

Chapter 2. Harmonic Polynomials

2.1. Spaces of homogeneous polynomials

We start with an algebraic study of harmonic polynomials as elements of vec-
tor spaces equipped with inner products. This leads quickly to information
about the structure of the spaces and the behaviour of individual elements.
The special role of axially symmetric polynomials is emphasized. We next
extend the study of polynomial expansions of harmonic functions which con-
cluded Chapter 1 and give an expansion for harmonic functions on annular
domains, analogous to the Laurent expansion for holomorphic functions. This
Laurent-type expansion is then used to obtain basic results on harmonic ap-
proximation. These results will be applied firstly to establish the existence
of harmonic functions with prescribed singular parts at a sequence of iso-
lated singularities, and secondly to construct harmonic functions on RY with
unexpected properties.

Let P,,, denote the vector space of all real-valued homogeneous polynomi-
als of degree m on RY, where m > 0 and N > 2; in the multi-index notation
of Section 1.8 the elements of P,, are those functions P : RN = R of the

form
P(z)= Y asz™. (2.1.1)

A useful inner product is defined on P, as follows. First, to an element P of
P,, given by (2.1.1) we associate the differential operator Dp given by

Dp= )Y a.D"

lal=m

Clearly if Q(z) = 3|4y Doz, then DpQ = 2 a|=m ®laabs and it follows
easily that the equation

[P’Q]m = DpQ

defines an inner product on Py,.

Let M,, be the set of all harmonic elements of Py,, and let Qp,, when
m > 2, be the set of all polynomials of the form Q(z) = ||z||*P(z) where
Pf ; Prn_z; we also put @y = Q; = {0}. Clearly H,, and Q,, are subspaces
of Pp.

33
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First we aim to demonstrate an important relationship between the spaces
P, Hm and Q.. This needs some notions from elementary vector space
theory. We recall that a space V is said to be the direct sum of subspaces V1, V5
if every element v € ¥V has a unique representation of the form v = v; + s,
where v; € V| and vy € V5; we then write V = V| & V5. In particular, if V is
equipped with an inner product and U is a subspace of V, then V = U@ U+,
where U1 is the subspace of V comprising those vectors which are orthogonal
to {every vector in) U.

Theorem 2.1.1. With the inner product [-,]m on Pm we have H,, = Q
and hence Py = Hm D Q.

Proof. The result is trivial when m = 0,1, so we suppose that m > 2. If
P e P, and Qg € Pp—3, then writing Q(z) = ||z||*Qo(z), we have

(@, Plm = Do, AP = [Qo, AP]m—2. {2.1.2)

Hence, if P € Q% then taking Qo= AP in (2.1.2), we see that [AP, APy _2 =
0, so that AP = 0 and P € H,,. Conversely, (2.1.2) also implies that if
P € Hp, then P € QL. Hence H,, = @7, as required. O

We denote the greatest integer not exceeding a real number a by [a].

Corollary 2.1.2. If P € P,,, then there exist harmonic polynomials Hy,_»; €
Hom—a; (3=0,1,...,{m/2]) such that

Gz
P(z) = Y [zl Hm—24(x). (2.1.3)

§=0

Proof. By Theorem 2.1.1, we can write P{z) = Hn(z) + ||2|[*Q(z), where
H, € Hm and Q@ € Pn_o. This observation forms the basis of a simple
induction argument. O

The next corollary shows that a Poisson integral on the unit ball is a
polynomial if the boundary function is a polynomial.

Corollary 2.1.3. If P is a polynomial of degree m on RY, then there exists
& harmonic polynomial H of degree at most m such that H=P on §.

Proof. Since P is the sum of its homogeneous parts (that is, P = 3, P,
where P, € P%), it is enough to treat the case where P is homogeneous,
and we suppose without loss of generality that P € Pp,. The function H
that we seek is then obtained by writing P in the form (2.1.3) and defining
H = Z H —2j- 7 D
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We define’
G v = dim M,y

Corollary 2.1 4. dg v =1, dy v = N,
m+N-=-1 m+ N -3
dp, N = ( m ) - ( m—2 ) (m > 2). (2.1.4)
In particular,

dpa=2, dna=2m+1, dpa=m+1)* (m>1). (2.1.5)

Proof. With m = 0,1 the results are trivial. Suppose then that m > 2. By
Theorem 2.1.1,

dim Py, = dim Hp + dim @, = dim Hp, + dim Py, (2.1.6)

Now dim P,, is the number of linearly independent monomial functions of
degree m in N variables, and this is equal to the number of arrangements
in which m indistinguishable objects together with N — 1 indistinguishable
division-markers are put in a row of m + N — 1 places. An arrangement
of this type is determined by selecting m places for the objects from the
m + N — 1 available. This selection can be made in (™"~1) ways. Hence
dimP,, = (m"'ﬂ‘f“l), and (2.1.4) now follows from (2.1.6). The values in
(2.1.5) are easily calculated from (2.1.4). O

Remark 2.1.5. The space H,, has a very simple form when N = 2. In this
case, with m > 1, the functions
hy(z1,72) = Re(z) +iza)™ and ha(z1,z2) = Im(zy +ize)™

are linearly independent elements of H,; indeed [h1, hg}m = 0. Since dp 2 =
2, they form a basis for H,,. Note that, writing z; + izs = ¢, we have

hy(rcosf,rsinf) = r™ cosmf and ha(rcosf,rsinf) = r™ sinmf.

2.2. Another inner product on a space of polynomials

The inner product [-, -], has served its main purpose by enabling us to give
a short proof that Py, = Hyn @ @m, and another inner product {-,-)2, defined
by an integral, will be more useful from now on. It is convenient to work here
with surface measure ¢ on the unit sphere S, normalized so that #(5) = 1.
It is easy to see that the equation

(P,Q)s = [S PQ dé (P,Q € Prm)

defines an inner product on Py,; the associated norm is given by [|Plls =

VAP, P)a.
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Lemma 2.2.1. If P € Py and H € Hp,, where 0 < k <m, then
/ HP dés =0, (2.2.1)
5
In particular,

/ H,H.d5 =0 (Hm € Hp; Hy, € Hy) (2.2.2)
S

whenever m £ n.

Proof. We start with (2.2.2). Using the equation

nga () =aQ(z)  (QEP),

J=I

we find that
N
('m—n)V[SI'ImHﬂ di = [S{Hn(w)Z:zJa—a}ﬁ"—(z)
~ Hu() z% %()} di(z)

_ /{Hn% -HmBH"}d&,
3

an. on,

where 3_ denoctes differentiation in the direction of the exterior normal to

5. Green’s formula {see Appendix) shows that the last-written integral is 0,

and the proof of (2.2.2) is complete.
To prove (2.2.1), we note that by Corollary 2.1.3 there exists a harmonic

polynomial J of degree at most k such that P = J on S. Applying (2.2.2) to
each of the homogeneous parts of J (which are also harmonic), we see that

[HPd&:/HJd&:O. o
5 5

Theorem 2.2.2. For each fivred m, the spoces Hpm and Qm are orthogonal
with respect to the inner product {:,-}2.

Proof. The cases m = 0,1 are trivial, so we suppose that H € H,, and
Q € QO where m > 2, and let Q(z) = ||z||2P(xz), where P € Prp_z. By
Lemma, 2.2.1,

(H,Q)2=/SHPd&=O. 0
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A further application of Lemma 2.2.1 is as follows.

Theorem 2.2.3. Every non-constant fector of a non-zero harmenic polyno-
mial takes both positive and negative values.

Proof. This theorem is vacuous for polynomials of degree 0 and trivial for
polynomials of degree 1. To deal with higher degrees, suppose initially that
H € Hnu\{0}, where m > 2. Since M({H;0,1) = H(0) = 0 and H is non-
constant on 5, it follows that H itself takes both positive and negative values.
Now suppose that H = P(), where P, () are non-constant polynomials. Since
deg P < m, Lemma 2.2.1 gives

0=/HPdEr:/P2Qdc“r,
g S

so that @} takes both positive and negative values on 5. This completes the
proof for homogeneous harmonic polynomials.

Now let H be an arbitrary harmonic polynomial of degree m > 2. If P,
are polynomials such that H = PQ), then H = PQ, where P denotes the
homogeneous part of P of highest degree. If @ is non-constant, then since
H € #,,\{0}, the result of the previous paragraph implies that { takes a
positive value at some point y of 5. Denoting the degree of Q by &, we then
have Q(ry) = r*Q(y) + O(r*~1) as r = +o0, s0 Q(ry) > 0 for sufficiently
large values of r. Similarly, @@ takes negative values. O

2.3. Axially symmetric harmonic polynomials

Definition 2.3.1. Let y be a point of §. A real-valued function f, defined
either on RY or on some ball B(0, R) is called y-azial if f = f o A for every
orthogonal transformation A of RV such that A(y) =

Theorem 2.3.2. If y € 5, then there exists a unique element Jy m of Hp
such that
{H, Jym)2 = H(y) (H € Hp)- (2.3.1)

Purther, Jy n is y-oxial.

Proof. The first statement will be proved using elementary vector space the-
ory. Let H?, denote the dual of M, that is, the vector space of all real-valued
linear functions on H,,, and let ¢ : H,, —+ H}, be the function that associates
with each element G of H,, the linear function H — {H,G)s. It is easy to
see that @ is injective, and so it is an isomorphism since dim H,, = dim H},.
Hence, if y € S and ¢, is the element of H}, given by ¢,(H) = H(y), then
there is a unique element J, 5, of Hy, such that $(J, ) = ¢,, that is to say,
(2.3.1) holds.
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To show that J, . is y-axial, let A be an orthogonal transformation of
RY with A(y) = . Then by the rotation-invariance of & and {2.3.1),

(H, Jymo A2 = (Ho A7 Jym)s = (Ho A™H)(y) = H(y)

for each H € H,. From the uniqueness of Jy, . it now follows that Jy mo A =
Jy,m, as required. a

Definition 2.3.3. We refer to the polynomials Jy m of Theorem 2.3.2 as
azial harmonics. Specifically Jy 1 is called the y-azial harmonic of degree m
(on BV).

Axial harmonics are intimately related to certain well-studied classical
polynomials. We make no use of this relationship here but will give details
in Section 2.7. Below we investigate the properties of axial harmonics and
then give some examples. The next result adds to the uniqueness statement
in Theorem 2.3.2.

Theorem 2.3.4. Every y-azial element of Hy, is proportional to Jym.

Proof. The result will follow easily once we have established that the zero
function is the only y-axial element of Hy, that vanishes at y. We therefore
suppose that H is a y-axial element of Hy, and H(y) = 0. Choosing coordinate
axes with respect to which y = (1,0,...,0) we define

g(8) = H(cosd,sinb,0,...,0).

By the axial symmetry of H, the function g is even and g = 0 if and only if
H = 0. Suppose that H # 0. Then g has only finitely many zeros in [, @)
and g(0) = H(y) = 0. Since g is even, it follows that g attains a strict local
extremum at 0. The axial symmetry and homogeneity of H now imply that
H attains a local extremum at y, contrary to the maximum principle. Hence
H =0, as claimed.

If ( is any y-axial element of Hy,, then the function Jy, (y)G — Gy} y,m
is a y-axial element of H,, which vanishes at y. By the previous paragraph,
this function is identically 0. Since J, m{y) # O by (2.3.1), we have G =

(G(y)/J ,m(y))']y,m- (I}

Lemma 2.3.5. If y € S and A is an orthogonal transformation of RN, then

JA(y},m. = Jy,m o A7,

Proof. By (2.3.1) and the rotation invariance of &, we have for each H € Ham,

(H, Jag)m2 = (Ho A)(y) = (Ho A, Jym)2 = (H, Jymo A 2.
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The result now follows from the uniqueness assertion of Theorem 2.3.2 applied
to J Aly),m- O

Theorem 2.3.6. Let {H; : j = 1,...,dn n} be an orthonormal basis for
Hm. If 2,y € 8, then

dm.N

3" Hi(@)H; (@) = Jymlz) = Jam(y). (2.3.2)

j=1

Proof. Fix a point y € 5. Using first the hypothesis that {H;} is an orthonor-
mal basis for H,; and then (2.3.1), we obtain

dm, N dm,N
Jy.m(‘r} = E (Hj, Jy‘m)2Hj($) = Z Hj(y)H,-(z) ($ € RN).

Clearly the roles of  and y can be interchanged to vield the second equation
m (2.3.2). O

Corollary 2.3.7. If {H; : j =1,...,dm N} is an orthonormal basis for Hn,,
then for euchy € S

dm N

S Hy W) = Jym(®) = ymll3 = dim n- (2.3.3)

J=1
Proof. Taking y = z in (2.3.2) yields
Am.N
Jy,m(y) = Z (Hj(y))2
j=1

Since, by Lemma 2.3.5, Jy..(y) is independent of y, we may integrate
the right-hand side of the above equation with respect to dé(y) to obtain
Jym(y) = dmm n. The middle equation in (2.3.3) is immediate from {2.3.1).

]
Corollary 2.3.8. If H € H,,, then
|H(z)] < &%l Hlllz™  (z € RV). (2.3.4)

Equality oceurs when H = Jy o, for somey € S and z = ky for some k€ R.

Proof. By homogeneity, it is enough to prove (2.3.4) in the case where
llz]| =1, and we may also suppose that |[H|lz = 1. Let {H;} be an or-
thonormal basis for #,, with &, = H. By Corollary 2.3.7,
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(H(@))* <D (H;{@))* = dm,n,

whence (2.3.4) follows. To verify the stated case of equality, we note that if
y € § and z = ky for some k € R, then by the homogeneity of Jym and
(2.3.3),

[y (@) = el [y ()] = dm e llal™ = SOy mllof2™. O

We conclude this section with some examples of axial harmonics. To ver-
ify the examples it is enough to check that the functions are indeed y-axial
elements of #,, and take the value dy n at y (see Theorem 2.3.4 and Corol-
lary 2.3.7). The verifications are routine; compare the first example with
Remark 2.1.5.

Ezemple £.3.9. Let N = 2 and write y = {cos¢,sing),z = (rcosB,rsind).
The axial harmonic Jy, ., is given by Jy,m{z) = 2r™ cosm(8 — ¢}

Ezample 2.3.10. Lety = (1,0,...,0) € RY . Then y-axial harmenics are given
by

Jyo(z) =1, Jy1(x) = Ny, Jyalz) = 5(N + 2(Nz? — ||z]|®),

b3E

Jy3(2) = EN(N + DN + Daf - 3] ),

Jyalz) = 21—4N(N + 6Y{(NV + 4)(N + 2zf — 6(V + 2)z3 ||z} + 3]=|}* }-

2.4. Polynomial expansions of harmonic functions

We saw in Corollary 1.8.6 that if A is harmonic on some ball B(xg,r), then
at least in some smaller ball A has a unique representation of the form

h(.’E) = i H_-,' (.’I: — .’B[}), (241)

=0

where H; € H;. Our aim here is to show that this series converges absclutely
and locally uniformly to h on the whole of B(zo,r). It is enough to work
with B(zg,r) = B, for the general result will then follow by translation and
dilation. With & view to exploiting the Riesz—Herglotz theorem, we first seek
an explicit expansion of the form (2.4.1) in the case h = K(,,y), where K is
the Poisson kernel of B. For this we use the following uniqueness result.
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Lemma 2.4.1. Suppose thaty € § and h € H(B). If h is y-aziel and h(ty) =
O when —1 <t <1, thenh=0.

Proof. By Corollary 1.8.6, there exist H; € H; such that h = e H;
in some ball B(0,rp). Let 4 be an orthogonal transformation of RY with
A(y) = y. Since h is y-axial, on B(0,7¢) we have

[ a) oo
Hi=h=hoA=) H;oA,

i=0 : J=0
and from the uniqueness of the expansion for 4 it now follows that H; = H;0A
for each j. Hence each H; is y-axial and therefore, by Theorem 2.3.4, pro-

portional to Jy ;. Thus h = 3772 ;4 ; on B(0, 7o) where (a;) is a sequence
of real numbers. In particular,

oa oo
0= h(ty) = Zaj.]y,j(ty) = Zajjy’j(y)tj (—7‘0 <t < 1"0).
J=0 j=0

Since Jy, ;{y) # 0, it follows from the uniqueness of power series expansions
that a; = 0 for each 7, so that A =0 on B(0,ry) and hence on B. |

Definition 2.4.2. Let (f,) be a sequence of real-valued functions defined on
a non-empty subset E of RV . We shall say that the series ¥ f,, is Weierstrass
convergent on E if 3 supg |fn| converges; also 3 f,, is locally Weierstrass
convergent on B if it is Weierstrass convergent on every non-empty compact
subset of £. (This terminology is suggested by the Weierstrass M-test.}

Recall that the Poisson kernel K of B is given by

11—zl
K(z,y) = —0—— € B;y e 8.
onlz—yy  EBVES)
Theorem 2.4.3.
1 o
K(z,y) = p— > Jyilz) (ze€Biyes). (2.4.2)
=0

Further, there exists e constant C, depending only on N, such that
[Ty (@) SCG+ )Y 22l (zeBiyeS;5=0,1,2,..) (24.3)

so that the series in (2.4.2) is locally Weierstrass convergent on B for each
yES.

Proof. We start with (2.4.3). In view of Corollaries 2.3.7 and 2.3.8, we have
yi()| < djnlz]]”. From the explicit formuta (2.1.4) for d; ¥ it follows
easily that d; y = OV "2} as j = oo.
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We prove (2.4.2) first in the case where z = {y with =1 < ¢t < 1. We
obtain

onK(ty,y) =0 - -6

:(1—t2)§:(j+];r—l)tj

=1 +Nti}{(j+?' 1)_ (J";fir;:*)}ti (2.4.4)
= i Ty = f:n Iy 5 (t0)
i=0 o

using the fact that the coefficient of t7 in (2.4.4) is equal to d; v which in
turn is equal to Jy ;(y) (see Corollaries 2.1.4 and 2.3.7}.

Since the series in (2.4.2} is locally uniformly convergent on B by (2.4..3),
its sum, h say, is harmonic there, and since the terms of the series are y—a.:cl.al,
50 also is h. Now oy K (-, y) is also y-axial and harmonic on B and agrees with
% on the line segment {fy : —1 <t < 1}. Hence h — onK(,y)=0o0n B, by
Lemma 2.4.1, as required. a

A formal statement of the homogeneous polynomial expansion announced
in the first paragraph of this section is as follows.

Theorem 2.4.4. If h € H(B(zo,1)), then there exist unique polynomials
H; € H; such that

h(z) = iHj(z ~ Zg) (z € Blzo, 7)), (2.4.5)

i=0

and the series is locally Weierstrass convergent on B(zo,r). In particu!ar,- if
h € H{RN), then the equation in (2.4.5) holds for all z in RY and the series
is locally Weierstrass convergent on RN,

Proof. It is enough to prove the results in the first sentence, for they clearly
imply those in the second. Also, it is enough to work with B in place of

B(zo,7). Suppose first that h is harmonic on some neighbourhood of B.
Then h is given on B by its Poisson integral:

ha) = [ Kz n)h)dow)
s
Hence, by Theorem 2.4.3, b = 3.2 Hj on B, where

Hy(e) = — fs Jy(@)h)do(y). (2.46)
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By (2.4.3), _
1H;(z)| < C(G + L)Y 2||2 M([Al;0,1),

so that 2}’10 H; is locally Weierstrass convergent on B. By Lemma 2.3.5,
the integrand in (2.4.6) and all its partial derivatives with respect to the
coordinates of & are bounded when ||z|| < 7 < 1 and y € §, so we may pass
any linear partial differential operator under the integral sign. Using Laplace’s
operator A, we find that H; € H{B). Similarly, all the partial derivatives of
H; of order greater than j vanish on B and all such derivaiives of order less
than j vanish at 0, so that H; € H;. The uniqueness of the polynomials i
follows from Corollary 1.8.6.

Now suppose only that h € H(B). For p € (0,1) define h, on B{0,1/p)
by h,(z) = R{pz). Then h, € H(B{0,1/p)) and by the result of the previous
paragraph, h, has a unique polynomial expansion on B of the type described
above which is locally Weierstrass convergent on B. This implies that h has
the form {2.4.5) on B(0, p) with local Weierstrass convergence there. Since the

expansion is unique, it is independent of p and therefore locally Weierstrass
convergent to h on B. O

Theorem 2.4.4 can be applied to obtain a further result concerning the
Dirichlet problem for the half-space D. We know from Theorem 1.7.5 that, if
f € C(8D) satisfies the integral condition {1.7.7), then there is a harmonic
function h on D such that h{z) — f(y) as  — y for all y € 8D. We can now
dispense with the integral condition.

Theorem 2.4.5. If f € C(OD), then there exists h € H(D) such that

hz) = fly)  (z = yiyedD). (24.7)

Proof. We define continuous functions g, (k € N) on 8D by
gi(y) = max{l - [|y||,0}  {(y€0dD),

gely) = (min{k ~ llyll, vl = k+2})" (e aD;k>2).

Thus gx(y) = 0 when }|y]| > k and when ||y|| < k& — 2. By Theorem 1.7.5 the
Poisson integral hy = Zyg, has limit f(y)ge(y) at y € 8D. In particular, if
k > 3, then h; has limit 0 at points of B(0, & —2)NJD and, by the reflection
principle, has a harmonic extension to D U B(0,k — 2). By Theorem 2.4.4
there exist Hj; € H; such that

hi(z) =Y Hjx(z) (€ B(0,k—2))
j=0

and we can choose f such that the harmonic polynomial
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i
Hy=Y Hjk

j:[]
satisfies . bus
|He(x) — hi(2)| <27 (llzll < &—3). (2.4.8)
Since D%hy = 0 on B(0,k —2) N 3D for any multi-index o of the f(?rm
(01,...,an—1,0), we see from Theorem 1.8.5 and Lemma 1.8.1 that 2y 1s a

factor of each H; () and so Hy =0on 8D. We now define
o
b= ot ha+ 3 (e = Hi)
k=3

D is i - he above series
on D, where hy is interpreted as fgi on 8D. By (2.4.8) t
converges locally uniformly on D. Since hi € C(D)NH(D) for each k, the
same is true of h. Finally, since ¥ gx = 1 and Hy =0 on 8D for each k, wDe
have h = f on #D and so {2.4.7) holds.

2.5. Laurent expansions of harmonic functions

Here we work on the annular domain
N .
A(zo;m,m2)={z € RY :ry < |]z—mo|] <7} (mo €R < <r < +00).

Our aim i to obtain a series expansion for harmonic functions on_such a
domain which is analogous to the Laurent expansion for holomorphic ftlmc-
tions on an annulus. We start by reinterpreting Theorem 2.4.4 for functions

harmonic on A(zo;r1, +00).
Lemma 2.5.1. If h € H{A(zo;1,+00)) end

m w2y o, )51
W)= loglely (o2 E0 G

then there exist unique harmonic polynomials K; € H; such that

h(z) = i liz — zo|P N ¥ K (x — zo) (2.5.2)
=0

and the series is Weierstrass convergent on A(zo; p, +00) for each p > 1.

Proof. Again we may suppose without loss of generality that r1 =1 and
1, = 0. We use the Kelvin transform to reduce the proof to a problem al:out
harmonic functions on B and then appeal to Theorzem 2.4.4, Define h* on
B\{0} by h*(z) = ||z}|>~N h(z*), where 2" = [|#||~2z. By Corollary 1.6.4,

2.5. Laurent expansions of harmonic functions 45

k* is harmonic on B\{0}. Further, by (2.5.1), h* satisfies the conditions of
Theorem 1.3.7 on B\{0} and therefore has a harmonic continuation to B.
Hence, by Theorem 2.4.4, there exist K; € #; such that h* = 2;10 Kj on
B. Hence if £ € A(0;1, +00), then

h(z) = ||lz" 1V 2h7 (2"} = ||l *~Vh* (z*) = l=l*N Y K;(z")
=0

= > llelP~N ¥ K (a). (2.5.3)

=0

The local Weierstrass convergence of 2?":0 K; on B implies that the series
in (2.5.3) is Weierstrass convergent on A(0; p, +00) when p > 1.
The above argument is reversible: if A is given by (2.5.3), then h* =

> ieo K on B, so the uniqueness assertion in this lemma follows from that
in Theorem 2.4.4. O

Lemma 2.5.2. If h € H{A{xzo;71,72)), then there exist unique functions
h1 € H{A(zg; 71, +00)) and hy € H(B(xo,72)) such that

o< {0l (1 23)
me = {ofly) (W23 Eom s

and for each x € A{zo;m1,72)

h(z) = {hl(m)+h2(a:) (N >3)

hi(z) + ha(z) + alogllz — ]| (N =2), (2.5.5) ,

where a € R.

Proof. We may suppose that zo = 0. For p € (r1,72) and z € RV\5(0, p), we
write

1 8h aU,
son)= o [ {Bwg ) -rwg w6, @56

where ay = oy max{1, N—2} and &/8n,. denotes differentiation with respect
to the y-variable in the direction of the exterior normal to B{0,p}. If wis a
bounded open set such that @ n S(0,p) = @, then the integrand in (2.5.6)
is bounded and continuous as a function of {z,¥) on w x §(0,p), and for
each fixed ¥ in S(0, p) it is harmonic as a function of z on w. Hence g(p,-) is
harmonic on BV \S(0, p) since it is continuous and, by Fubini’s theorem, has
the mean value property there.

Now suppose that 1 < p; < pp < ra. If @ € A{0; p1, p2), then by applying
Green’s formula on A(0; p1, p2)\B(z, &) and letting § — 0+, we obtain h(z) =
g(p2,x} — g(p1,x). Since g(p2,z) is independent of py, it follows from this
equation that g(p;, ) is independent of g;. Similarly, g(p2, z) is independent
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of po. Since g{p1,-) and g{pa,-) are harmonic on A(0; p1,+00) and B(0, p2)
respectively, it now follows that the functions defined by

) = Iim T T > )
gl( ) g(ﬁli ) (ll H 1/
e 7:[ C | < )

are harmonic on their domains of definition and satisfy h = g2 — g1 'on
A(Ollr: ltI}:: )c.ase where N > 3, easy estimates of U;(y) and itszc_l?éivatives with
respect to the coordinates of y show that g(p,z) = Of||z|lP~") as = - f(i)o
Since g{p1, %) is independent of py when lz|| > p1, it follows that gy satishies
(254). AlSO, with h] = -1 and h.z = g2, (255) holds.

With N = 2 we have

1

== oyl 22 (y)do(y) + O
—9{p1,%) = 5= Sm!pl)logllI yllane(y) o(y) +O(ll™)

1 ah
— (y)do(y)
- log|a [S .

L e =511y 22 (4o y) + Ol ™)
+ [3 (U’m)log( ) (y)do (y

2 =[]/ B
= alog|lz|| + Ozl ™),

say. Again, since g(p1,-) is independent of py when ||z|| > g1, the function g:l

has the same behaviour. Hence, if we ta.keﬁhé(m) = —{q1(z) + erlog |z]|) an
= 5. d (2.5.5) are satisfied. ‘

" _Tc? zp;rzl‘:znugqi:iez‘lsl, sflppos)e that ki, R} have all the propertr1es of by, ho.

Then A} + hy, =h =hy + hp on A(0; ,_rg), 80 tﬁat hy —hi = ;125—4 ha télir}ﬁ;

Thus h; — #, has a harmonic continuation to iR; . Hence, by (2.5.4) an h

maximum principle, hy = h{. Therefore hs = hi, also.

Theorem 2.5.3. (Laurent expansion} If h € H(A(zo;71,72)), then there
ezist unique harmonic polynomials H;, K; € H; such that

h(z) = iHj(:c — z0)+ 3 llz — zolPN H K i(w — wo) + ol (2), (25.7)

=1 =1

where & € R If 0 < & < 72, then the first series in (2.5.7) is Weierstrass
convergent on B(wg,m2 — &) and the second on A(xg;my + 6,+00).

Proof. We decompose h as in Lemma 2.5.2. By Theorem 2.4.4, hs has téle
form (2.4.5) and the series in (2.4.5) is Weierstrass convergent on B(zo, r2d —tlh).
By Lemma 2.5.1 and (2.5.4), the function hy has the form (2.5.2) al.? e
series in (2.5.2) is Weierstrass convergent on Azo;r1 + 8,+00). In the (:asej
where N > 3, the term with § = 0 in the series (2.5.2) has the form oz, (z);
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when N = 2-the corresponding term is constant and is in fact zero, since
hi(z) = 0 as z — oo. These remarks establish (2.5.7). The uniqueness of the

polynomials in (2.5.7) follows from the uniqueness results in Theorem 2.4.4
and Lemmas 2.5.1 and 2.5.2. O

2.6. Harmonic approximation

In this section we give an approximation theorem for harmonic functions
inspired by Runge’s theorem on holomorphic approximation; it includes as a
special case the result that if K is compact and RV \K is connected, then a
harmonic function on a neighbourhood of K can be uniformly approximated
on K by harmonic polynomials. We start with some lemmas, The second
and third of these are given in a stronger form than is needed to prove the
main approximation results. Their full strength will be used at the end of
the section to show the existence of harmonic functions on RV exhibiting
surprising behaviour.

Lemma 2.6.1. Let K be a compact subset of RY. If h is harmonic on a
neighbourhood of K and ¢ > 0, then there ezist points 11,...,y, in RV\K
and real numbers «, . .., am Such that

Ih_ZQkUykl <E

k=1
on K.

Proof. We can choose a compact set L on which Green’s formula is applicable
(see Appendix) such that X' C L° and h is harmonic on a neighbourhood of
L. By applying Green’s formula on L\ B{z, §) and letting § = 0+, we obtain

W) = o | {005 ) - )52 ) o)z K),

an
where d/8n. denotes differentiation in the direction of the exterior normal
to dL at y and ay = oy max{l, N — 2}. Since the integrand is uniformly

continuous as a function of (z,y) on K x 8L, the integral can be approximated
uniformly for £ € K by a Riemann sum

b5 {U(35) e t9) — o) o (45) ).

e

M-

1

J

Also, by definition of a derivative, (8/0n.)U;(y;) can be approximated by
a linear combination of U.(y}) and Uz(y;) for some y; in RY\K, and this
approximation too will be uniform for £ € K. The lemma now follows after
a relabelling of the points y;,y; ( =1,...,n) as g1, .., Y. a
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Lemma 2.6.2. Let y € RV and suppose that £,p,r1,72 Gre numbers sa_f,ch
thatTy > >0,e>0,p> 0. Ifh € ’H(A(y;rl,+oo)), then there erists

ho € H(RN \ {y}) such that
(h— ho)(z)] < (1 +1lzl) P (2 € Alyira, +00)).

Proof. By Theorem 2.5.3, the function h has a Laurent expansion

hz) = hu(@) +aly(z) + 3 lle — sl Kz —y) (= € Alyims, +00)),
j=1

where a is a constant, ii; € H(RY) and K; € H;. We write p = (r1 +r2)/2
and note that the above series is Weierstrass convergent on S{y, p). Let C be

a constant such that
Cilz — il > p(L +1lzl) (= € Aly;r2, +00}). (26.1)

There exists my such that

oo

3 Az —wlP Y TEIK @ ) <O (z€S@,p).  (262)

j=mop+1
Defining
ho(e) = b (z) + alUy(@) + 3 e —ylP " " Kjlz ~v),
=1

we see that ho € H(RY \ {y}) and that if m > max{mo,p+1— N} and
x € Ay;ra, +00), then

00 i f Iz — i T — )
ih - ho)a) = | 3 l\z—yll2’””’(“—py—n) Kj(TI(:B—;”)l

j=m+1
d N2 gt (02 =)
Sjgl(llzfy||)3+ i (i)

< (p/llz - wll)"C7"e

<e(l+{l=ID77,
using (2.6.2) and then (2.6.1).7 ]
Ify € RY and f : [0, +o0} —)’RN is a continuous function such that
f(0) =y and f(t) = oo ast = +00, then we call f([0, +oo)) a path from y
to 00, and any open set containing such a path we call a tract from y to co.

Lemma 2.6.3. Let T' be a tract from some point y to 0o. Ife>0,p>0 and
h e H(RY \ {y}), then there ezists g € H(RN) such that
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=)l <e+ll)7 (e RV\T).

Proof. Let (B;) = (B(y;,7;)} be a sequence of balls such that
Yo=1% ¥ €8, BT, r; <1 (j€{0,1,2,..7)

and y; =+ co. By Lemma 2.6.2, we can proceed recursively to find a sequence
(g;) of functions such that go = h,g; € H(RY \ {y;}) and

[gi1 - 9)(@)] < 27"l +]lal)” (¢ € R¥ \ Bjyaij € {0,1,2,.}).

Thus (g;) is locally uniformly Cauchy on RY and therefore converges to a
limit function g € H(RY). Also,

[(h~ g) (@) < I(gj1 — gi)(@)| <e+1lzl)™® (= € RV \T).

=0

O

Theorem 2.6.4. Let K be a compact subset of an open set 2 in RY such
that every bounded component of RV\K contains a point of RN\2. If h
is harmonic on an open set containing K and if € > 0, then there erists
H ¢ H(f2) such that |h — H| <ec on K.

Proof. In view of Lemma 2.6.1, it is enough to show that if y5 € RV \ X, then
[7ye can be uniformly approximated on K by functions in H{f2). Suppose first
that yo belongs to a bounded component, w say, of RV \K. By hypothesis,
there exists a point z in w\f2. There are balls B{y,,r1),. .-, B(¥m,"m), where
ym = z, with closures contained in w, such that yx_y € B(yg,r«)} for each
k=1,...,m. Define Hy = U,,. By repeated applications of Lemma 2.6.2, we
find that there exist functions Hy € H(RY\{y}) for k= 1,...,m such that
|Hi—1 — Hy| < g/m on A(yy; i, +00), which contains K. Hence, on K,

m
[Uyo — Hm} < Z |Hg-1 — Hi| <e.
k=1

Finally, we note that H,, is harmonic on R \{z}, which contains £2.
If yp lies in the unbounded component of RY\K then, by Lemma 2.6.3,
Uy, can be uniformly approximated on K by functions in H(RV ). O

Corollary 2.6.5. Let K be a compact subset of RV such that RV\K is
connected. If h is harmonic on ¢ neighbourhood of K and £ > Q, then there
exists a harmonic polynomial H such thet |h — H| < ¢ on K.

Proof. The topological hypothesis of Theorem 2.6.4 is vacuously satisfied with
2 = RY . Hence there exists H' € H(RY) such that |h— H'| <&¢/2 on K. By
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Theorem 2.4.4, there exists a harmonic polynomial H such that |H' ~ H| <
g/2 on K. Hence |h — H| <eon K. O

For the next result in this section, which is inspired by the Mittag-Leffler
theorem for holomorphic functions, we require some terminology. If A is har-
monic on some deleted neighbourhood of a point zo (that is, on U\{zo} for
some neighbourhood U of xg), then it has a Laurent expansion of the form
(2.5.7). We refer to the terms

o
S Iz = zol PN H K (z — 20) + Uz (2)

=1

in (2.5.7) as the singular part of k at zo; note that by Theorem 2.5.3 this
singular part is uniquely determined. If this singular part is identically zero,
then h has a harmonic continuation to a neighbourhood of g, and <, is then
called a removable singularity of h.

Theorem 2.6.6. Lei (ym) be a sequence of distinct points in 02 with no limit
point in 2, and for each m let hy, be harmonic on a deleted neighbourhood
of ym. Then there is a harmonic function b on N\{ym : m € N} such that
the singular parts of h and hy, are equal (and therefore yn, 15 a removable
singularity of h — hy, ) for each m.

Proof. For each n € N define
K;:{zen:mﬁmﬁn)zéamuu”gn}

(If 2 = RY, then K,, = B(0,n).) It is easy to verify the following properties:
each K, is compact; K, C K5, for each n; U2, Kn = 2; each bounded
component of RV \K,, contains a point of RV\§2. Also, define

I = {m:ym € K1}, In={m:ym € K:\Kn_1} (n>2).

Since {ym) has no limit point in {2 the sets I, are finite. Let s, denote the
singular part of A, at ym. We note that s, € H(RY\{y,»}} and define

In = Z Sm ('ﬂ- € N).
mer,

(If I, = @, then g, = 0.} For n > 2, the function g, is harmoni¢ on a
neighbourhood of K,,_1, and by Theorem 2.6.4 there exists Gn € H{12) such
that |g, — Gn| < 27" on K,_y. Define 2 on M\ {ym : m € N} by

h=g + Z(gn - Gn})-

n=2
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It follows that the series is uniformly convergent on K,\{ym : m € N} for
all n, so that & is harmonic. Finally, if ¥ € N, then there exists § > 0 such
that ||yx — yml| > 8 for m # k, and on A(yy;0,68) the function h has the form
¢ + 8g, where g € H{B(y;, §)). Thus the singular part of & at v is s,. 0O

So far we have used only the case p = 0 of Lemma 2.6.3. However, the
full power of the lemma is used in the following examples. If y € S and
~00 < o < b < 400, then we write

W(y;a,b) = {z e RY :a < (2,9) < b).

By a strip we mean a set of the form W{y;q,b), where a,b are finite. If
h € H(RY) and A(rz) — 0 as + — +oo uniformly for z € S, then h =0 by
the maximum principle. The following example shows that uniformity cannot
be dispensed with.

Ezample 2.6.7. 1f p > 0 then there exists a non-constant function A € H(RY)
such that

lim __|l2l|"h(z) = 0 (2.6.3)

Z—00, T

for every strip W. In particular, ||z}|Ph(z) decays to 0 on every ray:

Jim 7h(zo +1yo) =0 (wo € RY ;90 € S).

To see this we start by defining
P(t) = (¢, t)  (t20)

and

T =] B, (2.6.4)

t>0

so that 7" is a tract in BY from 0 to co. If y = (y1,...,yn) € S, then the
function

N
gty = yt!  (t20) (2.6.5)
=1

satisfies either g(t) — 400 or g(t) = —~oo0 as t — +oo and it follows that
TN W(y; —a,a) is bounded for any a € (0, +00).

We now choose a positive integer m such that m + N — 2 > p and a
harmonic polynomial H € H,, \ {0}, and we define

ho(a) = llzlPP~N =" H(z).

Then kg € H{RN \{0}) since hy is the image of H under the Kelvin transform
with respect to 5, and by Lemma 2.6.3 there exists, for any £ > 0, a function
h € H(RV) such that
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I(h — ho)(z)| < e(1+[[al)*™F7™  (z€ RY \T).
By choosing ¢ to be sufficiently small, we ensure that h # 0. We have
la(z)] < [(h — ho)(z)| + lho(2)} < Cllel>~N"™ (= € RY\T),

where C is a constant. The observation at the end of the preceding paragraph
shows that T N W is bounded for every strip W, so h satisfies (2.6.3).

Let PV denote the set of all (N — 1)}-dimensional hyperplanes, that ]is,
sets of the form {z € RV : (z,y) = o}, wherey € S and a € R. If f,e C(R)
and f is integrable with respect to (N — 1)-dimensional measklvre M on every
hyperplane P, then the Radon transform R ; is defined on PY by

Rf(p)szfdx (P ePMy.

The question naturally arises whether such a function f is uniquely deter-
mined by R;. The following example, based on the previous one, shows that
the answer is negative.

Ezample 2.6.8. There exists h € H(RY) such that h is M -integrable on every

— N 0
hyperplane P and Ry, =0 on PN but R £ 0.
To see this we again take T to be the tract defined by (2.6.4). The

construction of Example 2.6.7 shows, in particular, that there exists a non-
constant harmonic function b on RV such that

@) < @+ el (@ e RVAT). (2.6.6)

We fix an arbitrary point y € S and for each real number ¢ deﬁn(? P(y,t) to
be the hyperplane {z € RY : {z,y) = t}. Since T N W(y; —a,a) is bounded
for every positive number a, it follows from (2.6.6) that the function

tr |k aX' (teR)
Ply,t)

is locally bounded on R. Hence by Theorem 1.5.12, with a suitable rotation,
R (Ply, )) is a polynomial of degree at most 1. We have already remarked
that the function g given by (2.6.5) satisfies either g(t) — +oo or g(t) -+ —00
as ¢ — +oo. This implies that there exists a number ¢, such that e1thgr
TNW(y;,—oo,ty) =or T'N W(y;ty, +00) = 8. When TN P(y.t) = it
follows from (2.6.6) that

dX\(z'")
|Ra(P(y, )| < /RN-I (1+ (llz'|? +t2)1/2)N+1
1 d\'(z')

<
T+ 14 e T 1D
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This integral is finite, and therefore either Rh(P(y,t)) —+0ast > —ooor
Ru{P(y,t)) = 0 as ¢t — +oo. Since Ry (P(y,-)) is a polynomial of degree at

most 1, we must have Ry, (P(y,-)) = 0, and since y is an arbitrary point of
S, it, follows that Ry (P) =0 for all P € PV,

2.7. Harmonic polynomials and classical polynomials

Most classical treatments of harmonic polynomials rely upon a close rela-
tionship between the axial harmonics Jy, ,, introduced in Section 2.3, and
certain special polynomials in one variable. We make no use of this relation-
ship but for the sake of completeness we give here some brief indications for
the interested reader.

The classical functions with which we are mainly concerned are the ul-
traspherical polynomials. For these we refer to the standard text of Szegé (1,
1967]. The results that we require are the explicit formula for the ultraspher-

ical polynomial P,Ef), where A > 0and m =0,1,2,...:

[m/2]

PR =2 Y (- I
i=0

(A4 {(m - 2j)!

™2 (2.7.1)

(Szegd, Formula (4.7.31)) and the equation {Szegd, Formula (4.7.3})

PN = (m +T2n’\ - 1) . (2.7.2)

Although they are not required for the present discussion, we mention some

other characterizations of ultraspherical polynomials. They are orthogonal
. 1 .

with respect to the weight function (1 —#2)*~2 on (-1, 1); that is,

1
/ Pf(nf\)(t)pr(;\](t)(l _ tZ)A-% dt =0 (0 < m < n);
-1

this together with (2.7.2) determines the ultraspherical polynomials uniquely.

Also, P‘,!,{\) is the unique polynomial of degree m satisfying (2.7.2) and the
differential equation

(1 =) f"(t) — (2X + 1)tf'(t) + m(m + 20} f(t) = 0.
Finally, the ultraspherical polynomials are characterized by the equation

f} PR = (1-2t6+ €)™ (t,E€(-L1)).

n=>0

(See Szegd, Formula (4.7.23}.)
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The relationship between axial harmonics and ultraspherical polynomials
in dimension N > 3 is as follows; we defer consideration of the simpler case
where N = 2.

Theorem 2.7.1. Suppose that N > 3 andy € 5. Then

2m+ N =2 o iv—2)2) [ & Y)
Symie) = i (i) @20

Proof. Let

) = =2 () @ 2o)

and A(0) = 0. By (2.7.1),

m [m-/?] T _ +l(N—2)) 2 .
he) = gy 2 Y T s g e
T ) 5=

Clearly h is a y-axial homogeneous polynomial of degree m. Direct calculation
shows that for j = 0,1,...,[m/2],

Al (z,y)™ ) = 2j(2m = 2j + N = 2|zl (z, )"
+ (m = 2§)(m — 2j = D|l=l|” (&, )" 7
A calculation using this equation shows that Ah = 0. Hence A is a y-axial

element of H,, and therefore Jy, ,m = kh for some real k, by Theorem 2.3.4.

