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Preface

This book is about the potential theory of Laplace's equation,

82h 82h 82h

8 2 + 8 2 + ... + -82 = 0,
Xl X 2 xN

in Euclidean space jRN, where N 2: 2; in brief, classical potential theory.
It involves the whole circle of ideas concerning harmonic and subharmonic
functions, maximum principles and analyticity, Green functions, potentials
and capacity, the Dirichlet problem and boundary integral representations.
From its origins in Newtonian physics, the subject has developed into a ma­
jor field of research in its own right, intimately connected with several other
areas of real and complex analysis. Over the past half-century, new lines of
investigation have emerged and come to maturity, largely inspired by classi­
cal potential theory: examples are non-linear potential theory, probabilistic
potential theory, axiomatic potential theory and pluripotential theory. For a
proper appreciation of these subjects an understanding of the classical the­
ory is essential. There is also a close relationship between potential theory
in the plane and complex analysis: concepts from potential theory are im­
portant and natural tools for the study of holomorphic functions. Further,
this connection suggests potential theoretic analogues of theorems concerning
functions of one complex variable, ranging from elementary results such as
the maximum modulus theorem and Laurent's theorem, to the approximation
theorems of Runge and Mergelyan and the theory of prime ends.

We treat our subject at a level intended to be accessible to graduate stu­
dents. Prerequisite knowledge does not go beyond what is commonly taught
in undergraduate or first-year graduate courses. The reader will need a good
grasp of the limiting processes of analysis, some facility with calculus in
higher dimensions, and some measure theory. A few well-known theorems
from functional analysis are required, and only very basic topology and lin­
ear algebra. Some of the less elementary results that are employed are stated
in the Appendix, where convenient references to proofs are supplied. As we
sometimes indicate connections with the theory of holomorphic functions,
familiarity with the rudiments of one-variable complex analysis would enrich
the reader's appreciation of this aspect of the subject.

We have set out to present rigorously and economically many of the re­
sults and techniques that are central to potential theory and are the everyday
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tools of researchers in the field. Occasionally we have taken the opportunity to
present some lesser known results that we have found useful and interesting.
The collection of theorems in Chapter 3 connecting convexity and subhar­
monicity, some of which are not widely known but have elegant proofs, falls
into this category; another example from the same chapter is the characteri­
zation of open sets in which the maximum principle holds (and, surprisingly,
these include some unbounded domains). In our own research we have some­
times needed a standard result in a form not easily found in the literature.
This is no doubt a common experience, so we have given strong and general
versions of theorems when it has been feasible to do so without excessively
prolonging proofs. For example, the Dirichlet problem is discussed for the
most general open sets possible (which, when N ? 3, include all open sets),
and the main removable singularity result (Theorem 5.2.1) does not require
that the exceptional polar set is closed. Obviously, we have had to decide to
omit certain topics, and among these are the notion of energy, and families
of capacities associated with various function spaces.

The first six chapters are of quite a concrete character, dealing with har­
monic and subharmonic functions and potentials, and their particular prop­
erties. Here the underlying topology is always the standard Euclidean one.
Each of these chapters concludes with a set of exercises, some fairly rou­
tine and others leading step-by-step to results from the research literature.
The material in these chapters is especially appropriate to readers seeking a
background knowledge of the subject for wider application. In the final three
chapters the level of abstraction deepens as we introduce topological concepts
specially created for potential theory, such as the fine topology, the Martin
boundary and minimal thinness. Our aim here is to give the reader a firm
grounding in these more advanced topics on which to base future reading and
research. At the back of the book we have provided brief historical notes for
each chapter indicating, to the best of our knowledge, the original sources of
results and ideas, and pointing to further developments which lie beyond the
scope of this book.

In preparing this book we have, of course, benefitted from the work of
earlier authors. In particular, we acknowledge our indebtedness to Brelot [12,
1965], Helms [1, 1969], Hayman and Kennedy [1, 1976]' Doob [6, 1984J and
Axler, Bourdon and Ramey [1, 1992J. Other related texts include Brelot [13,
1971], Landkof [1, 1972]' Hayman [2, 1989], Ransford [1, 1995J, and the older
works of Kellogg [1, 1929J, Rad6 [1, 1937J and Tsuji [1, 1959J. We are also
grateful to Professors Hiroaki Aikawa, Ivan Netuka and Jiff Vesely for reading
various parts of the manuscript in draft form and making helpful suggestions.
Any defects that remain are, of course, the responsibility of the authors. Fi­
nally, we express our appreciation to Michael Elliott, Sheila O'Brien, Siobhan
Purcell, Gerhard Schick and Thomas Unger for their careful typesetting of the
book, and to the staff of Springer-Verlag (UK) for their courteous efficiency
and helpfulness.
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Notation and Terminology

Some general notation and conventions are summarized below. However, most
notation will be explained as it is introduced in the course of the book, and
can be traced using the notation index.

Sets

We work mostly in the context of Euclidean space IRN , where N :::: 2, and
denote a typical point by x or (Xl, ... , XN). We write

Ilxll = (xi + ... + xiv)'!2 and (x,y) = X,Y, + ... + XNYN,

where Y = (YI, ... ,YN), for the usual norm and inner product. The symbol [l

always denotes a non-empty open subset of jRN. The connected components
of [} will be referred to simply as components, and we sometimes use the
term domain as an abbreviation for "non-empty connected open set". All
topological concepts will be relative to the Euclidean topology on IRN (that
is, the topology associated with the above norm) unless otherwise indicated.
By a Go set we mean one which can be expressed as a countable intersection
of open sets, and by an Fu set we mean one which can be expressed as a
countable union of closed sets. (In general, a collection of objects will be
called countable if it is either finite or countably infinite.)

If E <; IRN , then the closure, interior and boundary of E are denoted
respectively by E, EO and aE. We write the one-point compactification of
IRN as IRN U {00 }, and use a=a to denote the boundary of a in IRN U {00}.

Thus 00 E a= [l if and only if [l is unbounded.
The open ball of centre x and radius r in IRN is denoted by B(x, r), and

S(x, r) denotes the sphere aB(x, r). We abbreviate B(O, 1) to B and S(O, 1)
to S. By a hyperplane we mean a set of the form {x E IRN : (x,y) = a}, where
yES and a ERA linear mapping T : IRN -+ IRN that satisfies T(S) = S
will be called an orthogonal transformation. (Thus T is orthogonal if and only
if the columns of the matrix associated with T form an orthonormal basis of
IRN .) An isometry (a distance-preserving map) of IRN can be expressed as a
composition of a translation and an orthogonal transformation (see Fleming
[1, 1965], p.98).

xiii
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xiv Notation and Terminology Measures and mean values xv

The extended real numbers will be denoted by [-00, +00]. The natural
ordering and topology apply, and arithmetic involving ±oo and x E Ill. will
follow the conventions:

(±oo) + (±oo) = x + (±oo) = (±oo) + x = ±oo,

(±oo).(±oo) = +00, (±00).('F00) = -00,

{

±oo if x > 0
±oo _ {±oo if x > 0 ()- f x. ±oo = 0 if x = 0x =fOO i x < 0,

'FOO if x < O.

Expressions such as (±oo) + ('Foo) are left undefined, and quotients with 0
or ±oo in the denominator will be interpreted as they arise. We assign the
value +00 to inf 0 and the value -00 to sup 0.

Functions and function spaces

If E ~ Ill.N U {oo}, then we write G(E) for the space of all (real-valued)
continuous functions on E. If n E N = {l, 2, ...}, then Gn(n) stands for the
space of n-times continuously differentiable functions on n, while GOO(n)
represents the space of infinitely differentiable functions on n. We write '17f
for the gradient (a f faxl , ... , a f f axN) of a function f whenever it exists. A
function which is continuous as a mapping from E into (-oo, +00] is said to
be continuous in the extended sense. The characteristic function of E is the
function valued 1 on E and 0 elsewhere, and is usually denoted by XE.

Given a function f defined at least on a set A, and a limit point y of A,
we define

liminf f(x) = sup ( inf f(X))
x--+y,xEA UE./Ify xE(UnA)\{y}

and

limsup f(x) = inf ( sup f(X)),
x-+Y,xEA UENy xE(UnA)\{y}

where Ny denotes the collection of all neighbourhoods of y. (The function i,
and the suprema and infima here, may take infinite values.) Thus

lim f(x) exists
x--+y,xEA

if and only if

liminf f(x) and lim sup f(x) have a common value I E [-00, +ooJ,
X--+Y,:tEA x--+Y,xEA

and then
lim f(x) = l.

x-+y,xEA

If A is the domain of definition of [, or if A E Ny , then we may drop the
qualification "z E All .

Given a function f on n and a point y E aoon, we say that f vanishes
continuously at y if

lim f(x) = O.
X-l'y,xEO.

If E ~ aoo nand f vanishes continuously at each point of E, then we say
that f vanishes continuously on E.

Let Xo E Ill.N U{oo} and let f and 9 be real-valued functions on U \ {xo},
where 9 > 0 and U is a neighbourhood of Xo . We say that f(x) =O(g(x))
as x -4 Xo if there exist a neighbourhood V ~ U of Xo and a positive number
M such that If(x)1 :0; Mg(x) whenever x E V \ {xu}. Also, we say that
f(x) = o(g(x)) as x -4 Xo if f(x)fg(x) -4 0 as x -4 xo. (In the case ofreal
sequences (aj) and (bj), where b; > 0 for all j, we write aj = O(bj) if there
exists M > 0 such that laj I :0; Mbj for all j.)

Given a number or function i, we define r = max{f,O} and r =
max{ - I, O}. Thus f = f+ - t: and If I = j+ + [:', We write flA for the
restriction of a function f to a subset A of its domain of definition.

A function f : n -4 Ill. is said to be locally bounded on [) if f is bounded
on every compact subset of n. The phrases locally bounded above and locally
bounded below should be analogously interpreted. A family :F of functions is
said to be uniformly bounded on a set A if there exists M > 0 such that
If(x)1 :0; M for all f E:F and for all x E A. Further, we say that:F is locally
uniformly bounded on n if :F is uniformly bounded on each compact subset
of (J. Obvious definitions apply to phrases such as uniformly bounded below,
locally uniformly bounded below, etc. A sequence (fn) is said to converge
locally uniformly on n if it converges uniformly on each compact subset of
n. The phrase "(fn) is locally uniformly Cauchy on (J" has an analogous
meaning. Finally, the support of f is defined by

supp f = (J \ {x En: f = 0 on a neighbourhood of x}.

Clearly supp f is closed relative to n.

Measures and mean values

Let X be a locally compact Hausdorff space and suppose that there is a
countable base for the topology. The class B of Borel sets is the smallest a­
algebra of subsets of X which contains the open sets. We say that a function
f: X -4 [-00,+00] is Borel measumbleifthe set {x EX: f(x) > a} belongs
to B for every a E R By a measure on X we mean a countably additive set
function JJ., defined on B (or a larger a-algebra) and taking values in [0, +00],
such that JJ.(0) = 0 and JJ.(K) < +00 for every compact subset K of X. Such
a measure JJ. is regular in the sense that, if E E B, then



(N is even)

xvi Notation and Terminology

I"(E) = inf{I"(U) : E <; U and U is open}

= sup{I"(K) : K <; E and K is compact}.

(See Chapter 2 of Rudin [1, 19741 for further details.)
The support of a measure I" is defined by

supp I" = {x EX: I"(U) > 0 for every open neighbourhood U of x}.

It is easy to see that supp I" is the smallest closed subset F of X such that
1"(X \ F) = O. If A E B, then the restriction of I" to A is defined by 1"1 A (E) =
I"(E n A) for all E E B.

By a signed measure on X we mean a countably additive set function
I" : B -4 lIt such that 1"(0) = O. (Thus we do not allow the values ±oo.)
In view of the Hahn-Jordan decomposition theorem there are disjoint sets
P,N E B such that PUN = X, and finite measures 1"+,1"- on X such that
I"+(N) = 0 = I"-(P) and I" = 1"+ -1"-. The total variation of I" is defined by
111"11 = 1"+(X) + 1"- (X).

We use Ato denote Lebesgue measure on IItN , and (T to denote surface area
measure on a given smooth surface, usually a sphere. We define AN = A(B)
and (TN = (T(S). Thus

1
'[:!;~~

(TN = 2(N+l)/2,,(N-l)/2
(N is odd, N ~ 3)

1.3.5 ... (N - 2)

and AN = (TNfN. We write the surface mean value of a o-integrable function
f on Sex, r) as

M(J;x,r) = I
N

_
1

{ f tla,
(J"NT }S(:t:,r)

and the volume mean value of a A-integrable function f on B(x,r) as

A(J;x,r) =,1 N ( t e».
ANT JB(:t:,r)

A function f : fl -4 [-00, +001 is said to be locally integrable on fl if it is
integrable with respect to A on each compact subset of fl.

Chapter 1. Harmonic Functions

1.1. Laplace's equation

Our starting point is Laplace's equation L1h = 0 on an open subset fl of IItN ,

where L1 = a'fax; + ... +a2 fax"'".

Definition 1.1.1. A function h : fl -4 lIt is called harmonic on fl if h E

C2(fl) and L1h == O. The set of all harmonic functions on fl is denoted by
H(fl).

Laplace's equation is simple to state but profound in its implications. In
this opening chapter we begin to explore the properties of its solutions h on
an open set fl. For example, although we require only that h is in C'(fl),
we will deduce that h is in Coo (fl) and even real-analytic. The first main
step will be to show that, for any closed ball B(x,r) in fl, the mean value
M(h;x,r) of a harmonic function h over the sphere S(x,r) equals h(x) and,
conversely, that any function h in C(fl) which has this mean value property
must be harmonic. The mean value property leads to the maximum princi­
ple, which is analogous to the maximum modulus theorem for holomorphic
functions. We will focus for a while on the cases where fl is a ball or a half­
space, solving the Dirichlet problem and establishing integral representation
theorems. Harnack's inequalities will demonstrate the rigidity of positive har­
monic functions and help us to establish convergence theorems for sequences
of harmonic functions. We will also look at the preservation of harmonic­
ity under certain transformations and discuss the close relationship between
harmonic and holomorphic functions when N = 2.

It is clear that H(fl) is a vector subspace of C(fl) and contains all the
constant functions. Further, the chain rule shows that if ¢ : IRN -4 IRN is
an isometry or dilation (¢(x) = ax, where a > 0) and h E H(¢(fl)), then
h 0 ¢ E H(fl). Also, if w is an open subset of fl, then H(fl) <; H(w) in the
sense that hlw E H(w) whenever h E H(fl). The rotation-invariant harmonic
function Uy introduced by the following result is known as the fundamental
harmonic function with pole y and plays an important role throughout the
book. We denote by A(y; rl, r2) the annular region

{x E IItN : r, < Ilx - yll < r,J

1



Proof. (i) We know that u,v E COO(D), and the Cauchy-Riemann equations
give

is harmonic on RN \ {y}. Moreaver, if h is harmonic on some annu.lar region
A(y; rr,r2) and hex) depends only on Ilx - yll, then h = aUy + (3 for some
constants a, f3.

3

(1.2.2)

(1.2.1)(0 < t :<; r).

(O<t:<;r),

(t > 0)
(t :<; 0),

1.2. The mean value property

{
C -1/'

</J(t) = 0 Ne

hex) = M(h; x, r) whenever B(x, r) c D.

d
N dtM(I;x,t) = tA(i1j;x,t)

Proof. We define </J : IR --> IE. by

Lemma 1.2.1. If hE C(D) and (1.2.2) holds, then h E COO(n).

In particular, if LJ.f == 0, then M (I; x, .) is constant on (0, r] and this constant
value must be f(x) by continuity.

The above discussion shows that if hE "H(D), then h satisfies

We refer to this as the (spherical) mean value property of harmonic functions.
Conversely, and rather surprisingly, we will see that any continuous function
on D which has this mean value property is harmonic.

{ i1jdA = tN- l ( aa f(x + tV) daryl = tN-' ddt ( f(x + tv) dory)·iB(x,,) is t is
This can be rewritten as

N . _ N_,d (. )ANt A(LJ.f,x,t) - oNt dtM f,x,t,

where AU; x, t) denotes the mean value of f over B(x, t) and M(I; x, t)
denotes the mean value of f over Sex, t). Since ON = N)'N, we obtain

where the constant CN is chosen so that

ONl' t N
-

l </J (1 - t2)dt = 1.

It is easy to verify that </J E Coo (IR). For each n E N we define </In on IRN by

</In(x) = n N</J(1 - n21IxI1 2
) .

( i1jdA={ afda
JB{x,t) JS(x,t) 8ne

where a/an, denotes the exterior normal derivative, and then

Let f be a C2 function on an open set which contains B(x, r). We can use
first Green's formula and then differentiation under the integral sign (see
Appendix, Theorems A.15 and A.l) to obtain

1.2. The mean value property

eX' COSX2 = Re(eZ) .

Chapter 1. Harmonic Functions2

The formula (1.1.1) forewarns us that potential theory in the plane differs
significantly from that in higher dimensions. In the case of the plane (iden­
tifying 1R2 with <C in the usual way) we have extra tools available because
of the relationship between harmonic and holomorphic functions described
below. Part (i) of the following theorem may be used to write down many
examples of harmonic functions; for example, with z = Xl + iX2,

Proof. Suppose that f E C2(A (y;r., r2)) and that f(x) depends only on
Ilx - yll· We write p = Ilx - yll and f(x) = F(p). Elementary calculations
yield LJ.f(x) = F"(p) + (N - l)p-lF'(p). Since the general solution of the
differential equation F"(p) + (N -1)p-lF'(p) = 0 on the interval h,r2) is
F(p) = -alogp + (3 if N = 2 and F(p) =ap2-N + (3 if N 2 3, both parts of
the theorem follow immediately. 0

Theorem 1.1.2. If y E IRN , then the function Uy defined on IRN\{y} by

U ( ) _ { -log Ilx - yll (N = 2)
y x - IIx _ y112-N (N 2 3) (1.1.1)

Theorem 1.1.3. (i) If f = u + iv is holomorphic on a plane open set D,
then u and v are harmonic on {}.
(ii) If u is harmonic on a simply connected plane domain D, then u is the
real part of a holomorphic function on D.
(iii) If f is holomorphic on a plane open set D and f 1= 0, then log Ifl is
harmonic on {z ED: fez) '" O}.

a
2u

a
2u

a (av) a (av)
ax~ + ax~ = ax, aX2 - aX2 aXl == O.

A similar equation holds for v.
(ii) Let g = au/ax - iau/ay. Since u E C2(D) and LJ.u = 0, the real

and imaginary parts of g belong to C'(D) and satisfy the Cauchy-Riemann
equations. Thus g is holomorphic on D. Since D is simply connected, there is
a holomorphic function F = U + iV on D such that F' =g. Hence au/ax =
au/ax and au/ay = -av/ax = au/aVo Thus U - u has a constant value c
on D, and so u = Re(F - c).

(iii) Let w be an open disc contained in {z ED: fez) '" O}. Then there is
a holomorphic function g on w such that f = e9 there and so log If I=Re g E
"H(w), by (i). 0



We are now in a position to show that the mean value property (1.2.2) char­
acterizes the harmonic functions among all continuous functions on [}.

~ established (1.2.1) for any CZ function f on an open set containing
B(x, r-). Integrating this equation we obtain

Since a composition of smooth functions is smooth, </>n E COO (IRN ) . We write
nn = {x En: dist(x,8n) > n- I} if n i' IRN and nn = IRN otherwise, and
we define

51.2. The mean value property

Proof. We may suppose that h > O. If x, Y E IRN and p = IIx - yll, then
B(x, r) <;;; B(y, r + pl. Hence

Theorem 1.2.6. If h E 1i(IRN) and h is bounded below (or above), then h
is constant.

The following result is an analogue of the classical result of Liouville
concerning holomorphic functions.

Remark 1.2.5. (a) We note, for future reference, that the proof of Theorem
1.2.4 remains valid under the apparently weaker hypothesis that h E C(fJ)
and that, for each x E n, there is a positive number r x such that h(x) =
A(h;x,r) whenever 0 < r < r«.
(b) We will see later that harmonic functions are real-analytic. It will then
follow that, in (i) above, h is constant on the component of n which con­
tains x,

Theorem 1.2.4. Let h E 1i(n) and x E n.
(i) If h attains a local extremum at x, then h is constant on some neighbour­
hood of x.
(ii) If n is connected and h attains an extremum at x, then h is constant.
(iii) IfhE C(nu8oon), theninfa-nh:S; h:S; sUPa_nh on a.

Proof. (i) We may assume that h attains a local maximum at x. We choose
r small enough so that B(x, r) c nand h :s; h(x) on B(x, r). Since h(x) =
A(h;x,r), continuity implies that h = h(x) on B(x,r).

(ii) From (i) the set {y En: h(y) = h(x)} is open, and continuity implies
that it is closed relative to n, so by connectedness it must be all of n.

(iii) Let w be a component of n. Since h is continuous on the compact set
w U (joow

l
it attains finite extrema there. If either of these occurs at a point

of w, then by (ii) h is constant on wand hence on w U 8°°w. Otherwise both
extrema occur on 8°°w. Since 8°°w <;;; 800 n, the result follows. 0

Parts (i) and (ii) of the next result, with "maximum" in place of "ex­
tremum", and the second inequality of (iii), are all forms of the maximum
principle for harmonic functions; the remainder of the result is referred to as
the minimum principle for harmonic functions.

Corollary 1.2.3. If hE 1i(n), then h E Coo(n) and all partial derivatives
ofh are in 1i(n).

Proof. Lemma 1.2.1 and Theorem 1.2.2 together show that hE Coo(n). The
second part follows by induction from the observation that ii(8hj8xk)
(8j8xk)(iih). 0

o

(1.2.3)
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-,
Hn(x) = I" n N</>(1 - nZt z) f h dodt

Jo JSex,')-.
=h(XJuN1n

n NtN- I</>(1 - nze)dt

=h(X)<7N11

TN- 1</>(I_ TZ)dT = h(x),

in view of (1.2.2). Hence h E COO(n), since n = Un nn.

N{M(J;x,t) - f(x)} = 1'TA(iif;x,T)dT

and, since A(iif;x,T) .-, iif(x) as T'-' 0+,

lif(x) = 2N lim t-Z{M(J; x, t) - f(x)}.
t-.-o+

Theorem 1.2.2. The following are equivalent:
(a) u« 1i(n);
(b) h E C(n) and h(x) = M(h; x, r) whenever B(x, r) c n;
(c) hE C(n) and h(x) = A(h; x, r) whenever B(x, r) en.

Hn(x) = In </>n(X - y)h(y) dA(y) (x E nn).

Since </>n and all its partial derivatives are bounded on IRN and vanish outside
B(O,n- I

) , we see that H n E COO(nn). Also,

Proof. We observed at the beginning of this section that (a) implies (b).
Conversely, if (b) holds, then h E COO(n) by Lemma 1.2.1, and (a) follows
from (1.2.3). To prove the equivalence of (b) and (c), let h E C(n). Then

r NA(h;x,r) = N 1r

tN-IM(h;x,t)dt (1.2.4)

whenever B(x, r) c n, so (b) implies (c). Conversely, the continuity of h
implies that the integrand in (1.2.4) is continuous as a function of t. Thus, if
(c) holds, we can differentiate (1.2.4) to obtain (b). 0
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I,(x) -t fey) (x -t y;x E B(xo,r)).

further, if f is continuous in the extended sense at y E S(xo,r), then

hex) = A(h;x,r)::: (ANrN)-l r hdA
JB(y,r+p)

= (1 + ~) N hey) -t hey) (r -t +(0).

Thus hex) ::: hey). Similarly we obtain hey) ::: hex), so h is constant. o

limsup I,(x)::: lim sup fez)
x-ty,xEB(xo,r) z--+y,zES(zo,r)

(y E S(XO, r)); (1.3.3)

(1.3.4)

(y E S(xo,r);x E IRN \ {y } ). (1.3.1)

Definition 1.3.2. If /1 is a signed measure on S(xo, r), then the Poisson
integral of /1 is defined by

The Dirichlet problem is one of the classical problems of potential theory.
In its simplest form it can be stated as follows: given a continuous function
f : an -t IR, find a function h E 1i(n) such that hex) -t f(y) as x -t y for
each yEan. A detailed account of this problem will be given in Chapter 6,
but we can deal now with the special case where n is a ball. We will also
give below important integral representation theorems for certain classes of
harmonic functions on a ball.

It is clear from (1.3.1) that, if y E S(xo, r), then Kxo,r( . ,y) is posi­
tive, zero and negative, respectively, on the sets B(xo,r), S(xo,r)\{y} and
IRN \B(xo, r). Also, if we write UNr KxoAx, y) as the product of r' -llx-xoll'
and Ilx - yll-N and use the identity Ll(uv) = uLlv +vLlu +2(\7u, \7v), we see
after some calculation that K xo,' ( " y) E 1i(IRN \ {y}). In what follows we use
the functions {Kxo,r(' ,y) : y E S(xo,r)} as "building blocks" to construct
more general harmonic functions on B(xo, r).

(1.3.6)

(1.3.5)

lim sup I,(x)::: A.
x-ty,zEB(xo,r)

lim sup fez) < A < +00
z--+y,zES(xo,r)

From (1.3.5) there exists 8 > 0 such that fez) < A whenever z E B(y,28) n
S(xo, r). If x E B(y, 8)nB(xo, r), then by the result of the previous paragraph

I,(x) - A = I,_A(x)

::: r K(x, z)lf(z) - AI d<T(z)
} S(xo,r)\B(y,26)

+ r K(x, z){f(z) - A}du(z).
JS(xo,r)nB(y,2J)

The second integral here is negative, and the first does not exceed

and will deduce that

1 r' -llx
N

- xoll' r (If(z)l + IAI) du(z),
UNT 0 }S(zo,r)

which tends to 0 as x -t y. Hence (1.3.6) holds.
If f is continuous at y, then (1.3.4) follows hy applying (1.3.3) to f and - f.

o

Corollary 1.3.4. If hE C(B(xo, r))n1i(B(xo,r)), then h = h on S(xo, r).

Proof. (i) Since the function (x, y) >-+ K(x, y) and all its partial derivatives
with respect to the coordinates of x are bounded on B(xo,p) x S(xo, r) when
o < p < r, we may pass the Laplace operator Ll under the integral sign in
(1.3.2) to see that I~ E 1i(B(xo,r)).

(ii) We first show that I, =c for any finite constant function c. By (i),
I, E 1i(B(xo, r)), and I,(x) clearly depends only on Ilx-xoli. Since I, is finite
at zn, it follows from the latter part of Theorem 1.1.2 that I, is constant on
B(xo,r). Hence I, =I,(xo) = c.

To prove (1.3.3), we suppose that

(1.3.2)I~,xo,r(x) = r K zo,r(x,y)d/1(y) (x E B(xo,r)).
J8(xo,1')

In the special case where d/1 = f da for some u-integrable function f on
S(xo, r) (that is, the case where /1 is absolutely continuous with respect to
U)l we write 1/,:1:0,1' instead of 1/.1,xo,1'. When there is no risk of confusion we
write K for Kxo,r, and IJ1. and If for the corresponding Poisson integrals.

Definition 1.3.1. The Poisson kernel of B(xo, r) is the function

1 r' - Ilx - xol1 2

K eo ,r(x,y) = - II liNaNT x-y

1.3. The Poisson integral for a ball

Theorem 1.3,3. (i) If /1 is a signed measure on S(xo, r), then I. E
1i(B(xo,r)) .
(ii) If f is a u-integrable function on S(xo, r), then

Proof. By Theorem 1.3.3, h - h is harmonic on B(xo, r) and tends to 0 at
each point of S(xo, r). Hence, by the maximum principle, h - h =O. 0



is harmonic on {}.

h(x) = h(x) (x E D+), h(x) =0 (x E Do), h(x) = -h(x) (x E D_),

The next application of Theorem 1.3.3 is a removable singularity result
for harmonic functions. It involves the fundamental harmonic function intro­
duced in Section 1.1.

9

(1.3.7)

1.3. The Poisson integral for a ball

JljJ d/1tn --t JljJ d/1 (ljJ E C(S)).

d/1t(y) = h,(y)do-(y) = h(ty)do-(y),

II!J,II = O"NM(lhl;O,t):o; M (0 < t < 1).

Hence (see Appendix) there is a signed measure /1 and a sequence (tn) surh
that t« t 1 and

Theorem 1.3.8. (Riesz-Herglotz) Let h E 1l(B(xo,r»). The following
are equivalent:
(a) there exist h

"h
2 E 1l+ (B(xo, r») such that h = h, - ba;

(b) there exists hoE 1l(B(xo,r») such that Ihl :0; hoon B(xo,r);
(c) M(lhl;xo, .) is bounded on (O,r);
(d) h = I" for some signed measure /1 on S(xo,r).
Further, if any of the above holds, then!J is unique, and !J 2: 0 if h 2: o.

Theorem 1.3.7. If h is harmonic on B(xo,r)\{xo} and h(x)jU,o(x) ---> a
as x --+ Xo, then h has a harmonic continuation to B(xo 1 r).

Proof. If (d) holds, then /1 is the difference of two (positive) measures and
h is the difference of their Poisson integrals, so (a) holds. If (a) holds, then
Ihl :0; h, + h2 on B(xo, r), so (b) holds. If (b) holds and 0 < t < r, then
M(lhl;xo,t) :0; M(ho;xo,t) = ho(xo), so (c) holds. We next show that (c)
implies (d). It is enough to deal with the case where Xo = 0 and r = 1, for
the general case then follows by means of a simple transformation.

Suppose that (c) holds and let h,(x) = h(tx) when 0 < t < 1 and Ilxll <
r '. Then h, is harmonic on B(O, r '), so h, = h, by Corollary 1.3.4. Let !Jt
denote the signed measure on the unit sphere S defined by

We know from Theorem 1.3.3 that, if!J is a signed measure on S(xo, r),
then I" E H (B(xo, r»). Next we characterize those elements of H. (B(xo, r))
which are equal to I" for some such u: in particular, we show that all positive
elements of 1l(B(xo,r)) can be represented in this way with u 2: O. The set
of all non-negative harmonic functions on D will be denoted by 1l+ (f"l).

and let 11/1,11 denote its total variation. By hypothesis there is a constant M
surh that

Proof. Fix p E (O,r) and let h denote the Poisson integral of h in B(xo,p).
It is enough to show that h = h on B(xo,p)\{xo}. Let U = U'o - CN,
where the constant CN is chosen such that U = a on S(xo,p). For each real
number a, define H a = h - h + oil, Then H a E 1l(B(xo,r)\{xo}) and by
Theorem 1.3.3, Ha(x) ---> a as x ---> y for earh y E S(xo,p). If a > 0, then
Ha(x) ---> +00 as x ---> Xo and so H a > 0 on B(xo,p)\{xo} by the minimum
principle; similarly, H a < 0 on B(xo,p)\{xo} if a < O. Hence, letting a ---> 0,
we obtain h = h on B(xo,p)\{xo}, as required. 0

r
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Theorem 1.3.6. (The reflection principle) Let D be such that xED
whenever xED, and let D+, Do, D_ denote the sets of points x in D for
which XN is respectively positive, zero, negative. If hE 1l(D+) and h(x) --t 0
as x ---> y for each y E Do, then the junction h, defined by

Proof. The continuity ofh is clear, and it is easy to see that h(x) = M(h; x, r)
if B(x,r) C D+ or B(x,r) C D_ or if x E Do and B(x,r) C D. By Theo­
rem 1.3.5, this is sufficient to show that h E 1l(D). 0

Theorem 1.3.5. Let Ii E C(D). The following are equivalent:
(a) n«1l(D);
(b) for each xED, there exists a positive number r, such that h(x) =
M(h;x,r) whenever 0 < r < r,;
(c) for each xED, there exists a positive number r, such that h(x)
A(h;x,r) whenever 0 < r < re-

Theorem 1.3.3 shows that the Poisson integral solves the Dirirhlet problem
(in the form stated above) for a ball: if f E C(S(xo,r»), then If is harmonic
on B(xo, r) and satisfies (1.3.4) for each y E S(xo, r). Further, it follows from
Corollary 1.3.4 that If is the unique solution.

We give below some applications of Theorem 1.3.3. The first adds two
further equivalent conditions to Theorem 1.2.2.

Theorem 1.3.5 is the key to the following result concerning harmonic con­
tinuation across a flat boundary. For each point x = (XII' .. 1 XN) in IR.N 1 we
denote the point (Xl, ... ,XN-I) in jRN-I by x', and we write x = (X',-XN)
for the image of x under reflection in the hyperplane {y E jRN : YN = O}.

Proof. Theorem 1.2.2 shows that (a) implies (b), and (b) implies (c), by
(1.2.4). We now suppose that (c) holds. It is enough to show that, if B(y, p) c
D, then h = h,y,p on B(y,p). We define H = h-h,y,p on B(y,p) and H = 0
on S(y,p). By Theorem 1.3.3, H E C(B(y,p)) and for each x E B(y,p) there
exists p, > 0 such that H(x) = A(H; z , r) whenever 0 < r :0; p,. It now
follows from Remark 1.2.5(a) and Theorem 1.2.4(iii) that H == aon B(y, p),
as required. 0
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We can similarly characterize those harmonic functions on a ball which
are expressible as the Poisson integral of an integrable boundary function.
Convex functions will be discussed in Section 3.4. For now we simply recall
that a real-valued function <,b on an interval J is called convex if

Theorem 1.3.9. Let h E 1l(B(xo,r)). The following are equivalent:
(a) there is a convex increasing junction <,b : [0, +00) -+ [0, +00) such that
t- I4>(t) -+ +00 as t -+ +00 and M(4) 0 Ihl; Xo, . ) is bounded on (0,r);
(b) h = If for some integrable junction I : S(xo, r) -+ [-00, +00].. .
If h 2: 0, then a jurther equivalent condition is that h IS the l,m,t of an
increasing sequence of bounded non-negative hannonic junctions.

(1.3.8)

/4>0 I/[ do = ~ is, 4> 0 III do

00

~ L 4>(n)u(Sn)
n=1

00

~ L nbnu(Sn) < +00.
n=1

Ir"'dl'l ~ a,UN sup M(<,b 0 Ihl;O,·) +0
1/2.

is (0,1)

lis h(py),p(y) du(y) I ~ fs!h(py)I,p(y) duly)

~ a, 14>(lh(py)I),p(y) duly) + 0-
1/2 r ,ply) duty)·

s JA€

(x E B).
Oeti'ednl knihovna

matern. fyz. faku1y UK
Odd. matemailck6

a.hol•••ka 83till.. f'RJIIHA e- Karlin

Next we note that 4>(J g dv) ~ f 4> 0 9 dv for any unit measure v on S and any
integrable function g : S-+ [0, +00). (This is known as Jensen's inequality,
and follows from the fact that by convexity 4>(t) = supo.~(at + [3), where
the supremum is over all o.B E lll. satisfying at + [3 ~ <,b(t) when t 2: 0.)
We can use this inequality with 9 = If I and dv(y) = K(x, y) duly), since
vIS) = h (x) = 1. Thus

Hence any measurable subset A of A, satisfies

Sn = {y E S: n -1 ~ If(y)1 < n} (n E!'~).

Then Ln nu(Sn) < +00, and it follows that there is an increasing sequence
(bn) of positive numbers such that bn -+ +00 and l:n nbnu(Sn) < +00. Let
<,b : [0, +00) -+ [0, +00) be the function whose graph consists of line segments
joining the points {(O, 0), (1, bd, (2, bl + b2), (3, bl + b2 + b3 ) , ",}, Then 4> is
convex and increasing, t-I<,b(t) -+ +00 as t -+ +00 and

II'(A) I~ a,uN sup M(<,b 0 Ihl; 0, .) + 0
1/2.

(0,1)

Since a, -+ 0 as 0 -+ 0, by the growth hypothesis on 4>, it follows that I'
is absolutely continuous with respect to o , and (b) is proved in view of the
Radon-Nikodym theorem (see Appendix).

Conversely, suppose that (b) holds and let

We let p -+ 1- and use (1.3.7) and the facts that,p ~ 1 and u(A,) < 0 to
obtain

on Ill.. Let A, be a relatively open subset of S such that u(A,) < 0 and let
,p : S -+ [0,11 be a continuous function such that ,p = 0 on S\A,. Then

(tbt2 E J;tl < t < t2)'tz r ! t-h
4>(t) ~ --¢(tl) + --t<,b(t2)

t2 - t l t2 - I

Thus, for any x in the unit ball B, we obtain as desired

h(x) = lim h..(x) = lim rKo,l(x,y) dl"'(y) = I#(x).
n-+oo n-+oo } S

To prove uniqueness, suppose that v is another signed measure such that
Iv = h. If x,y E S and 0 < t < 1, then Ily - txll = Iity - xII, so Ko,l(tx,y) =
Ko,1 (ty, x). Thus, if,p E CIS), then

is ,pdl't = is ,p(x)h(tx) du(x)

= is "'(x) is Ko,l(tx,y) dv(y) du(x)

= isis Ko,l(ty,x),p(x)du(x)dv(y)

= is I",(ty) dv(y)

-+ is "'(y) dv(y) (t -+ 1-),

using first Fubini's theorem and then Theorem 1.3.3(ii) and dominated con­
vergence. In view of the uniqueness of I' in (1.3.7), we have t/ = 1'.

Finally, if h 2: 0, then 1', 2: 0 for all t and so I' 2: o. 0

Proof. We again give the argument for h E 1l(B). Suppose first that (a)
holds. Then there exists c > 0 such that t ~ 4>(t) + c for all t 2: 0, and so
M(lhl; 0, . ) is bounded on (0,1) by hypothesis. Thus, by the Ri~sz-Herglotz

theorem, there is a sigued measure I' on S such that h = I.. We w111 show that
I'is absolutely continuous with respect to a (see Appendix, Definition A.2).
Let 0> 0 and a, = sup{tft,b(t) : t 2: e l

/
2

} . Then [tl ~ a,4>(ltl) + e l
/

2
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Hence

M (¢olhl; 0, .) ::; M(¢oIlfl; 0, .) ::; M (I.olfl; 0,·) = I.olfl (0) = "NIf ¢olfldC1

on (0,1), and so (a) holds in view of (1.3.8).
Finally, we consider the special case where h :2: o. If (b) holds, then

(suitably redefining f on a set of ,,-measure 0) we may assume that f :2: 0, and
(Imin{j,n})n2 1 is an increasing sequence of bounded non-negative harmonic
functions with limit h. Conversely, suppose that h = lim hn, where each h-, is
a bounded non-negative harmonic function and (hn ) is increasing. For each
n in N we use the fact that (a) implies (b) to see that hn = I fn for some
integrable function fn on S(xo,r). Further, since hn+ l - hn = Ifn+,-fn' it
follows from the final assertion of the Riesz-Herglotz theorem that (In) can
be chosen to be increasing. Hence h is the Poisson integral of lim f n and so
(b) holds. 0

Later, in Theorem 4,6.6, we will see that the function f in condition (b)
of the above result is determined at zr-almoat every point z E S(xo,r) by the
limit of h(x) as x approaches z in a "non-tangential" manner.

Corollary 1.3.10. If h is a bounded harmonic function on B(xo, r), then
there is a o-measurcble function f on S(xo, r) such that h = If and sup If I =
suplhl·

on B(y, 1). Hence h is integrable on n. Clearly h > 0 on B(x, r) and h < 0
on Ill.N\B(x,r). If n\B(x,r) # 0, then

A(~) fa hdA < A(~) l(x,r) hdA < A(B(~,r)) l(x,r) h d). = h(x),

which contradicts (1.3,9). Hence B(x,r) <; n <; B(x,r) and so n =B(x,r).
o

1.4. Harnack's inequalities

We will now use the Poisson integral representation to make important ob­
servations about the "rigidity" of positive harmonic functions.

Theorem 1.4.1. (Harnack's inequalities) If hE H+(B(xo,r)), then

(r -llx - xoll)rN-Z h( ) < h < (r + lIx - xoll)r
N-'

(r + IIx _ xoll)N 1 Xo - (x) - (r -llx _ xolllN-1 h(xo) (1.4.1)

for each x E B(xo, r). In particular, if 0 < a < 1, then

I-a I+a
(1 + a)N I h(xo) ::; h(x) ::; (1- a)N-I h(xo) (x E B(xo,ar)). (1.4.2)

(1.4.3)h(xo) = r K(xo,Y) d!l(Y) = !l(S(x~,,:;)).
} S(xQ,r) (TNT

The Poisson kernel K satisfies

r - Ilx - xoll < K(x ) < r + IIx - xoll

( II )
N- I - ,y - N I

UNr r + x - xoll UNr(r -llx - xoll)

when x E B(xo,r) and y E S(xo, r). Integration with respect to d!l(Y) yields
(1.4.1) in view of (1.4.3), and (1.4.2) follows easily, 0

Proof. The Riesz-Herglotz theorem shows that h = I" for some measure !l
on S(xo,r) and clearly

(1.3.9)
h(x) = A(~) fa hdA

If h E H(B(x,r)) and h is integrable on B(x,r), then it follows from
Theorem 1.2.2 and dominated convergence that h(x) = A(h;x,r). Thus, if

n is a ball of centre x,

Proof. Let M = sup Ihl. Since M(h'; xo,·) ::; M', it follows from Theo­
rem 1.3.9 that there is an integrable function f on S(xo, r) such that h = If·
Further, IJ+M = h+ M :2: 0, so f +M :2: 0 almost everywhere (,,) on S(xo, r)
by Theorem 1.3.8, and we can redefine f on a set of zero o-measure so that
f :2: -M, Similarly we can arrange that f ::; M. Thus sup If I ::; sup Ihl, and
the reverse inequality is clear from the fact that h '" 1. 0

for every integrable harmonic function on n. We conclude this section by
exploiting the properties of the Poisson kernel to prove a converse result.

Theorem 1.3.11. If x E nand A(n) < +00 and if (1.3,9) holds for every
integrable harmonic function h on n, then n is a ball of centre x,

Proof. We choose r > 0 such that B(x,r) <; nand S(x,r) nan # 0. Let
y E S(x,r) nan and let h = Kx,r(' ,V)· Then h E HJIll.N\{y}) and h is
bounded on Ill.N\B(y, 1), and the function z >-+ liz - yll -lh(z) is bounded

Corollary 1.4.2. If hE H+(B(xo,r)), then II\7h(xo)II ::; (N/r)h(xo).

Proof. From (1.4.1),

{
(r -llx - xolllrN-2

}
(r + Ilx _ xoll)N I-I h(xo)::; h(x) - h(xo)

< {(r + Ilx - xoll)r
N-'

}
- (r -llx _ xolllN-1 - 1 h(xo),
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so that

Ih(x) - h(xo)1 :s; {(N/r)\Ix - xo\l + O(lIx - xo\l')}h(xo)

and the conclusion follows.

(z -t xo),

o

1.5. Families of harmonic functions: convergence
properties

We take as our starting point the following simple result.

Theorem 1.5.3. Let [J be connected. If F is an up-directed family of har­
monic functions on [J, then either supF == +00 on [J or sup FE H([J).

Taking the supremum over all h E F, we obtain H - hn :s; Cn-' on E. It
now follows from Theorem 1.5.1 that H E H([J). 0

Theorem 1.5.1. If (hn) is a sequence in H([J) which converges locally uni­
formly on [J to a function h, then h E H([J). If, further, D is any linear
partial differential operator with constant coefficients, then (Dhn) converges
locally uniformly on [J to D h.

(y E E).

h(y) - hn(y) :s; gn(Y) - hn(y)

:s; C{gn(XO) - hn(xo)}

:s; C{H(xo) - hn(xo)} :s; Cn-'

Definition 1.5.2. Let F be a family offunctions from aset E into [-00, +ooJ.
Then F is said to be up-directed iffor each pair of functions t., [z in F there
exists f in F such that max{t., h} :s; f on E. Also, F is said to be down­
directed if {- f : f E F} is up-directed.

Proof. By local uniform convergence h E C([J) and h(x) = M(h; x, r) when­
ever B(x, r) C [J, so h E H([J). Now let E be a compact set and w be a
bounded open set such that E C w and wc [J. If E: > 0, then Ihn - hi < E:

on w for all sufficiently large n. Hence, by Corollary 1.4.3, IDhn - Dhl < Co
on E for all such n, where C depends only on E, wand D. This completes
the proof. 0

Proof. Let H = sup F and suppose that H 'I- +00. We choose Xo in [J such
that H(xo) < +00. Let E be any compact subset of [J and for each n in
1'1 choose hn in F such that hn(xo) > H(xo) - n-1 • Let h E F. Since F is
up-directed, for each n there exists gn E F such that max{hn, h} :s; gn on [J.
Hence, by Corollary 1.4.4, there is a positive constant C, depending only on
xo, E and [J such that

o

Corollary 1.4.3. Let E be a compact subset of [J and D be a linear partial
differential operator with constant coefficients. Then there is a constant C,
depending only on E, [J and D with the following property: if hE H([J) and

Ihl :s; M on [J, then IDhl :s; CM on E.

Proof. Let w be a bounded open set such that E C w and w C [J, and let
r > 0 be such that B(x, r) C [J for each z in w. If hE H([J) and Ihl :s; M on
[J, then (h + M) E H+(w) and we can apply Corollary 1.4.2 to the function

h + M to obtain

1~(X) 1 = Ia(h + M) (x)1 :s; N (h(x) + M) :s; 2N M (x E w).
aXj aXj r r

This implies the result in the case where D = a/aXj. The general case follows
using Corollary 1.2.3 and induction. 0

Corollary 1.4.4. If [J is connected and E is a compact subset of [J, then

there is a constant C such that

C- 1 h(x) :s; h(y) :s; Ch(x) (z, y E E)

for every h E H+([J).

Proof. We treat first the case where E is a 2-point set {w,z}. Let Xo = w
and let B(Xlo 2r,), ... , B(xn, 2rn) be open balls in [J such that Xn = z and
Xj_l E B(xj,rj) when j E {1, ... ,n}. If hE H+([J), then we apply (1.4.2)

with a = 1/2 to obtain

h(w) = h(xo) :s; C1h(Xl) :s; C:h(X2) :s; ... :s; C~h(xn) = C~h(z),

where C1 = 3.2N -'. Thus the result holds when E is a 2-point set and hence
when E is finite. In the general case let {B(Yk, tk) : k = 1, ... , m} be a cover
of E such that B(yko 2tk) C [J for each k. By the finite case, there is a positive
constant C, such that h(Yj):S; C,h(Yk) when j,k E {1, ... ,m}.1f X,Y E E,
then we choose i, k such that x E B(Yj, tj) and Y E B(Yk, tk). Then, again
using (1.4.2) with a = 1/2, we find that

h(x):S; C 1h(Yj) :s; C,C,h(Yk):S; 3
NC,h(y).

!'
"

Corollary 1.5.4. If [J is connected and (h n) is an increasing sequence in
H([J), then either lim hn == +00 or lim hn E H([J).

Remark 1.4.5. The first part of the above proof shows that if, in the general
case, for each pair of points w, z E E there exist n balls B(Xlo 2r,), ... ,
B(x 2r) as described n being independent of w and z, then we can take

n, n I N-2 n
the constant C in Corollary 1.4.4 to be (3.2 ). Proof. The family {hn : n E N} is up-directed. o

, ,..



If(x) - f(y)1 ~ If(x)- fn(X)1 +\fn(x)- fn(y)l+ \fn(Y)- f(y)1 < 30. (1.5.1)

Proof. We start with the uniform continuity of f. Let 0 > 0 and let J be as
in the definition of uniform equicontinuity. If x, y E E and IIx - yll < J, then
for some n we have

Lemma 1.5.7. If (fn) is a uniformly equicontinuous sequence of functions on
a bounded set E in lRN and (fn) converges pointwise to a function f : E -+ JR,
then f is uniformly continuous on E and I« -+ f uniformly on E.

o

171.5. Families of harmonic functions: convergence properties

Proof. Let (hn) be a sequence in :F. By Lemma 1.5.6, either sup n., == +00
on n or (h n ) is uniformly bounded and uniformly equicontinuous on each
compact subset of n. In the latter case, it follows from Lemma 1.5.10 that
there is a subsequence (hnj ) which converges locally uniformly on n to a
function h, and h E 1i(n) by Theorem 1.5.1. In the case where suphn == +00

Theorem 1.5.11. Let n be connected and let:F be a family in H(rl) which
is locally uniformly bounded below on n. If (h n) is a sequence in F, then there
is a subsequence (hnJ such that either (h nj) is locally uniformly convergent
to a harmonic function on fl or limb«, == +00 on n.

when nand k are sufficiently large. Hence (gn(Y)) is Cauchy and therefore
convergent. It follows from Lemma 1.5.7, applied to arbitrary compact subsets
E of u, that :F is normal. 0

Lemma 1.5.10. Let :F be a family of real-valued functions on n which is
uniformly bounded and uniformly equicontinuous on each compact subset of
n. Then:F is normal.

Igk(y) - gn(Y)\ ~ Ig.(y) - gk(Xj)1 + Igk(Xj) - gn(Xj)\ + \gn(Xj) - gn(y)1

< 30

Proof. Let (fn) be a sequence in :F, let E C n be compact and let {Xj :
j E N} be a dense subset of E. Since (In(x,)) is a bounded sequence of
numbers, it has a convergent subsequence (It,n(x,»). Similarly (h,n(x,))
has a convergent subsequence (h,n(X2)), and in general there are sequences
(fm,n)n?:l such that (Jm,n(x m)) converges as n -+ 00 and (fm+l,n)n?:l is a
subsequence of (fm,n)n>l' Let gn = fn,n for each n. Then (gn(Xj)) converges
for each j.

Now suppose that y E E and E > O.Let J be as in the definition of uniform
equicontinuity. Since {Xj : j E N} is dense in E, we have Ilxj - yll < 8 for
some j. Since (gn(Xj)) converges,

Definition 1.5.9. Let:F <; C(n). We say that :F is normal if every sequence
in :F has a subsequence which converges locally uniformly on n.

Proof. By Lemma 1.5.6, (hn) is uniformly equicontinuous on every compact
subset of n. Hence, by Lemma 1.5.7, the convergence of (hn ) is locally uniform
on n, and by Theorem 1.5.1, h E H(n). 0

Theorem 1.5.8. If(hn) is a locally uniformly bounded sequence in H(n) and
(h n) converges pointwise on n to a function h, then (h n) converges locally
uniformly on nand h E 1i(n).

by (1.5.1).

o

(y E B(x, ar); x E E)

(y E B(x, ar);x E E)Ih(x) - h(y)1 < oh(x) < Co

(1 - o)h(x) ~ hey) ~ (1 +o)h(x)

Chapter 1. Harmonic Functions

for all h E :F. Hence

for all h E :F, and so :F is uniformly equicontinuous on E.

Proof. Suppose that sup:F 't +00 on n and choose Xo E n such that
(sup:F)(xo) < +00. Let E be a compact set and let w be a bounded con­
nected open set such that E U {xo} C w and wen. Then :F is uniformly
bounded below on w. By adding a suitable constant, we may assume that all
members of :F are positive on w. By Corollary 1.4.4 there is a constant C
such that 0 < h < C on E for all h E :F and so :F is uniformly bounded on
E. Let r > 0 be such that B(x,r) <; w for all x E E. If 0> 0, then by (1.4.2)
there is a positive constant a, depending only on 0 and N, such that

To prove the uniform convergence of (fn), let X" ... , X m be points of E
such that E <; Uj B(xj,J). There exists no such that Ifn(xj) - f(xj)1 < e for
all n ~ no and all j E {I, ... ,m}. If y E E, then y E B(xj,J) for some j and

\fn(Y) - f(y)1 $ Ifn(Y) - fn(Xj) I+ Ifn(Xj) - f(Xj)1 + If(xj) - f(y)1

< E + e + 3<: = 50 (n ~ no),

Lemma 1.5.6. Let n be connected and :F be a family of harmonic functions
locally uniformly bounded below on n. Then either sup :F == +00 on n or :F
is uniformly bounded and uniformly equicontinuDus on each compact subset
of n.

Definition 1.5.5. A family :F of real-valued functions on a set E in JRN is
said to be equicontinuous at x E E if for each 0 > 0 there exists J > 0 such
that If(x) - f(y)1 <0 for each f E:F and each y E EnB(x,J). Further,:F
is called equicontinuous on E if it is equicontinuous at each point of E.

The family :F is said to be uniformly equicontinuous on E if for each 0 > 0
there exists J > 0 such that [f(x) - f(y)1 < 0 whenever f E:F and x,y E E

and Ilx - yll < J.

16



it follows from Theorem 1.5.8 that the function

o

191.6. The Kelvin transform

6(h ° f) = ((6h) ° f) 1/'[' = 0

The mapping f '"-t r is called the Kelvin transform (with respect to Sly, a)).

( )

N - '

r(x) = Ilx: yll f(x·).

Thus x· lies on the ray emanating from y and passing through x, and is
determined by the condition IIx-y[[[[x' -yll = a' (see Figure 1.i). The inverse
of a set E in Iffi.N with respect to S(y,a) is the set E' = {x' : x E E\{y}}.

If f is a function defined at least on E, then we define r on E' by

a'
z" = Ilx _ y[[' (x - y) + y.

Definition 1.6.2. Let Sly, a) be a fixed sphere in IRN
. If x E lRN\{y}, then

the inverse of x with respect to Sly, a) is the point

on fl" and a similar argument applies if 1 is holomorphic.

In all dimensions we know that, if ¢ : ]R.N -4 IRN is an isometry or
dilation, and if h E H(r/J(fl)) , then h ° r/J E H(fl). However, the inver­
sion map 'IjJ(x) = Ilxll-'x on IRN\{O}, which is potentially so useful for
mapping between bounded and unbounded domains, fails to preserve har­
monicity when N ~ 3. Indeed, even in the special case of a spherically
symmetric harmonic function h(x) = a[[xll'-N + b, where a # 0, we see
that (h ° 'IjJ)(x) = a[lx[I N- 2 + b, which is not harmonic. To obtain a har­
monic function in this case, we would instead have to consider the function
x '"-t [lx[I,-N (ho'IjJ)(x). We will see below that this formula is the appropriate
one even when h is not spherically symmetric.

Proof. If f is holomorphic, then it follows from the Cauchy-Riemann equa­
tions and the harmonicity of Re f and Irn t, that

Theorem 1.6.1. Let fl
"

fl2 be plane domains, let f : fl , --+ fl, and let
h E H(fl,). Then h ° f E H(fl,) if either f or its complex conjugate 1 is
holomorphic on fl,.

We begin by observing that, in the plane, harmonic functions are preserved
under composition with holomorphic and anti-holomorphic functions.

1.6. The Kelvin transform

o

((X',XN) E fl).