We know that Jy m(y) = dmn by Corollary 2.3.7 and h(y) = P,(n(N_z)/z)(l)
by the definition of h. These values are given explicitly by Corollary 2.1.4 and
(2.7.2), and using them it is easy to show that k = (2m+N-2)/(N=-2}). O

Remark 2.7.2. We saw in Example 2.3.9 that in the case N = 2 if y =
(cos ¢,sin ¢) and z = (rcosd,rsin 6), then

Jym(z) = 2r™ cosmt,

where (2, )

ll=ll

cost = cosf - cosg +sinf - sing =

Thus

Jynte) = 2T () 0 £0)

where T}, is the Chebyshev polynomial given by
Trm(t) = cos(m cos! t) (-1<t<1)

(Szegd, Section 2.4). Chebyshev polynomials and ultraspherical polynomials
are related by the equation
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{2) 2 A}—:»l 0+ P’ (#)
(Szegd, Formula (4.7.8)).

Remark 2.7.3. Except for a normalizing factor, the ultraspherical polynomial
1,°1
,Sf‘), where A > 0, is identical to the Jacobi polynomial P,(,fvz A=) {Szego,

_i_:
Formula (4.7.1)); also Ty, is proportional to Pp, 2’ 2) (Szegd, Section 4.1(3)).
Hence, for all dimensions ¥ > 2, there is a constant k£ such that

Ty () = k]| P (%r‘:i‘lr)“) , where &= %(N =3

Using explicit values for Jy ,(y) and Ple™ (1) (Szegd, Formula (4.1.1)), we

find that )
+ LN -3\~
k= dm,N (m zfn )) .

2.8. Exercises

Exercise 2.1. Let P be a non-constant polynomial on RY such that P{z) > 0
whenever ||z|| is sufficiently large. Show that P cannot be a factor of any non-
zero harmonic polynomial. (Hint: suppose that P is a factor of Hy + H; +
...+ H,,, where H; € H;, and consider the factors of Hy,.)

Exercise 2.2. Let R(z) = ¢35 + ... + ¢k o4, where ¢1,. .., ¢y are non-zero
real numbers, and let R,,, where m > 2, denote the vector space {RP :
P & Pp—2}. Show that P, = H, @& Ry Deduce that if £ is the ellipsoid
{z : R(z) = 1} and T is a polynomial of degree m on R", then there is a
harmonic polynomial H of degree at most m such that H =T on F.

Exercise 2.3. Let P),, = {P € Py, : dP/8xn = 0}. For each P € P],, define
[m/2]

Hp(z) = Z ((;;)): 24 A1 P(z),
j=0
(/o
- Kp(z) = 2 —(2(3. i)l)!x?ﬁr'HAJP(x).

Show that Hp € H,, and Kp € Hpp1. Show also that the mappings P — Hp
and P — Kp are bijections from P;, onto the spaces {H € H,, : 0H/8zy =0
on RN-1 x {01} and {H € Humq1 - H =0 on RY 1 x {0}} respectively.
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Exercise 2.4. Let P € P,,, where m > 2, and define

Hp(z)= 3 (-1 {#jlm—j+ -]; —)m =g+ )
7=0

{m+ % - 2)}_1||:c[\2jAjP(a:).

Show that Hp € Hm and P — Hp € Qm. {Note: Theorem 2.1.1 tells us that
there exist unique polynomials H € Hy, and Q € @ such that P = H + ¢,
and we are now saying that H = Hp and Q =P — Hp.)

Exercise 2.5. Use Corollary 2.1.4 to show that
dm,N+1 = d[],N + dl,N 4.+ dm,N

and p 9
m,N

Exercise 2.6. Let k € H, (B) and suppose that h = 2?;0 H;, where H; €
H;. By considering

/ (sup Hm — Hp}h do (0 <r <),
50,7} §

show that ||Hom||? < h(0) supg Hm for each m. Verify that equality holds for
each m if h is the Poisson kernel K (-,y) of B for some fixed y € 5.

Exercise 2.7. Let H be the Poisson integral on B of a polynomial P € Pr,
(so that H is a polynomial of degree at most m; see Corollary 2.1.3). Show
that

/ H? dr < N7V +2m)/ P d).
B B

¥xercise 2.8. Cive an example of a real-analytic function on RY and a
series . P;, where P; € P; such that the series converges to f on B but on
no larger open ball of centre 0.

Exercise 2.9. Show that if y = (1,0,...,0) and m € NU {0}, then

dm N d

_ GmN_C
(m + Ddprs,w 071 V7

Jy,m =
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Exercise 2.10. Show that if N > 3 and y € &, then
= /m4+N-3Y _
n@=Y ("N ) @eB)
m=0

What is the corresponding equation with ¥ = 27

Exercise 2.11. Bécher’s theorem. Let z3 € (2. Show that if h €
Hi(N\{zo}), then there exist hy € H(S2) and a non-negative constant ¢
such that & = hg + ¢l/z, on {2. (Hint: use Lemma 2.5.2 and the result of
Exercise 1.14.)

Exercise 2.12. Show that if & : B — R is continuous on B and harmonic
on B, then there is a serles >, Hy, of harmonic polynomials which converges
uniformly to k on B. (Hint: use the Stone—Weierstrass theorem to show that
there is a series ¥ Py, of polynomials which converges uniformly to & on 5

Exercise 2.13. Let K = {z € RY : 1 < ||z|| < 2}. Show that Uy cannot
be uniformly approximated arbitrarily closely on K by elements of RN ).
(This shows that the topological hypotheses in Theorem 2.6.4 and Corollary
2.6.5 are indispensable.)

Exercise 2.14. We define the hull K of a compact set K in RV to be the
union of K with all the bounded components of RV \K. We say that disjoint
sets E, F are separated by a family F of real-valued functions if there exists
¢ € F such that ¢ > Oon E and ¢ < 0on F. Show that if K, K are disjoint
compact subsets of B, then the following are equivalent:

(a) K1, K, are separated by H(RY);

(b) K1, Ky are separated by C(B) N H(B);

(C) Kl M Kg = @

Exercise 2.15. Let K, K> be compact subsets of B, and let f € C(B) and
h* € C(B)n H(B) be such that f —h* > 0on K; and f — A* <0 on K.
Show that:

(i) if Ky, K3 are separated by C(B) N‘H(B) and

I(f = k")) < sup |f—h"] (=€ B\(K1UKy)),
K1UK;

then there exists A € C{B) N H(B) such that
sup|f — h| <sup|f —h"|;
B B

(if) if K1, K are not separated by C(B) N #H(B), then

—h|> inf |f-h*
Kf{ﬂizlf I_K}nglf |

for all h € C(B) N H(B).
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Exercise 2.16. Let f € C(B), where f ¢ H(B), and h* € C(B)NHM(B). We
call h* a best harmonic approzimant to f if

sup|f — h*| <sup|f —h|  (h€C(B)NH(B)).
B B

Use Exercises 2.14 and 2.15 to show that h* is a best harmonic approximant
to f if and only if Ky NK_ # @, where

Ke={zeB : (f—")(z) = £sup|f - h"l}.
B

Exercise 2.17. Let By, be a basis for Hg, and let {hm : m € N} be the
set of all finite linear combinations of elements of {Ji—o Bx with rational
coefficients. Show that {An} is dense in H(RY) in the topology of local
uniform convergence; that is, for every h € H(RM), every compact set K,
and every £ > 0, there exists m such that |h—hwm| <€on K.

Exercise 2.18. A universal harmonic function. For each m € N, let
¥m = (27+3.0,...,0) € RV, B, = B(0,3.2™"),Cn = B{(ym,2™). {Note
that B, NG, = @ and Cp, C Brt1.) Let Up and Vi, be disjoint open
neighbourhoods of B, and Cm respeciively, and let {h,,} be the set of
harmonic polynomials defined in Exercise 2.14. Define g (z) = hilz - ‘yl)
on V; and gy = 0 on Uy. Use Corollary 2.6.5 to show that there lelStS
f1 € H(RY) such that | fi —g1] < 9-2 gn B; UC;. Suppose now that functions
Fryenns fra1 € H{RN) are given and define

{hm($ —ym) = fi(®) = -~ fma (2} (@€ Vi)
0

gm() = (z € Un).

Show that there exists fin € H{RY) such that | fm—gm| < 2-m=1 on BpUCm.
Let H = °°°_, fm. Check that H is defined and harmonic on RY . Show also

m=
that
|H{z) = hm(z —ym)| <277 (xr € Cppym €N).

Deduce that if h € H(RY), K is a compact set in RY, and ¢ > 0, then there
exists m such that

|h(z) — H(z +ym}| <€ (z € K).

(Such a harmonic function H, whose translates uniformly approximate all
elements of H(RN )} on compact sets is called universal.)

Chapter 3. Subharmonic Functions

3.1. Elementary properties

We have seen that harmonic functions on an open set {2 can be charac-
terized as those finite-valued, continuous functions k on (2 which satisfy the
mean value property: i(z} = M(h;z,r) whenever B(z,v) C (2, Subharmonic
functions correspond to one half of this definition - they are upper-finite,
upper semicontinuous functions s which satisfy the mean value inequality
s(z) < M(s;z,7) whenever B(z,r) C {2. They are allowed to take the value
—oc so that we can include such fundamental examples as log||z|| (N = 2)
and —||z||>~" (N > 3). Also, semicontinuity (rather than continuity) is the
appropriate condition for certain key results (for example, Theorems 3.1.4
and 3.3.1) to hold. The reason for the name “subharmonic” will become ap-
parent in Section 3.2.

Some of the properties of subharmonic functions given in this chapter,
such as the maximum principle and convergence theorems, are closely re-
lated to properties established for harmonic functions in Chapter 1. On the
other hand, in sharp contrast to the analyticity of harmonic funetions, it will
be seen that a subharmonic function may be suitably modified on a subset
of its domain of definition and still be subharmonic. It is this flexibility of
subharmonic functions that makes them so useful even when we are prov-
ing results concerning harmenic functions, as is the case with the Dirichlet
problem in Chapter 6.

Laplace’s equation on R is simply d?h/dt? = 0 with general solution
h{(t} = at + b. Below we shall see that the subharmonic functions on R are
simply the convex functions and, in particular, are continuous. It is, therefare,
not surprising that notions of convexity will appear at several points of this
chapter. Also, just as convexity among the smooth functions s on R is char-
acterized by the condition As = d?s/dt? > 0, so subharmonicity among the
smooth functions s on RY will be characterized by the condition As > 0, and
it will be shown that any subharmonic function can be expressed as the limit
of a decreasing sequence of smooth subharmonic functions. This sometimes
allows us to reduce a problem abouf subharmonic functions to one about
smooth subharmonic functions.

59
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Definition 3.1.1. Let £ C RY U{oo}. A function f: E — [—00,+00] is called
upper semicontinuous (on E) if {z € E: f (z) < a} is a relatively open subset
of E for each a € R. Also, f: E = [—o0, +00] is called lower semicontinuous
if — f is upper semicontinuous.

Thus a function f:E — [—o0, +00] is continuous if and only if it is both
upper and iower semicontinuous. It is easy to check that f is upper semicon-

tinuous if and only if
limsup f(z) < f(y) (3.1.1)

r—Yy
for each limit point y of E. If K is a compact set and f: K — [—00,+0x0)
is upper semicontinuous, then a simple covering argument shows that f is
bounded above, and it follows from (3.1.1) that f attains its supremum on
K. Finally, if f: E = [—o0, +00] is upper semicontinuous and F C E, then
flF is clearly upper semicontinuous on F.

Definition 3.1.2. A function s: {2 — [—00, +00) is called subharmonic on f?
if:

(i) s is upper semicontinuous on n,

(ii} s(z) < M(s;x,7) whenever B(z,r) C 2, and

(iil) s #Z —oo on each component of 2.

Also, a function u: 2 — (—00,+00] is called superharmonic on 2 if —w is
subharmonic on 2. We refer to (i} above as the subharmonic mean value
property; with the inequality reversed we call it the superharmonic mean
value property.

The set of all subharmonic (respectively superharmonic) functions on {2
will be denoted by S{f2) (respectively U(f2)). It is easy to see that H(§2) =
S(£2) N(42), and that S({2) and 24(12) are cones: that is, as + bu € S()
(respectively ¢/(12)) whenever @,b € [0, +00) and s,u € S(12) (respectively
U(2)). Also, it follows easily from the definition that, if 5,u € S(§2), then
max{s,u} € S({2). In particular, st = max{s,0} € S(£2), and if h € H(f2),
then |h| = max{h, —h} € S(£2).

Theorem 3.1.3. If s € S({2), then:

(i) limsup,_,, s(x) = s(y) for each y € 12;

(ii) s{z) < A(s;z,7) whenever B(x,r) C 12

(iti}) s is locally integrable {and hence finite almost everywhere) on [2.

Proof. (i) The upper semicontinuity of s implies that limsup s(z) < s(y) as
z -+ y € 2. If this inequality were strict, then we would have s < s(y) on
B(y,r)\{y} for some r, which would contradict the subharmonic mean value
property of s.

(ii} This follows from the subharmonic mean value property and the re-
lation
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N A(s;z,r) =N tN=LM(s; z, t)dt; (3.1.2)
(0.7]

the above mean values are defined since s is bounded above on the compact

set B(z,7).
(iii) It is enough to consider the case where 2 is connected. Let

20 = {y € 12: 5 is integrable on some neighbourhood of y}.

Suppose that y € 2\ 12 and choose p such that B(y,2p) C 2. If 2 € B(y, p)
then B(z,p) is a neighbourhood of y and B(z,p) C §2. Hence s is boun’deci
above and non-integrable on B(z, p), and so s{z) < A(s;z,p) = —oo. Thus
s = —co on By, p), whence B(y, p) C 2\§%. It follows that f2\f) is open
and clearly {2 is open. Since s Z —oo, we see that /2y # §. Hence {2, = 2
by the connectedness of 12. O

Theorem 3.1.4. If {2 is connected and (5,,) 5 a decrensing sequence in S((2),
then either lim s, = —o0 or lim s, € §(12).

Proof. The upper semicontinuity of lim s,, is clear, and the subharmonic mean
value property of limm s, follows by monotone convergence from the corre-

sponding property of each s,. ]

The following is a generalization of the maximum principle for harmonic
functions (Theorem 1.2.4).

'I?heorem 3.1.5. (Maximum principle) Let s € 5{(12) and z € 2.
(i) If s attains a local mazimum ot x, then s is constant on some neighbour-
hood of =.
(1) If §2 is connected and s attains a mazimum af x, then s is constant.
(4} If w € U(2) end

limsup(s —u}(z) <0 (3.1.3)

I—}y

for each y € 842, then s < u on {1
Proof. (i) Let r be small enough so that B(z,r) C f2and s < s(z) on B(z,r).
Since s{z) < A(s;z,7), upper semicontinuity implies that s = s(z) on B (:z: ).
(it) From (i} the set {y € £2:s(y) = s(x)} is open, and upper semiconti-
r;;ity implies that it is closed relative to {2, so by connectedness it is all of
(iii) Since s — u € S(92), we may assume that » = 0. Also, since ¢®w C
8 (2 for each component w of 2, we may suppose that {2 is connected. If
we define 5=s5on 2 and 5(y) = limsup,_,, s(x) when y € <12, then 5 is
upper semicontinuous on the compact set 21J9°§2? and therefore attains its
supremum. If this supremum is positive, then it is attained at a point of {2
and s has a positive constant value on (2, by (ii), contrary to (3.1.3). E]
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The obvious analogue of Theorem 3.1.5 for superharmonic functions is
called the minimum principle. Part (jii) of the above result can be generalized
as follows.

Theorem 3.1.6. If s € S(12),u € U(12),h € H({2) and h >0 on 12, and if

imsup LS%(“:,J))(—”’) <0 (eoc),

then s < wu on §2.

Proof. Again we may assume that v = 0. Suppose that s{zg) > 0 for some
1o € 2, and let ¢ = s(mo)/(2h(zo)). Then (s — eh}(zo) > 0, and yet
limsup,_,,(s —eh) <0 on 3. This contradicts Theorem 3.1.5(iii). O

By careful choice of the function h in the above result we can often relax
condition (3.1.3) at some points of 8°° (2, as the following examples illustrate.
Results of this type are known as Phragmén-Lindeldf theorems.

Fxample 8.1.7. (i) Let £2 = B\{0}, let s € §(1?) and u € U(S2). If (3.1.3)
holds for each y € S and if

: (s —u)(x)
lim sup ————=— < 0,
lz—ﬂlp Uﬂ(x) -
then 5 < u on (2. To see this, apply Theorem 3.1.6 with h =1+ Uo (N =2)
or h="Uy (N >3).
(i) Let D = {z = (z1,..., &N ) TN > 0}, let s € S(D) and u € U(D). If
(3.1.3) holds for each y € 80 and if

lim sup (S__M <0
r—y00 1+zn

then s < u on D). To see this, apply Theorem 3.1.6 with h(z) =1+ znN.

Let s € S(£2) and suppose that limsup,,_,, s(z) <0 for each y € &12. If
(2 is bounded, then it follows from Theorem 3.1.5(iii) that s <0 on £2. This
implication breaks down for some unbounded sets §2 (for example, consider
s(z) = zx and 2 = RV~ x (0,+00)), but not all such 2, as will be seen
helow.

Definition 3.1.8. Let £2 C {2y, where (% is an open set. We say that 9%
is accessible from §2 if there is a continuous function p:[0,+oc0) — 2 with
the following property: for every compact K C 2, there exists tx such that
p(t) € Q\K whenever t > ix.

Ezample 3.1.9. An unbounded connected open subset of IR? from which {co}
is not accessible is defined by
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2= {{z1,22):0 <z <1,-1 <35 < 27" sin’(z71)}

A similar example in higher dimensions can be obtained by rotating 2 about
the x;-axis.

Theorem 3.1.10. Let (2 C §;, where {2y is open, and suppose that 81
is mot accessible from 2. If s € 5(f2) and limsup,_,, s(x) < 0 for each
y € $23 NN, then s <0 on f2.

Proof. Let (Kp,) be a sequence of compact sets such that K, C K, ,, for
each m and |J,, K = 2. Now fix € > 0 and m € N. It will be enough to
show that s < e on 2N K,,. Let Wy = f2\K,,, let Uy 1, Up 2, . .. denote those
components of Wp for which either 2 MUy, =B or s < e on 2NV,
and let V5 1, V) 2, . .. denote the remaining components of Wy. Thus, for each
Vo.k, there is a point y; in 2N 0Vp & such that s(ys) > €. Clearly yx € 0K
for each k. There can only be finitely many, &y say, of the components ¥ i,
for otherwise there is a subsequence of (y,) which converges to some point of
A2, and this contradicts the hypothesis on s.
If ko > 1, then we define

ko
Wy = (U VOJ:) Vot

k=1

and divide the components of Wy into two classes {U;1,0,2,...} and
{V11,Viz2,--.,Vix, } as before. Similarly, if k& > 1, then we define

k1
Wy = (U Vl,k) \ K2,

k=1

~ and so on. If § > 1, then each V;; is a component of W; and so must be

contained in some V;_y xr. Thus, if j > j* > 0, each V; is contained in some
Vi k5 in this case we say that V;; is a descendant of Vy: .

Now suppase that, for each j, the collection {Vj1,V;a2....,Vjs;} is non-
empty. Then, for some choice of k, the set Vp x has infinitely many descen-
dants: we call this set V,. There must be a descendant V; ;. of Vp which also
has infinitely many descendants: we call this set V1. Proceeding in this man-
ner, we obtain a sequence (V;);>o of connected open subsets of §2 such that
V% D Vi D ... and V; N Ky = 0. However, we can then construct a contin-
uous function p: [0, +00) —+ §2 such that p(t) € 2\K,, whenever t > m, and
this contradicts the hypothesis on §2.

Thus there exists j* for which there are no sets Vjr ;. as above, in which
case Wy = J, Uj r and we do not construct Wi 1. If we define

o)

i'-1

L = Kz e\ U

Jj=0
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then L, is compact, Ky, C Lm and

j,
N = [U UM} :
j=0 L&
From the definition of the sets Uj 5, we see that s < £ on 2N ALy, Thus, by

the maximum principle, s < € on 20 Ly, and hence on 2N Ky, as required.
a

Our final result in this section shows the connection between Theo-
rem 3.1.10 and the results of Section 2.6.

Corollary 3.1.11. Let @ £ E C 2. The following ere equivalent:
(a) supg h = supp h for allh € M),
(b) 812 is not accessible from NE.

Proof. First suppose that (b} holds, let h € 1{?) and M = supg h. To avoid
triviality we may assume that M < +00. By continuity h < M on E. We can
now apply Theorem 3.1.10 (with MNE in place of 2) to see that h < M on

f\E and hence on {2, as required.
Conversely, suppose that (b) fails to hold. Thus there is a continuous

function p : [0, +c0) = \FE with the following property: for each compact
K € 2 there exists tx such that p(t) € f\K whenever > k. We choose
sequences (fn)n>0 and (Tn)n>1 of positive numbers such that t, — oo,
rn = 0 and .
pltn—1) € B(p(tn):rn) CIA\E (n2> 1.

The function u = Uy,) satisties u(p(to)) > supgu. Let € > 0. By repeated
application of Lemma 2.6.2 (cf. the proof of Lemma 2.6.3) with p = 0 we
obtain h € H(f2) such that ju — h| < € on E U {p(to)}- By choosing &

sufficiently small, we can arrange that h(p(to)) > supg h and so (a) also fails.
d

3.2. Criteria for subharmonicity

In this section we will establish several alternative criteria for subharmonicity
and see some important examples of subharmonic functions. First we give a
preliminary lemma concerning upper semicontinuous functions.

Lemma 3.2.1. If E is a non-empty subset of RN and f: E = [~o0, +00) is
upper semicontinuous and bounded above, then there is a decreasing sequerice
(f2) in C(RNY such that fn — f pointwise on E.

Proof. First we extend f to RY by defining
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(1@ (c € B)
Fz) = ¢ limsup,,, f(¥) (z € E\E)
—00 (x € RV\E).

It is easy to see that 7 is upper semicontinuous and bounded above on RY .
We will show that f is the pointwise limit of a decreasing sequence in ¢/ (RM).
If f = —co, then we define f, = —n. Otherwise, we put

fol@) = sup{F(y) —nllz -yl :y €RY} (s € RY).
Clearly (f,) is decreasing and f, > f for all n. Also,
T) —nlly — 2|l < falzo) + nllz — 2ol (2,y,%0 € RY)
and, taking suprema over all ¥ and interchanging x and z¢, we see that
[fa(z) = fal@o)l < mllz —oll (2,20 € RY),

so fn € C(RV) for each n. Finally, if f(z) < a, then there exists § > 0 such
that f < a on B{z,d), by upper semicontinuity, and so

F(z) < fulz) <max{a,supf-nd} va  (n— o).

Hence fn(z) = f(z) for all z. O

Theorem 3.2.2. Let s: 2 = [—00,+00) be upper semicontinuous and sup-
pose that s £ —oo on each component of £2. The following are equivalent:
(a) s € 5(2);

(b) 8 < Iz on B(z,r) whenever B(z,r) C 12;

(e) for each x € 2 such that s(x) > —oo, we have

lim sup M(s;7,t) — s(z)
104 2

>0

(d) for each x € §2 there ezists vz > 0 such that s(z) < M(s;z,7) whenever
0<r <ry;

(e) for each z € 12 there ezists r; > 0 such that s(x) < A(s;7,7) whenever
0<r <rg;

(f) if w is a bounded open set such that @ C {2 and if h € C{@) N H{w) is
such that s < h on Ow, then s <h on w.

Proof. The implications (a) = (d) = (c) are obvious, and Theorem 3.1.3(ii)
shows that (a) = (e). It remains to establish that (e) = (c} = (f) = (b) = (a).

“(e) = (c)”. If (e) holds, then there are arbitrarily small values of ¢ for
which s(z) < M(s;x,t), in view of (3.1.2), and so (c) holds.

“(c) = (f)". Let w be a bounded open set such that @ C 2, let w(y) =
|¥]]* and let e = sup, w. Further, let h € C(@) N H({w) where s < h on
Bw,land let £ > 0. If we define u = h— s —e(w —a) on w, then u is lower
semicontinuous on @ and u > 0 on dw. Let o = infzu. By (1.2.3)
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t}_i}gh_ M(wiyat? - w(y) — (ZN)MIA‘w('y) =1 (y € ]RN).

Using this, the harmonicity of h and hypothesis (c), we find that for each
y € w there are arbitrarily small values of £ for which M(u;y,t) < u(y), and
therefore u > a on w. Hence w attains the value « at some point of dw, and
so u > 0. Letting ¢ — 0, we obtain s < h on w.

“(f) = (b)”. Suppose that B(z,r) C 2. By Lemma 3.2.1 there exists
a decreasing sequence {f,) in C(S(z,r)) such that f, — s on S(z,r). The
function h, defined to be f, on S{z,r) and Iy, .. on B(z,7) belongs to
C(B(z,r)) N H(B(z,r)). Our hypothesis implies 5 < h, on B(z,r) for each
n. By monotone convergence, hn, = Iy z,» on B{z,7), so (b) holds.

“(b) = (a)”. If B{z,r) C § and (b) holds, then s(z) < Iz ,(z) =
M(s;z, 7). O

Remark 8.2.8. (i) Criterion (f) above explains the name subharmonic.
(ii) Criterion (b} implies that s is o-integrable on S{z,7) whenever B(z,r} C
.

Corollary 3.2.4. Let w be an open subset of 2, let s € §(12) and u € S(w),
and suppose that

lim sup u(z) < s(y) (y € dwn ). (3.2.1)

T—HY,TEW
Then the function

_ [ max{s(z),u(z)} (z€w)
vlw) = {s(:ﬂ) (@ € Nw)

belongs te S{({2).

Proof. Clearly v € S(w) and v € S{2\w). Also, (3.2.1) ensures that v satisfies
(3.1.1) at each y € BwN 2. By criterion (d) of Theorem 3.2.2, it is now enough
to check the subharmonic mean value property for v at points £ € dw N f2: if
B{z,r} C (2, then

v(z) = s(z) < M(s;z,7) < M(v;2,7). g

Corollary 3.2.5. If s € S(f?) and B(z,r) C 12, then the function s, defined
to be I, ., on B(x,r) and s elsewhere on {2, belongs to 8§(1?) and satisfies
I>sonfl

Proof. By Theorem 1.3.3, the hypotheses of Corollary 3.2.4 are satisfied with
w = B(z,r) and u = I; ;. Since s < Iz, on B{z,r) by Theorem 3.2.2,
F€ 8(7) and s <3. (]
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Corollary 3.2.6. If 5 € S8(f2) and B(x,ry) C {2, then the functions
M(s;z,-) and A(s;z,-) are finite-valued and increasing on (0,r¢]. Also,
A(s;z,-) < M(s;z,-} and

rl_l{&M(s;a;,r) = rl_i}r&A(s; z,r) = s8(x). (3.2.2)

Proof. The finiteness of the means was established in Theorem 3.1.3 and
Remark 3.2.3. Now suppose that 0 < t < 7 < 7g, and let § be the function
introduced in Corollary 3.2.5. Then '

M(s;z,r) =8(z) = M(5;x,t) > M(s;z,t),

so that M(s;z,) is increasing on (0,7p]. It follows easily (see (3.1.2)) that
A(siz,) < M(s;z,-) and that A(s;z,-) is also increasing on (0,7¢]. By
upper semicontinuity the limits in (3.2.2) do not exceed s(z), and by the
subharmonic mean value property they are not less than s{z). O

Corollary 3.2.7. If s,u € S(2) and s = u olmost everywhere (A}, then
s =wu on f2.

Proof. If 5 = u almost everywhere, then A(s;z,rv) = Alu;z,r) whenever
B(z,r) C 12, so that s = v by (3.2.2). O

Corollary 3.2.8. Suppose that s € C*(2). Then s € S(12) if and only if
As >0 on (2.

Proof. This follows from criterion (c¢) of Theorem 3.2.2, since

fim M(S;:B,?;) -

=04 T

by (1.2.3). m

@) _ oy lasiz) (e )

Corollary 3.2.9. Suppose that f is holomorphic on a plane domain 2 and
that f £ 0. Then log|f| is harmonic on {z € {2: f(2) # 0} and subharmonic
on {2, provided we interpret log0 as —oo.

Proof. Let Z denote the set of zeros of f. We saw in Theorem 1.1.3 that
log|f| € H{2\Z)}. Since log|f(z)| = —co when z € Z, we have log|f(z)| <
M(log|f|;z,r) when z € {2 and 0 < r < r;, for some 7,. The result now
follows from criterion (d) in Theorem 3.2.2. O

We saw in Theorem 1.1.2 that the function U, is harmonic on RY\{y}.
We now observe that it is superharmonic on all of RV provided we assign it
the value +oo at y.
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Corollary 3.2.10. If y € RV, then the funciion U, defined on RY by

“logllz —yll @#yiN=2)
U,(z) = { Nz —ylPP~ EI £y N > 3)

+o0 z=1y)

is harmonic on RV \{y} and superharmonic on RV.

Proof. The harmonicity was proved in Theorem 1.1.2. Since U, (y) = +00, we.
have Uy(z) > M(Uy; z,r) when z € RN and 0 < r < 1z, where 7z = ||z —yl|
if £ # y and r, = -o0. Hence U, € U(RN) by criterion (d) of Theorem
3.2.2. O

Corollary 3.2.9 above provides the crucial link between subharmonic and
holomorphic functions. In connection with Corollary 3.2.10 we mention that
in Chapter 4 we will see how any superharmonic function can be locally
represented in terms of the functions Uy.

3.3. Approximation of subharmonic functions by
smooth ones

The definition of subharmonic functions does not require continuity and such
functions can indeed be highly discontinuous (see Example 3.3.2 below). How-
ever, we will show below that, at least locally, a subharmonic function is the
limit of a decreasing sequence of smooth subharmonic functions. This will
allow us to take full advantage of the characterization of smooth subhar-
monic functions as functions with non-negative Laplacian. First we establish
a general result which will prove useful also in later chapters.

Theorem 3.3.1. Let {2 be connected, let p be a o-finite measure on @ locally
compect Hausdorff space Y, and let f: 2xY = (—00, +00] be measurable with
respect to the o-algebra generated by products of Borel sets. Further, suppose
that there is a p-integrable function g : Y — R such that f(z,y) > g(y) for
all (z,y) € X xY. If F{-,y) € U(S2) for each y € Y, then the function

ue) = [ fen) e @ED)
is either identically +co or is in U(2).
Proof. By working with f(z, y)—g(y) in place of f (z,y), we may suppose that

f>0on2xY. Kz € 2 and {(z) is any sequence in $2\{zo} converging
to zg, then by Fatou’s lemma
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lim inf u(zn) > /Y (iminf £(@,9)) disty) 2 u(ao),

and so u is lower semicontinuous on £2. If B(
. z,r) C {2, then Fubini’
and the superharmonicity of f(-,y) yield 7 1 ini's theorerm

M) = [ MF)2r) duy) < ulo)
Since {2 is connected, the conclusion follows. C

Ezample 3.3.2. Let Y = {y,:n € N} be a dense subset of B and let
u(z) =Y 27, (x) (z€RY).
n=1

Ther}b we can apI?ly Theorem 3.3.1 with f(z,y}) = Uy(z) to see that u €
U(R™). Hence u is finite almost everywhere, yet 4 = +o0c on a dense subset

of B. The function —u is the i i
promised example of a h i i
subharmonic function. ’ lghly discontinuous

In. order to state the approximation theorem, we recall some notation
used in the pf\?of of Lemma 1.2.1. The functions ¢, € C=(RY) are defined
by ¢n{z) = nVé(l — n||zl|*), where

[ Cone VP (t>0
¢(t)‘{0N gtsog

and the constant C'y is chosen so that
1
O'N/ N1 — 12)dt = 1.
o
Thus ¢, = 0 outside B{0,n™!).

Theclrem 3.3.3. Suppose that s € S(12} end w is @ bounded open set such
that @ C 2. For all sufficiently large inlegers n the function

() = /ﬂ bz —0)s(w) dNy)  (z € w) 3a.1)

belongs to S(w} N C*(w), and the :
, sequence (s ; .
! q {($n) is decreasing on w with

leof. Note first that s, is well defined, provided that n=! < dist(w,812)
in the case where 2 # R¥. From now on we suppose that n satisﬁes: this
inequality. To prove the subharmonicity of s,, we write s, as
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snla) = / onl2)s(z—2) dAz) (3 €w).
B(0,n1)

The integrand here is upper semicontinuous and bounded above for (z,z} €
w x {2, and for each fixed z € {2 it is subharmonic as a function of £ € w.
Hence s, € S(w) by Theorem 3.3.1. Further, since s is locally integrable
on 2 and every partial derivative of ¢,(z) is bounded on RY, we can pass
partial differential operators under the integral sign in (3.3.1) to show that
sn € C%(w).

To prove the monotonicity of (sn), we observe that

sp(z) =0oN flln a1 — n22) Y T M (53, t) dt (3.3.2)
0

=oN /1/(n+1] (n+1)Vé(1 - (n+ D2V I M(s3x, (n + 1)7/n) dr
0

1/n+1)
> O'N/ (n+ l)Nqb(l —{n+ 1)2T2)TN_1M(S;IE,T)dT = Spp1(x),
o

since M(s;z,-) is increasing. Finally, let z € w and let @ € R be such that
s(z) < a. By Corollary 3.2.6 there exists 4 > 0 such that s(z) < Mis;z,t) <
a when 0 < t < 4. Since

1/n 1
aN] (1 — n2 2N ldt = o / Sl — N dt =1,
Q0 0

it, follows from (3.3.2) that s(z) < sp(z) < a when n™' < . Hence sa(z) —
s(x) as n — oo O

Corollary 3.3.4. Let (1, {2, be plane domains, let f:42) — (2 and let s €
8(12%). Then so f € §((1), if either f or its complex conjugate J 15 a non-
constant holomorphic function on (.

Proof. Suppose first that f is holomorphic, let z € [}, let By be an open
disc centred at f(z) such that Bo C (2, and let w = f~{Bo). If s € 5(Bo) N
C%{(Bo), then it follows from the Cauchy-Riemann equations that Asof) =
((As)o F)|f?>0onw,and so so f € S(w). In the general case we observe
from Theorem 3.3.3 that there is a decreasing sequence (s,) of functions in
S(By)NC%(B,) such that s, — 5. Hence so f = lim(sp, 0 f}. Since s & —oo on
f(w), which is open by the open mapping theorem, so f € S(w) by Theorem
3.1.4. Hence so f € S(f21), in view of the arbitrary nature of Bo. A similar
argument deals with the case where f is holomorphic. ]

Corollary 3.3.5. The Kelvin transform preserves subharmonicity. That 1s,
with the notation of Section 1.6, if s € S(12), then s* € S(17*).
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Proof. In the case where s € §(£2) N C?{{2), the result follows immediately
from Corollary 3.2.8 and the relation (1.6.1) between As and As*. In the
general case it suffices to work locally. Let w be a bounded open set such that
w C 2. By Theorem 3.3.3, s is the limit on w of a decreasing sequence (s,,)
in S(w) NC™{w). Since (s},) is a decreasing sequence in S(w*) with limit s™,
we see from Theorem 3.1.4 that s* € S(w*), as required. |

If v € U{RM x 12), where M € N, and v(z,y) depends only on y, then
the function y — »(0,y) is superharmonic on 2: when v € C?(£2), this is
clear from Corollary 3.2.8, and the general case follows by Theorem 3.3.3.
Conversely, similar reasoning shows that, if » € 4({2), then the function
(z,y) = u(y) is superharmonic on R x (2. The next result deals with the
more general situation where (z,y} — u(z,y) is superharmonic as a function
of each variable separately.

Theorem 3.3.6. Let (2, and £2; be open sets in RM and RY respectively, and
let f: 00 x {25 = (—o0, +oo] be locally bounded below. If f(z,-) € U({%) for
each T in {2 and f(-,y) € U(§2y) for each y in 12y, then f € U(12) x f).

Proof. We may assume, without loss of generality, that f > 0. In what follows,
the function ¢, introduced above will be regarded as a function on R or R
according to context. Let w; and wy be bounded open sets such that @; C %

(i = 1,2) and, for each k € N, let fx = min{f, k}. For all sufficiently large m
in N the function

fem(z,y) = /ﬂ b (2 — &) fu(3, y)dA(E)

is defined on wy x f25. By Fatou’s lerama, fi m(2,-) is lower semicontinuous
on (2, for each x € wy, so for all sufficiently large n we can define

Femm(@,y) = /Q by — D) fom(@ DANG) (2 € wiy € wa).

Since every partial derivative of ¢,{z} is bounded on RY, we can pass differ-
ential operators under the integral signs to see that fr.mn. € C%w X wa).
Tt follows from Theorem 3.3.3 that fi m T fe as m — oo, so the function

(z,y) [n oy — ) (@ )AAG)

is lower semicontinuous on w; x wy. Letting » — oo and then & = oo, we ob-
tain the lower semicontinuity of f on w; x wy. Thus f is lower semicontinuous
on [ % {2, in view of the arbitrary nature of wy and ws.

By Theorems 3.3.1 and 3.3.3 the functions fi m(-,), and hence fi m (),
are superharmonic in each variable separately. Thus, using Corollary 3.2.8,
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Afk,m,n(:r,y Z .fkmn( T,y )+Z fkmn 2,y SO:

i=1
S0 fr.m.n € Ulwy X wy). Letting m — 00, n — oo and then k£ — oo, it follows
that f € U(w; X wa), and hence f € U(§2; x 1%). a

Corollary 3.3.7. Let /2, and 22 be open sels in RM and BN respectively,
and let f : 2, % 25 o R be locally bounded. If f(z,-) € H{{2) for each
T € 121, and f(-,y) € H(§2)) for each y in (X, then f € H(f x {1).

Proof. Apply Theorem 3.3.6 to f and —f. O

3.4. Convexity and subharmonicity

Throughout this section J denotes an interval in R. We recall that a function
¢:J — R is called convez on J if

tg t t—t
t) +
—1 )+ 5

$(t) < B(t2) (3.4.1)
whenever t1,t2 € J and t; < ¢t < tp. Also, a function 4:J — R is called
concave on J if —y is convex on J. We note that the right-hand side of
(3.4.1) defines an affine function of ¢ (that is, a function of the form at + b)
whose values at ¢; and #» are ¢(t;) and ¢(is) respectively. Thus a convex
function is characterized by the property that its graph lies below each of
its chords (not necessarily strictly). Since the harmonic functions on R are
precisely the affine functions, (3.4.1) corresponds to criterion (f) of Theorem
3.2.2. Thus convex functions on open intervals, being continuous (see Lemma,
3.4.1 below), correspond precisely to one-dimensional subharmonic functions.
We will develop further connections between convexity and subharmonicity
below.

Lemma 3.4.1. If ¢ is convez on an open interval J, then the left and right
derivatives ¢, &’ + exist, are increasing functions and satisfy ¢'. < ¢!, on J.
In particular, qb is continuous on J. Fm'ther if to € J, then there exists an

affine function ¥ such that ¥(t) = ¢{to) andp < ¢ on J.

Proof. Tt follows from (3.4.1) that

B(t) — (t1) < P(t2) — plt1) < d(t2) — $(t)
t—1 - tr — 13 - ty — ¢

whenever t,,1» € J and t; < t < f2. Let Q(t,8) = {¢{t + )} - ¢(2)}/4. Using
(3.4.2), we find that Q(¢;,4) is an increasing function of 4 on the interval

(3.4.2)
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{6 > 0:t; + 6 € J}, and Q({2,9) is increasing on {6 < 0:t, + 4 € J}. Hence
the one-sided derivatives ¢, ¢/, exist on J and

Qt,—d) < ¢L{t},  ¢L(t) < Q(t.4) (3.4.3)

whenever t € J, § > 0 and, respectively, t — 4 € Jor t+ 6 € J. Letting
t, and £y tend to t in (3.4.2), we obtain ¢ (t) < ¢/ (f), which together
with (3.4.3) shows that ¢’ (¢}, ¢! (f) are finite. f we let ¢ — t; in the left-
hand inequality of (3.4.2) and ¢ — t in the right-hand inequality, we obtain
@ (t1) < @' (12} This, together with the fact that ¢_ < ¢/, shows that ¢_
and ¢!, are increasing. Finally, given f, € J, we define

B(t) = d(to) + ¢4 (2a}(t ~ to).

It follows from (3.4.3) and the inequality ¢! (to) < ¢/ (to) that ¢ < ¢ on
J. O

Lemma 3.4.2. If F C §(12) and sup F is upper semicontinuous and less
than +oco on £2, then sup F € &(12).

Proof. If B(z,r) C {2, then s(z) < M(s;z,r) < M(sup F;a,r) forall s € F,
and the subharmonic mean value property for sup F follows. ]

We can now give some very general results involving convexity and sub-
harmonicity.

Theorem 3.4.3. (i) If g,h € H({2) and h > 0 on £2, and if $:R — R is
conuer, then hol{g/h) € §{(§2).

(i) If s € S(2), h € H(2) and h > 0 on 2, and if ¢:[—00,+0) —
[—00, +00) is continuwous on [—oco,+o0) and increasing and conver on R,
then hé(s/h) € S(12).

(iii) If s € S(02), v € U(D) and s > 0, u > 0 on §2, and if ¢:[0,400) —
[0, +o0) is conver on [0,40c) and $(0) = 0, then ud(s/u) € §(2). (Here
ud(s/u){x) is interpreted as s(z) lim,_o P(t)}/t when u(z) = +00.)

(iv) If u € U{§2), h € H(2) and h > 0 on 2, and if ¥:(—o0, +o0] —
(—v0, +00] is continuous on (—oo,+00] and increasing and concave on R,
then hap{ufh) € L(12).

(v) If u,v € U(2) and v > 0, v > 0 on 2, and if ¥ [0, +o0] = [0, +00]
is non-constant end continuous on [0, +oo] and concave on [0, +00), then
vip(ufv) € U(12). (Here vii{ufv){z) is interpreted as u(z) lim, o ¥(t)/t when
v(z) = +00.)

Proof. (i) The final sentence in Lemma 3.4.1 implies that ¢ is the supremum
of all its affine minorants; that is,

H{t) =suplat + ba,be Rand ar +b < ¢(7) ¥Vr € R} (t € R).
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Hence
he(g/h) = hsup{a(g/h} + b} = sup{ag + bh},

where the suprema are taken over all real a,b such that ar + b < ¢(7) for
all 7 € R Since h¢{g/h) is continuous and ag + bh € H(§2), it follows from
Lemma 3.4.2 that h¢(g/h) € S({2).

(ii) Since ¢ is increasing and convex on R,

$(t) = sup{at+b:a > 0,b € R and ar+b < ¢(t) ¥7 € R} (t € {—o0,+00)).

Hence h¢(s/h) = sup{as + bh}, where the supremum is over certain real
values of @, b, always with a > 0. For such a,b we have as + bh € S(12}. Since
¢ is continuous and increasing, it is easy to verify that hé(s/h} is upper
semicontinuous. Hence, again by Lemma 3.4.2, h¢(s/h) € S(12).

(iii) In this case

$(t) = sup{at + b:b < 0 < e and a1 + b < ¢(7) V7 € R} {t € [0, +00))},

so that ug(s/u) = sup{as + bu}, where the supremum is over certain real
values of a,b with b < 0 < a. For such a,b we have as + bu € §({2), so
the conclusion will follow if we can show that u¢(s/u) is upper semicontin-
uous. To show this, we note first that t~1¢(t) has a continuous increasing
extension to [0, +-00). Also, it is easy to see that s/u is upper semicontinuous
on {2, provided we assign it the value 0 at points where © = +oco. These
observations imply that (s/u)~'¢(s/u) is upper semicontinuous on (2. Since
ue(s/u) is the product of the non-negative upper semicontinuous functions s
and (s/u)"'¢(s/u), we have

lirf_f;lpu(zw (%) < {lirfj;lp S(m)} {lirfjblp ((%); ¢ (Z)) (-’c)}
<s@ ((2)76(3)) w = woler)@) € 2

Thus u¢(s/u) is upper semicontinuous on {2, as required.
(iv) We apply (i) with ¢(t) = —¢(—£) and s = —u.
(v) This can be proved by an argument similar to that given for (iii). 0

Corollary 3.4.4. (i) If s € S(12),u € U(12) and s > 0,u > 0 on {2, and if
1< p < 400, then sPul~? € S(£2); in particular, s*,u'"? € 5(12).

(i) If u,v € U(N2) and u > 0,v >0 on £, and if 0 <p < 1, then uPylP g
U(12); wn particular, u? € U(12).

(i) If f is holomorphic on a plane open set 2 and 0 < p < +oo, then
|fIP € S(£2).

Proof. Parts (i), (i) follow from Theorem 3.4.3(iii), (v} with the obvious
choices for ¢ and 3. To prove (iii), we note that in any component of {2
on which f # 0, the function log|f| is subharmonic by Corollary 3.2.9. The
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subharmonicity of |[f|? follows by taking s = log|f},h = 1 and $(t) = e in
Theorem 3.4.3(i1). g

Theorem 3.4.5. Let s,u € §(12) and et a,b € [0, +o00). Then:
(1) (as? + buP)1/P € §(£2), provided s > 0,u >0 and 1 < p < +co;
(i} log(ae® + be) € S(12).

Proof. Let w be a bounded open set such that @ C 2. To prove (i), let
h € C{@) N H(w), where (as? + buP)}/P < h on dw. If £ > 0, then

alh+£)'"Ps" +b(h+e) PuP <h+e¢ (3.4.4)

on 8w. By Corollary 3.4.4(i) and the maximum principle, (3.4.4) holds on
w and so (as? 4+ buP)P < h + ¢ on w. Since € can be arbitrarily small, we
conclude from criterion (f) of Theorem 3.2.2 that (as? + buP)1/? € S(12).

To prove (ii}, let h € C{@) NH(w), where log(ae® + be*) < h on Sw. Then
ae* ™" 4 be* =" < 1 on Hw. It follows from the maximum principle that this
inequality holds on w, for by Theorem 3.4.3(ii) with ¢(t) = !, its left-hand
side is subharmonic on w. Hence log(ae® +be*) < h on w, and the conclusion
again follows. [

3.5. Mean values and subharmonicity

In this section we will establish convexity properties for M (s;(, -) and related
functions. For this we need a slight generalization of the concept of convexity.

Definition 3.5.1. If ¢: J — R is a continuous, strictly monotone function,
then ¢: J — R is said to be a conver function of ¥(t) if ¢ = x o4, where x
is convex on the interval ¢(J); that is, if

P(ta) — ¥(t) Y(t) — ¥(t1)
P(ta) — P(t1) P(t2) — P(t1)

whenever #;,t; € J and t; < ¢ < t2. The right-hand side of (3.5.1) is of the
form ay(t) +b where a, b are constants such that ¢(t;) = ai(t;}+5 (j = 1,2).

$(t) < o(t) + P(t2) (3.5.1)

Let Va(r) = log(1/r) and Vy(r) = r> ¥(N > 3) when r > 0, and recall
that
A(O;r1,7e) = {z 1 < |lz]| < 72}
Theorem 3.5.2. If s € S(A(0;71,73)), where 0 < r; < rp < +00, and
m(s;r) = sup{s(z): |}x|| = r}, then m{s;7) is & convex function of Vn(r) for

r € (r1,7T2).

Proof. Let r1 <) <t <tz <1z and let e, b be such that
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m(s;t;) = aVn(t;) +b (7 =1,2).

Define h(z) = alUo(z) + b. Then h € H(RY\{0}) and s < h on 9A(0;11,13).
By the maximum principle, s < h on A(0;#1,#2) and in particular on 5(0, t},
so that m(s;#) < aVn(t) + b, as required. O

Corollary 3.5.3. Let s: A(O;r1,72) = R, where 0 < 7y < 72 < +o00, be
such that s(z) depends only on ||z||. Then s € S(A(0;r1,72)) #f and only if
s(0,...,0,7) is a convez function of Vn(r) for v € (r1,72).

Proof. Since the function Up{z) = Vn(||z([} is harmomc on RN \{0}, the
sufficiency of the stated condition follows by taking g = U and h = 1in
Theorem 3.4.3(i). The necessity follows from Theorem 3.5.2. |

Corollary 3.5.4. If s € S(R?) and s is bounded nbove, then s is constant.

Proof. We know that m(s;r) is a convex function of logr for r € {0, +00) and
is bounded above, so it has a constant value ¢, say. Hence, by the maximum
principle, s < ¢ on R?. Since s attains the value con 5, the resuit follows. 0O

Lemma 3.5.5. (i) If (¢,) is a decreasing sequence of convez functions on
an interval J, then either im ¢, is conver on J orlim¢, = —co on J°.

(i) Let J be an open interval and ¢ € C(J). Then ¢ is convex if and only
if ¢ is increasing.

Proof. (i) Let ¢ = lim ¢,. It is easy to see from (3.5.1) that, if ¢(¢) = —o0
for some t € J, then ¢ = —oo on J°. Suppose now that ¢ is finite-valued.
If t;,6, € J and t; < t < to, then the inequality (3.4.1) follows from the
corresponding inequality for ¢, on taking limits as n — co.

(ii) Now suppose that ¢ € C*(J). If ¢ is convex, then ¢’ is increasing, by
Lemma 3.4.1. Conversely, if ¢ is increasing and #; < t < 2, then it follows
from the mean value theorem of differential calculus that

B(1) ~ B(t) _ $(ta) = 61
t—1 - ta —t

which is equivalent to (3.4.1). O

3

Theorem 3.5.6. Let 0 < r; <12 < +00.

(i) If h € H(A(0;r1,72)), then M(h;0,7) = a+bVn(r) forr € (r1,72), where
g,be R

(i)If s € S(A(D;71,72)), then M(s:0,7) is a convex function of Vi(r) for
r € (ry, ).

Proof. 1t is enough to prove (i), since (i} then follows by applying (ii) to
h and —h. Suppose first that s is C?. By Green’s formula applied to the
functions s and 1, if r; < #; < t2 < r2, then
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8
/  do = / As dr > 0,
BA(Oity,t5) OMe Al 1,k2)

where 8/0n, denotes differentiation in the direction of the exterior normal
to A(0;¢1,¢2). Arguing as in the proof of (1.2.1) we obtain

00§ foewaw)| -4 |G [awaow] 2o

and so rV 1 (d/dr)M(s;0,7) is an increasing function of r on (ry,rs). Equiv-
alently, (d/dVn(r)) M (s;0,r) increases as Vv (r) increases. The required con-
vexity now follows from Lemma 3.5.5(ii).

Now suppose only that s € S(A(0;71,72)). On A{0;t1,t2) the function s
is the limit of a decreasing sequence (s,) of smooth subharmonic functions,
by Theorem 3.3.3. By the result of the previous paragraph, each M(s,;0,r)
is a convex function of Vy(r) for r € (f;,¢2). Since (M(sn;0, ")) decreases
with limit M(s;0, ), it follows from Lemma 3.5.5(i} that M(s;0,-) has the
same convexity property. Hence M(s;0,r) is a convex function of Va(r) for
r € (r,ra). O

Theorem 3.5.7. If s € S{A{0;r1,72)), where 0 < r; < rp < 400, then the
following are convez functions of Vn(r) for r € (r1,72):

(1) (M(57;0,7)}/7 provided s > 0 and 1 < p < +o0;

(i) log M{e®; 0,7).

Proof. (i) Suppose that r; <t; <t < ¢ <y and let a,b be such that
(M(s7;0,8)) /P = aVn(t) + b (=1,2).

We define h(z) = alip(z) + b. If € > 0, then the function (h + &)!"Ps? is
subharmonic on an open set containing A(0;%1,%2), by Corollary 3.4.4(i).
Hence M({h +¢€)'~PsP;0,r) is a convex function of Vy(r) for r € (t;,%2), by
Theorem 3.5.6. Now

M((h+ e} 7Ps%0,8) <aVn(t))+b+e  (=1,2),

and so
M{(h +€)1775%;0,8) < aVn(t) +b+e¢,

from which it follows that {M(s?;0,t))}/? < aVy(f) + b + €. Since € can be
arbitrarily small, (i) follows.
(ii) Suppose that vy < t; <t <3 <1z and let a,b be such that

log M(e%;0,t;) = aVn(t;) + b (7=1,2).

Define h{z) = alp(z) + b. Then M(es~";0,t;) =1 (j = 1,2). Since ™" €
S(A(D;1,732)), we see that M(e*~";0,7) is a convex function of Vi (r), so
M(es~":0,¢) < 1 and hence log M(e*;0,t) < aVn(t) + b, as required. !
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Corollary 3.5.8. If f is holomorphic on an annulus A(0;71,72) and f # 0,
and if 0 < p < +oo, then log M(|f|P;0,7) and logm(|f|;0,r} ere conver
functions of logr forr € (r1,r2).

Proof. This is obtained by taking s = plog|f| in Theorem 3.5.7(ii), and
s = log|f| in Theorem 3.5.2. 0

Integrals and suprema of subharmonic functions over hyperplanes also
have convexity properties, and we give two such results below. (Compare
Theorem 1.5.12.) We denote a point of R¥~! by z’ or ¢, and (N — 1}-
dimensional Lebesgue measure by A'.

Theorem 3.5.9. Let s be subharmonic and bounded above on the strip W =
RN-1 x (0,1) and let N'(s;t) = sup{s(z’.t) : ' € R¥7'} for 0 <t < 1. Then
N{s;+) is convez on (0,1).

Proof. Let 0 < t; <t < 1 and

ta — 1t t
Nis;t) +
tg—tl ( 1) t2

f(t) = _—ttll N(S;t;z) 0<t< 1),
and define s, (2, z5) = s(z’,zn) — f(zy) when (z',zn) € W and

+
, _}s (x JEN) (1 <zn < t2)
s2(z’,zN) = { 0 (elsewhere in ]RN).

Clearly s, € S(W) and s; < 0 on RV~ x {t1,¢;}. It follows from Corol-
lary 3.2.4 that s; € S(RY). Since 53 is bounded above, by @ say, on W, we
see that

MB(z,r) NW)

. N
B )] =0 (r - +o0;z € R ).

s2(z) < Alsz;3,7) < a
Hence 51 < 0 on RY—! x (1), #;) and so N'{s;+) < f on (#1,t2) as required. [

Theorem 3.5.10. Let s be non-negative and subharmonic on the strip W =
RN-! x (0,1) and let

Lisit) = / s 8 dN)  (0<t<1).
RN—-1
If L(s;") is locally bounded on (0,1), then L(s;-) is convez on (0,1).
Proof. For each m € N we define s, on W by

smla) = / s(a’ 4y, on)dN (),
{Ily'f<m}
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where z = (¢',2zn5). By Theorem 3.3.1, 5, € S(W). Also, if ¢ > 0 and
2ce <y < 1— 2, then

Sm(m) < A(Sm] :IC,E) = / A(S; (55’ + yiamN)’E)d’\f(y')
vl <m}
AN—lmN_l
o -
< Y /A: s dX,

where
Ae = {(,yn) € RV x (g, 1= e):[ly']| > i/l — m — £},
Since s is integrable on RY=1 x (¢,1 — ¢), it follows that
sm(z) = 0 (g2 o0d<zy<1—4) (3.5.2)

for each 8 € (0,1/2).

Now suppose that 0 < t; <t < ¢z <1 and let a,b be such that L(s;t;) =
at; + b (j = 1,2). Define up(x} = sm(z} — azy — b. Then u,, € S(W) and
< 0 on SRV~ x (t1,t;)). Further, by (3.5.2),

lim sup % (z) < limsup s,u{z) =0 {ty < xn < t2).
oo T—r o0

Hence, by the maximum principle, um{z) < 0 when t; < zn < t2; equiva-

lently, $;m(x) < azn + b for such z. Letting m — oo, we obtain L£(s;t) <

azy +b. Thus L(s;-) is convex on (0, 1). a

3.6. Harmonic majorants

If f, g are functions on a set E taking values in [—oc, +o0o] and f < g on E,
then f is called a minorant of ¢ on E, and g is called a majorant of f on E.
Let 5 € §(?). Below we will show that, if s has a superharmonic majorant
on {2, then it has a least superharmonic majorant which is, in fact, harmonic
on 2. We can thus subsequently refer to this function as the least harmonic
majorent of s on f2.

Definition 3.6.1. A non-empty family F of functions in 2/({2) is called sat-
urated if the following conditions are satisfied:

(i) if u,v € F, then min{u,v} € F;

(ii) if w € F and B(z,r) C 12, then the function %, equal to I, ., on B(z,r)
and equal to u elsewhere on {2, belongs to F.

Theorem 3.6.2. If F is a saturated family in U(12), then on each component
of 12, either inf F = —oco or inf F € H(1?).
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Proof. 1t is enough to consider the case where §2 is connected. Suppose that
B(z,r) C £2, and for each u € F, let T be as in Definition 3.6.1. By Theorem
3.2.2, we have @ < u on B(z,r). Hence inf F = inf{w:u € F} on B(z,r).
Since min{u,v} € F when u,v € F, the family F is down-directed (see
Definition 1.5.2), and since min{u,v} < min{@,7} by the minimum principle,
the family {#:u € F} is also down-directed. Since u € H(B(z,r)) for each
u € F, it follows from Theorem 1.5.3 that inf{%: v € F} is either harmonic
or identically —oo on B(z,r). Hence the disjoint open sets

2y = {y € 2:inf F is harmonic on a neighbourhood of ¥},
23 = {y € £2:inf F = —o0 on a neighbourhood of y}

satisfy £2; U f2% = 2. Since [2 is connected, either {2, = (7 or 25 = 2. In the
former case, inf F € H(§2). a

Theorem 3.6.3. If s € S(12) and s has a superharmonic majorant on 12,
then s has a least superharmonic majorant v on 12, and v € H(12).

Proof. If u;,us are superharmonic majorants of s on {2, then so also is
min{uy,u2}. Also, if u is a superharmonic majorant of s on 2 and B(z,r) C
{2, then with the notation of Definition 3.6.1,

1131_’121f(u -3y = l1;n_g1f(u -8y >0 (z € 8%0).
Since, by Corollary 3.2.5, & € U(f2), it follows from the minimum principle
that @ is a superharmonic majorant of s on {2. Hence the superharmonic
majorants of s on {2 form a saturated family and by Theorem 3.6.2 the
infimum of this family is harmonic on £2. O

Theorem 3.6.4. Let 51,32 € S(§2) and suppose that each of these functions
has a superharmonic majorant on 2. Then the least harmonic majorant of

S1+52 on (2 is hy+hgy, where h; is the least harmonic majorant of s; (§ = 1,2)
on [2.

Proof. Clearly hy + hs is a harmonic majorant of s; + s2. Let h be the least
harmonic majorant of s; -+ s3. Then h < Ay + hs. Also, h — sy is a superhar-
monic majorant of s2, so b — 51 > hy. Hence b — hs is a harmonic majorant
of 51, 80 h — hy > hy, whence hy + ha < h, as required. O
Theorem 3.6.5. If s € S(§2) and B(z,r) C 12, then the least harmonic
majorant of s on B(x,r) is Is 2 r.

Proof. We know from Theorem 3.2.2 that 15 zr 15 2 harmonic majorant of s
on B(z,r). Let & be the least such majorant. If 0 < ¢ < 7, then

hlz) = M(h;z,t) > M(s;z,t) = M(s;2,7) = Lz +(2) {t = r-).
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Hence h{z) = I; 5 (%) and so h — I, , = 0 by the maximum principle. O

Theorem 3.6.6. Let s € S(B). Then s has a harmonic majorant on B if
and only if M(s;0,-) is bounded above on (0, 1). Further, if s has a harmonic
majorant, then its least harmonic majorant is lim,_,_ I, r.

Proof. If s has a harmonic majorant hg on B, then M(s;0, ) < M{hy;0,) =
hg(0) on {0,1). Conversely, if M({s;0,-) is bounded above on (0,1}, let (ry)
be a positive strictly increasing sequence with limit 1, and let b, = ;o on
B(0,75). Theorem 3.6.5 implies that s < hy < hnyy on B(0,7,), 50 (Rn)nom
is an increasing sequence on B(0,rn) for each m. Since

hn(0) = M(s;0,7,) < sup M(s;0,),
(0,1)

it follows that lim h, Z +oc. Hence lim k,, is a harmonic majorant of 5 on B.

Further, if A is any harmonic majorant of s, then h, < H on B(0,r,) by
Thecrem 3.6.5. Hence the least harmonic majorant of s is given by lim A,,;
that is, by lim,1— f; 0.5 O

Theorem 3.6.7. Suppose that s € S(B) has a harmonic majorant and let h
be its least harmonic maejorant. Then:

(i) h = I, 0,1 for some signed measure i if and only if M(s+;0,) is bounded
on (0,1);

(i) h = Ipp1 — Iu0,1 for some non-negative integrable function f and some
measure p if and only if M(dost;0,.) is bounded on (0,1) for some conves
increasing function ¢: [0, +00) = R such that t71¢(t) = +o00 as t = +o00.

Proof. (i) If h = I, for some signed measure g, then we can write h as
hy — hg, where by, ho € Ho(B), and so M{s1;0,-) < M(h;;0,-) = h1(0).
Conversely, if M(st;0,.) is bounded, then s* has a harmonic majorant
hi by Theorem 3.6.6, and clearly hy > 0. Also, s — h; < 0,50 s—h; hasa
least harmonic majorant b < 0. Thus s < hy +hy. Further, if s < H for some
He 'H(B), then s — iy < H—hl, 50 fa SH—hl and hence hy + ha < H.
Thus h; + he is the least harmonic majorant of s, and it can be written as
I, 0,1 for some signed measure y, in view of the Riesz-Herglotz theorem.
(ii} If h = I50,; — I. 01, where f and p are as stated, then by Theorem
1.3.9 there is a convex increasing function ¢:[0, +00) = [0, +00) such that
t71g(t) = +oo as t =& +oo and such that M{¢ o I79,;0,-} is bounded on
(0,1). Since st < Iy g, it follows that M(¢ost;0,) is bounded.
Conversely, suppose that there is a function ¢ with the stated properties.
Then there exists ¢ > 0 such that ¢t < ¢(t)+cforallt > 0, and so M(s57;0,-) is
bounded on (0,1). We may assume (by considering ¢(t} -+ ¢} that ¢ is strictly
increasing. It follows from Theorem 3.6.6 that the subharmonic functions
¢ o st and st have harmonic majorants. Let hg denote the least harmonic
majorant of ¢ o st and h; denote the least harmonic majorant of s*. Then
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st is majorized by the function ¢! o ho, which is superharmonic since ¢!
is concave and increasing (see Theorem 3.4.3(iv)). Hence h; < ¢! o hq,
so M(¢ o hy;0,-) < ho(0). It follows from Theorems 1.3.8 and 1.3.9 that
hi = If o, for some non-negative integrable function f. If we now define hy
to be the least harmonic majorant of s — h;, then we see that hs < 0 and
h1 + ho is the least harmonic majorant of s. Since hy = —I, 01 for some
measure u, by the Riesz—Herglotz theorem, the proof is complete. O

3.7. Families of subharmonic functions: convergence
properties

Lemma 3.7.1. Let {fa: a € I} be a family of upper semicontinuous functions
from 2 to |-o0,+00). Then there is a countable subset J of I such thet
inf{fo:x € I't = inf{fo: € J}.

Proof. Let f = inf{f,:« € I}. Clearly f is upper semicontinuous. For each
real number a we define open sets by

Wo(a) = {z € 2: fo(z) <a} {(ael), W= {z e f(z) <a}.

Then |J, oy Wa(a) = W,. Since W, can be expressed as a countable union of
compact sets, there is a countable subset J, of I such that |J,.; Wala) =
W,. Let J = J,eq Jq and g = inf{fa:a € J}. Then J is countable and

€2 flz) <qt=W,= | Wyla) = {z € 2:¢(z) < ¢} (3.7.1)
aEJ

for all ¢ € Q. Clearly f < gon 2. If f(y) < g(y) for some y € {2 and we
choose ¢ € @ such that f(y) < ¢ < g(y), then (3.7.1) is contradicted. Hence
f=gonfl O

We recall that a family F of functions is called down-directed if, for each
pair of functions fi, f € F, there exists f € F such that f < min{f;, fo}.

Theorem 3.7.2. Let F be a down-directed faemily in S(12). Then, on each
component of 2, the function inf F is either subharmonic or identically —co.

Proof By Lemma 3.7.1 there exists a sequence (s, ) such that s, € F for each
n and inf{s,:n € N} =inf F on £2. Let u; = s;. Given u,, we can choose
(since F is down-directed) tu,+1 € F such that u,q1 < min{un, Sn+1} Then
(un) is a decreasing sequence in S{(J2) with limu, = inf F, and the result
follows from Theorem 3.1.4. a

3.7. Families of subharmonic functions: convergence properties 83

Definition 3.7.3. If f: (2 — [~0co0, +00], then the upper semicontinuous reg-

ularization f and lower semicontinuous regularization f of f are defined on
2 by

flz) = max{f(z), lir;l_f:p F()} = inf sup{f(y):y € 2N B(z,r)}
and

flz) = min{f{z), lim inf ()} = Eglginf{f(y%y € 2N B(z,1)}.

It is easy to see that f is upper semicontinuous, f is lower semicontinuous
and f > f > f on f2. Further, if f is upper (respectively, lower) semicontin-
uous on {2, then f = f (respectively, f = f).

Lemma 3.7.4. Let { fo: @ € I} be a family of functions from 12 to [— o0, +00]
and let f =sup{fa:x € I't. Then there is a countable subset J of I such that
G = f, where g = sup{fa:a € J}.

Proof. By considering the function tan™! f, in place of f,, we may suppose
that f,(£2) C [—n/2,7/2] for each a. Let (B,) be a sequence of open balls in
{2 such that {B,:n € N} forms a base for the Fuclidean topology on 2 and
such that each ball in this collection occurs infinitely often in the sequence.
For each n we choose z,, € B, such that

f(zn) > sup{f(z):2 € Bp} - n~"

and then choose an € I such that fo_ (zn) > flzn) —n~! Let J = {aa:
n € N} and g = sup{fa: &« € J}. Then

sup{g(z):x € Bn} > sup{f(e):z € Ba} - 207!  (n€N).
Hence, in view of the repetitious nature of (Bp),

g(z) = {n:inf sup{g{y):y € Bn} > in }sup{f(y)=y € By} = f(z),

f
z€B,} {n:z&B,

s0 that § > f on 2. The reverse inequality is obvious. O

Theorem 3.7.5. Let F be a family in S(12) and let s = sup F. If 5 is locally
bounded above, then:

(i) 5 € 8(12);

(#1) & = s almost everywhere (A);

(ii) 3(z) = limsup,_,, s(y) (z € 2).

Proof. The function § takes values in [—o0,+400), is upper semicontinuous
and is not identically —oo on any component of §2. If B(z,r) C {2, then
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Lior(®) > Luar(y) 2 w(y) (Y € Blz,r)juc F) (3.7.2)

Hence I; ., > $, and it follows from the continuity of Iszr that I3, > §
on B(z,r). Thus § € 5(§2), by Theorem 3.2.2.

By Lemma 3.7.4 there exists a sequence {un) in F such that & = 5 on (2,
where u = sup uy,. Define v, = max{u,..., tn}. Then (vy,) is an increasing
sequence in S(f2)} with limit u. Since Lz zr 2 Iy, 20 2 Un, it follows from
monotone convergence that Iz zr > Juzr > 6. Thus Loz 0 2> Iyzr>i=35.
By Theorem 3.6.5, the function I; ¢, is the least harmonic majorant of 3
on B(z,r), and therefore Iz zr = Luz,r- Since 3 > wu, it follows that § = u
almost everywhere () on S(z,7). In view of the arbitrary choice of B{z,r),
we conclude that § = u almost everywhere (A) on 2. Since § > 5 > u, it
follows that s is Lebesgue measurable and 5 = s almost everywhere {A).

Finally, (i), (ii) and Corollary 3.2.6 give

. sioY = T .. o . < cn
lim sup s(y) < 3(x) rl_%:_ A(3; 2,7} rl_l’%l_'_A(S:m:") < limsup s(y) ( )

y—=z Y=z

so (iii) holds. o

Assertion (i) of the above result will be strengthened in Theorem 5.7.1.

3.8. Exercises

Exercise 3.1. Show that if s € C(B) N S(B), then R¥\{z € B : s(z) <0}
is connected.

Exercise 3.2. Let s € S(B) and suppose that limsup,_,, s(x} is finite for
every y € S and non-positive for almost every (7) such y. Show that s <0
on B.

Exercise 3.3. Phragmén—Lindelsf theorem for strips. Let W = RN-1x
(0,1). Verify that if 0 < ¢ < m, then the function

cosh (\/'IC%-'T) ... cosh (%) cos{e(zn — %))

is harmonic on RN and positive on W. Hence show that if s € S(W),

limsup s{z) <0 (y € OW)

T—by

and

s(z) < exp ((1 —e)m(|z []\-:—_1 + |3;N_1|))

for some € € (0,1), then s <0 on W.

(x € W)
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Exercise 3.4. Phragmén—Lindel6f theorem for cylinders. Let {2 =
R x {—1,1)¥-1. Show that if s € §(12),

limsup s{z) <0 (y € 862

z—y
and
5(2) < exp((1 - VN =1/2)  (we )
for some € € (0,1), then s <0 on f2.
Exercise 3.5. Let 12 be unbounded and connected and suppose that
r VA2 N B(0,r)) - 0 as r — +o0.
Show that if 5 € 5({2},

limsups{z) <0 (y € 802)

Ty

and s is bounded above on {2, then s < 0 on (2. (Hint: extend s to be
subharmonic on RY )

Exercise 3.6. For n € N, define
snulzy, z2) = — sin(2" 1wz Jexp(2™H nz,)
when 2-""1 < z; < 27" and s,(71,%2) = O otherwise. Verify that s, €

S(R?). Define s on R* by

o0
s(z1,22,23,%4) = Z $n(®1,%2)5n (23, 24).
n=1

. Show that s is subharmonic as a function of (z3,z4) when (z;,T2) is fixed,

and thus also as a function of (71, 73) when (23,4} is fixed. Show dlso that
s(3.27%,1,3.27% 1) 5 400 as koo

and deduce that s ¢ S(R*). (Compare this with Theorem 3.3.6.)

Exercise 3.7. Use two applications of Corollary 1.3.4 to give a direct proof
of Corollary 3.3.7.

Exercise 3.8. Let © be positive and superharmonic on the annular region
A(0;71,72). Show that if 0 < p <1, then (M(uP;0,7))/? is a concave func-
tion of Vn(r) for r € (ry,72). (Hint: let r < & < {2 < r2, choose a,bso
that

(M5 0,t 0P =aVn(t;) 40 (i=1,2)

and consider h!~PuP, where h = ally + b.) Show that the result also holds
when p < 0. '
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Exercise 3.9. Let u be positive and superharmonic on W = RV~1 x (0,1).
Define v on W by

'U(:L‘l,...,IN)=/
RN

Use Theorem 3.3.1 to show that either v € U(W) or v = +co. Hence show
that if the function

ul(z' + o', zn)dN (%)
1

te u(y',t)dN (y')
RN-1

is finite for some t € (0, 1), then it is concave on (0,1). (Note: the convexity
result in Theorem 3.5.9 implies that if w superharmonic on W and w{z)
depends only on «x, then the function w(0,... ,0,1) is concave on (0,1).)

Exercise 3.10. Let s € S(B). Writing M(s;0,t) = (¢ o Vy)(t), where ¢ is
convex (see Theorem 3.5.6), and recalling that

t
A(5;,0,1) = Nt“N/ ™1 M(s;0,7) dr,
0

use Jensen's inequality (see Historical Notes on Section 1.3) to show that
M(s;0,knt) < A(s;0,1) (0<t<r),

where ky = ~1/2 and ky = (2/N)/ (-2,

Exercise 3.11. Let s be a function on B such that s € S(B) and

s(y) = limsup s{z) < +oo (y € 9).
Y
Let h be the least harmonic majorant of s on B. Show that h < I5 0,1 on B.
Give an example in which this inequality is strict.

Exercise 3.12. Give an example of a decreasing sequence () of non-
negative subharmonic functions on D = & x (0, +co) such that each s, hasa
least harmonic majorant by, on D, limy 00 80 = 0 on D, but limy 00 hn > 0
on D).

Exercise 3.13. Give an example of an increasing sequence (s,,) of negative
subharmonic functions on B such that lim s,, is not subharmonic on B. Give
an example in which lim s, is not subharmonic on any open subset of B.

Exercise 3.14. Let F be a family in S(f2) and let s = sup . Show that if
3 is locally integrable, then § € 5(§2). (Compare Theorem 3.7.5.)

Exercise 3.15. Let (s,) be a sequence in S({2), where 2 is connected, and
let s = limsup,,_, o, $n- Show that if {sn) is locally uniformly bounded above,
then & = s almost everywhere (), and either 5 € S(§2) or § = —0.
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Exercise 3.16. Let s be a non-negative function on {2. Suppose that py > 0
and s? € S(42) for all p > py. Show that s* € S(2).

Exercise 3.17. Suppose that s € C(B)NS(B). A function by € C{B)NH(B)
is called a best harmonic approzimant (b.h.a.) to s if

sup [hg ~ s| < sup [h — s for all A € C(B) NH(B).
B B

Let H = I,51 on B, and H = s on 5. Use the maximum principle to show
that the constant function § infg(s— H) is the unique b.h.a. to s — H. Hence
describe the b.h.a. to s.

Exercise 3.18. Let f = u + iv be holomorphic on the unit disc. Let 5 =
(p — 1)|f|? — plu|?, where p > 2. Show that As > 0 and deduce that if
F{0) =0, then

2n _ 27
/ [u({re’®)P d8 < p—lf |[fre®)Pdd (0<r<l)
r ]

0

Exercise 3.19. Let By = B(0,2'/V), so that A(Bg) = $A(B). Let u be
superharmonic and integrable on B. Show that

/ udA < / u dA.
B\ By Bp

Show also that equality holds if and only if u € H(B).

Exercise 3.20. Let 12 be a convex open proper subset of RV . Define u on
2 by w(z) = dist(zx,8/2). Show that v € U(S2). (Assume the result that for
each y in 812 there exists an (N — 1)-dimensional hyperplane P, such that
y € P, and {2 is contained in one component of RV \Fy.)

Exercise 3.21. Let E = {x € B : zy = 0}. Suppose that s € C(B) N
#{(B\E) and at each point of E the left and right derivatives (8s/8zn)- and
(9s/dzn)4 exist and satisfy (8s/0zn)— < (95/3zn)+. Show that s € S(B).
(Hint: it is enough to show that if y € E and B(y,r) C B, thens—I; 5, <0
on B(y,r). Suppose this inequality fails, deduce that s — I,,,, attains a
maximum at some point of B, and derive a contradiction.)

Exercise 3.22. Show that if we have “<” in place of “<” in the hypothesis
of Exercise 3.21, then the conclusion remains true. {(Hint: consider s,(z) =
s(z) + |zn|/n for n € N)
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Exercise 3.23. Construct a superharmonic function « on B such that

lim inf u(z) = —co, limsupu(z) = +oo0
Ty Ty

for each y € 5.

Exercise 3.24. Let E be a non-empty closed subset of RY and let s be
defined on BV by s(z) = dist(z, E).

(i) Show that, if E is convex, then s is subharmonic on R,

(i) Let zo,y,z € BY be distinct points such that ||zo — yll = |}z — |,
and let v{z) = min{||z — ||, ]Iz — 2||}. Show that {v(zg)}* > M(v*;z0,7),
and hence by Hélder’s inequality that v(ze) > M(v; 2o, 7), for all sufficiently
small values of r.

(iii) Motzkin’s theorem tells us that E is convex if and only if to each point of
BV there is a unique nearest point of E. Use this result and (i) to show that,
if E is not convex, then s is not subharmonic on RV . (Hint: show that the
subharmonic mean value property fails for small spheres centred at a point
with no unique nearest point of E.)

Chapter 4. Potentials

4.1. Green functions

We recall that, if y € RY, then the function defined by

—logllz—yll (z#y; N=2)
Up(z) =< lle -yl  (e#y N 2=3)
+00 (z=1y)

is superharmonic on R and harmonic on R \{y}.

Let {2 be an open subset of RY. A function Gg : 2 x 2 — [0, +00], called
the Green function of {2, will be defined so that G'(-,y) = Uy — hy, where
hy is the greatest harmonic minorant of U, on 2. (To ensure the existence
of h, and hence G, a mild restriction on {2 will be required when N = 2.)
It will follow that, if x is @ measure on [2, then the equation

Goulz) = [g Gale.w) duly) (z € 0)

defines a non-negative superharmonic function on £2, provided only that Gop
is not identically +oc on any component of 2. A superharmonic function of
this form will be called a (Green) potential. The importance of potentials
will become apparent in the Riesz decomposition theorem, which includes the
result that every non-negative superharmonic function on {? is the sum of a
potential and a non-negative harmonic function. This reduces the local study
of superharmonic functions to that of potentials and harmonic functions.
Also, it shows that, in a ball or half-space, a non-negative superharmonic
function is the sum of a potential and a Poisson integral; this is especially
useful since in these domains the Green function, like the Poisson kernel, is
known explicitly. Qur knowledge of G will be used to show that potentials
on the unit ball have radial limit 0 at almost every boundary point, and we
will obtain related boundary limit theorems for harmonic and superharmonic
functions on B. We shall also study continuity properties of potentials and
examine how the nature of a measure p affects the smoothness of Gop.

We begin by describing the type of open set on which we shall work.

Definition 4.1.1. An open set 2 in RY is said to be Greenian if, for each y
in {2, the function U, has a subharmonic mincrant on 2.

89
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Theorem 4.1.2. (i) All open sets in RV (N > 3) are Greenian.

(i1} Any open subset of a Greenian open set is Greenian.

(iii) The set R? is not Greenian.

(iv) If 2 C R? and there exists z in 2 such that U, has o subharmonic
minorant on 12, then 2 is Greenian.

(v) If 2 C R and R2\A1? is not connected, then {2 is Greenian. In particular,
all bounded open sets in R? are Greenian.

Proof. Part (i} follows from the positivity of U; when N > 3, and part (ii} is
immediate from the definition.

To prove (iii), suppose that there is a subharmonic minorant s of Uy on
R2. Then s < —logr on B(0,r) by the maximum principle and, since r can
be arbitrarily large, we obtain the coniradictory conclusion that s = —oo.

To prove (iv), let r be such that B(z,r) C 2, let 1 be a subharmonic mino-
rant of I/, on 2 and let y € £2. We will show that Uy also has a subharmonic
minorant on {2. If z € 2\B(z,r), then

Uy(z) — u(z) > Uy(z) — U.(z) > log (”y Z Llﬁ J_r ﬁll - z|[)

> lly — =l > lly — =l 411)
Iz — =l r

Since the lower semicontinuous function Uy — u is also bounded below on
B(z,r), part (iv) follows.

It remains to prove (v). Suppose that 2 C R? and R?\81? is not con-
nected. Let y € (2, let w be the component of 2 which contains y, and let
B(z,7) C R2\(wU 312). It follows from {4.1.1) that the function

_JUAx) = ly—zll/r (zew)
Me) = { Uy(z) (z € Nw)

is a harmonic minorant of Uy on §2. Hence {2 is Greenian, and so (v) holds.
|

A complete characterization of the Greenian sets in R* will be given in
Theorem 5.3.8.

Definition 4.1.3. Let {2 be Greenian. Then, for each y in {2, the function U,
has a greatest harmonic minorant Ay on §2, by Theorem 3.6.3. The function
Ga: 2 x 2 — [0, +00], defined by

Galzr,y) = Uy(m) - h'y(x): (4.1.2)

is called the Green function for 2. Clearly Gg(x,z) = +oo for any z in (2. In
the case where 2 = RV (N > 3) we simply write G for the Green function.
The formula (4.1.2) has no meaning for open sets {2 which are not Greenian.
We say that such sets 2 do not possess a Green function.
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Before developing the general theory of Green functions, we give G ex-
plicitly for three specific domains {2.
Theorem 4.1.4. The Green function for RN (N > 3) is given by
Glz,y) = Uy(z) (z,y €RY)

Proof. Let y € RY. If h is any harmonic minorant of U, then < 7>~V on
B(y,r} by the maximum principle. Since r can be arbitrarily large, A < 0 on
RY . Hence 0 is the greatest harmonic minorant of U/, on RY and the Green
function for RV is as stated. J

Theorem 4.1.5. Let By = B(zg,r) and

(r® = llz = zoll”)(r* — lly — %ol*)

72| -yl

#z,y) = (z,y € Bo; = #y),

and let y* denote the inverse of a point y # g with respect to 8By; that is,
y* satisfies R
. r
v == ([y2gy) - 413
(i) If N =2, then

llyy — zoll = — 3*|l
1 T B,
08 ( - ”IE y” ( yY € ol g {fL',{Bg})

Gg,(z,y) = log (”m iy”)

+00 (z=y)

(x € Bo\{zo}; ¥ = x0)

{ 27 og{1+ ¢(z,y)} (z,y € Bo;T # )

+oo (z=1y).
(it) If N > 3, then

z —y|>~N= ! 1 N_2$ : T, T

H y” (”y_xl)“ ||:1:—y“|[) ( ayeBClwyg{ 1 0})

ool =4 flo =yl 2o (2 € Bo\fza}iy = =)
+00 (z=1y)

{ {1— Q+ dlz, y) N2}z —yl*N (z,y € Bosz # y)

+00 (z=y).
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Proof. Since
lz = 9* 1% = llz —zoli® + lly* — zoll> — 2(z — 20, 5" —20) (v € RY;y # m0),
we see from (4.1.3) that
v fly — zoll*llz — y* I = 72 lly — zoll*ll= — @oll* +r* ~ 2{z - %0,y ~ o)
=l -yl {1 +d(z, 9} (v & {z,20}), (414)
and, in particular,
rHy = zollllz —y*ll=llz—yll (= € 8Bo;jy # o). (4.1.5)
If y € By\{zo}, then the function

r 1
tog (ny ol ||x—y*||) (N'=2)

r 1 N-2
( i ) (N > 3)
=zl e =1

is harmonic on RV \{y*}, which contains By. Further, it can be seen from
(4.1.5) that h, = U, on 8By. It follows from the maximum principle that
hy < U, on By and that h < h, on By for any harmonic minorant b of
U, on By. Hence h,, is the greatest harmonic minorant of Uy on By, and so
G, (%,y) = Uy(z) — hy(z) when y # zo.

If y = zy, then an argument similar to that of the previous paragraph
applies with hy(z) = log(1/r) if N =2, and hy(z) = r*"N if N > 3. The
first group of formulae in each part of the theorem are now established, and
the formulae involving ¢ follow using {4.1.4). d

hy(z} =

Theorem 4.1.6. Let D denote the half-space {z = (z1,...,zn) 1 zny > 0}.
Then
Gp(z,y) = Uy(z) - Uzlz} (z,y € D),

where § = (y,. .., YN—1, —UN)-

Proof. Let y € D and hy(z) = Uy(s). Then Ay is harmonic on RY\{¥}, which
contains D. Further, h, = U, on 8D, hy < U, on D, and Uy(z) — hy(x) has
limit 0 as £ — oo. It follows from the minimum principle that i < h, for
any harmonic minorant h of Uy on D. Hence h, is the greatest harmonic
minorant of U on D, and so Gp is as stated above. O

Lemma 4.1.7. Let §2 be Greenian, let y € 2 and let w be the component of
{2 which contains y. Then:
(i) Gaf - ,y) is positive and superharmonic on w, and harmonic on 2\ {y};
(it)

_ [Gulz,y) (zew)
Galzy) = {0 (z € M\w);
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(iii) the greafest harmonic minorant of G - ,y) on 12 is the zero function;
(iv) inf, Gn(-,y) =0.

Proof. 1t follows from the definition that G(-,y) is non-negative and super-
harmonic on §2, and harmonic on {2\ {y}. The positivity on w is a consequence
of the minimum principle and the fact that G (y,y) = +oo. Thus (i) holds.

Clearly U, is harmonic on f2\w. We thus obtain the greatest harmonic
minorant of Uy on {2 by defining it to be equal on w to the greatest harmonic
minorant of Uy on w, and equal on f2\w to Uy. This proves (ii).

Let v, be a harmonic minorant of Go(-,y) on 2. Then U, > h, + v, on
{2, where h,, is the greatest harmonic minorant of Uy on 12, and so v, < 0.
This proves (iii).

Finally, (iv) follows from (ii) and (iii). O

Lemma 4.1.8. Let [2 be Greendan, let y € 2 and let W be a bounded open
neighbourhood of y such that W C £2. If u is a positive superharmonic func-
tion on 2 and u > Gol(-,y) on OW, then u > Go( - ,y) on \W. In
particular, Go(-,y) is bounded on A\W.

Proof. Let h, denote the greatest harmonic minorant of U, on (2. Then
U, — hy <uon dW. The function defined by

(@) = {g:aéghy(z), u(a) —ula)} e € D\W)

is subharmonic on {2, by Corollary 3.2.4. Clearly s < U, so 5 is a subharmonic
minorant of U, on 2. Hence s < hy; that is, Uy —u < hy on 2\W, and thus
u > Go(-,y) on I\W. The particular case follows from the fact that G(-,y)
is bounded on OW. 0

A glance at the Green functions in Theorems 4.1.4 - 4.1.6 reveals that
they are symmetric in = and y. It will now be shown that all Green functions
have this property.

Theorem 4.1.9. Let 2 be Greenian. Then:

(i) Golz,y) = Galy. z) for any x and y in (2;

(11) the function (z,y) — Gol(z,y) is continuous on 12 x 2 (in the extended
sense);

(11i) the function (z,y) — Go(x,y) is superharmonic on 12 x 2.