(a<t<b)

(m E N; (x' ,XN) E fl),

(a < t < b)t'"-t kN-' [h(x',t)ldA'(x')

.e(h; t) = J. h(x', t) dA'(x')
RN-l

Chapter I. Harmonic Functions

defines a polynomial .e(h;·) of degree at most 1.

We conclude this section with an application of Theorem 1.5.8. We denote
a point oflRN - l by x' and write A' for (N -i)-dimensional Lebesgue measure.

is harmonic on fl and therefore .e(h; .) is a polynomial of degree at most 1.
o

Theorem 1.5.12. Let fl = IRN- l x (a, b), where -00 ::; a < b ::; +00. If
h E H( fl) and the function

is locally bounded on (a, b), then the equation

so the sequence (hm ) is locally uniformly bounded on fl. Since

hm(X',XN) --+ .e(h;XN) as m --+ 00,

hnj(x) - M ~ C-l{hnj(xo) - M} --+ +00,

so hnj(x) --+ +00 as required.

we fix Xo Efland choose (hn,l such that hnj(xo) --+ +00. Given x E fl we
choose a bounded connected open set w such that X,Xo E w and wC fl, and
choose M E IR such that hn ~ M on w for all n. By Corollary 1.4.4, with
E = {x,xo},

Proof. For each mEN we define

hm(X',XN) = /, h(x' +y',xN)dA'(Y')
{y'ERN-"lIy'lI<m}

By dominated convergence, hm is continuous, and using Fubini's theorem to
justify a change of order of integration, we see that hm has the mean value
property. Hence hm E H(fl). Also

18
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x'
(1.6.2)

x

y

Figure 1.1.

8(y,a)

E' & N
ax2 f(x') = -4xjllxll-' f;(x') - 211xll-' L xkf.(x')

J k=l

N

+ 8x;lIxll-6 L xkik(x')
k=l

N

+ Ilxll- 4 fjj(x') - 4xjllxll- 6 L xkikj(x')
k=l

N N

+ 4x;llxll-B L L xkxnikn(x').
k=l n=l

Summing (1.6.3) over j, we see that

N

Ll(J(x'») = (4 - 2N)llxll-' LXjfj(x') + IIxlI-' (Llf) (z").
j=l

(1.6.3)

(1.6.4)

o

N

Llj'(x) = 2L(a~llxI12-N) (a~f(X'») + Ilx11
2- N

Ll(J(x'»)
j=l J J

= IIxll-2- N(Llf)(x'),

Corollary 1.6.4. If h E 1i(D) and h' is the image of h under the Kelvin
transform with respect to 8(y,a), then h' E 1i(n').

Proof. By means of a dilation and an isometry we can reduce the proof to
the special case 8(y, a} = 8, which is contained in Theorem 1.6.3. 0

that is, (1.6.1) holds.

Using (1.6.4), (1.6.5) and the harmonicity of the function x H Ilx11 2
-

N
on

OCN\{O}, and applying the identity Ll(uv) = uLlv + 2(\7u, \7v) + vLlu, we

obtain

From (1.6.2) we obtain

(1.6.1)(x En').

This establishes the claim with y = 0, and to deal with the general case, we

can apply a translation.

Theorem 1.6.3. If f E c 2(n) and j' is the image of f under the Kelvin
transform with respect to 8, then

E = {x E OCN : allxll2 + (x,z) + 13 = a},

Proof. By definition .r" = IIxll-2x and j'(x} = Ilx11 2
-

N f(x') when x E n'
Writing f; foraffaXj and ikj for a2ffaxjaXk' we have for j E {l, ... ,N}:

where a and 13 are real numbers, z E OCN and IIz112 > 4af3. Under inversion
with respect to 8(0, a) the image of this set E is

E' = {x E OCN\{O}: f31lxl12 + (x,a2z) +a'a = O}.

If z E )RN\{y}, then clearly (z"}" = z. Hence, if y 'Ie E, then (E')' =
E. The inverse of a sphere or hyperplane is a sphere or hyperplane (not
necessarily respectively), possibly with one point deleted. This can be seen
in the case where y = 0 by observing that a set E in OCN is a sphere or
hyperplane if and only if

'!
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(1.7.3)

(x E lll.N\{z}). (1.7.4)

1 1 2(x - z, Y' - z)

= Ilx - zll' + Ily' - zll' - Ilx - zll'lly' - zll'

_ Ilx - zll' + Ily' - zll' - 2(x - z, y' - z)

- Ilx - zll'lIy' - zW

Ilx - y'II' (x,y E lll.N\{z}).
Ilx - zll'lly' - zll'

Ilx' - yll' = Ilx' - zll' + lIy - zll' - 2(x' - z, y - z)

Figure 1.2.

~ _ Ilx' _wll' = ~ _ Ilx + zll'
4 4 Ilx - zll'2'

-(z,x) XN
=IIx - zll' Ilx - zll'

It follows from (1.7.4) that XN > °if and only if Ilx' - wll < 1/2 and
so D' = S(w,I/2). Similarly, the mapping x H z" takes S(w,I/2)\{z}
homeomorphically onto aD. (See Figure 1.2.)

Noting that w' = -z, we obtain from (1.7.3) that

Proof. Let z = (0, ... ,0, -1) and w = (0, ... ,0, -1/2). We will deduce this re­
sult from the Riesz-Herglotz theorem using the Kelvin transform with respect
to the sphere S(z, 1). Thus x· = z+llx-zll-'(x-z) and Ilx'-zll = Ilx-zll- 1

whenever x ;;j:. Z, and

(1.7.2)

(1.7.1)

(x E n;y E aD).

(x ED).

(y E aD;x E lll.N\{y}).

hex) = I~(x) + CXN (x ED).

I,,(x) = ( K(x, y) dl"(Y)laD

1 1 ( C 1c: 1+ lIyllN :0 K x,y):O 1 + IlyliN

Theorem 1.7.2. Let I" be a measure on aD. If

Proof. Let n be a bounded open set such that neD. Then there is a
positive constant C such that

It follows that I~ is non-negative and finite-valued on n if (1.7.1) holds, and
I~ = +00 on n otherwise. Also, in the former case, by Lebesgue's dominated
convergence theorem, I~ is continuous on n, and taking a ball S(xo,r) in n,
we can change the order of integration and use the harmonicity of K( . , y) to
see that M(I~; xo, r) = I~(xo). Thus I~ E 'H.+(n). The conclusion follows in
view of the arbitrary nature of n. 0

Theorem 1.7.3. If hE 'H.+(D), then there exists a measure I" on aD and a

number c ::-: °such that

then I~ E 'H.+(D); otherwise I~ = +00 on D.

We note that K(· ,V) E 'H.+(D) for each y in aD; the harmonicity here
follows from the observation that K(x,y) is a multiple of aUy/aXN.

Definition 1. 7.1. The Poisson kernel K of D is defined by

2 XN
K(x,y) = -II liN(IN x - Y

If I" is a measure on aD, then the Poisson integml I~ of I" is defined by

In this section we will study the Poisson integral for the half-space D given
by {x = (Xl, ... ,XN): XN > O} and obtain analogues of some of the repre­
sentation theorems in Section 1.3. In particular, we will see how the Kelvin
transform can be used to obtain an analogue of the Riesz-Herglotz theorem

for D.

1. 7. Harmonic functions on half-spaces
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LeITlITla 1.7.4. II == 1.

(1.7.9)

(N odd; N 2: 5),

(N even; N 2: 4)

limsup If(x):S limsup fez) (y E aooD).
x---+y,xED z---+y,zE8D

!
1.3.5 ... (N - 3)
2N/2(N/2 - 1)1"

J(N) =
2(N-3)!2(N - 3)/2)1

1.3.5, .. (N - 2)

Proof. Once (1.7.9) is established the rest of the theorem will follow by
applying this inequality to f and -I. In proving (1.7.9), we suppose that
limsuPz-+yf(z) < A < +00 and show that lun sup;....yIf(x):s A. We treat
the cases y E aD and y = 00 separately.

Suppose first that y E aD. There exists 8 > 0 such that fez) < A
whenever z E B(y, 28) n D, If x E B(y, 8) n D, then by Lemma 1.7.4

If(x) - A = If-A(X)

:s ( K(x,z)lf(z)-Ald)..'(z)
1aD\B(y,")

+ ( K(x,z) (J(z) - A) d>"(z). (1.7.10)
1&DnB(y,20)

The second integral here is negative and the first does not exceed

c (If(z)1 + IAI d>.'( )
XN laD 1 + IlziiN z ,

where C depends only on y, 8 and N. Hence the right-hand side of (1.7.10)
has non-positive upper limit as x ---+ y and therefore limsuPx-+yIf(X) :s A,
as required.

Now suppose that y = 00. There exists R > 0 such that fez) < A when
z E aD\B(O, R). Hence, if x E D\B(O, R), then

Further, if f is continuous in the extended sense at y E aD, then If(x) -+
fry) as x ---+ y; also If(x) ---+ limH oo f(z) as x ---+ 00 if f has a limit (finite
or infinite) at 00,

'I'heorern 1.7.5. Let f be a measurable junction on aD satisfying {1.7. 1).

Then

Hence, using the explicit value of UN (see p. xvi), we see that J(N)
uN/(2uN-J!, and so II == 1. 0

where UN-l is interpreted as 2 when N = 2. Denote the integral in (1.7.8)
by J(N). Easy calculations yield J(2) = ,,/2 and J(3) = 1. Integration by
parts shows that J(N + 2) = N-1(N -1)J(N). These equations give

(1.7.8)

(1.7.6)

(1.7.5)

(x E D)

(x ED).

( If(y)1 ,
laD 1 + IlyllN d>. (y) < +00, (1.7.7)

then If+,If- E 1l+(D), by Theorem 1.7.2, and we can define If = I f+-If-·
Thus If E 1l(D).

The remainder of this section is concerned with the boundary behaviour
of Poisson integrals of functions. Let)..' denote (N -I)-dimensional Lebesgue
measure on aD (which can be identified with IRN -

1
) . If f is a non-negative

measurable function on aD then we write If in place of If),', If f is measur­
able on aD and

Proof. By considering spheres in IRN- I of centre (Xl, ... , XN-J!, we see that

,,(E) = (UN /2) ( Ily' - ziiN dv(y)
lE-

for each Borel subset E of aD, and also put c = v( {z}), then we can rewrite
(1.7.6) as (1.7.2). 0

Since h(x) = Ilx - zI12- Nh'(x'), this yields

],
Ily' - ziiN

hex) = XN II _ '1INdv(y) +v({Z})XN.
S(w,1/2)\{z) x y

If we define the measure" on aD by writing

h'(x') = xNllx-zII N-2 ( ::Y' - ~::: dv(y)+v({Z})XNllx-zIIN-2
ls(w,1/2)\{z) x - Y

h'(x') = ( 1/4 -.lIx
• - Nwl12 dv(y)

lS(w,I/2) Ilx - yll
Writing the integral in (1.7.5) as an integral over S(w, 1/2)\{z} plus an in­
tegralover {z} and using (1.7.3), (1.7.4), we obtain

Suppose now that h E 1l+(D), and let h' be the image of h under the
Kelvin transform. By Corollary 1.6.4, h' E 1l+(B(w, 1/2)) and hence, by the
Riesz-Herglotz theorem, there is a measure v on S(w, 1/2) such that
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(1.8.2)

(1.8.1)

(Xl::: 0)
(Xl> 0)f(x) = {~xP(-xll)

Proof. Let no be the set of points x in n such that f = 0 on some neighbour­
hood of z. Then no is open and non-empty. If y E no n n, then f and all its
partial derivatives vanish at y by continuity. Thus the Taylor series for f at
y vanishes identically and so y E no. It follows that no is relatively closed in
17 and hence no = n by connectedness. 0

Lemrna 1.8.3. If f is real-analytic on a connected open set nand f = 0 on
a non-empty open subset of n, then f = 0 on n.

IXjl ::: v, for each j}. Further, for any multi-index (3, the series I: la",Dfix"'l
converges locally uniformly on EO and

In view of Lemma 1.8.1 we can differentiate the series in (1.8.2) term by
term, and then take x = 0, to see that f E COO(n) and Dfi fey) = (3!a~ for
each multi-index (3. The series in (1.8.2) is called the Taylor series for f at
y.

when Ilxll < r and the series is absolutely convergent for such x.

In fact) the space of real-analytic functions on {} is strictly contained in
Coo(n). For example, the function f : lll.N -> lll. defined by

Definition 1.8.2. A function f : n -> lR is called real-analytic on n if for
each yEn there exists r > 0 such that f has a representation of the form

Proof- The uniform convergence of I: laoxol on E follows immediately from
the Weierstrass M-test. For the convergence of I: la",Dfixol, it is enough to
work with the case where 1(31 = 1, since the general result will then follow
by induction. Without loss of generality we work with (3 = (1,0, ... ,0). Let
E e = {x: ex E E}, where c > 1. If al :::: 1 and [c] is large enough, then

la",Dfix"'l = laOalxo-fil ::: la",lalel-I"'IYlly'" ::: la",ly'" (x E E e ) ;

if al = 0, then Dfi x o = O. It follows from the M-test that I: laoD~x"'l
converges uniformly on E" and hence locally uniformly on EO in view of the
arbitrary nature of c. Equation (1.8.1) now follows by repeated application
of a well-known result on term-by-term differentiation of series of functions
of one real variable. 0

o

1.8. Real-analyticity of harmonic functions

Note that uniqueness fails if f is allowed to take infinite values. For ex­
ample, if f(yo) = +00 for some Yo E aD and if ue H(D) is a solution of the
Dirichlet problem in the sense that hex) -> f(y) as x -> y for each y E aoo D,
then h + aK( . ,Yo) will be another such solution for any a > O.

Corollary 1.7.6. Let f: aooD -> [-00,+001 be continuous and suppose that
(1.7.7) holds. Then there exists h E H(D) such that hex) -> f(y) as x -> y
for each y E aoo D. Further, if f is finite-valued, then h is unique.

In formulating the Dirichlet problem for unbounded open sets n, it is
usual to work with a continuous function on the boundary 8 00 fl in the com­
pactified space )RN U { oo} rather than the Euclidean boundary an. If an
is used instead, then uniqueness of solutions will be lost if there are non­
constant harmonic functions on {} which vanish on anj when n = D, an
example of such a function is x H IN·

Real-analyticity of functions on open sets in lRN is defined in terms of multiple
power series, so we will first discuss these. If a = (al J' .. JON) is a multi-index
(an ordered N-tuple of non-negative integers), then we write

lal=al+···+aN, a!=al! aN!,

x a = xr1 ••• xr;{ J DO' =alai / ax~l ax~N .

By a multiple power series we mean a series of the form L anxa
1 where the

coefficients a", are real numbers and the sum is over all N -tuples a. We need
to consider only the case where such a series is absolutely convergent and so
the ordering of terms need not be specified.

Lemma 1.8.1. If the coordinates Yl,' .. ,YN of a point yare positive and
I: la",IY'" converges, then I: la",xal converges uniformly on the set E = {z :

Proof- By Theorem 1.7.5 the function h = If has the required properties.
The uniqueness assertion follows from the maximum principle. 0

If(x) - A::: ( K(x,z)(J(z) - A) dA'(Z)
JaDnB(o.R)

::: 2XN N ( If(z) - AI dA'(Z)
aN(llxll- R) J8DnB(o.R)

-> 0 (x -> 00).

Thus lim sUPz--;oo If (x) ::: A again.
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o

(1.8.6)
=

h(xo + x) = L Hj(x) (llxll < r)
j=O

and L; IHjl converges uniformly on B(O,r).

It follows from Theorem 1.8.5 and Lemma 1.8.3 that, if h is harmonic
on a connected open set n and h = 0 on some ball in n, then h == O. Thus
the improvement of Theorem 1.2.4(i) promised in Remark 1.2.5(b) is verified.
Another consequence of Theorem 1.8.5 is the following result which will be
improved in Chapter 2 (see Theorem 2.4.4). We recall that a polynomial P
in Xl, ... l X N is homogeneous of degree j if it is a finite linear combination of
monomials xa where 1"1 = j.

oo co

0= L(L1Hj)(tx) = Lti-2(L1Hj)(x).
j=O j=2

Hence, by the uniqueness property of single-variable power series, i1Hj = 0
on B(O,r) for each j. Thus each H, is a harmonic polynomial.

For the uniqueness assertion it is enough to show that if Qj is a homo­
geneous polynomial of degree j and L; Qj = 0 on some ball B(O, p), then
o, == 0 for each j. Since L;tjQj(x) = L; Qj(tx) = 0 when Ilxll < p and
-1 < t < 1, the result again follows from the uniqueness property of single­
variable power series. 0

Proof. By Theorem 1.8.5 and Lemma 1.8.1, there exists r > 0 such that
h(xo + x) = L; aaxa when Ilxll < r and L; laaxal converges uniformly on
B(O,r). Let Hj(x) = L;lal=j aaxa. Then (1.8.6) holds and L; IHjl converges
uniformly on B(O, r). To show that each H j is harmonic, we differentiate
under the summation sign in (1.8.6), using Lemma 1.8.1 for justification, and
obtain

0= (L1h)(xo + x) = L(L1Hj)(x) (llxll < r).
j=O

If 0 < Ilxll < rand -1 < t < 1, then by homogeneity

Corollary 1.8.6. If hE H(n) and Xo E n, then there is a unique sequence
(Hj) of harmonic polynomials such that H j is homogeneous of degree i, and
such that for some positive number r,

If Ilxll < (V2 -I)r, then (1.8.3) holds with the stated convergence properties.
Integrating term by term we obtain h(xo + x) = L; daxa, where

da = r aa(y)h(y)da(y);
}S(xo,r)

moreover L; Idaxal converges uniformly on B(O, cr) when c < V2 - 1.

(1.8.5)

(1.8.4)

(lIxll < r).

(11xll < (V2 -I)r;y E S(xo,r)), (1.8.3)

h{xo + x) = r K(xo + x,y) h(y) do-(y)
JS(xo,r)

and hence

N

LX] +2Llxjzjl <c'r2 +2cr',
j=1

Proof. If B{xo,r) C n, then h is equal on B(xo,r) to its Poisson integral:

so that (llxll' - 2(x,z))/r' is the sum of 2N monomial terms the sum of
whose moduli is less than c' + 2c < 1. Since L; dn(c' + 2c)n < +00, we see
that (1.8.5) yields an expansion of the form

(llxll' + r' - 2(x,z)r N
/' = L ba(y)xa,

Theorem 1.8.5. If ne H(n), then h is real-analytic on n.

where batyl is a polynomial in the coordinates of y and L;lba(y)xal con­
verges uniformly on B(O, cr) x S(xo, r). The corresponding result for K is
now obtained from (1.8.4). 0

where the dn are binomial coefficients. Further, if Ilxll < cr, where c < V2-I,
then

Proof. Let y E S(xo, r) and z = y - Xo· Then

aNrK(xo + x,y) = (r' -llxll')(lIxll' + r' - 2(x,z))-N/'.

If IIxll < (V2 -I)r, then

Illxll' - 2(x, z)1 :s Ilxll' + 211xllllzil < r'

where aa(Y) is a polynomial in the coordinates of y and L;laa(y)xa I is uni­

formly convergent on {(x, y) : x E B(O, cr), y E S(xo, r)} if 0 < c < V2 - 1.

Lemma 1.8.4. The Poisson kernel K of B(xo,r) has an expansion of the

form

belongs to C=(Iw.N ) , but is not real-analytic on JR:.N in view of Lemma 1.8.3.
In order to prove that harmonic functions are real-analytic, it is enough to

show that ball Poisson integrals are real-analytic (see Corollary 1.3.4). With
this in mind we first study Poisson kernels.

.41" _
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1.9. Exercises

Exercise 1.1. Show that, if h E H+(B), then

liminf h(ry) < +00
r--+l-

for cr-almost every y E 5. (Hint: consider M (h; 0, Tn) for a sequence (Tn) with
lim Tn = 1.)

Exercise 1.2. Let (Yn) be a dense sequence of points in 5, and let h be
defined on B by

00

h = L2-nKo,1(-,Yn).
n:::::l

Show that h E H+(B) and limsup.....y h(x) = +00 for each y E 5. Deduce,
using the result of Exercise 1.1, that lim.....y h(x) fails to exist for o-almost
every y E 5.

Exercise 1.3. Let D = {x E IRN : XN > OJ, and let h be defined on D by

Show that:
(i) hE H(D),
(ii) limHo+ h(x', t) = 0 for each x' E IRN- 1

,

(iii) h has no harmonic continuation to IRN .

(This shows that in the reflection principle, Theorem 1.3.6, limits along nor­
mals to aD cannot replace limits.)

Exercise 1.4. Suppose that h E H(D) and h(x) -+ 0 as x -+ y for each
y E aD. By using the reflection principle and considering the harmonic func­
tion ah/aXN, show that if r 'h(X""" XN-1, t) -+ 0 as t -+ 0+ whenever
Xl, ... ,XN-l are rational, then h=O.

Exercise 1.5. Let h be harmonic on the open unit disc and suppose that
h = 0 on R , U R2 , where R" R2 are radii of the disc meeting at an angle mr
(0 < a $ I). Use the reflection principle to show that if a is irrational, then
h == O. Show also that if a is rational, then h need not be identically zero.

Exercise 1.6. Let P = {x E lIl.N : IXNI = I}.

(i) Give an example of a function ue H(IRN),h 'f 0, such that h = 0 on P.

(ii) Show that if H is a harmonic polynomial and H = 0 on P, then H == O.

Exercise 1.1. Suppose that h E H(B(xo,T)) and Ihl ::; M. Show that for
each multi-index a there is a constant G, depending only on [o] and N, such
that

IDOh(xo)1 $ GMT-iol.

(See Section 1.8 for notation.)

Exercise 1.8. Use the result of Exercise 1.7 to show that, if h E H(IRN ) and
Ih(x)1 $ A(1 + IlxJl)m for all x E IRN and some constants A > 0 and m :::: 0,
then h is a polynomial of degree at most m.

Exercise 1.9. The Harnack metric. Let fl be connected, and let d be
defined on fl x fl by

d(x,y) = 10g(inf{G > 0: C- 1 $ h(x)/h(y) $ C for all h E H+(fl)\{O}}).

Show that d is a semi-metric (that is,

d(x, x) = 0 $ d(x, y) = d(y, x) < +00, d(x,z) $ d(x, y) + d(y, z)

for all x, y, z E fl). Show further that, if fl is bounded, then d is a metric.

Exercise 1.10. Transfer of smallness. Let fl be connected and let K, w

be non-empty subsets of fl with K compact and w open. Show that for each
E> 0 there exists ,j > 0 with the following property: if h E H(fl), Ihl $ 1 on
nand Ihl < ,j on w, then Ihl < E on K. (Hint: suppose not and let (hn ) be a
sequence in H(fl) such that Ihnl $ Ion fl, Ihnl < n-1 on wand Ihn(xn)1 :::: F;

for some X n E K.)

Exercise 1.11. Let fl be unbounded and connected. Using the result of
Exercise 1.10, show that there exists a continuous function 1) : [0, +(0) -+
(0, I] with the following property: if hE H(fl) and Ih(x)1 < 1)Ulxlll for each
x E fl, then h == 0 .

Exercise 1.12. Spherical reflection. Let w be an open set such that w n
5 # 0. Suppose that h E H(wnB) and h(x) -+ 0 as x -+ y for each y E wnS.
Use the Kelvin transform and the reflection principle to show that h has a
harmonic continuation to some open set containing w n B.

Exercise 1.13. Suppose that h E H(IRN\B) and h(x) -+ 0 as x -+ 00. Show
that the image h* of h under the Kelvin transform with respect to 5 has a
harmonic continuation to B, and deduce that IlxIIN-2h(x) has a finite limit
as z ~ 00.

Exercise 1.14. Suppose that h E H+(IRN\{O}) and h(x) -+ 0 as x -+ 00.
Show that h(x) = cllxll'-N for some constant c :::: o.



Pix) = L a"x". (2.1.1)
Icrl=m

A useful inner product is defined On Pm as follows. First, to an element P of
Pm given by (2.1.1) we associate the differential operator Dp given by

33

defines an inner product on Pm-
Let Hm be the set of all harmonic elements of Pm, and let Qm, when

m ~ 2, be the set of all polynomials of the form Q(x) = IIxll'Pix) where
P E Pm-2; we also put Qo = Ql = {O}. Clearly H,« and Qm are subspaces
of P,«.

Clearly if Q(x) = I:1"I=m b"x", then D pQ = I:1"I=m a!a"b" and it follows
easily that the equation

[P,Q]m =DpQ

We start with an algebraic study of harmonic polynomials as elements of vec­
tor spaces equipped with inner products. This leads quickly to information
about the structure of the spaces and the behaviour of individual elements.
The special role of axially symmetric polynomials is emphasized. We next
extend the study of polynomial expansions of harmonic functions which con­
cluded Chapter 1 and give an expansion for harmonic functions On annular
domains, analogous to the Laurent expansion for holomorphic functions. This
Laurent-type expansion is then used to obtain basic results on harmonic ap­
proximation. These results will be applied firstly to establish the existence
of harmonic functions with prescribed singular parts at a sequence of iso­
lated singularities, and secondly to construct harmonic functions on RN with
unexpected properties.

Let Pm denote the vector space of all real-valued homogeneous polynomi­
als of degree m on IR.N l where m 2: 0 and N 2: 2; in the multi-index notation
of Section 1.8 the elements of Pm are those functions P : IltN ---+ Ilt of the
form

o; = L a"D".
lal=m

2.1. Spaces of homogeneous polynomials

Chapter 2. Harmonic Polynomials

r

(0 < 0 < 7f).

(x E D)

t t-t IN-. h(y', t)dJ..'(y')

h(x) = I~(x) + CXN

lim If(rcosO,TsinO) = 0
r-+-+oo

Exercise 1.18. (i) Let h E H+(B). By considering functions of the form
x t-t h(TX), show that h is the limit On B of some sequence of bounded

elements of H+(B).
(ii) We say that h E H+ (B) is lJ""asi-bounded if h is the limit of some

increasing sequence of bounded elements of H+(B). Let K(·,y) denote the
Poisson kernel of B with some fixed pole yES. Show (without using Theorem
1.3.9) that K(·, y) is not quasi-bounded. (Hint: show that if h is a bounded
element ofH+(B) and h ~ K(·,y), then h =' 0.)

(iii) Let hE H(B). Using Theorem 1.3.9 or otherwise, show that h is the
Poisson integral of an integrable function On S if and only if there exists a
quasi-bounded function ho E H+(B) such that Ihl ~ ho On B.

Exercise 1.19. Let hE G(n) and suppose that for each x E n there exists
a positive sequence (Tn) with Tn ---+ 0 such that h(x) = A(h;x,Tn) for each
n. Show that h satisfies the maximum and minimum principles (that is, h
is constant in some neighbourhood of any local extremum). Deduce that

hE H(n).

as in Theorem 1.7.3. Let K be a compact subset of aD. Show that I~IK has
a harmonic continuation H to IltN and that H(x) ---+ 0 as x ---+ 00. Deduce

that h(x) = CXN·

Exercise 1.17. LetD = IltN - 1 X (0,+00) and suppose that hE H+(D) and
h(x) ---+ 0 as x ---+ y for each y E Bl). Write

Exercise 1.16. Let N = 2 and let f be an integrable function On aD such
that f(~, 0) ---+ 0 as ~ ---+ +00 and f(~,O) ---+ 7f as ~ ---+ -00. Show that the
Poisson integral of f On D satisfies

is constant On (0, +00).

Exercise 1.15. Show that if h is the Poisson integral on D = IltN- 1 X(0, +00)
of a finite measure on aD, then the function

if ---::-- Chapter 1. Harmonic Functions
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Proof. With m = 0,1 the results are trivial. Suppose then that m 2: 2. By
Theorem 2.1.1,

(m 2 2).
i'
".u
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First we aim to demonstrate an important relationship between the spaces
Pm,1lm and Qm. This needs some notions from elementary vector space
theory. We recall that a space V is said to be the direct sum of subspaces V

"
V2

if every element v E V has a unique representation of the form v = VI + V2,

where VI E VI and V2 E V2 ; we then write V = VI EB V2 • In particular, if V is
equipped with an inner product and U is a subspace of V, then V = U Ell U.L,
where U.L is the subspace of V comprising those vectors which are orthogonal
to (every vector in) U. .

Theorem 2.1.1. With the inner product [', ']m on Pm we have H m = Q~

and hence P,« = H m Ell Qm.

Proof. The result is trivial when m = 0,1, so we suppose that m > 2. If
P E Pm and Qo E Pm- 2 , then writing Q(x) = IIxll'Qo(x), we have

2.2. Another inner product on a space of polynomials

We define
dm,N = dim Hm.

Corollary 2.1.4. dO,N = 1; d"N = N;

dm.N = (m +:: - 1) _(m~"; 3)
In particular,

dm ,2 = 2, dm ,3 = 2m + 1, dm,. = (m + I)' (m 2 1).

dim P,« = dim H m + dim Qm = dim H m + dim Pm - 2 .
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(2.1.4)

(2.1.5)

(2.1.6)

We denote the greatest integer not exceeding a real number a by [a].

(P,Q E Pm)

and

(P, Q), = Is PQ dfj

h,(rcosB,rsinB) = rmcosmB

2.2. Another inner product on a space of polynomials

Now dim Pm is the number of linearly independent monomial functions of
degree m in N variables, and this is equal to the number of arrangements
in which m indistinguishable objects together with N - 1 indistinguishable
division-markers are put in a row of m + N - 1 places. An arrangement
of this type is determined by selecting m places for the objects from the
m + N - 1 available. This selection can be made in (m+:-1) ways. Hence
dim P,« = (m+:-l), and (2.1.4) now follows from (2.1.6). The values in
(2.1.5) are easily calculated from (2.1.4). 0

Remark 2.1.5. The space Hm has a very simple form when N = 2. In this
case, with m 2: 1, the functions

h, (Xl, x,) = Re(Xl + iX2)m and h2(Xl' X2) = Im(Xl + iX2)m

are linearly independent elements of H m; indeed [h" h2)m = 0. Since dm,2 =
2, they form a basis for H m. Note that, writing Xl + iX2 = re i fJ

1 we have

defines au inner product on Pm; the associated norm is given by IlPlb
y'(P,P),.

The inner product [" ·Jm has served its main purpose by enabling us to give
a short proof that Pm = H m Ell Qm, and another inner product (-,.)" defined
by an integral, will be more useful from now on. It is convenient to work here
with surface measure fj on the unit sphere S, normalized so that fj(S) = 1.
It is easy to see that the equation

(2.1.3)

(2.1.2)

Im!21
P(x) = L Ilxl[2j Hm-2j(x).

j==O

[Q, PJm = D Q o L1P = [Qo, L1P]m-2.

Corollary 2.1.3. If P is a polynomial of degree m on lII.N , then there exists
a harmonic polynomial H of degree at most m such that H = P on S.

Proof. By Theorem 2.1.1, we can write P(x) = Hm(x) + Ilxll'Q(x), where
H m E H m and Q E Pm - 2 . This observation forms the basis of a simple
induction argument. 0

Proof. Since P is the sum of its homogeneous parts (that is, P = L;:'=o Pk ,

where Pk E Pk), it is enough to treat the case where P is homogeneous,
and we suppose without loss of generality that P E Pm. The function H
that we seek is then obtained by writing P in the form (2.1.3) and defining
H = LHm-2j. 0

Corollary 2.1.2. If P E P,«, then there exist harmonic polynomials H m-2j E
Hm-'j (j = 0,1, ... , [m/2]) such that

The next corollary shows that a Poisson integral on the unit ball is a
polynomial if the boundary function is a polynomial.

Hence, if PE Q~, then taking Qo=L1P in (2.1.2), we see that [L1P, L1P]m-2 =
0, so that L1P == °and P E Hm. Conversely, (2.1.2) also implies that if
P E H m then P E Q;,. Hence H m = Q~, as required. 0



Lemma 2.2.1. If P E Pk and H E H«, where 0 :0: k < m, then

ir-: Theorem 2.2.3. Every non-constant factor of a non-zero harmonic polyno­
mial takes both positive and negative values.
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(2.2.1)

r:

2.3. Axially symmetric harmonic polynomials

A further application of Lemma 2.2.1 is as follows.
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(2.3.1)(H E Hm ) .(H, Jy,mh = H(y)

Further, Jy,m is v-axial.

Proof. This theorem is vacuous for polynomials of degree 0 and trivial for
polynomials of degree 1. To deal with higher degrees, suppose initially that
H E 1l m \ {O}, where m 2: 2. Since M(H; 0,1) = H(O) = 0 and H is non­
constant on S, it follows that H itself takes both positive and negative values.
Now suppose that H = PQ, where P, Q are non-constant polynomials. Since
deg P < m, Lemma 2.2.1 gives

0= Is HP dij = Is p 2Q dij,

so that Q takes both positive and negative values on S. This completes the
proof for homogeneous harmonic polynomials.

Now let H be an arbitrary harmonic polynomial of degree m 2: 2. If P, Q
are polynomials such that H = PQ, then if = P{j, where P denotes the
h.omogeneous part of P of highest degree. If Q is non-constant, then since
H E H m \{O}, the result of the previous paragraph implies that (j takes a
positive value at s.ome point y of S. Denoting the degree of Q by k, we then
have Q(ry) = rkQ(y) + O(rk- 1 ) as r --+ +00, so Q(ry) > 0 for sufficiently
large values of r, Similarly, Q takes negative values. D

Theorem 2.3.2. If YES, then there exists a unique element Jy,= of H»,
such that

2.3. Axially symmetric harmonic polynomials

Definition 2.3.1. Let y be a point of S. A real-valued function f, defined
either on IIiN or on some ball B(O,R) is called y-axial if f = f 0 A for every
orthogonal transformation A of IIiN such that A(y) = y.

Proof. The first statement will be proved using elementary vector space the­
ory. Let 1l:;" denote the dual of H m , that is, the vector space of all real-valued
linear functions on 1im 1 and let ep : lI.m --+ 1i:n be the function that associates
with each element G of H m the linear function H >-+ (H, G),. It is easy to
see that if.) is injective, and so it is an isomorphism since dim 1im = dim H:n.
Hence, if yES and <Py is the element of 1l:;" given by <py(H) = H(y), then
there is a unique element Jy,m of H= such that <P(Jy,m) = <Py, that is to say,
(2.3.1) holds.

D

D

(2.2.2)

(H, Qh = Is H P da = O.

Proof. The cases m = 0,1 are trivial, so we suppose that H E H m and
Q E Qm where m > 2, and let Q(x) = Ilxll'P(x), where P E Pm-" By
Lemma 2.2.1,

(m - n) ( HmHn dir = 1{Hn(x) f. Xj aa~m (z)
is S j=l J

N

- Hm(x) L:Xj :~ (x) } da(x)
j=l J

= {{Hn aHm _ tt; aHn }da,
is 8n e 8ne

where .jL denotes differentiation in the direction of the exterior normal to
une

S. Green's formula (see Appendix) shows that the last-written integral is 0,
and the proof of (2.2.2) is complete.

To prove (2.2.1), we note that by Corollary 2.1.3 there exists a harmonic
polynomial J of degree at most k such that P = J on S. Applying (2.2.2) to
each of the homogeneous parts of J (which are also harmonic), we see that

Is HP dij = Is HJ dij = O.

Theorem 2.2.2. For each fixed m, the spaces Hm and Qm are orthogonal
with respect to the inner product (-, .h·

N eoL:Xj ax. (x) = qQ(x)
j=l J

Proof. We start with (2.2.2). Using the equation

whenever m ;;j:. n.

we find that

In particular,

'[
"I

I !
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Proof. Fix a point yES. Using first the hypothesis that {Hj} is an orthonor­
mal basis for H m and then (2.3.1)' we obtain

Clearly the roles of x and y can be interchanged to yield the second equation
in (2.3.2). 0

The result now follows from the uniqueness assertion of Theorem 2.3.2 applied
to J A(y),m' 0

(2.3.2)

1, ... , dm,N} be an orthonormal basis for

dm,N

L Hj(x)Hj(y) = Jy,m(x) = Jx,m(Y)'
j=1

dm,N dm,N

Jy,m(x) = L (Hj, Jy,m),Hj(x) = L Hj(y)Hj(x) (x E IRN).

j=1 j=1

Theorem 2.3,6, Let {Hj : j
u-; If x, YES, then

Axial harmonics are intimately related to certain well-studied classical
polynomials. We make no use of this relationship here but will give details
in Section 2.7. Below we investigate the properties of axial harmonics and
then give some examples. The next result adds to the uniqueness statement
in Theorem 2.3.2.

Theorem 2.3.4. Every y-axial element of Hm is proportional to Jy,m.

Definition 2.3.3. We refer to the polynomials Jy,m of Theorem 2.3.2 as
axial harmonics. Specifically Jy,m is called the y-axial harmonic of degree m
(on IRN ) .

To show that Jy,m is y-axial, let A be an orthogonal transformation of
IRN with A(y) = y. Then by the rotation-invariance of a and (2.3.1),

(H, Jy,m 0 A), = (H 0 A-I, Jy,m), = (H 0 A-I)(y) = H(y)

for each H E H m. From the uniqueness of Jy,m it now follows that Jy,m 0 A =
Jy,ml as required. 0

l

Corollary 2.3.8. If H E H m, then

(2.3.4)

(2.3.3)

d""N

Jy,m(Y) = L (Hj(y))'-
j=1

dTn,N

L (Hj(y))' = Jy,m(Y) = IIJy,mll; = dm,N.
j=1

Proof. Taking y = x in (2.3.2) yields

Equality occurs when H = Jy,m for some yES and x = ky for some k E IR.

Proof. By homogeneity, it is enough to prove (2.3.4) in the case where
IIxll = 1, and we may also suppose that IIHII, = 1. Let {H j } be an or­
thonormal basis for H m with HI = H. By Corollary 2.3.7,

Corollary 2.3.7. If {Hj : j = 1, ... ,dm,N} is an orthonormal basis forH m ,

then for each yES

Since, by Lemma 2.3.5, Jy,m(Y) is independent of y, we may integrate
the right-hand side of the above equation with respect to daly) to obtain
Jy,m(Y) = dm,N. The middle equation in (2.3.3) is immediate from (2.3.1).

o

Lemma 2.3.5. If yES and A is an orthogonal transformation of IRN, then

JA(y),m = Jy,m 0 A-I.

Proof. The result will follow easily once we have established that the zero
function is the only y-axial element of H m that vanishes at y. We therefore
suppose that H is a y-axial element ofHm and H(y) = O. Choosing coordinate
axes with respect to which y = (1,0, ... ,0) we define

By the axial symmetry of H, the function 9 is even and 9 '" 0 if and only if
H '" O. Suppose that H 't O. Then 9 has only finitely many zeros in [-7l',7l']
and g(O) = H(y) = O. Since 9 is even, it follows that 9 attains a strict local
extremum at O. The axial symmetry and homogeneity of H now imply that
H attains a local extremum at y, contrary to the maximum principle. Hence
H '" 0, as claimed.

If G is any y-axial element of H m, then the function Jy,m(y)G -G(y)Jy,m
is a y-axial element of H m which vanishes at y. By the previous paragraph,
this function is identically O. Since Jy,m(Y) ,p 0 by (2.3.1), we have G =

(G(y)/Jy,m(y))Jy,m. 0

g(8) = H(cos8,sin8,0, ... ,0).

Proof. By (2.3.1) and the rotation invariance of a, we have for each HE H m,

(H,JA(y),m), = (H 0 A)(y) = (H 0 A, Jy,m), = (H, Jy,m 0 A-I),.
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oc

whence (2.3.4) follows. To verify the stated case of equality, we note that if
yES and x = ky for some k E ]R, then by the homogeneity of Jy,m and
(2.3.3),

IJy,m(x)1 = IIxllmIJy,m(y)1 = dm,Nllxllm = d;,(2NIIJy,mlbllxllm. 0

We conclude this section with some examples of axial harmonics. To ver­
ify the examples it is enough to check that the functions are indeed y-axial
elements of Hm and take the value dm,N at y (see Theorem 2.3.4 and Corol­
lary 2.3.7). The verifications are routine; compare the first example with
Remark 2.1.5.

Lemma 2.4.1. Suppose that yES and hE H(B). If his y-axial and h(ty) =°when -1 < t < 1, then h '" 0.

Proof. By Corollary 1.8.6, there exist H, E H· such that h = "':" H. ) L.....,J==o j

in some ball B(O, ro). Let A be an orthogonal transformation of ]RN with
A(y) = y. Since his y-axial, on B(O, ro) we have

co

L, n, = h = h 0 A = L, n, 0 A,
j=O j=O

and from the uniqueness of the expansion for h it now follows that H· = H· oA
for each j. Hence each H j is y-axial and therefore, by Theorem 2.3.4, ~ro­
portional to Jy,j. Thus h = I:~o ajJy,j on B(O,ro) where (aj) is a sequence
of real numbers. In particular,

Example 2.3.9. Let N = 2 and write y = (cos qI, sin qI),x = (rcosO,rsinO).
The axial harmonic Jy,m is given by Jy,m(x) = 2rm cosm(O - qI).

oc oo

0= h(ty) = L,ajJy,j(ty) = L,ajJy,j(y)tj

j=O j=O

(-ro < t < ro).

(x E B;y E S).

Example 2.3.10. Let y = (1,0, ... ,0) E ]RN. Then y-axial harmonics are given
by

Jy,o(x) = 1, Jy,l(X) = NX" Jy,2(X) = ~(N + 2)(Nx; -llxI1
2),

1
Jy,3(X) = f,N(N + 4){(N + 2)x; - 3X,llxI1

2
},

Jy,4(X) = 2
14

N(N + 6){(N + 4)(N + 2)xi - 6(N + 2)x;llxI1
2 + 31IxI1

4
} .
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Since Jy,j(Y) i' 0, it follows from the uniqueness of power series expansions
that aj =°for each i, so that h =°on B(O,ro) and hence on B. 0

Definition 2.4.2. Let Un) be a sequence of real-valued functions defined on
a non-empty subset E of]RN. We shall say that the series I: l« is Weierstrass
convergent on E if I:suPE Ifni converges; also I: L, is locally Weierstrass
convergent on E if it is Weierstrass convergent on every non-empty compact
subset of E. (This terminology is suggested by the Weierstrass M-test.)

Recall that the Poisson kernel K of B is given by

K( )
_ 1 l-llxl12

x,y -
aN Ilx _ylIN

We saw in Corollary 1.8.6 that if h is harmonic on some ball B(xo, r), then
at least in some smaller ball h has a unique representation of the form

co

h(x) = L, Hj(x - xo),
j=O

(2.4.1)

Theorem 2.4.3.

1 =
K(x, y) = -;- L, Jy,j(x) (x E B; yES). (2.4.2)

N j=O

Further, there exists a constant C, depending only on N, such that

so that the series in {2.4.2} is locally Weierstrass convergent on B for each
yES.

Proof. We start with (2.4.3). In view of Corollaries 2.3.7 and 2.3.8, we have
IJy,}(x)1 :s; dj,NllxW· From the explicit formula (2.1.4) for dj,N it follows
easily that dj,N = O(jN-2) as j --t 00.

where H, E H j . Our aim here is to show that this series converges absolutely
and locally uniformly to h on the whole of B(xo, r). It is enough to work
with B(xo,r) = B, for the general result will then follow by translation and
dilation. With a view to exploiting the Riesz-Herglotz theorem, we first seek
an explicit expansion of the form (2.4.1) in the case h = K(·,y), where K is
the Poisson kernel of B. For this we use the following uniqueness result.

IJy,j(x)I:S; C(j + I)N- 21Ixll j (x E B;y E S;j = 0,1,2, ...) (2.4.3)



We prove (2.4.2) first in the case where x = ty with -1 < t < 1. We

obtain

uNK(ty,y) = (1 - t2 )(1 - n-N

= (1 _t2 ) f= (j +N-1) t j

j=O J

=l+Nt+f={e+~-I)-e~~;3)}tj (2.4.4)
1=2

00 00

= L Jy,j(y)tj = L Jy,j(ty)
j=O j=O

using the fact that the coefficient of t j in (2.4.4) is equal to dj,N which in
turn is equal to Jy,j(Y) (see Corollaries 2.1.4 and 2.3.7).

Since the series in (2.4.2) is locally nniformly convergent on B by (2.4 ..3),
its SUfi, h say, is harmonic there, and since the terms of the senes are y-ax~al)

so also is h. Now UN K(-, y) is also y-axial and harmonic on B and agrees WIth
h on the line segment {ty : -1 < t < I}. Hence h - uNK(·,y) = 0 on B, by

. d 0Lemma 2.4.1, as require .

A formal statement of the homogeneous polynomial expansion announced
in the first paragraph of this section is as follows.

432.4. Polynomial expansions of harmonic functions

By (2.4.3),
IHj(x)1 :S C(j + I)N-'llxWM([hl; 0, 1),

so that I:}:o H j is locally Weierstrass convergent on B. By Lemma 2.3.5,
the integrand in (2.4.6) and all its partial derivatives with respect to the
coordinates of x are bounded when Ilxll < r < 1 and yES, so we may pass
any linear partial differential operator nnder the integral sign. Using Laplace's
operator ,1, we find that H j E H(B). Similarly, all the partial derivatives of
H, of order greater than j vanish on B and all such derivatives of order less
than j vanish at 0, so that H, E Hj. The uniqueness of the polynomials H,
follows from Corollary 1.8.6.

Now suppose only that h E H(B). For p E (0,1) define hp on B(O, 11p)
by hp(x) = h(px). Then hp E H(B(O, 11p)) and by the result of tbe previous
paragraph, hp has a unique polynomial expansion on B of the type described
above which is locally Weierstrass convergent on B. This implies that h has
the form (2.4.5) on B(O, p) with local Weierstrass convergence there. Since the
expansion is unique, it is independent of p and therefore locally Weierstrass
convergent to h on B. 0

Theorem 2.4.4 can be applied to obtain a further result concerning the
Dirichlet problem for the half-space D. We know from Theorem 1.7.5 that, if
f E ClaD) satisfies the integral condition (1.7.7), then there is a harmonic
function h on D such that hex) --+ fey) as x --+ y for all y E aD. We can now
dispense with the integral condition.

r
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(2.4.7)

(x E B(O,k - 2))

(x --t y;y E aD).hex) --t fey)

00

hk(x) = L Hj,k(x)
j=O

Proof. We define continuous functions 9k (k E N) on eo by

Theorem 2.4.5. If f E ClaD), then there exists ue H(D) such that

91(Y) = max{I-llyll. O} (y E aD),

9k(Y) = (min{k-IIYII,IIYII"-k+2}t (y E eo.« 2: 2).

Thus 9k(Y) = 0 when lIyll 2: k and when llvll :S k - 2. By Theorem 1.7.5 the
Poisson integral hk = I f g , has limit f(Y)9k(Y) at y E Bl). In particular, if
k 2: 3, then hk has limit 0 at points of B(O,k - 2)n aD and, by the reflection
principle, has a harmonic extension to D U B(O, k - 2). By Theorem 2.4.4
there exist Hj,k E Hj such that

(2.4.5)(x E B(xo, r)),

then there exist unique polynomials

Hence, by Theorem 2.4.3, h = I:}:o H j on B, where

00

hex) = LHj(x - xo)
j=O

and the series is locally Weierstrass convergent on B(xo,r). In particular,. if
hE H(lRN ) , then the equation in (2.4.Vholds for all x in lRN and the series

is locally Weierstrass convergent on R .

Theorem 2.4,4. If h E H(B(xo,r)),
H, E Hj such that

Proof. It is enough to prove the results in the first sentence, for they clearly
imply those in the second. Also, it is enough to work WIth B m place ~f
B(xo, f). Suppose first that h is harmonic on some neighbourhood of B.
Then h is given on B by its Poisson integral:

hex) = 1K(x, y)h(y)da(y).

H(x) = -.!..- ( Jy,j(x)h(y)du(y).
J aN is

(2.4.6) and we can choose ik such that the harmonic polynomial
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00

h = h, + h, + L(h. - H.)
k=3

on D, where h
k

is interpreted as is» on' Bl). By (2.4.8) the above series
converges locally uniformly on D. Since hk E C(D) n H(D) for each k, the
same is true of h. Finally, since ~ g. =' 1 and H. = 0 on aD for each k, we
have h = f on aD and so (2.4.7) holds. D

(2.5.3)
oc

= L Ilxll'-N-'jKj(x).
)=0

00

hex) = Ilx'IIN-'h'(x') = IlxI12-Nh'(x') = IlxI12-NLKj(x')
)=0

The local Weierstrass convergence of ~~o K j on B implies that the series
in (2.5.3) is Weierstrass convergent on 1(0; p, +00) when p > 1.

The above argument is reversible: if h is given by (2.5.3), then h' =
2::';:0 K j on B, so the uniqueness assertion in this lemma follows from that
in Theorem 2.4.4. 0

h' is harmonic on B\{O}. Further, by (2.5.1), h' satisfies the conditions of
Theorem 1.3.7 on B\{O} and therefore has a harmonic continuation to B.
Hence, by Theorem 2.4.4, there exist K j E H j such that h' = ~oo K· on
B. Hence if x E A(O; 1, +00), then ,~o ,

Lemma 2.5.2. If h E H(A(xo;r"r,)), then there exist unique functions
h, E H(A(xo;r,,+oo)) and h, E "H(B(xO,r2)) such that

j,

n, = LHj,k
)=0

IHk(X) - hk(x)1 < 2-k (Ilxll ::; k - 3). (2.4.8)

Since DC> hk 0 on B(O, k - 2) n aD for any multi-index a of the form
(a" ... , aN-', 0), we see from Theorem 1.8.5 and Lemma 1.8.1 that XN is a
factor of each Hj,k(X) and so Hi; = 0 on aD. We now define

satisfies

2.5. Laurent expansions of harmonic functions
(2.5.4)

(2.5.5)

(2.5.6)

(N ~ 3)
(N = 2),

(X-4oo)
(N ~ 3)
(N = 2)

h(x) = {hI (x) + h2(x)

h,(x) + h2(x) + a log Ilx - xoll

1 L {ah au,}g(p,x) = - U'(Y)-a (y) - h(Y)-a (y) da(y),
aN S(O,p) n e n e

and for each x E A(xo;rl,r,)

where a E JR.

Proof. We may suppose that Xo = O. For p E h,r,) and x E JRN\S(O,p), we
write

where aN = aN max{1, N -2) and a/an, denotes differentiation with respect
to the y- variable in the direction of the exterior normal to B (0, p). If w is a
bounded open set such that wn S(O, p) = 0, then the integrand in (2.5.6)
is bounded and continuous as a function of (x, y) on w x S(O, p), and for
each fixed y in S(O, p) it is harmonic as a function of x on w. Hence g(p,') is
harmonic on IltN \S(O, p) since it is continuous and, by Fubini's theorem, has
the mean value property there.

Now suppose that rl < PI < Po < r,.Ifx E A(0;PI,P2), then by applying
Green's formula on A(O; P" P2)\B(x, J) and letting J -4 0+, we obtain hex) =
g(p"x) - g(p"x). Since g(P2,X) is independent of P" it follows from this
equation that g(PI, x) is independent of Pl' Similarly, g(p" x) is independent

(2.5.2)

(2.5.1)(x -4 00),(N ~ 3)
(N = 2)

h x _ {0(1)
( ) - o(log Ilxll)

oc

h(x) = L Ilx - xoI12-N-2j Kj(x - xo)
)=0

and the series is Weierstrass convergent on A(XO;Pl+00) for each p > rIo

then there exist unique harmonic polynomials K j E Hj such that

Lemma 2.5.1. IfhE"H(A(xo;r,,+oo)) and

Here we work on the annular domain

A(xo; r" r,) = {x E IltN :r, < Ilx - xoll < r2} (xo E Ilt
N

;0::; r, < r2 ::; +00).

Our aim is to obtain a series expansion for harmonic functions on such a
domain which is analogous to the Laurent expansion for holomorphic func­
tions on an annulus. We start by reinterpreting Theorem 2.4.4 for functions

harmonic on A(XO;rl1+ oo).

Proof. Again we may suppose without loss of generality that r, = 1 and
Xo = O. We use the Kelvin transform to reduce the proof to a problem about
harmonic functions on B and then appeal to Theorem 2.4.4. Define h' on
B\{O} by h'(x) = Ilxll'-Nh(x'), where x' = IIxll-2x. By Corollary 1.6.4,
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of pz- Since g(PI") and g(p".) are harmonic on A(O; PI, +00) and B(O, p,)
respectively, it now follows that the functions defined by

g,(x) = lim g(PI'x) Ulxll > TI),
Pl-+Tl +

g,(x) = lim g(P2,X) (lIxll < T,)
P2-+T2-

whenN = 2 the corresponding term is constant and is in fact zero, since
h,(x) -+ 0 as x -+ 00. These remarks establish (2.5.7). The uniqueness of the
polynomials in (2.5.7) follows from the uniqueness results in Theorem 2.4.4
and Lemmas 2.5.1 and 2.5.2. 0

on K.

2.6. Harmonic approximation

(x E K),1 1{ah aux}
h(x) = - Ux(Y)-a (y) - h(Y)-a (y) dO'(y)

aN {}L ti; n e

Lemma 2.6.1. Let K be a compact subset of JRN. If h is harmonic on a
neighbourhood of K and e > 0, then there exist points YI, ... ,Ym in JRN\K
and real numbers Ql l ... ,am such that

m

Ih - LakUY,1 < £

k=l

In this section we give an approximation theorem for harmonic functions
inspired by Runge's theorem on holomorphic approximation; it includes as a
special case the result that if K is compact and JRN \K is connected, then a
harmonic function on a neighbourhood of K can be uniformly approximated
on K by harmonic polynomials. We start with some lemmas. The second
and third of these are given in a stronger form than is needed to prove the
main approximation results. Their full strength will be used at the end of
the section to show the existence of harmonic functions on aN exhibiting
surprising behaviour.

Proof. We can choose a compact set L on which Green's formula is applicable
(see Appendix) such that K C LO and h is harmonic on a neighbourhood of
L. By applying Green's formula on L\B(x, 6) and letting 6 -+ 0+, we obtain

where a/8n e denotes differentiation in the direction of the exterior normal
to 8L at Y and aN = O'N max{1, N - 2}. Since the integrand is uniformly
continuous as a function of (x, y) on Kx8L, the integral can be approximated
uniformly for x E K by a Riemann sum

Also, by definition of a derivative, (a/an,)Ux(Yj) can be approximated by
a linear combination of Ux(yj) and Ux(Yj) for some yj in JRN\K, and this
approximation too will be uniform for x E K. The lemma now follows after
a relabelling of the points Yj, yj (j = 1, . . . , n) as YI, ... , Ym' 0

00 00

h(x) = L Hj(x - xo) + L IIx - xoI12-N- 2j
Kj(x - xo) + aUxo(x), (2.5.7)

j=O j=l

where a E JR. If 0 < 6 < T2, then the first series in (2.5/) is Weierstrass
convergent on B(XO,T2 - 6) and the second on A(XO;TI + ,+00).