Proof. Let By be an open ball such that By C 2. Further, let (B,) =
(B(za,7n)) be a sequence of open balls in f2 such that By ¢ B; and
U, Bn = 12, such that 8B, N By = @ for each n, and such that each ball
in the collection {B,, : n € N} occurs infinitely often in the sequence.

Let u; : 2 x By — R be defined by
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[T @) (€ B))
iz, y) = {UD;(;,;) (z € A\By),

where I¢ ;- is the Poisson integral introduced in Definition 1.3.2. It follows
from Theorem 1.3.3(ii) and the uniform continuity of the function (z,y) —
Uy(x) on 8By x By that u, is continuous on £2x By. Also, it can be seen (using
the mean value property and Fubini’s theorem, if z € By) that u;(z, - ) €
H(By) for each z in £2. We now inductively define a sequence (u,,) of functions
on 2 x By as follows. Given uy, we define

- Iurc( SR SRR () (z € Bry1)
g1 (2, y) = {uk(a:, 4! 1 iy

By the above reasoning and the choice of (B,), each u, is continuous on
2 x By, and up{z, - ) € H(By) for each z in £2.

Repeated application of Corollary 3.2.5 yields that, for each y in By, the
functions u,(-,y) are superharmonic on {2, satisfy u,(-,y) < U, and form a
decreasing sequence. Further, if h, denotes the greatest harmonic minorant
of Uy on 12, then u, (-, %) > hy on 2. i we define us (-, ¥) = limpusyeo un(-, ¥,
then ue (-, ) must be harmonic on each ball B, by Corollary 1.5.4 and the
repetitious nature of (By). Hence ue( - ,¥) is a harmonic minorant of U,
on [2 which satisfies uoo( - ,¥) > hy and 50 uge( - ,y) = hy. It follows from
the previous paragraph and Corollary 1.5.4 again that {y — hy(z)) € H(Bo)
for each z in (2. In fact, these functions must belong to #(§2), in view of
the arbitrary choice of By. Since hy(z) < Uy(z) = U(y), it follows that
hy(z) < hz(y). This holds for any choice of  and y in £2, so hy(z) = h(y),
and hence

Go(z,y} = Uylz) — hy(z) = Uz(y) — ha(y) = Ga(y, z) (z,y € 12),

proving (i).

The above functions u,( -, - ) have the property that they are continuous
on B, x By and harmonic in each variable separately. It follows from Corol-
lary 3.3.7 that u,( -, - ) is harmonic on B, x By. Hence the limit function
{z,y) = hy(z) is harmonic on £2 x 2, in view of the repetitions in (B,) and
the arbitrary nature of By. Since Go(z,y) = Uy(z) — hy(x), we conclude that
Gqn( -, ) is continuous on 2 x {2, in the extended sense. Thus (ii) is proved.

Part (iii) is an immediate consequence of (i) and Theorem 3.3.6. a

Theorem 4.1.10. (i) If {2y is an open subset of a Greenian open set (2,,
then G, < Ga, on Il x 4.

(it} Let (.Qn) be an increasing sequence of Greenian open sets and let (1, =
Up 2. If 25 is Greenian, then G, — Ggo. on o X f2y; otherwise
G, = 400 on o X .

Proof. Let h,, ,, denote the greatest harmonic minorant of Uyon 2, forn e M
Part (i) follows from the fact that hy o < ky 1 on 2.
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To prove (ii) suppose first that 2., is Greenian. For each y € {2, the
function Uy, has a greatest harmonic minorant Ay o on 2, and hye <
hynt1 < hyn on §2, for each n. Hence limy, o0 Ay,n = by, say, is harmonic
on 2o and hy oo < hy < Uy there. By definition of hy o, it follows that
hy = hy oo, and so lim, .. G, = Ga,,-

Next suppose that 2, is not Greenian. By Theorem 4.1.2, N = 2 and 2.,
is connected. Again (hy ) is decreasing. Let hy = limy o0 by n. If By Z —00
for some y € {2, then h, is a harmonic minorant of U, on {2, contrary to
Theorem 4.1.2(iv). Hence hy, = —oo for each y € 2, and so Gg (-,y) =
Uy —hyn = +oo. a

‘The following theorem, which will be useful in later chapters, shows the
relationship between the Green function and the Kelvin transform. Notation
and terminology are as in Section 1.6.

Theorem 4.1.11. Let §2 be Greenian and let §2* denote its inverse with
respect to S{xo,7). Then 2* is Greenian and

Go-(z,y) = {r7?|lz — zoll ly — 2ol Ga(z*,y")  (z,y € 2°).

Proof. For each z € 2 we can write G(-, z) as U, — h,, where h, € H{?).
We now fix y € {2* and define a function I, on 2* by
hys (z*) — log(r~?|lz — zol| lly ~ zo|l) (V =2)
Hy(z) = -
hys () {r~2lle — ol lly — zoll}*~Y (N > 3).

Noting that z¢ & 2%, we see from Corollary 1.6.4 that H, € H(2*). Arguing

as in (1.7.3) we find that

lz —yll =r2z* —5*ll Iz — 2ol lly — 2ol (z,y € 2°), (4.1.6)
and so
Uy-(z*) — log(r ||z — zol| [ly — zoll) (N =2)
Uyle) = 2-N
Uy- (@ Mr~ 2|z = zol| lly — zol| =N (N > 3).
In either case,

Uy(z) — Hy(z) = {r7%||lz = zol| lly —~ 2ol {Uy(z*) — hye (z*)}
= {r |l — zoll lly — zol}* ¥ Galz",y") (4.1.7)
>0 (z € 2},
and it follows, in particular, that f2* is Greenian.

Now let A be any harmonic minorant of U, — H, on {2*. Its image A"
under the Kelvin transform is harmonic on 2\{zp}, and
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R (x) = r" 2z —zo|*VR(z") < {r7 ly—2ol 1}~ Gz, v*) (z € 2\ {20))
by (4.1.7). If ¢y & £2, then h* < 0 by the definition of Go(-,¥*). If 2y € 12
then A* is bounded above near zg since g* # zg, so the function

se(z) = {h*(:.r:) —EG_Q(:E,EO) (z € -Q\{fi’io})

— 0 (:17 = 270)

?

is a subharmonic minorant of {r~!|ly — zo[|}* " NGqa(,y*) for each £ > 0,
and again h* < 0. In either case h < 0. Hence Hy, is the greatest harmonic
minorant, of Uy on 2*, and so Gg- (-, y) = Uy — H,. The result now follows
from (4.1.7). a

Ezample 4.1.12. If w = RN\ B(zy, ), then

log(liy Tzr:oll I:lﬂ;_y l:l) (N = 2)
Gu(z,y) = y
e~ g2~ = (==
lly — oll §z — 3|
where y* denotes the inverse of y with respect to S{zq,r), provided we assign
the value +co to these formulae when z = y. To see this, we take 2 =
B(zg,r} in Theorem 4.1.11 and use the formula for G in Theorem 4.1.5,
equation (4.1.6) and the symmetry of Go(., ).
The above formula for G, can alternatively be established by an argument
similar to the proof of Theorem 4.1.5.

)7 vz,

4.2. Potentials

Definition 4.2.1. Let ¢ be a measure on a Greenian open set [2. We define

Goplz) = /ﬂ Golo.v)duly) (z€ ).

Clearly Gy takes values in [0, +00]. The function Gou is called a {Green)
potential if each component of {2 contains a point at which Ggp is finite.
It follows from Theorem 3.3.1 (applied to each component of {2 separately)
that a potential Ggu is superharmonic on f2. A potential on the whole of RY
(N > 3) is sometimes referred to as a Newtonian potential; it has the form

Guw) = |l — PN duty) (= <R

Lemma 4,2.2. If 2 is Greenian and p is a measure with compact support
contained in 2, then Gop is a potential and its greatest harmonic minorant
is the zero function. Further, if 12 is a ball, then Gou has limit zero at all
points of 512.
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Proof. Since each component of 2 can be considered separately, it is enough
to deal with the case where 12 is connected. Let K denocte the support of u,
let yo € K and let W be a bounded connected open set such that K ¢ W
and W C 2. The functions Gp(z, - ), where z € 2\W, are positive and
harmonic on W. It follows from Harnack’s inequalities that there is a positive
constant C such that Gz, y) < CGalz,yo) whenever z € 2\W and y € K.
Integration with respect to du{y) now yields

Gaou(z) < Cp(K)Gg(a:,yg) (z € MW). (4.2.1)

Thus Gpu is a potential. Further, if A is a harmonic minorant of Gpu on
(2, then h is majorized by a multiple of G (z,y0) on AW, and hence on {2
by the minimum principle. It follows that A < 0, as required. Finally, if 12 is
a ball, then Gp(-,yo) has limit zero at all points of 842, by Theorem 4.1.5.
Hence Gy has limit zero at all points of 312 by (4.2.1). a

Theorem 4.2.3. Let Ggp be a potential on a Greenian open set 2. If W is
a non-empty open subset of 11 such that (W) = 0, then Ggpu is harmonic
on W.

Proof. Tt is enough to show that G is harmonic on any open ball By which
satisfies By C W. Since G is locally integrable, there exists zy in By such
that Gau(xe) < +oo. It follows from Harnack’s inequalities that there is a
positive constant C such that Gu(zx,y) < CGg(xy,y) whenever £ € By and
y € I\W. We can now apply Theorem 3.3.1 to see that Gop and —Gpu
both belong to U{By), and hence to H({By). D

Theorem 4.2.4. Let i+ be a measure on a connected Greenien open set 2

and let B(z,r) C 2. Then Ggu is a potential if and only if
[ Galwdu) < +. (42.)
SN\B(z,m}

In particular, if p{f2} < +o0, then Ggp i3 o potential.

Proof. If Gap is a potential, then so is G (s|o\p(z,r), and (4.2.2) then
follows from Theorem 4.2.3. Conversely, if (4.2.2) holds, then G (k| o\ B(z,r))
is superharmonic. So also is Qg (4| p(z,~), by Lemma 4.2.2. It follows that
G, which is the sum of the above two potentials, is superharmonic on §2,
and hence a potential. The final assertion follows using Lemma 4.1.8. O

Theorem 4.2.5. (i) Let p be a measure on RY(N > 3). Then Gu is a
potential if and only if

[ A I duty) < +oo.
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(ii) Let po be a mensure on the open unit ball B. Then G B 5 6 potentigl &f
and only if

[ =t duty) < +oo.
B

(tii) Let j1 be & measure on D = {(z1,...,2zn) t 25 > 0}. Then Gpp is e
potential if and only if

Proof. Part (i) follows easily from Theorem 4.2.4 on setting z =0and r = 1.
Part (i) follows from Theorem 4.2.4 on setting z = 0, r = 1/2 and noting
from Theorem 4.1.5 that

~log|lyll (N=2)
GB(O, y) =
Nyl -1 (¥ >3).

In order to prove (iii} we note that Gp, as given in Theorem 4.1.6, can be
rewritten as

2
Gp(z,y) = max{N -2, 1}$NyN/ {lle - yl* + 2enynt} ™ az,
0

Applying the inequality ¢ < ¢ < 2 to the integrand above, we obtain

2max{N - 2,1}znyn 2max{N - 2, D}znyn

— <Gplz,y) < . (424
==l oY) e —oll” 424
where T = (z1,...,zy_1,—2n). If we let z = (0,...,0,2), then it follows
easily that (4.2.3) holds if and only if
/ Gp(z,y) duly) < +oo,
PA\B(z,1)
and we can again appeal to Theorem 4.2.4. O

Theorem 4.2.6. If Gopu is a potential on a Greenian open set 12, then the
greatest harmonic minorant of Gop is the zero function.

Proof. Let (K,) be an increasing sequence of compact subsets of {2 such that
U, K = 12, and let h denote the greatest harmonic minorant of G, 4. Clearly
h > 0. Since Gop = G (4k.) +Gn (,ulg\Kn), we see from Theorem 3.6.4
and Lemma 4.2.2 that » < Gg (pl 2\ K“). Letting n — oo, it now follows from
the monotone convergence theorem that h = 0. a

We now briefly digress to introduce a different kind of potential on &2
which in some respects is analogous to a Newtonian potential.
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Definition 4.2.7. If ;1 is a measure on R? which satisfies
L, 1oglvll dute) < +o, (4.2
R#\B
then we call the function Uy, defined by
Un(e) = - [logllz = sllduty) (@ € B,

a logarithmic potentiel Unlike a (Green) potential, a logarithmic potential
may assume any values in the range (—oo, +00]. ‘

Theorem 4.2.8. A logarithmic potential Up is superharmonic on B and is
harmonic on any open set W which satisfies u(W) = 0.

Proof. Let By be an open disc. Then there is a positive constant ¢; such that
—logllz —yll > —e1log(2 + |Jlyll) (= € Bo;y € R?).

Since (4.2.5) holds, we see from Theorem 3.3.1 that Up € U{By). Further,
if By C W, where W is an open set satisfying u(W) = 0, then the function
(z,y) — log ||z — || is bounded below on By x (R?\W). Since u(R?) < 400
by (4.2.5), we can apply Theorem 3.3.1 once more to see that —Uu € U(By)
and hence Up € H(Bp). The theorem now follows in view of the arbitrary
nature of By. O

We conclude this section with some examples of potentials and logarithmic
potentials.

Ezample 4.2.9. (i) Let N > 3 and let u denote surface area measure on
S5{0,7), normalized to have total mass 1. Clearly Gu is a potential, and it
follows from the rotational invariance of ¢ that Gp(z) depends only on ||z]|.
Further, by Theorem 4.2.3, G is harmonic on RV \S(0, 7). Hence, by Theo-
rem 1.1.2,-Gp takes the constant value Gu(0) = r*~% on B(0,r). If ||z > r,
then G(z, - ) is harmonic on an open set containing B{0,r) and so

Gulz) = M(G(=, - );0,r) = G(,0) = |l=l* V.

Finally, by Corollary 3.2.6, Gu(z) = limeoy A(Gu;z,r) = >~ when
llzl] = r. Hence

Gu(z) = min{|lz]>~¥,r*"V} (2 € RY).

{(ii) The same reasoning shows that, if N = 2 and u is as above, then the
logarithmic potential Uy is given by

Up{z) = min{—log ||z|, ~ logr} (z € B?).
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(iii) If 0 < 7 < R and u is as above, then we can use Theorem 4.1.5 and the
above reasoning to observe that

min{log(R/||zl), log(R/r)} (N =2)

min{]jz||?>~¥,r3-N} - R-¥ (N > 3).

Gr,pi{(z) = {

Ezample 4.2.10. Let D = {(1,...,2n) : n > 0} and let x denote (N — 1)-
dimensional Lebesgue measure on R¥~! x {t}, where ¢ > 0. It follows from
Theorem 4.2.5 that Gpp is a potential, and from the translational invariance
of p: that Gppu(z) depends only on zx. Also, Gpp is harmonic on RV =1 x (0,¢)
and RN=1 x (¢, +00), by Theorem 4.2.3. Hence

at+bry (O<zy <t)
Gpul(z) =4 ¢ (zn =1t)

d+ fry (zx > t).
It follows from (4.2.4) and monotone convergénce that

GD“(O: .. '101 I'N) < 2t/ d/\'(y’)
Ty ma.x{N - 2,1} - mv-1 {(mN - t)z + Ilyluz}Nf2

-0 (zn = +00)

and

GD[.L(O,...,O,:EN) —}Zt/ {_.__-——d)' (y) = (:EN—)O)
RN—I

zy max{N — 2,1} £2 4 ”yr“2}N/2 =N

(For the last equation, see Lemma 1.7.4.) Hence @ = 0 = f and b =
on max{N - 2,1}. Finally, we see from the lower semicontinuity of Gpu
that ¢ < min{bt,d}, and from Corollary 3.2.6 that ¢ = (bt + d) /2. Hence
bt =¢c=d, and so

Gpu(z) = ony max{N — 2,1} min{zy, ¢} (z € D).

4.3. The distributional Laplacian

We have seen that if u is a potential on a Greenian open set {2, then u is
superharmonic on 2 and the greatest harmonic minorant of u on 12 is the zero
function. Here we prepare for the proof of a converse result, Theorem 4.4.1
below.

Definition 4.3.1. We use Cp({?2) to denote the vector space of all real-valued
continuous functions ¥ on RY such that supp & is a compact subset of 12,
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and use C§°(f2) to denote the subspace of infinitely differentiable elements

of Co(12). If u : 2 = [—o0,+0o0] is locally integrable on {2, then we define a
linear functional on C§° ({2} by

Lo(¥) = /ﬂ uAT AN (T € C(0)),

and call Ly, the distributional Laplacian of u. If v is another locally integrable
function on 2, then clearly L4, = L, + L, on C§°(12).

Theorem 4.3.2. (i) If u € C*(12), then L, (¥) = fo BAud) for each ¥ in

G (92).

(i) If h € H(12), then Ly is the zero functional on C§(12).
(iii) If s € S(§2), then Ly is a positive linear functional on C§°(12).

Proof. Let w € C%(12), let ¥ € C§°(12), and let w be a bounded open set such
that supp¥ C w and @ C {2. Further, let g € C§°(w) be such that g = 1 on
an open set containing supp %, and let By be an open ball containing w. If
we define ug to be 0 on R \w, then Green’s formula yields

/BO [(ug) A% — # A(ug)} dA = /QBU 0.do,
and so

/uA!FaL\:[ T AudA. (43.1)
n 2

This proves (i) and ii).

To prove (iii), let s € S(12), and let &,w,g be as above. It follows from
Theorem 3.3.3 that there is a decreasing sequence (s,) in S{w)}NC* (w) such
that s, — s pointwise on w. In particular, As, > 0 on w for each n, by
Corollary 3.2.8. Thus [, snA¥ dA > 0 whenever ¥ > 0, by (4.3.1). Letting
n -+ 0o and using the monotone convergence of {s,(A%)*) and (s, (A!P)_),
we conclude that L,(¥) > (, as required. 0

Corollary 4.3.3. If s € 5(12), then there is a unique measure p, on 12 such
that '

a;,lLs(!P)=/g!Pdp3 (@ € C2(0)),
where ay = oy max{1, N — 2}.

Proof. We will make use of the smoothing functions ¢, defined in Section 3.3.
Given any & € Cq($2), the functions

Fo(z) = [ bz - NI@ANY)  (c € RY)
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belong to C§°(42) for all sufficiently large n, and ¥,, — ¥ uniformly on R¥
by the uniform continuity of ¥. By Theorem 4.3.2, L, is a positive linear
functional on C§°(£2). It follows easily that (L¢(%,)) is Cauchy, so we may
define

|
L(w) = nlgr;o ey L.(F,).

This yields a positive linear functional on Cy(£2) such that L = ay'Ls on
C5°(2). Further, any positive linear functional on Cy(f2) with this property
must satisfy the equation used to define L, so L is the only such functional.
The result now follows from the Riesz representation theorem (see Appendix).

a

Definition 4.3.4. If s € 5(12), then we call the measure y, in Corollary
4.3.3 the Riesz measure associated with s. If u € U(12), then we define the
Riesz measure p,, associated with u to be that associated with the subhar-
monic function —u. Thus, in all cases, the Riesz measure is a (non-negative)
measure. The reason for the constant ay in the statement of Corollary 4.3.3
will become clear in Theorem 4.3.8 below.

Theorem 4.3.5. Let u,v € §(12) and suppose that L, = L, on C°(2).
Then there exists h in H(f2) such that u = v+ h on 12. In particular, if
u € 5(12) and L, is the zero functional, then u € H(12).

Proof. Let u and v be as in the first sentence of the theorem. Also, let w
be a bounded open set such that @ C (2 and choose ng in N such that
ng' < dist(@, RV \§2). (If 2 = RV, then we choose ng = 1.) We define

Ty n(z) = [Q bu(z—u)sy)dNE) (5 € S(D;n > nos € w),

where ¢,, is the C° function described in the introduction to Theorem 3.3.3.
It follows from that theorem that Ty, € C°(w), and differentiation under
the integral sign yields AT, ,(z} = Ly(¢n(z — - )) when z € w since

32 62

F5Pe\T —Y) = T0nlT — fi h 1.

8m§¢ (z—y) By?(b (z—w) or each i
Let hn Sdyn T‘yln- Then

Ahp{z) = Lu(qbn(m - )) - Lv(¢n($ - - )) =0 (zew),

and so h, € H(w). It was shown in Theorem 3.3.3 that T, ,, | s as n — oo.
If x € w, then it follows by monotone convergence that

ho(x) = Alhp; 2,7} = ATy piz,1) — ATy pix, 1)
- A(u;z,7) — A(v;z,r) {n—o00) (4.3.2)
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for all sufficiently small values of r. Further, for fixed r, the functions
A(Tun;-7) and A(T} ;-,7) are uniformly bounded on w since s < T, <
Tsn, and s is locally integrable. Hence the function A = limp_yoo by is
harmonic on w, by Theorem 1.5.8. From (4.3.2) we see that A(u;z,r) =
A(v; z,7) + h(z), and letting r -+ 0+ we obtain « = v + h on w, by Corol-
lary 3.2.6. The first assertion of the theorem is now established, in view of the
arbitrary nature of w. The second assertion follows from the first on letting
v=0. g

Lemma 4.3.6. Let y € RN and v = U7,. Then L,(¥) = —an¥(y) for each
¥ in C§R(12).

Proof. Let ¥ € C§°(§2) and let By be an open ball containing (supp %) U {y}.
Then Green'’s formula yields

f U, A d)
BD\B(y!S)

T—y T—y
_ [5 . {Uy(mxw(m), i) - B@) (VU ), o y”>} doa),

where £ > 0 is small, and so

/ Uy A¥ d) + max{N - 2,1} =¥ f #(z) do(z)
Bo\B(y.s)

5(y.e)
< max{[[VE¥()]| : z € B(y,e)}/ U,(z)do(c) =0 (e = 04).
S{y.e)
Hence

L, (%) = /B U, A dA

=30
= —an¥{y). |

= — lim (an/on)et™V /S( )W(ﬂf) do(z)

Theorem 4.3.7. Let f be a holomorphic function on a domain §2 in C such
that f £ 0, and let 21, 22,... be the zeros of [ with multiplicities my, ma,.. ..
Then the Riesz measure associated with the subharmonic function loglf| is
Y. Mad;,, where &, is the unit measure concentrated at the point z.

Proof. We can write f(z) as (z — z,)™" g,(2) on some open disc B, centred
at zn, where g, is holomorphic and free from zeros in B,,. Hence

loglf(z)] = ~mnU., (2) + log|gn(2)| (z € By),
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and log|gn(z)| € H(B,). It follows from Lemma 4.3.6 and Theorem 4.3.2(ii)

that
2mma (2,) - (¥ € C°(By))

Liog 111(¥) =

tog 171(F) {o (# € C(\{zn : n > 1))).

Since any ¥ € C§°(f2) can be written as ¥ + - + % for some k € N, where
Vo € C3°(N\{zn : » > 1}) and ¥, € C§°(B,) when 1 < n < k, the Riesz
measure associated with log| f| is as stated. .d

Theorem 4.3.8. (i} The Riesz measure associated with a potential Gou on
a Greenian open set §2 is p.
(1i) The Riesz measure associated with a logarithmic potential Up on B2 45 4.

Proof. We write Go(z,y) as Uy(x} ~ hy(z) and let v, = Go( - ,y). Then
Ly, (¥) = Ly, () (¥ € C3(92), (4.3.3)

by Theorem 4.3.2, since h, € H(f2). Now let v = Gpu and & € C5°(12).
From Fubini’s theorem, (4.3.3) and Lemma 4.3.6 we obtain

) = [ { | Gate.ndut} 40 irGa
- /ﬁ Lo (#) duy) = —ay /Q P(y) dp(y),

from which (i) follows.

To prove (ii) we let & € C5°(IR?) and choose r such that supp ¥ C B(0, ).
Let uh = U(ﬂ'lB(O,r)) and We = U(ﬂlkﬂ\B(O,r))- Then Up. = + we and
wy € H(B(0,r)), so Ly, (¥) = Ly, (¥). Since the function (z,y) = Uy(z) is
bounded below on {supp &) x B(0,r), the argument used to prove () now
applies also in this case. |

Corollary 4.3.9. Let Gop be a potential on a Greenian open set 2 and
let W be an open subset of 2. Then Gou is harmonic on W if and only if
wW) =0.

Proof. Let v = Gou. If u(W) =0, then v € #(W), by Theorem 4.2.3. Con-

versely, if v € H(W), then it follows from Theorem 4.3.2 (applied to C° (W)

and Corollary 4.3.3 that y, (W) = 0. Hence u{(W) = 0, by Theorem 4.3.8. O
In the opposite direction to Corollary 4.3.3 we prove the following.

Theorem 4.3.10. Let u be a measure on an open set 2. Then there erists s
in S(12) such that the Riesz measure associated with s is p.

Proof. Let (K,) be a sequence of compact subsets of {2 such that K,, ¢ K2 1
for each n and such that |J_ K, = 2. Further, we choose (K,) in such a way
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that, for each n, each bounded component of RY\K,, contains a point of
RN\{2. Let py = pli,, let pn = pilk, o \k, (7> 2) and define

Un() = - / Uy(@)dun(y) (@€ RY;n> 1),

Then u, € S(RY) (n > 1) and u, € H(K2) (n > 2). It follows from
Theorem 2.6.4 that, whenever n > 2, there exists h, in H{f2) such that
|tn — Bn} < 27" on K,.1. We now define

o
s=ur+ Y (um — hm)
m=2

on {2, and observe that, if n > 2, the series

Q0

Z (Um — hm)

m=n

converges uniformly on K, to a harmonic function. Hence s € S(£2).
Let ¥ € C§°(42), and choose n > 3 such that supp ¥ € K3. Then

s:—/K Uy du(y) — th+ Z(um_hm)
L m=2

m=rn

on {2. Since the second and third terms on the right-hand side of this equation
are harmonic on K, it follows from Theorem 4.3.8 that

a‘,—vlLs(W):/ Wd,u:/ & du.
it

n

Hence the Riesz measure associated with s is pu. O

4.4. The Riesz decomposition

Theorem 4.4.1. (Riesz decomposition theorem) Let u be superhar-
monic on e Greenian open set (2, let u,, denote its associated Riesz measure
and suppose that u has a subharmonic minorant on [}. Then Gapu, is a po-
tential on (2 and uw = Gop, + h, where h is the greatest harmonic minorant
of u on (2.

Proof. Let (K, ) be a sequence of compact subsets of {2 such that K, C K3,

for each n, and such that | J, Ky, = {2. Further, let ,u&") denote the restriction
of p, to K. It follows from Theorem 4.3.8(i) that the distributional Laplacian

of Gqp u&n) is equal to L, on C§°(K2). Hence, by Theorem 4.3.5, there exists v,
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in H(X?2) such that u = v, +Gaui™ on K2. It follows that vy +GouittY =
vn + Gopt™ on K2, Let

@) =vans@+ [ ol dily) (o€ Ki).
Kn41\Ka

Since potentials are finite almost everywhere (A), we see that v], = v, almost

everywhere (A) on K , and hence everywhere on K3, by continuity. Also,

v=1v, + szi.") on K3, and v}, € U(K} ) NH(K}). Hence the function

1 m) — {'U;z(x) (ﬂ}' € K:+1)
n u(z) — Caui(z) (¢ € \K,)

v

is well-defined, belongs to U(2)NH(K}), and satisfies u = vji + Gguff) on fJ.

Let h be the greatest harmonic minorant of « on f2 (this exists by Theo-
rem 3.6.3). Then v/ — h > —Goul”, so the greatest harmonic minorant, k'
say, of v} — h satisfies G g,u&") > —h', and hence A’ > 0. It follows that

u-h=0"—h+Gou > b +Goul™ > Gaui™.

Letting n — oo, we see from the monotone convergence theorem that u—h >
G iy, and so Gpu, is a potential. Also, by Theorems 4.3.5 and 4.3.8, there
is a harmonic function A" on 2 such that u = Gou, +h". Hence u > A" > h,
and so k" = h, by the definition of h, which proves the result. O

If the superharmonic function u in the above result is non-negative, then
its greatest harmonic minorant h is certainly non-negative. This leads to the
following representation result for the case where {2 is all of RV, a ball or a
half-space.

Corollary 4.4.2. (i) If u € URN) (N > 3) and u > 0, then u =
J Uy dpo{y) + ¢, where c is a non-negative constent.

(i2) If By is an open ball, © € U{Bg) and u >0, then v = Gy + I, where
I, denotes the Poisson integral of ¢ measure v on 8By.

(iii) If u € U(D), where D = {(z1,...,2n) 1 2N > 0} end u > 0, then

u(z) = Gppulz) +L(z) +can (z € D),

where T, denotes the Poisson integral of a measure v on dD satisfying (1.7.1)
end ¢ > 0.

Proof. This follows by combining Theorem 4.4.1 with earlier results for non-
negative harmonic functions on these particular open sets: see Theorem 1.2.6
for (i}, Theorem 1.3.8 for {ii), and Theorem 1.7.3 for (iii). 0

Corollary 4.4.3. Let u € U(12) and let W be a bounded open set such that
W C (2. Then there exists h in H(W) such that u = [, Uydp.{y)+hon W.
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Proof. Since W is Greenian and % is bounded below on W, the Riesz rep-
resentation theorem shows that u = Gw (u.|w) + # for some h' in H(W).
We write Gw( - ,y) = Uy — hy and note that the function (z,y) = hy(z) is
symmetric on W x W. Hence y — hy(z) is harmonic on W for each z € W.
Also, if V is any bounded open set satisfying V' < W, then the function
(z,y) = Uy,(z) is bounded on V x W, and it follows by applying the mini-
mum principle on W that the function (z,y) — hy(z) is bounded on V x W.
Noting that p, (W) < +oco, we obtain

w(z) = fw Uy(z) ditn(y) — /W ho(@) duay) + K@) (zeW).

Since the second integral in this equation belongs to H (W) (see Theorem 3.3.1
and use the above boundedness property of hy(z)), the result is proved. O

Corollary 4.4.4. Let u be superharmonic on an open set which contains
B(z,r). Then

u(z) = M(u; z,7} + max{N — 2,1} /r =N, (B(z, )} dt (4.4.1)

and

Mu; 2,63/ Vn(e) 2 pyu({z]}) (e = 04}, (4.4.2)
where Vi (t) = 2N if N > 3, and Va(t) = log(1/t).
Proof. 1t follows from Corollary 4.4.3 that there exists h in H{B(z,r)) such

that u = fB[z o Uy dp,(y) + h on B(z,r). Hence, by Fubini’s theorem and
the mean value property of harmonic functions,

M(u; 2, p) = ” )M(Uy; z,p)dp(y) + h{z)  (O@<p<r). (443)

It follows from parts (i) and (ii) of Example 4.2.9 that
M(Uy; z,p) = min{U.(y), Vn (p}}. (4.4.4)

Let a(t) = pu(B(z,t)). If 0 < & < p < r, then we see from (4.4.3) and (4.4.4)
that

Mu; 2,8} — M{u; z,p)
- / Var(t) dax(t) + Viv(€)axfe) — [ Viv(t) delt) - Virip)alp)

- / " Vn(t) dalt) + Vi (E)ale) - Vi (p)alp) (44.5)

P
- / alt) dVi (1),

£
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using integration by parts for Riemann—Stieltjes integrals. Letting p — r—
and € — 0+ we obtain (4.4.1), in view of Corollary 3.2.6 and the continuity

of M(u; 2, -) on (0,7). Further, (4.4.5) and the monotonicity of Vi yield
) ]
lim sup | 22,6 _ {2 < Iimsup{ / dor(t) + (o) — ,uu({z}))}
=0+ VN(E) e—0+ £
= a(p) — pu ({2},
and since p can be arbitrarily smail, (4.4.2) follows. O

Corollary 4.4.5. (Jensen’s formula) Let f be holomorphic on o disc
B(z,R), let 0 < r < R, and suppose that f £ 0. Then

log|f(z)| = M(log|fl;z,7) = > mxlog(r/|zx|),

k=1
where z3,...,2, are the zeros of f in B{z,r) with multiplicities my,...,mn.
Proof. This is the special case of the previous corcllary where u = — log | f| :

by Theorem 4.3.7,

[ B =Y |

0 k=1 |zl

r

n
t7ldt = my log(r/|z).
k=1
O

Corollary 4.4.8. Let v € U((2), where 12 is Greenien. Then u has a har-
monic minorant if and only if Gy, is o potential.

Proof. If « has a harmonic minorant, then Ggu, is a potential, by the
Riesz decomposition theorem. Conversely, if Gop, is a potential, then Theo-
rems 4.3.5 and 4.3.8 show that there exists h in H{{2) such that v = Gopu,+h,
and so h is a harmonic minorant of u. (|

Corollary 4.4.7. Let u € U(§2), where v > 0 and £2 is Greenian. Then u
is ¢ potential if and only if the greatest harmonic minorant of u is the zero
Sfunction.

Proof. The Riesz decomposition theorem asserts that v = G, + h, where
h is the greatest harmonic minorant of u on f2. If A = 0, then u is clearly
a potential. Conversely, if u = Gop for some measure p, then g = g, by
Theorem 4.3.8, and so h = (. a

Corollary 4.4.8. Let f be a holomorphic function on the unit disc B such
that f £0, and let 21, 22, ... be the zeros of [ with multiplicities my,ma,.. ..
The following are egquivalent:
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{a) M(log|f|;0, -) is bounded above on (0,1);

{(b) log | f| has a harmonic majorant on B;

(¢) 22n Mn(l — |2a]) < +o0;

(d) log|f(2)| = =3, maGB(z,2n) + h(2) for all z € B, where h € H(B)
and Gg is as given in Theorem 4.1.5(i).

Proof. We know from Corcllary 3.2.9 that log|f| is subharmonic on B and
harmonic on B\{z, : n > 1}. Further, it was shown in Theorem 4.3.7 that
the Riesz measure associated with log|f] is the sum of point measures of
mass my located at the points z,. The equivalence of (b) and (c) now follows
from Corollary 4.4.6 and Theorem 4.2.5(ii). The Riesz decomposition theorem
shows that (b) implies (d), and the converse also clearly holds. Finally, (a)
and (b) are equivalent by Theorem 3.6.6. O

4.5. Continuity and smoothness properties

Theorem 4.5.1. Let u € U(f2) and E = (supp p,,) N12. If u|g is continuous
in the extended sense at a point z in E, then u is continuous at 2.

Proof. Let z € E, choose gy such that B{z,g0) C 12, and define E' = EnN
B(z,e0). fu(z) = +0co, then v has limit +00 at z by lower semicontinuity. We
may therefore assume that u(z) < +o0o. H0 < ¢ < gg, then by Corollary 4.4.3
there exists h, in H{B(z,¢)) such that u = v, + he on B(z,¢), where

wiw) = [ UEdn @R

We note that p.({z}) = 0 since u(z) < +00. Suppose that u|{g is continuous
at z, and let (z,) be any sequence of points in f2\{z} such that z, — z. For
each n we choose z!, € E' such that [jz, — z, || = dist(z,, E'). H y € E', then
lzn — ¥l 2 llzn — 23], s0
llzn — 9l < llz5, — zall + l|lza — yll < 2llza —¥ll.
Hence ,
Ve(zh) + pu(B(z,€)) log2 (N =2)

Ue(2p) < { (4.5.1)
ARSCNEN) (N > 3)

and z, — 2. Thus

0 < liminf u{z,) — u{z) < limsupu(z,) — u(z)
n—o0 Nn—oo

= limsup v (%5} — v (2)
n—o0

) {uu(B(z,E)) log2 (N =2)

2N — o (z) (N >3),



110 Chapter 4. Potentials

using (4.5.1) and the continuity of v¢|g at z. Since this holds for arbitrarily
small £ it follows that u(z,) = u(z), as required. O

Corollary 4.5.2. Let 2 be Greenian and let p be a measure with support
K, where K is a compact subset of 2. If Gou is finite-valued then, for each
positive number €, there is a compact subset L of K such that u(K\L) < ¢
and G g (4|1} is continuous.

Proof. Let ¢ > 0 and v = Ggou. It follows from Lusin’s theorem (see Ap-
pendix) that there is a compact subset L of K such that u(K\L) < £ and v|y,
is continuous. Let v; = G (plz) and va = Ga (k[x\1), 50 that v = v; + vy,
Also, if z is a limit point of L, then using the lower semicontinuity of vy
(k¥ =1,2) and the continuity of v|; , we obtain

< limi -
0< zli}n:zl,:ln%fl, n{z) —n(z)

< limsup v (x) — v1(z)
z—2z,ZEL

= limsup {—va(z)} + v2(2) < 0.

t—z,2€l
Hence v |z, is continuous. It follows from Theorem 4.5.1 that 11 is continuous.
O

Theorem 4.5.3. Let f : RV — R be a bounded Lebesgue integrable function
with compact support. Then the function

uo) = (U@ DG @R (45.2)
belongs to C'(RY) and, for anyi € {1,...,N},
g—z(z) = / {a—i-;Uy(a:)} Fly)dA(y) (z = (z1,22,...,2n)). (45.3)

Proof. Let z € BRY and 0 < ¢ < 1, and define

w@= [ GE@WDE) @R,

2

w@=[ @A) @eRY),
RN\ B(z,6)
Then u = 4, + v, and v, is harmonic on B(z,£). Thus

lim sup|u(z) — u(z)| < Em sup|ue(x) — u.(2)]
Tz i -4

< 2(sup 1) fB L UA)

=0 (e 0+),
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proving the continuity of «. Similar reasoning shows that, if w; denotes the
right-hand side of (4.5.3) (where ¢ = 1,2,..., N), then w; is continuous. Let
P1,P2, - - -, pN denote the standard unit basis vectors for RY. If ||z — y|| > 2e,
then in the case N > 3,

Uy (z +epi) ~ Uy(2)] < (llz = gll = €)* ™ = [lz = I~V
<(N=2e(llz-yll-&)' ™"
< VLN — el — gl Y,
and in the case IV = 2, similar estimates yield
[Uy(z + epi) — Uy (2)] < 2el|z — gl 7"
Thus

vae(z + Ep;} — v2:(2)
£

Swilz) (e 045i=1,...,N),

by dominated convergence. Also,

i) — . 2
lim sup uze(z + epi) = Uze(2) < limsup Zsup|/] Uy(z) dA(y)
e—0+ £ e—0+ € B(z,2)
=0.

Hence {u{z+ep;)} —u(z)} /e has limit w;(z) as & —+ 0. This shows that (4.5.3)
holds and that u € C*(R") since w; is continuous. O

Corollary 4.5.4. Let f be a function in C¥*(RY) (k= 1,2,...) with compact
support. Then the function u defined by ({.5.2) is in C*H(RY).

Proof. Suppose that £ = 1. Using the symmetry of the function (z,y) —
Uy(z) and integration by parts, we see from Theorem 4.5.3 that

;";ﬁ(z) -/ {B%Uy(z)} fo) ) = | Uy(z)%(y)d)\(y)

for any = € RV . Appealing to Theorem 4.5.3 once more, we see that du/dz; €
CHRM) and '

2H
5o = [ {00 | Lwaw  i=1z..m,

In particular, u € C*(R"}. An induction argument deals with general values
of k. O

The equation Au = —an f is known as Poisson’s equation. (Here ay =
on max{l, N — 2}, as before.)

Ustredni knihovna
Matermn, f,» fakuity Uk
odad.*rnatamaﬂcka

okolovska g3
Lo X R T & - Kl
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Corollary 4.5.5. Let f be a function in CL(RY) with compact support.
Then ({.5.2) defines a solution of Poisson’s equation.

Proof. 1t follows from the preceding result that u, as defined by (4.5.2), be-
longs to C?(RM). Hence, by Theorem 4.3.2(i),

Lu(¥) = f TAud) (¥ € CP(RY)). (4.5.4)

Also, writing u as the difference of two Newtonian potentials {or logarithmic
potentials, if N = 2} corresponding to the measures f¥dX and f—d)A, we see
from Theorem 4.3.8 that

Lo(P) = —ay (f@f+dhu/Wf‘dA) |

= _an / widy (¥ e CF@®Y)). (4.5.5)

Since Au+ayf € C(RY), it follows from (4.5.4) and (4.5.5) that this function
must vanish identically. O

4.6. Classical boundary limit theorems

The purpose of this section is to study the boundary behaviour of superhar-
monic functions on the unit ball B. We noted in Lemma 4.2.2 that, if y has
compact support contained in B, then the potential Ggp has limit zero at
all points of S. Qur first step will be to show that every potential on B has
zero radial limit o-almost everywhere on S.

We begin with a covering lemma.

Lemma 4.6.1. Let {B(zn,74) : @ € I} be a collection of balls and let E C
U, Blxa, 7o), where E is a bounded set and sup, ro < +00. Then there is a
countable disjoint subcollection {B(Za,,Ta,) 1 k > 1} of these balls such that
E C Uy B(za, 570 )-

Proof. We may assume, by deleting redundant balls, that EN B(z,,7.) # 0
for all a. We choose  such that r,, > 271 sup, r,, and proceed inductively
as follows. Given a, g, ..., o we choose (if possible) agyy such that

Tappr 2 27 sup{ra : B(€a,Ta) N B(Za;,Ta;) = B for j =1,2,...,k}.

If, for some k, there is no ball B(z4,7) which is disjoint from the balls
B(zs,,72,),..., B(Za,, T, ), then the construction terminates at this stage,
leaving us with a finite disjoint subcollection of balls. Qtherwise we obtain
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a countably infinite disjoint subcollection. Tn the latter case it is clear that
o, — 0as k — oo, since B is bounded. o '

We now fix of such that o ¢ {ex : k > 1}. (If this is not possible,
then there is nothing further to prove.) It is clear from our (ihoi(:(? of a; that
Toy 2 T (2. M Tey 2 Tw /2 for all k, then our subcollection is finite and

B(ma’:ra’) ﬂB(ﬂJaj,Taj) '_}é ‘D (4.61}
for some §, whence
’ B{zg,Tor) € B(Za;, 97a;)- (4.6.2)

If there is a value of k for which rq,,, < Tar/2, then we choose ko to be the
least such value. It follows that (4.6.1) holds for some j in {1,2,...,ko}; for,
if that were not the case, then o' should have been chosen in preference t..o
k41 1N the construction of the subcollection. Since rq; > o /2, we again

obtain (4.6.2). '
Finally, in view of the arbitrary nature of o', we conclude that

EC UB(:ra,ra) C UB(Sﬂak,5Ta,,)~
o k

Lemma 4.6.2. The Green function for B satisfies

Gplz,y) < 2max{l,N -2} (1= |||li”—)-(;||;'“ym (z,y € B). (46.3)

Further, if N = 2, then

Goto) <tog (M) e nw - lalb2).  (@54)

Proof. Since log(1+1t) <tand1—(1 +¢)1-N/2 < (N/2 - 1)t when t > 0, we
see from Theorem 4.1.5 {the formula involving ¢) that

(1 — =) = lll®)

llz — yllv

and so (4.6.3) holds. Secondly, if |ly — || < (1 — ||lzi])/2, then 1 — ly|| <
3(1 — |j=!|)/2 and Theorem 4.1.5(i) yields

(L= ol _ oty g 25 (L llol)?
e T,

when N = 2. Thus (4.6.4) also holds. g

Gglz,y) € 27 max{1,N - 2}

Gglz,y) <271 log{l +6

Lemma 4.6.3. If u is a positive superharmonic function on Baenda >0,
then there is a sequence (B(zx,ri)) of balls such that
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{z € B:u(z) > a} €| Blzx,m) (4.6.5)
k
and c
o< Zu(0), (4.6.6)
k

where C' is a positive constant depending only on N. Further, if u is harmenic
on B, then rp > 5(1 — ||zg|]) for each k.

Proof. By the Riesz—Herglotz theorem and Riesz decomposition theorem, we
can write © as the sum of a potential and a Poisson integral: Ggu + I,,. For
each x € B we define

B, = B(s:, 1—_2H—$ﬂ) u1(z) = Gp(uls. ) (z)

and
u2(7) = Ge(pss. ) () + L(2).

In view of Theorem 4.2.5(ii), we obtain a finite measure ' on R by writing
W(B) =max(L,N =2} [ (1= [ulDduts) + o5 H(ENS)
nB

for each Borel set E. We define mq(t) = p'(B(zx, t}).
Now suppose that z € B is such that

ma(t) < ﬁiNtN—l (t > 0). (4.6.7)

If N >3, then Gp(z,y) < ||z — y||>~" , so we may use integration by parts
and (4.6.7) to obtain

w(@) < 7o [ =IO i) )
2 r— 2—N g,.1
S IN=2)0 =Tl fB llz — wil*~ " di'(y)
9 (1-1zfh)/2 .
S W-2- ||x||)/o ¢ dma )

< 9 -/‘(l—llzll)/2 N
<. 1N, (£)dt
T=Till Jo ()

() ()

< : (4.6.8)

wle

2«
3N
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If N = 2, then we similarly use (4.6.4) to obtain

0 a-llel}/z 501 — ||z|))
(@) < m/ﬂ 1og(—2t—)d'mz(t)

9 /-(l—uz%l)/? X ()
< — it my(f)dl +
1—|lzjl Jo

2log5 1 -z}
1*|1;c||m1( 2 )

1+logh a
L — —. 6.
S5 @ < 3 (4.6.9)
Also, when N > 2, we can use (1.3.1), (4.6.3) and (4.6.7) to obtain

us(z) < 2(1 — Yl fE =l W

00
— 201 — ||z} ]( £N dmg (1)

1-llzl}/2
+oo
<aN(1 - Jal) [ NIy (1)t
(—ll=l)/2
< a(t — |l=]) 2 = 28 (4.6.10)
3 (1-fzll)/2 3

If we combine (4.6.8) — (4.6.10), we see that u(z) = uy(z) + ue(z) < a
whenever (4.6.7) holds.

Let B, = {zx € B : u(x) > a}. We have shown that, if = € E,, then
(4.6.7) fails and so there exists t, € (0,2) such that mg(ty) > atl "1/6N.
Since By € Uzer, B (z,t,), we see from Lemma 4.6.1 that there is a countable
disjoint subcollection {B(zx,tz,) : k > 1} such that B, C U, Blzx,7x) where

7 ri = btg, . Hence (4.6.5) holds. Also, it follows easily from Theorem 4.1.5 that

Gg(0,z) > max{1, N — 2}(1 - i} (z € B).

Thus
w(0) > max{1, N — 2} [B (1 - llel)du(z) + o5 (S)

—_ 51— N-1
=u'(B>z¥u'(B(mk,tz,,>)> N aijrk ,

and so (4.6.6) holds with C' = 5¥~16N. Finally, if u is harmonic on B, then
=050t >1—|z| for each z € E, and hence ry = 5tz, > 5(1 — llzkl])
for each k. a

Theorem 4.6.4. (Littlewood) If u is & potential on B, then u(rz}) =+ 0 as
r — 1— for o-almost every z in S.
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Proof. We can write « as Gppu. Let n > 2 and a > 0, and define

vy = Gp(ulpo1-n-1) and  u, =Galulp\pe1-n-1))-

Thus % = u, + vy. By Lemma 4.2.2, v, has limit 0 at all points of 5. Let
(B{zx,7%)) be a sequence of balls as in Lemma 4.6.3 for the superharmonic
function u,. By (4.6.5),

limsupu(rz) = limsupun{rz) <a

r—=1-— r—l—
for any z in S such that the radius from 0 to 2 does not intersect the set
B(zx, ™)\ B(0,1/2) for any k. Since u,(0) = 0 as n — co by monotone
convergence, we see from (4.6.6) that limsup,_,;_u{rz) < a for o-almost
every z in S. The result now follows since a can be arbitrarily small. O

In order to study the boundary behaviour of more general superharmonic
functions, we now examine boundary limit properties of harmonic functions.

Definition 4.6.5. (i) If z € S and 0 < a < 7/2, then we define the cone
Io={z€B:{z—xz,2)>|z—z|cosa}.
(i) A function f : B — R is said to have non-tangentéal hmitlat z e Sif

lim  f(z) =1

—z,26C: o

for every a in (0,7/2).

Theorem 4.6.6. If f is a o-integrable function on S, then Iy has non-
tangential limit f(2) at o-almost every point z of S.

Proof. Let £ > 0, ¢ > 0 and 0 < a < w/2. It follows easily from Lusin’s
theorem (see Appendix) that there is a continuous function g on 5 such that
J1f —gldo < oye. By Lemma 4.6.3 there is a sequence (B(zg, 7)) such that
e > 5(1 — {lzkll),

(g€ B:Ijy_y(c) >a} C|JBlzs,me)
k

and c o
— £
> i LS =g (0) <~

k

When & is small so are all the radii 7, and it is not hard to see that

o({z €8 limsup Ijy_g(z) 2 a}) < C(N, a)zri\’—l
k

242,260 o

< —-C(A;’ a)e. (4.6.11)
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where C/(IN, a) is a constant depending only on N and a, not necessarily the
same on any two occurrences. We also have the simple estimate

Uf — gl(z 1 _ INE
dresif-d@zeps; [ -dies TR @61)

Further, by (1.3.4),

imsup |I;(z) = f(z)| = limsup |I5_4(z) — (f — 9)(2) + Ly () — a(2)]

r—z,26C: o r—2,2E0 o

= limsup |[If_g(z)—(f— g)(z)|

£—7,2€0C% 0

< Timsup Jj_g (@) +1f - gl(2).

z—2,TEC; o

Hence, by (4.6.11) and (4.6.12),

U({zES: lim sup |I,($)—f(z)|32a})50_("-vz“—)5.

-z, 260 & [4)
Letting £ — 0, we see that

limsup |I;{z) — f(2)| <2a for c-almost every z € S.

-3z, TC0;: a

Since @ can be arbitrarily small, and « is arbitrary in (0,7/2), the theorem
follows. O

We know from Corollary 1.3.10 that any bounded harmonic function on B
can be expressed as the Poisson integral of a g-integrable boundary function
. The above theorem shows that such a harmonic function has finite non-
tangential limits almost everywhere on S, and identifies the limits with the
values of f almost everywhere. In view of the Riesz—Herglotz theorem the
next result shows that any positive harmonic function on B also has finite
non-tangential limits almost everywhere on §. We refer to the Appendix for
the terminology of the next result, which arises out of the Radon—Nikodym
theorem.

Theorem 4.6.7. (Fatou) Let h = I, , where p is @ measure on S, and let f
denote the Radon—Nikodym derivative of the absolutely continuous component
of i with respect to o. Then h has non-tangential limit f(z) at o-glmost every
zin S.

Proof. By the Lebesgue decomposition theorem and the Radon—Nikodym the-
orem we can write du as fdo + dv, where v is singular with respect to o.
Let u denote the non-negative superharmonic function min{1. I,}. By Corol-
lary 1.3.10 and Theorem 1.3.8 we can write the greatest harmonic mino-
rant of ¥ on B as I, for some non-negative o-integrable function g¢. Then
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I_go=1,—-1I, >0,s0v-go 20, and it follows that g = 0 almost every-
where (o). Thus u is a potential on B. By Littlewood’s theorem u, and hence
I, , has radial limit 0 almost everywhere (o) on 5. By Harnack’s inequalities
it follows easily that I, has non-tangential limit 0 at the same points of S.
The result is now established, in view of Theorem 4.6.6. O

Corollary 4.8.8. Ifu is a positive superharmonic function on B, then u(rz)
has o finite limit as r — 1— for o-almost every z in S.

Proof. This follows immediately from Fatou’s theorem and Littlewood’s the-
orem in view of the Riesz decomposition theorem. O

4.7. Exercises

Exercise 4.1. Let By = {z € B : zx > 0}. Write down the Green function
for B, in terms of the Green function for B.

Exercise 4.2. Let D = R¥=1 x (0,+0c) and 0 < p < (N — 1}/N. Use the
inequalities (4.2.4) to show that for each y € D the function

t (Gp((a', t), y)PdX (=)
RN-1
is identically +0o on (0, +co). Using Lemma 4.1.8, deduce that if u is positive
and superharmonic on D, then

f (u(@, O V(@) =+oo (¢ > 0).
RN-1

Exercise 4.3. BEvaluate the distributional Laplacian of the subharmonic
function s(z) = el*l sinz; on R x (0,).

Exercise 4.4. Let u € U{(B), where u > 0. Show that u is a potential on B
if and only if M(u;0,r) #0asr = 1—.

Exercise 4.5. Let (u,) be an increasing sequence of potentials on B. Show
that lim u,, is a potential if and only if M(ug;0,7) = 0 as 7 = 1— uniformly
in n. Write down an increasing sequence of potentials (v,) on B such that
iimv, = 1.

Exercise 4.6. Let u = K(-,y), where K is the Poisson kernel of B andy € 5.
Show that if @ > 0, then min{u,a} is a potential on B.

Exercise 4.7. Let u be a potential on a Greenian open set {2. By considering
subharmonic minorants, show that if 0 < p < 1, then w” is a potential on {2.
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Exercise 4.8. Show that every positive superharmonic function on a Gree-
nian open set §2 is the limit of an increasing sequence of potentials on {2.

Exercise 4.9. Let {2 be a Greenian open set and let u be a measure with
compact support in £2. Show that there exists an increasing sequence (1q) of
potentials belonging to C*°(§2) such that u, — Grpon 2 as n— co.

Exercise 4.10. Show that if {2 is a Greenian open subset of R?, then the
subharmonic function log™ |}z|| has a harmonic majorant on {2.

Exercise 4.11. Let f be a non-constant holomorphic function on the unit
dise B. Use the result of Exercise 4.10 to show that if f(B) is Greenian, then
f belongs to the Nevanlinna class; that is,

2w
sup [ log* | f(re'?)| df < +o0.
0<r<1J0

Exercise 4.12. Show that if » is a positive superharmonic function on
RY (N > 3) with associated Riesz measure fi,, then 72N 4 (B(0,7)) = 0 as
r — 4oo. (Hint : use Corollary 4.4.4.)

Exercise 4.13. Let (a,) be a sequence of complex numbers such that 0 <
lai] < laz] € ... < 1and 33(1 - lan)) converges. Let f be the “Blaschke
product” defined by f =[], fn, Where
|tn] an — 2

fnlz) = (Iz] < 1).

-K 1—@nz
Show that the product is locally uniformly convergent on the unit disc B,
that |f| < 1 on B, and that —log|f | is a potential on B. (Hint: show that if
|z] < R <1, then
_._la_nl_ an =2 | o 2(1 — |an|})

an 1—a@pzl = 1-—-R
and use the fact that [] f. converges locaily uniformly on B if 3°]1— fal
converges locally uniformly on B.)

1

Exercise 4.14. Let h € H(B). Show that the following are equivalent:
(a) there exist hi, hy € H4(B) such that b =h; — ha;

(b) (1= 2l [IVA@)I* dMz) < +oo;
{}al<1}

(c) /B(l ~lzIHVA@IP (L + [R(z))) 7 dA(z) < +oo.

(Hint: compute A(1 + K22 and A(g o h), where ¢ € C*(R) is a convex
function such that ¢(f) = [t| when |#} > 1. Then use Theorem 4.2.5(it) and
the subharmeonic form of Corollary 4.4.6.}
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Exercise 4.15. Let h € H(B) and let 9 : [0, +00) = (0, +00) be a decreasing
continnous function such that

+oo
() dt = +o0.
o

Show that if
[B (1 = sV A@IP @ o [h)(2) dA(z) < +oo,

then h is the Poisson integral of some integrable function on S. (Hint: define

o= | ) [ drar

compute A( o k), and use Corollary 4.4.6 and Theorem 1.3.9.)

Exercise 4.16. Let u be a positive superharmonic function on RN (N > 3)
which is harmonic on B. Show that

(1 +{z)*Nu(0) € u(z) < (1= [l2ly’""u(©0) (=€ B)

and deduce that
| Vu(O)] < (N — 2)u(D).

(Compare the Harnack inequalities in Section 1.4.)

Exercise 4.17. Suppose that 0 < o < N and let u be a measure with
compact support in RY. Define

Unu@) = [ llo=sllNau) (2 € BY),
Show that Uy, € U(RY)if a >2and Uy, € S(RN\ supp p) if o < 2.

Exercise 4.18. Let u be a positive superharmonic function on D=RN"1 x
(0, +00) and let @ > 0. Show that there is a sequence (B(zx, i) of balls such
that
{zeBND:u(z)>a}C UB(Ik,Tk)
k

and
Sorit< %u(o, ...,0,1),
k

where C is a positive constant depending only on N. Show further that, if «
is harmonic on D, then it can be arranged that 7 > 5(1 — lizx]|) for each k.

Exercise 4.19. Show that, if u is a potential on D), then
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U(I’, :L‘N) =0 (:L‘N i d 0+)
for XN-almost every (z’,0) in 0. (Recall that A’ denotes (N — 1)-dimensional

Lebesgue measure on 8D.)

Exercise 4.20. A function g : D — [—o00, +00] is said to have non-tangential
limit l at y € D if
lim_ g(z) =1

:z:—ry,:!;EF;’a

for every @ > (1, where

Il,={{zzn)an >allz - ¥} (=0
Prove that, if f: 81 — [~o0, +oc] satisfies
Lfw)]
LN (y) <
L T @ <o

then the half-space Poisson integral Z; has non-tangential limit f(y) at X'~
almost every y € 8D.
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Chapter 5. Polar Sets and Capacity

5.1. Polar sets

Sets on which a superharmonic function can have the value +co are called
polar. Since superharmonic functions are locally integrable, such sets must
be of Lebesgue measure zero. Indeed, polar sets are the negligible sets of po-
tential theory and will be seen to play a role reminiscent of that played by
sets of measure zero in integration. A useful result proved in Section 5.2 is
that closed polar sets are removable singularities for lower-bounded superhar-
monic functions and for bounded harmonic functions. In Section 5.3 we will
introduce the notion of reduced functions. Given a positive superharmonic
function © on a Greenian open set {2 and E C 12, we consider the collection
of all non-negative superharmonic functions v on 2 which satisfy v > u on
E. The infimum of this collection is called the reduced function of  relative
to E in 2. Some basic properties of reduced functions will be observed, in-
cluding the fact that they are “almost™ superharmonic. Later, in Section 5.7,
deeper properties will be proved via an important result known as the fun-
damental convergence theorem of potential theory. Before that, however, we
will develop the notion of the capacity of a set, beginning with compact sets.
Taking v = 1 and E to be compact, the above reduced function is almost
everywhere equal to a potential on (2, and the total mass of the associated
Riesz measure is called the capacity of E. For arbitrary sets I, we will define
inner and outer capacity and, if these are equal, will term E capacitable.
It will take some effort to establish that most reasonable sets (including all
Borel sets) are capacitable. In Section 5.8 we will study the related notion of
logarithmic capacity for plane sets, which can be used to get around the fact
that RB? is not Greenian. Finally, the metric size of polar sets will be studied
using the notion of Hausdorff measure. Polar sets in RY will be shown to have
Hausdorff dimension at most N — 2, and a result in the opposite direction
will also be given.

Definition 5.1.1. A set £ in RV is called polar if there is a superharmonic
function u on some open set w such that E C {z € w:u{z) = +oo}.

It is clear from the local integrability of superharmonic functions that
polar sets have zero A-measure. Also, any subset of a polar set is polar.

123
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Erample 5.1.2. (i) Any singleton {y} is a polar set, since U, is a superhar-
monic function on RY valued 400 at y. In fact, any countable set {yx: k € N}
is polar. To see this, we note that when N > 3 the function

u(z) =Y 27*U, () (z€RY)
k

is a potential (see Theorem 4.2.5), and when N = 2 the function

u(z) =Y 271 +logt |lykl) Uy (z)  (z € RY)

k

is a logarithmic potential (see (4.2.5)).
(i) If N > 3, then the set E = {0} x R¥~? is polar, since the function

u(Il""'lEN) = —lOg(SE% +$%)

is superharmonic on RY. (Clearly u is continuous in the extended sense on
RY , harmonic on RV \ E, and satisfies the superharmonic mean value inequal-
ity at points of E.)

In each of the above examples the function v is superharmonic on all of
RY . The following resuit shows, in particular, that the function v in Definition
5.1.1 can always be chosen to have this property.

Theorem 5.1.3. Let E be o polar set such that E C {2, and let z € \E.
(i) If 2 is Greenian, then there is a potential Gopu valued +co on E such
that Gpu(z) < oo and p(f2} < +oo.

(i) If 2 = B2, then there is a logarithmic potential Uy valued +00 on E such
that Un(z) < +o0.

Proof. Since E is polar, there exist an open set w and a superharmonic func-
tion 1 as in the definition. We may assume that w C {2 and 2 = 0 € w. Let
{(By) be a sequence of open balls such that B}, C wfor each k and |J,, By, = w-
For each k we define a measure v by

_ Hu(AN Be)
“u(Bk) +1
where 1, is the Riesz measure associated with . It follows from Corollary

4.4.3 that the function uz = [ Uydui(y) is valued +o0 on E N By. Also,
ug(0) < +oo, since 0 & By.

IfN >3, let
= Z_k—yk .
# Zk: 1+ ug(0)

Then p(f2) < 1 and Gop is a potential on §2 (see Theorem 4.2.4) which is
valued +oc on E but is finite at 0. Thus we obtain the higher dimensional
case of (i}.

vi(A) for any Borel set A,
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N =2/let

-1
p= o {1+ [ oglyll i)} v
k k

Then (4.2.5) holds, so the function Uy is a logarithmic potential which is
valued +o0 on E but is finite at 0. This proves (ii). Further, p(R*} < 1, so
if 12 is Greenian, then Gap is a potential by Theorem 4.2.4. Hence (i} holds,
since Gop differs from Up by a harmonic function (see Theorem 43.5). O

Corollary 5.1.4. A countable union of polar sets is polar.

Proof. Let {Ex: k € N} be a countable collection of polar sets. If N > 3, then
for each k& we can choose a potential Gy on R" such that Gup = 400 on
By and pi(RY) < 1. If N = 2, then for each k we can choose a logarithmic
potential Upy such that Upyx = 400 on B and [log(2 + ||z||)dux(z) < 1
(see (4.2.5)). In either case we define = 3, 2=% ;. and observe that the
function v = [ Uydu(y) is a potential (or logarithmic potential) on RY which
is valued +oo on | J, Ex. O

Corollary 5.1.5. (i} If 12 is connected and E is a relatively closed polar
subset of 12, then Y\E is connected.

(it} If 12 is a non-empty open set such that 812 is polar, then 12 is connected
and 13 = BV .

Proof. To prove (i}, let w be a component of {\E, let u be a superharmornic
function on BY which is valued +oo on E, and define

_ Julz) (zew)
v(z) = {+oo e € M\w).

Then v is lower semicontinuous and v(z) > M(v;z,r) when z € £ and r
is small enough. Also, v 2 +00, so v € U(f2) and, in particular, v is locally
integrable on £2. Hence f2\F can contain no component other than w and (i)
is proved.

To prove (ii), suppose that 812 is polar. Then RM\312 is connected, by
(i). Hence RV \12 = @ and {2 is connected. O

Ezample 5.1.6. Tn view of Corollary 5.1.5(), a non-empty relatively open
subset of a hyperplane cannot be polar. In particular, any line segment in R?
is non-polar.

Theorem 5.1.7. Let E be a poler set. Then:

(i) E is contained in & G5 polar set;

(ii) c(EN S(z,1)) = 0 for eny sphere S(z,7);

(iti) the inverse of E with respect to any sphere is polar.
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Proof. If w and u are as in Definition 5.1.1, then

EC ﬁ{:r € wiu(z) > n},

n=1

so (i) holds. There is a superharmonic function v on RV which is valued
+o0 on E. Since v is integrable over every sphere, (ii} holds. Finally, (iii)
follows from the fact that the Kelvin transform preserves superharmonicity
(see Corollary 3.3.5). a

Theorem 5.1.8. (Reciprocity theorem) If i and v are measures on a
Greenian set §2, then [ Goudv = [ Govdp.

Proof This follows by a change in order of integration, in view of the sym-
metry and joint continuity of the Green function. O

We saw in Example 4.2.9 that it is possible to put a non-zero measure on
a sphere in such a way that the resulting potential (or logarithmic potential)
is bounded above. It is not possible to achieve this upper boundedness if the
measure is to be placed on a polar set, as the following theorem shows.

Theorem 5.1.9. Let u be o locally bounded superharmonic function on 2.
Then the associated Ricsz measure p, has the property that p,(E} = 0 for
each Borel polar subset E of 12

Proof. Let E be a Borel subset of 12 which is also polar, let U be a bounded
open set such that I C £2, and let a = infy; u. There is a potential Gyv on U
such that Gyr = +o0 on U N E and v(U7) < +co. The Riesz decomposition
theorem shows that w — a > Gy, on U. Hence

(oo, (U NE) < / Guvduy, = / Guuwdy < (U} sup{u — a) < +oo,
U U U

by the reciprocity theorem, and so p,(I/ N E) = 0. Since this is true for all
such open sets U, we see that p,(E) = 0. O

Definition 5.1.10. If a proposition P(z)}, concerning a point z in a set A,
is true for all z in A apart from a polar set, then P(z) is said to hold quasi-
everywhere (g.e.) on A, or for guasi-every point z of A.

Theorem 5.1.11. (Maria—Frostman domination principle) Let {2 be
Greenian and let Gou be e finite-valued potential on 2. If u is a positive
superharmonic function on §2 and u > Gop quasi-everywhere on £2MN supp p,
then u > Gqou on 2.

Proof. There is a polar subset F of {2 N supp g such that v > Gaep on
(supp p)\F. Let w be a potential on {2 such that w = +oco on F and let
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£ > 0. Then u+ew > Gpu on supp p- Let (K,) be an increasing sequence of
compact subsets of 2 such that {J,, K, = £2, and let u, denote the restriction
of y# to Kn. By Corollary 4.5.2 there is a compact subset Ly ¢ of KN supp ¢
such that pin(Kn\Ln¢) < € and such that the function vn . = Ga (#alL...)
is continuous on 2. Let

sty = {ooeld) e mewle)T (€ \Ee)

Since u+ew > Uy 00 Ly ¢, the function s is subharmonic on 12 (see Corollary
3.2.4). Further, s is a non-negative minorant of the potential v c on f2. Hence
s=0, and so u +ew > vn . on all of 2. If z € 2\(K, Nsuppp), we thus
have

Gopn(z) < ulz) + ew(z) + esup{Galz,y):y € KnNsuppp}.

Since £ can be arbitrarily small, we conclude that Goptn < u quasi-everywhere
and hence, by (3.2.2), everywhere on {2. Finally, if we let » — co and appeal
to the monotone convergence theorem, we obtain u > G on §2. [l

5.2. Removable singularity theorems

The purpose of this section is to show that polar sets are removable singulari-
ties for several classes of functions. Let f be a function on 2\ E where E° = §
and E C 2. We will say that f satisfies a given condition near points of B
if each point of E has a neighbourhood V such that the function f satisfies
the condition on V\E.

. Theorem 5.2.1. Let E be a polar subset of 12, where 2 is connected, and let

u: \E — (—00,+00] be a lower semicontinuous function which is bounded
below near points of E. Suppose that u Z +oc and that, for each z in {\E,
there exists r, > 0 such that u(z) > M(u;z,7) whenever 0 < r < rz. Then
u has ¢ unique superharmonic extension U to §2. Further,

w(z) = y_l;rlr;gg\Eu(y) (x € E}. {(5.2.1)

Proof. The uniqueness is immediate from the fact that any two such exten-
sions would be equal almost everywhere (). To prove existence, it is enough
to deal with the case where {2 is a ball and v > 0. Let z € f2\E. Then, by
Theorem 5.1.3, there is % positive superharmonic function v on {2 such that
v = +oo on E and v(2). & +00. For each n in N we define u, = v+ v/n on
NE and un, = +00 on E. Each function ., has limit +co at every point
of E, and it follows easily from the hypotheses on u that un € U {12). Let
w = inf, u,. Clearly the lower semicontinuous regularization 1 of w satisfies




_‘—1.
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u < < won 2\E. Theorem 3.7.5 shows that @ € U(f?), that @ = w = u
almost everywhere (A}, and that

w(z) = li;n_)iBf wly) (zen). (5.2.2)
Clearly w(z) = u(2), so w(z) = u(z). If we replace z by another point z; in
f\E in the above argument, we obtain another function 1 in #(f2) such
that 1, = u = ¥ almost everywhere (), and hence W, = 1 everywhere,
on 2. In particular, w(z) = wi(z1) = u(z1). Thus @ is a superharmonic
extension of u to 2. Finally, since w = +oc on E, we see from (5.2.2) and
the lower semicontinuity of W that

I = liminf > liminf w(y) > W € ).
W (z) ,Jmind, Grl)z liminf ) zw{z) (ze€f)
Since @ = u on f\F, this yields (5.2.1) with % in place of &. O

Corollary 5.2.2. Let E be a relatively closed polar subset of . Ifue
U(MN\E) and u is bounded below near points of E, then v has a unique su-
perharmonic extension to 2.

Proof. It is enough to deal with the case where §2 is connected, in which case
the hypotheses of Theorem 5.2.1 are satisfied. O

In the above result, and the next, the hypothesis that E is polar cannot
be relaxed, as will be seen in Theorem 5.3.7.

Corollary 5.2.3. Let E be a relatively closed polar subset of 2. If h €
H(N\E) and h is bounded near points of E, then h has a unique hermonic
estension to f2.

Proof. 1t follows from Corollary 5.2.2 that h (respectively —h) has a unique
superharmonic extension u; (respectively up) to 2. Since u; = —u» almost
everywhere (1), we obtain 4, = —uy on all of £2 and hence u; € #(f2). O

Corollary 5.2.4. Let E be a relatively closed polar subset of ¢ Greenian set
2. If s € S(\E) and st hes a harmonic majorant on {\E, then there ecist
By, ho € Ho(2) and measures py, 2 on 2, where py (P\E) = 0, such that
s=hi —hy + Gpm — Gopz on INE.

Proof. Let u; be a harmonic majorant of s* and let u; = u; — s. By Corol-
lary 5.2.2, there is a non-negative superharmonic extension U of uy to §2
(k = 1,2). Since § = u; — up on 2\ E, the result now follows by applying the
Riesz decomposition separately to @, and u». O

Corollary 5.2.5. Let E be a relatively closed polar subset of f2. If INE is
Greenian, then so alse is 2 and Go\g(-,-) = Gal-,") on (AE) x (\E).
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Proof. Let y € 2\E. Any subharmonic minorant of U, on {2\E has an ex-
tension to a subharmonic minorant of I/, on f2 by Corollary 5.2.2, so 2 is
Greenian by Theorem 4.1.2(iv). Further, it follows that the greatest subhar-
monic minorant of Uy on 2\ E coincides (on f2\ E) with the greatest subhar-
monic minorant of Uy on £2. Hence G g (-, ) = Ga(-,y) on 2\E whenever
y € IN\E. |

Finally, we can give the following improved version of the maximum prin-
ciple for subharmonic functions.

Theorem 5.2.6. Let s € S(12), where 2 is Greenian and s is bounded above,
and suppose that limsup,_,, s(x) <0 for quasi-every point y in 32.

(i) If either N = 2 or 12 is bounded, then s <0 on 2.

(ii) If N > 3, 2 is unbounded and limsup,_,, s(z) <0, then s <0 on {2.

Proof. Let E be the polar set of points y in 812 where limsup,_,, s(z) > 0,

and let
w(z) = { sT(z) (ze€l?)
0 (x e RVN\(RRUE)).

1t follows from Theorem 5.2.1 (applied to —w) that w has a subharmonic
extension @ to RY. If N = 2, then because W is bounded it is constant (see
Corollary 3.5.4). Further, R*\ 2 is not polar in view of Corollary 5.2.5, since
R? is not Greenian. Hence w attains the value 0 and sow = 0. If N > 3, then
w(z) — 0 as x — oo whether (2 is bounded or not, so again w = 0 by the
subharmonic mean value inequality applied to W on large spheres. In either
case we conclude that s <0 on (2. O

5.3. Reduced functions

Throughout Sections 5.3-5.6
[? denotes a fized Greenian open set.

We denote by 2£,.(§2) the collection of all non-negative superharmonic func-
tions on f2.

Definition 5.3.1. If u € U, (2) and E C {2, then the reduced function (or
réduite) of v relative to E in {2 is defined by

RE(z) = inf{v(z):v € Uy () and v > uon E} (z € 02).

It follows from Theorem 3.7.5 that the lower semicontinuous regularization
RE is superharmonic on {2, that RE = Rf almost everywhere (}), and that

RE(z) = lim inf RE(y)y (zen).

We call ﬁf the regularized reduced function {or balayage) of u relative to E
in f2.
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Tt is immediately obvious that u > RY > RE > on {2, that u = R on
E and that RE = RE on E”.

Ezample 5.3.2. (i) Let N =2, 2 = B, u = 1 and E = B(0,e™!). Then
RE = RE = w, where w(z) = min{-log |||, 1} (see Figure 5.1).

Figure 5.1.

To see this, we note that w € 1;.(B), since w is the minimum of twp
positive superharmonic functions on B, and clearly w > u on E. FU.I‘t:hBl", if
v € Uy(B) and v > u on E, then v > w on B by the minimum principle

ied or = ince RE i tinuous
applied to v — w on B\E. Hence RE = w and, since R, is contin ,
RE = RE.
(i Let N=2,N=D=Rx (0,+00),u=1and £ = B((0,5/4),3/4). Then

= 1 3+ (22 +1)?
RE(.’L‘) = Rf(m) = min{E 10g3(2-%—+-g—z-_—1)_2), 1} (IE = D)

(see Figure 5.2), by the same reasoning as was used in (i).

Figure 5.2.
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(iii) If E is a polar set and u € U4 (§2), then

_fuz) @eB)
ri@ =% Gt

and hence ﬁf = 0. To see this, let zp € 2\ E. We can use Theorem 5.1.3 to
obtain v in 2, (£2) such that v = +00 on E and v(zo) < +oo. Thus v/n >
on E for each n in N and so RF(z¢) = 0. Hence RY = 0 on 2\E, and it
follows that RE = 0, since E° = 0.

(V) fEC Qandy € E°, then RE = RE . =Gal,y). To see this,
suppose that v € U,.(§2) and v > Go(-,y) on E, and let By be an open ball
containing y such that By C E°. Since v > Go(-,y) on By, this inequality
holds on all of 2 by Lemma 4.1.8. Hence ﬁgn(_,y} = R{
f2.

oty = Ga(.y) on

Lemma 5.3.3. Let E C 12. The following are equivalent:

{n) E is polar;

(b) there is o positive superharmonic function v on §2 such that ﬁf =0,
(c) ﬁf = 0 for every u in U (12).

Proof. 1f (a) holds, then (c) follows from Example 5.3.2(jii). Clearly (c) im-
plies (b). If (b) holds and w is a component, of 2, then R = 0 almost every-
where () on w, so in particular there exists zg in w such that RE(zp) = 0.
For each n in N we may thus choose v, in 04,.(12) such that v, > u on E and
vn{zo) < 27" Let v =3 vn. Then v(zg) < 1, so v € Uy (w). Since v = +o0
on E Nw, this set is polar. Hence (a) holds, in view of the arbitrary nature
of w. O

Some elementary properties of reduced functions are summarized below.

Theorem 5.3.4. (i) If u < v on E, then RE < RE and RE < RE.
(ii) If E C F, then RE < RE and RE < RE.

(iii) The functions RE and ﬁf are equal and harmonic on S\E.
(i) If F is a polar set, then REVE = RE.

(v) If w is an open set, then RY = R¥,

(vi) If u is finite-valued and continuous on an open set containing E, then

RE = inf{R?: A is an open set which contains E}. (5.3.1)

Proof. Assertions (i) and (ii) are immediate from Definition 5.3.1.
Let
F=A{v|gppv€Up(2) andv > uon E}.
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Then F is a saturated family and hence RE € H($\E), by Theorem 3.6.2,
so RE = RE on (\FE and (iii) holds.

If F is a polar set, then we can choose w in 2, (1) such that w = +oco
on F.Ifvely(?) and v > uon E, then v +w/n > won EU.F and hence
v+w/n > REYF foreachnin N. If welet n = oo and take the infimum over
all possible choices of v, we see that RE > REYF on the set where w < +o.
In view of (i) we conclude that Ry = REVF almost everywhere (A) I-_Ience
RE = REVYF 3lmost everywhere (}) and so everywhere on {2, proving (iv) :

If w is an open set, then E‘;j = R¥ = u on w. Since R is superharmonic,
it follows that ﬁ‘;" > R¥. The reverse inequality is always true, so (v) holds.

Finally, if v € Uy (/2) and v > uon E, and ifn € N, t?len v+1/n > uon
some open set A which contains E. Hence v + 1/n majorizes the functmq on
the right-hand side of (5.3.1). If we take the infimum over a:H possible choices
of v and n, we see that Rf also majorizes the right-hand side of (5.3.1). The
reverse inequality follows from (ii). O

Theorem 5.3.5. If E is a compact subset of 2 and u € Uy (92), then RE is
a potential.

Proof. We may assume that {2 is connected. Let K and L be cogg(mt §ets
guch that E ¢ K, K c L°and L C 2, let y € 2 and let v = R, Since
v € H{!N\K), we can choose a positive constant a such that aGoly) >
on 8L. If we define

_ [v(=) {(z€L)
w(®) = | min{aCalz,y).v(z)} (x € A\D),

then w € Uy (£2) by Corollary 3.2.4, and w =v 2 u on E. Hence RY < w.
Any harmonic minorant b of RE in 12 must thus satisfy h < ad g(A,g) on
fN\L, and so on {2, by the maximum principle. Hence h < 0 and R,/ is S,
potential on 2.

Lemma 5.3.6. (i)} Letu € Uy (12). If (Kn) s an increasing sequence of com-
pact sets and the set w = U, Kn is open, then REn — Rg'. .
(i) Let w: $2 — (0, +00) be continuous and superhar‘momc.KIf (Kn)Kzs a de-
creasing sequence of compact sets and K =, Kn, then By~ — B

Proof. (i) Clearly the sequence (ﬁfﬂ] is increasiEg, so the limit function
v is superharmonic and satisfies v < Ry. Since RE» = RE~ = u almost
everywhere (A) on K, for each n, it follows that v = u almost eve'rywhere {(A)
on w, and hence everywhere on w. Thus v > R and (i) is established.

(ii) This follows easily from Theorem 5.3.4(vi). O

We will now show that we cannot relax the requirement that E be polar
in Corollaries 5.2.2 and 5.2.3.
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Theorem 5.3.7. (i} Let E be a relatively closed non-polar subset of 2. Then
there is a bounded continuous potential Gop on {2, where u Z 0 and supp u is
a compact subset of E. In particular, if E s compact, then there is 6 bounded
harmonic function on [2\E which dees not have a superharmonic extension
to [2.

(ii) Let E be a closed non-polar set in R2. Then there is an upper-bounded

continuous logarithmic potential Up, where p Z 0 and suppp is a compact
subset of E.

Proof. We can choose a compact non-polar subset K of E, in view of Corol-
lary 5.1.4. To prove (i), let 1 denote the constant function of that value on
£2. We note that Ef is a non-zerc bounded potential (see Lemma 5.3.3 and
Theorem 5.3.5) which is harmonic on 2\ K. Thus we can write it as Gpv,
where supp v C K by Corollary 4.3.9. By Corollary 4.5.2 there is a compact
subset L of K such that the function ¥ = Gy (v|1} is a non-zero continuous
potential on f2. The particular case follows by considering the function —u: it
is bounded and harmonic on 2\ E. Further, if v is a superharmonic extension
of —u to f2, then v + u is superharmonic on {2 and valued 0 outside E, so
v+ 1 = 0 by the minimum principle. This yields the contradictory conclusion
that « € §(2). This proves (i).

To prove (ii), let {2 be an open disc such that K C {2, and let Gop

be the potential in (i). Then Uu = Gpu + h on 2 for some h € H({2) by
Theorem 4.3.5, so (ii) follows. 0

Theorem 5.3.8. (Myrberg) Let {2y be a non-empty open set in R%. The
following are equivelent:

(a) %y is Greenian;

(b) B2\ 2y is non-polar;

(c) log™ ||z|| has a harmonic majorant on (2;

(d) U+ (§2) contains @ non-constant function.

Proof. All four assertions clearly hold if 2, is bounded, so we assume the
opposite. If (a) holds, then (b) follows from Corollary 5.2.5. If (b) holds then,
by the preceding result, there is a non-zero measure u with compact support
K contained in B?\ {2, such that Uy is bounded above, by a say. Clearly

Uu(z) + u(K)logllzll =0 (z = o0).

Hence a + 1 — Uy is a positive harmonic function on 2 which majorizes a
positive multiple of log™ ||z|], and so (c) holds. Clearly (c) implies (d).

It remains to show that (d) implies (a}. In view of Theorem 4.1.2(v)
we may assume that f2p is connected. Let v be a non-constant member of
Uy (12). We may assume (replacing w by min{u, b} for a suitable constant &,
if necessary) that « € H({2%)}. Thus we can find a compact subset K of [
such that p, (K) > 0. Let y € K, let w(n) = B(y,n) N {Yy, and let m be large
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enough so that K C w(m). It follows from the Riesz decomposition theorem
that u > Gy(n) (ulx) on w(n) whenever n > m. Thus (a) holds in view of
Theorem 4.1.10(ii). O

5.4. The capacity of a compact set

We continue to use 2 to denote a fixed Greenian open set, and denote by 1
the constant function valued 1 on £2.

Definition 5.4.1. Let X be a compact subset of 2. It follows from Theorems
5.3.4(iii) and 5.3.5 that R is a potential on £2 which is harmonic on 2\8K.
We call this function the capacitary potential of K. The associated Riesz
measure Vg, for which ﬁ{( = Gnvi, is called the capacitary distribution of
K. Clearly supp vk G OK. The (Green) capacity C(K) of K is defined by
C(K) = v (/7). All these definitions are relative to the fixed Greenian set £2.
In the case where 2 = RV (N > 3), we also refer to C(K) as the Newtonian
capacity of K. It is clear from Lemma 5.3.3 that a compact subset of f2 has
zero capacity if and only if it is polar.

Lemma 5.4.2. Let K be o compact subset of {2. Then:

(i) C(K) = C(0K) = C{0K), where K denotes the union of K with the
bounded components w of \K such that @ C (2;

(i) p1(92) < pa(£2) for any measures py and py on {2 such that supp jn C K
and G < Gaps; )

(t1i) C(J) < C(K) for every compact subset J of K;

(iv) pn(02) = p(12) for any increasing or decreasing sequence (G, ) of poten-
tials converging on SI\K to a potential Gop, where supp pn, C K for each n;
(v) C(K,) = C(K) for any decreasing sequence (Ky) of compact sets such
that N, Kn = K.

Proof. It follows from the minimum principle that, if v € U4.(£2) and v =1
on &K, then v > 1 on K and hence on K. Thus R?¥ > Rf. Since 9K C
8K C K, we obtain RIK = RX = RF, and (i) follows.

To prove (i), let L be a compact subset of 2 such that K C L°. Then
Govr, =1on K, so

p(f2) = /GHVLdm =/Gnu1duL
< fG‘?P"?d”L = /GQVLdM < p2(02)

by the reciprocity theorem. Thus (ii) holds.
If J C K, then By < RK, so (iii) follows from (ii).
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To prove (iv), let L again be a compact subset of {2 such that K ¢ L°.
Since Gpun € H{IA\K) for each n, we have Gou € H(INK), sosupp pr C K.
Also, Gprr =1 on K and supp vy G dL. Thus

pn{f2) = /GuLdp,, = /G,und:q, — /G,u dvg, :/GuLd,u:p,(.Q)

by monotone convergence and the reciprocity theorem. This proves (iv).

Finally, in (v), we know from Lemma 5.3.6(ii) that ﬁf(" i} ﬁ{{ . Hence
C(K,) = C(K), by (iv). - -0

Ezample 5.4.8. (i) If 2 = RV (N > 3), then
C(B{0,r)) =C(S(0,r)) =rVN -2,

To see this, we observe from the minimum principle that, if v € 4, (12) and
v > 1 on B(0,r), then v(z) > (v/||z{|)¥ -2 on RV \B(0,r). Hence

R (2) = ¥ "2 min|||*~N, r2~ M)

and it follows from Example 4.2.9(i) that C(B(0,r)) = rV—2. Thus also
C(S(0,7)) = r¥=2 by Lemma 5.4.2(i).

(ii) Similarly, if 2 = B(0,p) and 0 < r < p, then it follows from Example
4.2.9(iii) that

) _ [ lloglp/m} (N=2)
C(B(0,r)) =C(5(0,7)) = {(TQ—N — M)t (N >3).

(iii) It is clear that Newtonian capacity is invariant under translations and
rotations. To see the effect of dilations, let K be a compact set in RN (N > 3),
let K, = {az:z € K} for each positive number a, and let g denote the
capacitary distribution for K. Then

el ¥ BX () = lellV G (e) = CK)  (z ~ oo)

by dominated convergence. It is clear from the definition of reduced functions
that R*=(z) = RX(a~'z). Hence

C(Ku) = lim |||V "*Rf* (2) = lim l2l|¥ 2 Rf (a7 z) = o 2C(K).

{iv) Let K be a compact subset of B in R?, let a > 0 and let K, be as in (iii).
Then !C(K) = °C(K,), where *C{-) denotes capacity relative to 12 = B(0,a).
To see this, let u, denote the capacitary potential of K, in B(0,a) and let
v, be the corresponding capacitary distribution. Clearly uy{x/a) = u,{z) on
B(0,a) so, using the explicit formula for the Green function of a disc (see
Theorem 4.1.5(i)), we obtain
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u1(z/a) = [ Grion(@V)Ea()

ls/a— (/)" lhy
= /log(”y/a”m)d ()

= / Gglz/a,y/a)dv.(y),

where y’ = ”y”_zy’ and hence

'C(K) = vo(B(0,a)) = "C(Ka)-

Theorem 5.4.4. If K1 and K2 are compact subsets of {2, then
RIGUK: 4 REiNK: < B0 4 Ri. (5.4.1)

Proof. Let v € Uy (52) be such that v > 1 on Ki (k=1,2). Also, let
w = §K1UK2 + ﬁ{(mf(«;
= R; ,
which is a potential on £2 and is harmonic on 2\(K U K3). Then
v+vy>2>u on K NKs.
On K}\Kg, we have
o > 1> REWVE  and  u > RFTE

0 vy + v > u. This last inequality can similarly be shown to hold on Kz\K 1,
50 it holds on all of X 1 UKy, It follows from the Maria-Frostman do.mmatmn
principle that v, + v > u on £2. Taking infima over all possible choices of v;

and vp, we see that
ﬁf(,uKz +§{<1“K2 < R{{I +R{{2. (5.4.2)

Finally, since I’i{ﬁ = R¥' almost everywhere (}), we obtain (5.4.1) by taking
means over a ball in (5.4.2) and letting the radius shrink to 0 (see (3.2.2)).