Proof. We decompose h as in Lemma 2.5.2. By Theorem 2.4.4, h2 has the
form (2.4.5) and the series in (2.4.5) is Weierstrass convergent on B(xo, Tz-6).
By Lemma 2.5.1 and (2.5.4), the function h, has the form (2.5.2) and the
series in (2.5.2) is Weierstrass convergent on A(xo; r, + 6,+00). In the case
where N ::c 3, the term with j = 0 in the senes (2.5.2) has the form aUxo(x),

are harmonic on their domains of definition and satisfy h = gz - g, .on

A(O;TI,T,). . .. . h
In the case where N > 3 easy estimates of Ux(Y) and Its derivatives Wit

- , ) 0(11 11 2- N )respect to the coordinates of Y show that g(PI, x = x as x -: 00.
Since g(pt,x) is independent of PI when Ilxll > PI, it follows that g, satisfies
(2.5.4). Also, with h, = -g, and h, = g2, (2.5.5) holds.

With N = 2 we have

_g(PI, x) = ~ r log Ilx - yll:: (y)dO'(Y) + OUlxll-
l)

211" JS(O,pd e

= ~logllxll r aah (y)dO'(y)
21r JS(O,Pl) ne

+ ~ r 10g(lIil-ll ll) :h (y)dO'(y) + O(lIxll-l)
211" Js(a,pt) x ne

= a log Ilxll + O(lIxll- I
) ,

say. Again, since g(PI") is independent of PI when IIxll > PI, the function g,
has the same behaviour. Hence, if we take hl(x) = -(gl(x) +alogllxll) and
h, = g" then (2.5.4) and (2.5.5) are satisfied. .

To prove uniqueness, suppose that h~, h2have all the p~oper~les of hI, h2 .

Then hi + h~ = h = h, + hz on A(O;TI,T,), so that b: - h, = h, - h2 there.
Thus h, _ hi has a harmonic continuation to JRN. Hence, by (2.5.4) and the
maximum principle, h, = hi. Therefore h2 = h~ also. 0

Theorem 2.5.3. (Laurent expansion) If t.« H(A(xo; T" T2), then there

exist unique harmonic polynomials Hj, Kj E Hj such that

I
)



Proof. By Theorem 2.5.3, the function h has a Laurent expansion

we see that ho E H(IIl.N \ {y}) and that if m 2: maximo, p + 1 - N} and

x E A(y; r" +00), then

Lemma 2.6.3. Let T be a tract from some point y to 00. If e > 0, p 2: 0 and
hE H(IIl.N \ {y}), then there exists 9 E H(IIl.N) such that

49

(XE IIl.N \T).

2.6. Harmonic approximation

I(h - g)(x)1 < £(1 + Ilxll)-P

Proof. The topological hypothesis of Theorem 2.6.4 is vacuously satisfied with
fl = IIl.N. Hence there exists H' E H(IIl.N) such that Ih - H'I < £/2 on K. By

IUyo - Hml S L IHk-1 - Hkl < O.

k=!

m

co

I(h - g)(x)1 :'0 L I(gj+l - gj)(x)1 < £(1 + Ilxll)-P (x E IIl.N \ T).
j=O

o

Theorem 2.6.4. Let K be a compact subset of an open set fl in IIl.N such
that every' bounded component of IIl.N \K contains a point of IIl.N\fl. If h
ss bormonic on an open set containing K and if e > 0, then there exists
HE H(fl) such that Ih - HI < e on K.

Proof. Let (B j) = (B(Yj,Tj)) be a sequence of balls such that

Yo=y, YjEBj+l' BjcT, rj<l (jE{O,1,2, ...})

and Yj --+ 00. By Lemma 2.6.2, we can proceed recursively to find a sequence
(gj) of functions such that go = h, gj E H(IIl.N \ {Yj}) and

l(gj+1 - gj)(x)1 < Tj-l£(l + Ilxll)-P (x E lIN \ Bj+I;j E {O, 1, 2, ... }).

Thus (gj) is locally uniformly Cauchy on IIl.N and therefore converges to a
limit function 9 E H(IIl.N). Also,

Finally, we note that Hm is harmonic on IIl.N\{z)' which contains fl.
If Yo lies in the unbounded component of IIl.N\K then, by Lemma 2.6.3,

UyOcan be uniformly approximated on K by functions in H(IIl.N). 0

Corollary 2.6.5. Let K be a compact subset of IIl.N such that IIl.N \K is
connected. If h is harmomc on a neighbourhood of K and £ > 0 then there
exists a harmonic polynomial H such that Ih - HI < e on K. '

Proof. In view of Lemma 2.6.1, it is enough to show that if Yo E IIl.N\K, then
UyOcan be umformly approximated on K by functions in H(fl). Suppose first
that Yo belongs to a bounded component, w say, of IIl.N\K. By hypothesis
there exists a point z in w\fl. There are balls B(Yl' rJl, ... , B(Ym, rm), where
Yrn = z, with closures contained in w, such that Yk-I E B(yk, r.) for each
k = 1, ... ,m. Define Ho = Uyo' By repeated applications of Lemma 2.6.2, we
find that there exist functions Hk E H(IIl.N\{yt)) for k = 1, ... ,m such that
IHk- 1 - Hkl < Elm on A(Yk;rk, +00), which contains K. Hence, on K,

o

(2.6.2)

(2.6.1)(x E A(y; ra +00)).Cllx - yll > p(l + IIxlil

m

ho(x) = hl(x) + aUy(x) +L Ilx - YII'-N-'jKj(x - y),
j=l

Chapter 2. Harmonic Polynomials

coL Ilx - yll'-N-2jIKj(x - y)1 < C-P£ (x E S(y,p)).

j=mo+l

I(h - ho)(x)1 = I f IIx - yll'-N-2
j (lix ~ ylly x, (~I~ -=-~D I

J=m+l

< ~ ( P )j+N-' '-N-,j!K(P(x-y))1
-.L.. IIx-yll P 1 Ilx-yll

J:=m+l

:'0 (plllx - yll)PC-P£
< £(1 + Ilxlll-P

,

using (2.6.2) and then (2.6.1).

Defining

There exists mo such that

If Y E IIl.N and f : [0, +00) -+ IIl.N is a continuous function such that
f(O) = Y and f(t) -+ 00 as t -+ +00, then we call f([O, +00)) a path from y
to 00, and any open set containing such a path we call a tract from y to 00.

where a is a constant, hI E H(IIl.N) and K j E Hj. We write P = h + r,)/2
and note that the above series is Weierstrass convergent on S(y, pl· Let C be

a constant such that

co

hex) = hl(x) + aUy(x) + L Ilx - yll'-N-2j
Kj(x - y) (x E A(y; rl, +00)),

j:=1

Lemma 2.6.2. Let Y E IIl.N and suppose that £,p,rl,r, are numbers such
that r, > ri > 0, e > 0, p 2: O. If hE H(A(y;rl' +00)), then there exists
ho E H(IIl.N \ {y}) such that

I(h- ho)(x)1 < £(1 + IIxll)-P (x E A(y;r,,+oo)).

48
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Theorem 2.4.4, there exists a harmonic polynomial H such that IH' - HI <
£/2 on K. Hence Ih - HI < E on K. 0

For the next result in this section, which is inspired by the Mittag-Leffler
theorem for holomorphic functions, we require some terminology. If h is har­
monic on some deleted neighbourhood of a point Xo (that is, on U\ {xo} for
some neighbourhood U of xo), then it has a Laurent expansion of the form
(2.5.7). We refer to the terms

It follows that the series is uniformly convergent on K; \ {Ym : mEN} for
all n, so that h is harmonic. Finally, if kEN, then there exists 0 > 0 such
that IIYk - Ymll > 0 for m i' k, and on A(Yk; 0, 0) the function h has the form
g + s., where g E H(B(Yk,o)). Thus the singular part of h at Yk is 8k. 0

So far we have used only the case p = 0 of Lemma 2.6.3. However, the
full power of the lemma is used in the following examples. If yES and
-00 ~ a < b :S +00, then we write

Proof. For each n E N define

1
K n = (x En: dist(x,an) 2: ;;: and Ilxll :S n}.

(2.6.4)

(2.6.5)

(t 2: 0)

(t 2: 0)
N

g(t) = I:Yjt
j

j=l

1jJ(t) = (t,e, ... ,tN)

To see this we start by defining

and

lim tPh(xo + tyo) = 0
f-++oo

By a strip we mean a set of the form Wry; a, b), where a, b are finite. If
h E H(IRN) and h(rx) -; 0 as r -; +00 uniformly for xES, then h == 0 by
the maximum principle. The following example shows that uniformity cannot
be dispensed with.

W(y;a,b) = {x E IRN: a < (x,y) < b}.

T = UB(1jJ(t), 1)
t;:::o

so that T is a tract in IRN from 0 to 00. If y = (Y1, ... ,YN) E S, then the
function

Example 2.6.7. If p 2: 0 then there exists a non-constant function h E H(IRN)

such that
lim IlxIIPh(x) = 0 (2.6.3)

x-+oo, xEW

for every strip W. In particular, IlxIIPh(x) decays to 0 on every ray:

(n 2: 2).In = {m: Ym E K n\Kn- 1 }I, = {m:Ym E K,},

Since (Ym) has no limit point in n the sets In are 2nite. Let 8 m denote the
singular part of b-« at Ym. We note that 8 m E H(IR \(Ym}) and define

00I: IIx - xoI1 2 - N -
2 j Kj(x - xo) + aUxo(x)

j=l

Theorem 2.6.6. Let (Ym) be a sequence of distinct points in n with no limit
point in n, and for each m let hm be harmonic on a deleted neighbourhood
of Ym. Then there is a harmonic junction h on n\ {Ym : mEN} such that
the singular parts of hand hm are equal (and therefore Ym is a removable

singularity of h - hm) for each m.

(If n = IRN , then K n = B(O,n).) It is easy to verify the following properties:
each K n is compact; K n C K~+l for each n; U~=l K n = il; each bounded
component of IRN \Kn contains a point of IRN \n. Also, define

in (2.5.7) as the singular part of h at Xo; note that by Theorem 2.5.3 this
singular part is uniquely determined. If this singular part is identically zero,
then h has a harmonic continuation to a neighbourhood of xo, and Xo IS then
called a removable singularity of h.

(n E N).

(If In = 0, then gn = 0.) For n 2: 2, the function gn is harmonic on a
neighbourhood of K n - 1 , and by Theorem 2.6.4 there exists G« E H(n) such
that Ign - Gnl < 2-n on K n-1 · Define h on n\ {Ym : mEN} by

satisfies either g(t) -; +00 or g(t) -; -00 as t -; +00 and it follows that
Tn Wry; -a, a) is bounded for any a E (0, +00).

We now choose a positive integer m such that m + N - 2 > P and a
harmonic polynomial H E H m \ {O}, and we define

ho(x) = IlxI1 2-N- 2mH(x).

00

h = g, + I:(gn - Gn).
n=2

Then ho E H(IRN \ (O}) since ho is the image of H under the Kelvin transform
with respect to S, and by Lemma 2.6.3 there exists, for any £ > 0, a function
h E H(IRN) such that
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By choosing c to be sufficiently small, we ensure that h 't O. We have

Ih(x)1 ::; I(h - ho)(x)1 + Iho(x)1 < CllxI12
-
N-m

(x E Ilt
N

\ T),

I(h - ho)(x)1 < £(1 + IlxI1l2 -
N-m (x E IltN \ T). This integral is finite, and therefore either R h(P(y, t» -t 0 as t -t -00 or

Rh(P(y,t» -t 0 as t-t +00. Since Rh(P(y,·» is a polynomial of degree at
most 1, we must have Rh(P(y, .» == 0, and since y is an arbitrary point of
S, it follows that R h (P) = 0 for all P E pN

where C is a constant. The observation at the end of the preceding paragraph
shows that Tn W is bounded for every strip W, so h satisfies (2.6.3). 2.7. Harmonic polynomials and classical polynomials

The question naturally arises whether such a function f is uniquely deter­
mined by Rf. The following example, based on the previous one, shows that

the answer is negative.

We fix an arbitrary point yES and for each real number t define P(y, t} to
be the hyperplane {x E IltN : (x,y) = t}. Since T n W(y; -a,a) is bounded
for every positive number a, it follows from (2.6.6) that the function

(2.7.2)

(2.7.1)

(0 ::; m < n);

(Szego, Formula (4.7.31)) and the equation (Szego, Formula (4.7.3)}

P~;)(I) = (m+~A-l).

Finally, the ultraspherical polynomials are characterized by the equation

this together with (2.7.2) determines the ultraspherical polynomials uniquely.

Also, P!n') is the unique polynomial of degree m satisfying (2.7.2) and the
differential equation

Although they are not required for the present discussion, we mention some
other characterizations of ultraspherical polynomials. They are orthogonal
with respect to the weight function (1- t2}'-~ on (-1,1); that is,

,
[, P!n')(t)PA')(t)(I- t2)"-~ dt = 0

(1 - t'}J"(t) - (2A + l)tf'(t} + m(m + 2>.)f(t} = O.

Most classical treatments of harmonic polynomials rely upon a close rela­
tions~ip bet.ween the a~ial harmonics Jy,ml introduced in Section 2.3, and
certain special polynomials in one variable. We make no use of this relation­
ship but for the sake of completeness we give here some brief indications for
the interested reader.

The classical functions with which we are mainly concerned are the ul­
traspherical polynomials. For these we refer to the standard text of Szego [1,
1967]. The results that we require are the explicit formula for the ultraspher­

ical polynomial pj;), where A > 0 and m = 0,1,2, ... :

[m/'l .
P!n')(t} = 2m L (-1); rem -:- J + A) tm - 2;

;=0 r(A}]!4J (m - 2j}!

(2.6.6)

(t E Ilt)

(x E IltN \ T).Ih(x)1 ::; (1 + I\xll}-N-'

t >-t r Ihl dA'
JP(y,t)

is locally bounded on R. Hence by Theorem 1.5.12, with a suitable rotation,
Rh(P(y, .» is a polynomial of degree at most 1. We have already remarked
that the function g given by (2.6.5) satisfies either g(t} -t +00 or get} -t -00
as t -t +00. This implies that there exists a number t y such that either
Tn W(y; -00, t y } = 0 or Tn W(y; ty , +oo} = 0. When Tn P(y, t) = 0 it

follows from (2.6.6) that

Example 2.6.8. There exists h E 7i(lRN ) such that h is A'-integrable on every

hyperplane P and R k == 0 on pN but h 't O.
To see this we again take T to be the tract defined by (2.6.4). The

construction of Example 2.6.7 shows, in particular, that there exists a non­

constant harmonic function h on IltN such that

Let pN denote the set of all (N - I)-dimensional hyperplanes, that is,
sets of the form {x E IltN : (x,y) = a}, where yES and a E III If f E C(Ilt

N)

and f is integrable with respect to (N - I)-dimensional measure>.' on every
hyperplane P, then the Radon transform Rf is defined on pN by

r dN(x')
IRk (P(y, t) I ::; JRN-' (1 + C1lx' 112 + t2}' /2)N+l

1 1. dN(x'}
<--1+ ItI RN-' (1 + Ilx'I\)N.

00

L PA')(t)C = (1- 2t~ +e)-'
n=O

(See Szego, Formula (4.7.23).)

(t,U (-1,1)).

II
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The relationship between axial harmonics and ultraspherical polynomials
in dimension N ~ 3 is as follows; we defer consideration of the simpler case
where N = 2. (Szego, Formula (4.7.8)).

Theorem 2.7.1. Suppose that N 2: 3 and yES. Then

J () = 2m+N-2
11

Ilmp((N-2)/2) ((X,y))
y,m x N _ 2 x m Ilxll

(x 'I 0).

Remark 2.7.3. Except for a normalizing factor, the ultraspherical polynomial

p;;), where A > 0, is identical to the Jacobi polynomial p~'-P-~) (Szego,

Formula (4.7.1)); also Tm is proportional to p~-~'-~) (Szego, Section 4.1(3)).
Hence, for all dimensions N 2: 2) there is a constant k such that

Proof. Let

hex) = Ilx[lmp:r-2
)/ 2) ((~~~)) (x 'I 0)

and h(O) = O. By (2.7.1),

2m [m/21 .r(m-j+l(N-2)). .
h(x) = r(!Y.2) 2::(-1)' jW(m~2j)! II xIl2J

(x , y)m- 23,
2 1=0

Jy,m(x) = kllXll mp!;;"a) ((~~~)) , where a = ~(N - 3).

Using explicit values for Jy,m(Y) and p~a,a)(I) (Szego, Formula (4.1.1)), we
find that

k = dm,N ( m + !;: -3)) -1

(Szego, Section 2.4). Chebyshev polynomials and ultraspherical polynomials

are related by the equation

Remark 2.7.2. We saw in Example 2.3.9 that in the case N = 2 if y =
(cos<f>, sin <f» and x = (rcos8,rsin8), then

Jy,m(x) = 2r m cosmt,

Clearly h is a y-axial homogeneous polynomial of degree m. Direct calculation
shows that for j = 0,1, ... , [m/2]'

L1(llxIl2j(x,y)m-2j) = 2j(2m - 2j + N - 2)llxIl2j-2(x,y)m-2j

+ (m - 2j)(m - 2j - 1)llxl12j (x, y}m-2 j
- 2

2.8. Exercises

Exercise 2.3. Let P~, = {P E P,«: 8P/8xN == OJ. For each PEP;", define

[m/21(_ I )j ..
Hp(x) = 2:: (2 .)! xiJL1'P(x),

,=0 J
[m/21 .

Kp(x) = 2:: (i:-l)~)lxiJ'+!L1jP(x).
j=O J + .

Show that H p E H m and K p E H m +!. Show also that the mappings P >-+ H p

and P >-+ K p are bijections from P;" onto the spaces {H E Hm : 8H/8xN = 0
on Iffi.N-l x {O}} and {H E Hm+! : H = 0 on Iffi.N-l x {O}} respectively.

Exercise 2.2. Let R(x) = cixi + ... + CJ.,rX7vl where el"" 1 eN are non-zero
real numbers, and let R m , where m 2: 2, denote the vector space {RP :
P E Pm-,}. Show that Pm = H m Ell Rm. Deduce that if E is the ellipsoid
{x : R(x) = I} and T is a polynomial of degree m on )RN, then there is a
harmonic polynomial H of degree at most m such that H = T on E.

Exercise 2.1. Let P be a non-constant polynomial on Iffi.N such that P(x) > 0
whenever Ilxll is sufficiently large. Show that P cannot be a factor of any non­
zero harmonic polynomial. (Hint: suppose that P is a factor of Ho + HI +
... + Hm , where H, E Hj, and consider the factors of H m . )

(z 'I 0),

(-I:<=;t:<=;l)

8 "" . 8 ."" (x, y)cost = cos . cos", + sm . sm", = 1Ixlf·

Tm(t) = cos(mcos- 1 t)

Jy,m(x) = 211Xll
mTm ((~~rl))

where Tm is the Chebyshev polynomial given by

Thus

where

A calculation using this equation shows that L1h = O. Hence h is a y-axial
element of H m and therefore Jy,m = kh for some real k, by Theorem 2.3.4.
We know that Jy,m(Y) = dm,N by Corollary 2.3.7 and h(y) = p,\!N-2)/2) (1)
by the definition of h. These values are given explicitly by Corollary 2.1.4 and
(2.7.2), and using them it is easy to show that k = (2m+N - 2)/(N - 2). D

I' " I

~ !
I'
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(x E B).

Exercise 2.4. Let P E Pm, where m ~ 2, and define

Im('l .. N N
Hp(x) = L(-I)J{4Jj!(m-j+2- 1)(m- j + 2) .. ·

j=O

Show that Hp E 1im and P - Hi» E Qm' (Note: Theorem 2.1.1 tells us that
there exist unique polynomials H E 1im and Q E Qm such that P = H + Q,
and we are now saying that H = H]» and Q = P - Hp.)

Exercise 2.10. Show that if N ~ 3 and YES, then

~ (m+N-3) -1
Uy(x) = ~o m dm,NJy,m(x)

What is the corresponding equation with N = 2?

Exercise 2.11. Bocherts theorem. Let Xo E rI. Show that if h E
1i+(rI\{xo}), then there exist ho E 1i(rI) and a non-negative constant c
such that h = ho + cUx, on rI. (Hint: use Lemma 2.5.2 and the result of
Exercise 1.14.)

Exercise 2.5. Use Corollary 2.1.4 to show that

Exercise 2.6. Let h E1l+(B) and suppose that h = 2:=]::,0 H j , where H j E
1lj. By considering

Exercise 2.12. Show that if h : B --+ IR is continuous on B and harmonic
on B

J
then there i~a series L H m of harmonic polynomials which converges

uniformly to h on B. (Hint: use the Stone-Weierstrass theorem to show that
there is a series 2:= Pm of polynomials which converges uniformly to h on S.)

Exercise 2.13. Let K = {x E IRN : 1 :S Ilxll :S 2}. Show that Uo cannot
be uniformly approximated arbitrarily closely on K by elements of 1i(IRN

) .

(This shows that the topological hypotheses in Theorem 2.6.4 and Corollary
2.6.5 are indispensable.)

Exercise 2.14. We define the hull K of a compact set K in IRN to be the
union of K with all the bounded components of IRN\K. We say that disjoint
sets E, F are separated by a family :F of real-valued functions if there exists
1> E :F such that 1> >Jl on E and 1> < 0 on F. Show that if K

"
K, are disjoint

compact subsets of B, then the following are equivalent:
(a) K

"
K, are separated by 1l(IRN);

(b) K" K, are separated by G(B) n 1i(B);

(c) K , nK, = 0.

Exercis~ 2.15. Let K
"

K, be compact subsets ofB, and let f E G(B) and
h* E G(B) n 1i(B) be such that f - h* > 0 on K , and f - h' < 0 on K,.
Show that:
(i) if K

"
«, are separated by G(B) n 1l(B) and

l(f - h*)(x)1 < sup If - h*1 (x E B\(K, UK,)),
K 1UK2

then there exists h E G(B) n 1l(B) such that

sup If - hi < sup lj' - h'l;
B B

(ii) if K 1 , K z are not separated by G(B) n 1l(B), then

sup If - hi ~ inf If - h* I
KtUK2 KtUK2

(O<r<I),

(m--+oo)._d_m_,N_ --+ =,--2-c-::,-,
m N - 2 (N - 2)!

dm ,N + l =; dO,N + d1,N + ... + dm,N

Exercise 2.8. Give an example of a real-analytic function on lR.
N

and a
series 2:= Pj, where Pj EPj such that the series converges to f on B but on

no larger open ball of centre O.

Exercise 2.9. Show that if y = (1,0, ... ,0) and mEN U {O}, then

dmN a
Jy,m = ( + l)d' a Jy,m+1'm m+l,N Xl

Exercise 2.7. Let H be the Poisson integral on B of a polynomial P E Pm
(so that H is a polynomial of degree at most m; see Corollary 2.1.3). Show

that

{ (sup H m - Hm)h do
J5(0,r) 5

show that IIHmll' :S h(O) sups Hm for each m. Verify that equality holds for
each m if h is the Poisson kernel K(·, y) of B for some fixed yES.

and

11

I,
I

i !

for all h E G(B) n 1l(B).
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Exercise 2.16. Let f E G(B), where f 'Ie H(B), and h' E G(B) nH(B). We
call h' a best harmonic approximant to f if

Chapter 3. Subharmonic Functions

(h E G(B) n H(B)).sup If - h'l :S sup If - hi
B Ii

Use Exercises 2.14 and 2.15 to show that h' is a best harmonic approximant

to f if and only if K+ n K_ i 0, where

K± = {x E B : (f - h')(x) = ±sup!f - h'!}.
Ii

3.1. Elementary properties

(Such a harmonic function H, whose translates uniformly approximate all
elements of H(IIl.N ) on compact sets is called universal.)

Exercise 2.17. Let Bk be a basis for Hk, and let {hm : mEN} be the
set of all finite linear combinations of elements of U~O Bk with rational
coefficients. Show that {hm} is dense in H(IIl.N ) in the topology of local
uniform convergence; that is, for every h E 1i(lRN

), every compact set K,
and every E > 0, there exists m such that Ih - hml < E on K.

Show that there exists fm E H(IIl.N ) such that lim -9ml < 2-
m- 1

on BmUGm·
Let H = 2:::=1 fm. Check that H is defined and harmonic on IIl.

N
. Show also

that
IH(x) - hm(x - Ym)! < Z-m (x E Gm,m E 1\1).

Deduce that if h E H(IIl.N ) , K is a compact set in IIl.N , and E > 0, then there

exists m such that

We have seen that harmonic functions on an open set [} can be charac­
terized as those finite-valued, continuous functions h on ri which satisfy the
mean value property: h(x) = M(h;x,r) whenever B(X,T) C ri. Subharmonic
functions correspond to one half of this definition - they are upper-finite,
upper semicontinuous functions s which satisfy the mean value inequality
sex) :S M(s; x, r) whenever B(x, r) c ri. They are allowed to take the value
-00 so that we can include such fundamental examples as log Ilxll (N = 2)
and -llxll'-N (N 2 3). Also, semicontinuity (rather than continuity) is the
appropriate condition for certain key results (for example, Theorems 3.1.4
and 3.3.1) to hold. The reason for the name "subharmonic" will become ap­
parent in Section 3.2.

Some of the properties of subharmonic functions given in this chapter)
such as the maximum principle and convergence theorems, are closely re­
lated to properties established for harmonic functions in Chapter 1. On the
other hand, in sharp contrast to the analyticity of harmonic functions, it will
be seen that a subharmonic function may be suitably modified on a subset
of its domain of definition and still be subharmonic. It is this flexibility of
subharmonic functions that makes them so useful even when we are prov­
ing results concerning harmonic functions, as is the case with the Dirichlet
problem in Chapter 6.

Laplace's equation on Ill. is simply J'hldt2 == 0 with general solution
h(t) = at + b. Below we shall see that the subharmonic functions on Ill. are
simply the convex functions and, in particular, are continuous. It is, therefore,
not surprising that notions of convexity will appear at several points of this
chapter. Also, just as convexity among the smooth functions s on lR is char­
acterized by the condition .ds = d'sldt' 2 0, so subharmonicity among the
smooth functions s on IRN will be characterized by the condition .ds 2 0, and
it will be shown that any subharmonic function can be expressed as the limit
of a decreasing sequence of smooth subharmonic functions. This sometimes
allows us to reduce a problem about subharmonic functions to one about
smooth subharmonic functions.

(x E Vm)
(x E Um).

(x E K).Ih(x) - H(x + Ym)1 < E

( )
_ {hm(X - Ym) - hex) - ... - fm-1(X)

9m x - 0

Exercise 2.18. A universal harmonic function. For each mEN, let
Ym = (2m+3 , 0, ... ,0) E IIl.N , Bm = B(O,3.2m+ 1) , Gm = B(Ym,2m).

(Note
that Bm n Gm = 0 and Gm C Bm+1.) Let U,« and Vm be disjoint open
neighbourhoods of Bm and Cm respectively, and let {hm} be the set of
harmonic polynomials defined in Exercise 2.14. Define 91(X) = h, (x - y,)
on V, and 91 = 0 on U,. Use Corollary 2.6.5 to show that there exists
[: E H(IIl.N ) such that If, - 911 < 2-2 on B , uC,. Suppose now that functions
f" ... ,fm-l E H(IIl.N ) are given and define

59
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Proof. (i) Let r be small enough so that B(x, r) C !? and s ~ s(x) on B(x, r).
Smces(x) ~ A(s; z, r), upper semicontinuity implies that s = s(x) on B(x, r).

. (ii) From (I) the set {y E !?: sty) = s(x)} is open, and upper semiconti­
nuity implies that it is closed relative to !?, so by connectedness it is all of
!?

(iii) Since s - u E S(!?), we may assume that u == O. Also, since aoow C
a=!? for each component w of !?, we may suppose that It is connected. ii
we define s = s on f? and sty) = limsupx-->y s(x) when y E aoolt, then s is
upper semicontinuous on the compact set nu 8 00 n and therefore attains its
supremum. If t~i~ supremum is positive, then it is attained at a point of n,
and s has a positive constant value on Jf, by (ii), contrary to (3.1.3). 0

Theorem 3:1.4. If!? is connected and (Sn) is a decreasing sequence inS(It),
then e.therhmsn == -00 cr Iims., E S(!?).

Proof. The upper semicontinuity of lim Sn is clear, and the subharmonic mean
value property of lim s.; follows by monotone convergence from the corre­
sponding property of each Sn. 0

Theorem 3.1.5. (Maximum principle) Let s E S(It) and x E !?
(t) If s attains a local maximum at z, then S is constant on some neighbour­
hood of x.
(ii) If [} is connected and s attains a maximum at x J then s is constant.
(iii) If u E U(!?) and

limsup(s - u)(x) ~ 0 (3.1.3)
x-->y

for each y E a=!?, then s ~ u on It.

The following is a generalization of the maximum principle for harmonic
functions (Theorem 1.2.4).

rNA(s;x,r)=N{ tN-1M(s;x,t)dt; (3.1.2)
lro,rl

the above mean values are defined since s is bounded above on the compact
set B(x, r).

(iii) It is enough to consider the case where It is connected. Let

Ito = {y E It: s is integrable on some neighbourhood of y}.

Suppose that y E It\lto and choose p such that B(y 2p) C It. If Z E B(y p)
then B(z, p) is a neighbourhood of y and B(z, p) c' It. Hence s is bounded
above and non-integrable on B(z,p), and so s(z) ~ A(s;z,p) = -00. Thus
s = -00 on B(y,p), whence B(y,p) ~ It\!?o. It follows that !?\!?o is open
and clearly !?o is open. Since s 't -00, we see that !?o i' 0. Hence Ito = !?
by the connectedness of !? 0

lim sup f(x) ~ fry)
x-->y

Chapter 3. Subharmonic Functions

Proof. (i) The upper semicontinuity of s implies that limsups(x) ~ sty) as
x -> y E !? If this inequality were strict, then we would have s < sty) on
B(y,r)\{y} for some r, which would contradict the subharmonic mean value

property of s.
(ii) This follows from the subharrnonic mean value property and the re-

lation

Theorem 3.1.3. If s E S(!?), then:
(i) limsupx-->y s(x) = sty) for each y E It;

(ii) s(x) ~ A(s; x, r) whenever B(x, r) C !?,-
(iii) s is locally integrable (and hence finite almost everywhere) on !?

Definition 3.1.2. A function s:!? -> [-00, +(0) is called subharmonic on !?

if:
(i) s is upper semicontinuous on il,
(ii) s(x) ~ M(s; x, r) whenever B(x, r) C It, and
(iii) s't -00 on each component of It.
Also, a function u:!? -> (-00, +00] is called superharmonic on It if -u is
subharmonic on !? We refer to (ii) above as the subharmonic mean value
property; with the inequality reversed we call it the superharmonic mean

value property.

The set of all subharmonic (respectively superharmonic) functions on !?
will be denoted by S(!?) (respectively U(!?)). It is easy to see that 11.(!?) =
S(!?) n U(!?), and that S(!?) and U(!?) are cones: that is, as + bu E S(!?)
(respectively U(!?)) whenever a,b E [0,+(0) and s,u E S(!?) (respectively
U(!?)). Also, it follows easily from the definition that, if s, u E S(!?), then
max{s,u} E S(!?). In particular, s+ = max{s,O} E S(!?), and if h E 11.(!?),

then Ih[ = max{h, -h} E S(!?).

for each limit point y of E. If K is a compact set and f: K -> [-00, +(0)
is upper semicontinuous , then a simple covering argument shows that f is
bounded above, and it follows from (3.1.1) that f attains its supremum on
K. Finally, if f: E -> [-00, +00] is upper semicontinuous and F ~ E, then

flF is clearly upper semicontinuous on F.

Thus a function f: E -> [-00, +001 is continuous if and only if it is both
upper and lower semicontinuous. It is easy to check that f is upper semicon­

tinuous if and only if

Definition 3.1.1. Let E ~ Jll.N u{co]. A function f: E -> [-00, +00] is called
upper semicontinuous (on E) if {x E E: f(x) < a} is a relatively open subset
of E for each a E lIt Also, f: E -> [-00, +00] is called lower semicontinuous

if - f is upper semicontinuous.
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,

i
i

The obvious analogue of Theorem 3.1.5 for superharmonic functions is
called the minimum principle. Part (iii) of the above result can be generalized

as follows.

Theorem 3.1.6. Ifs ES(O),u EU(D),hE 'H.(D) andh > 0 on D, and if

limsup (s ~t)/x) SO (y E aooD),
x--+y x

then s Su on D.

Proof. Again we may assume that u == O. Suppose that s(xo) > 0 for some
Xo E n, and let E = s(xo)/(2h(xo)). Then (s - Eh)(xo) > 0, and yet
lim sUPx->y (s - Eh) SOon aooD. This contradicts Theorem 3.1.5(iii). 0

By careful choice of the function h in the above result we can often relax
condition (3.1.3) at some points of aoo 0, as the following examples illustrate.
Results of this type are known as Phragmen-Lindel6f theorems.

Example 3.1.7. (i) Let D = B\{O}, let 8 E S(O) and u E U(O). If (3.1.3)
holds for each yES and if

. (8 - u)(x)
lim sup () SO,

X-JoO Ue x

then 8 S u on n. To see this, apply Theorem 3.1.6 with h = 1 + Uo (N = 2)

or h = Uo (N ::: 3).
(ii) Let D = {x = (XI, ... ,XN):XN > O}, let 8 E S(D) and u E U(D). If

(3.1.3) holds for each Y E aD and if

limsup (8
1
- u)(x) SO,

n-eco + xN

then 8 S u on D. To see this, apply Theorem 3.1.6 with h(x) = 1 + XN·

Let 8 E S(O) and suppose that limsupx->y s(x) SO for each yEan. If
o is bounded, then it follows from Theorem 3.1.5(iii) that s SOon D. This
implication breaks down for some unbounded sets n (for example, consider
s(x) = XN and D = IItN- I X (0, +00)), but not all such D, as will be seen

below.

Definition 3.1.8. Let D S;; Do, where 0 0 is an open set. We say that aoo 0 0

is accessible from D if there is a continuous function p: [0, +00) --; D with
the following property: for every compact K S;; Do there exists t« such that

p(t) E D\K whenever t::: t«.

Example 3.1.9. An unbounded connected open subset of lit' from which {oo}
is not accessible is defined by

D = {(X"X,):O < X, < 1,-1 < X, < xj' sin' (x j')}.

A similar example in higher dimensions can be obtained by rotating D about
the xl-axis.

Theorem 3.1.10. Let D S;; 0 0 , where Do is open, and suppose that 000 no
is not accessible from O. If s E S(D) and lim sup s(x) < 0 for each.... x--+y _

Y E "0 n aD, then s SOon n.

Proof. Let (Km) be a sequence of compact sets such that K c KO forrn rn-l-I

each m and Um K m = 0 0 . Now fix E > 0 and mEN. It will be enough to
show that sSe on nn K m. Let Wo = D\Km, let UO•I , Uo," ... denote those
components of Wo for which either D n aUO.k = 0 or SSE on 0 n aUO.k,
and let VO,I, VO,2 1 ' " denote the remaining components of Woo Thus, for each
Vo,.. there is a point Yk in n n aVO. k such that S(Yk) > E. Clearly Yk E aKm

for each k. There can only be finitely many, ko say, of the components Vo k,

for otherwise there is a subsequence of (Yk) which converges to some point 'of
an, and this contradicts the hypothesis on s.

If ko ::: 1, then we define

W, = (u VO.k) \Km +1
k:::::l

and divide the components of W, into two classes {U"" U
""

... } and
{V'," V,.""" V1,k,} as before. Similarly, if k, ::: 1, then we define

and so on. If j ::: 1, then each 10,k is a component of Wj and so must be
contained in some Vj~l,k" Thus, if j > i' ~ 0, each Vj,k is contained in some
Vi' ,k'; in this case we say that Vj,k is a descendant of Vjl ,k' .

Now suppose that, for each j, the collection {Vj,l, Vj", ... ,10,kJ is non­
empty. Then, for some choice of k, the set VO,k has infinitely many descen­
dants: we call this set Vo. There must be a descendant V1,k of Va which also
has infinitely many descendants: we call this set V,. Proceeding in this man­
ner, we obtain a sequence (10)j>o of connected open subsets of D such that
Vo :J VI J ... and Vj n K m+j =-0. However, we can then construct a contin­
uous function p: [0, +00) --; D such that p(t) E n\Km whenever t ::: m, and
this contradicts the hypothesis on D.

Thus there exists i' for which there are no sets VJ',k as above, in which
case Wj' = Uk Uj'.k and we do not construct Wj'+l. If we define
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(n 2: 1).

o

(n --+ 00).

(x E E)
(x E E\E)
(x E IltN \ E ).{

f(x)

I(x) = ~:upy-;x f(y)

Proof. The implications (a) =} (d) =} (c) are obvious, and Theorem 3.1.3(ii)
shows that (a) =} (e). It remains to establish that (e) =} (c) =} (f) =} (b) =} (a).

"(e) =} (c)". If (e) holds, then there are arbitrarily small values of t for
which s(x) ~ M(s; x, t), in view of (3.1.2), and so (c) holds.

"(c) =} (f)". Let w be a bounded open set such that wen, let w(y) =
Ilyll' and let a = sUPw w. Further, let h E C(w) n 1i(w) where s ~ h on
8w, and let e > O. If we define u = h - s - e(w - a) on w, then u is lower
semicontinuous on wand u 2: 0 on ow. Let a = infwu. By (1.2.3)

Theorem 3.2.2. Let s: n --+ [-00, +00) be upper semicontinuous and sup­
pose that s ;£ -00 on each component of n. The following are equivalent:
(a) s E S(n);
(b) s ~ I"x,r on B(x, r) whenever B(x, r) en;
(c) for each x E n such that s(x) > -00, we have

1
. M(s; x, t) - s(x)
tm sup > o·
t-tO+ t2 - ,

(d) for each x E n there exists r x > 0 such that s(x) ~ M(s;x,r) whenever
o< r < Tx ;

(e) for each x E n there exists rx > 0 such that s(x) ~ A(s; x,r) whenever
0< r < r-;
(f) if w is a bounded open set such that wen and if h E C(w) n 1i(w) is
such that s ~ h on 8w, then s ~ h on w.

I(y) - nlly - xii ~ fn(xo) + nllx - xoll

I(x) ~ fn(x) ~ max{a, sup I - n6} --+ a

Hence fn(x) --+ I(x) for all z.

fn(x) = sup{7(y) - nllx - yll : y E IltN }

Clearly Un) is decreasing and I« 2: I for all n. Also,

Ifn(x) - fn(xo)1 ~ nllx - xoll (x,xo E liN),

so fn_E C(IltN ) for each n. Finally, if I(x) < a, then there exists 6 > 0 such
that f < a on B(x, 6), by upper semicontinuity, and so

and, taking suprema over all y and interchanging x and XO l we see that

It is easy to see th~t I is upper semicontinuous and bounded above on IltN .

We wi!!show that f is the pointwise limit of a decreasing sequence in C(IltN ) .

If f == -00, then we define fn == -n. Otherwise, we put

Corollary 3.1.11. Let 0 oF E <;:; a. The following are equivalent:

(a) sUPEh = sup" h for all h E 1i(n);
(b) 800 n is not accessible from n\E.

Proof. First suppose that (b) holds, let h E 1i(n) and M = sUPE h. To avoid
triviality we may assume that M < +00. By continuity h ~ M on E. We can
now apply Theorem 3.1.10 (with n\E in place of n) to see that h ~ M on

n\E and hence on n, as required.
Conversely, suppose that (b) fails to hold. Thus there is a continuous

function p : [0, +00) --+ n\E with the following property: for each compact
Ken there exists t « such that p(t) E n\K whenever t 2: t ic- We choose
sequences (tn)n~O and (rn)n~l of positive numbers such that t-. --+ +00,
rn --+ 0 and

The function u = Up(t,J satisfies u(p(to)) > sUPE u . Let E > O. By repeated
application of Lemma 2.6.2 (ef. the proof of Lemma 2.6.3) with p = 0 we
obtain h E 1i(n) such that lu - hi < E on E U {p(to)}. By choosing E

sufficiently small, we can arrange that h(P(to)) > SUPE h and so (a) also fails.
o

3.2. Criteria for subharmonicity

In this section we will establish several alternative criteria for subharmonicity
and see some important examples of subharmonic functions. First we give a
preliminary lemma concerning upper semicontinuous functions.

Proof. First we extend f to JI!.N by defining

Lemma 3.2.1. If E is a non-empty subset of JI!.N and f: E --+ [-00, +00) is
upper semicontinuous and bounded above, then there is a decreasing sequence
Un) in C(JI!.N) such that fn --+ f pointwise on E.

n\Lm = U[U-l
j=O k

Our final result in this section shows the connection between Theo­
rem 3.1.10 and the results of Section 2.6.

From the definition of the sets Uj,k, we see that s ~ E on n n 8Lm · Thus, by
the maximum principle, s::; E: on nnL~ and hence on nnKm l as required.

o

then Lm is compact, tc; ~ Lm and



66 Chapter 3. Subharmonic Functions 3.2. Criteria for subharmonicity 67

Corollary 3.2.4. Let w be an open subset of D, let s E S(D) and u E S(w),

and suppose that

Remark 3.2.3. (i) Criterion (f) above explains the name sUbharmon=,i",c_.~
(ii) Criterion (b) implies that s is c-integrable on S(x, r) whenever B(x, r) C
D.

Using this, the harmonicity of h and hypothesis (c), we find that for each
yEw there are arbitrarily small values oft for which M(u;y,t) < u(y), and
therefore u > a on w. Hence u attains the value 0' at some point of aw, and
so u e:: o. Letting E: -+ 0, we obtain s < h on w.

"(f) '* (b)". Suppose that B(x,r) C D. By Lemma 3,2.1 there exists
a decreasing sequence Un) in C(S(x,r)) such that i« -+ s on S(x,r), The
function hn defined to be fn on S(x, r) and Ifn.z,r on B(x, r) belongs to
C(B(x, r)) n 1i(B(x, r)). Our hypothesis implies s ::; hn on B(x, r) for each
n. By monotone convergence, ti« -+ Is.z,r on B(x, r), so (b) holds.

"(b) '* (a)". If B(x,r) C D and (b) holds, then s(x) ::; I"z,r(x)
M(s;x,r). 0

(3.2.2)

A(u;x,r) whenever
o

lim M(s;x,r) = lim A(s;x,r) = s(x).
r--+O+ r--+O+

M(s;x,r) =s(x) = M(s;x,t) e:: M(s;x,t),

Corollary 3.2.8. Suppose that s E C2(D). Then s E S(D) if and only if
Lls e:: 0 on D.

Proof. If s = u almost everywhere, then A(s; x, r)
B(x,r) C D, so that s = u by (3.2.2).

Proof. The finiteness of the means was established in Theorem 3.1.3 and
Remark 3.2.3. Now suppose that 0 < t < r ::; ro, and let s be the function
introduced in Corollary 3.2.5. Then

Corollary 3.2.'7. If s, u E S(D) and s = u almost everywhere (,x), then
s=uonfl.

Corollary 3.2.6. If s E Sun and B(x, ro) c D, then the functions
M(s;x,·) and A(s;x,') are finite-valued and increasing on (O,ro]. Also,
A(s;x,·) ::;M(s;x,') and

so that M(s; x,·) is increasing on (O,ro]. It follows easily (see (3.1.2)) that
A(s;x,') ::; M(s;x,·) and that A(s;x,·) is also increasing on (O,ro]. By
upper semicontinuity the limits in (3.2.2) do not exceed s(x), and by the
subharmonic mean value property they are not less than sex). 0

(3.2.1)(y E awn D).lim sup u(x) ::; s(y)
x-+y,xEw

lim M(w; y, t) - w(y) = (2N)-1 Llw(y) = 1
t--+O+ t2

Then the function

, ,

I

!

il:1, I
",' I

( )
_ {max{s(x),U(x)}

v x - sex)
(z E w)
(x E D\w) Proof. This follows from criterion (c) of Theorem 3.2.2, since

belongs to S(D). lim M(s;x,r) - s(x) = (2N)-lLls(x)
r-+O+ r 2

(x ED)

Proof. Clearly v E S(w) and v E S(D\w). Also, (3.2.1) ensures that v satisfies
(3.1.1) at each y E ownD. By criterion (d) of Theorem 3.2.2, it is now enough
to check the subharmonic mean value property for v at points x E own D: if
B(x, r) C D, then

Corollary 3.2.9. Suppose that f is holomorphic on a plane domain D and
that f 't O. Then log If I is harmonic on {z ED: f(z) # O} and subharmonic
on D, provided we interpret log 0 as -00.vex) = s(x)::; M(s;x,r)::; M(v;x,r). o

by (1.2.3). o

Corollary 3.2.5. If s E S(D) and B(x, r) CD, then the function s, defined
to be Is.z,r on B(x, r) and s elsewhere on D, belongs to S(D) and satisfies

se:: son D.

Proof. By Theorem 1.3.3, the hypotheses of Corollary 3.2.4 are satisfied with
w = H(x, r) and u = I"z,r. Since s ::; I"z,r on B(x, r) by Theorem 3.2.2;
s E S(D) and s ::; s. 0

Proof. Let Z denote the set of zeros of f. We saw in Theorem 1.1.3 that
log If I E 1i(D\Z). Since log If(z)1 = -00 when z E Z, we have log If(z)1 ::;
M(loglfl;z,r) when zED and 0 < r < r" for some r,. The result now
follows from criterion (d) in Theorem 3.2.2. 0

We saw in Theorem 1.1.2 that the function u, is harmonic on lll.N \ {y}.
We now observe that it is superharmonic on all of RN provided we assign it
the value +00 at y.



is either identically +00 or is in U(Jl).

is harmonic on IItN \ {y} and supeTharmonic on IIt
N

.

o
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(3.3.1)

(t> 0)
(t:S 0)

co

u(x) = ~ Z-nUv• (x)
n=1

3.3. Approximation of subharmonic functions by smooth ones

Example 3.3.2. Let Y = {Yn: n E Ii} be a dense subset of B and let

In, order to state the approximation theorem, we recall some notation
used In the proof of Lemma 1.2.1. The functions q,n E C=(IItN ) are defined
by q,n(x) = n N q,(1 - n'llxll'), where

q,(t) = { gNe-1/t

"N l 't N
-

1q,(l_ t2)dt = 1.

Thus q,n = 0 outside B(O,n-1) .

and the constant eN is chosen so that

belongs to S(w) n C=(w), and the sequence (s ) is decreasing on w w,'th
pointunse limit s, n

1~IIl,~f u(xn ) ~ Iv (1~IIl,~f f(x n , y)) dl'(y) ~ u(xo),

and so u is lower semicontinuous on Jl. If B(x T) C n the Fubi ., thdth h .. ' Jt, n mts eorem
an e super armonicity of f (., y) yield

The~em 3.3.3. Suppose that s E S(Jl) and w is a bounded open set such
that w C Jl. For all suffietently large integers n the function

sn(x) = In <Pn(x - y)s(y) d>-.(y) (x E w)

M(U;X,T) = Iv M(f(-,y);X,T) dl'(Y):S u(x).

Since [J is connected, the conclusion follows.

Proof. Note first that Sn is well defined, provided that n-1 < d' t( an)
In the case where Jl ~ IItN Fr is w,., r' om now on we suppose that n satisfies this
inequality. To prove the subharmonicity of Sn, we write Sn as

The~ we can apply Theorem 3.3.1 with f(x, y) = Uv(x) to see that u E

U(1It ). Hence u IS fimte almost everywhere yet u - +00 on a d b
fB Th functi ' - ensesu set

o . e .unction -u ,s the promised example of a highly discontinuous
subharmomc function.

F

(x E Jl)

(x # y;N = 2)
(x # y;N ~ 3)
(x = y){

- log Ilx - vll
Uy(x) = IIx - yW- N

+00
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Theorem 3.3.1. Let Jl be connected, let I' be a ,,-finite measure on a locally
compact HausdoTff space Y, and let f: Jl x Y -4 (-00, +00] be measurable with
respect to the (J-algebra generated by products of Borel sets. Further, suppose
that there is a I'-integrable function g : Y -4 lit such that f(x,y) ~ g(y) for
all (x,y) E Jl x Y. If f(·,y) E U(Jl) for each y E Y, then the function

u(x) = Iv f(x, y) dl'(Y)

Proof. By working with f(x, y) - g(y) in place of f(x, y), we may suppose that
f ~ 0 on Jl x Y. If Xo E Jl and (x n ) is any sequence in Jl\{xo} converging

to Xo, then by Fatou's lemma

The definition of subharrnonic functions does not require continuity and such
functions can indeed be highly discontinuous (see Example 3.3.2 below). How­
ever, we will show below that, at least locally, a subharmonic function is the
limit of a decreasing sequence of smooth subharmonic functions. This will
allow us to take full advantage of the characterization of smooth subhar­
monic functions as functions with non-negative Laplacian. First we establish
a general result which will prove useful also in later chapters.

Corollary 3.2.9 above provides the crucial link between subharmonic and
holomorphic functions. In connection with Corollary 3.2.10 we mention that
in Chapter 4 we will see how any superharmonic function can be locally

represented in terms of the functions Uv·

3.3. Approximation of subharmonic functions by

smooth ones

Proof. The harmonicity was proved in Theorem 1.1.2. Since Uy(Y) = +00, we.
have Uy(x) ~ M(Uy ; x, T) when x E IItN and 0 < T < T" where Tx = IIx - vll
if x # y and TV = +00. Hence Uv E U(IItN ) by criterion (d) of Theorem

3.2.2. 0

Corollary 3.2.10. If y E IItN , then the function Uy defined on IIt
N

by

68
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since M(s; x,·) is increasing. Finally, let x E wand let a E lR be such that
s(x) < a. By Corollary 3.2.6 there exists 6 > 0 such that s(x) ~ M(s; x, t) <
a when 0 < t < 6. Since

(IN fu'ln n N <p(1 _ n2t' )t N - 1dt = (IN 10' <p(1 - t2)t N
-

Idt = 1,

it follows from (3.3.2) that s(x) ~ sn(x) < a when n-
l < 6. Hence Sn(x) ~

s(x) as n ~ 00. 0

Proof We may assume, without loss of generality, that f ~ O. In what follows,
the function <Pn introduced above will be regarded as a function on lRM or lRN

according to context. Let w, and w, be bounded open sets such that Wi C [Ii

(i = 1,2) and, for each kEN, let!k = min{f,k}. For all sufficiently large m
in N the function

Theorem 3.3.6. Let [1, and [I, be open sets in lRM and lRN respectively, and
let f: [I, x [12 ~ (-00,+00] be locally bounded below. If f(x,') EU([I,) for
each x in [1, and f(', y) E U([I,) for each y in [12, then f E U([ll x [I,).

If v E U(lRM x [I), where MEN, and v(x, y) depends only on y, then
the function y >-+ v(O,y) is superharmonic on [I: when v E C'([I), this is
clear from Corollary 3.2.8, and the general case follows by Theorem 3.3.3.
Conversely, similar reasoning shows that, if u E U([I), then the function
(x, y) >-+ u(y) is superharmonic on lRM x [I. The next result deals with the
more general situation where (x,Y) 1----+ u(x1y) is superharmonic as a function
of each variable separately.

!k,n,(x,y) = ( <Pm(X - x)!k(x,y)d'x(x)in,

Proof In the case where s E 5([1) n C'([I), the result follows immediately
from Corollary 3.2.8 and the relation (1.6.1) between .1s and .1s'. In the
general case it suffices to work locally. Let w be a bounded open set such that
we [I. By Theorem 3.3.3, s is the limit on w of a decreasing sequence (Sn)
in 5(w) n CCO(w). Since (s~) is a decreasing sequence in 5(w') with limit s",
we see from Theorem 3.1.4 that s" E 5(w'), as required. 0

(3.3.2)

(x E w).Sn(x) = r <Pn(z)s(x - z) d'x(z)
JB(O,n~l)

The integrand here is upper semicontinuous and bounded above for (x, z) E
w x [I, and for each fixed z E [I it is subharmonic as a function of x E w,
Hence s., E 5(w) by Theorem 3.3.1. Further, since s is locally integrable
on [I and every partial derivative of <Pn(x) is bounded on lRN

, we can pass
partial differential operators under the integral sign in (3.3.1) to show that
Sn E CCO(w).

To prove the monotonicity of (Sn), we observe that

!
: I

is defined on WI x rh. By Fatou's lemma} !k,m(X,') is lower semicontinuous
on [I, for each x E w" so for all sufficiently large n we can define

(x, y) >-+ ( <Pn(Y - y)!k(x, y)d'x(Y)in,

Since every partial derivative of <Pn(x) is bounded on lRN , we can pass differ­
ential operators under the integral signs to see that !k,m,n E C CO (WI x W2).
It follows from Theorem 3.3.3 that !k,m t !k as m ~ 00, so the function

(x E Wl;y E W2).!k,m,n(x,y) = ( <Pn(Y - Y)!k,m(x,y)d'x(y)in,

is lower semicontinuous on WI x W2. Letting n --+ 00 and then k -e 00, we ob­
tain the lower semicontinuity of f on WI x W2. Thus f is lower semicontinuous
on !t I x !t2 l in view of the arbitrary nature of WI and W2.

By Theorems 3.3.1 and 3.3.3 the functions !k.m(-, '), and hence h,m,n(-, '),
are superharmonic in each variable separately. Thus, using Corollary 3.2.8,

Corollary 3.3.4. Let [1" [I, be plane domains, let f: [I, ~ [I, and let s E
5([1,). Then so f E 5([1,), if either f or its complex conjugate 7 is a non­

constant holomorphic function on [;h.

Corollary 3.3.5. The Kelvin transform preserves subharmonicity. That is,
with the notation of Section 1.6, if s E 5([1), then s' E 5([1').