O
Corollary 5.4.5. If K, and K are compact subsets of 12, then
C(K, UK,)+C(KinNKz) < C(K1) + C(K3).
Proof. This follows from the above theorem and Lemma 5.4.2(ii). O

The property of capacity established above is called strong subadditivity.
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5.5. Inner and outer capacity

As before, [? denotes a fixed Greenian open set; all other sets are contained
in 2. We will now develop notions of capacity for arbitrary subsets of 2.

Definition 5.5.1. If £ C 2, then we define the inner capacity of E by
C.(E} = sup{C(K): K is a compact subset of F}
and the outer capacity of E by
C*(E) = inf{C.(w): w is an open set containing E}.

These set functions take values in [0,4+occ]. If E C F C 12, then clearly
C.(E) < C.(F) and C*(E) < C*(F). Further, it is easy to see from Lemma
5.4.2(iii) that C.(E) < C*(E). A set F is called capacitable if C.(E) = C*(E).
Clearly any open set is capacitable. All these definitions are relative to the
fixed Greenian set 2.

Lemma 5.5.2. (i) Any compact set K is capacitable and C.(K) = C*(K) =
C(K).

{#) If w is a bounded open set such that w C 12, then C,(w) = v, (), where
v, 15 the Riesz measure associated with the potential RY.

Proof. To prove (i), let K be compact and (K,) be a decreasing sequence of
compact sets such that K C K7, for all n and (), K, = K. Then

C.(K) S C*(K) < CAKR) < Cu(Kn) = C(Kn) = C(K) = C.(K)

by Lemma 5.4.2(v), so (1) holds.
To prove (ii}, we first note from Theorems 5.3.4(v) and 5.3.5 that Ry is
a potential. Let () be an increasing sequence of compact sets such that

K, C K3, for all n and |J, K, = w. Then B¥~ 1 R%, by Lemma 5.3.6(i),
50

n—rea

Co(w) = lim C(K,) = nli}rr;o ve, (12} = v, (12)

by Lemma 5.4.2(iv}. d

Definition 5.5.3. If E is capacitable, then we write C(E) for the common
value of C,(E) and C*(E}, and call this the cepacity of E. In view of part (i)
of the above lemma, this is consistent with the earlier definition of C(K) for
compact sets K.

Lemma 5.5.4. (i) If (wy) is an increasing sequence of open sets, then

Clwa) = C(| Jwn).
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(i1) If wy and wy are open sets, then
Clwy Uwa) + Clwy N wo) < Clws) + Clws). (5.5.1)

(iii) If {wn:n € I} is a countable collection of open sets, then

e(Juwn) £ Clwm).

Proof. To prove (i), we note that {C(wy)) is increasing and that lim C{wn) <
€U, wn)- If K is a compact subset of | J,, wn, then K C wy, for some 17, and
so C(K) < lim C{wy,)- If we take the supremum over all possible choices of K,

we obtain C(|J,, wa} < limC(wy), and (i) is proved.
To prove (ii), let K be a compact subset of w; Nw; and L be a compact
subset of w; Uws. We choose disjoint open sets W, and W; such that

L\ws C Wi C wy and L\wl C Ws Cus

and define I;; = L\Wg and Ly = L\Wl Then Ly C oy, Ly Cwoand LiUL, =
L\(W, N W;) = L. It follows from Corollary 5.4.5 that

C(KUL) +C((KUL)N (KU L)) < C(K U L) +CKU L),
Since L C KUL and K C (K UL)N{K U L), we obtain
C(L) + C(K) < C(K U Ly) +C(K U Ly) < Clwn) + Cluws).

If we take the supremum over all possible choices of K and L, we obtain

(5.5.1). _
It follows from (ii) that C(w) Uwy) < C{wi) + C{ws) and hence, by induc-

tion, that . o
c (U w,.) <> Clwn)
n=1

n=1
A countably infinite union of open sets is dealt with by letting m — oo and
using (i). O

The following alternative characterizations of inner and outer capacity
are sometimes useful.

Theorem 5.5.5. If E is a compact subset of 12, then:
(i) C.(E) = sup{u(f2): supp u C B and Gpu <1 on 2};
(i) C*(E) = inf{u(12): Gap > 1 quasi-everywhere on E}.

Proof. To prove (i), let i be a measure on §2 such that suppp C E and
Gap < 1, and let K = supp p. Further, let v € 2,.(£2) be such that v > 1 on
K. Tt follows from the Maria—Frostman domination principle that v > Gop
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on 2. Hence RiC > Gpyu, and so also }’i{“’ > Ggu. It follows from Lemma
5.4.2(ii) that p(1?) < vk (2). Thus the supremum in (i) is equal to

sup{vg (£2): K a compact subset of E}

which, by definition, is C,(E). This proves (i).

To prove (i), let 4 be a measure on {2 such that Gop > 1 on E\F, where
F is some polar set, and let ¢ > 0. By Theorem 5.1.3(i) there is a measure 1
on {2 such that Gouy = +co on F and p, (§2) < . Further, we can arrange
that Gui > 0 on each component of [2. We can choose a bounded open set,
w such that £ C w and @ C 2 and such that Gg(u+ p1) > 1 on w. Hence
Galu+ ) > RY = Gow,, and it follows from Lemmas 5.4.2(ii) and 5.5.2(ii)
that

Clw) = v(12) < () + 41 (1) < p(92) + .

Thus the infimum in (i) is equal to
inf{C(w): w is open and E C w},

which, by definition, is C*(E). This proves (ii). a

We now generalize Lemmas 5.5.2(ii) and 5.5.4 to deal with arbitrary sub-
sets of (2. Property (iii) below is referred to as countable subadditivity.

Theorem 5.5.6. (i) If (E,) is an increasing sequence of sets, then

C*(Bn) = C*(| B,

(i) If Ey and E; are sets, then
C*(El U Ez) + C*(El n Eg) < C*(El) +C*(E2). (552)

(i) If {En:n € I} is a countable collection of sets, then
C'(JEx) <Y (B
i3 n

(i) If E is a compact subset of 2, then C*(E) = vg(R2), where vg is the
Riesz measure associated with the potential RE.

Proof. In proving (i) we may assume thai C*(E,) < +oo for each n, for
otherwise the conclusion is trivial. Let ¢ > 0. For each n we choose an open
set w, such that B, Cw, and Clw,) < C*{E,,) + 27". We claim that

n=1

c (0 wn) < C* (Em) + (1~ 2"™)e (5.5.3)
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for each = in N. This inequality is obvious when m = 1. If it is true when
m = k, then we use Lemma 5.5.4(ii} to obtain

k41 k. k
C (U wn) +C ((U wn) ﬂwk+1) <C (U wn) + C (wit1)

< C*(Ey) + C*(Eraa) + (1 —27F e, (5.5.4)

Since Ej. C Bpy1, we see that

k
E, C (U wn) M Wht1,s

n=1
and it follows easily from (5.5.4) that (5.5.3) holds when m = k + 1. By
induction (5.5.3) holds for all m in N. We let m — oo and use Lemma
5.5.4(1) to obtain

c* (G En) <C ([j wn) < ﬂl'l)nrclmC“(En) + e.

n=1 n=1

Since € can be arbitrarily small we obtain
o0
¢*(|J Bn) < Jim C*(En).

The reverse inequality is immediate, so (i) is proved.
To prove (ii), let w; and we be open sets such that Ey C wy and B2 C we.

Then
C‘(El UEQ) +C*E, ﬂEz} < Clun Uwz) + C{wn nLUz) < Clw) + Clws),

by Lemma 5.5.4(ii). If we take infima over all possible choices of w; and w;

we obtain (5.5.2).
It follows from (ii) that C*(E; U Ea) < C*{(E1) + C*(£3), and induction

yields . "
c (U En) <Y CHE))  (meN).
n=1

n=1
The case of a countably infinite union of sets is dealt with by letting m — co

and using (i). This proves (iii).
It remains to establish (iv). Let 0 < ¢ < 1 and let w be a bounded open

set satisfying E Cw, @ C 2 and C(w) < C*(E)} +¢. In view of Lemma 3.7.4,
there is a sequence (un) in u+(n) such that u, > 1 on F and such that the

lower regularization of inf, un is Rl Further, we may choose u; to be the
constant function 1. Let

vn = min{uy, ug,. .., un}, wn=H, andw,={z€w: wa>1 —¢e}.
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Then w, is an open set containing F and w,, € H(/2\@) for each n. Since
Up 2 Wy > R and (wn) is decreasing, it follows that inf,, u, > limw,, > RE
on {2 and so limw, = RF on \w. Also, wn, > (1 — €)R}". From parts (ii)
and (iv) of Lemma 5.4.2 we obtain vg(f2) > (1-¢) limy,,_(2), and », () >
vg(2) since RY > RE. Thus, from Lemma 5.5. 2(ii) we see that

CHEY+e>Cw)>ve()>(1 —E)nlgxgoC(wn) > (1 —e)C*(E).
Since £ can be arbitrarily small, we obtain vg(§2) = C*(E), as required. [

Corollary 5.5.7. (Cartan) Let E C 2. Then E is polar if and only if
C*(E)=0.

Proof. Let U be a bounded open set such that U7 < £2. It follows from Theo-
rem 5.5.6(iv) and Lemma 5.3.3 that

EnUispolar s RPW =0 C*(ENU) = 0.

Since {2 can be written as a countable union of such open sets I7, the “if” part
of the result follows from the fact that a countable union of polar sets is polar,
while the “only if” part follows from Theorem 5.5.6(iii). a

Theorem 5.5.8. Let u € U(§2). For each positive number ¢ there is an open
subset W of §2 such that C(W,) < € and u|gp\w, is continuous.

Proof. Let U be a bounded open set such that U C f2. If we can show
that there is an open subset W, of U such that C(W,) < ¢ and ulpw, is
continuous, then the general result will follow easily from Lemma 5.5.4(iii).

Let K be a compact set such that 7 C K° and K C £2, and let i denote
the restriction to K° of the Riesz measure associated with «. In view of
Theorems 4.3.5 and 4.3.8(i), there exists h in H(K*°) such that u = h+ Gopu
on K. We choose ng in N such that ng > 2u(?)/e and define w = {z € U
Gau(z) > no}. Then C{w) < p(f2)/ng < €/2 by Theorem 5.5.5(ii). The
function min{Gqp,ng} is a bounded potential: we write it as Gy’ and note
that Gop' = Gop on U\w.

For each n in N we use Corollary 4.5.2 to obtain a compact subset K, of
K such that p/(K\K,,) < 47" and Gg (¢'|k,.) is continuous. If

wn={z €U:Ga (1K) >2'"") (neN),

then C(w,) < 2714 "z = 27"~ !¢ and it follows that the open set W, =
w U (|J, wn) satisfies C(W.) < e. Further, if y € U\W,, then

limsup ju(z) —u(y)|= limsup |Gou(z) - Goply)|
=y zCUN\W, v,z EU\W,
= limsup IGI? (»U-IlK\Kn) () - Gqn (II'|K\K..) (y)[
ey, seU\W,

<2 {n € N).
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Hence u|gp\w, is continuous. O
We call f:RY = RN a contraction if ||f(z) — f(¥)I| < |z — y[| for all =
and y.

Theorem 5.5.9. If E C RY (N > 3) and fRY 5 RN isa czﬂtmction,
then the Newtonian outer capacity of f(E) satisfies C*(f(E)) < C*(E). .

Proof. We begin by considering the case where £ is compact. Let L beEa
compact set such that £ € L° and let 0 <& < 1. Then Gvr, = 1 on E.
Further, since (z,y) ~ ||z—y}|*>~* is uniformly continuous on the compact set

E x 8L, we can choose points y1,¥2, .. ., ¥n in 8L and non-negative constants

a1,as, ..., 0, such that
n .
Sallz-wl N z1-e  (@eF)
k=1
and
3 e = vi(0L) = C(L).
k
If we define
- - N
w(z) =Y apllz - f@l™Y  (z € RY),

k=1
then u(f(zx)) > 1 — ¢ when = € E since f is a contraction. Hence # > 1 —¢
on the compatﬂ;t set f(E),so(1—¢g)'u> R{ (B) and it follows from Lemma
5.4.2(ii) that
Cf(E) <CL)/(1—-e) > C(L)  (e—0)
i i of such compact
If we replace L by L,,, where (L,) is a ‘decreasmg sequence of ¢
sets sa.tils)fying N, Ln = E, then we obtain C (f(E)) < C(E)}, in view of Lemma
5.4.2(v). . N .
N(O\zr let E be an arbitrary set and, ignoring the trivial case*where c (1_2
is infinite, let w be an open set such that E C w and C(w) < C {(E)+ ;h
(K,) be an increasing sequence of compact sets_such that | J, Kn = w. Then,
by Theorem 5.5.6(i) and the special case established above,

C*(f(E)) <C*(flwh)
= T}Lfrolcc(f(Kn))

Since ¢ is arbitrary, the result follows.
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5.6. Capacitable sets

So far we have shown that all open subsets and all compact subsets of a fixed
Greenian set {2 are capacitable. The purpose of this section is to show that
the class of capacitable sets is very large, and includes all Bore] subsets of 2.

Definition 5.6.1. Let K denote the collection of all compact subsets of R
The following formulation involves both N¥, that is, the collection of all
(infinite) sequences of natural numbers, and also U, N¥, that is, the collection
of all finite sequences of natural numbers. A subset A of RN is called anefytic
if there exists a map K: ({J, N¥) — K such that

A= | (K(m)nK@n,ms)n K(my,ma,m3)N..). (5.6.1)
(m“)ENN
The class of all analytic sets will be denoted by A,

Lemma 5.6.2. (i) If (4,) is a sequence of analytic sets, then N, An end
U, An are analytic.

(#i) Every Borel set in RY is analytic.
{1ii) If A is analytic and A C 2, then the compact sets K(my,...,my,) in
{(5.6.1) can be chasen to be subsets of 2.

Proof. To prove (i}, let (4;) be a sequence of analytic sets. Then, for each ,
there is a map Ky: ({J, N¥) = K such that

Ag = U (Kg(ml)ﬂKg(ml,mg)ﬂK;{ml,mz,ma)ﬁ...).
(mn)ENN

Let n ~ (a(n),b(n)) be a bijective map from N to N?. If we define
K: (UkN’“) —+ K by

K(my,...,mp) = Ko(m,) (0(m1), ma, m3, .. Mg ),
then

A= |

{{mn):a(my )=t}

(K(ml) ﬂK(ml,mz)ﬂK(ml,mz,mg) ﬂ)

Hence [J; A; is equal to the right-hand side of (5.6.1) and so is analytic.
We will next show that (), A, is also analytic. To each (m,,) in NV there

corresponds a function f:N?° — N defined by equating f(I,p) to the (I, p)-
entry of the infinite matrix

my Mz My My
M3 M5 mg

mg mg - - . . . (5.6.2)
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We then define K (m,...,my) to be the entry in the infinite matrix

K1(f(1,1)) K (F(1,1),£(1,2) K (F(1,1), £(1,2), f(1,3))
Kz(-f(z'nl)) K2(.f(211):f(212)) '

which corresponds to the position of my in (5.6.2). Thus, for example,
K(ma,...,me) = K3(f(3,1), f(3,2)). Now

IEﬂA(
1 (” (E])ﬂ'_.

aevieN Im?) e N such that z € K;(mg)) N K(my my
o 3f: N — N such that
zE ﬂ(Kl(f(ta 1)) n Kl(f(la 1)1 f(lvz)) N Ki(f(lv 1)! f("’l: 2),f(l=3)) .. )

teN

Hence [, A; equals the right-hand side of (5.6.1.) with the map K as deﬁz%ed
above in this paragraph, and so is analytic. This completes the proof of {i).

We now prove (ii). Any compact set E is analytic, as can be seen from
defining K (mi,...,ms) = E for any choice of natural numbers mq,.. -5 T
Since any open set and any closed set can be written as a coum.;able union of
compact sets, it follows from (i) that such sets are also analytic. 1.\Iow let F
be the collection of analytic sets A for which RV \A is also analytic. If (45)
is a sequence of sets in F, then (i) shows that U, An € Aand

]RN\(U Ap) = m(RN\An) €A

and so |J_ A, € F. Thus F is a g-algebra which contains the open sets. It
follows that F , and hence A, contains the Borel sets. This proves (ii). .
Finally, suppose that A is analytic and that A C 2. Then there is a

mapping K': ({J, N*} — K such that

A= U (K'(ml)ﬂK'(ml,mg)ﬂK'(ml,mg,mg)ﬂ...).
(mn)ENN
Let (L) be an increasing sequence of compact sets such that [J, Ln = 2. I
we define —
Loy (n=1)
K(m,.oyma) = { Ly, NK'(Ma,...,my) (n>2),

then each compact set K(my,...,My) is contained in 2 and (5.6.1) holds.
O
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Lemma 5.6.3. Suppose that A is given by (5.6.1), let (k) € WY, and define

B = U (K{ma)NK(mi1,mz)N...} (I€N),
{(m)eMN:im,, <k, when n<t}

Ae U

{(m,)}ERL M, <kn when n<l}

end F' =, F. Then:
(i) By C A and E; C F} for each I, and (E,) is a decreasing sequence of sets;
(ii) (F}) 15 a decreasing sequence of compact sets, and F C A.

(K(m)n...nKimy,...,m)) (€N

Proof. Tt is clear that (i) holds. Further, each set F} is a finite union of compact
sets, and so is compact, and the sequence (F;) is obviously decreasing. It
remains to show that F C A,

Let z € F. Then, for any choice of {, there is an [-tuple (mg], mg), e ,mi(”)
such that m'" < k,, for each n in {1,2,...,{}, and such that

I € K('min) ﬂK(mg),mg)) ﬂ...ﬂK(mg),...,mIm).

Since mg) € {1,...,k} for each I, there exists m} in {1,...,&1} such that
mi” = m] for infinitely many I. Similarly, there exists mj in {1,...,kz} such
that ('mg”, m.g”) = {m{,m}) for infinitely many [. Proceeding in this manner,
we obtain a sequence {m!) such that

z € K(m))NK(@m,my)NK{mj,my,m3)N... CA
Hence F C A, and (ii) is proved. O

Theorem 5.6.4. (Choquet) Every analytic subset of a Greenian set {2 is
capacttable.

Proof. Suppose that A C 2 and A € A. Then we can write A as in (5.6.1),
where each compact set K (m,,...,my) is contained in 2 (see Lemma 5.6.2
(iii)). Let a < C*(A). We inductively define a sequence (%, ) of natural num-
bers as follows. In view of Theorem 5.5.6(i), a sufficiently large choice of
ky will ensure that the set F; of Lemma 5.6.3 satisfies C*(F;) > a. Given
ki1,ks,...,kn—1 such that C*(E,_1) > a, we can similarly choose k, large
enough such that C*(E,) > a.

Now that (k,) has been defined, we see from Lemmas 5.4.2(v) and 5.6.3
that

C.(A) 2 C(F) = lim C(F,) 2 lim C*(Eq) 2 o

If we let @ = C*(A) we obtain C.(A) > C*(A), and the reverse inequality is
always true. Hence A is capacitable. O
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5.7. The fundamental convergence theorem

The results of the previous section, when combined with Corollary 5.5.7,
reveal that any Borel set of inner capacity zero (for some Greenian set ) is
polar. It is this crucial fact that will now enable us to improve Theorem 3.7.5
by showing that, if 4 is the infimum of a family of superharmonic functions on
{2 which is locally uniformly bounded below, then the exceptional set where
fi # u is not just of A-measure zero, but actually polar. We no longer assume
that (2 is Greenian, unless this is explicitly stated. The following result is
known as the fundamental convergence theorem of potential theory.

Theorem 5.7.1. Let F be a family in U(£2) and let u = inf F. If F is locally
uniformly bounded below, then

(i) & e U{12);

(#) 4 = u quasi-everywhere;

(1) G(z) = liminf,_, . u(y) (z € 12).

Proof. We know from Theorem 3.7.5 that (i) and (iii) hold, and that & =
u almost everywhere (A). By Lemma 3.7.4 there exists a sequence (u,) of
functions in F such that % = 4, where v = inf,, 4. Let v, = min{uy,...,un}-
Then (v,) is a decreasing sequence in /(42) with limit v.

Let U and V be open balls such that U C V and V C 12, and let p,, de-
note the restriction to U/ of the Riesz measure associated with tn. By adding
a suitable constant to all the functions we may assume that v, > 0 on V for
each n. The Riesz decomposition theorem and Theorem 4.2.3 together yield
that v = h,, + Gy pn on U, where h, € H(U). By choosing a suitable sub-
sequence, if necessary, we may assume that (h,) converges locally uniformly
on U to a harmonic function h (see Theorem 1.5.11). Hence (G'y up,) also
converges on {J.

Let a denote the infimum of Gv(-,-) on U x U. Then ¢ > 0 and

+o0 > ir{}f v > igfvn > irt_}vayn > apn(U) (n € N).

Hence (sce Appendix, Theorem A.10) there is a subsequence (pa,) of {gx)
which is w*-convergent to some measure p on U. It follows that

A Gvpin, (2) > lim / min{Gv (z,y),m} diin (y)  (m €Nz €U)
= / min{Gy (z,5),m} du(y) = Gyps(z)  (m — o).

Let
E= {x el kli*m Gyvpin, () > G’v,u(a:)} ,

and suppose that C,(E} > 0. Then there is a compact subset X of E such
that C(K} > 0. It follows from Theorem 5.3.7(i) that there is a bounded
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continuous potential Gvr on V such that v # 0 and supp v C K. Hence, by
the reciprocity theorem and Fatou’s lemma,

/ G‘Vﬂ du=/GvU dp= lim /Gvu dﬂnk = lim / Gv,unk dv
K k—oo k—oo g
2/ lim Gv,unk dv >/ GV‘U, d,
K k=00 K

which yields a contradiction. Thus C.(F) = 0 and, since E is a Borel set, it
follows that C*(E) = 0, whence E is polar. We have now established that

u= nlirgovn = nangO (hn+Gvpn) =h+Gyp qge.onl.
Since v = @ = @ almost everywhere (), it follows that ¢ = A + Gy on U,
and so v = i quasi-everywhere on U. Since @ < u < v, we obtain &t = u
quasi-everywhere on . This proves (ii} in view of the arbitrary nature of
. [}

Corollary 5.7.2. Let (u,) be a sequence inU(?), where 2 is connected. Sup-
pose that (uy,) is locolly uniformly bounded below and let u = liminf,,_, o Ur,.
If u # +oo, then i € U{f?) and & = u quasi-everywhere Further, if u > M
on §2, then for any compact subset K of 2 and € > 0, there exists ng such
that

up(z) > M —¢ (m > ng;z € K).

Proof. Let v, = inf{ux: k¥ > n}. Then 9, € U({?) and &, = v, quasi-
everywhere by Theorem 5.7.1. Since (#,) is increasing, the function v =
limy,_; o Ty, 18 either superharmonic or identically 400 on 2, and » = u quasi-
everywhere. Also v < & < u, so v = @ on {2. Hence 4 = 4 quasi-everywhere

- and if u # +oo, then i € W{I7).

Now we recall Dini's theorem which says that, if (f,) is a decreasing
sequence of upper semicontinuous functions on a compact set K and f, =+ 0
pointwise, then the convergence is uniform on K. (This follows easily from
the observation that, for any € > 0, the open sets {z : f,(z) < €} cover K.)
Let M, K, e be as stated. Then (M —9,)*) is a decreasing sequence of upper
semicontinuous functions on 2 with limit 0, so there is an ng such that

ua(®) > va(z) > 6a@) > M =2 (n>nojz € K). o

The fundamental convergence theorem allows us to establish some further
properties of reduced functions.

Theorem 5.7.3. Let 2 be Greenian. All reduced functions below are of func-
tions in U (2) relative to subsets of 2.
(i) RE = RE quasi-everywhere on 12.
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(i) ﬁ’E inf{v € U, (£2):v > u quasi-everywhere on E}.

(iii) RE RE on (Q\E)U E°.

(iv) If (E } is an increasing sequence of sets and E = |J_ E,, then RE» — RE
and EE" — RE

(uv) If (un) is an increasing sequence from U (1} and lim u,, is superharmonic
on 12, then RE T Rhmu
Proof. Part (i) follows from the fundamental convergence theorem, since RZ
is the infimum of a family of non-negative superharmonic functions.

Since RF = RF = u quasi-everywhere on E, the non-negative super-
harmonic function I?EE certainly majorizes u quasi-everywhere on E. If v is
another non-negative superha,rmomc function with this property, then there
is a polar subset F of £ such that v > « on F\F. Hence v > RE\F = Rf by
Theorem 5.3.4(iv), proving (ii).

We know that ﬁf = RE on E°. To prove equality at any point zg of
fAE, let F be the polar subset of E where ﬁf < RE, and choose v in Uy (£2)
such that v = +oo on F and v{zg) < +oc {see Theorem 5.1.3(i}). Then
RE +y/n > won E, so RE +u/n > RE for each n in N. If we let n — oo,
we obtain RE(zq) > RE(zo), whence ﬁf {(zo) = RE(xy) and (111) is proved.

If (E,) is an increasing sequence of sets, then (RE») an (RE ) are
increasing. Thus the function v = limp_ ﬁf" is non-negative and super-
harmonic, and clearly v < ﬁf . From (i) v majorizes u quasi-everywhere on
gach set E, and so quasi-everywhere on £, whence v > ﬁf by (ii}. Thus
v= ﬁf Also, by (iii},

u(z) = R} (z) (z € E)
lim RE~(z) = N R
e lim Ry (z) = Ri(z) = R{(z) (z € 2\E).

Hence (iv) holds. N

Finally, if (u,) is increasing, then (R ) is increasing, so the function
v = limg g ﬁf‘; is in U4 (12). Also, v = limu, quasi-everywhere on E since
RE = u, quasi-everywhere on E. Thus Rhmu < v by (ii), and the reverse
lnequahty is obvious, 50 (v} holds. ]

Theorem 5.7.4. Let w be an open subset of a Greenian set 2 and p be o
measure on {2. Then:

(i) for each y in 12, the function Go(:,y) has limit 0 at quasi-every point of
912 (end also at oc if 1?2 is unbounded and N > 3);

(1) Gop has the same limiting behaviour if supp p is a compact subset of {2;

(iii) Gu(z,y) = Galz,y) — Roys. ,(z) when 2,y € w.

5.7. The fundamental convergence theorem 149

Proof. Let y € w, let hy be the greatest harmonic minorant of I/, on 2 and

fN\w
let v, = RG\{ (@) Then Go(, ) = Uy ~ hy and Go(,,y) > v, s0 by +v,
is a harmonic minorant of U, on w. Hence

Gu(z,y) < Uyla} - {hy(@) +oy(2)} = Galz,y) —vy(z) (z,y € w),

50
0< lihrjls%p Go(z,y) < Galz,y) —vy(z) (z € 2NHw)

by the lower semicontinuity of vy, and thus G,{(,y) has limit 0 quasi-

everywhere on {2 N Jw by Theorem 5.7.3(i).

If N > 3, then we can apply the preceding paragraph with the pair R, 2
in place of the pair 2, w to obtain (i). (Clearly G(-,) has limit 0 at oo if 2
is unbounded, since G (-, y) < U,.) Il N = 2, then R2\(? is non-polar. Thus,
if z € 842 and ¢ is sufficiently small, R®\(£2 U B(z, ¢)) is non-polar. We can
therefore apply the preceding paragraph with the pair 20 B(z, ), 2 in place
of 2,w to see that G (-, y) has limit 0 quasi-everywhere on B(z,£) N 942. In
view of the arbitrary choice of z, (i) follows.

In proving (ii) we may assume that {2 is connected. Let z € supp u and
let U be a bounded connected open set such that suppu C U/ and U C 2. By
Harnack’s inequalities applied to the functions Gg(z,-), there is a positive
constant ¢ such that

Galz,y) ScGolz,z)  (z € \U;y € suppp).
Integration with respect to du(y) yields
Gawz) < cu(NGolx,z)  (z e ),

and so (ii) holds.

Finally, if 4 is a harmonic minorant of G (-, ¥) — vy on w, then we see that
limsup,,_, , uw(z) <0 for quasi-every z in £21N 8w by the first paragraph of the
proof, and for quasi-every z in 812N 8w by (1). It follows from Theorem 5.2.6
that © < 0 on w and this establishes (iii). |

Corollary 5.7.5. Let {2 be Greenian and y € 2. Then Gg(-,y) has a sub-
harmonic extension to I_Rf"' \{y} which is valued 0 quasi-everywhere on 402
and everywhere on RV \ (2.

Proof. From part (i) of the above theorem there is a polar subset F' of 412
such that Gp(-,y) has limit 0 on BQ\F. If we define

(.’.L‘) {GQ(E,y) (:L' € .Q\{y})
(z € RV\(RUF)),

then it follows from Theorem 5.2.1 that » has a subharmonic extension to
RV \{y}. 0
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Theorem 5.7.6. Let 2 be Greenian and E C 2. Then
RE o) =EE  ,x)  (z,yen) (5.7.1)

Proof. Let z,y € 2 and n € N, and let E(n) = E\(B{x, 1/n)UB(y, 1/n)). If
E is a relatively closed subset of 12, then

SE(n) — RE(n)

Rty @) = BGU0 @) (572)
by Theorem 5.7.4(iii) and the symmetry of Gg(-,+) and G NE) (). If welet
n ~ oo and use Theorem 5.7.3(iv), we obtain (5.7.1), since RE\*¥} = RE
for any v in Uy (12).

If E is open, we let (K(n)) be an increasing sequence of compact sets
with union E and apply the previous paragraph to obtain
5 e BK{n) 1 pK@) _ RE
Rgn(z,.)(y) = nango RGHTE:,;,.) () = nlglgc Rgnr{l.,y)(x) = RGn(.,y) (z).
Finally, if E is an arbitrary subset of {2, then Theorem 5.3.4(vi) together
with the conclusion of the preceding paragraph yields (5.7.2), and (5.7.1)
again follows on letting n — oc. O

5.8. Logarithmic capacity

We cannot define (Green) capacity relative to R? since this set is not Gree-
nian. In this section we describe a set function, called logarithmic capacity,
which is defined on subsets of R® and shares some of the properties of Green
capacity. Throughout this section we assume that ¥V = 2.

Lemma 5.8.1. Let 2 = R*\K, where K is a compact non-polar set. There
s a unigue non-negative harmonic function hx on (2 such that

(i) hx has limit O guasi-everywhere on 8K and is bounded near 8K ;

() hg(z) — log ||zl has a finite imit | as £ — oo.

Further, there is a unit measure u on 6K such thot

hic(z) = lim Golx,y) =1 — Un(z) (zr e )
Yoo
and Unu = [ quasi-everywhere on K.

Proof. The uniqueness follows from Theorem 5.2.6. We assume, without loss
of generality, that 0 € K. Let z* denote the inverse of = with respect to the
unit sphere and let W = {z*:z € 2}U{0}. We know from Myrberg’s theorem
that f2 is Greenian, and hence from Theorem 4.1.11 and Corollary 5.2.5 that
W is Greenian and Gp(z,y) = Gw(z",y*) when z,y € 2. Thus we can
define
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hr(z) = yanéo Go(z,y) = Gw(z*,0).

Since the Kelvin transform preserves superharmonicity (Corollary 3.3.5), the
image of a polar set under inversion is polar, and so we can see from Theo-
rem 5.7.4 that (i} holds. Clearly

hx(z) - log|lzll = Gw (2", 0) ~ Uo(z"),

and the right-hand side of the above equation has a finite limit { as z* — 0,
by the definition of Gy (-,0). Thus (ii) holds. Finally, hgx has a subharmonic
extension to R* valued 0 on K° (see Corollary 5.7.5). Let 1 denote the Riesz
measure associated with this extension. Then hgx +Up € H(R?) and supp p C
aK. Also,

+oo if u(dK) <1
hu(x) +Uu(z) - {1 if poRK) =1 as T — co.
—oo if p(K) > 1

It follows from the mean value property of harmonic functions that H{OK) =
1 and hg + Up =1, so the lemma is established. O

Definition 5.8.2. Let K, {2 and hx be as in the above lemma. Then hg is
called the Green function for 2 with pole at co. The limit { in (ii) is denoted
by r(K) and called the Robin constant of K. The logarithmic capacity of any
compact set K is defined by
—7(K} if K is non-polar
Ky=4°¢ i P
e(K) {0 if K is polar.

We note that, if J C K, then r(J} > r(K) by Lemma 5.8.1 and Theo-
rem 4.1.10(i), and so c(J) < ¢(K). The measure g in Lemma 5.8.1, which is
uniquely determined since Uy is, is called the equslihrium measure of K.

We will use RC(-) to denote Green capacity relative to the disc B(0, R).

Ezample 5.8.3. (i) If K is B(0,r) or §(0,7), then clearly hx(z) = log |zl —
logr, so r(K) = —logr and ¢(K) =r.
(ii) If K is a line segment of length !, then ¢(K) = /4. To see this, we
identify R* with C in the usual way and let K = [—1/2,1/2]. The function
Y(z) = (I/4)(z + 27') maps {z:]z] > 1} bijectively to C\K, and it follows
from the characterization of hgx in Lemma 5.8.1 that

(b o 9)(2) = hg(z) = log|z|.

Hence

r{) = Jim, ((hc ) (2) ~bog (=) = Jim g (LL7L) = —1og
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and so c(K) = /4.
(iit) It is easy to see that r{K), and hence c(R), is invariant under translation
and rotation. To see the effect of dilations, let K be a compact set in R? and
let K, = {ax:z € K} for each positive number a. It is clear from Lemma
5.8.1 that hx, {(z) = hx(e™'z) and so

T “1,) _

r(Ko) = lim (hxc(a™a) - log]la)

= lim (hx{a™'z) —loglla™'z|l) — loge = r(K) - loga.

Hence ¢(K,) = ac(K).

Theorem 5.8.4. If Ry > 0, then
Rexp (-ﬁcl—()) e} (R— +o00) (5.8.1)

uniformly on the compact subsets of B(0, Ry). (We interpret e=1/® 05 0 when
a=0.)

Proof. If K is a polar compact subset of B(0, Rp), then FC(K) = 0 when
R > Ry, and the convergence in {5.8.1) clearly holds. Now suppose that K is
a non-polar compact subset of B(0, Bg) and let vx g denote the capacitary
distribution of K relative to B(0, R) when R > Ry. From Thecrem 4.1.5,

log (Ilyll lly* — II) (y £0)

Iy — =l
log(R/]|=]]) (v =0),

GB(O,R) (z.y) =

where y* = (R/||y||)?y, so

Gpo.p) (2, y) — log R = Uy(z) + friz,y), (5.8.2)
where i
y Yz
0 (y=0)

The functions fg(-, )} converge to 0 locally uniformly on R* x R? as R — +oo.
Now let (R(n)) be any sequence in (Hp,+00) such that R(n) = +oo and
define

_ dvk, rin) (Y)

Un(z) = /K (G0, a(ny) (@) — log R(n)) ey @€ BORm)
and u, = 0 on R2\B(0, R(n)). Then u, < {RMIC(K)}~! - log R(n) on
B(0, R(n}), with equality quasi-everywhere on K. It follows from (5.8.2) and
the convergence to 0 of fg(-,-) that (u,) is locally uniformly bounded below
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on K2 and locally uniformly bounded on R®\K. Since u, is harmonic on
B(0, R(n))\ &, it follows from Theorem 1.5.11 that we can choose a subse-
quence (u,,) which converges locally uniformly to a harmonic function on
R2\K. Let v = liminfs_,o 15, on R, Then ¢ € U(R*)NH(R*\K) by Corol-
lary 5.7.2. On R? we have

B(z) < “,E,Ef ({R[mlc(f{)}_i - IogR(nk)) = a, say, (5.8.3)

with equality quasi-everywhere on K. Since K is non-polar, a < +oo. Also,
from (5.8.2) and the local uniform convergence to 0 of fr(-,-),
(ll=ll > Ro).- (5.8.4)

log o(z) <log ——

1
ol + Fo = ll= II
It now follows from Lemma 5.8.1 that a — % = hk, and that r(K) = a. Thus
a is independent of the choice of (R(n)), so {AC(K)}~! —log R = r(K) as
R — +00, by (5.8.3), and (5.8.1) holds. Further, from Lemma 5.8.1, the Riesz
measure g associated with 9 satisfies pq(R?) = 1.

To prove that this convergence holds uniformly over the collection of all
compact subsets K of B(0, Rg), let h denote the greatest harmonic minorant
of 4 on B(0, R). Then it follows from (5.8.4) that

on B(0, R),

log < h <log

1 1
R+ Ry ~ k-
so a+log{R—Ro) < #—h quasi-everywhereon K and 6—h < a+log(R+Ryp) on
B(0, R) (see (5.8.3)). Since © — h is a potential on B(0, R) by Corollary 4.4.7,
it follows from Theorem 5.5.5 that

1 RC(K) < 1
r{K) +Eog(R+Ro) - = r(K) +log(R — Ro)’
whence

log (1— %2) < (.RC:—K) —]ogR) —r{K) < log (1+—I;—ﬂ).

This establishes that the convergence in (5.8.1) is uniform over the collection
of all compact subsets of B(0, Ry). |

(5.8.5)

Definition 5.8.5. If E C B2, then we define the inner logarithmic capacity

of E by
co(E) = sup{c(K): K is a compact subset of E}

and the outer logarithmic capacily of E by
¢*(E) = inf{c,(w): w is an open set containing £}.

These set functions take values in [0, +00]. We note that, if E C F C (2,
then c.(E) < ¢,(F), ¢*(E) < ¢*(F) and c.(E) < ¢*(E). A set E is called
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log-capacitable if c,(E) = ¢*(E). As usual, if E is a log-capacitable set, then
we write ¢(E) for the common value of c.(E) and c*(E).

Theorem 5.8.6. If E is a bounded set, then

co(B) = lm Rexp (—Eél(—m) (5.8.6)
and 1
Ct(E) = RETOOREXP (_W) . (587)

Proof. Let Ry be such that £ C B(0,Rp) and let € > 0. It follows from
Theorem 5.8.4 that there exists R; such that

Rexp (_R_CEIT)) —e<c{K} < Rexp (—%) +e (R> Ry)

for every compact subset K of E. If we take the supremum over all such K ,
we obtain

Rexp (_R—c"l‘us_)) —e<c.(E) < Rexp (_RC—I(E)_) +e (R>R).

Hence (5.8.6) holds. Further, if we replace E in the above inequality by an
open set w satisfying E C w C B(0, Ry), and take the infimum over all such
w, then (5.8.7) is seen to hold. i

Corollary 5.8.7. (i) Any bounded analytic set is log-capacitable.
(i) A bounded set E is polar if and only if ¢*(E)} = 0.

Proof. Part (1) follows from Theorems 5.8.6 and 5.6.4.

To prove (ii), let £ be a bounded polar set. Then RC*(E) = 0 for all large
R, and so ¢*(E) = 0. Conversely, if ¢*(E) = 0 then, for each n in N, there is
a bounded open set w,, such that E C w, and c{w,) < n~!. Let F = N, wn
and let R be such that F C B(0, R). Then E C ¥ and ¢*(F) = 0. If K is any
compact subset of F, then ¢(K) = 0 and so K is polar. Hence #C(K) = 0 for
all such K, so ®C,(F) = 0. Since also F is a Borel set, F is polar and thus
E is polar. ]

Theorem 5.8.8, If E is a bounded set in R? and f:R? — R2 is g contraction,
then c*(f(E)) < ¢*(E).

Proof. We may assume that f(E) is non-polar, for otherwise there is nothing
to prove, in view of Corollary 5.8.7(ii). We first consider the case where
E is compact. Let £ > 0. There is an open set w such that E C w and
¢(w) < ¢(E) + ¢ and hence there is a compact set K such that E C K°
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and ¢(K) < c(E) + e. If hx denotes the function of Lemma 5.8.1, then
hx = rg — Up for some unit measure g on 8K, and Uy = rx on K°, By
the uniform continuity of (z,y) = log||z — y|| on £ x 8K there are points
Y1,42,- - -, ¥n in JK and non-negative constants a;, as,...,a, such that

Y aploglls —yll < —rgx +e (z€ E)
k=1

and >, ax = 1. If we define

w(e) =Y axlogllz - Flwll (v € R?),

k=1 -

then u{f(z)) €< —rkx + ¢ when z & E since f is a contraction. Hence u <
—rx + £ on the compact set f(E), and it follows from Theorem 5.2.6 that

w(x) +ri —e = hyp(z) <0 (z € B2\ f(E)).

Hence )
ryg) = Hm (hypy(z) —logllall)
> lim (u(z) —log|z|) +rx —e=rg — &,
T—300
and so

c{f(B)) < efc(K) < e (c(E) +£).

Since ¢ is arbitrary, we obtain ¢(f(E)) < ¢(E).

Now let E be an arbitrary bounded set and let w be a bounded open set
such that & C w and ¢(w) < ¢*(E) + ¢. Let (K,,) be an increasing sequence
of compact sets such that |J,, K, = w. Then, by Theorems 5.5.6(i), 5.8.4 and
5.8.6, ¢(K,) = c(w) and e(f(K,)) = c(f(w)), so

C(F(E) < elf@) = lim c(f(Ka)) < lim e(Ka) = c(w) < ¢*(B) +e.
Since £ is arbitrary, the result follows. a

Corollary 5.8.9, If E is o polar subset of B2, then E is totally disconnected;
that is, every component of E is a singleton.

Proof. It is enough to show that, if € E, then there are rectangles K of
arbitrarily small diameter such that + € KJ and E N 8K, = §. Further,
it is enough to prove this for bounded polar sets E. S¢ we suppose that E
is bounded and note from Corollary 5.8.7 that ¢*(E) = 0. From the above
theorem the projections of E onto each of the coordinate axes have outer
logarithmic capacity 0. These projections cannot contain any line segment,
in view of Example 5.1.6. Hence there are rectangles K as described above.

O
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We remark that, although logarithmic capacity has many properties in
common with Green capacity, it is not subadditive (see Exercise 5.17).

5.9. Hausdorff measure and capacity

In this section we give some metric estimates of the size of polar sets in terms
of Hausdorff measures.