Proof Suppose first that f is holomorphic, let z E [I" let Bo be an open
disc centred at f(z) such that Bo C [I" and let w = f-l(Bo). If s E 5(Bo) n
C2(Bo), then it follows from the Cauchy-Riemann equations that .1(s 0 fl =
((.1s) 0 flltl' ~ 0 on w, and so so f E 5(w). In the general case we observe
from Theorem 3.3.3 that there is a decreasing sequence (Sn) of functions in
5(Bo)nC'(Bo) such that Sn ~ s. Hence so f = limls.,» fl· Since s 't -00 on
f(w), which is open by the open mapping theorem, so f E 5(w) by Theorem
3.1.4. Hence so f E 5(0,), in view of the arbitrary nature of Bo· A similar
argument deals with the case where 7 is holomorphic. 0

, I

" .
I
'I
Ii



so fk,m,n E U(WI x W2). Letting m --. 00, n --. 00 and then k --. 00, it follows
that f E U(WI x w,), and hence f E U(flt x fl2). 0

Corollary 3,3.7. Let fl l and fl, be open sets in IItM and IItN respectively,
and let f : fll X fl, --. lit be locally bounded. If f(x,·) E 1l(fl2) for each
x E fll , and f(·,y) E ll(fl,) for each yin fl" then f E ll(fl l x fl,).

Lenanaa 3.4.1. If ¢ is convex on an open interval J, then the left and right
derivatives r/>'-., ¢J'-t exist, are increasing junctions and satisfy fb'- :::; 4>'-+ on J.
In particular, </> is continuous on J. Further, if ta E J, then there exists an
affine function 1jJ such that 1jJ(ta) = ¢(ta) and 1jJ ::; ¢ on J.
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(3.4.3)

(t E lit).

</>,+(t)::; Q(t,o)

3.4. Convexity and subharmonicity

Q(t, -0) ::; ¢'-(t),

¢(t) =sup{at+b:a,bE lItandaT+b::; ¢(T) liTE lit}

whenever t E J, 0 > 0 and, respectively, t - 0 E J or t + 0 E J. Letting
t l and t, tend to t in (3.4.2), we obtain ¢'-(t) ::; ¢,+(t), which together
with (3.4.3) shows that ¢'-(t),¢,+(t) are finite. If we let t --. tl in the left­
hand inequality of (3.4.2) and t --. 1, in the right-hand inequality, we obtain
</>'+(tl) ::; ¢'-(t2). This, together with the fact that ¢'- ::; ¢'+, shows that ¢'­
and r/>'-t are increasing. Finally, given to E J, we define

Lenanaa 3.4.2. If F <;; S(fl) and supF is upper semicontinuous and less
than +00 on fl, then sup FE S(fl).

Proof. If B(x,r) C fl, then s(x)::; M(s;x,r)::; M(supF;x,r) for all s E F,
and the subharmonic mean value property for sup F follows. 0

1jJ(t) = ¢(ta) + ¢'+(ta)(t - ta).

It follows from (3.4.3) and the inequality ¢'-(ta) ::; ¢,+(ta) that 1jJ ::; ¢ on
J. 0

We can now give some very general results involving convexity and sub­
harmonicity.

Proof. (i) The final sentence in Lemma 3.4.1 implies that ¢ is the supremum
of all its affine minorants; that is,

Theorena 3.4.3. (i) If s,hE ll(fl) and h > 0 on a, and if ¢: lit --. lit is
convex, then h</>(gjh) E S(fl).
(ii) If s E S(fl), h E ll(fl) and h > 0 on tt, and if ¢:[-oo,+oo) -+
[-00, +00) is continuous on [-00, +00) and increasing and convex on R,
then h¢(sjh) E S(fl).
(iii) If s E S(fl), u E U(fl) and s 2: 0, u > 0 on fl, and if ¢: [0, +00) --.
[0, +00) is convex on [0,+00) and ¢(O) = 0, then u¢(sju) E S(fl). (Here
u¢(sju)(x) is interpreted as s(x) limHa ¢(t)jt when u(x) = +00.)
(iv) If u E U(fl), h E ll(fl) and h > 0 on fl, and if 1jJ: (-00, +00) --.
(-00, +00] is continuous on (-00, +00] and increasing and concave on IR,
then h1f;(ujh) E U(fl).
(v) If u, v E U(fl) and u > 0, v > 0 on fl, and if 1jJ: [0, +001 --. [0, +ooJ
is non-constant and continuous on [0, +00] and concave on [0, +00), then
v1jJ(ujv) E U(fl). (Here v1jJ(ujv)(x ) is interpreted as u(x) limHa 1jJ(t)jt when
v(x) = +00.)

{o > 0: tl + OE J}, and Q(t2, 0) is increasing on {o < 0: t2 + 0 E J}. Hence
the one-sided derivatives ¢'-, ¢'+ exist on J and

o

(3.4.2)

(3.4.1)

.,1f ( ) _ ~ D
2
ik,m,n ( ) ~ D

2
!k,m,n ( )

k,m,n x1Y - L-J ax~ x,y + LJ 8 ~ x1Y:S 0,
i=l 1 i=l Yt

Chapter 3. Subharmonic Functions

Proof. It follows from (3.4.1) that

¢(t) - ¢(t,) < ¢(t2) - ¢(t,) < ¢(t2) - ¢(t)
t - tl - t2 - t, - t, - t

whenever rr.z-, E J and t, < t c ta- Let Q(t,o) = {¢(t+o) -¢(t)}jo. Using
(3.4.2), we find that Q(t"o) is an increasing function of 0 on the interval

Proof. Apply Theorem 3.3.6 to f and -I.

whenever t" t, E J and t, < t < t2. Also, a function 1jJ: J --. lit is called
concave on J if -1jJ is convex on J. We note that the right-hand side of
(3.4.1) defines an affine function of t (that is, a function of the form at + b)
whose values at tl and t, are ¢(t,) and ¢(t2) respectively. Thus a convex
function is characterized by the property that its graph lies below each of
its chords (not necessarily strictly). Since the harmonic functions on lit are
precisely the affine functions, (3.4.1) corresponds to criterion (f) of Theorem
3.2.2. Thus convex functions on open intervals, being continuous (see Lemma
3.4.1 below), correspond precisely to one-dimensional subharmonic functions.
We will develop further connections between convexity and subharmonicity
below.

Throughout this section J denotes an interval in lit. We recall that a function
¢: J --. lit is called convex on J if

</>(t)::; t, - t ¢(tll + t - t, ¢(t2)
t2 - tl t2 - t l

3.4. Convexity and subharmonicity
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Thus u<jJ(s/u) is upper semicontinuous on n, as required.
(iv) We apply (ii) with <jJ(t) = -1jJ(-t) and s = -u.
(v) This can be proved by an argument similar to that given for (iii). 0

Proof. Parts (i), (ii) follow from Theorem 3.4.3(iii), (v) with the obvious
choices for <jJ and 1/;. To prove (iii), we note that in any component of n
on which f t 0, the function log If I is subharmonic by Corollary 3.2.9. The

limsupu(x)<jJ (S«X)) :'0 {limsups(x)} {lim sup ((~)-1<jJ (~))(X)}
X--+Y U x) x--+y X--+Y U U

:'0 sty) ((D -1<jJ (f)) (y) = (u<jJ(s/u))(y) (y En).
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(3.5.1)

3.5. Mean values and subharmonicity

<jJ(t) < 1/;(t2) - 1/;(t) <jJ(t ) + 1/;(t) - 1/;(1,) <jJ(t )
- 1/;(t2) -1jJ(t ,) 1 1/;(t,) - 1/;(1,) ,

whenever t
"

t2 E J and t, < t < t2. The right-hand side of (3.5.1) is of the
form a1/;(t) +b where a, b are constants such that <jJ(t;) = a1/;(t;) +b (j = 1,2).

A(O;r"r,) = {x: r, < Ilxll < r2}.

3.5. Mean values and subharmonicity

Proof. Let r, < t , < t < t, < r, and let a, b be such that

In this section we will establish convexity properties for M(s;O,·) and related
functions. For this we need a slight generalization of the concept of convexity.

Definition 3.5.1. If 'IjJ: J --+ lR is a continuous, strictly monotone function,
then <jJ: J ---> IR is said to be a convex junction of 1/;(t) if </> = X 0 1/;, where X
is convex on the interval 1/;(J); that is, if

Theorem 3.5.2. If s E S(A(O;r"rZ)), where 0 :'0 r, < r, :'0 +00, and
mrs; r) = sup]s(x): Ilxll = r}, then mrs; r) is a convex junction of VN(r) for
rEh,r2)'

Let Vz(r) = 10g(1/r) and VN(r) = r2- N(N 2: 3) when r > 0, and recall
that

Proof. Let w be a bounded open set such that wen. To prove (i), let
u e C(w) n H(w), where (asP + buP),f p :'0 h on 8w. If E > 0, then

a(h + E)'-PSP+ b(h + e)'-PuP :'0 h + E (3.4.4)

on 8w. By Corollary 3.4.4(i) and the maximum principle, (3.4.4) holds on
w and so (asP + bUP),f p :'0 h + E on w. Since E can be arbitrarily small, we
conclude from criterion (f) of Theorem 3.2.2 that (asP + buP),f p E S(n).

To prove (ii), let h E C(w) nH(w), where log(ae' + be") :'0 han 8w. Then
ae,-h + be":" :'0 1 on 8w. It follows from the maximum principle that this
inequality holds on w, for by Theorem 3.4.3(ii) with <jJ(t) = e', its left-hand
side is subharmonic on w. Hence 10g(aeS + be") :'0 h on w, and the conclusion
again follows. 0

Theorem 3.4.5. Let s,u E S(n) and let a,b E [0,+00). Then:
(i) (asP + bUP) ' f p E S(n), provided s 2: o,u 2: 0 and 1 < P < +00;
(ii) 10g(aeS + be") E S(n).

subharmonicity of IflP follows by taking s = log If I, h == 1 and <jJ(t) = eP' in
Theorem 3.4.3(ii). 0

(t E [0, +00)),

(t E [-00,+00)).
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<jJ(t) = sup{at + b: b:'O 0:'0 a and ar + b:'O <jJ(T) "tT E IR}

<jJ(t) = sup{at+b: a 2: 0, b E IR and aT+b :'0 <jJ(t) '<IT E IR}

so that u<jJ(s/u) = sup{as + bu}, where the supremum is over certain real
values of a, b with b :'0 0 :'0 a. For such a, b we have as + bu E S(n), so
the conclusion will follow if we can show that u<jJ(s/u) is upper semicontin­
uous. To show this, we note first that t-1<jJ(t) has a continuous increasing
extension to [0, +00). Also, it is easy to see that s/u is upper semicontinuous
on n, provided we assign it the value 0 at points where u = +00. These
observations imply that (S/u)-l<jJ(S/U) is upper semicontinuous on n. Since
u<jJ(s/u) is the product of the non-negative upper semicontinuous functions s
and (S/U)-l<jJ(s/u), we have

Corollary 3.4.4. (i) If s E S(n),u E Urn) and s 2: O,u > 0 on i], and if
1:'0 p < +00, then SPU' - p E S(n); in particular, sP,u'-

p E S(n).
(ii) Ifu,v E Urn) and u > O,v > 0 on n, and if 0 < P < 1, then upv ,-p E
Urn); in particular, uP E Urn).
(iii) If f is holomorphic on a plane open set nand 0 < P < +00, then
IflP E S(n).

Hence h<jJ(s/h) = sup{as + bh}, where the supremum is over certain real
values of a, b, always with a 2: O. For such a, b we have as + bh E S(n). Since
<jJ is continuous and increasing, it is easy to verify that h</>(s/ h) is upper
semicontinuous. Hence, again by Lemma 3.4.2, h<jJ(s/h) E S(n).

(iii) In this case

h<jJ(g/h) = hsup{a(g/h) + b} = sup{ag + bh},

where the suprema are taken over all real a,b such that ar + b :'0 <jJ(T) for
all T E III Since h<jJ(g/h) is continuons and ag + bh E H(n), it follows from
Lemma 3.4.2 that h<jJ(g/h) E S(n).

(ii) Since <jJ is increasing and convex on IR,

Hence
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Corollary 3.5.4. If s E S(llt') and s is bounded above, then s is constant.

77

(j = 1,2),

(j = 1,2).

(j = 1,2).

3.5. Mean values and subharmonicity

as !& do = LIs dA ~ 0,
n e A(O;tlh)

M((h + o)'-PSp
; 0, t) ::; aVN(t) + b + E,

from which it follows that (M(sP; 0, t))'/p
::; aVN(t) + b+ E. Since E can be

arbitrarily small, (i) follows.
(ii) Suppose that r, < t , < t < t, < T, and let a, b be such that

Define h(x) = aUo(x) +b. Then M(e'-h;O,tj) = 1 (j = 1,2). Since e,-h E
S(A(0;r"r2)), we see that M(e'-h;O,r) is a convex function of VN(r), so
M(e'-h;O,t)::; 1 and hence 10gM(e';0,t)::; aVN(t)+b, as required. 0

We define h(x) = aUo(x) + b. If E > 0, then the function (h + E)'-PSP is
subharmonic on an open set containing A(O; t

"
t,), by Corollary 3.4.4(i).

Hence M ((h + E)'-p sP; 0, r) is a convex function of VN(r) for r E (tr, tz), by
Theorem 3.5.6. Now

and so

Proof. (i) Suppose that r, < t, < t < t2 < T2 and let a, b be such that

where Blane denotes differentiation in the direction of the exterior normal
to A(O; t

"
t2)' Arguing as in the proof of (1.2.1) we obtain

t:;-1 [1t ( s(tY)drT(Y)] _ - ti'-1 [1t (S(tY)M(Y)] ~ °
JS t-t2 JS t=t1

Theorem 3.5.7. If s E S(A(0;r"r2)), where 0::; r, < r, ::; +00, then the
following are convex functions of VN(r) fOT r E (r" T2):
(i) (M(SP;O,T))'/P, provided s ~ °and 1 <»-: +00;
(ii) 10gM(e';0,r).

and so rN- 1(dfdr)M (s; 0, r) is an increasing function of r on (rr, T'). Equiv­
alently, (dfdVN(r))M(s;O,T) increases as VN(r) increases. The required con­
vexity now follows from Lemma 3.5.5(ii).

Now suppose only that s E 5(A(0; "i , r2))' On A(O; t" t2) the function s
is the limit of a decreasing sequence (sn) of smooth subharmonic functions,
by Theorem 3.3.3. By the result of the previous paragraph, each M(sn;O,r)
is a convex function of VN(T) for r E (t

"
t,). Since (M(sn;O, .)) decreases

with limit M(s;O,'), it follows from Lemma 3.5.5(i) that M(s;O,') has the
same convexity property. Hence M(s; 0, r) is a convex function of VN(r) for
rE(T"T,). 0

o
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n<P(c..!.t)_---'C<P-".'-(t=-,-rl <P(t,) - <p(t )- < ,
t - t , - t, - t

which is equivalent to (3.4.1).

Proof. We know that m(s; r) is a convex function oflogr for r E (0, +00) and
is bounded above, so it has a constant value c, say. Hence, by the maximum
principle, s ::; can lll.'. Since s attains the value can S, the result follows. 0

Theorem 3.5.6. Let °::; r, < r, ::; +00.
(i) Ifh E 1l(A(O;r"T,)), thenM(h;O,r) = a+bVN(r) [or r E (r"r,), where
a,b E lll..
(ii)Ifs E 5(A(0;r"r,)), thenM(s;O,r) is a convex function ofVN(r) for

rE(r"r2).

Proof. (i) Let <P = lim <Pn. It is easy to see from (3.5.1) that, if <p(t) = -00
for some t E J, then <p = -00 on J", Suppose now that <p is finite-valued.
If t

"
t, E J and t , < t < t" then the inequality (3.4.1) follows from the

corresponding inequality for <Pn on taking limits as n -t 00.
(ii) Now suppose that <p E C'(J). If <p is convex, then <p' is increasing, by

Lemma 3.4.1. Conversely, if <p' is increasing and t , < t < t" then it follows
from the mean value theorem of differential calculus that

Proof. It is enough to prove (ii), since (i) then follows by applying (ii) to
h and -h. Suppose first that s is C'. By Green's formula applied to the
functions sand 1, if rl < t l < t2 < r2, then

Lemma 3.5.5. (i) If (<Pn) is a decreasing sequence of convex functions on
an interval J, then either lim 4>n is convex on J or lim <Pn == -00 on J

O

•

(ii) Let J be an open interval and <P E C' (J). Then <P is convex if and only
if <p' is increasing.

Corollary 3.5.3. Let s: A(O; rr, r2) -t JR, where °::; r, < r2 ::; +00, be
such that s(x) depends only on Ilxll. Then s E S(A(0;r"r2)) if and only if
s(O,... ,O,r) is a convex function ofVN(r) [or r E (r"T,).

Proof. Since the function Uo(x) = VN(llxll) is harmonic on JRN\{O}, the
sufficiency of the stated condition follows by taking g = Uo and h == 1 in
Theorem 3.4.3(i). The necessity follows from Theorem 3.5.2. 0

76

m(s;tj) = aVN(tj) +b (j =1,2).

Define h(x) = aUo(x) + b. Then h E 1l(JRN \ {o}) and s ::; h on aA(O;t" t2)·
By the maximum principle, s ::; h on A(O; t" t2) and in particular on S(O, tlo
so that m(s;t)::; aVN(t) + b, as required. 0
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Corollary 3.5.8. If f is holomorpbic on an annulus A(O; r" r,) and f 't 0,
and if 0 < p < +00, then 10gM(lfIP;0,r) and 10gm(lfl;0,r) are convex
functions oflog r for r E (r" r,).

Proof. This is obtained by taking s
s = log If I in Theorem 3.5.2.

= plog If I in Theorem 3.5.7(ii), and
o

where x = (x', XN). By Theorem 3.3.1, Sm E S(W). Also, if e > 0 and
2c < XN < 1 - 2c, then

sm(X)::; A(sm;x,C) = ( A(s;(x' +y',xN),c)dX(y')
Jf lly' lI<m}

, N-1 J< AN-1 m d'
_ \ N S A,

/INc A.,

(O<t<I),

where

(3.5.2)

(t, < XN < t2)'

(x ---> 00; J < XN < 1 - J)

lim sup us.I») ::; lim sup s.jfz] = 0
a-eco m-e-co

Ax = {(y',YN) E Ill.N- 1
X (e, 1 - c): Ily'll > Ilx'll- m- s}.

Hence, by the maximum principle, um(x) :S 0 when t, < XN < t,; equiva­
lently, 8 m(X) ::; aXN + b for such x. Letting m ---> 00, we obtain £.(8; t) ::;
aXN + b. Thus £.(s;·) is convex on (0,1). 0

Since s is integrable on Ill.N-1 X (c, 1 - c), it follows that

for each J E (0,1/2).
Now suppose that 0 < t, < t < t2 < 1 and let a, b be such that £.(s; t;) =

at; + b (j = 1,2). Define um(x) = Sm(X) - aXN - b. Then U m E S(W) and
u m::; 0 on 8(Ill.N-1 X (t1,t,)). Further, by (3.5.2),

(t1 < XN < t,)
(elsewhere in Ill.N).

Proof. Let 0 < t 1 < tz < 1 and

t, - t t - t 1
f(t) = --N(s; tIl +--tN(s; t2 )

t, - t , t, - 1

and define Sl(X',XN) = S(X',XN) - f(XN) when (X',XN) E W and

Integrals and suprema of subharmonic functions over hyperplanes also
have convexity properties, and we give two such results below. (Compare
Theorem 1.5.12.) We denote a point of Ill.N- 1 by x' or y', and (N - 1)­
dimensional Lebesgue measure by X.

Theorem 3.5.9. Let s be subharmonic and bounded above on the strip W =
Ill.N- 1 X (0,1) and let N(s; t) = sup{s(x', t) : z' E Ill.N-1

} for 0 < t < 1. Then
N(s;·) is convex on (0,1).

I!

,,[In

I,

Clearly Sl E S(W) and s, ::; 0 on Ill.N-1 x {h, t,}. It follows from Corol­
lary 3.2.4 that sz E S(Ill.N ) . Since 8, is bounded above, by a say, on W, we
see that 3.6. Harmonic majorants

(r --+ +00; x E Ill.N).A(B(x, r) n W)
s,(x) :S A(s,;x,r) :S a A(B(x,r)) --+ 0

Hence sy x 00nIll.N- 1 x (t"tZ) andsoN(s;·)::; fon(t"t,) as required. 0

Theorem 3.5.10. Let s be non-negative and subharmonic on the strip W =
Ill.N- 1 X (0,1) and let

If I, 9 are functions on a set E taking values in [-00, +(0) and f :S 9 on E,
then f is called a minomnt of 9 on E, and 9 is called a majomnt of f on E.
Let s E S(D). Below we will show that, if s has a superharmonic majorant
on [2, then it has a least superharmonic majorant which is, in fact, harmonic
on D. We can thus subsequently refer to this function as the least harmonic
majomnt of s on n.

Proof. For each m E ]\/ we define Sm on W by

If £.(s;·) is locally bounded on (0,1), then £.(s;·) is convex on (0,1).

Sm(X) = ( s(x' + y',xN)dA'(y'),
Jf lly' lI<m}

Definition 3.6.1. A non-empty family :F of functions in U(D) is called sat­
uruted if the following conditions are satisfied:
(i) if u,V E:F, then min{u,v} E:F;
(ii) ifu E:F and B(x,r) C D, then the function IT, equal to I.,x,r on B(x,r)
and equal to u elsewhere on D, belongs to :F.

Theorem 3.6.2. If:F is a satumtedfami/y inU(D), then on each component
of D, either inf:F '" -00 or inf:F E 1l(D).

(0<t<1).£.(s; t) = I. sly', t) dA'(Y')
RN-l



Theorem 3.6.5. If s E S(fl) and B(x, r) C fl, then the least harmonic
majorant of s on B(x l r) is Is,z,r.

Proof. We know from Theorem 3.2.2 that I"x,r is a harmonic majorant of s
on B(x, r-). Let h be the least such majorant. If 0 < t < r, then

813.6. Harmonic majorants

Theorem 3.6.7. Suppose that s E S(B) has a harmonic majorant and let h
be its least harmonic majorant. Then:
(i) h = I~,O,l for some signed measure p if and only if M(s+;O,') is bounded
on (0,1);
(ii) h = 1/,0,1 - I~,O,l for some non-negative integmble junction f and some
measure p if and only if M (4) 0 s+; 0, .) is bounded on (0, 1) for some convex
increasing junction 4>: [0, +00) -4 IR such that t- l4>(t) -4 +00 as t -4 +00.

Proof. If s has a harmonic majorant ho on B, then M(s; 0,·) :S M(ho; 0,') =
ho(O) on (0,1). Conversely, if M(s; 0,,) is bounded above on (0,1), let (rn)
be a positive strictly increasing sequence with limit 1, and let hn = Is,o,Tn on
B(O,rn). Theorem 3.6.5 implies that s:S hn:S hn+1 on B(O,rn), so (hn)n>=
is an increasing sequence on B(D, rm ) for each m. Since -

hn(O) = M(s; O,rn) :S sup M(s; O,·J,
(0,1)

it follows that lim hn 't +00. Hence lim hn is a harmonic majorant of s on B.
Further, if H is any harmonic majorant of s, then hn :S H on B(O, rn) by

Theorem 3.6.5. Hence the least harmonic majorant of s is given by lim hn ;

that is, by limr -+ l - Is,o,r. 0

Proof. (i) If h = I~,o" for some signed measure u, then we can write h as
b: - h2, where tvc h2 E 'H+(B), and so M(s+; 0,·) :S M(h1 ; 0,·) =hI (0).

Conversely, if M(s+; 0,·) is bounded, then s+ has a harmonic majorant
h, by Theorem 3.6.6, and clearly hI ~ O. Also, s - hI :S 0, so s - h, has a
least harmonic majorant h2 :S O. Thus s :S hI +h2 . Further, if s :S H for some
HE 'H(B), then s - hI :S H - hI, so h2 :S H - h, and hence hI + h 2 :S H.
Thus hI + h2 is the least harmonic majorant of s, and it can be written as
Ip.,O,l for some signed measure 11, in view of the Riesz-Herglotz theorem.

(ii) If h = 1/,0,1 - I~,O,l, where f and p are as stated, then by Theorem
1.3.9 there is a convex increasing function 4>: [0, +00) -4 [0, +00) such that
c l 4>(t ) -4 +00 as t -4 +00 and such that M(4) 0 1/,0,,;0,') is bounded on
(0,1). Since s+ :S 1/,0.1, it follows that M(</> 0 s+; 0,·) is bounded.

Conversely, suppose that there is a function 4> with the stated properties.
Then there exists c > 0 such that t :S 4>(t)+c for all t ~ 0, and so M(s+; 0,,) is
bounded on (0,1). We may assume (by considering 4>(t) +t) that 4> is strictly
increasing. It follows from Theorem 3.6.6 that the subharmonic functions
4> 0 s+ and s+ have harmonic majorants. Let ho denote the least harmonic
majorant of 4> 0 s+ and h, denote the least harmonic majorant of s+. Then

Henceh(x) =ls,x,r(x ) and so h - I"x,r == 0 by the maximum principle. 0

Theorem 3.6.6. Let s E S(B). Then s has a harmonic majomnt on B if
and only if M(s; 0,,) is bounded above on (0, 1). Further, if s has a harmonic
majoront, then its least harmonic majorant is limr --+l _ Is,o,r.

(t -7 r-).
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h(x) = M(h;x,t) ~ M(s;x,t) -4 M(S;X,T) = I,.x,r(X)
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liminf(u - sHy) =liminf(u - sHy) ~ 0
y-+z Y-+Z

Since, by Corollary 3.2.5, u E U(fl), it follows from the minimum principle
that u is a superharmonic majorant of s on n. Hence the superharmonic
majorants of s on fl form a saturated family and by Theorem 3.6.2 the
infimum of this family is harmonic on fl. 0

Theorem 3.6.3. If s E S(fl) and s has a superharmonic majomnt on fl,
then s has a least superharmonic majomnt v on fl, and v E 'H(fl).

Proof. It is enough to consider the case where fl is connected. Suppose that
B(x, r) C fl, and for each u E F, let u be as in Definition 3.6.1. By Theorem
3.2.2, we have u :S u on B(x, r). Hence inf F = inf{u: u E F} on B(x, r).
Since min{u,v} E F when u,v E F, the family F is down-directed (see
Definition 1.5.2), and since min{u, v} :S min{u, ti} by the minimum principle,
the family {u: u E F} is also down-directed. Since u E 'H(B(x, r)) for each
u E F, it follows from Theorem 1.5.3 that inf {u: u E F} is either harmonic
or identically -00 on B(x, r). Hence the disjoint open sets

fl 1 = {y E fl: inf F is harmonic on a neighbourhood of y},

fl 2 = {y E fl: inf F == -00 on a neighbourhood of y}

satisfy fl 1 U fl 2 = fl. Since fl is connected, either fl 1 = fl or fl 2 = fl. In the
former case, inf FE 'H(fl). 0

Theorem 3.6.4. Let 81, S2 E S(fl) and suppose that each of these junctions
has a superharmonic majomnt on fl. Then the least harmonic majorant of
s, +S2 on fl is hI +h2, where h j is the least harmonic majorant of Sj (j = 1,2)
on fl.

Proof. If Ul J U2 are superharmonic majorants of s on n, then so also is
min{ U1, U2}. Also, if u is a superharmonic majorant of s on fl and B(x, r) C
fl, then with the notation of Definition 3.6.1,

Proof. Clearly hI + h2 is a harmonic majorant of si + S2. Let h be the least
harmonic majorant of Sl + S2' Then h :S hI + h2 . Also, h - Sl is a superhar­
monic majorant of 82, so h - 81 2: h2 . Hence h - h2 is a harmonic majorant
of Sl, so h - h2 ~ hI, whence hI + h2 :S h, as required. 0



Wa(a) = {x E fJ: fa (x) < a} (a E 1), W a = {x E fJ: f(x) < a}.

Proof. Let f = inf{fa: a E I}. Clearly f is upper semicontinuous. For each
real number a we define open sets by

We recall that a family :F of functions is called down-directed if, for each
pair of functions II, h E :F, there exists f E :F such that f ~ min{f, , h}.

o

833.7. Families of subharmonic functions: convergence properties

Hence, in view of the repetitious nature of (Bn ) ,

g(x) = inf sup{g(y):y E B n}:::: inf sup{f(y):y E B n} = j(x),
(noxEB.} (noxEBn }

Theorem 3.7.5. Let:F be a family in S(fJ) and let s = sup:F. If S is locally
bounded above, then:
(i) S E S(fJ);
(ii) S = S almost everywhere (A);
(iii) sex) =limsupy-+x sty) (x E fJ).

so that 9 ~ jon fJ. The reverse inequality is obvious.

f(x n) > sup{f(x): x E B n} - n- I

and then choose an E I such that fa. (x n) ~ f(xn) - n- 1 Let J = {an:
n E JII} and 9 = sup{fa: a E J}. Then

sup{g(x): x E B n} ~ sup{f(x): x E B n} - 2n-I (n E JII).

j(x) = min{f(x), liminf fey)} = supinf{f(y): y E fJ n B(x, r)}.
y-tx r>O

It is easy to see that f is upper semicontinuous, j is lower semicontinuous
and j ~ f ~ jon a. Further, if f is upper (respectively, lower) semicontin­
uous on a, then j = f (respectively, j = f).

Definition 3.7.3, If f: fJ --; [-00, +00], then the upper semicontinuous reg­
ularization j and lower semicontinuo'Us regularization j of f are defined on
fJ by

j(x) = max{f(x) , lim sup fey)} = inf sup{f(y): y E fJ n B(x, r)}
y-tx r>O

Proof. The function s takes values in [-00, +00), is upper semicontinuous
and is not identically -00 on any component of fJ. If B(x, r) c fJ, then

and

Proof. By considering the function tan"! fa in place of fa, we may suppose
that fa(fJ) ~ [-1T /2, 1T /2J for each a. Let (Bn) be a sequence of open balls in
fJ such that {Bn:n E JII} forms a base for the Euclidean topology on fJ and
such that each ball in this collection occurs infinitely often in the sequence.
For each n we choose X n E Bn such that

Lemma 3.7.4. Let {fa: a E I} be a family of junctions from fJ to [-00, +ooJ
and let f = sup{fa: a E I}. Then there is a countable subset J of I such that
9 = j, where 9 = sup{fa: a E J}.

r

(3.7.1)
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{x E fJ:f(x) < q} = W, = UWq(a) = {x E fJ:g(x) < q}
aEJ

3.7. Families of subharmonic functions: convergence
properties

for all q E Q. Clearly f ~ 9 on a. If fey) < g(y) for some y E a and we
choose q E Q such that fey) < q ~ g(y), then (3.7.1) is contradicted. Hence
f = 9 on n. 0

Proof. By Lemma 3.7.1 there exists a sequence (s-) such that Sn E :F for each
nand inf {sn: n E JII} = inf:F on fJ. Let u, = 8,. Given Un, we can choose
(since :F is down-directed) Un+I E :F such that Un+I ~ min{Un, sn+,}. Then
(un) is a decreasing sequence in S(fJ) with lim Un = inf:F, and the result
follows from Theorem 3.1.4. 0

Theorem 3.7.2. Let:F be a down-directed family in S(fJ). Then, on each
component of fJ, the junction inf:F is either subhartnonic or identically -00.

s+ is majorized by the function </J-l 0 ho, which is superharmonic since </J-l
is concave and increasing (see Theorem 3.4.3(iv)). Hence h, ~ </J-l 0 be,
so M(</J 0 h,;O,·) ~ ho(O). It follows from Theorems 1.3.8 and 1.3.9 that
h, = //,0,1 for some non-negative integrable function f. If we now define h2
to be the least harmonic majorant of s - h" then we see that h2 ~ 0 and
h, + h2 is the least harmonic majorant of s. Since h2 = -I~,O,l for some
measure 1', by the Riesz-Herglotz theorem, the proof is complete. 0

Lemma 3.7.1. Let {fa: a E I} be a family of upper semicontinuous junctions
from fJ to [-00, +00). Then there is a countable subset J of I such that
inf{fa:a E I} = inf{fa:a E J}.

Then UaEI Wa(a) = W a. Since W a can be expressed as a countable union of
compact sets, there is a countable subset Ja of I such that UaEJ. Wa(a) =
Wa . Let J = UqEQs, and 9 = inf{fa: a E J}. Then J is countable and
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3.8. Exercises

Assertion (ii) of the above result will be strengthened in Theorem 5.7.1.

Exercise 3.1. Show that if s E G(B) nS(B), then JRN\{X E B: s(x) ::; O}

is connected.

853.8. Exercises

(x E n)

(y E an)

(y E an)

limsups(x)::; 0
x-->y

lim sup s(x) ::; 0
x-->y

00

S(Xl,X2,X3,X4):;::: ESn(Xl,X2)Sn(X3,X4)'

n=l

Exercise 3.8. Let u be positive and superharmonic on the annular region
A(0;r"r2). Show that if 0 < p::; 1, then (M(uP;O,r))'/P is a concave func­
tion of VN(r) for r E (r" T2)' (Hint: let r, < t, < t2 < rz, choose a, b so
that

(M(uP;O,t j ))' /P = aVN (t j ) + b U=1,2)

and consider h'-PUP, where h = aUo + b.) Show that the result also holds
when p < O.

Exercise 3.7. Use two applications of Corollary 1.3.4 to give a direct proof
of Corollary 3.3.7.

Show that s is subharmonic as a function of (X3, X4) when (Xl, X2) is fixed,
and thus also as a function of (X"X2) when (X3,X4) is fixed. Show also that

s(3.Tk
, 1, 3.Tk

, 1) -f +00 as k -f 00

and deduce that s ¢ S(1It4 ) . (Compare this with Theorem 3.3.6.)

Exercise 3.6. For n E N, define

Sn(X"X2) = - sin(2n+1rrx,)exp(2n+'rrx2)

when 2-n-1 < x, < 2-n and Sn(X1,X2) = 0 otherwise. Verify that Sn E

S(1It2). Define s on 1It4 by

and s is bounded above on n, then s < 0 on fl. (Hint: extend s+ to be
subharmonic on IItN .)

and
s(x) ::; exp((l - E)lx,lrrv'N - 1/2)

for some E E (0,1), then s:S: 0 on n.

Exercise 3.4, P'hragrnerr-Lindelof theorem for cylinders. Let n =
lit x (-I, l)N-l Show that if s E S(n),

Exercise 3.5. Let n be unbounded and connected and suppose that

-:" ),(n n B(O, r)) -f 0 as r -f +00.

Show that if s E S(n),

r
I

o

(3.7.2)

(x E W)

(y E aWl

(y E B(x,r);u E :F).

limsups(x) ::;0
x-->y

Is,x,T(Y) ::: I",x,T(Y) ::: u(y)

Chapter 3. Subharmonic Functions

and

(
(1 - E)rr(lx11 + ... + IXN-11))

s(x) ::; exp v'N _ 1

for some E E (0,1), then s::; 0 on W.

so (iii) holds.

Exercise 3.2. Let s E S(B) and suppose that limsupx-->. s(x) is finite for
every yES and non-positive for almost every (a) such y. Show that s ::; 0

onB.

Hence Is,x,r 2: 5, and it follows from the continuity of Is,'X,r that [8,X,1' 2: s
on B(x, r). Thus 8 E S(n), by Theorem 3.2,2.

By Lemma 3.7.4 there exists a sequence (Un) in :F such that u = s on n,
where u:;::: sup us. Define vn :;::: max{ul1" .,un}. Then (vn) is an increasing
sequence in S(n) with limit u. Since I"x,T ::: Iv.,x,T ::: Vn' it follows from
monotone convergence that [8,7:,1' 2: Iu,x,r 2: 1£. Thus [5,X,1' 2: 1u,'X, 1' 2: U :;::: S.
By Theorem 3.6,5, the function Is,x,T is the least harmonic majorant of s
on B(x, r), and therefore 18 ,z ,r :;::: [11"X,1" Since S 2: u, it follows that s :;::: U

almost everywhere (a) on S(x, r). In view of the arbitrary choice of B(x, r),
we conclude that s = u almost everywhere (A) on n. Since 8 ::: s ::: u, it
follows that s is Lebesgue measurable and s = s almost everywhere (A).

Finally, (i), (ii) and Corollary 3.2.6 give

limsups(y)::; 8(X) = lim A(s;x,r) = lim A(s;x,r)::; limsups(y) (x E n)
Y--+X 1'-+0+ 1'--+0+ y-l'X

Exercise 3.3. Phragmen-Lindeloftheorem for strips. Let W = IIt
N-1 X

(0,1). Verify that if 0 < c < rr, then the function

cosh (~) ... cosh (~)cos(c(xr ~))

is harmonic on JRN and positive on W. Hence show that if s E S(W),
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Exercise 3.11. Let s be a function on B such that s E S(B) and

87

tA(B). Let u be

3.8. Exercises

(O<r<I).

for all h E C(B) n1/(B).

r u dA S; r u o.
1B\Bo JB o

1
h

. -112
•lu(re"W dB S; p-- If(re"W dB

o p 0

Show also that equality holds if and only if u E 1/(B).

Exercise 3.19. Let Bo = B(0,2-'/
N), so that A(Bo)

superharmonic and integrable on B. Show that

Exercise 3.22. Show that if we have "s" in place of "<" in the hypothesis
of Exercise 3.21, then the conclusion remains true. (Hint: consider sn(x) =
sex) + IXNI/n for n EN.)

sup Iho - s] S; sup Ih - s]
B B

Let H = Is ,O, l on B, and H = s on S. Use the maximum principle to show
that the constant function t inf1f(s - H) is the unique b.h.a. to s - H. Hence
describe the b.h.a, to s.

Exercise 3.18. Let f = u + iv be holomorphic on the unit disc. Let s =
(p - 1)IfI" - plul", where p 2': 2. Show that LIs 2': 0 and deduce that if
f(O) = 0, then

Exercise 3.21. Let E = {x E B : XN = O}. Suppose that s E C(B) n
1/(B\E) and at each point of E the left and right derivatives (8s/8xN). and
(8s/8xN)+ exist and satisfy (8s/8xN)_ < (8s/8xN)+. Show that s E S(B).
(Hint: it is enough to show that if y E E and B(y, r) c B, then s - Is,y,r S; 0
on B(y, r). Suppose this inequality fails, deduce that s - I attains as,y,r

maximum at some point of E, and derive a contradiction.)

Exercise 3.20. Let n be a convex open proper subset of Il!.N. Define u on
n by u(x) = dist(x,IW). Show that u E U(n). (Assume the result that for
each y in 8n there exists an (N - I)-dimensional hyperplane Py such that
yE Py and n is contained in one component of Il!.N\py . )

Exercise 3.16. Let s be a non-negative function on n. Suppose that Po> 0
and s" E Sen) for all p > PO. Show that s"' E S(n).

Exercise 3.17. Suppose that s E C(B)nS(B). A function ho E C(B)n1/(B)
is called a best harmonic approximant (b.h.a.) to s if

(y E S).

(O<t<r),

s(y) = limsups(x) < +00
• --.y
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M(s; 0, kNt) S; A(s; 0, t)

where k2 =e-1/ 2 and kN = (2/N)'/(N-2l .

Exercise 3.12. Give an example of a decreasing sequence (sn) of non­
negative subharmonic functions on D = Il!.x (0, +00) such that each Sn has a
least harmonic majorant hn on D l limn-l-oo Sn = 0 on D 1 but lirnn--+oo hn > 0
on D.

Exercise 3.14. Let:F be a family in Sen) and let s = sup:F. Show that if
Ii is locally integrable, then Ii E S(n). (Compare Theorem 3.7.5.)

Let h be the least harmonic majorant of son B. Show that h S; Is ,O,l on B.
Give an example in which this inequality is strict.

Exercise 3.13. Give an example of an increasing sequence (sn) of negative
subharmonic functions on B such that lim So is not subharmonic on B. Give
an example in which lim So is not subharmonic on any open subset of B.

Exercise 3.10. Let s E S(B). Writing M(s; 0, t) = (</J 0 VNlet), where </J is
convex (see Theorem 3.5.6), and recalling that

A(s; 0, t) = Nt-N l'T
N- 1M(s; 0, T) dr,

use Jensen's inequality (see Historical Notes on Section 1.3) to show that

Exercise 3.15. Let (Sn) be a sequence in Sen), where n is connected, and
let s = lim sUPn--.oo Sn' Show that if (sn) is locally uniformly bounded above,
then Ii = S almost everywhere (A), and either S E S(n) or Ii '" -00.

t>-+ IN., u(y', t)dA'(y')

is finite for some t E (0,1), then it is concave on (0,1). (Note: the convexity
result in Theorem 3.5.9 implies that if w superharmonic on W and w(x)
depends only on XN, then the function w(O, ... ,0, t) is concave on (0,1).)

Use Theorem 3.3.1 to show that either v E U(W) or v '" +00. Hence show
that if the function

Exercise 3.9. Let u be positive and superharmonic on W = Il!.N-l X (0,1).

Define v on W by

V(X1" .. , XN) = !. u(x' + y', XN)dA' (y').
RN-l
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4.1. Green functions

We recall that, if y E jRN, then the function defined by

(X" y; N = 2)
(x " y; N 2: 3)
(x = y){

- log Ilx - yll
Uy(x) = IIX _ yll'-N

+00

Chapter 4. Potentials

is superharmonic on jRN and harmonic on jRN \ {yI
Let n be an open subset of jRN A function Go : n x n --l [0, +00]' called

the Green function of n, will be defined so that Go(' ,y) = Uy - hy , where
hy is the greatest harmonic minorant of Uy on [}, (To ensure the existence
of h y and hence Go, a mild restriction on n will be required when N = 2.)
It will follow that, if I' is a measure on n, then the equation

GOI'(x) = In Go(x,y)dl'(Y) (x En)

defines a non-negative superharmonic function on n, provided only that G01'
is not identically +00 on any component of n. A superharmonic function of
this form will be called a (Green) potential. The importance of potentials
will become apparent in the Riesz decomposition theorem, which includes the
result that every non-negative superharmonic function on {} is the sum of a
potential and a non-negative harmonic function. This reduces the local study
of superharmonic functions to that of potentials and harmonic functions.
Also, it shows that, in a ball or half-space, a non-negative superharmonic
function is the sum of a potential and a Poisson integral; this is especially
useful since in these domains the Green function, like the Poisson kernel, is
known explicitly. Our knowledge of GB will be used to show that potentials
on the unit ball have radial limit 0 at almost every boundary point, and we
will obtain related boundary limit theorems for harmonic and superharmonic
functions on B. We shall also study continuity properties of potentials and
examine how the nature of a measure p. affects the smoothness of GnJ.L·

We begin by describing the type of open set on which we shall work.

Definition 4.1.1. An open set n in jRN is said to be Greenian if, for each y
in n, the function Uy has a subharmonic minorant on n.

liminfu(x) = -00, limsupu(x) = +00
x~y x~y

Exercise 3.24. Let E be a non-empty closed subset of jRN and let s be
defined on jRN by s(x) = dist(x, E).
(i) Show that, if E is convex, then s is subharmonic on jRN.

(ii) Let xo, y, z E jRN be distinct points such that Ilxo - yll = Ilxo - zll.
and let v(x) = min{llx - yll, IIx - zll}· Show that {v(xo)}' > M(v2

; xo,r),
and hence by Holder's inequality that v(xo) > M(v; zn, r), for all sufficiently
small values of r.
(iii) Motzkin's theorem tells us that E is convex if and only if to each point of
jRN there is a unique nearest point of E. Use this result and (ii) to show that,
if E is not convex, then s is not subharmonic on jRN. (Hint: show that the
subharmonic mean value property fails for small spheres centred at a point
with no unique nearest point of E.)

for each yES.

Exercise 3.23. Construct a superharmonic function u on B such that
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A complete characterization of the Greenian sets in lll.' will be given in
Theorem 5.3.8.

91

(4.1.3)

(x = y).

(x,y E Bo;x i y)

(z = y)

(x,y E B o; x'" y),

4.1. Green functions

(x = y)+00

+00

= {{I- (I + <j>(x,y))'-N/'}llx _ YII'-N

+00

Theorem 4.1.5. Let B o = B(xo, r) and

<j>(x y) _ (r2 -llx - xoll')(r' -Ily - xoll')
,- r'lIx _yll'

= { 2-
110g{1 + <j>(x, yn (z. y E Bo;x '" y)

+00 (x=y).

(ii) If N ~ 3, then

( I)N-'
Ilx-yll'-N- Ily~xollllx-yoll (x,yEBo;y'l- {x,xo})

GB,(X,y)= Ilx-yll'-N- r2-N (XEBo\{xo};y=xo)

log (IIY - xollllx - yOII) (x,y E Bo;y 'I- {x,xo})
r Ilx - yll

log (IIX~YII) (x E Bo\{xo};y=xo)

(i) If N = 2, then

Proof. Let y E lll.N. If h is any harmonic minorant of Uy, then h :s r'-N on
B(y, r) by the maximum principle. Since r can be arbitrarily large, h :s 0 on
lll.N. Hence 0 is the greatest harmonic minorant of Uy on lll.N and the Green
function for lll.N is as stated. 0

and let yO denote the inverse of a point y '" Xo with respect to oBo; that is,
u' satisfies

Theorem 4.1.4. The Green [unction for lll.N (N ~ 3) is given by

G(x, y) = Uy(x) (z ,Y E lll.N).

Before developing the general theory of Green functions, we give Gn ex­
plicitly for three specific domains n.

r

(4.1.2)Gn(x,y) = Uy(x) - hy(x),
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is a harmonic minorant of Uy on n. Hence n is Greenian, and so (v) holds.
o

is called the Green function for n. Clearly Gn(x, x) = +00for any x in n. In
the case where n = lll.N (N ~ 3) we simply write G for the Green function.
The formula (4.1.2) has no meaning for open sets n which are not Greenian.
We say that such sets n do not possess a Green function.

Since the lower semicontinuous function Uy - u is also bounded below on
B(z,r), part (iv) follows.

It remains to prove (v). Suppose that n ~ lll.' and lll.'\on is not con­
nected. Let YEn, let w be the component of n which contains y, and let
B(z,r) ~ lll.2\(wuon). It follows from (4.1.1) that the function

h(x) _ { U,(x) - Ily - zll/r (z E w)
- Uy(x) (x E n\w)

Proof. Part (i) follows from the positivity of Uy when N ~ 3, and part (ii) is
immediate from the definition.

To prove (iii), suppose that there is a subharmonic minorant s of Uo on
lll.2. Then s :s -logr on B(O, r) by the maximum principle and, since r can
be arbitrarily large, we obtain the contradictory conclusion that s '" -00.

To prove (iv), let r be such that B(z, r) ~ n, let u be a subharmonic mino­
rant of U, on n and let yEn. We will show that Uy also has a subharmonic
minorant on n. If z E n\B(z, r), then

Uy(x) - u(x) ~ Uy(x) - Uz(x) ~ log elY _ ~~ ~ ~~ _xii)

> Ily - zll > lIy - zll (
liz - xii - r 4.1.1)

Theorem 4.1.2. (i) All open sets in lll.N (N ~ 3) are Greenian.
(ii) Any open subset of a Greenian open set is Greenian.
(iii) The set lll.' is not Greenian.
(iv) If n ~ lll.' and there exists z in n such that U, has a subharmonic
minorant on fl J then n is Greenian.
(0) If n ~ lll.' and lll.'\on is not connected, then n is Greenian. In particular,
all bounded open sets in lll.' are Greenian.

Definition 4.1.3. Let n be Greenian. Then, for each yin n, the function Uy
has a greatest harmonic rninorant hy on n, by Theorem 3.6.3. The function
Co : n x n -+ [0, +001, defined by

90
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Proof. Since

Ilx - y"112= IIx - xol1 2 +Ily" - xol1 2
- 2(x - Xo, y" - xo)

(iii) the greatest harmonic minorant of Go( . ,y) on n is the zero function;
(iv) infwGn(· ,V) = o.

we see from (4.1.3) that

r-211y _ xol1 211x _ y"11 2 = r- 211y - xol1 211x - xol1 2 + r2
- 2(x - Xo, Y - xo)

= Ilx - y1l2{1 + 1>(x,y)} (y ~ {x,xo}), (4.1.4)

Theorem 4.1.6. LetD denote the half-space [z = (Xl, ... ,XN): XN > OJ.
Then

GD(X,y) = Uy(x) - Ujj(x) (x,y ED),

wherey= (y, ... ,YN-l,-YN).

Proof. Let y E D and hy(x) = Ujj(x). Then hy is harmonic on lll.N\{y}, which
contains D. Further, h y = Uy on aD, hy :5 Uy on D, and Uy(x) - hy(x) has
limit 0 as x --t 00. It follows from the minimum principle that h :5 hy for
any harmonic minorant h of Uy on D. Hence hy is the greatest harmonic
minorant of Uy on D, and so GD is as stated above. 0

is harmonic on lll.N \ {y"}, which contains Bo. Further, it can be seen from
(4.1.5) that hy = Uy on aBo. It follows from the maximum principle that
h y ::: Uy on B o and that h :5 h y on Bo for any harmonic minorant h of
Uy on Bo - Hence hy is the greatest harmonic minorant of Uy on Bo , and so
GBo(X,y) = Uy(x) - hy(x) when y oF Xo·

If y = Xo, then an argument similar to that of the previous paragraph
applies with hy(x) = log(l/r) if N = 2, and hy(x) = r2- N if N 2: 3. The
first group of formulae in each part of the theorem are now established, and
the formulae involving 1> follow using (4.1.4). 0

(x E n\W)
(x E W)

( ) = {max{hy(X), Uy(x) - u(x)}
s x hy(x)

is subharmonic on n, by Corollary 3.2.4. Clearly s ::: Uy, so s is a subharmonic
minorant of Uy on n. Hence s::: h y; that is, Uy - u::: h y on n\W, and thus
u 2: Go ( ., y) on n\W. The particular case follows from the fact that Go (., y)
is bounded on oW. 0

Lemma 4.1.8. Let n be Greenian, let yEn and let W be a bounded open
neighbourhood of y such that Wen. If u is a positive superharmonic func­
tion on nand u 2: Go( . ,y) on oW, then u 2: Go( . ,y) on n\w. In
particular, Go ( . , y) is bounded on n\w.

Theorem 4.1.9. Let n be Greenian. Then:
(i) Go(x,y) = Go(Y,x) for any x andy in n;
(ii) the function (x,y) e-+ Go(x,y) is continuous on n x n (in the extended
sense);
(iii) the function (x,y) e-+ Go(x,y) is superharmonic on n x n.

A glance at the Green functions in Theorems 4.1.4 - 4.1.6 reveals that
they are symmetric in x and y. It will now be shown that all Green functions
have this property.

Proof. Let h y denote the greatest harmonic minorant of Uy on n. Then
Uy - hy ::: u on oW. The function defined by

Proof. It follows from the definition that Go(', y) is non-negative and super­
harmonic on n, and harmonic on n\{y}. The positivity on w is a consequence
of the minimum principle and the fact that Go(y,y) = +00. Thus (i) holds.

Clearly Uy is harmonic on n\w. We thus obtain the greatest harmonic
minorant of Uy on n by defining it to be equal on w to the greatest harmonic
minorant of Uy on w, and equal on n\w to Uy . This proves (ii).

Let vy be a harmonic minorant of Go(' ,V) on n. Then Uy 2: hy +vy on
il, where hy is the greatest harmonic minorant of Uy on il, and so v y :s: o.
This proves (iii).

Finally, (iv) follows from (ii) and (iii). 0

(4.1.5)

(N = 2)

(N 2: 3)

(x E aBo; y oF xo).r-Illy - xolllix - y"11 = Ilx - yll
If y E Bo\ {xo}, then the function_!log (Ily ~ xolllix ~ y"ll)

hy(x) - 1 N-2

elY ~ xolllix - y"ll)

and, in particular,

I;
Ii

I
!

Proof. Let B o be an open ball such that Bo c n. Further, let (Bn) =
(B(zn,rn)) be a sequence of open balls in n such that B o C B, and
Un B n = n, such that oBn n Bo = 0 for each n, and such that each ball
in the collection {Bn : n E fIl} occurs infinitely often in the sequence.

Let Ul : n x Bo --t lll. be defined by
(x E w)
(x E n\w);

Go(x,y) = {~w(x,y)

Lemma 4.1.1. Let n be Greenian, let yEn and let w be the component of
n which contains y. Then:
(i) Go ( . , y) is positive and superharmonic on w, and harmonic on n\{y};
(ii)



Proof. Let hy,n denote the greatest harmonic minorant of Uy on nn for n E No
Part (i) follows from the fact that h y ,2 ~ h y" on n,.
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(4.1.6)

(x,y E W).

(N = 2)

(N 2: 3).

(N = 2)

(N 2: 3).

(x, YEn'),

4.1. Green functions

{

hy. (z") -log(r-21Ix - xolilly - xoll)
Hy(x) =

hy • (x'){r- 21Ix - xolilly - xoiIF-N

{

Uy'(x') -10g(r-21Ix - xolilly - xoll)
Uy(x) =

Uy.(x'){r-21Ix - xolilly - xoiIF-N

Ilx - yll = r-21Ix' - y'llllx - xolilly - xoll

and so

In either case,

Noting that Xo '1'- n', we see from Corollary 1.6.4 that Hy E ll(n'). Arguing
as in (1.7.3) we find that

Theorem 4.1.11. Let n be Greenian and let tr denote its inverse with
respect to S(xo, r). Then sr is Greenian and

Proof. For each zEn we can write Gn("z) as U; - hI> where hz E ll(n).
We now fix yEn' and define a function H y on n' by

The following theorem, which will be useful in later chapters, shows the
relationship between the Green function and the Kelvin transform. Notation
and terminology are as in Section 1.6.

Uy(x) - Hy(x) = {r-21Ix - xolilly - xoll}2-N {Uy'(x') - hy.(x')}

= {r-21Ix-xolllly-xoll}2-NGn(x',y') (4.1.7)

2: 0 (x En'),

To prove (ii) suppose first that noo is Greenian. For each y E noo , the
function Uy has a greatest harmonic minorant hy,oo on nco and hy,oo :::;
hy ,n + l ::; hy,n on Jln for each n. Hence limn --+oo hy,n = hY 1 say, is harmonic
on si; and hy,oo ~ hy ~ o, there. By definition of hy,oo, it follows that
hy = hy,OOl and so limn-Jooo GUn = Gnoo'

Next suppose that noo is not Greenian. By Theorem 4.1.2, N =2 and noo
is connected. Again (hy,n) is decreasing. Let hy =limn-->oo hy,n. If hy 'Ie -CXJ

for some y E [lco, then hy is a harmonic minorant of Uy on noel contrary to
Theorem 4.1.2(iv). Hence h y == -00 for each y E noo , and so Gn. ( . , y) =
Uy - hy,n --+ +00. 0

and it follows, in particular, that n' is Greenian.
Now let h be any harmonic minorant of Uy - H y on Il", Its image h:

under the Kelvin transform is harmonic on n\{xo}, and

(x,y En),

(x E Bk+1)
(x E n\Bk +1 )'

(x E B,)
(x E n\B,) ,

U ( X y) _ {Iu"z"r, (x)
I , - Uy(x)
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Gn(x,y) = Uy(x) - hy(x) = Ux(Y) - hx(Y) = Gn(Y,x)
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By the above reasoning and the choice of (Bn ) , each Un is continuous on
n x Bo, and un(x, . ) E ll(Bo) for each x in n.

Repeated application of Corollary 3.2.5 yields that, for each y in Bo, the
functions unC ,y) are superharmonic on n, satisfy un(', y) ~ Uy, and form a
decreasing sequence. Further 1 if hy denotes the greatest harmonic minorant
ofUy on n, thenun(·,y) 2: hy on n. If we define uooC,y) =limn-->ooun(·,y),
then U oo ( . ,y) must be harmonic on each ball Bn , by Corollary 1.5.4 and the
repetitious nature of (B n ) . Hence uoo( . ,y) is a harmonic minorant of Uy

on n which satisfies uoo(· ,y) 2: hy and so uoo(· ,y) = h y . It follows from
the previous paragraph and Corollary 1.5.4 again that (y>-+ hy(x)) E ll(Bo)
for each x in n. In fact, these functions must belong to 11. (n), in view of
the arbitrary choice of Bo. Since hy(x) ~ Uy(x) = Ux(Y), it follows that
hy(x) ~ hx(Y). This holds for any choice of x and y in n, so hy(x) = hx(Y),
and hence

where If,x,r is the Poisson integral introduced in Definition 1.3.2. It follows
from Theorem 1.3.3(ii) and the uniform continuity of the function (z, y) >-+
Uy(x) on 8B, xBo that u, is continuous on nxBo. Also, it can be seen (using
the mean value property and Fubini's theorem, if x E B,) that u,(x, . ) E
ll(Bo) for each x in n. We now inductively define a sequence (un) offunctions
on n x Bo as follows. Given Uk, we define

proving (i).
The above functions u n ( ., . ) have the property that they are continuous

on B n x Bo and harmonic in each variable separately. It follows from Corol­
lary 3.3.7 that u n( . , .) is harmonic on Bn x Bo. Hence the limit function
(x,y) >-+ hy(x) is harmonic on n x n, in view of the repetitions in (Bn) and
the arbitrary nature of B o. Since Gn(x, y) = Uy(x) - hy(x), we conclude that
Gn(', .) is continuous on n x n, in the extended sense. Thus (ii) is proved.

Part (iii) is an immediate consequence of (i) and Theorem 3.3.6. D

Theorem 4,1.10. (i) If n, is an open subset of a Greenian open set n2 ,

then Ga, ~ Gn, on n, x n,.
(ii) Let (J?n) be an increasing sequence of Greenian open sets and let (loa =

U, si; If noo is Greenian, then Gn. --+ c»: on a.; x noo ; otherwise
Ga; --+ +00 on noo x noo '

I
i



96 Chapter 4. Potentials 4.2. Potentials 97

(N = 2)

Theorem 4.2.4. Let I' be a measure on a connected Greenian open set D
and let B(z, r) C D. Then Gn/1 is a potential if and only if

Theorem 4.2.3. Let Ga/1 be a potential on a Greenian open set D. IfW is
a non-empty open subset of D such that /1(W) = 0, then Gal' is harmonic
on W.

(4.2.2)

(4.2.1)(x E D\W).

( Ga(z,y)d/1(Y) < +00.
Ja\B(z,r)

In particular, if 1'(D) < +00, then Ga I' is a potential.

Proof. If Ga/1 is a potential, then so is Ga (/1la\B(z,r»), and (4.2.2) then
follows from Theorem 4.2.3. Conversely, if (4.2.2) holds, then Gs: (1'In\B(z,r))
is superharmonic. So also is Ga (1'IB(z,r») , by Lemma 4.2.2. It follows that
Gal', which is the sum of the above two potentials, is superharmonic on n,
and hence a potential. The final assertion follows using Lemma 4.1.8. 0

Proof. Since each component of D can be considered separately, it is enough
to deal with the case where D is connected. Let K denote the support of 1',
let Yo E K and let W be a bounded connected open set such that K c W
and WeD. The functions Ga(x, . ), where x E D\W, are positive and
harmonic on W. It follows from Harnack's inequalities that there is a positive
constant C such that Ga(x,y) ~ CGa(x,yo) whenever x E D\W andy E K.
Integration with respect to d/1(Y) now yields

Thus Gal' is a potential. Further, if h is a harmonic minorant of Ga/1 on
D, then h is majorized by a multiple of Ga(x,yo) on D\W, and hence on D
by the minimum principle. It follows that h ~ 0, as required. Finally, if D is
a ball, then Ga(' ,Yo) has limit zero at all points of aD, by Theorem 4.1.5.
Hence Gal' has limit zero at all points of &D by (4.2.1). 0

Proof. It is enough to show that Ga/1 is harmonic on any open ball Bo which
satisfies B o C W. Since Ga/1 is locally integrable, there exists Xo in Bo such
that Ga/1(xo) < +00. It follows from Harnack's inequalities that there is a
positive constant C such that Ga(x, y) ~ CGa(xo, y) whenever x E Bo and
y E D\W. We can now apply Theorem 3.3.1 to see that Gal' and -Gn/1
both belong to U(Bo), and hence to 1£(Bo). 0

Example 4.1.12. If w = IRN\B(xo,r), then

jlog ( IIY- xolllix - y"ll)
G (x y) = r Ilx - yll
w, (I N2

Ilx - yll,-N - Ily ~ xollllx _ y"ll) - (N ~ 3),

where y" denotes the inverse of y with respect to S(xo, r), provided we assign
the value +00 to these formulae when x = y. To see this, we take D =
B(xo, r) in Theorem 4.1.11 and use the formula for Ga in Theorem 4.1.5,
equation (4.1.6) and the symmetry of Ga(-, -).

The above formula for Gw can alternatively be established by an argument
similar to the proof of Theorem 4.1.5.

4.2. Potentials

h"(x) = rN-'llx-xoll'-Nh(x") ~ {r-llly-xoll}'-NGa(X,y") (x E D\{xo})

by (4.1.7). If Xo 9'- D, then h" ~ 0 by the definition of Ga(·,y"). If Xo E D,
then h" is bounded above near XQ since y* '# X0 1 so the function

s,(x) = {h"(X) -EGa(x,xo) (x E D\{xo})
-00 (x = xo)

is a subharmonic minorant of {r-illy - xoll}'-NGa("y") for each E > 0,
and again h" ~ O. In either case h ~ O. Hence H y is the greatest harmonic
minorant of Uy on D", and so Ga. (-, y) = Uy - Hy . The result now follows
from (4.1.7). 0

Definition 4.2.1. Let /1 be a measure on a Greenian open set D. We define

Ga/1(x) = In Gn(x,y)dl'(Y) (x ED).

Clearly Gal' takes values in [0, +ooJ. The function Gal' is called a (Green)
potential if each component of D contains a point at which Ga/1 is finite.
It follows from Theorem 3.3.1 (applied to each component of D separately)
that a potential Ga I' is superharmonic on D. A potential on the whole of IRN

(N ~ 3) is sometimes referred to as a Newtonian potential; it has the form

G/1(x) = J. IIx - yll'-N d/1(Y) (x E JRN).
l<N

I

i I I
I

, ,

!! !

Lemma 4.2.2. If D is Greenian and /1 is a measure with compact support
contained in {}, then GnJ1 is a potential and its greatest harmonic minorant
is the zero function. Further, if D is a ball, then Ga/1 has limit zero at all
points of aD.

Theorem 4.2.5. (i) Let /1 be a measure on JRN (N ~ 3). Then GI' IS a
potential if and only if



In order to prove (iii) we note that GD, as given in Theorem 4.1.6, can be
rewritten as
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(4.2.5)

r 2- N when

(x E JR').

(x E Bo;y E JR').

UI"(x) = min{ -log IIxll. -logr}

-log Ilx - yll :::: -c jlog(2 + Ilyll)

4.2. Potentials

Definition 4.2.1. If I" is a measure on JR' which satisfies

1. log lIyll dl"(Y) < +00,
JR2\B

then we call the function UI",defined by

a logarithmic potential. Unlike a (Green) potential, a logarithmic potential
may assume any values in the range (-00, +ooJ.

Finally, by Corollary 3.2.6, GI"(x) = limr->o+ A(GI"; x, r)
Ilxll = r, Hence

GI"(x) = min{llxll'-N,r'-N} (x E JRN).

We conclude this section with some examples of potentials and logarithmic
potentials.

GI"(X) = M(G(x, . );O,r) = G(x, 0) = IIxll'-N

Since (4.2.5) holds, we see from Theorem 3.3.1 that UI" E U(Bo). Further,
if Bo C W, where W is an open set satisfying I"(W) = 0, then the function
(x,y) >-+ logllx - yll is bounded below on Bo x (JR'\W). Since I"(JR2) < +00
by (4.2.5), we can apply Theorem 3.3.1 once more to see that -UI" E U(Bo)
and hence UI" E H(Bo). The theorem now follows in view of the arbitrary
nature of Bo. 0

Proof. Let B o be an open disc. Then there is a positive constant Cj such that

Theorem 4.2.8. A logarithmic potential UI" is superharmonic on ffi.' and is
harmonic on any open set W which satisfies I"(W) = O.

Example 4.2.9. (i) Let N :::: 3 and let I" denote surface area measure on
S(O, r), normalized to have total mass 1. Clearly GI" is a potential, and it
follows from the rotational invariance of I" that GI"(x) depends only on Ilxll.
Further, by Theorem 4.2.3, GI" is harmonic on JRN\S(O,r). Hence, by Theo­
rem 1.1.2,.GI" takes the constant value GI"(O) = r'-N on B(O,r). If Ilxll > r-,
then G(x, . ) is harmonic on an open set containing B(O, r) and so

(ii) The same reasoning shows that, if N = 2 and I" is as above, then the
logarithmic potential UI" is given by

o

(4.2.3)

(4.2.4)

(N = 2)

(N:::: 3).

r YN
JD (1 + lIylDN dl"(Y) < +00.

{

- log Ilyll
GB(O,y) =

Ilyll'-N - 1
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GD(X,y) = max{N - 2, l}xNYNl'{llx - yll' + 2XNYNt} -N(' dt.

Applying the inequality 0 ::; t ::; 2 to the integrand above, we obtain

2max{N-2,1}xNYN G ( ) 2max{N-2,1}xNYN
IIx - yllN ::; D x,y ::; Ilx _ yilN

Proof. Part (i) follows easily from Theorem 4.2.4 on setting z = 0 and r = 1.
Part (ii) follows from Theorem 4.2.4 on setting z = 0, r = 1/2 and noting
from Theorem 4.1.5 that

where x = (Xj, ... ,XN_j,-XN). If we let z = (0, ... ,0,2), then it follows
easily that (4.2.3) holds if and only if

r GD(Z,y) dl"(Y) < +00,
JD\B("l)

and we can again appeal to Theorem 4.2.4.

(ii) Let I" be a measure on the open unit ball B. Then GBI" is a potential if
and only if

l (1 -llylD dl"(Y) < +00.

(iii) Let I" be a measure on D = {(Xj, ... ,XN) : XN > O}. Then GDI" is a
potential if and only if

Theorem 4.2.6. If Gal" is a potential on a Greenian open set D, then the
greatest harmonic minorant of Gal" is the zero function.

Proof. Let (Kn ) be an increasing sequence of compact subsets of D such that
Un K n = D, and let h denote the greatest harmonic minorant of Gau- Clearly
h :::: O. Since Gnl" = Gn (1"IKn ) + Go (1"IawJ, we see from Theorem 3.6.4
and Lemma 4.2.2 that h ::; Gn (1"In\KJ. Letting n -t 00, it now follows from
the monotone convergence theorem that h ;: O. 0

We now briefly digress to introduce a different kind of potential on JR'
which in some respects is analogous to a Newtonian potential.
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(4.3.1)

4.3. The distributional La.placian

In u£!.1Ii d)' = In P £!.U sx.

aN'L,(IIi) = In P dJ.L,

where aN = O'N max{1, N - 2}.

and so

and use C;;'(fl) to denote the subspace of infinitely differentiable elements
of Co (fl). If u: fl --t [-00, +00] is locally integrable on fl, then we define a
linear functional on C;;'(fl) by

Proof. Let u E C'(fl), let P E C;;'(fl), and let w be a bounded open set such
that suppP C wand OJ C fl. Further, let 9 E C;;'(w) be such that 9 = 1 on
an open set containing supp iii, and let Bo be an open ball containing w. If
we define ug to be a on ]RN \w, then Green's formula yields

and call Lu the distributional Laplacian of u. If v is another locally integrable
function on fl, then clearly Lu+v = L u + L; on C;;'(fl).

{ {(ug)£!.1Ii -1Ii£!.(ugJ) d)' = ( adO',
JBo i-:

Corollary 4.3.3. If S E S(fl), then there is a unique measure J.L, on fl such
that

This proves (i) and (ii).
To prove (iii), let s E S(fl), and let P,w,g be as above. It follows from

Theorem 3.3.3 that there is a decreasing sequence (sn) in S(w) n COO(w) such
that 8n --+ s pointwise on w. In particular, odsn :::: 0 on w for each n, by
Corollary 3.2.8. Thus In sn£!.1Ii d)' 2: a whenever iii 2: 0, by (4.3.1). Letting
n --t 00 and using the monotone convergence of (sn(£!'P)+) and (Sn(£!.IIi)-) ,
we conclude that L,(P) 2: 0, as required. 0

Theorem 4.3.2. (i) If u E C'(fl), then Lu(P) = In P£!.ud)' for each P in
C;;' (fl).
(ii) If hE ll(fl), then L h is the zero functional on C;;'(fl).
(iii) If s E S(fl), then L, is a positive linear functional on C;;'(fl).

Proof. We will make use of the smoothing functions <Pn defined in Section 3.3.
Given any iii E Co (fl), the functions

r

(x ED).

(0 < XN < t)
(XN = t)
(XN > t).
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It follows from (4.2.4) and monotone convergence that

GDJ.L(O, ... ,O,XN) < -L dA'(y')
XN max{N - 2, I} - RN-' {(XN _ t)' + Ily'II'}N/,

--t 0 (XN --t +00)

Example 4.fUO. Let D = {(Xl, ... ,XN) :XN >O} and let J.Ldenote (N-I)­
dimensional Lebesgue measure on lRN - 1 x {t}, where t > O. It follows from
Theorem 4.2.5 that GDJ.L is a potential, and from the translational invariance
of J.L that GDJ.L(x) depends only on XN. Also, GDJ.L is harmonic on lRN - 1 x (0, t)
and lRN-1 x (t, +00), by Theorem 4.2.3. Hence

{

min{log(R/llxlll, 10g(R/r)} (N =2)
GB(O,R)J.L(X) =

min{lIxI12- N,r2- N} - R2- N (N 2: 3).

(iii) If a< r < R and J.L is as above, then we can use Theorem 4.1.5 and the
above reasoning to observe that

and

GDJ.L(O, .. . ,0, XN) 2 J. dA'(y')
---::-~..,-;;-;-'--;;--:;-;- --t t =0'N
xNmax{N - 2,1} RN-' {t2 + IIY'112}N/2

(For the last equation, see Lemma 1.7.4.) Hence a = a = f and b
O'N max{N - 2, I}. Finally, we see from the lower semicontinuity of GDJ.L
that c :::; min{bt, d}, and from Corollary 3.2.6 that c = (bt + d)/2. Hence
bt=c=d, and so

4.3. The distributional Laplacian

Definition 4.3.1. We use Co(fl) to denote the vector space of all real-valued
continuous functions iii on ]RN such that supp iii is a compact subset of fl,

We have seen that if u is a potential on a Greenian open set fl, then u is
superharmonic on nand the greatest harmonic minorant of u on fl is the zero
function. Here we prepare for the proof of a converse result, Theore~ 4.4.1
below.
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1034.3. The distributional Laplacian

Lv(P) = l UyL1Pd)"

= - lim (aN/aN)f'-N ( P(x)da(x)
£-to+ JS(y,c)

= -aNP(y).

Hence

Proof. We can write f(z) as (z - zn)mngn(z) on some open disc B n centred
at Zn, where 9n is holomorphic and free from zeros in Bn . Hence

( UyL1Pd)..
JB,\B(y,e)

{ { x-y x- y} )=- JS(y,e) Uy(x)(\7P(x), Ilx _ yll) - P(x)(\7Uy(x), IIx _ yll) da(x,

Theorem 4.3.7. Let f be a holomorphic function on a domain D in iC such
that f 't 0, and let z" Z2,· .. be the zeros of f with multiplicities m" m2, . . . .
Then the Riesz measure associated with the subharmonic function log If I is
'" m 8 where 8 is the unit measure concentrated at the point z.~n n Zn1 Z

where e > 0 is small, and so

I
f _UyL1Pd)..+max{N-2,I}f'-N1 P(x) oo(x)I

JBo\B(y,e) S(y,e)

::; max{II\7P(x)ll: x E B(y,c)} ( Uy(x)da(x) ---+ 0 (s ---+ 0+).JS(y,e)

for all sufficiently small values of r. Further, for fixed r, the functions
A(Tu.n;·, r) and A(Tv,n;" r) are uniformly bounded on w since s ::; Ts,n ::;
T and s is locally integrable. Hence the function h = lim n--+ oo hn iss.no
harmonic on w, by Theorem 1.5.8. From (4.3.2) we see that A(u; z , r)
A(v; x, r) + h(x), and letting r ---+ 0+ we obtain u = v + h on w, by Corol­
lary 3.2.6. The first assertion of the theorem is now established, in view of the
arbitrary nature of w. The second assertion follows from the first on letting
v~O. 0

Lemma 4.3.6. Let y E jRN and v = Uy. Then Lv(P) = -aNP(Y) for each
Pin Ci{'(D).

Proof. Let P E Ci{'(D) and let B o be an open ball containing (suppP)U{y}.
Then Green's formula yields

r

(4.3.2)

for each i.

(s E S(D); n 2: no; x E w),

hn(x) = A(hn; z , r) = A(Tu,n; x, r) - A(Tv,n; z, r)
---+ A(u; x, r) - A(v; x, r) (n ---+ 00)
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Definition 4.3.4. If s E Sin), then we call the measure I"s in Corollary
4.3.3 the Riesz measure associated with s, If u E U(D), then we define the
Riesz measure f-lu associated with u to be that associated with the subhar­
monic function -u. Thus, in all cases, the Riesz measure is a (non-negative)
measure. The reason for the constant aN in the statement of Corollary 4.3.3
will become clear in Theorem 4.3.8 below.

L(P) = lim a,./ Ls(Pn).n--+oo

This yields a positive linear functional on Co(D) such that L = aN'Ls on
Ci{' (D). Further, any positive linear functional on Co(D) with this property
must satisfy the equation used to define L, so L is the only such functional.
The result now follows from the Riesz representation theorem (see Appendix).

o

Theorem 4.3.5. Let u,v E S(D) and suppose that L; = L; on Ci{'(D).
Then there exists h in 1I.(D) such that u = v + h on D. In particular, if
u E S(D) and L u is the zero functional, then u E 1I.(D).

Proof. Let u and v be as in the first sentence of the theorem. Also, let w
be a bounded open set such that ts c u and choose no in ]\I such that
no' < dist(w, jRN\D). (If D = ~N, then we choose no = 1.) We define

Ts,n(x) = In <Pn (x - y )s(y) d)"(y)

belong to Ci{'(D) for all sufficiently large n, and Pn ---+ P uniformly on jRN

by the uniform continuity of P. By Theorem 4.3.2, L, is a positive linear
functional on Ci{'(D). It follows easily that (L,(Pn)) is Cauchy, so we may
define

where <Pn is the Coo function described in the introduction to Theorem 3.3.3.
It follows from that theorem that T"n E Coo(w), and differentiation under
the integral sign yields L1Ts,n(x) =Ls(<Pn(x - .)) when x E w since
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" 2<Pn(X-Y) =" 2<Pn(x-y)
vX i vYi

Let hn :::::: Tu,n - Tv,n. Then

and so hn E 1I.(w). It was shown in Theorem 3.3.3 that Ts,n .j. s as n ---+ 00.
If x E w, then it follows by monotone convergence that
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and 10glgn(Z)! E H(Bn). It follows from Lemma 4.3.6 and Theorem 4.3.2(ii)
that

L (lJi) _ {21fmnlJi (Zn) (tP E Gif(Bn»)
log III - ° (tP E Gif(n\{zn: n:?: I}»).

Since any tP E Gif(n) can be written as tPo + ... + tP. for some kEN, where
lJio E Gif(n\{zn : n :?: I}) and tPn E Gif(Bn) when 1 :'::: n :'::: k, the Riesz
measure associated with log If I is as stated. . 0

Theorem 4.3.8. (i) The Riesz measure associated with a potential Gsiu on
a Greenian open set {} is 1-'-.
(ii) The Riesz measure associated with a logarithmic potential Up, on 1R2 is 1'.

that, for each n, each bounded component of IRN \Kn contains a point of
IRN\D. Let 1'1 = I'IK" let I'n = I'IKn+'\Kn (n:?: 2) and define

Un(x) = - JUy(x) dl'n(Y)

Then Un E S(IRN) (n :?: 1) and Un E H(K~) (n :?: 2). It follows from
Theorem 2.6.4 that, whenever n :?: 2, there exists hn in H(n) such that
IUn - hnl < 2-n on K n_ l . We now define

00

S=Ul+ L(um-hm)
m=2

Proof. We write Gn(x,y) as Uy(x) - hy(x) and let vy = Gn(' ,y). Then on n, and observe that, if n 2: 2, the series

by Theorem 4.3.2, since hy E H(n). Now let U = Gnl' and tP E Gif(n).
From Fubini's theorem, (4.3.3) and Lemma 4.3.6 we obtain

L,,(tP) = In {In Gn(x,y) dP,(Y)} M(x) d.\(x)

= 1,c.;(tP) dl'(Y) = -aN In tP(y) dp,(y),

from which (i) follows.
To prove (ii) we let tP E Cif (1R2 ) and choose r such that supp lJi C B (0, r).

Let WI = U(I'IB(o.r») and W2 = U(p,IR'\B(O,r»)' Then UI' = WI + W2 and
W2 E H(B(O,r»), so Lu~(lJi) = Lw,(tP). Since the function (x,y) >-+ Uy(x) is
bounded below on (supp tP) x B(O, r), the argument used to prove (i) now
applies also in this case. 0

m=n

o

aNI L,(tP) = ( tP dl' =1tP dl'.lKn n

Hence the Riesz measure associated with s is 1'.

on n. Since the second and third terms on the right-hand side of this equation
are harmonic on K~, it follows from Theorem 4.3.8 that

n-l 00

S = -1 u,dl'(Y) - L hm + L (Urn - hm )
K.. m=2 m=n

converges uniformly on K~ to a harmonic function. Hence s E S(n).
Let lJi E Cif (n), and choose n :?: 3 such that supp lJi E K~. Then

(4.3.3)(tP E Gif(n»),Lv, (tP) = Lu, (tP)

Corollary 4.3.9. Let Gnl' be a potential on a Greenian open set nand
let W be an open subset of n. Then Gnl' is harmonic on W if and only if
I'(W) = O.

Proof. Let v = Gnl'. If I'(W) = 0, then v E H(W), by Theorem 4.2.3. Con­
versely, if v E H(W), then it follows from Theorem 4.3.2 (applied to Gif(W»
and Corollary 4.3.3 that I'v(W) = O. Hence I'(W) = 0, by Theorem 4.3.8. 0

In the opposite direction to Corollary 4.3.3 we prove the following.

Theorem 4.3.10. Let I' be a measure on an open set n. Then there exists s
in S(n) such that the Riesz measure associated with s is 1'.

Proof. Let (Kn) be a sequence of compact subsets of n such that K n C K~+I

for each n and such that Un K n = n. Further, we choose (Kn ) in such a way

4.4. The Riesz decomposition

Theorem 4.4.1. (Riesz decomposition theorem) Let u be superhar­
monic on a Greenian open set n, let f.Lu denote its associated Riess measure
and suppose that u has a subharmonic minorant on n. Then Gou« is a po­
tential on fl and u = GnJ.Lu + h, where h is the greatest harmonic minorant
ofu on n.

Proof. Let (Kn) be a sequence of compact subsets of n such that K n C K~+l

for each n, and such that Un K n = n. Further, let p,Ln1 denote the restriction
of 1'" to K n · It follows from Theorem 4.3.8(i) that the distributional Laplacian

of G nl'Ln) is equal to L" on Gif(K~). Hence, by Theorem 4.3.5, there exists Vn



where Iv denotes the Poisson integral of a measure v on aD satisfying (1.7.1)
and c::O: o.
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(4.4.3)

(4.4.4)

(4.4.2)

(4.4.1)

(x E W).

(0 < p < r).

4.4. The Riess decomposition

and
M(U;Z,E)/VN(E) ---+ I'u({z}) (E ---+ 0+),

where VN(t) = tZ- N if N::O: 3, and Vz(t) =10g(1/t).

M(u; z, p) = r M(Uy; z,p) dl'u(Y) + h(z)
JB(z,r)

It follows from parts (i) and (ii) of Example 4.2.9 that

M(Uy;Z,p) = min{Uz(Y), VN(p)},

Let art) = l'u(B(z,t)). If 0 < E < P < r, then we see from (4.4.3) and (4.4.4)
that

M(u; Z,E) - M(u; z,p)

= [ VN(t) dolt) + VN(E)a(E) - { VN(t) dart) - VN(p)a(p)

= [VN(t) dart) + VN(E)a(E) - VN(p)a(p) (4.4.5)

=-lP art) dVN(t),

Proof. It follows from Corollary 4.4.3 that there exists h in 1i(B(z,r)) such
that u = IB("r) Uy dl'u(Y) + h on B(z, r). Hence, by Fubini's theorem and
the mean value property of harmonic functions,

Corollary 4.4.4. Let u be superharmonic on an open set which contains
B(z,r). Then

u(z) = M(u; z, r) + max{N - 2, 1} [ t1
-

Nl'u(B(z, t)) dt

Since the second integral in this equation belongs to 1i(W) (see Theorem 3.3.1
and use the above boundedness property of hy(x)), the result is proved. 0

Proof. Since W is Greenian and u is bounded below on W, the Riesz rep­
resentation theorem shows that u = GW(l'ulw) + h' for some h' in 1i(W).
We write Gw(' ,y) = Uy - hy and note that the function (x,y) J-t hy(x) is
symmetric on W x W. Hence y J-t hy(x) is harmonic on W for each x E W.
Also, if V is any bounded open set satisfying V C W, then the function
(x, y) J-t Uy(x) is bounded on V x aw, and it follows by applying the mini­
mum principle on W that the function (x,y) J-t hy(x) is bounded on V x W.
Noting that l'u(W) < +00, we obtain

r

(x E K~+l)

(x E D\Kn )

" {V~(X)
vn(x) = () G (n)()

U X - nJ.l.u x
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Since potentials are finite almost everywhere (A), we see that v~ = V n almost
everywhere (A) on K~ , and hence everywhere on K~, by continuity. Also,

u = v~ + G"I'~n) on K~+! and v~ E U(K~+!) n 1i(K~). Hence the function

If the superharmonic function u in the above result is non-negative, then
its greatest harmonic minorant h is certainly non-negative. This leads to the
following representation result for the case where D is all of lIl.N, a bailor a
half-space.

Corollary 4.4.2. (i) If u E U(lIl.N) (N ::0: 3) and u ::0: 0, then u =
I Uy dl'u(Y) + c, where c is a non-negative constant.
(ii) If Bo is an open ball, u EU(Bo) and u ::0: 0, then u =G Bol'u + Iv, where
Iv denotes the Poisson integral of a measure v on aBo.
(iii) Ifu EU(D), where D = {(Xl, ... ,XN) :XN >O} andu ::0:0, then

u(x) =GVl'u(x) + Iv(x) + CXN (x ED),

is well-defined, belongs to U(D)n1i(K~), and satisfies u = v~ +G"I'~n) on D.
Let h be the greatest harmonic minorant of u on D (this exists by Theo­

rem 3.6.3). Then v~ - h ::0: -G"I'~n), so the greatest harmonic minorant, h'

say, of v~ - h satisfies G"I'~n) ::0: -h', and hence h' ::0: o. It follows that

u - h = v~ - h + Gnl'~n) ::0: h' + G"I'~n) ::0: Gnl'~n).

Letting n ---+ 00, we see from the monotone convergence theorem that u - h ::0:
Gou«, and so Giiu« is a potential. Also, by Theorems 4.3.5 and 4.3.8, there
is a harmonic function h" on D such that u = G"I'u +h", Hence u ::0: h" ::0: h,
and so h" = h, by the definition of h, which proves the result. 0

Proof. This follows by combining Theorem 4.4.1 with earlier results for non­
negative harmonic functions on these particular open sets: see Theorem 1.2.6
for (i), Theorem 1.3.8 for (ii), and Theorem 1.7.3 for (iii). 0

in 1i(K~) such that u = Vn+Gnl'~n) on K~. It followsthat Vn+l+Gnl'~n+!) =

Vn + Gnl'~n) on K~. Let

v~(x) =Vn+!(x) + r Gn(x, y) dl'u(Y)
lKn +1\ Kn

Corollary 4.4.3. Let u E U(D) and let W be a bounded open set such that
WeD. Then there exists h in 1i(W) such that u = Iw Uy dl'u(Y) + h on W.



n

wherezl"",zn are the zeros of f inB(zlr) with multiplicitiesml,·.·,mn.
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(4.5.1)

(N = 2)

(N ~ 3),

::; {!'u(B(Z,e)) log2

(2N- 2 _ l)vo(z)

= lim sup vo(xn) - vo(z)
n-eoo

4.5. Continuity and smoothness properties

o ::; lim inf u(xn) - u(z) ::; lim sup u(xn) - u(z)
rr-eco n-+oo

{

vo(x~) + !,u(B(z,e)) log 2 (N = 2)
vo(x n) ::;

2N-2vo(X~) (N ~ 3)

and x~ -7 z, Thus

Hence

Theorem 4.5.1. LetuEU(n) andE=(supp!'u)nn. IfulE is continuous
in the extended sense at a point z in E 1 then u is continuous at z.

4.5. Continuity and smoothness properties

Proof. Let Z E E, choose co such that B(z,eo) C n, and define E' = En
B(z, co). If u(z) = +00, then u has limit +00 at z by lower semicontinuity. We
may therefore assume that u(z) < +00. If 0 < e < co, then by Corollary 4.4.3
there exists ho in 'Ii(B(z,e)) such that u = V o + ho on B(z,e), where

vo(x) = r Uy(x) d!,u(Y) (x E lll.N).
JB(z,e}

We note that !'u({z}) = 0 since u(z) < +00. Suppose that ulE is continuous
at z, and let (xn) be any sequence of points in n\{z} such that Xn --> z. For
each n we choose x~ E E' such that Ilxn- x~1I = dist(xn , E'). If y E E', then
Ilxn - yll ~ Ilxn - x~11, so

Ilx~ - yll ::; Ilx~ - xnll + Ilxn - yll ::; 211xn - yll·

(a) M(loglfl;O,·) is bounded above on (0,1);
(b) log If I has a harmonic majorant on B;
(c) Ln m n(l -lznlJ < +00;
(d) 10glf(z)1 = - L n mnGB(Z,Zn) + h(z) for all z E B, where n e 'Ii(B)

and GB is as given in Theorem 4.1.5{i).

Proof. We know from Corollary 3.2.9 that log If I is subharmonic on B and
harmonic on B\{zn : n ~ I}. Further, it was shown in Theorem 4.3.7 that
the Riesz measure associated with log IfI is the sum of point measures of
mass m n located at the points Zn. The equivalence of (b) and (c) now follows
from Corollary 4.4.6 and Theorem 4.2.5(ii). The Riesz decomposition theorem
shows that (b) implies (d), and the converse also clearly holds. Finally, (a)
and (b) are equivalent by Theorem 3.6.6. 0

r

o
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and since p can be arbitrarily small, (4.4.2) follows.
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Corollary 4.4.6. Let u E Urn), where n is Greenian. Then u has a har­
monic minorant if and only if Go!'u is a potential.

10glf(z)1 = M(loglfl;z,r) - Lmklog(r/lzkl),
k=l

o

Corollary 4.4.5. (Jensen's formula) Let f be holomorphic on a disc
B(z, R), let 0 < r < R, and suppose that f 't O. Then

Proof. This is the special case of the previous corollary where u = -log If I :
by Theorem 4.3.7,

Proof. If u has a harmonic minorant, then Go!'u is a potential, by the
Riesz decomposition theorem. Conversely, if Gou« is a potential, then Theo­
rems 4.3.5 and 4.3.8 show that there exists h in 'Ii(n) such that u = GO!'u+h,
and so h is a harmonic minorant of u. 0

using integration by parts for Riemann-Stieltjes integrals. Letting p --> r­
and e --> 0+ we obtain (4.4.1), in view of Corollary 3.2.6 and the continuity
of M(u; z, . ) on (0, rJ. Further, (4.4.5) and the monotonicity of VN yield

lim sup IM(u; z,e) -/ju({z})1 ::; lim sup {jP dart) + (a(e) - !'u( {z}))}
£-+0+ VN (e) e--+O+ £

=a(p) - !'u( {z}),

Corollary 4.4.8. Let f be a holomorphic function on the unit disc B such
that f 't 0, and let Zj, Z2, ... be the zeros of f with multiplicities mj, m2, ....
The following are equivalent:

Proof. The Riesz decomposition theorem asserts that u = Gtru« + h, where
h is the greatest harmonic minorant of u on n. If h == 0, then u is clearly
a potential. Conversely, if u = Go!, for some measure !', then u = !'u by
Theorem 4.3.8, and so h == O. 0

Corollary 4.4.7. Let u E Urn), where u ~ 0 and {} is Greenian. Then u

is a potential if and only if the greatest harmonic minorant of u is the zero
function.



= lim sup {-V2(X)} +V2(Z):::; O.
x--+z,zEL

lli

(i,j = 1,2, ... ,N).

(e -t 0+; i = 1, ... , N),

4.5. Continuity and smoothness properties

8
2u

j{8 }8
f

8x;8xi (x) = 8x; Uy(x) aYi (y) d)'(y)

au j { a} j 8f8Xi (x) = - aYi Uy(x) fey) d)'(y) = Uy(x) 8y, (y)d)'(y)

and in the case N =2, similar estimates yield

proving the continuity of u. Similar reasoning shows that, if Wi denotes the
right-hand side of (4.5.3) (where i = 1,2, ... , N)' then Wi is continuous. Let
PI ,P2, ... ,PN denote the standard unit basis vectors for ]RN. If II z - yll <: 2c,
then in the case N <: 3,

[Uy(z + cPi) - Uy(z)1 :::; (liz - yll- c)2-N -liz _ y112-N

:::; (N _ 2)c(llz _ yl!_ c)'-N

:::; 2N - 1(N _ 2)cllz _ yill-N,

Thus

V".2;0'-"=(z:...-+.:....=,cP,:,il...)_--=V.:c.2'co(z:.c) ( )- ----+ Wi Z
e

by dominated convergence. Also,

lim sup IU2'(Z + cp;) - U2'(Z) I :::; lim sup 2 sup If I ( Uy(z) d)'(y)
10--+0+ C £-+0+ E JB(z,2c)

=0.

Hence {u(z +cp,) - u(z)} [e has limit Wi(Z) as c -t O. This shows that (4.5.3)
holds and that u E C' (IRN

) since Wi is continuous. 0

Corollary 4.5.4. Let f be a function in Ck(]RN) (k = 1,2, ...) with compact
support. Then the function u defined by (4-5.2) is in Ck+l(]RN).

Proof. Suppose that k = 1. Using the symmetry of the function (x, y) e-+
Uy(x) and integration by parts, we see from Theorem 4.5.3 that

for any x E IRN . Appealing to Theorem 4.5.3 once more, we see that au/ax, E
C'(]RN) and

In particular, u E C2 (IRN ) . An induction argument deals with general values
~k. 0

The equation Llu = -aNf is known as Poisson's equation. (Here aN =
UN max{l, N - 2}, as before.)

r

(4.5.2)

(x= (Xl,X2, ... ,XN)). (4.5.3)
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::. (x) = j {8~i Uy(x) } fey) d)'(y)

llO

u(x) = j Uy(x)f(y) d)'(y)

belongs to C 1 (]RN) and, for any i E {I, ... , N},

Hence v,IL is continuous. It follows from Theorem 4.5.1 that v, is continuous.
o

Proof. Let e > 0 and v = Ggl'. It follows from Lusin's theorem (see Ap­
pendix) that there is a compact subset L of K such that I'(K\L) < E and vlL
is continuous. Let v, = Gg (1'1Ll and V2 =Gg (1'IK\Ll, so that v =VI + V2.
Also, if z is a limit point of L, then using the lower semicontinuity of Vk
(k = 1,2) and the continuity of vlz , we obtain

0:::; liminf Vl(X) - Vl(Z)
z;z,zEL

:::; lim sup Vl(X) - Vl(Z)
x--+z,xEL

using (4.5.1) and the continuity of V,!E at z. Since this holds for arbitrarily
small e it follows that u(xn ) -t u(z), as required. 0

Corollary 4.5.2. Let n be Greenian and let I' be a measure with support
K, where K is a compact subset of n. If Ggl' is finite-valued then, for each
positive number e, there is a compact subset L of K such that I'(K\L) < c
and Gg (1'1Ll is continuous.

Proof. Let z E ]RN and 0 < e < 1, and define

u,(x) = ( Uy(x)f(y) d)'(y) (x E IRN ),
} B(Z,E)

v,(x) = J. Uy(x)f(y) d)'(y) (x E ]RN).
RN\B(z,,)

Then u =u, + v" and v, is harmonic on B(z,c). Thus

limsup[u(x) - u(z)1 :::; limsuPlu,(x) - u,(z)[
x--tz x-+z

:::; 2(sup If I) ( Uy(z)d)'(y)
lB(z,c)

-t 0 (0 -t 0+),

Theorem 4.5.3. Let f : IRN -t IR be a bounded Lebesgue integrable function
with compact support. Then the function



4.6. Classical boundary limit theorems

Corollary 4.5.5. Let f be a function in C ' (IRN) with compact support.
Then {4.5.2} defines a solution of Poisson's equation.

Since Llu+aNf E C(IRN l, it follows from (4.5.4) and (4.5.5) that this function
must vanish identically. 0

o
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o

(4.6.4)

(4.6.3)(x,yEB).

(y E B(x, (1 -llxll)/2)).

4.6. Classical boundary limit theorems

(
5(1 -llxll))

GB(X,y) :; log 211x _ yll

Proof. Since 10g(I + t) :; t and 1 - (1 + t)'-N/' :; (N /2 - I)t when t > 0, we
see from Theorem 4.1.5 (the formula involving ¢) that

-1 (1 - IIxll')(I - lIyll')
GB(x,y):;2 max{I,N-2} IIx-yilN

and so (4.6.3) holds. Secondly, if Ily - xii:; (1 - IIxlll/2, then 1 - Ilyll <
3(1 -lIxlll/2 and Theorem 4.1.5(i) yields

1 { (1 - II xII), } -1 {25 (1 - Ilxll)2 }
GB(X,y):; 2- log 1 +6 IIx _ ylF :; 2 log 4 Ilx _y1l2

when N = 2. Thus (4.6.4) also holds.

Lemma 4.6.2. The Green function for B satisfies

(1 -llxll)(I -Ilyll)
GB(X,y) :; 2max{I,N - 2} Ilx _ yilN

Further, if N = 2, then

Lemma 4.6.3. If u is a positive superharmonic function on B and a > 0,
then there is a sequence (B(x., r.)) of balls such that

B(xa"ra,) <;; B(xa;,5ra;). (4.6.2)

If there is a value of k for which r ak+' < r a' /2, then we choose ko to be the
least such value. It follows that (4.6.1) holds for some j in {I, 2, ... , ko}; for,
if that were not the case, then ex' should have been chosen in preference to
Qko+l in the construction of the subcollection. Since r«, 2. To.' /2, we again

obtain (4.6.2).
Finally, in view of the arbitrary nature of o', we conclude that

E <;; UB(xa, raj <;; UB(xa., 5ra.).
a •

for some j l whence

a countably infinite disjoint subcollection. In the latter case it is clear that
T ----t 0 as k --+ oo, since E is bounded.
a, We now fix a' such that a' ~ {a. : k 2: I}. (If this is not possible,

then there is nothing further to prove.) It is clear from our choice of al that
ra, 2: ra' /2. If ra. 2: r« /2 for all k, then our sub collection is finite and

B(xa"ra,) nB(xa;,ra;l i' 0 (4.6.1)

r

(4.5.4)

(4.5.5)

Lu(l/f) = -aN (/ l/fr dA - / l/fr dA)

=-aN / l/ffdA (iP E C8"(IRN)).
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Proof. It follows from the preceding result that u, as defined by (4.5.2), be­
longs to C'(IRN ) . Hence, by Theorem 4.3.2(i),

Lu(l/f) = / l/fLludA (l/f E C8"(IRN)).
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The purpose of this section is to study the boundary behaviour of superhar­
monic functions on the unit ball B. We noted in Lemma 4.2.2 that, if J.' has
compact support contained in B, then the potential GBJ.' has limit zero at
all points of S. Our first step will be to show that every potential on B has
zero radial limit rr-almost everywhere on S.

We begin with a covering lemma.

Also, writing u as the difference of two Newtonian potentials (or logarithmic
potentials, if N = 2) corresponding to the measures f+dA and f-dA, we see
from Theorem 4.3.8 that

Lemma 4.6.1. Let {B(x~,ra) : a E I} be a collection of balls and let E <;;
Ua B(xa , ral, where E is a bounded set and sUPa ra < +00. Then there is a
countable disjoint subcollection {B(xa., r a.) : k 2: I} of these balls such that
E <;; U. B(xa.,5ra . ) .

Proof. We may assume, by deleting redundant balls, that En B(xa, raj i' 0
for all a. We choose a, such that r a, 2: 2-1 sUPa T a , and proceed inductively
as follows. Given aI, ""'" ,a. we choose (if possible) aHl such that

Tak+l 2: 2- 1 sup]TO' : B(xo , To) n B(xa j 1 T a j) = 0 for i = 1,2, ... , k}.

If, for some k, there is no ball B(xa, Ta) which is disjoint from the balls
B(XO l l r ( 1 ), · · · , B(xar.) Ta,.), then the construction terminates at this stage,
leaving us with a finite disjoint subcollection of balls. Otherwise we obtain



and

J.l'(E) = max{1, N - 2} { (1 -lIyll)dJ.l(Y) + ",,' v (E n S)
lEnB

(x E B).GB(O,X) ~ max{1,N - 2}(1-llxll)

U(O) ~ max{l, N - 2}1(1 -llxIDd,,(x) + ""IV(S)

5'-
N

= ,,'(B) ~ L,,'(B(xk,t.. ») > 6N a L r;:-',
k k

and so (4.6.6) holds with C = 5N - 16N. Finally, if U is harmonic on B, then
" = 0, so tx > 1 - Ilxll for each x E Ea and hence rk = 5tx, > 5(1 -: II xk ID
for each k. 0

Thus

Theorem 4.6.4. (Littlewood) If u is a potential on B, then u(rz) --+ 0 as
r --+ 1- for o-olmost every z in S.

2 1(1-II XII )/ 2 (5(1 - IlxID)
UI (x) ~ II II log dmx(t)1 - x 0 2t

2 {(I-lIxl!)/2 -1 210g5 (1 -lIxll)
~ 1-llxll Jo t mx(t)dt + 1_llxll m x 2

1 + log 5 a< a < -. (4.6.9)
- 12 3

Also, when N ~ 2, we can use (1.3.1), (4.6.3) and (4.6.7) to obtain

U2(X) ~ 2(1-lIxID ~ Ilx - YII-Nd,,'(y)
JB\B.

= 2(1 -llxll) 1+00

r:" dmx(t)
(1-lIxll)/2

~ 2N(1-llxID 1+00

t-N
-

1mx(t)dt
(1-lIxll}/2

< a(l-llxID 1+00

e'dt = 2a. (4.6.10)
- 3 (1-lIxll}/2 3

If we combine (4.6.8) - (4.6.10), we see that u(x) = UI(X) + U2(X) ~ a
whenever (4.6.7) holds.

Let Ea = {x E B : u(x) > a}. We have shown that, if x E E a, then
(4.6.7) fails and so there exists t x E (0,2) sucb that mx(tx) > atl:-

1
j 6N .

Since Ea <; UXEE
o

B(x, tx), we see from Lemma 4.6.1 that there is a countable
disjoint subcollection {B(Xk, tx,) : k ~ I} such that e; C;; Uk B(xk, rk) where
rk = 5t... Hence (4.6.5) holds. Also, it follows easily from Theorem 4.1.5 that
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If N = 2, then we similarly use (4.6.4) to obtain

r

(4.6.6)

(4.6.5)

(4.6.8)

(4.6.7)(t > 0).m (t) < ...!!-tN -
1

x - 6N

{x E B: u(x) > a} <; UB(xk,r.)
k

a a
<-<-.
- 3N 3
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and
'" N-I C )L-rk ~ -u(O,

k a

where C is a positive constant depending only on N. Further, if u is harmonic
on B, then rk > 5(1 -llxklD for each k.

B =B( 1- lI x ll)
x X, 2 '

U2(X) =GB(J.lIB\B.)(X) + I; (x).

In view of Theorem 4.2.5(ii), we obtain a finite measure J.l' on IRN by writing

for each Borel set E. We define mx(t) = J.l'(B(x, t».
Now suppose that x E B is such that

114

If N ~ 3, then GB(X, y) ~ IIx - y112-N , so we may use integration by parts
and (4.6.7) to obtain

UI(X) ~ N ~ 211lx - yI12-N(1_llyID-1dl.i(y)

~ (N _ 2)~1-llxllJ l."x - yI12-
Nd,,'(y)

2 {(I-lIxl!)/2

= (N - 2)(1-llxllJ Jo t
2

-
Ndmx(t)

2 {(I-lIxl!)/2

~ 1-lIxll J
o

tl-Nmx(t)dt

_l_(l- lIxll) I - N (l- lIxll)
+ N-2 2 m x 2

Proof. By the Riesz-Herglotz theorem and Riesz decomposition theorem, we
can write U as the sum of a potential and a Poisson integral: G BJ.l + I». For
each x E B we define
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(4.6.12)

and

Proof. We can write U as G B". Let n 2 2 and a > 0, and define

V n = GB(,.IB(o,l-n-'») and Un = GB("!B\B(O,l-n-'»)'

Thus U = Un + V n. By Lemma 4.2.2, V n has limit 0 at all points of S, Let
(B(xk, rk)) be a sequence of balls as in Lemma 4.6.3 for the superharmonic
function Un' By (4.6.5),

limsupu(rz) = lim sup un(rz) :s a
1'~1- r~l-

for any z in S such that the radius from 0 to z does not intersect the set
B(xk,rk)\ B(0,1/2) for any k. Since untO) --t 0 as n --t 00 by monotone
convergence, we see from (4.6.6) that limsuPr_H_ u(rz) :s a for er-almost
every z in S. The result now follows since a can be arbitrarily small, 0

In order to study the boundary behaviour of more general superharmonic
functions, we now examine boundary limit properties of harmonic functions.

Definition 4.6.5. (i) If z E Sand 0 < a < 7r/2, then we define the cone

rz,a = {x E B: (z-x,z) > Ilx-zllcosa}.

(ii) A function f : B --t IR is said to have non-tangential limit I at z E S if

lim f(x) = I
x~Z>XECr.o<

for every a in (0,7r/2).

Theorem 4.6.6. If f is a er-integrable function on S, then If has non­
tangential limit f(z) at a-olmost every point z of S.

Proof. Let E > 0, a > 0 and 0 < a < 7r/2. It follows easily from Lusin's
theorem (see Appendix) that there is a continuous function 9 on S such that
J If - glder < erNE. By Lemma 4.6.3 there is a sequence (B(Xkork)) such that

rk > 5(1 -lIxklll,

{x E B: Ilf-gl(x) > a} C; UB(Xk,rk)
k

L
N-l C CE

rk :s -Ilf-gl(O) < -.
a a

k

When E is small so are all the radii r«, and it is not hard to see that

U({ZES: limsup Ilf-g!(x) 2a}) :SC(N,a)Lr;;-l
x~z,XECr.o< k

C(N,a)E< , (4.6.11)- a

whereC(N, a) is a constant depending only on N and a, not necessarily the
same on any two occurrences. We also have the simple estimate

1 f erNEer({z E S: If - gl(z) 2 a}) :s - If - glder:S-.
a {If-gl~a} a

Further, by (1.3.4),

limsup IIf(x) - f(z)1 = limsup IIf-g(x) - (f - g)(z) + Ig(x) - g(z)1
::c~z,::cECr.", ::c~z,::cECr,o.

= limsup IIf-g(x) - (f - g)(z)1
x~z>XECr,,,,

:s limsup Ilf-gl(x) + If - gl(z).
x~z,xECr,,,,

Hence, by (4.6.11) and (4.6.12),

({ })
C(N, a)E

a z E S: limsup IIf(x) - f(z)12 2a :s a .
x~z,xECr,o<

Letting E --t 0, we see that

limsup IIf\x) - f(z)1 < 2a for er-almost every z E S.
x~z,xEC",,,,

Since a can be arbitrarily small, and a is arbitrary in (0,7r/2), the tbeorem

follows. 0

We know from Corollary 1.3.10 tbat any bounded harmonic function on B
can be expressed as the Poisson integral of a er-integrable boundary function
1- The above theorem shows that sucb a harmonic function bas finite non­
tangential limits almost everywhere on S, and identifies the limits with the
values of f almost everywhere. In view of the Riesz-Herglotz theorem the
next result shows that any positive harmonic function on B also has finite
non-tangential limits almost everywhere on S. We refer to the Appendix for
the terminology of the next result, which arises out of the Radon-Nikodyrn

theorem.

Theorem 4.6.7. (Fatou) Let h = I" , uihere t: is a measure on S, and let f
denote the Radon-Nikodym derivative of the absolutely continuous component
of,. with respect to a . Then h has non-tangential limit f(z) at a-almost every

z in S.

Proof. By the Lebesgue decomposition theorem and the Hadon-Nikodym the­
orem we can write dJ-i as [do + du, where v is singular with respect to (1,

Let u denote the non-negative superharmonic function min{1. Iv}. By Corol­
lary 1.3.10 and Theorem 1.3.8 we can write the greatest harmonic mino­
rant of u on B as Ig for some non-negative c-integrable function g. Then
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Proof. This follows immediately from Fatou's theorem and Littlewood's the­
orem in view of the Riesz decomposition theorem. 0

Exercise 4.7. Let u be a potential on a Greenian open set fl. By considering
subharmonic minorants, show that if 0 < p < 1, then uP is a potential on n.
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(izi < 1).

1
1 _ lanl an - z 1< 2(1 -Ianl)

an 1 - anz - 1 - R

and use the fact that IT f n converges locally uniformly on B if L 11 - f n I
converges locally uniformly on B.)

Show that the product is locally uniformly convergent on the unit disc B,
that Ifl < 1 on B, and that -log If I is a potential on B. (Hint: show that if

Izi :0: R < 1, then

Exercise 4.13. Let (an) be a sequence of complex numbers such that 0 <
lad :0: la21 :0: ... < 1 and L(1 - lanl) converges. Let f be the "Blaschke
product" defined by f = IT::'=I l«, where

fn(z) = lanl an - z
an 1- anz

Exercise 4.12. Show that if u is a positive superharmonic function on
RN (N 2: 3) with associated Riesz measure p'u, then r2

-
N P,u(B(O, r)) -+ 0 as

r -+ +00. (Hint: use Corollary 4.4.4.)

1
2.

sup log+ If(re;')1 dO < +00.
O<r<l 0

Exercise 4.14. Let hE 1i.(B). Show that the following are equivalent:
(a) there exist h" h2 E 1i.+(B) such that h = hi - h2 ;

(b) { (1-llxll)IIVh(x)112 dJ..(x) < +00;
Ji1hl<I}

(c) L(1 -lIxll)IIVh(x)1I2(1 + Ih(x)l)-3dJ..(x) < +00.

(Hint: compute LI(1 + h2)1/2 and LI(", 0 h), where e E C2(R) is a convex
function such that "'(t) = ItI when \tl 2: 1. Then use Theorem 4.2.5(ii) and
the subharmonic form of Corollary 4.4.6.)

Exercise 4.11. Let f be a non-constant holomorphic function on the unit
disc B. Use the result of Exercise 4.10 to show that if fiB) is Greenian, then
f belongs to the Nevanlinna class; that is,

Exercise 4.10. Show that if n is a Greenian open subset of R2
, then the

subharmonic function log+ Ilxll has a harmonic majorant on rl.

Exercise 4.9. Let rl be a Greenian open set and let p, be a measure with
compact support in n. Show that there exists an increasing sequence (un) of
potentials belonging to COO(rl) such that Un -+ GnP, on rl as n -+ 00.

Exercise 4.8-. Show that every positive superharmonic function on aGree­
nian open set (} is the limit of an increasing sequence of potentials on n.

r

(t > 0).f. (u(x',t))P dJ..'(x') = +00
RN-l
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Exercise 4.4. Let u E U(B), where u 2: O. Show that u is a potential on B
if and only ifM(u;O,r) -+0 as r -+ 1-.

Exercise 4.5. Let (un) be an increasing sequence of potentials on B. Show
that lim Un is a potential if and only if M (un; 0, r) -+ 0 as r -+ 1- uniformly
in n. Write down an increasing sequence of potentials (vn ) on B such that

lim v., == 1.

Exercise 4.2. Let D = RN - I X (0,+00) and 0 < p:O: (N -1)/N. Use the
inequalities (4.2.4) to show that for each y E D the function

t H IN-' (GD((X', t), y))pdJ..'(x')

is identically +00 on (0, +00). Using Lemma 4.1.8, deduce that if u is positive
and superharmonic on D, then

Exercise 4.1. Let B+ = {x E B : XN > O}. Write down the Green function
for B+ in terms of the Green function for B.

Exercise 4.3. Evaluate the distributional Laplacian of the subharmonic
function six) = elxd sin z-, on R x (0,1f).

Exercise 4.6. Let u = K (-, y), where K is the Poisson kernel of Band yES.
Show that if a > 0, then min{u,a} is a potential on B.

Corollary 4.6.8. Ifu is a positive superharmonic function on B, then u(rz)
has a finite limit as r -+ 1- for <7-almost every z in S.