Definition 5.9.1. Any increasing function ¢: (0, +-00) =+ (0, +oo] such that
#(t) = 0 ast = 0 is called a measure function. If E is a bounded set in RY
and p € (0, +o0], we define

Mé")(E) = inf {Z p{ri): E C UB(mk,rk) and ri < p for each k} .
k k

where the infimum is over all possible coverings of E by a countable collection
of balls {B{zx,rx) : k > 1} such that r, < p for each k. Since Mé") (E) is
decreasing as a function of p, we can define

mo(E) = lim M" (E),

which is called the Hausdorff ¢-measure of E. Clearly 0 < my(E) < +00. In
the special case where ¢(t) = t* (a > 0), we also write M((i% (E) for Mé” ) (E)
and M) (E) for m¢(E)

Lemma 5.9.2. If E is o bounded set in RY | then there ezists a number ag
in the interval [0, N| such that

ma(®) = {5 @5

Proof. First we note that m,)(E) = 0 when o > N. To see this, let K be a
cube which contains E, let 2a be its diameter and let n € N. If we divide K
into ™ identical cubes, we see that E can be covered by nV balls of radius
a/n, and so

: N o __
mey(E) < lim n"(a/n)* =0 (a>N).

We now define ag = inf{a > 0:m sy (E) = 0}, and observe that 0 < ag < NV,

Let @ > ag and p > 0. Then there exists § in (ag, @) such that m(g)(E) =
0, and so there is a countable covering {B(zk,73):k > 1} of E such that
r, < p for each k and >, rf < 1. Hence
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M((::;(E) < ng = Z'rf—ﬁ'rf <p* P 0 {p—0).
k k

Thus mq(E) = 0 when o > ag.

If 0 < a < ag, then there exists § in (o, ag) such that mg (E) > 0. If
p > 0and {B(zg,rx): k > 1} is any countable covering of F such that ry < p
for each k, then

dork =2 i > MG (E)
k k

50
MV E) > p* P M{)(B) & +00 (p—0)

and hence mq){E} = +0o. This completes the proof of the lemma. a

Definition 5.9.3. The number ag of Lemma 5.9.2 is called the Hausdorff
dimension of E.

We recall that Viy(t) = 2~ (N > 3) and Va(t) = log(1/t) when t > 0.
Below we interpret 1/V," () as +oco when t > 1.

Theorem 5.9.4. If E is a bounded analytic set such that my(E) < +oo,
where ¢(t) = 1/VE(2), then E is polar.

Proof. Suppose that £ is not polar. Then there is a non-polar compact subset
K of E, in view of the analyticity of £ and Corollary 5.5.7. We can choose K
to be contained in a ball By of diameter 1. It follows from Theorem 5.3.7 that
there is a non-zero measure g with support in K such that the superharmonic
function u(z) = f Va{|lz — ||} du(y) is finite-valued and continuous on RV .
Let

uy(2) = 271 f Vnllz )@~ llz - wll/0)* duw) (@€ RV 0<p<1).

By Fatou’s lemma,

< Timi <1
up(z} < 11;nJ£1f u,(z) < 111;1_?1;1;) up ()

= u(z) - iminf(u ~ u,)(z) Sup(z) (2 € RY),

50 u, is continuous. Further, u{{z}) = 0 for every = by the finiteness of u, so
t, | 0 on By as p — 0, and this convergence is uniform by Dini’s theorem.
Hence there is a decreasing sequence (pr} in (0,1} such that v, < 27" on
Bg. We define

FO =2V D xppaft)  (E20), (5.9.1)

n=1
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where x 4 denotes the characteristic function valued 1 on 4 C [0, 4+00) and 0
elsewhere on [0, +00), and observe that

fK Fllz —yll) duw) <1 (= € Bo). (5.9.2)

Now let n be large enough so that p, < dist(K, RN\ By) and let {B(z4,74):

k > 1} be a (finite) covering of the compact set K such that ry < p, for each
k. If we discard any ball which does not intersect K, then 1z € By for each
k. Since f is a decreasing function, (5.9.2) yields f(ry)p(B(zk,7x)) <1 and
it is clear from (5.9.1) that f(rx) > nVn(ry)/2. Hence

wK) <3 p(Blz,me)) € D _{Fre)} <27 {Vn(re)) Y,
P k i

and so
MY(E) > MP(K) > %u(K) “ 400 (n— o).

This leads to the contradictory conclusion that mg(E) = +o00, so E must be
polar. O

If E is a bounded analytic set in RY (N > 3) and the Hausdorff dimension
ar of E satisfies ap < N — 2, then it is clear from the above result that E
is polar. In the opposite direction we will see below that, if E is a polar set,
then g < N — 2. First we give a preparatory lemma.

Lemma 5.9.5. Let u = [ U,du(y), where supp p is compact, and suppose
that ¢ is ¢ measure function such that

1
/ 1N p(t)dt < +o0. (5.9.3)
0

Then there is a constant C, depending only on N ond the value of the integral
in (5.9.8), such that

u(z)SCsup{%j’)m:r>0}+u(RN) (z € RY).

Proof. Let m,(r} = p(B(z,r)). It N > 3, then integration by parts yields
1
w) < [ Vdmo(t) + RV \B(z, 1)
0

< (N-2) fl =N ()t + u(RY).
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I N = 2, then similarly u(z) < ful t~'m,(t)dt. In either case, the result
follows. O

Theorem 5.9.6. If E is a bounded polar set, then my(E) = 0 for any
mensure function ¢ which setisfies (5.9.3). In particular, m,(E) = 0 when
a > N — 2 and so the Hausdorff dimension of E is at most N - 2.

Proof. By Theorem 5.1.3 there is a measure u such that the function
J U,du(y) is superharmonic on BV and valued +oo on E. Further, since E is
bounded, we can arrange (by choosing a suitable restriction of 4) that u has
compact support. If we define ¢, (t) = min{¢({5t), $(1/2)}, then {5.9.3) holds
when ¢ is replaced by ¢,. Let @ > 0. If z € E then u{z) = +o0, 50 we see from
Lemma 5.9.5 that there exists r; > 0 such that u{B(z,rz)) > ag;(r;) and
is at most the diameter of £. By Lemma 4.6.1 there is a countable disjoint
subcollection {B(zk,7:,): k£ > 1} such that E C |J, B(zk, 5r, ). Thus

Z ¢1(Tzk) < a! Z#(B(wkrrzk)) < a‘_lf-"'(RN)'
k k
Hence, for large e, we have ¢:{r;, } = ¢{6rz, ) for all £ and so
MU E) <S¢l ) =) 1(r2s) <@ u®Y) 50 (@ +oo).
k k

Since ¢ is increasing and positive, it follows easily that M;p ) (E) = 0 for any
p > 0 and hence my(E) = 0. ]

5.10. Exercises

Exercise 5.1. (i) Let u € U (RV ! x (0, +00)), where N > 3, and let
W(a') = / w(t, )t (2 € BY=2 x (0, +00)).
K

Show that either ' is superharmonic or v’ = +oco.
(ii) Deduce that, if E' C R¥N~! and E' x R is polar in RV, then E' is polar
in R¥—1 Is the converse true?

Exercise 5.2. Let §2 C C and let F be a relatively closed polar subset of [2.
Show that, if f is holomorphic on A\ E and bounded near points of E, then
J has a unique holomorphic extension to (2.

Exercise 5.3. Let h € H(B\E), where F is a relatively closed polar subset of
B. Show that, if 5 [|VA||?*dA < +00, then k has a unique harmonic extension
to B. (Hint: begin by using Corollary 4.4.6 to see that the subharmonic
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function s = A% has a harmonic majorant v on B\E. Show that, if m € N
and r € (0,1), then m|h| — v is bounded above on B\E, and hence that
|8 = Ljpp0,r S M~ v — I} on B(0,7)\E. Deduce that A is bounded near

points of E.)

Exermse 5.4. Given a point z = (@1,...,ZN+2) € BY? ) we write t, =
(g% + 7%, +2%,,)"/2, and we define E' = {z € RV*? . ¢, = 0}. Let h be
harmonic on D = R¥~1 x (0, +00). Show that the function H defined by

h('rl:"':zN—ljtl‘)
tz

H(Zl,...,$N+2) =

is harmonic on RNT2\E’. Show further that if h > 0 on D, then H has

a superharmonic extension H to RV*? and apply the Riesz decomposition
theorem to H to deduce that h has the Poisson integral representation given
in Theorem 1.7.3.

Exercise 5.5. Let 12 C C be a domain and E C C be a polar set.

(i) Show that, if f : 2 — C is holomorphic, then either f~1(E) = 2 or
F~H(E) is polar. (Hint: use Corollary 3.3.4.)

(ii) Suppose further that E is closed. Show that, if f : 12 = C is continuous
and f is holomorphic on 2\ f~*(E), then f is holomorphic on 2.

Exercise 5.6. Show that, if X is a compact polar set in RY (N > 3),
then there is a Newtonian potential u such that v = +o0 on K and u is
harmonic on RY\ K. (Hint: choose a decreasing sequence (K,) of non-polar
compact sets such that {},, Kn = K, and consider the Newtonian potentials

{C(Ka)} TR

Exercise 5.7. In B? let §2 = B(0,v/12) and E = B{(0, ~1),v/6). Show that
the reduced function RZ relative to E in {2 is given on 2\ E by

3 x4+ (z2 44
Ry (551,3?2)—105(4 :1:1+(Iz+3)2)/1
and on E by RF(z) = 1.

Exercise 5.8. Let 2 = RV~ x (0,400} and r > 0.
(@) If u(z) = zflzl| =™, find B2 and also show that

RPN (z) = oy min{||z|| =Y, 7=V}
(ii) If v(z) = zy and E = R¥N~! x (0,7], find RZ.

Exercise 5.9, Let E = {z' € RY~! : ||z’|| < 1} x R, where N > 3. Show
that
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1 (N =3)

R ) = {min{llm’lls—“’,l} N>q) (e €RTxR),

the reduced function being relative to E in RV,

Exercise 5.10. Show that, if E is a compact subset of a Greenian open set
2, then

C.(E) = sup{/Ggp.dp: suppu € F and Gou <1on .Q}

and

CHE) = inf{ng,udp,: G > 1 quasi-everywhere on E}

Exercise 5.11. Let F be a compact subset of RV | where N > 3, such that
{rz : r > 1} N E is non-empty for each z € S. Show that C(E) > 1.

Exercise 5.12. Show that, if u € {(R™) where N > 3, then there is a polar
set F contained in the unit sphere S such that the function r — u{ry) is
continuous on (0, +oc) whenever y € S\ E. (Hint: use Theorem 5.5.8.)

Exercise 5.13. Let 12 be Greenian and let g, p1, 2, ... be measures with
support contained in a compact set X C §2 such that (i) is w*-convergent
to u; that is,

[ i~ [ 10 (1€ o,

Show that lim inf,, o, Gopin = Gap quasi-everywhere on 2. (Hint: first show
that iminf Gopn > Gpp on 2. Next assume that the (Borel) set where
liminf G, > Gop has positive capacity and use Theorem 5.3.7.)

Exercise 5.14. Let © € ¢ (R x §2'), where 7' is a non-empty open set in
RY-1 (N > 3), and define ¥/(z") = inf; u(t, ') for each z' € (7’. Show that
there exists v' € L{(£2) such that «' = v/ quasi-everywhere on 2. (Hint: use
Exercise 5.1.)

Exercise 5.15. Show that, if K is a closed ellipse with semi-axes of length
a and b, then ¢(K) = (a + b)/2. (Hint: dismissing the case of the disc, we
may assume that @ > b The function ¥(z) = (a® — 8)Y/2(z + 271)/2 maps
{z :|z|* > (a + b)/(e — b)} bijectively to C\K.)

Exercise 5.16. Let E be a compact subset of R of Lebesgue measure {. Show
that ¢(E x {0}) > {/4. (Hint: consider the mapping f : R? — R? given by
f(@1,22) = (ME N (—o00, 1)), z2).)
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Exercise 5.17. For each n € Z let K, = [n — 2,n + 2] x {0} and let h,
denote the Green function for R*\ K, with pole at oo.

(i) Show that, if we fix m > 0 sufficiently large, then f,, > logm on K_,.
(ii) Now let 2 = R®\(K,, U K_.;) and let h denote the Green function for
{2 with pole at co. By applying Theorem 5.2.6 to the function h + log /m —
(hm + h_m)/2 on £2, show that

c(Km UK_p) > vm = /m/4{c(Km) + c(K_)}.

(Thus, in particular, logarithmic capacity is not subadditive.)

Exercise 5.18. Let E' be anon-polar compact subset of RV !, where N > 3.
Show that C(E’ x R) = +oo0, where C(-) denotes Newtonian capacity.

Chapter 6. The Dirichlet Problem

6.1. Introduction

In its simplest form the Dirichlet problem may be stated as follows: for a given
function f € C{8° (1), determine, if possible, a function h € #(f?2) such that
h(z) =+ f(y) as © — y for each y € %ML Such a function h is called the
(classical) solution of the Dirichlet problem on {2 with boundary function f,
and the maximum principle guarantees the uniqueness of the solution if it
exists. For example, if 2 is either a ball or a half-space and f € C{(8>1),
then the solution of the Dirichlet problem certainly exists and is given by
the Poisson integral of f. This follows immediately from Theorems 1.3.3 and
1.7.5. On the other hand, there are quite simple examples in which there is
no such solution.

Ezample 6.1.1. If 2 = B\{0} and f : 82 = R is defined by f(0) = 1
and f(z) = 0 when z € §, then the Dirichlet problem on {2 with boundary
function f has no classical solution.

To verify this, suppose that a soclution h exists. Then h is bounded on 2
and has a harmonic continuation & to B, by Theorem 1.3.7. Since k has limit
0 at each point of S, it follows that h = 0, contrary to the requirement that
R(0) = limg o h(z) = F{0) = 1.

In this chapter we will discuss the Perron-Wiener-Brelot (PWB) ap-
proach to the Dirichlet problem. For a wide class of functions f on 8172,
the PWB approach associates with f a corresponding function Hy € H(12)
in such a way that Hy is equal to the classical solution of the Dirichlet prob-
lem on 2 with boundary function f whenever this classical solution exists.
Even in the absence of a classical solution, Hy provides a slightly weaker so-
lution in the sense that H¢(z) = f(y) as ¢ - y at most points of continuity
of f.

We shall assume throughout this chapter that 12 is Greenian, and except
where the contrary is stated, this will be the only restriction on f2. For non-
Greenian sets most of the major results would become either false or trivial.

Two important ideas which are discussed in this chapter are harmonic
measure and regularity. Harmonic measure, which is introduced in Sec-
tion 6.4, is a measure g, on (2, depending on the point £ € {2, which
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allows the representation

Hf (IE) = f duz
8= 12

whenever the PWB solution Hy exists. In a ball, for example, the above
integral is just the Poisson integral of f (see Example 6.4.9 below). A point
y of 942 will be called regular if Hy(z)}) — f(y) whenever f € C(6%°12). It
turns out that regularity is intimately connected with the idea of thinness, a
major topic in the next chapter, in which an important criterion for regularity
in terms of thinness is established. In Section 6.6 another criterion is given
which leads to some simple and useful geometric conditions that are sufficient
for the regularity of a boundary point.

6.2. Upper and lower PWB solutions

It is convenient to start by enlarging the classes U{({2) and S(12).

Definition 6.2.1. A function w is called hyperharmonic on 12 if on each
compoenent of 2 either u = +o0 or u is superharmonic. A function s is called
hypoharmonic on §2 if —s is hyperharmonic on 12.

Definition 6.2.2. Let f be an extended real-valued function defined at least
on 3> (2. Families of functions on {2 are defined by

45? = {u : u is hyperharmonic and bounded below on {2
and liminf,_,, u(z) > f(y) for each y € 812},

¥{ = {s: s is hypoharmonic and bounded above on {2
and limsup,_,, s(z) < f(y) for each y € °°12}.

When there is no risk of ambiguity we simply write $; and ¥;. We note that
@; and ¥; are never empty, since they contain the constant functions +co
and —oo respectively.

Definition 6.2.3. Let f be an extended real-valued function defined at, least

on 812, The upper and lower PWB solutions Hy and HY are defined on 2
by

Hf(z) =inf{u(z) :u € 67},- HT(x) = sup{s(z) : s € ¥F},
We sometimes write simply H; and H .

Lemma 6.2.4. Let w be a component of §2. For every function f on 8°12,
we have Ff = F}J on w.
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Proof. Note that 0w C 0°42, so f is defined on 8®w. If v € &9, then
uly, € 9%, so H; < ﬁf on w. Conversely, if v € &%, then the function equal
to v on w and +oo on 2\w belongs to 7, so Hy > F? on w. ]

Theorem 6.2.5. For every function f : 8§ — [—oo,+] the following
statements hold.

(i) H f=—H_ Ix

(i} On each component of 2 each of the functions F;,_Iif is identically +oo,
identicelly —oo, or harmonic.

(iti) H; < Hy on 02.

Proof. (i} It is easy to check that &y = {—u : u € ¥_;}, and this gives the
result.

(if) In view of (i} it is enough to consider Hy, and by Lemma 6.2.4,
it suffices to treat the case where 2 is connected. If $; = {400}, then
Hy = +oo. Otherwise Hy = inf ¢5, where ¢; = &5 NU(£). It is easy to
verify that ¢y is saturated (Definition 3.6.1). Hence, by Theorem 3.6.2, either
Hy;=-coor Hy € H(N).

(iii) Again we may suppose that {2 is connected. It is enough to show that
if w € $;NLU($2) and s € ¥ NS(S2), then u > 5 on (2. This inequality will
follow from the maximum principle if we show that

limsup(s —u)(z) <0 (6.2.1)

Ty
for each y € @02 If f(y) is finite, then

lim sup(s — u)(z) < limsup s{z) — lim inf u(z)
r—y Ty &=y

< fy) - fv)
= 0.

If f(y} = +oo, then u{z) = +00 as £ = y, while s is bounded above on 2,
and hence (s —u)(z) — —co as £ — y. A similar argument yields the same
conclusion if f(y) = —oco. Hence {(6.2.1) holds at each point y € 842, as
required. O

Definition 6.2.6. A function f : 8 — [—oc0,+00] is called resolutive if
H; and H ¢ are equal and finite-valued (and hence harmonic) on 2. If f
is resolutive, then we define Hy = H; (= H,) and call H; the PWB (or
generalized) solution of the Dirichlet problem on {2 with boundary function
f. The class of all resolutive functions on 8* 2 is denoted by R(12).

Remark 6.2.7. Suppose that f € C(8°°12) and that the classical solution A
of the Dirichlet problem on {2 with boundary function f exists. Note that
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f is bounded, since 1 is compact in the topology of BY U {co}. Since
h(z) = f(y) as ¢ = y for each y € 8°°42, it follows that % is bounded on 2,
and hence h € &; N ¥;. This implies that H; < h < H, on £2. Combining
these inequalities with the inequality H, < H; of Theorem 6.2.5(iii), we
obtain Hy =h=H s- This shows that if the classical solution exists, then so
also does the PWB solution and the two are equal. In particular, it shows that
constant functions are resolutive and that, if f = a, then Hy = a. However
there are many instances in which the PWB solution exists but the classical
solution does not. Indeed a key result (Theorem 6.3.8 below) is that every
finite-valued continuous function on 942 is resolutive. Thus, for example,
if 12 and f are as in Example 6.1.1, then the PWB solution exists but the
classical one does not. (In fact, H }7 = ( in this case since 0 € ¥y and ely € &y
for every € > 0.) Also highly discontinuous functions may be resolutive, as
the following example shows.

Ezample 6.2.8. Let 12 = B, let E be a countable dense subset of 342, and let
f be equal to 1 on E and 0 on 8f2\E. Then f is nowhere continuous on 812,
but f € R(f2) and Hf =0 on £2.

To check the resolutivity of f, note that E is polar, so there exists a
positive superharmonic function ¢ on an open neighbourhood of 12 such that
4 = +00 on E. For every positive number ¢, we have eu € §;. Thus H; < 0
quasi-everywhere and hence, by continuity, everywhere on {2. Obviously 0 €
¥y, 50 H; > 0. Since H; < Hy,wehave Hy =0 = H;. Thus f € R(f2) and
Hy =0.

Remark 6.2.9. A function f on 042 is resolutive if each component of 12
contains a point at which H; and H, are finite and equal. To verify this,

let w be such a component and suppose that H(z) = H ;(z} € R for some
T € w. Then -I-Tf,ﬁf € H(2) and H, — H; < 0 on w with equality at z.
Hence, by the maximum principle, H; = Ff on w.

Remark 6.2.10. The results in this section do not depend on our assump-
tion that 2 is Greenian and remain valid without this assumption. However,
the results are of little interest in the non-Greenian case, as we now ex-
plain. Suppose, for the moment, that §2 is a non-Greenian open subset of R?.
By Theorem 5.3.8 and Corollary 5.1.5, §2 is connected and the only lower-
bounded superharmonic functions on 2 are constant. Hence, for any function
f on %0, the class #; contains only constant functions (including +oo).
Therefore H is constant, and similarly so is H ;. Further, H; = H, if and
only if f is constant, so the only resolutive functions are the finite constant
functions.
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Theorem 6.3.1. Let f,g: 0% = [~00,+00] and let x € R.

(i) If (f + g)(y) is defined arbitrarily at points y of 812 where f(y) + g(y)
has the indeterminate form (£o00) + (Fo0), then

FJ'+.r; < Ff +ﬁy: (6.3.1)

provided the right-hand side is well-defined on 12, and with the same proviso

s

Hyy o2 H +H, (6.32)
(i) if « > 0, then .
H.s=aHy, H.,;=oH,; (6.3.3)
If o <0, then . =
' Hop=aH,, H,,=aH;. (6.3.4)

Proof. (i) We may assume that {2 is connected. If Hp = 400 or Hy = 400,
then (6.3.1) is trivial (or vacuous if H ¢ + H, is indeterminate). Hence we may
suppose that &y NU(12) and &, N L/(f2) are non-empty. Let u, v respectively
belong to these classes. Then u + v is superharmonic and bounded below on
2 and

. > Fmi .
luzn_glf(u +v)(z) > Ilgl_};lfu(x) + 11;11“)1!1;11' v(z) > (f + g9)(w)

at each point y € 812, (In the case where f{y} + g(v) is indeterminate, it
is easy to see that u(z) + v(z) = +o00 as z — y.) Hence u + v € P4, ,. Since
u,v are arbitrary elements of their respective classes, it follows in the case
where Hy > —oco that Hy +v > Hyy, for all v € &; NU(?) and hence
that (6.3.2) holds. In the case where H; = —oo, the same argument shows
that for such v we have —co +v > Fﬂ_g at all points where v < +00, s0
that Hyy, = —oo at some, and hence all, points of 2. The inequality (6.3.2)
follows easily using Theorem 6.2.5(1).

(ii) If & = 0, then the equations are trivial. If a > 0, then au € P4y is
equivalent to v € @, and hence H,y = aH;. Similarly, H,, = o ; when
a > 0. The equations (6.3.4) follow from (6.3.3) by Theorem 6.2.5(i). O

Corollary 6.3.2. If f,g € R(2) and o € R, then (with the convention of
Theorem 6.3.1 regarding f + g) we have f + g,of € R(2) and

Hf+g=Hf +Hg, HafzaHf.

Proof. Theorems 6.3.1 and 6.2.5(iii} give

Hy+Hy <H;  <Hpo<Hp+H,
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and Hoy = aHy = H,;, and the corollary follows. O

Theorem 6.3.3. Let (f,.) be a sequence of finite-valued functions in R(12).
If (f.) converges uniformly on 882 to a function f, then f € R(f2) and
Hy =lim Hy, .

Proof. Fix a positive number € and let n be so large that | fo— f| < £ on 8%42.
If u€ &y, then u+e € $y. Hence Hy < Hy, +e. Similarly Hy, —e < H;.
Since also H; < Hy, it follows that H; and H; are finite-valued, and that
lim Hy, exists and is equal to both H; and H; on f2. o

Corollary 6.3.4. The set of all bounded resolutive functions on 0°°f2 is a
vector space which, equipped with the norm ||f|| = supgw  |f|, is @ Benach
space.

Proof. 1t follows immediately from Corollary 6.3.2 that the bounded reso-
lutive functions form a vector space. If (f,) is a Cauchy sequence of such
functions, then (f,) converges uniformly on {2 to some bounded function
f, and by Theorem 6.3.3, f € R(£2). Hence the bounded functions in R{{2)
form a Banach space. ]

Theorem 6.3.5. Let (f,) be an increasing sequence of extended real-valued
functions on 8°8, and let f = lim f,. If Hy, > —oo for some m, then
H;=limHy, on 0.

Proof. Again we may suppose that 12 is connected. Since | (H;,) is increasing
on {2, we may also suppose that Hy, > —oo for all n. ¥ Hy, = +00 for some
m, then Hj, = +oo for all n > m and Hy = +o0o0. Now suppose that each
Ff“ is finite-valued (and hence harmonic) on 2. Fix a point z¢ € 2 and a
positive number ¢. For each n, there exists u, € @, such that

un (o) — Hy, (z0) < €27™ (6.3.5)

By Theorem 3.1.4, the function

o0
u= lim Hy, + Y (un—Hy,) (6.3.6)

n—od
n=1

is hyperharmonic on £2. Also u > Hy, + (up — Hy, )} = up, for each n, so u is
bounded below on (2 and

lim inf u{z) > fa(y) (y e 8°neN).
Ty

Hence
li;!ﬂ;!f u(z) > fly) (y € 812),
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so that u € &5 and v > H;. In particular,

Hy(zo) <ulzp) < lim Hy, (7o) + £,
—+00
by (6.3.5) and (6.3.6). Since ¢ is arbitrary,
Hy(zo) < lim Hy (zo).

Also, it is clear that limHy, < H; on 2. Since (H,) is an increasing se-
quence in H(f2), its limit is either identically +oo or harmonic on 2. In the
former case, Hy = +oo. In the latter case, Hy — lim H s, belongs to H..(12)
and attains the value ( at xp, so this function is identically 0, by the mini-
mum principle. ]

Theorem 6.3.6. Let f : 32 = [—o0, +o0] and let F be defined on §208°02
by

F(z) = f(z) (z€8%0), F(z)=H;(@x) (z€n)

If w is an open subset of 2, then Hp = F? onw. If f € R(2), then
FeR(w) and HY = Hf” on w.

Proof. We may suppose that w and 2 are connected. If u € 45}7 , then clearly
— —

ul, € #%. Hence Hy < H; on w. Clearly equality holds if H} = —oo. If

—02 -

H; = +oo, then it is easy to see that any element v of &% can be extended

to an element of 45}2 by defining = 400 on ?\w, and since 953? = {+o0},

we have $2 = {+00} and Hp = +00. Now suppose that F? is finite-valued
(and hence harmonic) on 2. If u € % N/(w), then by Corollary 3.2.4, the
function i, defined by

4 =

) min{u, F_?} on w
H f on N\w,

belongs to L(f2). Let v € QPJ‘? N (2) and define w = i +v — F?. Then

w € U(f2). Also w = v on fN\w and at points of w where F? <u,and w > u
at other points of w. Hence w is bounded below on 1? and

liminf w(z) > f(y)  (y € I°NI*w),

Ty, e
o > mind B . - o
zlg?,i%fnw(x) > mln{ml_l"r;l‘ :}:[éfn U(m)’zll,[g,gg, u(z)} > fly) (v € 8°MNI>w).

It follows that w € 515? ,80 4 +v = H}? +w > 2Ff on 2. Since this holds
for all v € $F NU(2), we see that G > TI—? on (2, and in particular u > ﬁ?
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on w. Since u is an arbitrary element of % NU{w), we have Hp > H? on
w, as required.

By Theorem 6.2.5(i) the same result holds with lower solutions in place
of upper solutions, so the stated results for resclutive f follow. O

The next lemma is in preparation for the proof of the fact that C'(8>12) C
R(f2), which is important in itself and is used in Section 6.4 to show the
existence of harmonic measure.

Lemma 6.3.7. Let uy,ug be finite-valued superharmonic functions on {2,
each possessing a subharmonic minorant there. If uy — uz has a findte limit
F(y) at each point y € 3N, then f € R(12).

Proof. Clearly f € C(8°12), so f is bounded on 8°f2. Let h; (j = 1,2) be
the greatest harmonic minorant of «; on (2. (The existence of h; is guaranteed
by Theorem 3.6.3.) Then u; — ho € U(§2} and

]ifl—égr;lf(ul - ho)(z) > fly) (y€ 7N

From this it also follows, by the minimum principle, that ; — hy is bounded
below on §2. Hence u; —h2 € 7 and therefore hg +Ff is a harmonic minorant
of uy on £2, so hy + Hy < hy. Similarly, by — H; < hy. Since H; < Hy, it
follows that H, = h; — hy = Hy. Thus f € R(£2). a

Theorem 6.3.8. C(d°§2) C R(f2).

Proof. By Theorem 6.3.3 the uniform limit of a sequence in R{{?) also belongs
to R{f), so it is enough to find a family F in C(3*°2) N R(f2) that is dense
in C(3>M).

We suppose first that N > 3. Let G = UL(BYY N CRY U {o0}), let
Ga = {u1 —ug : up,ue € G}, and let F = {ulpwg : u € Gu}. Clearly F is
a vector subspace of C'(8%°2) and by Lemma 6.3.7, F C R(f2). The result
will be established if we prove that F satisfies the hypotheses of the Stone—
Weierstrass theorem (see Appendix, Theorem A.12), for it will then follow
that F is dense in C(8%2), as required. Clearly 1 € F. Also F separates
points of 8212, since F contains every function of the form min{U,,c} (de-
fined to be 0 at co), where y € RY and ¢ € (0,+00). Finally, if u,v € G, then
min{x, v} € G, so that if us,uz,v1,v2 € G, then

max{u; - v1,up — vz} =tg ¥ u2 — min{ug + 1,41 + v2} € Gy,

and hence max{f, g} € F whenever f,gc F.
In the case N = 2, the classes G, Gq, F need to be modified. Let G be the
class of functions u in U (R?*) N C(R?) satisfying

u(z) = —o, log ||=f] + Bu (llz]] > Ru}
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where ay, 8y, Ry € R and o, > 0. Let
Ga = {u € C(R U {oo}) : ulpz = 1y — v, whereu;,us € G and Oy = Oy b,

and let 7 = {u|a=p : v € Gg}. Then F is a vector subspace of (8% 2). Since
(2 is Greenian the elements of G have harmonic minorants on {2 by Theorem
5.3.8. Hence Lemma 6.3.7 is applicable and shows that F C R(£2). Also
1 € F, and an argument similar to that for the case where N > 3 shows that
if f,g € F, then max{f, g} € F. To show that F separates points of §°42,
let y1,¥2 be distinct points of 8°12 and choose a point g € R? such that
there is a disc B(yo,r) containing 0 and exactly one of y,, ¥4, say y;. Define v
to be the superharmonic function on R? obtained by replacing Uy on B (yo,7)
by its Poisson integral there, and define w = v — min{Us, —log(r — ||yo|])}
on R? and w(oo) = 0. Then w € G4. Also w < 0 on B(yp,r) and w = ( on
R2\B(yo,r). Define f = w on 8°°f2. Then f € F and f(y;) < 0 = f(ya). It
now follows from the Stone—Weierstrass theorem that F is dense in C(8%°2).

(]

Remark 6.3.9. In the above proof we used the hypotheses that 12 is Greenian,
and Theorem 6.3.8 is actually false for any non-Greenian domain {2 with more
than one point in 82 (that is, for any non-Greenian 2 # R?); see Remark
6.2.10.

Theorem 6.3.10. Let (£2;,) be an inereasing sequence of open sets such that
Unei 22 = 2. If f € C(RU O™ 1), then Hf" ~ HY on 2 as n - oo.

Proof. Suppose that u € éj? and £ > 0. Since
liminf (u— f)(z) >0 (y € 3%

T3y, €M
and %2 is compact, there is a compact subset E of {2 such that u— f > —~¢
on IN\E. If n is sufficiently large, then 812, C 82U (2\ E) and hence
limin}"2 (u— fifz) > ~¢ (y € 8%1,),
>

z E "

soute€ 45?" for all such n. Thus u +¢ > HJ?" on {2, for all large n, so

u+ g > limsup Hf"
n—oo
on f2. Since u is an arbitrary element of 5153? and ¢ is an arbitrary positive
number, it follows that
H}Q > 1imsupH?“
n—oa
on {2. A similar argument shows that
H{ <liminf H{™,

n—¥00

and the result now follows. O
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6.4. Harmonic measure

Our aim is to show that given a point z € {2, there exists a measure p.,
depending on z and {2, such that

B = [ 7 (64.1)

for each f € R($2), and further that, if 2 is connected, then every p.-
integrable function f is resolutive and satisfies (6.4.1). We lead up to these
facts through a sequence of preliminary results.

Theorem 6.4.1. If z € 12, then there exists a unique Borel measure i, on
812 such that (6.4.1) holds for every f € C(8%°(2). Further, p.(8%°02) = 1.

Proof. By Theorem 6.3.8, C(8*°§2) C R({2), and by Corollary 6.3.2, the
mapping f — Hj(z) is a linear functional on C(8°°(2). By the minimum
principle this functional is positive: that is, Hs(z} > 0 when f > 0 on g=12.
The existence and uniqueness of the Borel measure p. on §°°f2 satisfying
(6.4.1) for each f € C{8>12) follows from the Riesz representation theorem
{see Appendix). Finally, (0% 2) = Hi1(z) = L. O

Remark 6.4.2. If 4 is a Borel measure, then the class of all sets of the form
EUY, where E is a Borel set and Y is contained in a Borel set of y-measure 0,
is a o-algebra, which we denote by Bpu. Also u can be extended to a measure
on By by defining p(EUY) = u(E), where E,Y are as above. This extended
measure is called the completion of u.

Definition 6.4.3. If z € {2, then the completion of the measure p, is called
harmonic measure relative to J2 and z. This harmonic measure is also denoted
by p, or sometimes by . A function f on 312 is called o-measurable if
f is By -measurable.

Lemma 6.4.4. If z € {2 and f : 802 = (—co,+o0] is a lower semicontin-
uous function on 9°°f2, then

By = [ fdus (6.4.2)
8%0
also f € R(§2) provided that Hy < +00 on (2.
Proof. By Lemma 3.2.1 there is an increasing sequence (f,,) in C(8°°2) such
that f = lim f, on 82, and by Theorem 6.3.5, H; = lim Hy, . Also Hy, <

H for each n. Hence —co < H; = H; on 2,50 that f € R(£2) if Hy < 400.
By Theorem 6.4.1 and monotone convergence,
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H(z) =limHy, (2) = lim/ fndp, = / fdu,. O
812 8o 02

Lemma 6.4.5. If z € 22 and f : 8% — [—00,+00] and A is a number
such that Hy(z) < A, then there exists a lower semicontinuous function
g : 0% — (~00,+00| such that f < g on 920 and H,(z) < A.

Proof. Let u € ¥ be such that u(z) < A and define g on 3°82 by g(y) =
liminf,, u(x). Then g is lower semicontinuous and f < g on 2. Also
u € Py, 50 Hy(z) <ulz) < A |

Theorem 6.4.6. Suppose that z € 2 and [ : 3°€ = [—o0, +00].
(i) If f is p,-measurable and the integral below exists, then

@ =Ha) = [ fau (6.4.3)
80
(i) If H(z) = Hy(z) € R, then f is u,-integrable and (6.4.3) holds.

Proof. (1) We prove (6.4.3) for increasingly general classes of functions.

(A) First let f be the characteristic function of a relatively open subset
E of 321 Then f is lower semicontinuous on 8% 2 and (6.4.3) follows from
Lemma 6.4.4.

(B) Next, we prove (6.4.3) in the case where f is the characteristic function
x g of a Borel subset E of 3 (2. Let B denote the o-algebra of Borel subsets
of 312, and let F be the class of sets E € B such that (6.4.3) holds with -
f = xe. The result in (A) says that F contains all relatively open subsets of
8% 12. Hence, to prove that F = B, it is enough to show that F is a o-algebra.
Clearly, 3®{? € F. Suppose that £ € F and define E' = (3% )\ E. Then

1— Hyp(2) = Hi(2) + Hoyp(2) S Hy | (2) € Hyp (2)
< Hi(z) + Hoyp(2) = 1~ Hyg(2),

by Theorem 6.3.1, so that
EXE. (z) = T'ijr (2) =1 - Hygp(2) = 1 - pa(E) = p(E'),

and hence E' € F. Now let (F,,) be an increasing sequence in F and define
F =3, Fn. Then

Hy o (2) 2 1im Hyp (2) = Hye(2) 2 H, (2),
the last-written equation following from Theorem 6.3.5. Hence
H, .(2)= H,.(z) =km Hy, (z) =limpu(F,) = u(F),
so F' € F. Thus F is a g-algebra, so F = B.
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(C) Now suppose that E € Bp,. Again we want to prove (6.4.3) with
f = xg. We can write E = FUY, where F is a Borel set and ¥ C Z for
some Borel set Z with u,(Z) = 0. Then p.(E) = u.(F) and

Hyo(2) < ﬂ (Z) < Fxle: (2) € Hypyz (2) < Hyp (z) + Hy, (2).
The result in (B) shows that {6.4.3) holds with f = xF and that H,, (z)

Hence
H, . (2) = Hyg(z) = pa(F) = p(E).

{D) Next let f be a non-negative p.-measurable simple function. Thus
there exist sets Fy,..., En, € By, and positive numbers a;,...,a, such that
f =¥ %_, axxE.- By Theorem 6.3.1 and the result of (C),

S apgia(Be) = 3 ki, (3) < Hy(2) < F(2)

k=1
n n

< Zakaﬁk (z) = Zak,uz(Ek),
k=1 k=1

and hence

CH =S = diss.
/() = Fyte) = Y onnal ) /a L fd

(E) If f is a non-negative u.-measurable function, then f is the limit of
some increasing sequence (f;) of non-negative u,-measurable simple func-
tions. By the result of (D) and monotone convergence,

]a:mﬂ a0
a.l.’ld bs‘ Theorem 6-3-5,

Hy() > lim Hy,(s) = H;(2) 2 Hy(2).

Jj—oo

It follows that (6.4.3) holds. _ ) _

(F) Finally, if f is any p,-measurable function for which the integral in
(6.4.3) exists, then

faw= [ prdu— [ fde =) - By ) 2 Hy@)

8= 12 g 8%

by Theorem 6.3.1, and similarly
[ pdue = Hpe ()~ B () S By ).
820

Hence (6.4.3) holds.

o—— e

o e

|
i
|
!
|
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(i) By Lemma 6.4.5 there is a sequence (f,) of lower semicontinuous
functions on {2 such that f, > f and Hy_ (z) < H(2) + n~!. Similarly,
there is a sequence (g.,) of upper semicontinuous functions on 8°° 2 such that
gn < fand H, (z) > H;(z) —n~!. By (6.4.2),

B =infTpo=nf [ gz [,
» R Jgen g% 2

where f* = inf,, f,,. Similarly,

B < [ gdu,
a=

where g, = sup,, gn. Since g. < f < f* on 8 and f*,g. are Borel mea-
surable, it follows that there is a Borel set Z with g.(Z) = 0 such that

g = f = f*on 9%\ Z. All subsets of Z belong to B, so f is p,-measurable
and

Hy(z) = H,(2) < /3 edu< [ g

frdu, < Hy(z),
%12 80

50 (6.4.3) holds. 0

Corollary 6.4.7. (i} If f is Borel measurable and —oo < H, < Hf < 4o
on §2, then f € R{{}) and

Hy(z) = F dus (6.4.4)

=0
for each x € 1.
(1) If 12 is connected, then the following are eguivalent:
(a) f € R(12);
(b) f is pg-integrable for some z € 12;
(c) f is pg-integrable for all x € 12.

If any of these conditions holds, then (6.4.4) holds for all z € 12.

Proof. (i) If the hypotheses of (i) hold, then f* is u,-measurable for each
z € §? and by Theorem 6.4.6(i),

Hyo(z) = Hpa(o) = [3 PP,

Since H(xz) < +oo, there is an element u € @; such that u(z) < +oo, and
since v is bounded below on {2, we have . + 4 € &+ for some real number
A. Hence H 4+ (z) < +oo. Since z is an arbitrary point of 12, it follows that
ft € R(£2) and (6.4.4) holds with f+ in place of f. Similarly f~ € R(£2)

and (6.4.4) holds for f~. The required conclusion now follows from Corollary
6.3.2.
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(i) If (a) holds, then by Theorem 6.4.6(ii), condition (c) holds. Clearly {c}
implies (b). If (b) holds, then by Theorem 6.4.6(i), H, and H are finite and
equal at some point, and hence by connectedness and the maximum principle,
at every point of 2, so f € R(f?). Thus (a) = (¢} = (b) = (a). Finally, if
(c) holds, then (6.4.4) holds for all z € {2 by Theorem 6.4.6(i}. a

Theorem 6.4.8. Suppose that w is an open subset of 02, that z € w, end
that E C 3w N d® 0. If E is u -measurable, then E is p¥-measurable and
pe(E) < u?(E) with equality in the case where w is a component of 2.

Proof. Suppose that E is u-measurable and let x5 denote the characteristic
function of E. We define a function F on {2 U 3°°f2 to be equal to xg on
%7 and Fﬁ; on {2. By Theorem 6.4.6(i), the equations (6.4.3) hold with
f = xg. Hence, by Theorem 6.3.6 {and its counterpart for lower solutions)
He(2) = F(2) = F‘;(z) so that, by Theorem 6.4.6(ii), F is p¢-measurable.
Since xg = Fyp=gq, it follows that xg is p¢¥-measurable and

ue(E) = / xodut < [ Fduz =Tp(2) = BE(2) = wf(B).
H°0w Ry

If w is a component of {2, then E C 8%°w C 812, s0 F = xg on 8w and
the above inequality is an equality. O

Ezample 6.4.9. (i) Harmonic measure relative to B and z € B is given by
dﬂ.z = KO,I (Z, ')dﬂ', (645)

where ¢ is surface measure on S and Kp; is the Poisson kernel of B given
by (1.3.1).

To see this, we note that if g, is given by (6.4.5), then by Theorem
1.3.3, for any f € C(S), the function z — [ f du. is the classical, and
hence also the PWB, solution of the Dirichlet problem on B with boundary
function f. The assertion follows by the uniqueness of harmonic measure
(Theorem 6.4.1).

(ii} Harmonic measure relative to D = R¥~! x (0,+0c) and z € D is
given on 3D by

du, = K(Z, )dA' on 8D, P-:({OO}) =10,

where A’ is (N —1)-dimensional Lebesgue measure on 0 and K is the Poisson
kernel of D, given in Definition 1.7.1. This is proved by arguing as in (i), and
using Theorem 1.7.5 in place of Thecrem 1.3.3.

Theorem 6.4.10. Let (12,) be an increasing sequence of bounded open sets
such that 2, C 2 and | oo, 2 = 12, and let u € U(R2). Then:

(i) for each m € N the sequence (H > is decreasing on §2,,;

{ii) u has & harmonic minorant on (2 if and only if lim H > —o00 on £2;
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(i3} if u has a harmonic minorant on (2, then its greatest harmonic minorant
is lim H

Proof. For each n the restriction of v to 92, is lower semicontinucus and
bounded below, and © € $7~ . Hence H exists and is a harmonic minorant
ofuwon 2,.Ifs € S.T/f"“, then s < u on §2,41 by the maximum principle, so
s € U Tt follows that Hy"*' < H on (2, and so (i) holds.