Iv_go = Iv - Ig 2: 0, so v - 9<7 2: 0, and it follows that 9 = 0 almost every­
where (<7). Thus u is a potential on B. By Littlewood's theorem u, and hence
Iv , has radial limit 0 almost everywhere (<7) on S. By Harnack's inequalities
it follows easily that I; has non-tangential limit 0 at the same points of S.
The result is now established, in view of Theorem 4.6.6. 0
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Show that if

then h is the Poisson integral of some integrable function on S. (Hint: define
(y = (y', 0)).

{ If(y)1 ,
lo» 1 + IIYIIN dA (y) < +00,

r~.a = {(X',XN) : XN > allx' - y'll}

Prove that, if f :aD ---+ [-00, +00] satisfies

then the half-space Poisson integral If has non-tangential limit fly) at N­
almost every y E aD.

for every a > 0, where

Exercise 4.20. A function g : D ---+ [-00, +00] is said to have non-tangential
limit I at y E aD if

lim g(x) = I
x-+y,xEr~.",

for .\'-almost every (x',O) in aD. (Recall that A' denotes (N -1)-dimensional
Lebesgue measure on aD.)

(x E B)

roolo 1jJ(t) dt = +00.

1(1-llxlllllV'h(x)112(1jJ 0 Ihl)(x) dA(x) < +00,

(1 + IlxI1l 2 - Nu (0) :S u(x):s (1-llxll)2-Nu (0)

IIV'u(O)11 :s (N - 2)u(0).

(Compare the Harnack inequalities in Section 1.4.)

and deduce that

Exercise 4.16. Let u be a positive superharmonic function on IRN (N 2 3)
which is harmonic on B. Show that

1>(t) = litI { 1jJ(r) dr dr,

compute 11(1) 0 h), and use Corollary 4.4.6 and Theorem 1.3.9.)

Exercise 4.15. Let h E 'ti(B) and let 1jJ : [0, +00) ---+ (0, +00) be a decreasing
continuous function such that

Exercise 4.17. Suppose that 0 < a < N and let jJ, be a measure with
compact support in IRN . Define

Show that Uo,~ E U(IRN ) if a > 2 and Ua,~ E S(IRN
\ supp jJ,) if a < 2.

{x E B nD: u(x) > a} C;; UB(X.,rk)
k

Exercise 4.18. Let u be a positive superharmonic function on D = IR
N

-
1

X

(0, +00) and let a > O. Show that there is a sequence (B(xk,rk)) of balls such

that

and
L r;;-1 :s ~u(O, ... ,0,1),

a
k

where C is a positive constant depending only on N. Show further that, if u
is harmonic on D, then it can be arranged that rk > 5(1-lIxkll) for each k.

Exercise 4.19. Show that, if u is a potential on D, then
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5.1. Polar sets

Sets on which a superharmonic function can have the value +00 are called
polar. Since superharmonic functions are locally integrable, such sets must
be of Lebesgue measure zero. Indeed, polar sets are the negligible sets of po­
tential theory and will be seen to playa role reminiscent of that played by
sets of measure zero in integration. A useful result proved in Section 5.2 is
that closed polar sets are removable singularities for lower-bounded superhar­
monic functions and for bounded harmonic functions. In Section 5.3 we will
introduce the notion of reduced functions. Given a positive superharmonic
function u on a Greenian open set nand E ~ n, we consider the collection
of all non-negative superharmonic functions v on n which satisfy v ?: u on
E. The infimum of this collection is called the reduced function of u relative
to E in D. Some basic properties of reduced functions will be observed, in­
cluding the fact that they are "almost" superharmonic. Later, in Section 5.7,
deeper properties will be proved via an important result known as the fun­
damental convergence theorem of potential theory. Before that, however, we
will develop the notion of the capacity of a set, beginning with compact sets.
Taking u =0 1 and E to be compact, the above reduced function is almost
everywhere equal to a potential on D, and the total mass of the associated
Riesz measure is called the capacity of E. For arbitrary sets E, we will define
inner and outer capacity and, if these are equal, will term E capacitable.
It will take some effort to establish that most reasonable sets (including all
Borel sets) are capacitable. In Section 5.8 we will study the related notion of
logarithmic capacity for plane sets, which can be used to get around the fact
that OC2 is not Greenian. Finally, the metric size of polar sets will be studied
using the notion of Hausdorff measure. Polar sets in OCN will be shown to have
Hausdorff dimension at most N - 2, and a result in the opposite direction
will also be given.

Definition 5.1.1. A set E in OCN is called polar if there is a superharmonic
function u on some open set w such that E <;; {x E w:u(x) = +oo}.

It is clear from the local integrability of superharmonic functions that
polar sets have zero A-measure. Also, any subset of a polar set is polar.
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is a potential (see Theorem 4.2.5), and when N =2 the function
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(x E w)
(x E D\w).

v(x) = {u(X)
+00

5.1. Polar sets

IfN = 2, let

'" = ~ Z-k {I + 1, I log IlyllldVk(y)} -1 Vk·

Example 5.1.6. In view of Corollary 5.1.5(i), a non-empty relatively open
subset of a hyperplane cannot be polar. In particular, any line segment in OC2

is non-polar.

Theorem 5.1.7. Let E be a polar set. Then:
(i) E is contained in a G; polar set;
(ii) (J(E n S(x, r)) = 0 for any sphere S(x, r);
(iii) the inverse of E with respect to any sphere is polar.

Corollary 5.1.5. (i) If D is connected and E is a relatively closed polar
subset of D, then D\E is connected.
(ii) If D is a non-empty open set such that aD is polar, then D is connected

and D = IltN .

Proof. To prove (i), let w be a component of D\E, let u be a superharmonic
function on ]RN which is valued +00 on E, and define

Then v is lower semicontinuous and v(x)::: M(v;x,r) when xED and r
is small enough. Also, v 't +00, so v E U(D) and, in particular, v is locally
integrable on D. Hence D\E can contain no component other than wand (i)
is proved.

To prove (ii), suppose that aD is polar. Then OCN\afl is connected, by
(i). Hence IltN \fl = 0 and D is connected. D

Corollary 5.1.4. A countable union of polar sets is polar.

Proof. Let {E.: kEN} be a countable collection of polar sets. If N ::: 3, then
for each k we can choose a potential GI" on IltN such that Gl'k = +00 on
Ek and I'k(IltN ) :5 1. If N = 2, then for each k we can choose a logarithmic
potential Ul'k such that Ul'k = +00 on E k and Jlog(2 + Ilxll)dl'k(x) :5 1
(see (4.2.5)). In either case we define I' = ~k 2-kl'k and observe that the
function v = JUydl'(Y) is a potential (or logarithmic potential) on OCN which
is valued +00 on Uk Ei: D

Then (4.2.5) holds, so the function U'" is a logarithmic potential which is
valued +00 on E but is finite at O. This proves (ii). Further, ",(Ilt2) :5 1, so
if D is Greenian, then Gill' is a potential by Theorem 4.2.4. Hence (i) holds,
since Gil'" differs from UI' by a harmonic function (see Theorem 4.3.5). 0

)
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L 2- k Vk

I' = k 1 + Uk(0)'

Then ",(D) :5 1 and Gill' is a potential on D (see Theorem 4.2.4) which is
valued +00 on E but is finite at O. Thus we obtain the higher dimensional
case of (i).

vdA) = l'u(A n B k) for any Borel set A,
l'u(Bk) + 1

where I'u is the Riesz measure associated with u. It follows from Corollary
4.4.3 that the function Uk JUydvk(Y) is valued +00 on En B k. Also,
Uk(O) < +00, since 0 <t Bk.

If N ::: 3, let

In each of the above examples the function u is superharmonic on all of
IltN . The following result shows, in particular, that the function u in Definition
5.1.1 can always be chosen to have this property.

u(x) = 2::=Z-k(I+log+IIYkll)-'Uy,(x)

•

Proof. Since E is polar, there exist an open set wand a superharmonic func­
tion u as in the definition. We may assume that w <; D and z = 0 ¢ w. Let
(Bk) be a sequence of open balls such that B. C w for each k and Uk B k = w.
For each k we define a measure Vk by

Theorem 5.1.3. Let E be a polar set such that E C D, and let z E D\E.
(i) If D is Greenian, then there is a potential Gil'" valued +00 on E such
that Gil"'(Z) < +00 and I'(D) < +00.
(ii) If fl = OC2, then there is a logarithmic potential U'" valued +00 on E such
that U",(z) < +00.

u(x) = 2::= z-kUy , {z]

•

is a logarithmic potential (see (4.2.5)).
(ii) If N ::: 3, then the set E = {0}2 X IltN -

2 is polar, since the function

U(X1, ... ,XN) = -log(xi +x~)

is superharmonic on lRN . (Clearly u is continuous in the extended sense on
IRN

l harmonic on IRN\E, and satisfies the superharmonic mean value inequal­
ity at points of E.)

Example 5.1.2. (i) Any singleton {y} is a polar set, since Uy is a superhar­
monic function on OCN valued +00at y. In fact, any countable set {Yk: kEN}
is polar. To see this, we note that when N ::: 3 the function

124

I'
I

r



Proof. If wand U are as in Definition 5.1.1, then

Proof. This follows by a change in order of integration, in view of the sym­
metry and joint continuity of the Green function. 0

Theorem 5.1.8. (Reciprocity theorem) If I" and v are measures on a
Greenian set si, then JGnl"dv = JGnvdl".
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(5.2.1)

(x E n\Ln,E)
(x E Ln,E)'

(x E E).

5.2. Removable singularity theorems

u(X) = liminf u(y)
y-tx,yE{]\E

s(x) = {~vn'E(X) - u(x) - EW(X))+

The purpose of this section is to show that polar sets are removable singulari­
ties for several classes of functions. Let f be a function on n\E where EO = 0
and E C;; n. We will say that J satisfies a given condition near points of E
if each point of E has a neighbourhood V such that the function J satisfies

the condition on V\E.

5.2. Removable singularity theorems

Gn/-ln{x)::; u(x) + EW(X) +Esup{Gn{x,y):y E Knnsupp/-l}.

Proof. The uniqueness is immediate from the fact that any two such exten­
sions would be equal almost everywhere (.\). To prove existence, it is enough
to deal with the case where n is a ball and u > O. Let Z E n\E. Then, by
Theorem 5.1.3, there is &. positive superharmonic function v on n such that, .
v = +00 on E and v(z). <:: +00. For each n in N we define Un =u + v/n on
n\E and Un = +00 ori)E. Each function Un has limit +00 at every point
of E, and it follows easily from the hypotheses on u that Un E U{n). Let
w = infn Un- Clearly the lower semicontinuous regularization wof w satisfies

Theorem 5.2.1. Let E be a polar subset of n, where n is connected, and let
u: n\E -+ (-oo, +00] be a lower semicontinuous function which is bounded
below near points oj E. Suppose that u '" +00 and that, for each x in n\E,
there exists rx > 0 such that u{x) 2: M{u;x,r) whenever 0 < r < r«. Then
u has a unique swperhcrttumu: extension u to fl. Further,

Since e can be arbitrarily small, we conclude that G[]J.ln :S. u quasi-everywhere
and hence, by (3.2.2), everywhere on n. Finally, if we let n -+ 00 and appeal
to the monotone convergence theorem, we obtain u ~ Ga J.L on {}. 0

Since U+£W 2: vn,G on Ln,el the function s is subharmonic on [} (see Corollary
3.2.4). Further, s is a non-negative minorant ofthe potential Vn,E on n. Hence
s == 0, and so u + EW 2: Vn,E on all of n. If x E n\(Kn n supp 1"), we thus
have

E > O. Then U+ EW 2: Gnl" on supp 1". Let (Kn) be an increasing sequence of
compact subsets of n such that Un K n = n, and let /-In denote the restriction
of I" to K n. By Corollary 4.5.2 there is a compact subset Ln,E of K n n supp I"
such that I"n{Kn\Ln,E) < E and such that the function Vn,E = Gsr (I"nIL.,,)
is continuous on fl. Let

r
i
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Theorem 5.1.9. Let u be a locally bounded superharmonic function on n.
Then the associated Riess measure I"u has the properly that I"u{E) = 0 for
each Borel polar subset E of n.

Proof. Let E be a Borel subset of n which is also polar, let U be a bounded
open set such that V en, and let a = infuu. There is a potential Guv on U
such that Guv = +00 on Un E and v(U) < +00. The Riesz decomposition
theorem shows that u - a 2: GUl"u on U. Hence

(+oo)I"u(U n E) ::;1Guvdl"u = 1GUl"udv ::; v{U) sup{u - a) < +00,
u u u

by the reciprocity theorem, and so I"u(U n E) = O. Since this is true for all
such open sets U, we see that /-lutE) = O. 0

Definition 5.1.10. If a proposition P(x), concerning a point x in a set A,
is true for all z in A apart from a polar set, then P{x) is said to hold quasi­
everywhere (q.e.) on A, or for quasi-every point x of A.

Theorem 5.1.11. (Maria-Frostman domination principle) Let n be
Greenian and let Gnl" be a finite-valued potential on n. If u is a positive
superharmonic function on nand u 2: Gnl" quasi-everywhere on nn supp 1",

then u 2: Go» on n.

We saw in Example 4.2.9 that it is possible to put a non-zero measure on
a sphere in such a way that the resulting potential (or logarithmic potential)
is bounded above. It is not possible to achieve this upper boundedness if the
measure is to be placed on a polar set, as the following theorem shows.

co

E c;; n{x E w:u{x) > n},
n=l

Proof. There is a polar subset F of n n supp I" such that u 2: Gnl" on
(supp I")\F. Let W be a potential on n such that W = +00 on F and let

so (i) holds. There is a superharmonic function v on IRN which is valued
+00 on E. Since v is integrable over every sphere, (ii) holds. Finally, (iii)
follows from the fact that the Kelvin transform preserves superharmonicity
(see Corollary 3.3.5). 0
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Since w = u on fl\E, this yields (5.2.1) with w in place of u. 0

w(x) = liminf w(y):::: liminf w(y):::: w(x) (x E fl).
y~x,yEf}\E y-+x,yE.a\E

Proof. It is enough to deal with the case where fl is connected, in which case
the hypotheses of Theorem 5.2.1 are satisfied. 0

129

(x E fl).

5.3. Reduced functions

R;;(x) = inf{v(x):v E U+(fl) and v :::: uon E}

{
s+(x) (x E fl)

w(x) = 0 (x E jRN\(flU E)).

It follows from Theorem 5.2.1 (applied to -w) that w has a subharmonic
extension w to jRN. If N = 2, then because w is bounded it is constant (see
Corollary 3.5.4). Further, jR2\fl is not polar in view of Corollary 5.2.5, since
jR2 is not Greenian. Hence w attains the value 0 and so w == O. If N :::: 3, then
w(x) ---+ 0 as x ---+ 00 whether fl is bounded or not, so again w == 0 by the
subharmonic mean value inequality applied to w on large spheres. In either
case we conclude that s ::; 0 on fl. 0

Proof. Let E be the polar set of points y in afl where limsupx-->y s(x) > 0,
and let

5.3. Reduced functions

Theorem 5.2.6. Let s E S(fl), where fl is Greenian and s is bounded above,
and suppose that limsupx-->y s(x) ::; 0 for quasi-every point y in afl.
(i) If either N = 2 or fl is bounded, then s ::; 0 on fl.
(ii) If N:::: 3, fl is unbounded and limsupx-->oo s(x) ::; 0, then s ::; 0 on st.

Throughout Sections 5.3-5.6
fl denotes a fixed Greenian open set.

We denote by U+(fl) the collection of all non-negative superharmonic func­
tions on n.
Definition 5.3.1. If u E U+(fl) and E C;; fl, then the reduced junction (or
rUuite) of u relative to E in fl is defined by

It follows from Theorem 3.7.5 that the lower semicontinuous regularization
R;; is superharmonic on fl, that R;; = R;; almost everywhere (,x), and that

R;;(x) = liminf R;;(y) (x E fl).
y-->x

We call R;; the regularized reduced function (or balayage) of u relative to E

in fl.

Proof. Let y E fl\E. Any subharmonic minorant of Uy on fl\E has an ex­
tension to a subharmonic minorant of Uy on fl by Corollary 5.2.2, so fl is
Greenian by Theorem 4.1.2(iv). Further, it follows that the greatest subhar­
monic minorant of Uy on fl\E coincides (on fl\E) with the greatest subhar­
monic minorant of Uy on fl. Hence Gn\E{-,Y) =Gn("Y) on fl\E whenever
y E fl\E. 0

Finally, we can give the following improved version of the maximum prin­
ciple for subharmonic functions.

(5.2.2)(x E fl).w(x) =lim inf w (y )
y-->x

Chapter 5. Polar Sets and Capacity

Proof. Let u, be a harmonic majorant of s+ and let U2 = UI - S. By Corol­
lary 5.2.2, there is a non-negative superharmonic extension Uk of Uk to {l

(k = 1,2). Since s = u, - U2 on fl\E, the result now follows by applying the
Riesz decomposition separately to u, and U2. 0

In the above result, and the next, the hypothesis that E is polar cannot
be relaxed, as will be seen in Theorem 5.3.7.

Corollary 5.2.3. Let E be a relatively closed polar subset of fl. If h E
lI.(fl\E) and h is bounded near points of E, then h has a unique harmonic

extension to Il,

Proof. It follows from Corollary 5.2.2 that h (respectively -h) has a unique
superharmonic extension u, (respectively U2) to fl. Since u, = -U2 almost
everywhere (X), we obtain u, = -U2 on all of fl and hence u, E lI.(fl). 0

Corollary 5.2.5. Let E be a relatively closed polar subset of fl. If fl\E is
Greenian, then so also is fl and Gn\E("') = Ga(',') on (fl\E) x (fl\E).

Corollary 5.2.4. Let E be a relatively closed polar subset of a Greenian set
fl. If s E S(fl\E) and s+ has a harmonic majorant on fl\E, then there exist
h" h2 E 1I.+{I2) and measures /lo',1'2 on fl, where 1',(fl\E) = 0, such that
s = h, - h, + Gn/lol - Ga/lo' on fl\E.

Clearly w(z) =u(z), so w(z) = u(z). If we replace z by another point ai in
fl\E in the above argument, we obtain another function W, in U(fl) such
that W, = u = w almost everywhere (,x), and hence W, = weverywhere,
on fl. In particular, w(z,) = w,(z,) = u(z,). Thus w is a superharmonic
extension of u to fl. Finally, since w = +00 on E, we see from (5.2.2) and
the lower semicontinuity of tV that

Corollary 5.2.2. Let E be a relatively closed polar subset of fl. If u E
U(fl\E) and u is bounded below near points of E, then u has a unique su­
perharmonic extension to fl.

u ::; w ::; w on fl\E. Theorem 3.7.5 shows that W E U(fl), that w = w = u
almost everywhere {A), and that
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(5.3.1)

(x E E)
(x E D\E),

R~(x) = {~(X)

R~ = inf{R~:A is an open set which contains E}.

Proof. Assertions (i) and (ii) are immediate from Definition 5.3.1.
Let

Theorem 5.3.4. (i) If u:O; v on E, then R{f :0; R;;' and R;;' :0; R;;'.
E F "'E---F(ii) If E C;; F, then R u :0; R u and R u :0; R u .

(iii) The functions R{f and R;;' are equal and harmonic on D\E.
(iv) If F is a polar set, then R~UF = R~.

(v) If w is an open set, then R';; = R';;,

(vi) If u is finite-valued and continuous on an open set containing E, then

Some elementary properties of reduced functions are summarized below.

Proof. If (a) holds, then (c) follows from Example 5.3.2(iii). Clearly (c) im­
plies (b). If (b) holds and w is a component of D, then R~ = 0 almost every­
where (.\) on w, so in particular there exists Xo in w such that R?f(xo) = O.
For each n in N we may thus choose Vn in U+ (D) such that Vn 2: u on E and
vn(xo) :0; 2-n Let v = Ln Vn' Then v(xo) :0; 1, so v E U+(w). Since v = +00
on En w, this set is polar. Hence (a) holds, in view of the arbitrary nature
~w. 0

Lemma 5.3.3. Let E C;; a. The following are equivalent:
(a) E is polar;
(b) there is a positive superhormonic function u on D such that R?f == 0;

(c) R~ == 0 for every u in U+(D).

(iii) If E is a polar set and u E U+(D), then

and hence R?f == O. To see this, let Xo E D\E. We can use Theorem 5.1.3 to
obtain v in U+(D) such that v = +00 on E and v(xo) < +00. Thus v/n 2: u
on E for each n in N and so R~(xo) = O. Hence R{f = 0 on D\E, and it
follows that R?f = 0, since EO = 0.
(iv) If E C;; D and Y E EO, then Rgn(.,y) = Rgn(.,y) = Gn("Y)' To see this,
suppose that v E U+(D) and v 2: Gn(-, y) on E, and let Bo be an open ball
containing y such that Bo c EO. Since v 2: Gn("Y) on Bo, this inequality
holds on all of D by Lemma 4.1.8. Hence RaE ( ) = RaE ( ) = Gn("Y) onn ',y n .,y
D.

r
I

To see this we note that w E U+(B), since w is the minimum of two
positive superharmonic functions on B,and clearly w ~ u .o~ E. Fur~he:, if
v E U+ (B) and v 2: u on E, then v ::::: w on B by the m~lmum p~lllclple
applied to v - w on B\E. Hence R~ == wand, since Ru IS continuous,

RE =RE

(ii) Let 'k= 2, D = D = lib (0, +00), u == 1 and E = B«(O, 5/4), 3/4). Then

~ {I (Xi+(X2+1)2)}
R~(x) = R~(x) = min "2log3 xi + (X2 _1)2 ,1 (x E D)

(see Figure 5.2), by the same reasoning as was used in (i).

Figure 5.1.

Figure 5.2.

130 Chapter 5. Polar Sets and Capacity

It is immediately obvious that u 2: R{f 2: R{f 2: 0 on D, that u = R{f on

E and that R{f = R{f on EO.

Example 5.3.2. (i) Let N = 2, D = B, u == 1 and E = B(O,e '). Then
R{f = R{f = w, where w(x) = min{ -log Ilxll, I} (see Fignre 5.1).
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!

I
I!

Then :F is a saturated family and hence RI; E H(D\E), by Theorem 3.6.2,

so iiI; = RI; on D\E and (iii) holds.
If F is a polar set, then we can choose win U+(D) such that w = +00

on F. If v E U+(D) and v ::: u on E, then v + win::: u on E U F and hence
v+win> REUF for each n in N. If we let n --T 00 and take the infimum over
all possible choices of v, we see that RI; ::: RI;uF on the set where w < +00.
In view of (ii) we conclude that RI; = RI;uF almost everywhere (A). Hence
iiE = iiEUF almost everywhere (A) and so everywhere on D, proving (iv).

u u ,... "'-
If w is an open set, then R~ = R~ = u on w. Since R~ is superharmonic,

it follows that ii~ ::: R~. The reverse inequality is always true, so (v) holds.
Finally, if v E U+(D) and v ::: u on E, and if nEill, then v + lin> u on

some open set A which contains E. Hence v + lIn majorizes the function on
the right-hand side of (5.3.1). If we take the infimum over all possible choices
of v and n we see that R E also majorizes the right-hand side of (5.3.1). The, u

reverse inequality follows from (ii). 0

Theorem 5.3.5. If E is a compact subset of D and u E U+(D), then iiI; is

a potential.

Proof. We may assume that D is connected, Let K and L be comyact sets
such that E C KO, K c LO and LcD, let y E D and let v = R{f. Since
v E H(D\K), we can choose a positive constant a such that aGn("Y) ::: v

on {)L, If we define

{
V(x) (x E L)

w(x) = min{aGn(x,y),v(x)} (x E D\L),

~E

then w E U+(D) by Corollary 3.2.4, and w = v ::: u on E. Hence Ru ~ w.
Any harmonic minorant h of iiI; in D must thus satisfy h ~ aGoGy) on
D\L, and so on D, by the maximum principle. Hence h ~ 0 and RI; is a

potential on D, 0

Theorem 5.3.7. (i) Let E be a relatively closed non-polar subset of D. Then
there is a bounded continuous potential Gnp. on D, where p. 't 0 and supp u is
a compact subset of E. In particular, if E is compact, then there is a bounded
harmonic function on D\E which does not have a superharmonic extension
to D.
(ii) Let E be a closed non-polar set in 1It2 , Then there is an upper-bounded
continuous logarithmic potential Uti, where p. 't 0 and supp rz is a compact
subset of E.

Proof. We can choose a compact non-polar subset K of E, in view of Corol­
lary 5.1.4, To prove (i), let 1 denote the constant function of that valne on

~K .
D, We note that R, IS a non-zero bounded potential (see Lemma 5.3.3 and
Theorem 5.3.5) which is harmonic on D\K. Thus we can write it as Gnv,
where supp v <;; K by Corollary 4.3.9. By Corollary 4,5.2 there is a compact
subset L of K such that the function u = Gn (vIL) is a non-zero continuous
potential on D. The particular case follows by considering the function -u: it
is bounded and harmonic on fl\E. Further, if v is a superharmonic extension
of -u to D, then v + u is superharmonic on D and valued 0 outside E, so
v +u == 0 by the minimum principle. This yields the contradictory conclusion
that u E S(D), This proves (I).

To prove (ii), let D be an open disc such that KeD, and let Gnp.
be the potential in (i). Then Up. = Gnp. + han D for some h E H(D) by
Theorem 4.3.5, so (ii) follows, 0

Theorem 5.3.8. (Myrberg) Let Do be a non-empty open set in 1It2 . The
following are equivalent:
(a) Do is Greenian;
(b) 1It2 \Do is non-polar;
(c) log+ Ilxll has a harmonic majorant on Do;
(d) U+(Do) contains a non-constant function.

Proof. All four assertions clearly hold if Do is bounded, so we assume the
opposite. If (a) holds, then (b) follows from Corollary 5.2.5. If (b) holds then,
by the preceding result, there is a non-zero measure p. with compact support
K contained in 1It2 \Do such that Up. is bounded above, by a say, Clearly

Hence a + 1 - Up. is a positive harmonic function on no which majorizes a
positive multiple of log+ Ilxll, and so (c) holds. Clearly (c) implies (d).

It remains to show that (d) implies (a). In view of Theorem 4.1.2(v)
we may assume that Do is connected. Let u be a non-constant member of
U+(Do), We may assume (replacing u by min{u, b) for a suitable constant b,
if necessary) that u 'Ie H(Do), Thus we can find a compact subset K of no
such that p.u(K) > 0, Let Y E K, let w(n) = B(y, n) n Do, and let m be large

Lemma 5.3.6. (i) Let u E U+(D). If (Kn ) is a':. increasing sequence of com­

pact sets and the set w = Un K n is open, then R{;n -+ R~.
(ii) Let u: D --T (0, +00) be continuous and superharmonic. If (Kn ) is a de­
creasing sequence of compact sets and K = nn K n l then R~" -t R{;.

Proof. (i) Clearly the sequence (ii{fn) is increasing, so the limit function

v is superharmonic and satisfies v .::; R;:. Since R:fn = R~n = u almost
everywhere (A) on Kn for each n, it follows that v = u almost everywhere (A)
on w, and hence everywhere on w. Thus v :::~ and (i) is established.

(ii) This follows easily from Theorem 5.3.4(vi), 0

We will now show that we cannot relax the requirement that E be polar

in Corollaries 5.2.2 and 5.2.3,

Up.(x) + p.(K) log Ilxll --T 0 (x --T 00),
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(x -f 00)

(N =2)

(N 2: 3).
C(B(O, r)) =C(S(O, r)) = {{log(p/r)}-l

( 2-N 2-N)-1r -p

(iii) It is clear that Newtonian capacity is invariant under translations and
rotations. To see the effect of dilations, let K be a compact set in IRN (N ~ 3),
let K a = {ax:x E K} for each positive number a, and let VK denote the
capacitary distribution for K. Then

by dominated convergence. It is clear from the definition of reduced functions
that R:,""(x) =Rna-Ix). Hence

C(Ka) = lim IIxIIN-2 ii:,""(x) = lim IIxIIN-2iiK(a-Ix) = aN - 2C(K).
x --+co :c--+oo 1

To prove (iv), let L again be a compact subset of n such that K C L",
Since Gnl-'n E 1i(n\K) for each n, we have Gnl-' E 1i(n\K), so sUPPI-' <;; K.
Also, GnVL = 1 on K and supp VL <;; 8L. Thus

To see this, we observe from the minimum principle that, if v E U+(n) and
v 2: 1 on B(O,r), then v(x) 2: (r/llxll)N-2 on IRN \ B (O, r ). Hence

R B (O,r ) ( ) _ N-' . {II 112-N '-N}1 x - r mm x ,T 1

by monotone convergence and the reciprocity theorem. This proves (iv).
Finally, in (v), we know from Lemma 5.3.6(ii) that ii:,"" .j. iif. Hence

C(Kn) -f C(K), by (iv). D

Example 5.4.3. (i) If n = IRN (N 2: 3), then

C(B(O,r)) =C(S(O,r)) = r N - ' .

and it follows from Example 4.2.9(i) that C(B(O, r)) = r N - '. Thus also
C(S(O,r)) = r N - 2, by Lemma 5.4.2(i).
(ii) Similarly, if n = B(O,p) and a < r < p, then it follows from Example
4.2.9(iii) that

(iv) Let K be a compact subset of Bin JR2, let a > aand let K a be as in (iii).
Then lC(K) = aC(Ka), where ac(-) denotes capacity relative to n = B(O,a).
To see this, let U a denote the capacitary potential of K a in B(O, a) and let
Va be the corresponding capacitary distribution. Clearly ul(x/a) =ua(x) on
B(O, a) so, using the explicit formula for the Green function of a disc (see
Theorem 4.1.5(i)), we obtain

r
I

I
I

I-'l(n) = ! Govi.du« = ! Gnl-'ldVL

:s ! Gnl-'2dvL = ! GnvLdl-'2 :s 1-'2(n)

by the reciprocity theorem. Thus (ii) holds.
If J <; K, then ii{ :s iif, so (iii) follows from (ii).

Lemma 5.4.2. Let K be a compact subset of n. Then:
(i) C(K) = C(8K) = C(8k), where k denotes the union of K with the
bounded components w of n\K such that wen;
(ii) 1-'1 (n) :s 1-'2 (n) for any measures 1-'1 and 1-'2 on n such that supp 1-'1 <;; K
and Gnl-'l :s Gn1-'2; .
(iii) C(J) :s C(K) for every compact subset J of K;
(iv) I-'n(n) -f I-'(n) for any increasing or decreasing sequence (GI-'n) of poten­
tials converging on n\K to a potential Gnl-', where SUPPl-'n <;; K for each n;
(v) C(Kn) -f C(K) for any decreasing sequence (Kn) of compact sets such

that nn x; = K.

Proof. It follows from the minimum principle that, if v E u+(n) and v 2: 1
on etc, then v 2: 1 on tc and hence on K. Thus Rff< ~ Rf. Since 8k <;;
8K <;; K, we obtain iiff< = iifK = iif, and (i) follows.

To prove (ii), let L be a compact subset of n sucb that K C LO. Then
GnVL = 1 on K, so

Definition 5.4.1. Let K be a compact subset of n. It follows from Theorems
5.3.4(iii) and 5.3.5 that iif is a potential on n which is harmonic on n\8K.
We call this function the capacitary potential of K. The associated Riesz
measure vK, for which iif = Gn vK, is called the capacitary distribution of
K. Clearly supp VK <;; 8K. The (Green) capacity C(K) of K is defined by
C(K) = VK(n). All these definitions are relative to the fixed Greenian set n.
In the case where n = IRN (N 2: 3), we also refer to C(K) as the Newtonian
capacity of K. It is clear from Lemma 5.3.3 that a compact subset of n has
zero capacity if and only if it is polar.

5.4. The capacity of a compact set

We continue to use n to denote a fixed Greenian open set, and denote by 1
the constant function valued 1 on n.

enough so that K C w(m). It follows from the Riesz decomposition theorem
that u 2: Gw(n) (l-'uIK) on w(n) whenever n > m. Thus (a) holds in view of
Theorem 4.1.10(ii). D
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which is a potential on Q and is harmonic on Q\(K, UK,). Then

v, +v, ~ 2 ~ u on K, nK,.

Proof. Let Vk E U+U?) be such that Vk ~ 1 on Kk (k = 1,2). Also, let

_ R--KtUK2 + R--KtnK2
u - 1 l'

As before, Q denotes a fixed Greenian open set; all other sets are contained
in Q. We will now develop notions of capacity for arbitrary subsets of Q.

C'(E) = inf{C.(w):w is an open set containing E}.

These set functions take values in [0, +00). If E <;; F <;; Q, then clearly
C.(E) :S C.(F) and C'(E) :S C'(F). Further, it is easy to see from Lemma
5.4.2(iii) that C.(E):S C·(E). A set E is called capacitable ifC.(E) = C·(E).
Clearly any open set is capacitable. All these definitions are relative to the
fixed Greenian set Q.

and the outer capacity of E by
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Definition 5.5.1. If E <;; Q, then we define the inner capacity of E by

C.(E) = sup{C(K): K is a compact subset of E}

Proof. To prove (i), let K be compact and (Kn) be a decreasing sequence of
compact sets such that K eK~ for all n and nn «; = K. Then

Lemma 5.5.2. (i) Any compact set K is capacitable and C.(K) = C'(K) =
C(K).
(ii) Ifw is a bounded open set such thatwe Q, thenC.(w) = vw(Q), where
Vw is the Riesz measure associated with the potential Rio

5.5. Inner and outer capacity

C.(K) :S C'(K) :S C.(K~) :S C.(Kn ) =C(Kn) --+ C(K) =C.(K)

by Lemma 5.4.2(v), so (i) holds.
To prove (ii), we first note from Theorems 5.3.4(v) and 5.3.5 that Rf is

a potential. Let (Kn ) be an increasing sequence of compact sets such that

«; e K~+, for all n and Un tc; = w. Then }if' t Rf, by Lemma 5.3.6(i),
so

r
I

(5.4.2)

(5.4.1)
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On K,\K" we have

V >1> R-- K t UK 2 and > RKtnK2
1 __ 1 V2_1 1

so V, +v, ~ u. This last inequality can similarly be shown to hold on K,\K"
so it holds on all of K, uK,. It follows from the Maria-Frostman domination
principle that v, + V2 ~ U on Q. Taking infima over all possible choices of v,
and V2, we see that

u,(x/a) = ! GB(O,a) (z, y)dva(y)

! ( Ilx/a - (y/a)'II)
= log lIy/all Ilx/a _ y/all dva(y)

= ! GB(x/a,y/a)dva(y),

where y' = IIYII-'y, and hence

'C(K) = va(B(O,a)) = aC(Ka).

Theorem 5.4.4. If K, and K, are compact subsets of Q, then

R-- K tUK 2 +RKtnK2 < ilK1 +RK2.
1 1 - 1 1

136

!
Finally, since }if' = Rf' almost everywhere (A), we obtain (5.4.1) by taking
means over a ball in (5.4.2) and letting the radius shrink to a (see (3.2.2)).

o

C.(w) = lim C(Kn) = lim VK (Q) = "w(Q)
rr-e-cc n-eoo n

by Lemma 5.4.2(iv). o

Corollary 5.4.5. If K, and K, are compact subsets of Q, then

C(K, UK,) + C(K, n K,) :S C(K,) + C(K,).

Definition 5.5.3. If E is capacitable, then we write C(E) for the common
value of C.(E) and C'(E), and call this the capacity of E. In view of part (i)
of the above lemma, this is consistent with the earlier definition of C(K) for
com pact sets K.

oProof. This follows from the above theorem and Lemma 5.4.2(ii).

The property of capacity established above is called strong subadditivity.

Lemma 5.5.4. (i) If (wn ) is an increasing sequence of open sets, then

n



C(K U L) + C((K U L,) n (K U L,)) :5 C(K U L,) + C(K U L2).

o
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(5.5.2)

(5.5.3)
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n n

(ii) If E, and E2 are sets, then

n

on D. HenceRf 2: Gou; and so also ii.f 2: Gou. It follows from Lemma
5.4.2(ii) that /L(D) :5 vK(D). Thus the supremum in (i) is equal to

sup{vK(D): K a compact subset of E}

which, by definition, is C.(E). This proves (i) .
. To prove (ii), let /L be a measure on D such that Gfl/L 2: Ion E\F, where

F is some polar set, and let E > O. By Theorem 5.1.3(i) there is a measure /L'
on D such that Gou« = +00 on F and /L,(D) < E. Further, we can arrange
that Gfl/L' > 0 on each component of D. We can choose a bounded open set
W such that E <;; wand OJ C D and such that Gn(/L + /L,) > 1 on w. Hence
Gfl(/L + /L,) 2: R'f = Govo, and itfollows from Lemmas 5.4.2(ii) and 5.5.2(ii)
that

C(w) = vw(D) :5 /L(D) + /L1(D) < /L(D) + E.

Thus the infimum in (ii) is equal to

inf{C(w): w is open and E <;; w},

which, by definition, is C·(E). This proves (ii).

C (E, U E,) + C (E, n E,) :5 C (E,) + C (E2 ) .

(iii) If {En: n E I} is a countable collection of sets, then

Theorem 5.5.6. (i) If (En) is an increasing sequence of sets, then

We now generalize Lemmas 5.5.2(ii) and 5.5.4 to deal with arbitrary sub­
sets of D. Property (iii) below is referred to as countable subadditivity.

(iv) If E is a compact subset of D, then C'(E) = vE(D), where VE is the
Riesz measure associated with the potential ii.f.

Proof. In proving (i) we may assume that C'(En) < +00 for each n, for
otherwise the conclusion is trivial. Let E > O. For each n we choose an open
set W n such that En <;; W n and C(wn) < C (En) + 2-nE . We claim that

C CQ, wn) < ClEm) + (1- Tm)E

r
(5.5.1)C(WI U w,) + C(w, n W2) :5 C(w,) + C(W2)'

n n
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L\W2 C W, C W, and L\w, C W2 C W2

and define L, = L\W2and L, = L\W,. Then L, C WI,L2 C W2 and L,uL2 =
L\(W, n W,) = L. It follows from Corollary 5.4.5 that

Since L <;; K ULand K <;; (K U L,) n (K U L2), we obtain

C(L) + C(K) :5 C(K U L,) + C(K U L2) :5 C(w,) + C(W2)'

The following alternative characterizations of inner and outer capacity
are sometimes useful.

Theorem 5.5.5. If E is a compact subset of D, then:
(i) C.(E) =sup{/L(D): supp /L <;; E and Gn/L:5 1 on D};
(ii) C(E) = inf{/L(D): Gn/L 2: 1 quasi-everywhere on E}.

If we take the supremum over all possible choices of K and L, we obtain
(5.5.1).

It follows from (ii) that C(w, UW2) :5 C(WI)+C(W2) and hence, by induc­
tion, that

A countably infinite union of open sets is dealt with by letting m --t 00 and
using (i). 0

Proof. To prove (i), let /L be a measure on D such that supp /L <;; E and
Gfl/L :5 1, and let K = supp /L. Further, let v E U+(D) be such that v 2: 1 on
K. It follows from the Maria-Frostman domination principle that v 2: Ga/L

(iii) If {wn:n E I} is a countable collection of open sets, then

(ii) If w, and w, are open sets, then

Proof. To prove (i), we note that (C(wn)) is increasing and that limC(wn ) :5
C(Un wn). If K is a compact subset of Un W n, then K C Wm for some m, and
so C(K) :5 limC(wn). If we take the supremum over all possible choices of K,
we obtain C(Un wn) :5 limC(wn), and (i) is proved.

To prove (ii), let K be a compact subset of w, n W2 and L be a compact
subset of w, U W2. We choose disjoint open sets W, and W, such that
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m

n=l
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Then Wn is an open set containing E and W n E 1l(D\w) for each n. Since
V n ?: W n ?: iiI' and (wnUs decreasing, it follows that infn un?: lim W n ?: iiI'
on D and so lim W n = Rf on D\w. Also, W n ?: (1 - o)Rj'n. From parts (ii)
and (iv) of Lemma ~.4.2 we obtain vE(D) ?: (1- 0) lim V

W n
(D), and vw(D) ?:

vE(D) since R'l' ?: Rf. Thus, from Lemma 5.5.2(ii) we see that

C'(E) + 0> C(w) ?: vE(D) ?: (1 - 0) lim C(wn) ?: (1 - o)C'(E).
n....oo

Proof. Let U be a bounded open set such that U C D. It follows from Theo­
rem 5.5.6(iv) and Lemma 5.3.3 that

En U is polar ¢} iifnu == 0 ¢} C'(E n U) = O.

Since n can be written as a countable union of such open sets U, the "if" part
of the result follows from the fact that a countable union of polar sets is polar,
while the "only if" part follows from Theorem 5.5.6(iii). 0

Theorem 5.5.8. Let U E U(D). For each positive number 0 there is an open
subset W, of D such that C(W,) < 0 and ula\w, is continuous.

Since f can be arbitrarily small, we obtain vElD) = C'(E), as required. 0

Corollary 5.5.7. (Cartan) Let E ~ D. Then E is polar if and only if
C'(E) = O.

Proof. Let U be a bounded open set such that U c u. If we can show
that there is an open subset W, of U such that C(W,) < 0 and ulu\w, is
continuous, then the general result will follow easily from Lemma 5.5.4(iii).

Let K be a compact set such that U C KO and KeD, and let Jl denote
the restriction to KO of the Riesz measure associated with u. In view of
Theorems 4.3.5 and 4.3.8(i), there exists h in 1l(KO) such that u = h + GaJl
on K. We choose no in N such that no > 2Jl(D)/0 and define W = {x E U:
GaJl(x) > no}. Then C(w) $ Jl(D)/no < 0/2 by Theorem 5.5.5(ii). The
function min{GaJl,no} is a bounded potential: we write it as GaJl' and note
that GaJl' = GaJl on U\w.

For each n in N we use Corollary 4.5.2 to obtain a compact subset K n of
K such that Jl'(K\Kn) < 4-no and Co (Jl'IKn ) is continuous. If

Wn = {x E U:Ga (Jl'!K\KJ > 2I
-

n} (n E N),

then C(wn) < 2n-14~nf = 2-n- I o, and it follows that the open set W,
W U (Un wn ) satisfies C(W,) < e. Further, if y E U\W" then

lim sup lu(x) - u(y)1 = lim sup IGaJl(x) - GaJl(Y)I
x-+y,xEU\W~ x--+y,xEU\W"

lim sup [Ga (Jl'IK\K.) (x) - Go (lIK\K.) (y)[
X--+Y,XEU\W"

$ 22
-

n (n E N).

r
I

I
I

I
I

I

I

I

(5.5.4)

(m E N).

The case of a countably infinite union of sets is dealt with by letting m -t DC

and using (i). This proves (iii).
It remains to establish (iv). Let 0 < f < 1 and let W be a bounded open

set satisfying E ~ w, o c u and C(w) < C'(E) + f. In view of Lemma 3.7.4,
there is a sequence (un) in U+(D) such that un?: 1 on E and such that the
lower regularization of inf.; Un is Hf. Further, we may choose Ul to be the
constant function 1. Let

vn=min{ul 1u2,""Un} , wn=R:;;nandwn={xEw: wn > l - e}.

The reverse inequality is immediate, so (i) is proved.
To prove (ii), let WI and W2 be open sets such that E I ~ WI and E2 ~ w,.

Then

C'(EI U E2 ) + C'(EI n E2 ) $ C(WI U w,) + C(WI n w,) $ C(WI) + C(W2),

by Lemma 5.5.4(ii). If we take infima over all possible choices of WI and W2
we obtain (5.5.2). . .

It follows from (ii) that C'(EI UE2) $ C'(EI) +C'(E,), and induction
yields

00

C'( UEn) $ lim C'(En).
n ....oo

n=l

Since f can be arbitrarily small we obtain

e, ~ (~l wn) nWk+I,

and it follows easily from (5.5.4) that (5,5.3) holds when m = k + 1. By
induction (5.5.3) holds for all m in N. We let m -t DC and use Lemma
5.5.4(i) to obtain

C' (QI En) $ C (Q wn) $ J~moo C'(En) + f.

Since Ek ~ Ek+1 , we see that
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for each m in N. This inequality is obvious when m = 1. If it is true when
m = k, then we use Lemma 5.5.4(ii) to obtain

,,
I i

I
I



We call f: IRN --t IRN a contraction if Ilf(x) - f(y)11 :0; Ilx - yll for all x
and y.

Theorem 5.5.9. If E <;; IRN (N ::: 3) and f: IRN --t IRN is a contraction,
then the Newtonian outer capacity of f(E) satisfies C'(J(E)) :0; C'(E).

143

(5.6.2)
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m, m2 m4 m,
ma m, m8
m6 m9
mlO

5.6. Capacitable sets

So far we have shown that all open subsets and all compact subsets of a fixed
Greeman set n are capacitable. The purpose of this section is to show that
the class of capacitable sets is very large, and includes all Borel subsets of n.

Definition 5.6.1. Let K. denote the collection of all compact subsets of IRN.
The following formulation involves both N"', that is, the collection of all
[infinite] sequences of naturalnumbers, and also Uk Nk, that is, the collection
of all fimte sequences of natural numbers. A subset A of IRN is called It'
'f here exi (k ana y sc
1 t ere exists a map K: Uk N ) --t K. such that

A = U (K(m>J n K(m" m2) n K(m" m2, m3) n ...) . (5.6.1)
(m.)ENN

The class of all analytic sets will be denoted by A.

Lemma 5.6.2. (i) If (An) is a sequence of analytic sets. then nn An and
Un An are analytic. .
(ii) Every Borel set in jRN is analytic.
(iii) If A is analytic and A <;; n, then the compact sets K(m ) .
(561)

l, ... ,mn on
" can be chosen to be subsets of n.

Proof To prove (i), let (A,) be a sequence of analytic sets. Then, for each I,
there IS a map K,: (Uk Nk

) --t K. such that

A, = U (KI(m,)nK,(ml,m2)nKI(m"m2,ma)n ...).
(mn)ENN

Let n ..... (a(n), b(n)) be a bijective map from N to N'. If we define
K: (Uk Nk

) --t K. by

then

A, = U (K(m>J nK(m"m2)nK(m"m"m3) n ...).
{(m.),a(m.)=lj

Hence U,- AI is equal to the right-hand side of (5.6.1) and so is analytic.
We will next show that n, AI IS also analytic. To each (m n) in N'" there

corresponds a function f: N' --t N defined by equating f(l,p) to the (I )_
entry of the infinite matrix ,P

o

o

(0 --t 0).

(x E E)

:0; lim C(Kn )
n-eco

I;ak = vd8L) =C(L).
k

n .

I;akll x - YkI1 2
-

N
::: 1- 0

k==l

C(J(E)) :0; C(L)j(l - 0) --t C(L)
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= C(w)

< C'(E) + E.

Since 0 is arbitrary, the result follows.

and

n

u(x) = I; akllx - f(Yk)11
2

-
N

k=l

then u(J(x)) ::: 1 - 0 when x E E since f is a contraction. Hence u ::: 1 - 0

on the compact set f(E), so (1- o)-lU ::: Ri(E), and it follows from Lemma

5.4.2(ii) that

If we define

If we replace L by L n , where (L n ) is a decreasing sequence of such compact
sets satisfying nn L n = E, then we obtain C(J(E)) :0; C(E), in view of Lemma
5.4.2(v).

Now let E be an arbitrary set and, ignoring the trivial case where C' (E)
is infinite, let w be an open set such that E <;; w and C(w) < C'(E) + e. Let
(Kn ) be an increasing sequence of compact sets such that Un K n = w. Then,
by Theorem 5.5.6(i) and the special case established above,

C(J(E)) :0; C'(J(w))

= lim C(J(Kn ) )
n-eoo

Proof. We begin by considering the case where E is compact. Let L be a
compact set such that EeL' and let 0 < 0 < 1. Then GVL = 1 on E.
Further, since (x, y) ..... IIx-yll'-N is uniformly continuous on the compact set
E x aLl we can choose points Yl, Y2, ... ,Yn in 8L and non-negative constants
aI, a2,·· ., an such that

Hence uln\w, is continuous.
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n n

We then define K (m" ... ,mn) to be the entry in the infinite matrix

1455.6. Capacitable sets

C,(A) 2: C(F) = lim C(Fn) 2: lim C'(En ) > a.
n--+= n-+co -

If we let a -t C'(A) we obtain C,(A) 2: C'(A), and the reverse inequality is
always true. Hence A is capacitable. 0

Pi= U (K(m,)n ... nK(m" ... ,ml)) (lEN)
{(mn)EN/:mnSkn when n::;tl

Proof. Suppose that A <; D and A E A. Then we can write A as in (5.6.1),
where each compact set K(m" .. . ,mn) is contained in D (see Lemma 5.6.2
(iii)). Let a < C'(A). We inductively define a sequence (kn ) of natural num­
bers as follows. In view of Theorem 5.5.6(i), a sufficiently large choice of
k, will ensure that the set E, of Lemma 5.6.3 satisfies C'(E,) > a. Given
k
"

k2 , ... , kn- 1 such that C'(En_ ,) > a, we can similarly choose k« large
enough such that C' (En) > a.

Now that (kn ) has been defined, we see from Lemmas 5.4.2(v) and 5.6.3
that

and F = nl F,. Then:
(i) E; <; A and E, <; Pi for each I, and (E l ) is a decreasing sequence of sets;
(ii) (Pi) is a decreasing sequence of compact sets, and Fe A.

Proof. It is clear that (i) holds. Further, each set Fl is a finite union of compact
sets, and so is compact, and the sequence (Pi) is obviously decreasing. It
remains to show that F C A.

Let x E F. Then, for a-;1Y choice of I, there is an I-tuple (m\'l, m~l), ... ,m!'»)

such that m~) :": kn for each n in {I, 2, , I), and such that

x E K(m\ll) n K(m\l) ,m~l») n n K(m\'), ... ,mil»).

Since m\') E {l, ... , k,} for each I, there exists m; in {I, ... , k,} such that

m\l) = m; for infinitely many l. Similarly, there exists m~ in {I, ... , k2 } such

that (m\l), m~'») = (m;, m~) for infinitely many l. Proceeding in this manner,
we obtain a sequence (m~) such that

x E K(m;) n K(m;,m~) n K(m;,m;,m;) n... <; A.

Hence F <; A, and (ii) is proved. 0

Theorem 5.6.4. (Choquet) Every analytic subset of a Greenian set D is
capacitable.

Lemma 5.6.3. Suppose that A is given by (5.6.1), let (k n ) EN"', and define

E,= U (K(m,)nK(ml,m2)n ...) (lEN),

{(mn)ENN':mn:::;k n when n:S;/}

T
I

(n =1)
(n 2: 2),

K , (1(1, 1), f(l, 2)) K , (1(1, 1), f(l, 2), f(l, 3))

K 2 (1 (2, 1), f (2, 2))

) {
i-;

K(m" ... ,mn = L nK'(m m)
fit 2,·," n
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K, (1(1, 1))
K 2 (1 (2, 1))
K 3 (1(3, 1))

and so U An E :F. Thus :F is a cr-algebra which contains the open sets. It
follows th':.t :F, and hence A, contains the Borel sets. This proves (ii).

Finally, suppose that A is analytic and that A <; D. Then there is a

mapping K': (Uk Nk ) -t K such that

A= U (K'(m,)nK'(m"m2)nK'(m
"m

2, m3)n ...).

(m.)ENN

Let (Ln ) be an increasing sequence of compact sets such that Un Ln = D. If

we define

¢} VI E N 3(m~)) EN'" such that x E K,(m\')) n K,(m\'), m~'») n .. ,
¢} 3f: pf -t N such that

x E n(K,(f(l, 1)) n K<U(l, 1),/(1, 2)) n K<U(I, 1), f(l, 2), f(l, 3)) n ...).

'EN

Hence n A, equals the right-hand side of (5.6.1) with the map K as defined
above in 'this paragraph, and so is analytic. This completes the proof of (i).

We now prove (ii). Any compact set E is analytic, as can be seen from
defining K (mIl' . . ,fin) = E for any choice of natural numbers ml, ... 1 fin·

Since any open set and any closed set can be written as a countable union of
compact sets, it follows from (i) that such sets are also analytic. Now let :F
be the collection of analytic sets A for which IRN \A is also analytic. If (An)
is a sequence of sets in :F, then (i) shows that Un An E A and

then each compact set K(ml,"" mn) is contained in D and (5.6.1) holds.
o

which corresponds to the position of m n in (5.6.2). Thus, for example,
K(m"", ,mg) =K 3 (f (3,1),f(3,2)). Now

xEnA,
I
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5.7. The fundamental convergence theorem

o

147

(n? no;x E K).

(n? no;x E K).

5.7. The fundamental convergence theorem

Since v = v = £l almost everywhere (A), it follows that iJ. = h + GvJ.' on U,
and so v = 11. quasi-everywhere on U. Since it :s u :s v, we obtain u = u
quasi-everywhere on U. This proves (ii) in view of the arbitrary nature of
U. 0

Corollary 5.7.2. Let (un) be a sequence inUrn), where n is connected. Sup­
pose that (un) is locally uniformly bounded below and let u = liminfn--> = Un'

If U 't +00, then iJ. E Urn) and iJ. = u quasi-everywhere Further, if u ? M
on n, then for any compact subset K of nand E > 0, there exists no such
that

continuous potential Gv u on V such that v 't 0 and supp v <:; K. Hence, by
the reciprocity theorem and Fatou's lemma,

r GvJ.' dv = /Gvv dJ.' = lim /Gvv dJ.'n. = lim r GVJ.'n. dvlK k-+oo k-+ooJK

? r lim GVJ.'n. dv > rGvJ.' dv,JK k-+oo lK
which yields a contradiction. Thus C.(E) = 0 and, since E is a Borel set, it
follows that C'(E) =0, whence E is polar. We have now established that

v = lim V n = lim (hn + GVJ.'n) = h + GvJ.' q.e. on U.
n-too n-eoo

Proof. Let V n = inf{uk: k ? n}. Then vn E Urn) and Vn = V n quasi­
everywhere by Theorem 5.7.1. Since (vn) is increasing, the function v =
lim n --+oo Un is either superharmonic or identically +00 on il, and v = u quasi­
everywhere. Also v :s: il ~ u, so v = it on n. Hence il = u quasi-everywhere
and if u 't +00, then ii E Urn).

Now we recall Dini's theorem which says that, if (In) is a decreasing
sequence of upper semicontinuous functions on a compact set K and In -+ 0
pointwise, then the convergence is uniform on K. (This follows easily from
the observation that, for any e > 0, the open sets {x: fn(x) < e] cover K.)
Let M,K, E be as stated. Then «M -vn )+ ) is a decreasing sequence of upper
semicontinuous functions on n with limit 0, so there is an no such that

Theorem 5.7.3. Let n be Greenian. All reduced functions below are offunc­
tions in U+(n) relative to subsets of n.
(i) Ii;; = R;; quasi-everywhere on a.

The fundamental convergence theorem allows us to establish some further
properties of reduced functions.

(n E N).+00 > inf VI > inf V n > inf Gv "n > aJ.'n(U)u -u -u t"'_
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Theorem 5.7.1. Let F be a family in U(n) and let u = inf:F. If:F is locally
uniformly bounded below, then
(i) £l E Urn);
(ii) £l = u quasi-everywhere;
(iii) £l(x) = liminfy --> < u(y) (x En).

Proof. We know from Theorem 3.7.5 that (i) and (iii) hold, and that £l =
u almost everywhere (A). By Lemma 3.7.4 there exists a sequence (un) of
functions in:F such that iJ = u, where v = infn Un' Let Vn = min{Ul

1
" " un}.

Then (vn) is a decreasing sequence in U(n) with limit v.
Let U and V be open balls such that V C V and V en, and let J.'n de­

note the restriction to U of the Riesz measure associated with V n . By adding
a suitable constant to all the functions we may assume that V n > 0 on V for
each n. The Riesz decomposition theorem and Theorem 4.2.3 together yield
that V n = hn + GVJ.'n on U, where hn E 1l+(U). By choosing a suitable sub­
sequence, if necessary, we may assume that (hn ) converges locally uniformly
on U to a harmonic function h (see Theorem 1.5.11). Hence (GVJ.'n) also
converges on U.

Let a denote the infimum of Gv (-, .) on U xU. Then a > 0 and

The results of the previous section, when combined with Corollary 5.5.7,
reveal that any Borel set of inner capacity zero (for some Greenian set n) is
polar. It is this crucial fact that will now enable us to improve Theorem 3.7.5
by showing that, if u is the infimum of a family of superharmonic functions on
n which is locally uniformly bounded below, then the exceptional set where
£l i' u is not just of A-measure zero, but actually polar. We no longer assume
that n is Greenian, unless this is explicitly stated. The following result is
known as the fundamental convergence theorem of potential theory.

Hence (see Appendix, Theorem A.lO) there is a subsequence (J.'n.) of (J.'n)
which is w' -convergent to some measure J.' on V. It follows that

lim GVJ.'n.(x) ? lim /min{Gv(x,y),m} dJ.'n.(Y) (m E N;x E U)
k-+oo k-+oo

= / min{Gv(x,y),m} dJ.'(y) ---t GvJ.'(x) (m ---t 00).

E = {x E U: lim GVJ.'n.(x) > GVJ.'(X)} ,
k-->=

and suppose that C.(E) > O. Then there is a compact subset K of E such
that C(K) > O. It follows from Theorem 5.3.7(i) that there is a bounded



148 Chapter 5. Polar Sets and Capacity 5.7. The fundamental convergence theorem 149

Gw(x,y) ~ Uy(x) - {hy(x) +vy(x)} = Gn(x,y) - vy(x) (x,y E w),

Proof. Let yEw, let hy be the greatest harmonic minorant of Uy on D and

let vy = R~~(.,y)(x). Then Gn(',y) = Uy - hy and Gn(-,y) 2: vy so hy +vy
is a harmonic minorant of Uy on w. Hence

by the lower semicontinuity of v y, and thus Gw(-,Y) has limit 0 quasi­
everywhere on D n aw by Theorem 5.7.3(i).

If N 2: 3, then we can apply the preceding paragraph with the pair IRN , D
in place of the pair D, w to obtain (i). (Clearly Gn(', y) has limit 0 at 00 if D
is unbounded, since Gn(',y) ~ Uy.) If N = 2, then 1R2\D is non-polar. Thus,
if Z E aD and 0 is sufficiently small, 1R2\(DUB(z,o)) is non-polar. We can
therefore apply the preceding paragraph with the pair DUB(z,E), D in place
of D,w to see that Gn(-, y) has limit 0 quasi-everywhere on B(z, 0)n aD. In
view of the arbitrary choice of z, (i) follows.

In proving (ii) we may assume that D is connected. Let z E supp p and
let U be a bounded connected open set such that supp p C U and 1] c si. By
Harnack's inequalities applied to the functions Gn(x, '), there is a positive
constant c such that

Integration with respect to dp(y) yields

(ZEnnaw)

(x E D\U;y E SUPPIL)·Gn(x,y) ~ cGn(x,z)

o~ limsup Gw(x,y) ~ Gn(z,y) -vy(z)
:t:-+z,xEw

so

(ii) R{f = inf{v E U+({l):v 2: u quasi-everywhere on E}.
(iii) R{f = R{f on (D\E) U EO.
(iv) If (En) is an increasing sequence of sets and E = Un En, then R{f' ~ R{f

and R~n -4 R~.
(v) If (un) is an increasing sequencefromU+(D) and lim Un is superharmonic

""E .--E
on a, then RUn t R lim u n '

Proof. Part (i) follows from the fundamental convergence theorem, since R{f
is the infimum of a family of non-negative superharmonic functions.

Since R{f ::::: Rtf ::::: u quasi-everywhere on E, the non-negative super­
harmonic function .ii{f certainly majorizes u quasi-everywhere on E. If v is
another non-negative superharmonic function with this property, then there

~E\F ~E
is a polar subset F of E such that v 2: u on E\F. Hence v 2: Ru = Ru by
Theorem 5.3.4(iv), proving (ii).

We know that RE = R E on EO. To prove equality at any point Xo of
u U .-.. E

D\E, let F be the polar subset of E where R{f < R u ' and choose v in U+(D)
such that v = +00 on F and v(xo) < +00 (see Theorem 5.1.3(i)). Then
R{f + vln 2: u on E, so R{f + vln 2: R{f for each n in N. If we let n ~ 00,

we obtain R{f(xo) 2: R{f(xo)' whence R{f(xo) = R{f(xo) and (iii) isproved.
If (En) is an increasing sequence of sets, then (R{f') and (R{f') are

increasing. Thus the function v == limn --+oo R~n is non-negative and super­
harmonic, and clearly v :::; R~. From (i) v majorizes u qU~i-everywhere on
each set En and so quasi-everywhere on E, whence v 2: R{f by (ii). Thus

v = R{f. Also, by (iii),

Hence (iv) holds.
Finally, if (un) is increasing, then (R{f.) is increasing, so the function

v ::::: lim n --+oo fiE is in U+(f2). Also, v ::::: lim Un quasi-everywhere on E sinceu.
~ ~E

R{f. = Un quasi-everywhere on E. Thus R Um u • ~ v by (ii), and the reverse
inequality is obvious, so (v) holds. 0

Corollary 5.7.5. Let D be Greenian and y E D. Then Gn(-, y) has a sub­
harmonic extension to IRN \ {y} which is valued 0 quasi-everywhere on aD
and everywhere on IRN \ D.

and so (ii) holds.
Finally, if u is a harmonic minorant of Gn(', y) - vy on w, then we see that

limsupz-->z u(x) ~ 0 for quasi-every z in Dnaw by the first paragraph of the
proof, and for quasi-every z in aD n aw by (i). It follows from Theorem 5.2.6
that u ~ 0 on w and this establishes (iii). 0

{

u(x) = R{f(x)
lim RE • (x) =

n-->oo u lim R~'(x)=R~(x)=R~(x)
n-->oo

(x E E)

(x E D\E).

Gnp(x) ~ cp(D)Gn(x,z) (x E D\U),

then it follows from Theorem 5.2.1 that u has a subharmonic extension to
~\b}· 0

Proof. From part (i) of the above theorem there is a polar subset F of aD
such that Gn(-, y) has limit 0 on aD\F. If we define

Ii

i
Ii

Theorem 5.7.4. Let w be an open subset of a Greenian set D and p be a
measure on si. Then:
(i) for each y in D, the function Gn(',y) has limit 0 at quasi-every point of
aD (and also at 00 if D is unbounded and N 2: 3);
(ii) Gnp has the same limiting behaviour if supp u is a compact subset of D;

(iii) Gw(x,y) = Gn(x,y) - R~~(.,y)(x) when x,y E w.

u(x) = {~n(x,y) (x E D\{y})
(x E IRN\(D U F)),



5.8. Logarithmic capacity

151

I
= -log­

4'

as x ~ 00.

5.8. Logarithmic capacity

hK(X) = lim Gn(x,y) =Gw(x·,O).
y->co

{

+00 if l'(oK) < 1
hK(x) + UI'(x) -+ I if l'(oK) =1

-00 if l'(oK) > 1

r(K) = lim «hKoT/J)(z)-loglT/J(z)1) = lim 10g(ll(zl)l)
a-eoo a-eoo ¢ Z

It follows from the mean value property of harmonic functions that 1'(oK) =
1 and b« + UI' == I, so the lemma is established. 0

and the right-hand side of the above equation has a finite limit I as z" -+ 0,
by the definition of Gw (-, 0). Thus (ii) holds. Finally, b« has a subharmonic
extension to lll.2 valued 0 on KO (see Corollary 5.7.5). Let I' denote the Riesz
measure associated with this extension. Then hK+UI' E 1l(lll.2) and supp u <;
oK. Also,

Definition 5.8.2. Let K, n and ti« be as in the above lemma. Then b« is
called the Green function for n with pole at 00. The limit I in (ii) is denoted
by r(K) and called the Robin constant of K. The logarithmic capacity of any
compact set K is defined by

c(K) = {e-r(K) if K is non-polar
o if K is polar.

We note that, if J <; K, then r(J) e: r(K) by Lemma 5.8.1 and Theo­
rem 4.1.1O(i), and so c(J) :5 c(K). The measure I' in Lemma 5.8.1, which is
uniquely determined since UI' is, is called the equilibrium measure of K.

We will use Reo to denote Green capacity relative to the disc B(O, R).

Since the Kelvin transform preserves superharmonicity (Corollary 3.3.5), the
image of a polar set under inversion is polar, and so we can see from Theo­
rem 5.7.4 that (i) holds. Clearly

hK(x) - log Ilxll = Gw(x', 0) - Uo(x'),

Hence

Example 5.8.3. (i) If K is B(O,r) or S(O,r), then clearly hK(x) = logllxll­
log r-, so r(K) = -logr and c(K) = r,
(ii) If K is a line segment of length I, then c(K) = 1/4. To see this, we
identify lll.2 with C in the usual way and let K = 1-1/2, 1/21. The function
T/J(z) = (114)(z + Z-l) maps {z: Izi > 1} bijectively to C\K, and it follows
from the characterization of li« in Lemma 5.8.1 that

(5.7.1)

(x E n)

(x,YEn).
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Theorem 5.1.6. Let n be Greenian and E <; n. Then
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Lemma 5.8.1. Let n = lll.2\K, where K is a compact non-polar set. There
is a unique non-negative harmonic function h« on n such that
(i) b« has limit 0 quasi-everywhere on oK and is bounded near oK;
(ii) hK(x) -log Ilxll has a finite limit I as x -+ 00.

Further, there is a unit measure I' on oK such that

Proof. Let x, yEn and n E N, and let E(n) = E\(B(x, lin) UB(y, lin)). If
E is a relatively closed subset of n, then

We cannot define (Green) capacity relative to lll.' since this set is not Gree­
nian. In this section we describe a set function, called logarithmic capacity,
which is defined on subsets of lll.' and shares some of the properties of Green
capacity. Throughout this section we assume that N =2.

Finally, if E is an arbitrary subset of n, then Theorem 5.3.4(vi) together
with the conclusion of the preceding paragraph yields (5.7.2), and (5.7.1)
again follows on letting n -+ 00. 0

and UI' = I quasi-everywhere on K.

R~;;;)z.)(Y) = R~~r>.y)(x) (5.7.2)

by Theorem 5.7.4(iii) and the symmetry of Gn("') and Gn\E(n) (., .). If we let

n -+ 00 and use Theorem 5.7.3(iv), we obtain (5.7.1), since R;;\{z,y} = R;;
for any u in u+(n).

If E is open, we let (K(n)) be an increasing sequence of compact sets
with union E and apply the previous paragraph to obtain

-E . -K(n) . -K(n) -E
Ran(z .)(y) = hm R a ( .)(y) = hm R a (. )(x) = Ra n(. y)(x)., n-+oo n z , n-+oo n ,y >

Proof. The uniqueness follows from Theorem 5.2.6. We assume, without loss
of generality, that 0 E K. Let x· denote the inverse of x with respect to the
unit sphere and let W = {x': x E n}U{O}. We know from Myrberg's theorem
that n is Greenian, and hence from Theorem 4.1.11 and Corollary 5.2.5 that
W is Greenian and Gn(x,y) = Gw(x',y') when x,y En. Thus we can
define



uniformly on the compact subsets of B(O, Ii.(,). (We interpret e- I/ a as 0 when
a = 0.)

Proof. If K is a polar compact subset of B(O, Ii.(,), then RC(K) = 0 when
R ~ Ii.(" and the convergence in (5.8.1) clearly holds. Now suppose that K is
a non-polar compact subset of B(O, Ii.(,) and let VK,R denote the capacitary
distribution of K relative to B(O, R) when R ~ Ii.(,. From Theorem 4.1.5,

( { ( ) dVK,R(n)(y)
Un x) = i

K
GB(O,R(n))(X,y) -logR(n) R(n)C(K) (x E B(O,R(n)))

and Un = 0 on 1R2\ B (0, R (n )). Then Un :s; {R(n)C(K)}-1 - 10gR(n) on
B(O, R(n)), with equality quasi-everywhere on K. It follows from (5.8.2) and
the convergence to 0 of fR(-,') that (un) is locally uniformly bounded below
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(5.8.5)

(5.8.4)

(5.8.3)

Ulxll > Ii.(,).

5.8. Logarithmic capacity

1 < RC(K) < 1
r(K) + 10g(R + Ii.(,) - - r(K) + 10g(R - Ii.(,)'

log (1 -~) :s; (RC~K) - log R) - r(K) :s; log (1 + ~ ) .

c.(E) = sup{c(K): K is a compact subset of E}

and the outer logarithmic capacity of E by

c'(E) =inf{c.(w): w is an open set containing E}.

These set functions take values in [0,+00]. We note that, if E <; F <; n,
then c.(E) :s; c.(F), c'(E) :s; c'(F) and c.(E) :s; c·(E). A set E is called

Definition 5.8.5. If E <; 1R2 , then we define the inner logarithmic capacity
of E by

whence

so a+log(R-Ii.(,) :s; v-h quasi-everywhere on K and v-h :s; a+log(R+Ii.(,) on
B(O, R) (see (5.8.3)). Since v - h is a potential on B(O, R) by Corollary 4.4.7,
it follows from Theorem 5.5.5 that

This establishes that the convergence in (5.8.1) is uniform over the collection
of all compact subsets of B(O, Ii.(,). 0

1 < '() I 1
log Ilxll + Ii.(, - v x :s; og IIxll - Ii.(,

It now follows from Lemma 5.8.1 that a - v= hK , and that r(K) = a. Thus
a is independent of the choice of (R(n)), so {RC(K)}-I -logR --+ r(K) as
R --+ +00, by (5.8.3), and (5.8.1) holds. Further, from Lemma 5.8.1, the Riesz
measure 1'0 associated with v satisfies 1';, (1R2 ) = 1.

To prove that this convergence holds uniformly over the collection of all
compact subsets K of B(O, Ii.(,), let h denote the greatest harmonic mmorant
of von B(O, R). Then it follows from (5.8.4) that

1 1
log R + Ii.(, :s; h :s; log R _ Ii.(, on B(O, R),

v(x) :s; l\~~f ({R(nk)C(K)} -I -lOgR(nk ) ) = a, say,

with equality quasi-everywhere on K. Since K is non-polar, a < +00. Also,
from (5.8.2) and the local uniform convergence to 0 of fR(','),

on 1R2 and locally uuiformly bounded on lR2 \K. Since Un is harmonic on
B(O, R(n))\K, it follows from Theorem 1.5.11 that we can choose a subse­
quence (un,) which converges locally uniformly to a harmonic function on
1R2 \K. Let v = lim infk->oo un, on lR2

• Then vE U(1R2
) n1i(1R2 \K) by Corol­

lary 5.7.2. On lR2 we have

(5.8.1)

(5.8.2)

(y 'I 0)

(y =0),

(R --+ +00)

{

log (1Iylllly' - xII)
GB(O,R)(X,y) = R Ily-xll

log(R/llxll)
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Theorem 5.8.4. If Ii.(, > 0, then

Rexp ( - R;U) --+ c(·)
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Hence c(Ka ) = aC(K).

where

and so c(K) =1/4.
(iii) It is easy to see that r(K), and hence c(K), is invariant under translation
and rotation. To see the effect of dilations, let K be a compact set in lR2 and
let K a = {ax:x E K} for each positive number a. It is clear from Lemma
5.8.1 that hK.(x) = hK(a-Ix) and so

r(Ka ) = lim (hK(a-Ix) -log Ilxll)
n-eoo

= lim (hK(a-Ix) -Ioglla-'xll) -loga = r(K) -loga.
• ->00

where y' = (R/llyIll2 y, so

GB(O,R)(X,y) -logR = Uy(x) + /R(x,y),

fR(X, y) = { log II"~II - "~;x II (y 'I 0)
o (y = 0).

The functions fR(-,') converge to 0 locally uniformly on lR2 x 1R2 as R --+ +00.
Now let (R(n)) be any sequence in (Ii.(" +00) such that R(n) --+ +00 and
define
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Corollary 5.8.7. (i) Any bounded analytic set is log-capacitable.
(ii) A bounded set E is polar if and only if cotE) = O.

Theorem 5.8.8. If E is a bounded set in JR2 and f: JR2 ---+ JR2 is a contmction,
then c'(f(E)) ~ c'(E).

log-capacitable if c,(E) = c'(E). As usual, if E is a log-capacitabls set, then
we write c(E) for the common value of cotE) and cotE).

(x E E)

(x E JR2),

(x E JR2\f(E)).

n

L ak logllx - Ykll ~ -TK + E
k=l

n

u(x) = L ak log Ilx - f(yklll
k=l

u(x) + TK - 0 - hf(E) (x) ~ 0

Tf(E) = lim (hf(E)(X) -logllxll)
e-s-co

~ lim (u(x) -log Ilxll) + TK - 0 = rtc - E,
e-e-oc

Hence

and Lk ak = I. If we define

and so

Corollary 5.8.9. If E is a polar subset of JR2 , then E is totally disconnected;
that is, every component of E is a singleton.

then u(f(x)) ~ -TK + E when x E E since f is a contraction. Hence u ~

-TK + 0 on the compact set f(E), and it follows from Theorem 5.2.6 that

and c(K) < c(E) + e. If b« denotes the function of Lemma 5.8.1, then
h« = r« - UI' for some unit measure I' on oK, and UI' = TK on KO. By
the uniform continuity of (x, y) >--+ log Ilx - yll on E x oK there are points
Yl)Y2, ... l Yn in 8K and non-negative constants aI, a2, . .. , an such that

c(f(E)) ~ eec(K) < ee(c(E) + E).

Since 0 is arbitrary, we obtain c(f(E)) :'0 c(E).
Now let E be an arbitrary bounded set and let w be a bounded open set

such that E <; wand c(w) < c' (E) + e. Let (Kn ) be an increasing sequence
of compact sets such that Un K n = w. Then, by Theorems 5.5.6(i), 5.8.4 and
5.8.6, c(Kn ) ---+ c(w) and c(f(Kn )) ---+ c(f(w)), so

c'(f(E)) < c(f(w)) = lim c(f(Kn)) ~ lim c(Kn) =c(w) < c'(E) + e.
- n~oo n~oo

Since E is arbitrary, the result follows. 0

Proof. It is enough to show that, if x E E, then there are rectangles K. of
arbitrarily small diameter such that x E K~ and En oK. = 0. Further,
it is enough to prove this for bounded polar sets E. So we suppose that E
is bounded and note from Corollary 5.8.7 that cotE) = O. From the above
theorem the projections of E onto each of the coordinate axes have outer
logarithmic capacity O. These projections cannot contain any line segment,
in view of Example 5.1.6. Hence there are rectangles K x as described above.

o

(5.8.6)

(5.8.7)

Theorem 5.8.6. If E is a bounded set, then

C, (E) = R~':'= R exp ( RC,l(E))

and

Rexp ( RC,l(E)) -E ~ c,(E):'O Rexp ( RC,\E)) +E (R;::: Rd.

Hence (5.8.6) holds. Further, if we replace E in the above inequality by an
open set w satisfying E <; w <; B(O, Ra), and take the infimum over all such
w, then (5.8.7) is seen to hold. 0

Proof. Let Ra be such that E <; B(O, Ra) and let 0 > O. It follows from
Theorem 5.8.4 that there exists R, such that

Rexp (- RC~K)) - 0 < c(K) < Rexp (- RC~K)) +0 (R ~ Rd

for every compact subset K of E. If we take the supremum over all such K,
we obtain

Proof. Part (i) follows from Theorems 5.8.6 and 5.6.4.
To prove (ii), let E be a bounded polar set. Then Re(E) = 0 for all large

R, and so cotE) = O. Conversely, if cotE) = 0 then, for each n in N, there is
a bounded open set W n such that E <; Wn and c(wn ) < n-1 Let F = nn Wn
and let R be such that F <; B(O, R). Then E <; F and c'(F) = O. If K is any
compact subset of F, then c(K) = 0 and so K is polar. Hence RC(K) = 0 for
all such K, so RC,(F) = O. Since also F is a Borel set, F is polar and thus
E is polar. 0

Proof. We may assume that f(E) is non-polar, for otherwise there is nothing
to prove, in view of Corollary 5.8.7(ii). We first consider the case where
E is compact. Let 0 > O. There is an open set W such that E <; W and
c(w) < c(E) + E and hence there is a compact set K such that E <; KO

:"
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(5.9.1)

(p -.0).

(x E IRN;O < P < 1).

(t ~ 0),

5.9. Hausdorff measure and capacity

f(t) = Z-'VN(t) L X[O.Pnl(t)
n=l

oc

so up is continuous. Further, 1'({x}) = 0 for every x by the finiteness of u, so
up ,). 0 on Bo as p -. 0, and this convergence is uniform by Dini's theorem.
Hence there is a decreasing sequence (Pn) in (0,1) such that up. < 2-n on
Bo. We define

up(z) S; lim inf up(x) S; lim sup up(x)
:t:--+z x--tz

= u(z) -liminf(u - up)(x) S; up(z)
X-H

By Fatou's lemma,

We recall that VN(t) = t2
-

N (N ~ 3) and V,(t) =10g(1/t) when t > O.
Below we interpret l/V,+(t) as +00 when t ~ 1.

Proof. Suppose that E is not polar. Then there is a non-polar compact subset
K of E, in view of the analyticity of E and Corollary 5.5.7. We can choose K
to be contained in a ball Bo of diameter 1. It follows from Theorem 5.3.7 that
there is a non-zero measure J.L with support in K such that the superharmonic
function u(x) = JVN(llx - yll) dM(Y) is finite-valued and continuous on IRN .
Let

Theorem 5.9.4. If E is a bounded analytic set such that m¢(E) < +00,
where </>(t) = l/VJ(t), then E is polar.

M«~l (E) ~ pa-~M(~l (E) -. +00 (p -. 0)

and hence m(a) (E) = +00. This completes the proof of the lemma. 0

Definition 5.9.3. The number aE of Lemma 5.9.2 is called the Hausdorff
dimension of E.

so

Thus m(a)(E) = 0 when a> aE·
If 0 < a < aE, then there exists fJ in (a,aE) such that m(/3)(E) > O. If

p > 0 and {B(x., r.): k ~ I} is any countable covering of E such that r« < p

for each k, then

(a> N).
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Lemma 5.9.2. If E is a bounded set in IRN , then there exists a number ae
in the interval [0, N] such that

m (E) _ {+oo (a < aE)
(a) - 0 (a> aE).

We now define aE =inf{a > 0: m(a) (E) = O}, and observe that 0 S; ae S; N.
Let a> ae and p > O. Then there exists fJ in (aE, a) such that m(~)(E) =

0, and so there is a countable covering {B(x., r.): k ~ I} of E such that

r. < p for each k and L. r~ < 1. Hence

which is called the Hausdorff <!>-measure of E. Clearly 0 S; m¢(E) S; +00. Iu

the special case where </>(t) = ta (a> 0), we also write MI~;(E) for MJP) (E)

and m(a) (E) for m¢(E).

Proof. First we note that m(a) (E) = 0 when a > N. To see this, let K be a
cube which contains E, let 2a be its diameter and let n E 1\1. If we divide K
into nN identical cubes, we see that E can be covered by nN balls of radius

«[n, and so

Definition 5.9.1. Any increasing function </>: (0, +00) -. (0, +001 such that
</>(t) -.0 as t -. 0 is called a measure function. If E is a bounded set in IRN

and p E (0, +001, we define

M!:) (E) = inf {~ </>(r.): E \; YB(x., r.) and r. < p for each k} ,
where the infimum is over all possible coverings of E by a countable collection
of balls {B(x.,r.) : k ~ 1} such that r. < p for each k. Since MJP)(E) is
decreasing as a function of p, we can define

In this section we give some metric estimates of the size of polar sets in terms
of Hausdorff measures.

5.9. Hausdorff measure and capacity

We remark that, although logarithmic capacity has many properties in
common with Green capacity, it is not subadditive (see Exercise 5.17).
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(a --t +(0).

5.10. Exercises

(x' E jRN-2 X (0, +(0)).

fol
Clmz(t)dt. In either case, the result

o

u'(X') = l u(t, x')dt

M~+=)(E):S L<P(5T,.) = L<Plh.):s a-1J.t(jRN) --t 0
k k

Exercise 5.3. Let hE H(B\E), where E is a relatively closed polar subset of
B. Show that, if fE II'I7hI12dA < +00, then h has a unique harmonic extension
to B. (Hint: begin by using Corollary 4.4,6 to see that the subharmonic

5.10. Exercises

Theorem 5.9.6. If E is a bounded polar set, then m.(E) = 0 for any
measure function <p which satisfies (5.9.3). In particular, m.(E) = 0 when
a > N - 2 and so the Hausdorff dimension of E is at most N - 2.

Exercise 5.1. (i) Let u E U+(jRN-I X (0, +(0)), where N ~ 3, and let

Hence, for large a, we have <PI (T,.) = <p(5T,.) for all k and so

Exercise 5.2. Let n <; <C and let E be a relatively closed polar subset of n.
Show that, if f is holomorphic on n\E and bounded near points of E, then
f has a unique holomorphic extension to n.

Proof By Theorem 5.1.3 there is a measure J.t such that the function
f UydJ.t(y) is superharmonic on jRN and valued +00 on E. Further, since E is
bounded, we can arrange (by choosing a suitable restriction of J.t) that J.t has
compact support. If we define <PI (t) = min{ <p(5t), <p(1/2)}, then (5.9.3) holds
when <p is replaced by <Pl. Let a> O. If x EE then u(x) = +00, so we see from
Lemma 5.9.5 that there exists r, > 0 such that J.t(B(x,r,)) > a<PI(T,) and T,
is at most the diameter of E. By Lemma 4.6.1 there is a countable disjoint
subcollection {B(Xk,T,,):k ~ I} such that E <; Uk B (xk ,5r, . ). Thus

L<PI(T,.):s a-I LJ.t(B(Xk,T,.)):s a-IJ.t(jRN).
k k

Show that either u' is superharmonic or u' == +00.
(ii) Deduce that, if E' <; Il!.N-I and E' x Il!. is polar in Il!.N, then E' is polar
in liN-I. Is the converse true?

Since <P is increasing and positive, it follows easily that M~p) (E) =0 for any
p> 0 and hence m.(E) = O. 0

If N = 2, then similarly u(z) <
follows.

(5.9.2)

(5.9.3)

(n --t (0).

(x E Bo).Lf(lIx - yll) dJ.t(y) :s 1
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Now let n be large enough so that Pn < dist(K, jRN \Bo) and let {B(xk, Tk):
k ~ I} be a (finite) covering of the compact set K such that Tk < Pn for each
k. If we discard any ball which does not intersect K, then Xk E Bo for each
k. Since f is a decreasing function, (5.9.2) yields f(Tk)J.t(B(Xk,Tk)) :s 1 and
it is clear from (5.9.1) that fh) ~ nVN h )/2. Hence

This leads to the contradictory conclusion that m.(E) = +00, so E must be
polar. D

J.t(K) :s 2>(B(Xk,Tk)) :s 2)f(Tkl}-I :s 2n-I2)VN(TkW"
k k k

where XA denotes the characteristic function valued 1 on A <; [0, +(0) and 0
elsewhere on [0, +(0), and observe that

Lemma 5.9.5. Let u = f UydJ.t(y), where supp jz is compact, and suppose
that <P is a measure junction such that

11

t I- N<p(t)dt < +00.

Then there is a constant C, depending only on N and the value of the integral
in (5.9.3), such that

If E is a bounded analytic set in jRN (N ~ 3) and the Hausdorff dimension
oe of E satisfies as < N - 2, then it is clear from the above result that E
is polar. In the opposite direction we will see below that, if E is a polar set,
then ae :s N - 2. First we give a preparatory lemma.

Proof. Let m,(T) = J.t(B(z, r)). If N ~ 3, then integration by parts yields

u(z) :s [ t2
-

Ndm,(t) + J.t(jRN\B(z, 1))

:s (N - 2) [ tI-Nmz(t)dt + J.t(jRN).
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function s = h2 has a harmonic majorant v on B\E. Show that, if mEN
and r- E (0, I), then mlhl - v is bounded above on B\E, and hence that
Ihl- Ilhl.O.r ::; m- l {v - Iv,o,r} on B(O,r)\E. Deduce that h is bounded near
points of E.)

(N = 3)
(N 2: 4)

the reduced function being relative to E in JRN.

((X',XN) E JRN-l X JR),

Exercise 5.4. Given a point x = (Xl l • · · l XN+2) E RN+2 I we write (x; =
(x~ + x~+1 + X~+,)1/2, and we define E' = {x E JRN+2 : t. = O}. Let h be
harmonic on D = JRN-l X (0, +00). Show that the function H defined by

H( )
h(Xl, ... ,XN_l,t.)

Xl,···,XN+2 =
t.

is harmonic on JRN+'\E'. Show further that if h 2: 0 on D, then H has
a superharmonic extension ii to JRN+' and apply the Riesz decomposition
theorem to H to deduce that h has the Poisson integral representation given
in Theorem 1.7.3.

Exercise 5.5. Let n <; C be a domain and E <; C be a polar set.
(i) Show that, if I : n --+ C is holomorphic, then either 1-1 (E) = n or
1-1 (E) is polar. (Hint: use Corollary 3.3.4.)
(ii) Suppose further that E is closed. Show that, if I : n --+ C is continuous
and I is holomorphic on n\f-l(E), then I is holomorphic on n.

Exercise 5.6. Show that, if K is a compact polar set in JRN (N 2: 3),
then there is a Newtonian potential u such that u = +00 on K and u is
harmonic on JRN \K. (Hint: choose a decreasing sequence (Kn ) of non-polar
compact sets such that nn K n = K, and consider the Newtonian potentials

{C(Kn W ' R{"'.)

Exercise 5.7. In JR' let n =B(O,V12) and E=B((O,-I),V6). Show that
the reduced function Rf relative to E in n is given on n\E by

E (3 xi +(X2 +4)2)/ 9
R, (Xl,X,) = log 4:' xi + (X2 +3)' logs

and on E by Rf(x) = 1.

Exercise 5.8. Let n = JRN-1 x (0, +00) and r > O.
(i) If u(x) = xNllxll-N, find IdlnB(o,rj and also show that

R~\B(O,r)(x)= XN min{llxll-N, r-N} .

(ii) If v(x) = XN and E = JRN-l X (0, r], find R{f.

Exercise 5.9. Let E = {x' E JRN-l : Ilx'll ::; I} x IR, where N 2: 3. Show
that

Exercise 5.10. Show that, if E is a compact subset of a Greenian open set
n, then

CotE) = sup{j Gf1l-'dl-': sUPPI-' <; E and Gf1I-'::; 1 on n}
and

cotE) = inf{j Gf1l-'dl-': Gf11-' 2: 1 quasi-everywhere on E}.

Exercise 5.11. Let E be a compact subset of JRN, where N 2: 3, such that
{rx: r 2: I} n E is non-empty for each xES. Show that C(E) 2: 1.

Exercise 5.12. Show that, if u E U(JRN) where N 2: 3, then there is a polar
set E contained in the unit sphere S such that the function r >-t u(ry) is
continuous on (0, +00) whenever y E S\E. (Hint: use Theorem 5.5.8.)

Exercise 5.13. Let n be Greenian and let 1-',1-'1,1-'2, ... be measures with
support contained in a compact set Ken such that (I-'n) is w* -convergent
to /1; that is,

j fdl-'n --+ j Idl-' (J E C(K)).

Show that lim inf n-->= Gf1l-'n = Gf11-' quasi-everywhere on n. (Hint: first show
that liminfGf1l-'n 2: Gf11-' on I], Next assume that the (Borel) set where
liminfGf1l-'n > Gf11-' has positive capacity and use Theorem 5.3.7.)

Exercise 5.14. Let u E U+(JR x n'), where n' is a non-empty open set in
JRN-l (N 2: 3), and define u'(x') = inf, u(t, x') for each x' En'. Show that
there exists v' E u(n') such that u' = v' quasi-everywhere on n'. (Hint: use
Exercise 5.1.)

Exercise 5.15. Show that, if K is a closed ellipse with semi-axes of length
a and b, then c(K) = (a + b)/2. (Hint: dismissing the case of the disc, we
may assume that a > b. The function 'ljJ(z) = (a2 - b')'/2(z + z-1)/2 maps
{z: Izl' > (a + b)/(a - b)} bijectively to C\K.)

Exercise 5.16. Let E be a compact subset of JR of Lebesgue measure I. Show
that c(E x {O}) 2: 1/4. (Hint: consider the mapping I : JR2 --+ JR2 given by
I(xl,x,) = (.\(En (-oo,XIJ),X,).)



162 Chapter 5. Polar Sets and Capacity

Exercise 5.17. For each n E Z let K n = [n - 2, n + 2] x {O} and let hn
denote the Green function for JR2 \Kn with pole at 00.

(i) Show that, if we fix m > 0 sufficiently large, then b-« > logm on K_ m .

(ii) Now let n = JR2\(Km U K_ m ) and let h denote the Green function for
n with pole at 00. By applying Theorem 5.2.6 to the function h + log..;m ­
(hm + h_m)j2 on n, show that

c(Km U K_ m ) ?: ..;m = Jm/4{c(Km ) + c(K_m )} .

(Thus, in particular, logarithmic capacity is not subadditive.)

Exercise 5.18. Let E' be anon-polar compact subset ofJRN
-

1
, where N ?: 3.

Show that C(E' x JR) = +00, where CO denotes Newtonian capacity.

r
I

Chapter 6. The Dirichlet Problem

6.1. Introduction

In its simplest form the Dirichlet problem may be stated as follows: for a given
function 1 E c(a= n), determine, if possible, a function h E 'H.(n) such that
h (x) -t 1(y) as x -t y for each y E a=n. Such a function h is called the
(classical) solution of the Dirichlet problem on n with boundary function 1,
and the maximum principle guarantees the uniqueness of the solution if it
exists. For example, if n is either a ball or a half-space and 1 E C(a=n),
then the solution of the Dirichlet problem certainly exists and is given by
the Poisson integral of f. This follows immediately from Theorems 1.3.3 and
1.7.5. On the other hand, there are quite simple examples in which there is
no such solution.

Example 6.1.1. If n = B\{O} and 1 : an -t JR is defined by 1(0) = 1
and l(x) = 0 when xES, then the Dirichlet problem on n with boundary
function 1 has no classical solution.

To verify this, suppose that a solution h exists. Then h is bounded on n
and has a harmonic continuation h to B, by Theorem 1.3.7. Since h has limit
oat each point of S, it follows that h == 0, contrary to the requirement that
h(O) = limx-->o h(x) = frO) = 1.

In this chapter we will discuss the Perron-Wiener-Brelot (PWB) ap­
proach to the Dirichlet problem. For a wide class of functions Ion a=n,
the PWB approach associates with 1 a corresponding function HI E 'H.(n)
in such a way that HI is equal to the classical solution of the Dirichlet prob­
lem on n with boundary function J whenever this classical solution exists.
Even in the absence of a classical solution, HI provides a slightly weaker so­
lution in the sense that HI(x) -t fly) as x -t y at most points of continuity
of f.

We shall assume throughout this chapter that n is Greenian, and except
where the contrary is stated, this will be the only restriction on n. For non­
Greenian sets most of the major results would become either false or trivial.

Two important ideas which are discussed in this chapter are harmonic
measure and regularity. Harmonic measure, which is introduced in Sec­
tion 6.4, is a measure /Lx on 8 IXJ n, depending on the point x En, which
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We sometimes write simply H f and H r:

allows the representation

It is convenient to start by enlarging the classes U(D) and S(D).

165

(6.2.1)

6.2. Upper and lower PWB solutions

lim sup(s - u)(x) $ 0
x-->y

for each y E aoo D. If I(y) is finite, then

limsup(s - u)(x) $limsups(x) -liminfu(x)
X-4y x-ty X-4Y

$ I(y) - I(y)

=0.

Theorem 6.2.5. For every [unction. I : aooD --; [-00, +00] the lollowing
statements hold.
(i) Hf = -E:).
(ii) On each component 01 D. each of the junctions H t . H f is identically +00,
identically -00, or harmonic.
(iii) H f $ H f on D.

Proof. (i) It is easy to check that Pf = {-u: u E P- f } , and this gives the
result.

(ii) In view of (i) it is enough to consider H f, and by Lemma 6.2.4,
it suffices to treat the case where D is connected. If Pf = {+oo}, then
Hf == +00. Otherwise H f = inf </>f, where </>f = Pf n U(D). It is easy to
verify that </>f is saturated (Definition 3.6.1). Hence, by Theorem 3.6.2, either
H f == -00 or H f E H(D).

(iii) Again we may suppose that D is connected. It is enough to show that
if u E Pf n U(D) and s E Pf n S(D), then u ~ s on D. This inequality will
follow from the maximum principle if we show that

Proof. Note that aoow c; aooD, so I is defined on aoow. If u E p7, then

ulw E ifi"j, so H; $ H~ on w. Conversely, if v E P"j, then the function equal
f} -=W -{}

to v on w and +00 on D\w belongs to P f, so H f ~ H f on w. 0

Definition 6.2.6. A function I : aoo D --; [-00, +00] is called resolutive if
H f and H f are equal and finite-valued (and hence harmonic) on D. If f
is resolutive, then we define H f = Hf (= H f) and call H f the PWB (or
generalize<l) solution of the Dirichlet problem on D with boundary function
I. The class of all resolutive functions on aoo D is denoted by R(D).

Remark 6.2.7. Suppose that I E C(aoo D) and that the classical solution h
of the Dirichlet problem on D with boundary function I exists. Note that

If I(y) = +00, then u(x) --; +00 as z --; y, while s is bounded above on D,
and hence (s - u)(x) --; -00 as z --; y. A similar argument yields the same
conclusion if I(y) -00. Hence (6.2.1) holds at each point y E aooD, as
required. 0

r

H7(x) = sup{s(x) : S E pf}.
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-n a
H f (x) =inf{u(x): u EPf } ,.

Lemma 6.2.4. Let w be a component 01 D. For every junction I on aoo D,
-n ~

we have H f =H f on w.

6.2. Upper and lower PWB solutions

Definition 6.2.3. Let I be an extended real-valued function defined at least
-n non aoo D. The upper and lower PWB solutions H f and H f are defined on D

by

Definition 6.2.2. Let I be an extended real-valued function defined at least
on aoo D. Families of functions on D are defined by

p7 = {u : u is hyperharmonic and hounded below on D
and lim infx-->y u(x) ~ I(y) for each y E aoo D},

Pf = {s : s is hypoharmonic and bounded above on D
and limsupx-->ys(x) $ I(y) for each y E aooD}.

When there is no risk of ambiguity we simply write Pf and Pf. We note that
Pf and Pf are never empty, since they contain the constant functions +00
and -00 respectively.

Definition 6.2.1. A function u is called hyperharmonic on D if on each
component of neither u == +00 or u is superharmonic. A function s is called
hypoharmonic on D if -s is hyperharmonic on D.

164

Hf(x) = { I d/l x18<XJ il

whenever the PWB solution Hf exists. In a ball, for example, the above
integral is just the Poisson integral of I (see Example 6.4.9 below). A point
y of aooD wiIl be called regular if Hf(x) --; I(y) whenever I E C(aooD). It
turns out that regularity is intimately connected with the idea of thinness, a
major topic in the next chapter] in which an important criterion for regularity
in terms of thinness is established. In Section 6.6 another criterion is given
which leads to some simple and useful geometric conditions that are sufficient
for the regularity of a boundary point.
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provided the right-hand side is well-defined on n, and with the same proviso

(6.3.1)

(6.3.3)

(6.3.2)

(6.3.4)

6.3. Further properties of PWB solutions

Theorem 6.3.1. Let f, 9 : aoon ---7 [-00, +ooJ and let a E R
(i) If (J + g)(y) is defined arbitmrily at points y of aoon where f(y) + g(y)
has the indeterminate form (±oo) + ('foo), then

(ii) If a 2: 0, then

If a :'0 0, then

liminf(u + v)(x) 2: liminfu(x) + lim inf v(x) 2: (J + g)(y)
x~y z~y z~y

Proof. (i) We may assume that n is connected. If H f == +00 or H g == +00,
then (6.3.1) is trivial (or vacuous if H f +Hg is indeterminate). Hence we may
suppose that PI n U(n) and Pg n U(n) are non-empty. Let u, v respectively
belong to these classes. Then u + v is superharmonic and bounded below on
nand

Example 6.2.8. Let n = B, let E be a countable dense subset of an, and let
f be equal to 1 on E and 0 on an\E. Then f is nowhere continuous on an,
but f E R(n) and Hf = 0 on n.

To check the resolutivity of t, note that E is polar, so there exists a
positive superharmonic function u on an open neighbourhood of n such that
u = +00 on E. For every positive number e , we have w E Pf' Thus Hf:'O 0
quasi-everywhere and hence, by continuity, everywhere on n. Obviously 0 E
PI, so H f 2: O. Since H f :'0 Hf, we have H f =0 = HI' Thus f E R(n) and
HI =0.

f is bounded, since aoon is compact in the topology of]RN U {oo}. Since
h(x) ---7 f (y) as X ---7 Y for each y E aoo n, it follows that h is bounded on n,
and hence h E PI n PI' This implies that HI :'0 h :'0 HI on a. Combining
these inequalities with the inequality HI :'0 HI of Theorem 6.2.5(iii), we
obtain HI = h = HI' This shows that if the classical solution exists, then so
also does the PWB solution and the two are equal. In particular, it shows that
constant functions are resolutive and that, if f == a, then HI == a. However
there are many instances in which the PWB solution exists but the classical
solution does not. Indeed a key result (Theorem 6.3.8 below) is that every
finite-valued continuous function on 800

[} is resolutive. Thus, for example,
if nand f are as in Example 6.1.1, then the PWB solution exists but the
classical one does not. (In fact, Hf == 0 in this case since 0 E PI and cUo E PI
for every E > 0.) Also highly discontinuous functions may be resolutive, as
the following example shows.

Remark 6.2.9. A function f on aoon is resolutive if each component of n
contains a point at which H f and H f are finite and equal. To verify this,
let w be such a component and suppose that Hf(x) = Hf(x) E ]R for some
x E w. Then Hf,HI E 'Ii(n) and H f - Hf :'00 on w with equality at x.

Hence, by the maximum principle, H f = H f on w.

Remark 6.2.10. The results in this section do not depend on our assump­
tion that n is Greenian and remain valid without this assumption. However,
the results are of little interest in the non-Greenian case, as we now ex­
plain. Suppose, for the moment, that n is a non-Greenian open subset of]R2.
By Theorem 5.3.8 and Corollary 5.1.5, n is connected and the only lower­
bounded superharmonic functions on {} are constant. Hence, for any function
f on aoo n, the class l'f contains only constant functions (including +00).
Therefore H f is constant, and similarly so is HI' Further, HI = H f if and
only if f is constant, so the only resolutive functions are the finite constant
functions.

at each point y E aoon. (In the case where fey) + g(y) is indeterminate, it
is easy to see that u(x) + vex) ---7 +00 as X ---7 y.) Hence u + v E pf+9' Since
u, v are arbitrary elements of their respective classes, it follows in the CaBe
where HI> -00 that H f +v 2: Hl+g for all v E pf nU(n) and hence
that (6.3.2) holds. In the case where H f == -00, the same argument shows
that for such v we have -00 + v 2: H f+g at all points where v < +00, so
that Hl+g = -00 at some, and hence all, points of n. The inequality (6.3.2)
follows easily using Theorem 6.2.5(i).

(ii) If a = 0, then the equations are trivial. If a > 0, then au E paf is
equivalent to u E l' f, and hence H af = aHf. Similarly, lLxf = aHf when
a> O. The equations (6.3.4) follow from (6.3.3) by Theorem 6.2.5(i). 0

Corollary 6.3.2. If i.s E R(n) and a E lR, then (with the convention of
Theorem 6.3.1 regarding f + g) we have f + g, a] E R(n) and

Hf+g = H f + H g, Hal = aHf·

Proof. Theorems 6.3.1 and 6.2.5(iii) give

HI +u, :'0 H f+g :'0 H 1+9 :'0 n, +u,



168 Chapter 6. The Dirichlet Problem 6.3. Further properties of PWB solutions 169

Theorem 6.3.3. Let Un) be a sequence of finite-valued functions in R(fl).
If Un) converges uniformly on aoo fl to a function f, then f E R( fl) and

H f = limHfn·

Proof. It follows immediately from Corollary 6.3.2 that the bounded reso­
lutive functions form a vector space. If Un) is a Cauchy sequence of such
functions, then Un) converges uniformly on a oo fl to some bounded function
I, and by Theorem 6.3.3, f E R(fl). Hence the bounded functions in R(fl)
form a Banach space. D

Proof. Fix a positive number 0 and let n be so large that Ifn - fl < 0 on a oo fl.
Ifu E Pfn' thenu+o E Pf· Hence Hf:'O Hf. +0. Similarly Hfn -0:'0 ir f ·

Since also H f :'0 H f, it follows that H f and H f are finite-valued, and that
limHfn exists and is equal to both Hf and H f on fl. D

Corollary 6.3.4. The set of all bounded resolutive functions on a oo fl is a
vector space which, equipped with the norm Ilfll = sUPa=fllfl, is a Banach
space.

Also, it is clear that limHfn :'0 H f on fl. Since (H f.) is an increasing se­
quence III H(fl), its limit is either identically +00 or harmonic on fl. In the
former case, Hf == +00. In the latter case, H f -limHf• belongs to H+(fl)
and attains the value 0 at Xo, so this function is identically 0, by the mini­
mum principle, D

(x ED).

so that u E Pf and u 2: H f. In particular,

H f(xo) :'0 u(xo):'O lim H f (xo) + 0
n-+oo n ,

by (6.3.5) and (6.3.6). Since 0 is arbitrary,

H f(xo) :'0 lim H f (xo).
n-eoc n

Theorem 6.3.6. Let f : a oo fl -4 [-00, +00] and let F be defined on flUaoofl
by

F(x) = f(x) (x E aoofl), F(x) = H~(x)

-fl
H f on w. If f E R(fl), thenIf w is an open subset of fl, then H;

FE R(w) and H'F = HJ' on w.

Dand H ~f = ccHf = H ~f' and the corollary follows.

Theorem 6.3.5. Let Un) be an increasing sequence of extended real-valued
functions on aoofl, and let f = lirnfn. If Hfm > -00 for some m, then
H f = limHfn on fl.

Proof. Again we may suppose that fl is connected. Since (H f.) is increasing
on fl, we may also suppose that H f. > -00 for all n. If H fm == +00 for some
m, then H t; == +00 for all n 2: m and H f == +00. Now suppose that each
H f. is finite-valued (and hence harmonic) on fl. Fix a point Xo Efland a
positive number e. For each n, there exists Un E Pt: such that

un(xo) - H fn (xo) < €Tn.

By Theorem 3.1.4, the function

00

u= lim Hf. + ""(Un-Hf.)
n-eoo ~

n=l

(6.3.5)

(6.3.6)

Proof. We may suppose that wand fl are connected. If u E p7, then clearly

ul7J E P'j,. Hence H; :'0 H~ on w. Clearly equality holds if H~ == -00. If

H f == +00, then it is easy to see that any element u of pw can be extendedfl. F
to an element of P f by defimng u = +00 on fl\w, and since p7 = {+oo},

we have P'j, = {+oo} and H; == +00. Now suppose that H~ is finite-valued
(and hence harmonic) on fl. If u E <P'j, n U(w), then by Corollary 3.2.4, the
function u, defined by

__ {min{U,H~} onw
u- -0

HI onfl\w,

belongs to U(fl). Let v E p7 n U(fl) and define w = u + v - H~. Then

w E U(fl). Also w = v on fl\w and at points of w where H fl < u and w > u
at other points of w. Hence w is bounded below on fl and f -, -

is hyperharmonic on n. Also u 2: Hf. + (un - H f') = Un for each n, so u is
bounded below on fl and

liminfu(x) 2: fn(Y) (y E aoofl;n E 1\1) .
• ->y

Hence
liminfu(x) 2: fry) (y E afl),

'->y

liminf w(x) 2: fry)
x-+y,xE!2

liminf w(x) 2: min{ liminf v(x), liminf u(x)} > fry) (y E aOOflnaOOw).
x-+y,xEO x-+Y,xEn x--+y,xEw -

It follows that w E p7, so u+ v = H~ + w 2: 2H~ on fl. Since this holds

for all v E p7 nU(fl), we see that u 2: H~ on fl, and in particular u 2: H~



The next lemma is in preparation for the proof of the fact that C(8= n) <;;
R(n), which is important in itself and is used in Section 6.4 to show the
existence of harmonic measure.

Proof. Clearly f E C(a=n), so f is bounded on a=n. Let h; (j = 1,2) be
the greatest harmonic minorant of u; on n. (The existence of h; is guaranteed
by Theorem 3.6.3.) Then UI - h, E U(n) and

o

1716.3. Further properties of PWB solutions

Theorem 6.3.10. Let (nn) be an increasing sequence of open sets such that
U;:"=l u; = n. If f E cis; U 8=n), then H7" ~ Hf' on n as n ~ 00.

whare o.,. /3Ul R u E IR and au 2: O. Let

Yd = {UE C(lll.' U{oo}) 'uIR' =U,-U" whereUI,U' E yandau, = au,},

and let J' = {ula=Il , u E Yd}. Then J' is a vector subspace of C(8=n). Since
n is Greenian the elements of Y have harmonic minorants on n by Theorem
5.3.8. Hence Lemma 6.3.7 is applicable and shows that J' <;; R(n). Also
1 E J', and an argument similar to that for the case where N > 3 shows that
if i,o E J', then max{f,g} E J'. To show that J' separates p~ints of a=n,
let YI,y, be distinct points of a=n and choose a point Yo E )R' such that
there is a disc B(yo, r) containing 0 and exactly one of YI,y" say YI. Define v
to be the superharmonic function on)R' obtained by replacing Uo on B(yo, r)
by its Poisson integral there, and define w = v - min{Uo, -log(r - IIYoID}
on lll.' and w(oo) = O. Then w E Yd. Also w < 0 on B(Yo,r) and w = 0 on
)R'\B(yo,r). Define f = w on e-st, Then f E J' and f(YI) < 0 = f(y,). It
now follows from the Stone-Weierstrass theorem that J' is dense in C(a=n).

o

and the result now follows.

Remark 6.3.9. In the above proof we used the hypotheses that n is Greenian,
and Theorem 6.3.8 is actually false for any non-Greenian domain n with more
than one point in a=n (that is, for any non-Greenian n oF lll.'); see Remark
6.2.10.

H Il > lim sup H Il•
I - In-->oo

on n. A similar argument shows that

H Il < lim inf H Il•
I - n-too J l

Proof. Suppose that U E p7 and £ > O. Since

liminf (u - f)(x) 2: 0
x-ty,xEJ1

and aoo n is compact, there is a compact subset E of n such that u - f > -£

on n\E. Ifn is sufficiently large, then aoonn C aoonU (n\E) and hence

liminf (u - f)(x) 2: -£ (y E 8=nn),
x--+y,xE.f2...

so U + e E p?" for all such n. Thus U + E. 2: H7' on nn for all large n, so

U+£ 2: limsupH7'
n-+oo

on n. Since U is an arbitrary element of p7 and £ is an arbitrary positive
number, it follows that

(y E a=n).

(11xll > Ru )U(x) = -au log Ilxll + flu

lim inf'(u, - h,)(x) 2: f(y)
x-->y
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Lemma 6.3.7. Let UI, U, be finite-valued superharmonic functions on n,
each possessing a subhannonic minorant there. If Ul - 11.2 has a finite limit
f(y) at each point y E 8=n, then f E R(n).

Proof. By Theorem 6.3.3 the uniform limit of a sequence in R(n) also belongs
to R(n), so it is enough to find a family J'in C(a=n) n R(n) that is dense
in C(8=n).

We suppose first that N 2: 3. Let Y = U+(lll.N) n C(lll.N u {oo}), let
Yd = {UI - U, , U"U, E Y}, and let J' = {ula=Il , U E Yd}. Clearly J' is
a vector subspace of C(a= n) and by Lemma 6.3.7, J' <;; R(n). The result
will be established if we prove that J' satisfies the hypotheses of the Stone­
Weierstrass theorem (see Appendix, Theorem A.12), for it will then follow
that J' is dense in C(a=n), as required. Clearly 1 E J'. Also J' separates
points of a= n, since J' contains every function of the form min {Uy, c} (de­
fined to be 0 at 00), where y E lll.N and c E (0, +00). Finally, if u,v E Y, then
min{u,v} E 9, so that iful,U2,Vl,V2 E 9, then

max{ul - VI,U, - v,} = U, + u, - min{u, + V"UI + v,} E Yd,

and hence max{f, g} E J' whenever l, g E J'.
In the case N = 2, the classes Y, Yd, J' need to be modified. Let Y be the

class of functions U in U(lll.') n C(lll.') satisfying

From this it also follows, by the minimum principle, that u, - h, is bounded
below on n. Hence u, -b« E PI and therefore h,+HI is a harmonic minorant
of u,an n, so h, + HI :S h,. Similarly, hi - HI :S ba- Since HI :S HI, it
follows that HI = h, - h, = HI' Thus f E R(n). 0

Theorem 6.3.8. C(8= n) <;; R(n).