Let h = lim H? . If A > —occ on 2, then h is a harmonic minorant of u
on each f2,,, and hence on 2. Conversely, if ky is a harmonic minorant of «
on {2, then hy € !I’f" 50 hy < Hf" for each n, and hence h > h; on f2. This
proves (ii) and (jit). O

6.5. Negligible sets

Definition 6.5.1. A subset E of 3°°(2 is called negligible (for 2) if p1. (E) = 0
for each z € 2 or, equivalently, if H,, = 0, where xg is the characteristic
function of E.

Theorem 6.5.2. A subset B of 342 is negligible if and only if there ezists
u € Uy (12) such thet u(z) = +oo asz > y for eachy € E.

Proof. If there is such a function w, then eu € &, for each £ > 0. Hence
H, . = 0 on the set where u < +o0 and therefore, by continuity, everywhere
on {2, so E is negligible.

To prove the converse, suppose first that f2 is connected. Suppose also
that H,, = 0 and fix z € 2. For each n € N, there exists u, € &, such
that u,(z) < 27". We note that u, € Uy(f2). Define u = ¥ .., u, on §2.
Then u(z) < +o0, so u € U4 (12). Also,

o) oo
liin_glfu(z) > thlnfun(:r) > ZI =400 (y € E).

n=1 n=1

Now consider the general case. Let {w; : j € J}, where J C N, be the set
of components of {2. The result in the preceding paragraph yields, for each
j € J, a function v; € Uy(w;) such that v;(x}) — +oo as z = y for each
y € ENd™w;. Define v on 12 by putting v = § + v; on w; for each j € J.
Then v € U (12). Fix y € E and A € {1, +0c0). To show that v(z) = +oo
as £ — y, we must prove that there is a neighbourhood w of y such that
j+v; > AonwnNw; whenever wNw; # & H 7 € J and 7 < A, then
there is a neighbourhood wj of y such that either w; Nw}; =@ or v; > A on
wjNw}. If j € J and j > A, then j+v; > A on w;. Hence the neighbourhood
W= ﬂjs 4w; has the required property. O
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Lemma 6.5.3. A subset E of 3°°12 is negligible for 12 if and only if every
component w of {2 contains a point T, such that pu2 (EN3%°w) = 0. In
particular, if EN 0w = @ for each component w, then E is negligible for 2.

Proof. If E is negligible for §2 and z is an arbitrary point of some component
w of 12, then by Theorem 6.4.8,

1 (BN 0%w) = pg (BN 8%w) < p(E) = 0.

To prove the converse, let w be any component of 2. If u% (ENJ™w) =0
for some 2, € w, then by the minimum principle, F: = 0, where x is the

characteristic function of £ N 8®w. By Theorem 6.3.6, FSE = 0 on w and
therefore E is negligible for f2. d

We now use this lemma to give an example in which 442 contains a neg-
ligible set of positive A-measure.

Ezample 6.5.4. Let (g,) be a dense sequence in {0,1) and let

2= {(zl,...,xN) €0, )N :zy€ G(Qﬂ$§h +2—n—1)}_

n=l1

The density of (g,) implies that 7 is the cube [0, 1]V, Also
= 1

MDD =X - MDD >1- 2—nl =

00 =A@ - N 21-Y 2 = ]

n=1

Let E be the set of points in Jf2 that are not in the boundary of any
component of 2. By Lemma 6.5.3, F is negligible. If w is a component

of 12, then clearly w is an N-dimensional rectangle, so A{fw) = 0. Hence
AE) = Ma2) > L.

Theorem 6.5.5. If E C 812 and E is polar, then E is negligible.

Proof. Suppose first that ¥V > 3. By Theorem 5.1.3(i} there exists u €
U (RY) such that v = +oc on E. Hence, for each y € E, we have u(z) = 400
as z — y with z € £2. Tt follows from Theorem 6.5.2 that E is negligible.

In the case where N = 2, for each z € {2 let 7, be a positive number
such that £2U B(z,r;) is Greenian; such r, exist by Theorem 5.3.8. Since E
may be covered by a countable union of balls B(z,r,), it is enough to show
that ENB(z,r.} is negligible for each z € 412. Since 20 B(z,r;) is Greenian,
there exists a potential u on 2U B{z,r.) such that » = +oo on EN B(z,r,),
by Theorem 5.1.3(i). If y € E N B(z,r;), then u{z) > +0 as ¢ — y, and
therefore £ N B(z,r;) is negligible, as required. ]
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It follows, in particular, that any one-point subset of 812 is negligible. The
question whether the one-point set {oco} is negligible is more complicated, as
we illustrate below. A complete characterization of unbounded sets {2 in RY |
where N > 3, for which {oo} i negligible will be given in Theorem 7.6.5(ii).

Example 6.5.6. (i} If §2 is an unbounded Greenian open subset of R?, then
{oo} is negligible for £2.

To prove this, we note first that R%\/? is a closed non-polar subset of R*
and therefore contains a compact non-polar set . By Lemma 5.8.1 there is
a positive harmonic function h on R2\K such that h(z) = +oc0 as  — oo.
The result follows as an application of Theorem 6.5.2 with u = h|g.

(ii) If 2 = RY\K, where N > 3 and K is compact, then {co} is non-
negligible for {2.

To prove this, we take a ball B(0,r) containing K and define

s(z) =1~ (r/lzl )V (z € £2).

Then s € ¥y, Hence Hy, , > s on (2.
(i) If §2 is a half-space, then {oc} is negligible for £2 by Example 6.4.9(ii).

6.6. Boundary behaviour

We have already seen that the PWB approach always yields the classical
solution to the Dirichlet problem when the classical! solution exists. We will
now see that much mare is true: if f € C(8 ), then lim,_,, Hs(x) = f(y)
for most points y in 82 even if the classical solution does not exist. The
points y at which this equation fails for some f € C(3>°2) are called “ir-
regular”. We shall show that the irregular points in 812 always form a polar
set and shall characterize regular points of 82 by the existence of so-called
“harrier functions”, Several sufficient geometric conditions for regularity will
be given. These all suggest that a point y € 82 is regular if RV \ {2 is not too
“thin” at y. A precise characterization of (irjregularity in terms of thinness
is proved in the next chapter. For bounded, not necessarily continuous, res-
olutive functions f, we shall show that the behaviour of H; near a regular
boundary point y is determined by the local behaviour of f near y; this is
not generally true for unbounded resolutive functions.

Definition 6.6.1. A point y of 3£ is called regular (for 22) if
il_r’n H(z) = f(y) for each f € C{8™° ).
y

Otherwise y is called irregular. We say that the set 12 is regular if every point
of %2 is regular.
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Definition 6.6.2. A function u is called a barrier (for 2) et y € 802 if v is
positive and superharmonic on {2 Nw for some open neighbourhood w of y
and lim,_,, u(z) = 0.

We first aim to show that y € 32 is regular if and only if there is a barrier
at y. Conditions for co to be a regular boundary point will be discussed
separately in Section 6.7.

Lemma 6.6.3. If there is a barrier at y € 32, then there exists a barrier v
at y such that v € U, (12) end info\, v > 0 for every open neighbourhood w

of y.

Proof. Let u be a barrier at y and choose r > 0 such that w is positive
and superharmonic on 2 N B{y,r) and 2N S{y,r) # 0. Define 2 = fIn
B(y,r) and suppose for the moment that there exists w € U, (2') such
that lim;_,; w(r} = 0 and infgn,w > 0 for every open set w such that
y €wC Bly,r/2). Let o = inf{w(z) : z € 2'\B(y,r/2)}. Then the function
v, defined to be equal to min{w, a} on 2NB(y,r/2) and equal to o elsewhere
on f2, has the properties we require. Hence it is enough to show that such a
function w exists.

Define f on 802" by f(z) = ||y —z||. Ther f € R{{?'), and we aim to show
that H j?' has the properties required of w. Note that the function z — ||y —z||

has positive Laplacian on RV\{y} and so belongs to the lower class lII_f'.
Therefore inf o\, H}?’ > 0 for every open set w such that y € w C B(y,r/2).

It remains to show that H }7' () = 0 as ¢ — y. To do this, we take a number
p such that 0 < p <+ and £2 N S{y, p)} # # and show that

limsup Hf (z) < 2p. (6.6.1)
£y
Since arbitrarily small values of p can be chosen, the required conclusion will
then follow.

Fix such a number p, write B, = B(y,p) and let E be a non-empty
compact subset of 2N 3B, such that ¢((2 N 8B,N\E) < (p/r)a(dB,). Also
let k = infg v and note that k > 0. Define g to be equal to r on (2NJB,)\E
and equal to 0 elsewhere on 9B,. Let s be an arbitrary element of !Iff' and
define sy on 2N B, by

so=8—p—k"lru—1I,,,.
Then sq € S{f2 N B,). We wish to show that
lim sup so(z) <0 (z € 8(20 By,)). (6.6.2)

T—z
We have
lim g, ,(z) =1 (2 € (2N8B\E),

r—z
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im1i > >k E
:t—rl;,I?ElJ%gB, 'U.(:E) - u(z) - (z € )’

limsup s(z) < f(z}<p (2€B,NaN);

z—z,xE8NB,

also
Loz} 20, u(z)>0, sz)y<supf<r (z€2NB,).
an
By using these inequalities and considering separately the cases where z € E,

2 € (2N 8B,)\E, and z € B,N 812, we find that (6.6.2) holds. Hence, by the
maximum principle, 5o < 0 on 2N B,, s0

s<p+klrutl,,,
on {2N B,. Since s is an arbitrary element of sl'f”', it follows that
H?I < p+klru+ Iiy.e
on 2N B, Now
lim Iy (#) = Io.n(v) = Mlgiy.p) <rp/r =p,
and by hypothesis, lim,_,, u(z) = 0. Hence (6.6.1) holds, as required. 0

Theorem 6.6.4. If there is a barrier at y € 012, then for any function f on
8 (} which is bounded above,

limsup H(z) < limsup f(z). (6.6.3)
Ty, s ESR =y, 2002

If, further, f is bounded on 812 and continuous at y, then
im Hy(z) = li = fly). 6.4
lim ¥ 7(z) = lim H,(z) = £(3) 669)

Ty

Proof. By Lemma 6.6.3, there is a barrier v at y such that v € U;(£2) and
inf g\, v > 0 for every open neighbourhood w of y. We choose a number A
such that limsup,_,, f{z) < A < +oco. Let w be an open neighbourhooed of
y such that f < 4 on (@M &2)\{y} and 2\w # B. Also, let c be a positive
number such that A + cinfy\, v > sSupgep f and define v = A+ cv. Then
w € U(£?) and u is bounded below on 2. Further, :

lim_infu(a:) > A +cfi}r{f v > su%f > f(2) (z € (8%D\@)

and
liin_:iznfu(m) >A> f(2) (z € (AR nw)\{y})
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The singleton {y} is negligible, so by Theorem 6.5.2 there exists w € U, (£2)
such that w(z) = +coasz — y. If £ > 0, then u +ew € &;. Hence Hy < u
on {z € 2: w(z) < +oo} and therefore on £2. It follows that
limsup H ;(z) < kmsupu(z) = 4+ ¢ lim v(z) = 4,
Ty T3y Ty

and hence (6.6.3) holds.

If f is now supposed to be bounded below on 812, then by applying the
result just established to — f, we obtain

h;r;lgf Hz) > llinngff(m}. (6.6.5)

If f is bounded on 8°°12 and continuous at y, then (6.6.3) and (6.6.5) yield
(6.6.4). O

Theorem 6.6.5. A point y € 812 is regular if and only if there is a barrier
at y.

Proof. If there is a barrier at y and f € C(8°°12), then by Theorem 6.6.4,
Hy(z) = f(y) as  — y, so that y is regular.

Conversely, suppose that y is regular. We define a function g on 812 by
g(x) = min{l, ||z — y||} and let g{oco) = 1 if 2 is unbounded. Then g €
C(H°°12) and since y is regular Hy(r) — g(y) =0 as  — y. Also, since g > 0
on %42, except on the negligible set {y}, we have H, > 0 on {2. Hence H,
is a barrier at y. a

Corollary 6.6.6. Let iy € 392 be regular and f : 802 — [—o0, +00].

(i) If § is bounded above on 812, then (6.6.3) holds.

(i) If f is resolutive and bounded on 82 and f is continuous at y, then
Hs(z) = f(y) as x> y.

Proof. This follows immediately from Theorems 6.6.4 and 6.6.5. O

The boundedness of f in the above result is essential, as we will see in
Example 6.6.18 below.

Theorem 6.6.7. A point y € 842 is irreqular for 2 if and only if there
is some component w of 2 such thet y € Ow and y is irregqular for w. In
particular, y is regular for £2 if y is not in the boundary of any component of

.

Proof. Let the set of components of 2 be {2 : j € J}, where JC N. If y is
irregular for some {2;, then by Theorem 6.6.5 there is no barrier for £2; at y.
Hence there is no barrier for 12 at y, and therefore y is irregular for (2.
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To prove the converse, suppose that there is no §2; for which y is an
irregular boundary point. Then for each j € J, either y is a regular boundary
point of 2; or y & 82;. In the former case, let v; be a barrier for £2; at y
such that v; € U4 (£2;); such a function v; exists by Lemma 6.6.3. Now define
u on {2 by putting v = min{v;, 1/} on 2; if y € 812; and v = 1/j on £2;
if y  812;. Then u is a positive superharmonic function on 2, and we claim
that w is a barrier for {2 at y. Fix a positive number ¢ and let J' denote
the finite set {7 € J : 1/j 2 €}. I J' = @, then u < € on 2. Otherwise,
for each j € J' there exists an open neighbourhood w; of y such that either
wiN =Poru<eonwyNiY Let w =}, w;. Then w is an open
neighbourhood of ¥ and 4 < € on wnN 2. Hence lim;_,,u(z) =0 and  is a
barrier for 2 at y, and therefore y is regular for £2. O

Theorem 6.6.8. The set of irregular boundary points in 812 is polar.

Proof. Suppose first that 2 is connected and fix an arbitrary point z € f2.
By Theorem 5.7.4(i), the Green function Gp(-,2) has the property that
Gol{z,z) - 0asz — y for all y € O/A\P, where P is a polar set. Thus
Gal,z) is a barrier at y for each y € 2\ P and therefore each such y is
regular. Thus the irregular points of 312 belong to the polar set P.

In the general case, Theorem 6.6.7 allows us to conclude that the irregular
boundary points in §2 are contained in a countable union of polar sets and
therefore form a polar set. O

Corollary 6.6.9. (i) If E is a relatively open subset of 002 which is negligible
for £2, then each point of E is irregular and the set E is polar.

(ii} If E is a relatively open subset of 812 which is polar, then each point of
E is irregular.

Proof. (i) If z € E then we choose f € C{0°°#2) such that f = 0 on °MNE
and f(z) # 0. Since H; = 0, it follows that z is irregular. Hence F is polar,
by Theorem 6.6.8.

(ii) This follows from (i) and Theorem 6.5.5. ]

We now provide a supplement to Theorem 6.4.8.

Theorem 6.6.10. Let w be an open subset of 12 and let E be a subset of
BINSNw. Then E is negligible for w if and only if E is negligible for £2.

Proof. The “if” part is immediate from Theorem 6.4.8. To prove the converse
we suppose that F is negligible for w. Since a countable union of negligible
sets is negligible, it is enough to treat the case where E is bounded and
E ¢ 3N\ f\w. Since E is contained in a Borel set that is negligible for w,
we may also suppose that E is a Borel set and hence that the characteristic
function g is resolutive for 2. We define a function F' to be equal to xg on
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8° 2 and equal to HfE on 2. Then 0 € F < 1on 2UH%(2 and F|o € H({2).
By Corollary 6.6.6,

z—};TEQF(m) =0 (6.6.6)
for every y € 12\ F that is regular for 2. By Theorem 6.3.6, Corollary 6.3.2
and the assumption that E is negligible for w,

F(z) = Hp(z) = Hpypnp, (2) + Hyp(2) = Hiyp (2) (2 € W),
and hence (6.6.6) holds also for every y € F that is regular for w. Thus (6.6.6)
holds for quasi-every y € 812 by Theorem 6.6.8. Also, in the case N > 3, some
multiple of 7y belongs to $2, and so F{z) — 0 as £ — oo if 12 is unbounded.
It now follows from Theorem 5.2.6 that F' = 0 on 12, so E is negligible for
£ a

Ezample 6.6.11. Let D = R x (0,+00) and E; = (0,1) x {t}, and define {2 =
D\(U., Ei /). Then Ej is negligible for (2. To see this, let w = 21 (0, 1)*.
Since Ej, is negligible for w, by Lemma 6.5.3, Ey is negligible for 2, by
Theorem 6.6.10.

We now give some simple geometric sufficient conditions for regularity.

Theorem 6.6.12. If y € 812 and there is a ball By such that By N2 = {y},
then y is regular.

Proof. Let By = B(z,7). Then the function U.(y) — U, is a barrier at y, so
the result follows from Theorem 6.6.5. O

The above theorem implies, in particular, that any bounded domain with
a (one-sided) C? boundary is regular.

Corollary 6.6.13. Any open set 2 is the union of a sequence ({2n) of
bounded regqular open sets such that £2, C (2,4, for each n.

Proof. For the purposes of this proof, we say that a non-empty bounded open
set w is admissible if w = wo\(B1 U ... U By,), where wp is a bounded open
set and B,,...,B,, are open balls whose union covers dwe. It follows from
Thecrem 6.6.12 that any admissible set is regular, and it is easy to show that
any open set 2 is the union of a sequence (12} of admissible sets such that
ﬁn C Qn+1 for each n. O

Even with elementary methods, we can give a much stronger result than
Theorem 6.6.12; for example, in R® one such result says that y is a regular
boundary point for §2 if y is the vertex of a plane triangle lying outside §2.
For this, we need the following lemma.
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Lemma 6.6.14. Let
E={zeR" ||z} <d, =z =0, z >0},

where § > 0. If y € 812 and there is an isometry T such that T(0) =y and
T(E) C RV\{2, then y is regular for 2.

Proof. Tt is enough to deal with the case where y = 0 and T is the identity
mapping on RY . Let {r,#) be polar coordinates such that z; = rsinf, z =
rcos@. The function (z;,...,zn5) — r/2sin(#/2) is harmenic and positive
on RN\{z : 2, = 0,z» > 0} and vanishes at 0. Hence 0 is regular. D

The strengthening of Theorem 6.6.12 mentioned above is as follows.

Theorem 6.6.15. (i} If y € 812, where 2 C B2, and y is en endpoint of
some line-segment lying in RZ\12, then y is regular.

(ii) Suppose that y € 002 and 2 C RY, where N > 3. Suppose also that
there exists a cone I' of vertex y and an (N — 1)-dimensional hyperplane P
containing the azis of I' such that TN PN B(y,8) C RN\ {2 for some § > 0.
Then y is regqular.

Proof. (i) This is simply a reformulation of Lemma 6.6.14 for the case N = 2.

(ii) We may suppose that y = 0. Define {2y = B\I'N P. Then any barrier
for {2 at y, suitably restricted, will be a barrier for 2. Define f(z) = ||z|| for
x € Ofly. We will show that Hf" is a barrier for f2y at 0 and thus complete

the proof. Since the function z + ||z]| belongs to F we have HJ?“ () = ||=||
on {2, so it is enough to show that H}?" (z) > 0 as z —+ 0. By Lemma 6.6.14,
every point of 82\ {0} is regular and therefore ;?"(I) — f(z)asz o z for

- each z € 82\ {0}. Since f < 1 on 312 and (% is connected, either Hf“ < 1

or H)f)“ = 1 on (2, but the latter is clearly impossible. Let £2; = f2,n5(0,1/2)
and define ¢ to be equal to f on 82, N 3f% and equal to Hf" on {2, NafA.
By Theorem 6.3.6, Hy® = HJ™ on (1 and hence supg, Hf“ < supgn, 9 < 1.
Let & = max{1/2,supg, H}?"}. The function

z H;?“(:c) - aH}?“ {(2z)

is bounded and harmonic on §2; and has a non-positive limit at each point
of 852;\{0}. Hence by the maximum principle (Theorem 5.2.6), this function
is non-positive on {2; and therefore

0 < limsup Hf“(z) < alimsup Hf“(:c) < 400.
z—+0 -0

Sinece 0 < a < 1, it follows that H?“(cc) —0asz 0. a
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Theorem 6.6.15 implies that if 0 € 842, then a sufficient condition (called
the Poincaré exterior cone condition) for 0 to be regular is that RV \/2 con-
tains a cone of revolution with vertex 0. In the opposite direction, the next
result describes some sets of revolution F for which 0 is an irregular boundary
point of RN\ E.

Theorem 6.6.16. Let
E={(z1,-.,an) : [I@1,..,an-)ll < F=R)}h
where N > 3 and f : [0, +00) = [0, +oc) is increasing. If

fl 2N Pt < +oo (N 2 4), {6.6.7)

0

! dt
< 4oo (N =3),
/u {1 +log™(t/ f(t)}
then 0 is irreqular for RV\E.

Proof. We prove the case where N > 4 and leave the case where N = 3,
which is similar, as an exercise. Points of RY will be written as (z',zn),
where ' € RN, Let

walz) = | || + (zx — )} N2 (0 <a < +o0).

Then 1 c0 is harmonic on (RY~1\{0'}) x R and depends only on ||z’||, so the
function ' — 44e0(#',0) is harmonic on RY=1\{0'}. Further, by monotone
convergence, this function has limit +oc at ( and limit 0 as |[z']] = +oo.
Hence, by Theorem 1.1.2, v4oo(z} = a||z'|*~" for some positive constant
¢1. Since 4o, — ¢; has a harmonic continuation to B, there is a positive
constant ¢, such that ui(z',0) > 2¢z||2'||*~" when {|z'|| < 1. If [zn| < 1 and
llz'll <1, then

1 mN-}-l _ _
uy(z’, zn) 2 "/ (1|2 + (2 — )2}~ 2dt > ojz' P77
2 rn—1
Since uy (@', ten) = a¥ " Fuq (2, TN), we obtain
ua(z'zn) 2 el [P (2]l € a;lzn| < ;0 <a < +oo).  (6.6.8)

Now let E and f be as stated, and let 2 = RV\E. It follows from (6.6.7)
that

[e o]

ST{m TR < too

n=1
Clearly f(2-™) < 27772 for all sufficiently large n. Also, we can choose a
sequence (by,) of positive numbers such that b, — +oo and

6.6. Boundary behaviour 187

D b {27 F27Y T < oo, (6.6.9)
n=1
Let
faa) 9=
v(z) = Z bn{f(g—n)}N——af {||$'||2 + (zn — t)z}(z—N)jz dt.
g—-n-—1

n=1

Then v is a potential on RY and v is harmonic on RV\({0'} x [0,1}). It is
clear from (6.6.9) that v(0) < +oo. However, if 277! < zn < 27" and
llz']| € f(27™), then it follows from (6.6.8) with & = 27"~% and a translation
that v(x) > byca, provided n is large enough to ensure that f(277) < 27"~2.
Hence v(z) — +oo as = — 0 along E. Now define g on 82 by writing
g(0) = 2v(0), g{c0) = 0 and g = min{v, 2v(0)} elsewhere. Then g € C(8°12)
and v + £Uy € @, for every positive number ¢, so Hy < v on {2. However, it
i clear from the definition of v that v(0', zx) < v(0) = ¢{0)/2 when zx5 < 0,
so we cannot have H,(z) = g(0) as z — 0, and therefore 0 is irregular for
. (]

Remark 6.6.17. Tt follows from the above theorem that if N > 4, then 0 is
an irregular boundary point for sets of the form

RY\{(z',zn) :2n 20, ||2|] < 2%)

when a > 1. However, as we have already observed, Theorem 6.6.15 shows
that when o = 1, the point 0 is regular for this set. In the case N = 3,
Theorem 6.6.16 shows that 0 is an irregular boundary point of the set B®\F,
where

F={0}u{(z',23) : 23 > 0, ]|='}| < exp(—=5")}

and € > 0. In the case where £ = 1 the set F' is referred to as the Lebesgue
spine.

We conclude this section with an example showing that the boundedness
of f in Corollary 6.6.6(ii) cannot be dispensed with.

Ezample 6.6.18. For each n € N let §2,, = (—1,1) x ((n + 1)7*,n71), and
let §2 = |J;_; {2,. Then 0 is a regular boundary point of 812, but there is a
resolutive function f, continuous at 0, for which limg_,q H¢(z) does not exist.

To see this, let x,, be the midpoint of the rectangle (2,,. Then there exists
fn € C(362,) such that f, = 0on [-1,1]x{(n+1)"!,n"'} and Hﬁ" (zn) = 2.
Also, since the point (0,n~!) is regular for {2,,, there exists y, € 2,N({0} xR)
such that Hﬁ“ (yn) < 1. Define f on 842 by putting f = f, on {—1,1} x
((n+1)~1,n~1) for each n and f = 0 elsewhere. Then f is continuous at 0
and HY? = Hﬁ" on £2, for each n. In particular,

H}?(In) =12, H?(yn) <1 (n € N).
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Since 2, — 0 and y,, —+ 0, it follows that lim,_,0 Hf?(z) does not cxist. We
note that, by Theorem 6.6.15(1), all points of 312 are regular.

6.7. Behaviour near infinity

Theorem 6.7.1. If 12 is an unbounded open subset of RV, where N > 3,
then oo is regular for 12.

Proof. Let f € C(8°2). We have to show that H¢(z) = f(o0) asz — oo. By
adding a constant to f, we may suppose that f(oo) = 0, and by multiplying
f by a suitable positive constant, we may also suppose that |f| < 1 on 8°°12.
Given £ > 0, let B > 0 be such that [f{y)| < £ when y € 82 and |ly|| > R.
Then the function uc{x) = € + (&/||z||)" 2 belongs to #; and —u, € ¥;.
Hence |Hy| < u, on f2. Since u.(z) & £ as £ = 0o and ¢ is an arbitrary
positive number, the required conclusion follows. O

In R? the question of whether co is a regular boundary point of 2 is more
complicated. An answer will appear as a corollary of the following theorem.
We use the notation of Definition 1.6.2 with the convention that the inverse
oo0* of oo with respect to S(y,a) is y and y* = o0, and we then modify the
definition of the inverse of a set E by putting E* = {z* : « € E} for any
ECRY U{co}.

Theorem 6.7.2. Let {2 be ¢ Greenion open subset of R, and let §2° be its
inverse with respect to some sphere S(y,a), where y € RE\£2. If f : %N —

[~00, +o0], then ﬁ?: (z) = F?(z‘) for each = € £2*.
Proof. Suppose that « € 45}7 . Then v* is hyperharmonic and bounded below
on {2*. Also, by the continuity of the mapping z = z*,

limi *{zr} = liminf *) = liminf N> fN)=f
ATaeh. v ) = Aple v = Il ) 2 S = 1)

for each z € 8% 2* = (3°2)*. Hence u* € 45?.‘. We now have
Hy. (z) < inf{u’(2) s u € 87} = inf{u(z") : u € &} = H; (z")

for each z € 2*. Since the mapping = + z* is its own inverse, the same
—n —n
argument shows that H ;. (z) > H; (z*) for each r € 2~ O

Corollary 6.7.3. Let N = 2. With the notation of Theorem 6.7.2, a point z
af 312 is reqular for 12 if and only if z* is regular for 17*.

Proof. Since (x*)* = =z, it is enough to prove the “if” statement. Suppose
that z* is regular for 2%, and let f € C(3°°12). Then f* € C(8*2*) and by
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Theorem 6.7.2 (and its counterpart for lower solutions), H ? (z) = HZ (z*)
for each = € £2. By the regularity of 2* for £2* and the continuity of the
mapping z — z*, we have

lim Hf (z} = lim_ H{E (7)) = f*(z*) = f(2),

T—z Ttz

so that z is regular for f2. }

Ezample 6.7.4. (i) If 12 is a Greenian open subset of R? and R?\ {2 is compact,
then oo is irregular for §2. To see this, let £2* be the inverse of {2 with respect
to Sy, 1), where y € R?\{2. Then y = o0o* under this inversion and y is an
isolated, and hence irregular (see Corollary 6.6.9(ii)), point of 842*. Thus by
Corollary 6.7.3, oo is an irregular point of 8°°12.

(ii) If 12 is an unbounded open subset of B2 and R?\(2 contains a half-line,
then oo is regular for 2. To see this, let f2* be the inverse of 2 with respect
to S{y,1), where y is a point of some half-line in B>\ 2. Then y = co* and
there is a line-segment in R2\(2* having y as an endpoint. Hence y is regular
for £2* by Theorem 6.6.15(i), and oo is regular for {2 by Corollary 6.7.3.

Theorem 6.7.5. A Greenian set §2 in RN is regular if and only if each
component of §2 is regular.

Proof. This follows from Theorems 6.6.7 and 6.7.1 and Corollary 6.7.3. O

6.8. Regularity and the Green function

Theorem 6.8.1. If {2 C RN, where N > 3, or £ is a bounded open subset
of R?, then Galy) = U, — Hy, on 2 for each y € 2. (Here we define
U,(oo) = 0 if §2 is unbounded. )}

Proof. Fix y € £2 and note that under the stated hypotheses U, € C(9°12)
and Uy € Py, , so that U, > Hy, on {2 Since Go(-,y) = Uy — hy, where h,
is the greatest harmonic minorant of Uy on §2, we see that h, > Hy, on f2.
On the other hand, hy, < Uy on f2, so hy € Wy, and therefore hy < Hy, on
2. Thus hy = HUQ and the proof is complete. O

Ezample 6.8.2. Let 12 = R?\K, where K is compact and non-polar and let
y € 2. Then Gp(,y) # U, — Hy, (no matter what value is assigned to
U,{0)). Thus Theorem 6.8.1 does not extend to all Greenian sets in R?.

To see this, we note that {co} is a negligible subset of 912 (see Ex-
ample 6.5.6(1)) and U, is bounded on 82, so Hy, is bounded on 2. Hence
Uy — Hy, takes negative values at some points of §2, but G (-, ) does not.
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Theorem 6.8.3. Suppose that z € 812, The following are equivalent:
{a) z is regular for §2;
(b) for every y € 12,

| lim Ga(s,4) = 0 (6.8.1)

(¢) every component of {2 contains a point y for which (6.8.1) holds.

Proof. We first treat the case where z € 812. Suppose that (c) holds. Then,
for each component w of 2 which satisfies z € dw, there is a point ¥ € w such
that G (-,3) is a barrier for w at z, and thus z is regular for w. It follows
from Theorem 6.6.7 that (a) holds.

In the case where 2 satisfies the hypotheses of Theorem 6.8.1, it is clear
that (a) implies (b). In order to include the case where {2 is an unbounded
subset of B2, we give a different argument. Fix y € 17 and choose > 0
such that Bly,r) C {2. If z is regular, then there is a barrier v at z and,
by Lemma 6.6.3, we may assume that v € U, (£2). We can arrange that
v > Gpl-,y) on S(y,7) by working with a suitable multiple of v. Define u =
Go(,y)on Bly,r)and u = min{v, Go(-y)} on {\B(y,7). Then u € UL
and u has the form U, + w, where w € U({2). Since Gq(-,y) is the minimal
function of this form in #4((2), we have 0 < Gqa(,y) <uw <von fN\B(y,r)
and hence (6.8.1) holds. Since (b) clearly implies {c), this completes the proof
of the theorem, apart from the case where z = 00.

Finally, suppose that {2 is unbounded and z = oo. In the case where
N > 3, the point oo is necessarily regular, by Theorem 6.7.1, and for each
fixed y € 12,

0 < Galz,y) <Uylz} 20 (x — oo,z € {2).

In the case where N = 2, Theorem 4.1.11 and Corollary 6.7.3 enable us
to deduce the theorem for z = oo from the already egtablished case where

z € a1 O
Corollary 6.8.4. The irregular boundary points of 12 form an F, set.

Proof. Tt is sufficient to show that the set E of finite irregular boundary points
is F,, since the possible addition of 0o to E would preserve this property. In
view of Theorem 6.6.7, and the fact that a countable union of Fy sets is F;, we
may assume that 2 is connected. Let y € 1?2, Theorem 6.8.3 shows that (6.8.1)
holds for a point z € 812 if and only if z & E. Thus E = {z € 812 : f(z) > 0},
where
f(z) = limsup Gz, y) (z € 8).
T—E

Since f is upper semicontinuous on 92, the set {z €0Q: flz) 2n'}is
closed for each n € N. Thus E, being the union of these sets, 1s an F,set. O
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6.9. PWB solutions and reduced functions

The first result in this section is a generalization of the fact that if we take
a superharmonic function and replace it in some ball by its Poisson integral
then superharmonicity is preserved {see Corollary 3.2.5).

Theorem 6.9.1. Suppose that u € U, {12}, let E be a relatively closed subset
of 12, and define u; =u on 2 and uy =0 on 2. Then uy € R(\E) and

RE (o) ' {u(:r:) (z € E)
U :E =
HOE(2)  (z € Q\E).

In particular, H,ﬁ\E <u on INE.

Proof. Since u; is lower semicontinuous on 3 (f2\E) and u € @fl\E, it follows

that vy € R(IN\E). If v € Uy (f2) and v > © on E, then v € AR

L) ]

RE > Hfl\E on {2\ E. To prove the reverse inequality, let w € @f,\EHU(Q\E)
and define 10 to be equal to » on E and min{w, u} on \E. By Corollary
3.2.4, 1% € U, () and hence % > RF on 2. Thus w > RE on O\ E, and since
w is an arbitrary superharmonic element of eﬁfl\E, it follows that Hﬁ\E > RE

on INE. O
Corollary 6.9.2. Let w be a bounded open set such thatw C 12, let u € U((2)
and define
u(z) (z € Mw)
v(z) =

H2(z) (z€w).
Then 0 € U{2) and ¥ < u on 2.

Proof. This follows from Theorem 6.9.1 by defining £ = N\w. O

Corollary 6.9.3. If E is a reletively closed subset of 2 and u,v € U4 ($2),
then
RE  =RZ+RE
and
~p ~ -
RE ,=RE+RY
on I2.

Proof. By Theorem 6.9.1 the first equation holds on §2, and hence the second
equation holds quasi-everywhere on 2. The second equation therefore holds
everywhere on {2, by Corollary 3.2.7. a
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6.10. Superharmonic extension

Newtonian potentials on RY (or logarithmic potentials in the case N = 2)
are convenient functions to work with, especially when their Riesz measures
have compact support. It is therefore of some interest to know when a su-
perharmonic function on an open set can be represented, at least locally, as
such a potential plus a constant. The proof of the following theorem makes
use of properties of the PWB solution of a Dirichlet problem.

Theorem 6.10.1. Let K be a compact subset of RV such that ]RN\K is
connected. If u is superharmonic on some open set confaining K, then there
exists T € U(RY) such that § = v on K, and there ezist a,8,p € R with
B,p > 0 such that & = a + U on RV\B(0, p).

Proof. Let 2 be 2 bounded open set containing K such that u is superhar-
monic and bounded below on {2. By adding a suitable constant to u, we may
suppose that © > 0 on 2. Let L be a compact set such that K C L° and
L C 1. By initially taking L to be a finite union of cubes of equal size, we
can arrange that RV\L has only finitely many bounded components. If w
is such a component, then there exists a tract T from a point of w to oo
(see Section 2.6) such that T € RN\ K. By removing such tracts from L we
arrange that RV \L is connected. Let R be such that 2 C B(0, R). Our first
aim is to show that there is a superharmonic function w on B(0, R + 1) such
that w = uw on L°. Let v = ﬁ,ﬂ', the balayage of u relative to L in 2. Then
v € U NH{NL) and 0 < v < uon 2 with v = v on L°. Let {2 be a
regular domain of the form B(0, R + 1)\E where E is a compact subset of
2 such that L ¢ E°. Let gy = v on 8E,¢; = 0 on S{0, R+ 1),92o = 0 on
8E, g: = 1 on S(0, R+1), and define hy = H2* —kH % for each k € N. Since
H ;’2’“ > 0 on {2 by Corollary 6.6.9(1}, we see that by decreases to —oo on 2y
as k — oo. By Dini’s theorem there exists m such that k., <0 on 3f2. Since
2o is regular, hpn(z) — v(y) as ¢ — y for each y € OE. Since, also, by, <0
on &2 and v > 0 on [2, the minimum principle yields hyn < v on f2. Now
define w = h,, on 29 and w = v on E. By Corollary 3.2.4, w € U({2). Since
w € H(f), we conclude that w € W(B(0, R+ 1)) N H({B(0, R+ 1)\ E).

We note that w = v = u on L° and w tends to —m on S(0,R + 1). Let
M = supgp p)w and choose numbers «, § with § > 0 such that

a+ fUp(x) > M (z€SO,R), a+plfz)<-m (z€S0,R+1)
We define

w(z) (z € B(0, R))
u(z) = ¢ min{w(z), o + BUs(x)} (z € B(0, R+ 1\B(0, k)
o + fUs(x) (z € RY\B(0, R+ 1)).

Then & = « on L° and it follows from two applications of Corollary 3.2.4
that @ € U(RV). ]
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Remark 6.10.2. The function & in Theorem 6.10.1 is harmonic outside some
ball and agrees with u, not just on K, but on a neighbourhood of K. It follows
that the Riesz measure associated with % has compact support and the Riesz
measures associated with u and ¥ agree on K.

Ezample 6.10.3. There is no function @ € U(RY} such that @ = —Up on
{x : 1 < ||z|| € 2}. For if there were such a function %, then M(%;0,-)
would be strictly increasing on [1, 2], which is impossible. This shows that the
hypothesis in Theorem 6.10.1 that RV \K is connected cannot be dispensed
with. '

Also, if u is superharmonic on a bounded open set {2, there will not in
general exist a function @ € U(R") such that @ = w on £ even if RY\ 2 and
RN\ 12 are connected, as we now show.

Ezample 6.10.4. Let 2 = {z € RY : ||z|| < 1,znx > 0}. If u{z) = \/zN On
12, then u € U(12) but there is no @ € U(R" ) such that & = u on 2. In fact,

Aulz) = —:c,_vsf %4, so Au is negative and not integrable on 2. Thus, if there
were such a function %, its associated Riesz measure v would be such that
v(§2) = +o0 (see Theorem 4.3.2(i) and Corollary 4.3.3), which is impossible.

6.11. Exercises

Exercise 6.1. Let 2= {{(z/,zn) e RV 1 xR : 0 < ||z'|| < 1}, where N > 3.
Find a function in C{8°°?) for which the classical solution to the Dirichlet
problem fails to exist.

Exercise 6.2. Let N = 2, let 2 = B(0,e)\B and let f =1 on 5(0,e) and
£=0o0n S. Show directly from Definition 6.2.3 that Hy = HY = U

Exercise 6.3. Show that Theorem 6.3.5 may fail if Hj, = —oo for all n.

Exercise 6.4. Let {2,) be an increasing sequence of open sets such that
U, 2 = 12, where £ is connected, let h € H(f2) and z € 2. Show that h
can be written as hy — hy where hi, by € H,(£2) if and only if (Hjr (21)) is
bounded.

Exercise 6.5. Let 2 = R*\B. Use the Kelvin transform to show that har-
monic measure for {2 and z € (2 is given by
12l -1

TP el

dp,(y) =

where ¢ denotes arc length measure on 5.
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Exercise 6.6. Let 2 = RV\B, where N > 3. Use the Kelvin transform and
the maximum principle to show that, if f € C(8°(7), then

z 2
#e == [ I y“Nf() o(y) + Floo){1 — [l2|P~").

on Js |lz—
Exercise 6.7. Let 2 = Rx (—n/2,7/2}, D = (0, +oco) xR and f € C(6°°12),
and define g € C(8* D) by g{co) = g(0) = f(oo) and

_ [ fllogt,=/2) (t>Mm
9(0,2) = { flloglt|, —m/2) (t <0).

Identifying C with &2 in the usual way, show that H }7 (z) = HP(e*) when
z € 12, and deduce that

+oa
HY(E+in) = Z / e VeSO

Exercise 6.8. Let f be a bounded resolutive function on §°° (2 and let fy be
defined on 92 by

fo(y) = min{f (y),ligl_f;lp H{(z)}.

Show that H; = Hy, and deduce that
limsup Hf'(z) 2 £(y)

Ty

for all but a negligible set of points y in 9*°12.

Exercise 6.9. Let D = RV~ x (0, +0c) and let 4 be a relatively open subset
of AD. Show that there exists h € H (D) such that h has limit 1 at each
point of A and h(0',1} < X' (A4). Deduce that, if E C 3D and A'(E) = 0, then
there exists v € H..(D) such that u has limit +oo at each point of E.

Exercise 6.10. Let S, = {z € 5(0,t) : zxy > 0} and define 2 =
B\(Uj2, Si—k-1). Show that Sy is negligible for £2. (Hint: first show that
{z € §:xy > 0} is negligible.)

Exercise 6.11. Let 2 = B\ ({0}ulJ;_, 5(0, 1/n)). By constructing a barrier
for §2 at (0, show that 0 is a regular boundary point of 4/2.

Exercise 6.12. Let 2 = ;2 [(&7, %)x( 2,k)). Find f : 82 — [0, +0c)

1’
such that f is continuous on d/2 and H exists, yet
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lim sup H¥ 7 (x) =

T—0

Why does this not contradict Theoremn 6.6.77

Exercise 6.13. Let N = 2 and 0 € 212, and suppose that there is a one-
to-one continuous function g : [0,1] — R2\$2 such that g(0) = 0. Show that
0 is regular for §2. (Hint: let ¢ € (0,1] be the smallest number such that
el = flg(1)]| and let w = B(0,%)\g([0,%]). Then w is simply connected,
so there is a holomorphic function f on w such that e/(*) = z there. Now
consider Re(1/f).)

‘Exercise 6.14. Show that a subset E of %2 is negligible if and only if

there exists A € Hy{f2) such that A(zx) = +o0 asx — y foreach y € E.
(Hint: to prove the “only if” part, adapt the proof of Theorem 6.5.2 to show
that there exists hy € H(f2) such that £, (z) = +oco as £ — y for each regular
point of E. Then use the approach of Exercise 5.6 to complete the argument.)

Exercise 6.15. Justify the case N = 3 of Theorem 6.6.16.

Exercise 6.16. Let I be a relatively closed subset of £2.
(i) Show that, if u, € Uy (§2) for each n and } u, converges somewhere in
each component of (2, then RE, =3 RZ on £2.

(ii) Show that, if Gop is a potential on (2, then Rgmu = /Rgn{_m)du(y)
on f2.

Exercise 6.17. Let K be a compact subset of an open set 2 in RY such
that every bounded component of RV \K contains a point of RV\ 2. Show
that, if u is superharmonic on some open set containing K, then there exists
% € 24(¢2) such that T = = on K.

Exercise 6.18. Let K be a compact subset of RV, let K denote the union of
K with the bounded components of RV \ K, and suppose that 8K # 8K . Find
a superharmonic function « on some neighbourhood of K with the following
property: there is no superharmonic function 7 on RY such that 7 = u on K.