~ -Il
on w. Since U is an arbitrary element of P'F nU(w), we have H F 2: HI on
w, as required.

By Theorem 6.2.5(i) the same result holds with lower solutions in place
of upper solutions, so the stated results for resolutive f follow. 0
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(6.4.3)

6.4. Harmonic measure

Proof. (i) We prove (6.4.3) for increasingly general classes of functions.
(A) First let f be the characteristic function of a relatively open subset

E of a=n. Then f is lower semicontinuous on a= nand (6.4.3) follows from
Lemma 6.4.4.

(B) Next we prove (6.4.3) in the case where f is the characteristic function
XE of a Borel subset E of a= tt . Let E denote the u-algebra of Borel subsets
of a= n, and let :F be the class of sets E E E such that (6.4.3) holds with
f = XE· The result in (A) says that :F contains all relatively open subsets of
a=n. Hence, to prove that:F = E, it is enough to show that:F is au-algebra.
Clearly, a=n E:F. Suppose that E E:F and define E' = (a=n)\E. Then

1 - HXE(z) = H,(z) + H_XE(z) :<::: H XE'(z) ~ H XE' (z)

~ H,(z) + H_XE(z) =1- HXE(z),

by Theorem 6.3.1, so that

HXE'(z) = HXE'(z) = 1-HxE(z) = l-/-lz(E) =/-lz(E'),

and hence E' E :F. Now let (Fn ) be an increasing sequence in :F and define
F = u::"=, Fn- Then

H u (z) ~ lim HUn (z) = HXF(z) ~ H XF(z),

{ii} If H,(z) = H,(z) E JR, then f is /-lz-integrable and {6.4.3} holds.

the last-written equation following from Theorem 6.3.5. Hence

Hu(z) = Hu(z) = lim H XFn (z) = lim/-lz(Fn) = /-lz(F),

so F E :F. Thus :F is a rr-algebra, so :F=B.

Theorem 6.4.6. Suppose that zEn and f : a=n --+ [-00, +00].
{i} If f is /-lz-measurable and the integral below exists, then

Lemma 6.4.5. If zEn and f : a=n --+ [-00, +00] and A is a number
such that H fez) < A J then there exists a lower semicontinuous function
9 : a= n --+ (-00, +001 such that f :<::: 9 on a=n and H9(z) < A.

Proof. Let 11. E PJ be such that u(z) < A and define 9 on a= n by g(y) =
liminfx-->yu(x). Then 9 is lower semicontinuous and f ~ 9 on a=n. Also
11. E P9 , so H9 (z) ~ u(z) < A. 0

(6.4.2)

(6.4.1)
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Proof. By Lemma 3.2.1 there is an increasing sequence Un) in C(a= n) such
that f = lim fn on a= n, and by Theorem 6.3.5, H, = lim H'n' Also H'n ~

H, for each n. Hence -00 < H, =H, on n, so that f E R(n) if H, < +00.
By Theorem 6.4.1 and monotone convergence,

Theorem 6.4.1. If «e si, then there exists a unique Borel measure /-lz on
a= n such that {6.4.1} holds for every f E C(a= n). Further, /-lz(a= n) = 1.

Proof. By Theorem 6.3.8, C(a= n) <;; R(n), and by Corollary 6.3.2, the
mapping f >-t HJ(z) is a linear functional on C(a=n). By the minimum
principle this functional is positive: that is, H,(z) ~ 0 when f ~ 0 on a=n.
The existence and uniqueness of the Borel measure /-lz on a=n satisfying
(6.4.1) for each f E C(a= n) follows from the Riesz representation theorem
(see Appendix). Finally, /-lz(a=n) = H,(z) = 1. 0

Remark 6.4.2. If /-l is a Borel measure, then the class of all sets of the form
EuY where E is a Borel set and Y is contained in a Borel set of It-measure 0,
is a c-algebra, which we denote by Bu. Also /-l can be extended to a measure
on B/-l by defining /-l(EUY) = /-l(E), where E, Yare as above. This extended
measure is called the completion of /-l.

also f E R(n) provided that H, < +00 on n.

Lemma 6.4.4. If zEn and f: a=n --+ (-00,+00] is a lower semicontin­
uous function on a=n, then

Definition 6.4.3. If zEn, then the completion of the measure /-lz is called
harmonic measure relative to n and z. This harmonic measure is also denoted
by /-lz or sometimes by It'). A function f on a= n is called Itz·measurable if
f is Bltz-measurable.

Our aim is to show that given a point zEn 1 there exists a measure J-Lz l

depending on z and n, such that

for each f E R(n), and further that, if n is connected, then every /-lz'
integrable function f is resolutive and satisfies (6.4.1). We lead up to these
facts through a sequence of preliminary results.
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(C) Now suppose that E E Bp,. Again we want to prove (6.4.3) with
f = XE· We can write E = F U Y, where F is a Borel set and Y ~ Z for
some Borel set Z with Pz{Z) = O. Then pz{E) = p,(F) and

HXF{z):s HXE{z):s HXE{z):S HXFUZ(z):s HXF{z) +Hxz{z).

The result in (B) shows that (6.4.3) holds with f = XF and that H xz (z) = O.
Hence

HXE{z) = HXE(z) = p,(F) = Pz{E).

(D) Next let f be a non-negative p,-measurable simple function. Thus
there exist sets E1 , . . . ,En E Bttz and positive numbers al,· .. 1 an such that
f = 2:;=1 akXE•. By Theorem 6.3.1 and the result of (C),

n n

2:>kP,(Ek) = LakHxe.(;):S Hf{z):s Hf(z)
k=l k=l

n n

:S LakHxe.(Z) = Lak/Lz(Ek),
k=l k=l

and hence

H f(z) = H f{z) = f:,akPZ{Ek) = ( f dpz·
k=l lacon

(E) If f is a non-negative p,-measurable function, then f is the limit of
some increasing sequence (J;) of non-negative p,-measurable simple func­
tions. By the result of (D) and monotone convergence,

and by Theorem 6.3.5,

Hf(z) 2: lim Hf,(z) = Hf(z) 2: Hf{z)., 00

It follows that (6.4.3) holds.
(F) Finally, if f is any /Lz-measurable function for which the integral in

(6.4.3) exists, then

{ fd/L, = { rdp,- ( rd/L, = Hf+{z)-Hf-(z) 2: Hf(z)
Jaoon Ja<X> [1 J8co~

by Theorem 6.3.1, and similarly

Hence (6.4.3) holds.

(ii) By Lemma 6.4.5 there is a sequence (In) of lower semicontinuous
functions on aoon such that fn 2: f and Hfn{z) < Hf{z) +n-1 • Similarly,
there is a sequence (gn) of upper semicontinuous functions on aoon such that
s« :S f and HgJz) > Hf{z) - n-1 By (6.4.2),

Hf(z) = inf H t; (z) = inf { fnd/Lz 2: ( rdp"n nh~n h~n

where r = infn fn· Similarly,

where g. = sUPngn· Since g. :S f :S r on [)OOn and r,g. are Borel mea­
surable, it follows that there is a Borel set Z with /Lz{Z) = 0 such that
g. = f = r on aoon\Z. All subsets of Z belong to B/Lz, so f is p,-measurable
and

Hf(z) = Hf{z):s { g.dp,:S { fd/L,:S ( rdp, :S Hf(z),
lacon i-: i-;

so (6.4.3) bolds. 0

Corollary 6.4.7. (i) If f is Borel measurable and -00 < H f :S u, < +00
on n, then f E R{n) and

(6.4.4)

for each x E n.
(ii) If n is connected, then the following are equivalent:

(a) f E R{n);
(b) f is Px-integrable for some x En;
(c) f is p,-integrable for all x E n.

If any of these conditions holds, then (6.4.4) holds for all x En.

Proof. (i) If the hypotheses of (i) hold, then f+ is px-measurable for each
x E n and by Theorem 6.4.6(i),

Hf+(x) = Hf+{x) = ( rdpx.
lacon

Since Hf(x) < +00, there is an element u E Pf such that u{x) < +00, and
since u is bounded below on n, we have u + A E P f+ for some real number
A. Hence Hf+{x) < +00. Since x is an arbitrary point of n, it follows that
j+ E R(n) and (6.4.4) holds with f+ in place of f. Similarly r: E R{n)
and (6.4.4) holds for r .The required conclusion now follows from Corollary
6.3.2.



dp,x=K.(z,·)dXon8D, I'z({OO}) =0,
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(y E E).

6.5. ~egligible sets

00 00

liminfu(x) ~ "'liminfun(x) ~ "'1 = +00
x--+y L..J L..J

n=1 n=1

Proof. If there is such a function u, then w E PX E for each e > O. Hence
H XE = 0 on the set where u < +00 and therefore, by continuity, everywhere
on tt; so E is negligible.

To prove the converse, suppose first that [J is connected. Suppose also
that H XE == 0 and fix z E fl. For each n E N, there exists Un E PXE such
that un(z) < 2-n. We note that Un EU+(fl). Define U = 2:::':'=1 Un on fl.
Then u(z) < +00, so u E U+(fl). Also,

(iii) ifu has a harmonic minorant on 0, then its greatest harmonic minorant
is lim H[jn.

6.5. Negligible sets

Proof. For each n the restriction of u to ann is lower semicontinuous and
bounded below, and u E p~n. Hence H[jn exists and is a harmonic minorant
of u on [In' If s E tJt;;n+l 1 then s :::; u on f}n+l by the maximum principle, so

s E 'Jf;;" It follows that H;;'+' ~ H;;' on fln and so (i) holds.
Let h = lim H;;', If h > -00 on fl, then h is a harmonic minorant of U

on each [}nJ and hence on n. Conversely, if hI is a harmonic minorant of u
on fl, then h, E 'Jf;;' so h, ~ H;;' for each n, and hence h ~ hI on fl. This
proves (ii) and (iii). 0

Definition 6.5.1. A subset E of 800 fl is called negligible (for fl) if p,x (E) = 0
for each x E n Of, equivalently, if H X E == 01 where XE is the characteristic
function of E.

Theorem 6.5.2. A subset E of 800 fl is negligible if and only if there exists
U E U+(fl) such that u(x) --+ +00 as x --+ y for each y E E.

Now consider the general case. Let {Wj : j E J}, where J <:;; N, be the set
of components of fl. The result in the preceding paragraph yields, for each
j E J, a function Vj E U+(Wj) such that Vj(x) --+ +00 as x --+ y for each
y E En 8=wj. Define v on fl by putting v = j + Vj on Wj for each j E J.
Then v E U+(fl). Fix y E E and A E (1, +00). To show that vex) --+ +00
as x --+ y, we must prove that there is a neighbourhood W of y such that
j + Vj > A on W n Wj whenever W n Wj ~ 0. If j E J and j ~ A, then
there is a neighbourhood wi of y such that either Wj n wi =0 or Vj > A on
Wj nwi. If j E J and j > A, then j +Vj > A on Wj' Hence the neighbourhood
W = n'<A w,'. has the required property. 0

'-

(6.4.5)
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where X is (N -I)-dimensional Lebesgue measure on 8D and K. is the Poisson
kernel of D, given in Definition 1.7.1. This is proved by arguing as in (i), and
using Theorem 1.7.5 in place of Theorem 1.3.3.

where a is surface measure on S and K O,1 is the Poisson kernel of B given
by (1.3.1).

To see this, we note that if I'z is given by (6.4.5), then by Theorem
1.3.3, for any f E C(S), the function z >-t Is f du, is the classical, and
hence also the PWB, solution of the Dirichlet problem on B with boundary
function f. The assertion follows by the uniqueness of harmonic measure
(Theorem 6.4.1).

(ii) Harmonic measure relative to D = IRN - l X (0, +(0) and zED is
given on 800 D by

Theorem 6.4.10. Let (fln) be an increasing sequence of bounded open sets
such that fln efland U:':'=1 fln = fl, and let u EU(fl). Then:
(i) for each mEN the sequence (H;;' )n>m is decreasing on flm;
(ii) u has a harmonic minorunt on fl if~nd only iflim H;;' > -00 on fl;

Theorem 6.4.8. Suppose that W is an open subset of fl, that z E w, and
that E <:;; 800w n 800 fl. If E is 1';; -measumble, then E is p,~ -measumble and
p,~(E) ~ I';;(E) with equality in the case where W is a component of fl.

Example 6.4-9. (i) Harmonic measure relative to B and z E B is given by

If W is a component of i], then E <:;; 800w <:;; 800 fl, so F = XE on 800w and
the above inequality is an equality. 0

Proof. Suppose that E is p,;;-measurable and let XE denote the characteristic
function of E. We define a function F on fl U 800 fl to be equal to XE on
800 fl and H a on fl. By Theorem 6.4.6(i), the equations (6.4.3) hold with

XE
f = XE. Hence, by Theorem 6.3.6 (and its counterpart for lower solutions)
H'F(z) = F(z) = "'If;,(z) so that, by Theorem 6.4.6(ii), F is p,~-measurable.

Since XE = FX8= a, it follows that XE is I'~-measurable and

(ii) If (a) holds, then by Theorem 6.4.6(ii), condition (c) holds. Clearly (c)
implies (b). If (b) holds, then by Theorem 6.4.6(i), H f and H f are finite and
equal at some point, and hence by connectedness and the maximum principle,
at every point of fl, so f E R(fl). Thus (a) =? (c) =? (b) =? (a). Finally, if
(c) holds, then (6.4.4) holds for all x E fl by Theorem 6.4.6(i). 0
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Example 6.5.4. Let (qn) be a dense sequence in (0,1) and let

Theorem 6.5.5. If E <:; &n and E is polar, then E is negligible.

The density of (qn) implies that n is the cube [0, I]N Also

179

(x En).

6.6. Boundary behaviour

for each f E C(&OO n).

s(x) =1- (r/llxll)N-2

lim Hf(x) = fry)
x-->y

We have already seen that the PWB approach always yields the classical
solution to the Dirichlet problem when the classical solution exists. We will
now see that much more is true: if f E C(&OO n), then limx-->y Hf(x) = fry)
for most points y in &00n even if the classical solution does not exist. The
points y at which this equation fails for some f E C(&OO n) are called "ir­
regular". We shall show that the irregular points in &n always form a polar
set and shall characterize regular points of &n by the existence of so-called
"barrier functions" . Several sufficient geometric conditions for regularity will
be given. These all suggest that a point y E &n is regular if jRN \n is not too
"thin" at y. A precise characterization of (ir)regularity in terms of thinness
is proved in the next chapter. For bounded, not necessarily continuous, res­
olutive functions i, we shall show that the behaviour of Hf near a regular
boundary point y is determined by the local behaviour of f near y; this is
not generally true for unbounded resolutive functions.

Then s E PX{_l. Hence HX{_l 2: s on a.
(iii) If n is a half-space, then {oo} is negligible for n by Example 6.4.9(ii).

Otherwise y is called irregular. We say that the set n is regular if every point
of &00 n is regular.

6.6. Boundary behaviour

Definition 6.6.1. A point y of &00 n is called regular (for n) if

It follows,in particular, that anyone-point subset of &n is negligible. The
question whether the one-point set {oo} is negligible is more complicated, as
we illustrate below. A complete characterization of unbounded sets n in liN 1

where N 2: 3, for which {oo} is negligible will be given in Theorem 7.6.5(ii).

Example 6.5.6. (i) If n is an unbounded Greenian open subset of jR2, then
{oo} is negligible for n.

To prove this, we note first that jR2 \n is a closed non-polar subset of jR2
and therefore contains a compact non-polar set K. By Lemma 5.8.1 there is
a positive harmonic function h on jR2\K such that h(x) --+ +00 as x --+ 00.
The result follows as an application of Theorem 6.5.2 with u = hln.

(ii) If n = jRN\K, where N 2: 3 and K is compact, then too} is non­
negligible for n.

To prove this, we take a ball B(O, r) containing K and define
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oo

n= {(x1, ... ,XN) E (O,I)N :XN E U(qn,qn+Tn-1)}.
n=l

We now use this lemma to give an example in which &n contains a neg­
ligible set of positive A-measure.

00
A(&n) = A(n) - A(n) 2: 1- L 2-n

-
1 = ~.

n=l

Lemma 6.5.3. A subset E of &= n is negligible for n if and only if every
component w of n contains a point X w such that !-'~w (E n &=w) = 0. In
particular, if En&=w = 0 for each componentw, then E is negligible for n.

Proof. If E is negligible for n and x is an arbitrary point of some component
w of n, then by Theorem 6.4.8,

To prove the converse, let w be any component of n. If !-'~w (En&=w) = °
for some X w E w, then by the minimum principle, ~ == 0, where X is the

characteristic function of E n &=w. By Theorem 6.3.6, H
n =°on w andXE

therefore E is negligible for n. 0

!-,~(E n &=w) = !-,~(E n &=w) ~ !-,~(E) =0.

Let E be the set of points in &n that are not in the boundary of any
component of n. By Lemma 6.5.3, E is negligible. If w is a component
of n, then clearly w is an N-dimensional rectangle, so A(&W) = 0. Hence
A(E) = A(&n) 2: t·

Proof. Suppose first that N 2: 3. By Theorem 5.1.3(i) there exists u E
U+(lRN

) such that u :, +00 on E. Hence, for each y E E, we have u(x) --+ +00
as x --+ y with x E n. It follows from Theorem 6.5.2 that E is negligible.

In the case where N = 2, for each z E &n let r z be a positive number
such that n U B(z, rzl is Greenian; such r« exist by Theorem 5.3.8. Since E
may be covered by a countable union of balls B(z, r z), it is enough to show
that EnB(z, r,) is negligible for each z E an. Since nUB(z, rzl is Greenian,
there exists a potential u on nUB(z,rz ) such that u = +00 on EnB(z,rz ) ,

by Theorem 5.1.3(i). If y E En B(z,rz ) , then u(x) --+ +00 as x --+ y, and
therefore En B(z, r z ) is negligible, as required. 0
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lim sup s(x):5 f(z) :5 p (z E B p nan);
x--+z,xEnnB p

Definition 6.6.2. A function u is called a barrier (for n) at yEan if u is
positive and superharmonic on nnw for some open neighbourhood w of y
and lim x -+y u(x) = o.

lim inf u(x) ~ u(z) ~ k
x--+z,xEnnBp

(z E E),

We first aim to show that yEan is regular if and only if there is a barrier
at y. Conditions for 00 to be a regular boundary point will be discussed
separately in Section 6.7.

also

Ig,y,p(x) ~ 0, u(x) > 0, S(x) :5 sup f :5 r (x E nn B p ) .
eo:

Lemma 6.6.3. If there is a barrier at YEan, then there exists a barrier v
at y such that v E u+(n) and infa\w v > 0 for every open neighbourhood w
oj s).

(6.6.4)

(6.6.3)

(z E (annw)\{y}).

limsup Hf(x):5 limsup f(x).
x--+y,xEil x--+y,xE8.G

liminfu(x) ~ A > f(z)
x-->'

and

If, further, f is bounded on aoo n and continuous at y, then

lim H f(x) = lim H f(x) = fry)·
x--+y X--+Y

and by hypothesis, limx-->y u(x) = O. Hence (6.6.1) holds, as required. 0

Proof. By Lemma 6.6.3, there is a barrier v at y such that v E u+(n) and
infa\w v > 0 for every open neighbourhood w of y. We choose a number A
such that lim sUPx-->y f(x) < A < +00. Let w be an open neighbourhood of
y such that f < A on (w n an)\{y} and n\w oj 0. Also, let c be a positive
number such that A + cinfa\w v > sUPa~a f and define u = A + cv. Then
u E Urn) and u is bounded below on n. Further,

liminfu(x) ~ A+cinf v > sup f ~ f(z) (zE (aoon)\w)
X-j.z n\w 800 [}

on o n B p . Now

lim Ig,y,p(x) = Ig,y,p(Y) = M(g;y,p) < rplr = p,
x-+y

'I'heorern 6.6.4. If there is a barrier at yEan, then for any function f on
aoo n which is bounded above,

By using these inequalities and considering separately the cases where z E E,
z E (nn aBp)\E, and z E B pn an, we find that (6.6.2) holds. Hence, by the
maximum principle, So :::; 0 on n n B P l so

S :5 p + k-1ru + Ig,y,p

on n n B p. Since s is an arbitrary element of <PJ", it follows that

(6.6.2)

(z E (n n aBp)\E),

lim sup sarz] :5 0
x-->x

So = s - p - k-lru - Ig,y,p.

Then So E sis: n B p ) . We wish to show that

We have

Proof. Let u be a barrier at y and choose r > 0 such that u is positive
and superharmonic on n n B(y,r) and n n S(y,r) oj 0. Define n' = n n
B(y, r) and suppose for the moment that there exists w E u+(n') such
that limx -+y w(x) = 0 and infa,\w w > 0 for every open set w such that
yEw ~ B(y,r/2). Let a = inf{w(x) : x E n'\B(y,r/2)}. Then the fnnction
v, defined to be equal to min{w,a} on nnB(y,r/2) and equal to a elsewhere
on il, has the properties we require. Hence it is enough to show that such a
function w exists.

Define f on an' by f(x) = Ily -xii· Then f E R(n'), and we aim to show
that HJ" has the properties required of w. Note that the function z >-t Ily-xll

has positive Laplacian on IRN \ {y} and so belongs to the lower class <PJ".

Therefore infa,\w HJ" > 0 for every open set w such that yEw ~ B(y, r/2).

It remains to show that HJ" (x) --t 0 as x --t y. To do this, we take a number
p such that 0 < p < r aud n n Sly, p) oj 0 and show that

lim sup HJ" (x) < 2p. (6.6.1)
x-->y

Since arbitrarily small values of p can be chosen, the required conclusion will
then follow.

Fix such a number p, write B p = B(y,p) and let E be a non-empty
compact subset of n n aBp such that O-((n n aBp)\E) < (p/r)a(aBp). Also
let k = infE u and note that k > O. Define g to be equal to r on (nnaBp)\E

and equal to 0 elsewhere on aBp. Let s be an arbitrary element of <PJ" and
define So on n n B p by
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If f is bounded on a=n and continuous at y, then (6.6.3) and (6.6.5) yield
(6.6.4). 0

and hence (6.6.3) holds.
If f is now supposed to be bounded below on a= n, then by applying the

result just established to - f, we obtain

The singleton {y} is negligible, so by Theorem 6.5.2 there exists w E u+(n)
such that w(x) -t +00 as z -t y. If s > 0, then u+ew E Pf. Hence H f ~ u
on {x En: w(x) < +oo} and therefore on n. It follows that

lim sup Hf(x) ~ limsupu(x) = A+clim v(x) = A,
x--+y x--+y x-ty

lim inf H f(x) 2': lim inf f(x).
x-).y x-ty

(6.6.5)

To prove the converse, suppose that there is no f1j for which y is an
irregular boundary point. Then for each j E J, either y is a regular boundary
point of n j or y rf. anj. In the former case, let Vj be a barrier for n j at y
such that Vj E u+(nj); such a function Vj exists by Lemma 6.6.3. Now define
u on n by putting u = min{vj, Ifj} on n j if y E anj and u = Ifj on n j
if y rf. anj. Then u is a positive superharmonic function on n, and we claim
that u is a barrier for n at y. Fix a positive number e and let J' denote
the finite set {j E J : Ifj 2': e}. If J' = 0, then u < E: on n. Otherwise,
for each j E J' there exists an open neighbourhood Wj of y such that either
Wj n n j = 0 or u < E: on Wj n n j. Let W = njEJ' Wj' Then W is an open
neighbourhood of y and u < e on Wn n. Hence lim x -+y u(x) = 0 and u is a
barrier for n at y, and therefore y is regular for n. 0

Theorem 6.6.8. The set of irreqular boundary points in an is polar.

Theorem 6.6.5. A point yEan is regular if and only if there is a barrier
at y.

Proof. If there is a barrier at y and f E C(a= n), then by Theorem 6.6.4,
Hf(x) -t f(y) as x -t y, so that y is regular.

Conversely, suppose that y is regular. We define a function g on an by
g(x) = min{1, Ilx - yll} and let g(oo) = 1 if n is unbounded. Then g E
C(a= n) and since y is regular Hg(x) --7 g(y) = 0 as x --7 y. Also, since g > 0
on a=n, except on the negligible set {V}, we have Hg > 0 on n. Hence Hg
is a barrier at y. 0

Corollary 6.6.6. Let yEan be regular and f: a=n --7 [-oo,+ooJ.
(i) If f is bounded above on a=n, then (6.6.3) holds.
(ii) If f is resolutive and bounded on a=nand f is continuous at y, then
Hf(x) --7 f(y) as x --7 y.

Proof. This follows immediately from Theorems 6.6.4 and 6.6.5. 0

The boundedness of f in the above result is essential, as we will see in
Example 6.6.18 below.

Theorem 6.6.7. A point yEan is iTTegular for n if and only if there
is some component W of n such that y E aw and y is irreqular for w. In
particular, y is regular for n if y is not in the boundary of any component of
n.

Proof. Let the set of components of n be {nj : j E J}, where J c;: N. If y is
irregular for some nj , then by Theorem 6.6.5 there is no barrier for nj at y.
Hence there is no barrier for n at y, and therefore y is irregular for n.

Proof. Suppose first that n is connected and fix an arbitrary point zEn.
By Theorem 5.7.4(i), the Green function Gae z) has the property that
Ga(x, z) --7 0 as x --7 y for all y E an\p, where P is a polar set. Thus
Gae z) is a barrier at y for each y E an\p and therefore each such y is
regular. Thus the irregular points of an belong to the polar set P.

In the general case, Theorem 6.6.7 allows us to conclude that the irregular
boundary points in an are contained in a countable union of polar sets and
therefore form a polar set. 0

Corollary 6.6.9. (i) If E is a relatively open subset of an which is negligible
for n, then each point of E is irrequlor and the set E is polar.
(ii) If E is a relatively open subset of an which is polar, then each point of
E is irregular.

Proof. (i) If z E E then we choose f E C(a=n) such that f = 0 on a=n\E
and f(z) # O. Since H f '" 0, it follows that z is irregular. Hence E is polar,
by Theorem 6.6.8.

(ii) This follows from (i) and Theorem 6.5.5. 0

We now provide a supplement to Theorem 6.4.8.

Theorem 6.6.10. Let W be an open subset of n and let E be a subset of
an\n\w. Then E is negligible for W if and only if E is negligible for n.

Proof. The "if" part is immediate from Theorem 6.4.8. To prove the converse
we suppose that E is negligible for w. Since a countable union of negligible
sets is negligible, it is enough to treat the case where E is bounded and
E c;: an\n\w. Since E is contained in a Borel set that is negligible for w,
we may also suppose that E is a Borel set and hence that the characteristic
function XE is resolutive for n. We define a function F to be equal to XE on



We now give some simple geometric sufficient conditions for regularity.

Proof. Let Bo = B(z, r). Then the function Uz(y) - Uz is a barrier at y, so
the result follows from Theorem 6.6.5. 0

for every y E an\E that is regular for n. By Theorem 6.3.6, Corollary 6.3.2
and the assumption that E is negligible for w,

o
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0:'0 limsupH7"(x) :'0 alimsupH7"(x) < +00.
x--+o x--+o

Since 0 < a < 1, it follows that H7"(x) -4 0 as x -4 O.

The strengthening of Theorem 6.6.12 mentioned above is as follows.

Theorem 6.6.15. (i) If y E f)n, where n c JR2
, and y is an endpoini of

some line-segment lying in JR' \ n, ihen y is regular.
(ii) Suppose that y E f)n and n c JRN, where N ~ 3. Suppose also ihat
there exists a cone r of veriex y and an (N - I)-dimensional hyperplane P
containing the axis oj T such thatrnPnB(y,o) C JRN\n [or some S,> O.

Then y is regular.

Proof. (i) This is simply a reformulation of Lemma 6.6.14 for the case N = 2.
(ii) We may suppose that y = O. Define no = B\r n P. Then any barrier

for no at y, suitably restricted, will be a barrier for n. Define f(x) = Ilxll for
X E f)no. We will show that H7" is a barrier for no at 0 and thus complete

the proof. Since the function x H Ilxll belongs to '1'7", we have H7"(x) ~ Ilxll

on no, so it is enough to show that H7"(x) -40 as x -4 O. By Lemma 6.6.14,

every point of ano\{O} is regular and therefore H7"(x) -4 f(z) as x -4 z for

each Z E ano\{O}. Since f:'O 1 on ano and no is connected, either H7" < 1

or H7" = Ion no, but the latter is clearly impossible. Let n , = nonB(O, 1/2)

and define 9 to be equal to f on f)n, n ano and equal to H7" on no n an,.

By Theorem 6.3.6, H7" = H/;" on a, and hence sUPn, H7" :'0 sUP8n, g < 1.

Let a = max{I/2, sUPn, H7"}· The function

x H H7"(x) - aH7" (2x)

is bounded and harmonic on n, and has a non-positive limit at each point
of an, \ {O}. Hence by the maximum principle (Theorem 5.2.6), this function
is non-positive 011 ill and therefore

Proof. It is enough to deal with the case where y = 0 and T is the identity
mapping on JRN. Let (r, e) be polar coordinates such that x, = r sin e, X2 =
rcose. The function (Xl, ... ,XN) H r' / 2 sin(e/2) is harmonic and positive
on JRN\{x: X, = 0,X2 ~ O} and vanishes at O. Hence 0 is regular. 0

Lemma 6.6;14. Let

where 0 > O. If y E f)n and there is an isometry T such ihat T(O) = y and
T(E) c; JRN\n, ihen y is regular for a.

(6.6.6)

(x E w),

lim F(x) = 0
z--+y,:cEO

Chapter 6. The Dirichlet Problem

F(x) = H'F-(x) = H'F-xnn8w (x) + H~E(X) = H'F-xnnaw (x)

Corollary 6.6.13. Any open set n is the union of a sequence (nn) of
bounded regular open sets such that nn C nn+l for each n.

The above theorem implies, in particular, that any bounded domain with
a (one-sided) C 2 boundary is regular.

Proof. For the purposes of this proof, we say that a non-empty bounded open
set w is admissible if w = wo\(B , U ... UBm ) , where Wo is a bounded open
set and B1 , .. . ,Em are open balls whose union covers 8wQ. It follows from
Theorem 6.6.12 that any admissible set is regular, and it is easy to show that
any open set n is the union of a sequence (nn) of admissible sets such that
nn c nn+l for each n. 0

Even with elementary methods, we can give a much stronger result than
Theorem 6.6.12; for example, in IR' one such result says that y is a regular
boundary point for n if y is the vertex of a plane triangle lying outside n.
For this, we need the following lemma.

Theorem 6.6.12. Ify E f)n and there is a ball B o such that Bonn = {y},
then y is regular.

Example 6.6.11. Let D = JR x (0, +00) and E, = (0,1) x {t}, and define n =
D\(U;:'=lE'ln)' Then Eo is negligible for n. To see this, letw =nn(0,I)2.
Since Eo is negligible for w, by Lemma 6.5.3, Eo is negligible for n, by
Theorem 6.6.10.

fjOO n and equal to H~E on a. Then 0:'0 F :'0 Ion nUa=si and Fin E 1i(n).
By Corollary 6.6.6,

184

and hence (6.6.6) holds also for every y E E that is regular for w. Thus (6.6.6)
holds for quasi-every yEan by Theorem 6.6.8. Also, in the case N ~ 3, some
multiple of Uo belongs to <Fl?, and so F(x) -40 as X -4 00 if n is unbounded.
It now follows from Theorem 5.2.6 that F = 0 on n, so E is negligible for
n. 0
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v(x) = f: bn{f(Tn)}N-31:~:, {llx'II' + (XN - t)2}(Z-N)!2 dt.
n=l

Theorem 6,6,15 implies that if 0 E aD, then a sufficient condition (called
the Poincare exterior cone condition) for 0 to be regular is that Jll.N\D con­
tains a cone of revolution with vertex O. In the opposite direction, the next
result describes some sets of revolution E for which 0 is an irregular boundary
point of Jll.N \E,

Theorem 6.6.16. Let

Let

00

2:>n (2n f(2- n)}N-3 < +00,
n=l

(6,6,9)

Then v is a potential on Jll.N and v is harmonic on Jll.N\({O'} x [0,1]), It is
clear from (6.6.9) that v(O) < +00. However, if 2-n - 1 ~ XN ~ 2-n and
Ilx'll ~ f(2- n), then it follows from (6.6.8) with a = 2-n-2 and a translation
that v(x) 2: bnC2' provided n is large enough to ensure that f(2- n) < 2-n- Z.

Hence v(x) ---+ +00 as x ---+ 0 along E. Now define 9 on 000 D by writing
g(O) = 2v(0),g(00) = 0 and 9 = min{v,2v(0)} elsewhere. Then g E C(aOOD)
and v + £Uo E iPg for every positive number e, so Hg ::; v on n, However, it
is clear from the definition ofv that V(O',XN) < v(O) = g(0)/2 when XN < 0,
so we cannot have Hg(x) ---+ g(O) as x -e 0, and therefore 0 is irregular for
D. 0

(6.6.7)

(N = 3),

(N 2: 4),

{I -,-_--:---'d:;:t':-:-c:-:= < +00
Jo t{l+ log+(t/ f(tm

then 0 is irregular for Jll.N \E.

where N 2: 3 and f : [0, +00) ---+ [0, +00) is increasing. If

11

t,-N {f(t)}N-3dt < +00

(0 < a ~ +00).

We conclude this section with an example showing that the boundedness
of f in Corollary 6,6.6(ii) cannot be dispensed with,

(n E N).Hf(Yn) < 1

Example 6.6,18. For each n E N let Dn = (-1,1) x ((n+ 1)-1,n-1), and
let D = U:;"~l Dn · Then 0 is a regular boundary point of aD, but there is a
resolutive function i, continuous at 0, for which lirnx-toHf{x) does not exist.

To see this, let X n be the midpoint of the rectangle Dn . Then there exists
fn E C(aDn) such that l« = 0 on [-1,1] x {(n+l)-I, n- l j and Hfn (x n) = 2.
Also, since the point (0, n- 1

) is regular for Dn , there exists Yn E Dnn({OJ x lit)
such that Hfn (Yn) < 1. Define f on aD by putting f = i« on {-I, I} x
((n + 1)-1, n- l) for each n and f = 0 elsewhere. Then f is continuous at 0
and Hf = Hfn on Dn for each n. In particular,

F = {OJ U {(X',X3): X3 > 0, IIx'll ~ exp(-x3°)}

and E > O. In the case where e = 1 the set F is referred to as the Lebesgue
spine.

when a > 1. However, as we have already observed, Theorem 6.6.15 shows
that when a = 1, the point 0 is regular for this set. In the case N = 3,
Theorem 6.6.16 shows that 0 is an irregular boundary point of the set 1It3\F,
where

Remark 6.6.17. It follows from the above theorem that if N 2: 4, then 0 is
an irregular boundary point for sets of the form

IItN\ {(X' , XN) : XN 2: 0, Ilx'll ~ xjV}

Proof. We prove the case where N 2: 4 and leave the case where N = 3,
which is similar, as an exercise, Points of ]RN will be written as (X\XN)l
where a' E Jll.N- l, Let

Clearly f(2- n ) < 2-n - Z for all sufficiently large n. Also, we can choose a
sequence (bn ) of positive numbers such that bn ---+ +00 and

00

1)2nf(2-n)}N-3 < +00.
n=l

Ua(X',XN) 2: c21Ix'113-N Ulx'il ~ a; IXNI ~ a;O < a < +00). (6.6.8)

Now let E and f be as stated, and let D = Jll.N\E. It follows from (6.6.7)
that

Ua(x) = i:{llx'112 + (XN - t)'}(2-N)/2dt

Then U+ oo is harmonic on (IltN-1 \ {O'} ) x lit and depends only on IIx' II, so the
function x' H u+oo(x',O) is harmonic on IItN- l \ {O'}. Further, by monotone
convergence, this function has limit +00 at 0' and limit 0 as Ilx'lI ---+ +00.
Hence, by Theorem 1.1.2, u+oo(x) = clllx'W-N for some positive constant
Cl. Since U+co - Ul has a harmonic continuation to B, there is a positive
constant C2 such that Ul(X',O) 2: 2czllx'113-N when Ilx'lI ~ 1. If IXNI ~ 1 and
IIx'll ~ 1, then

l1x N
+

1

Ul(X',XN) 2: - {lIx'112 + (XN - t)2}(2-Nl!Zdt 2: c21Ix'1I3- N

2 xN-l
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Since X n -+ °and Yn -+ 0, it follows that limx-->o Hf(x) does not exist. We
note that, by Theorem 6.6.15(i), all points of an are regular.

Theorem 6.7.2 (and its counterpart for lower solutions), Hf(x) = Hf (x")
for each x E n. By the regularity of z" for n" and the continuity of the
mapping x H z", we have

Proof. This follows from Theorems 6.6.7 and 6.7.1 and Corollary 6.7.3. 0

Theorem 6.1.5. A Greenian set n in IRN is regular if and only if each
component of n is regular.

Example 6.1.4. (i) If n is a Greenian open subset of 1R2 and 1R2 \n is compact,
then 00 is irregular for n. To see this, let n" be the inverse of n with respect
to S(y, 1), where y E 1R'\n. Then y = 00" under this inversion and y is an
isolated, and hence irregular (see Corollary 6.6.9(ii)), point of an". Thus by
Corollary 6.7.3, 00 is an irregular point of aoon.

(ii) If n is an unbounded open subset of 1R2 and 1R2\n contains a half-line,
then 00 is regular for n. To see this, let n" be the inverse of n with respect
to S(y, 1), where y is a point of some half-line in 1R2 \ n. Then y = 00" and
there is a line-segment in 1R2 \n" having y as an endpoint. Hence y is regular
for n" by Tbeorem 6.6.15(i)' and 00 is regular for n by Corollary 6.7.3.

6.7. Behaviour near infinity

Theorem 6.1.1. If n is an unbounded open subset of IRN , where N 2: 3,
then 00 is regular for n.

Proof. Let f E C(a OO n). We have to show that Hf(x) -+ f(oo) as x -+ 00. By
adding a constant to f, we may suppose that f(oo) = 0, and by multiplying
f by a suitable positive constant, we may also suppose that If I ~ 1 on aoo n.
Given e > 0, let R > °be such that If(y)1 < e when yEan and Ilyll > R.
Then the function u,(x) = e + (R/llxID N - ' belongs to '1>f and -u, E ofFf'
Hence IHfl :S u, on n. Since u,(x) -+ e as x -+ 00 and e is an arbitrary
positive number, the required conclusion follows. D

In 1R' the question of whether 00 is a regular boundary point of n is more
complicated. An answer will appear as a corollary of the following theorem.
We use the notation of Definition 1.6.2 with the convention that tbe inverse
00" of 00 with respect to S(y,a) is y and y" = 00, and we then modify the
definition of the inverse of a set E by putting E" = [z" : X E E} for any
E <; IRN U {oo}.

lim Hf"(x) = lim H f':' (x") = j"(z") = f(z),
z-+z ;z:*-+z·

so that z is regular for n. o

Theorem 6.1.2. Let n be a Greenian open subset of 1R', and let sr be its
inverse with respect to some sphere S(y, a), where y E 1R2 \J? If f : aoo n -+

-{r -n
[-00, +00]' then H!" (x) = H f (z") for each x E Il",

Proof. Suppose that u E '1>f. Then u" is hyperharmonic and bounded below
on n". Also, by the continuity of the mapping x H x" ,

liminf u"(x) = liminf u(x") = liminf u(x") 2: f(z") = j"(z)
x-tz,xEO* x--+z,xE{}* x*-tz·,x*Ef.?

for each z E aOOn" = (aOOn)". Hence u" E '1>7:. We now have

H~: (x):S inf{u" (x) : u E <[i7} =inf{u(x") : u E '1>7} = H~(x")

for each x E rl*. Since the mapping x H x* is its own inverse, the same
-fl* -f}

argument shows that H r (x) 2: H f (z") for each x En". 0

Corollary 6.1.3. Let N = 2. With the notation of Theorem 6.7.2, a point z
of aoo n is regular for n if and only if z" is regular for n".

Proof. Since (z")" = x, it is enough to prove the "if" statement. Suppose
that z" is regular for sr, and let f E C(aOOn). Then i" E C(aOOn") and by

6.8. Regularity and the Green function

Theorem 6.8.1. If a <; IRN , where N 2: 3, or n is a bounded open subset
of 1R2 , then G,,(·,y) = Uy - Hu, on n for each yEn. (Here we define
Uy (00) = °if n is unbounded.]

Proof. Fix yEn and note that under the stated hypotheses Uy E C(aOO n)
and Uy E '1>u" so that Uy 2: Hu, on n. Since Gn(-,y) = Uy - h y, where h y
is the greatest harmonic minorant of Uy on ill we see that hy 2: H uy on n.
On the other hand, h y ~ Uy on n, so h y E ofFu, and therefore hy :S H u, on
tt . Thus hy = H u, and the proof is complete. D

Example 6.8.2. Let n = 1R2 \ K , where K is compact and non-polar and let
yEn. Then Gn("Y) # Uy - Hu, (no matter what value is assigned to
Uy(oo)). Thus Theorem 6.8.1 does not extend to all Greenian sets in 1R2 .

To see this, we note that {oo} is a negligible subset of aoo n (see Ex­
ample 6.5.6(i)) and Uy is bounded on an, so H u, is bounded on n. Hence
Uy - Hu, takes negative values at some points of n, but G,,(-,y) does not.



Corollary 6.8.4. The irregular boundary points of D form an Fu set.
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(x E E)

(x E fl\E).

(x E D\w)

(x EW).

6.9. PWB solutions and reduced functions

{

u(x)
v(x) =

H';;(x)

Then v E U(fl) and vS U on D.

Proof. This follows from Theorem 6.9.1 by defining E = fl\w.

Corollary 6.9.2. Letw be a bounded open set such thatw CD, letu E U(D)
and define

R;;(x) = {U(:~E
Hu, (x)

In particular, H;;,\E ~ U on fl\E.

Proof. Since Uj is lower semicontinuous on [)OO(fl\E) and U E p;;,\E, it follows

that u, E n(fl\E). If v E U+(fl) and v :::: U on E, then v E p;;,\E, so
Rtf :::: H;;,\E on fl\E. To prove the reverse inequality, let w E p;;,\EnU(fl\E)
and define 'Ii! to be equal to U on E and min{w, u} on fl\E. By Corollary
3.2.4, wE U+(D) and hence 'Ii! :::: Rtf on D. Thus w :::: Rtf on D\E, and since
w is an arbitrary superharmonic element of P~l\E, it follows that H~\E 2: R{f
ooD~. 0

and

on D.

Corollary 6.9.3. If E is a relatively closed subset of D and u,v E U+(D),

then

Proof. By Theorem 6.9.1 the first equation holds on fl, and hence the second
equation holds quasi-everywhere on fl. The second equation therefore holds
everywhere on D, by Corollary 3.2.7. 0

Theorem 6.9.1. Suppose that u E U+(fl), let E be a relatively closed subset
of fl, and define Uj = U on fl and Uj = 0 on [)OO fl. Then Uj E R.(fl\E) and

The first result in this section is a generalization of the fact that if we take
a superharmonic function and replace it in some ball by its Poisson integral
then superharmonicity is preserved (see Corollary 3.2.5).

6.9. PWB solutions and reduced functions

(6.8.1)

(z E sa;

(x ~ oo,x ED).

The following are equivalent:

lim Gn(x,y) = 0;
X-H

f(z) = limsupGn(x,y)
x--->z

o~ Gn(x, y) ~ Uy(x) ~ 0
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Proof. It is sufficient to show that the set E of finite irregular boundary points
is F

u
, since the possible addition of 00 to E would preserve this property. In

view of Theorem 6.6.7, and the fact that a countable union of F; sets IS Fu , we
may assume that fl is connected. Let y E fl. Theorem 6.8.3 shows that (6.8.1)
holds for a point z E [)D if and only if z rf- E. Thus E = {z E [)D: f(z) > O},

where

Since f is upper semicontinuous on [)fl, the set {z E [)fl : f(z) :::: n-
j

} is
closed for each n E N. Thus E, being the union of these sets, is an F; set. 0

In the CMe where N = 2, Theorem 4.1.11 and Corollary 6.7.3 enable us
to deduce the theorem for z = 00 from the already established case where
zE[)D. 0

(c) every component of fl contains a point y for which (6.8.1) holds.

Proof. We first treat the case where z E [)fl. Suppose that (c) holds. Then,
for each component w of fl which satisfies z E [)w, there is a point yEw such
that Ga (., y) is a barrier for w at z, and thus z is regular for w. It follows
from Theorem 6.6.7 that (a) holds.

In the case where fl satisfies the hypotheses of Theorem 6.8.1, it is clear
that (a) implies (b). In order to include the CMe where fl is an unbounded
subset of 1R2 , we give a different argument. Fix y Efland choose r' > 0
such that B(y, r) c fl. If z is regular, theu there is a barrier v at z and,
by Lemma 6.6.3, we may assume that v E U+(fl). We can arrange that
v> Gn("Y) on S(y,r) by working with a suitable multiple of v. Define u =
GnCy) on B(y,r) and U = min{v,Gn("Y)} on fl\B(y,r). Then u E U+(fl)
and u has the form Uy + w, where w E U(fl). Since GnCy) is the minimal

function of this form in U+(fl), we have 0 ~ GnC y) ~ u ~ v on fl\B(y, r)
and hence (6.8.1) holds. Since (b) clearly implies (c), this completes the proof
of the theorem, apart from the case where z = 00.

Finally, suppose that fl is unbounded and z = 00. In the case where
N :::: 3, the point 00 is necessarily regular, by Theorem 6.7.1, and for each

fixed y E fl,

Theorem 6.8.3. Suppose that z E [)OO fl.
(a) z is regular for fl;
(b) for every y E a,
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6.10. Superharmonic extension

Newtonian potentials on OCN (or logarithmic potentials in the case N = 2)
are convenient functions to work with, especially when their Riesz measures
have compact support. It is therefore of some interest to know when a su­
perharmonic function on an open set can be represented, at least locally, as
such a potential plus a constant. The proof of the following theorem makes
use of properties of the PWB solution of a Dirichlet problem.

Theorem 6.10.1. Let K be a compact subset of OCN such that OCN\K is
connected. If u is superharmonic on some open set containing K, then there
exists u E U(OCN) such that u = u on K, and there exist a,fJ,p E OC with
fJ, p > 0 such that u = a + fJUo on OCN\B(O, pl·

Remark 6.10.2. The function u in Theorem 6.10.1 is harmonic outside some
ball and agrees with u, not just on K, but on a neighbourhood of K. It follows
that the Riess measure associated with u has compact support and the Riesz
measures associated with 'U and it agree on K.

Example 6.10.3. There is no function u E U(OCN) such that u = -Uo on
{x : 1 ::; Ilxll ::; 2}. For if there were such a function u, then M(u; 0,')
would be strictly increasing on [1,2], which is impossible. This shows that the
hypothesis in Theorem 6.10.1 that OCN \K is connected cannot be dispensed
with.

Also, if u is superharmonic on a bounded open set fI, there will not in
general exist a function u E U(OCN) such that u = u on fI even if OCN \fI and
IRN \ {} are connected, as we now show.

Then u = u on LO and it follows from two applications of Corollary 3.2.4
that u E U(OCN). 0

Proof. Let fI be a bounded open set containing K such that u is superhar­
monic and bounded below on fl. By adding a suitable constant to u, we may
suppose that u > 0 on fl. Let L be a compact set such that K c L ° and
L c fl. By initially taking L to be a finite union of cubes of equal size, we
can arrange that OCN \L has only finitely many bounded components. If w
is such a component, then there exists a tract T from a point of w to 00

(see Section 2.6) such that T c OCN\K. By removing such tracts from L we
arrange that OCN\L is connected. Let R be such that fI c B(O,R). Our first
aim is to show that there is a superharmonic function w on B(O,R+ 1) such
that w = u on £0. Let v = ii~, the balayage of u relative to L in fl. Then
v E U(fI) n 1i(fI\L) and 0 ::; v ::; u on fI with v = u on LO. Let flo be a
regular domain of the form B(O,R + 1)\E where E is a compact subset of
fI such that L C EO. Let 9' = v on aE,9' = 0 on S(O,R+ 1),92 = 0 on
aE,92 = lon5(0,R+l),anddefinehk =H:','-kHi),' foreachk E Ii. Since
Hi),' > 0 on flo by Corollary 6.6.9(i), we see that hk decreases to -00 on flo
as k -4 00. By Dini's theorem there exists m such that hm ::; 0 on of!. Since
flo is regular, hm(x) -4 v(y) as x -4 y for each y E aE. Since, also, hm ::; 0
on afl and v 2: 0 on fI, the minimum principle yields hm ::; v on fl. Now
define w = hm on flo and w = v on E. By Corollary 3.2.4, w E U(fI). Since
wE 'H.(flo), we conclude that w E UtErO, R + 1)) n 'H.(B(O, R + 1)\E).

We note that w = v = u on LO and w tends to -m on 5(0, R + 1). Let
M = sUPS(O,R) wand choose numbers a, fJ with fJ > 0 such that

c + fJUo(x) 2: M (x E 5(0, R)), a + fJUo(x) ::; -m (x E 5(0,R + 1)).

We define

{

w(x)
u(x) = min{w(x), a + fJUo(x)}

a + fJUo(x)

(x E B(O, R))
(x E B(O,R+ 1)\B(O,R))
(x E OCN\B(O,R+ 1)).

Example 6.10.4. Let fI = {x E lRN : Ilxll < l,xN > OJ. If u(x) = ."jXiion
fI, then u E U(fI) but there is no u E U(OCN) such that u = u on fl. In fact,

Llu(x) = -xl:/2/ 4, so Llu is negative and not integrable on fl. Thus, if there
were such a function U, its associated Riesz measure v would be such that
v(fI) = +00 (see Theorem 4.3.2(i) and Corollary 4.3.3), which is impossible.

6.11. Exercises

Exercise 6.1. Let fI = {(X',XN) E OCN- ' x OC: 0 < Ilx'll < I}, where N 2: 3.
Find a function in e(a'" fI) for which the classical solution to the Dirichlet
problem fails to exist.

Exercise 6.2. Let N = 2, let fI = B(O,e)\B and let f = 1 on 5(0, e) and

f =0 on 5. Show directly from Definition 6.2.3 that H7 = H7 = -Uo·

Exercise 6.3. Show that Theorem 6.3.5 may fail if H f. == -00 for all n.

Exercise 6.4. Let (fin) be an increasing sequence of open sets such that
Un fin = fI, where f! is connected, let h E 'H.(fI) and x, E fI,. Show that h
can be written as h, - h2 where h"h2 E 'H.+(fI) if and only if (HI~i(xJl) is
bounded.

Exercise 6.5. Let fI = OC2 \B. Use the Kelvin transform to show that har­
monic measure for fI and z E fI is given by

1 IIzl1 2
- 1

dl'-'(Y) = 2rr IIZ-YWdo(y),

where a denotes arc length measure on 5.



for all but a negligible set of points y in aoon.

fo(Y) = min{f(y),limsupH}'(x)}.
x-ty
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limsupH}'(x) = +00.
,-to

Exercise 6.18. Let K be a compact subset of JRN, let K denote the union of
K with the bounded components of jRN \ K , and suppose that oK i' sic. Find
a superharmonic function u on some neighbourhood of K with the following
property: there is no superharmonic function IT on ~N such that u= u on K.

Exercise 6.16. Let E be a relatively closed subset of n.
(i) Show that, if Un E u+(n) for each n and 2: Un converges somewhere in
each component of a, then R~u. = 2: R{f. on a.
(ii) Show that, if Gal'- is a potential on si, then Rgn~ =JRgn(.,y)dl'-(Y)

on n.

Exercise 6.15. Justify the case N =3 of Theorem 6.6.16.

Why does this not contradict Theorem 6.6.7?

Exercise 6.14. Show that a subset E of aoon is negligible if and only if
there exists h E H+(n) such that h(x) ---+ +00 as x ---+ y for each Y E E.
(Hint: to prove the "only if" part, adapt the proof of Theorem 6.5.2 to show
that there exists hI E H(n) such that hI (x) ---+ +00 as x ---+ y for each regular
point of E. Then use the approach of Exercise 5.6 to complete the argument.)

Exercise 6.17. Let K be a compact subset of an open set n in jRN such
that every bounded component of JRN\K contains a point of JRN\n. Show
that, if u is superharmonic on some open set containing K J then there exists
u E U(n) such that u =U on K.

Exercise 6.13. Let N = 2 and 0 E an, and suppose that there is a one­
to-one continuous function 9 : [0,1] ---+ JR2\n such that g(O) = O. Show that
o is regular for n. (Hint: let t E (O,IJ be the smallest number such that
Ilg(t)11 = IIg(I)11 and let w = B(O,t)\g([O, t]). Then w is simply connected,
so there is a holomorphic function f on w such that efC') = z there. Now
consider Re(l/ f).)

r
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Show that H f = H fo and deduce that

limsupH}'(x) ~ f(y)
x-ty

Exercise 6.8. Let f be a bounded resolutive function on aoon and let fa be
defined on aoo n by

Exercise 6.7. Let n = JRx(-rr/2, rr/2), D = (0, +00) x JR and f E C(aoon),
and define 9 E C(aoo D) by g(oo) = g(O) = f(oo) and

(0 t) _ {f(logt,rr/2) (t> 0)
9 , - f(logltl,-rr/2) (t<O).

Exercise 6.9. Let D = ocN- l X (0, +00) and let A be a relatively open subset
of aD. Show that there exists h E H+(D) such that h has limit 1 at each
point of A and h(O', I):S X(A). Deduce that, if E c;; aD and X(E) = 0, then
there exists U E H+(D) such that U has limit +00 at each point of E.

Exercise 6.6. Let n = JRN\B, where N ~ 3. Use the Kelvin transform and
the maximum principle to show that, if f E C(aoo n), then

1 1 1+00a . _ cos 1) k
Hf (E + '1)) - -2 :E h(E t) (l)k' f(t, (-1) rr/2)dt.

1r k=O -00 cos - - - sm 1]

Identifying <C with JR2 in the usual way, show that H}'(z) = HJ'(e') when
zEn, and deduce that

Exercise 6.10. Let 5, = {x E 5(0, t) : XN ~ O} and define n =
B\ (U~2 5 1_ k - , ) . Show that 51 is negligible for n. (Hint: first show that
{x E 5: XN > O} is negligible.)

Exercise 6.11. Let n = B\({0}UU;:'=25(0, l/n)). By constructing a barrier
for n at 0, show that 0 is a regular boundary point of an.

Exercise 6.12. Let n = U~1 [(k~I' t) x (-2, k)). Find f : aoo n ---+ [0,+00)
such that f is continuous on an and H}' exists, yet


