=i
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,
i) = lim / | Dg(t)|de.
=8 Jo

Prove that: If T" is a half-open curve in F with C'-parametrization g € C(la, 8), F) and
finite length, then T is relatively compact.

Application: If ¢ is a semiflow on E and if y*(z) has finite length, i.e.,

t
I(y* () = , 1%9(1@_ /
- 0

then y*(z) is relatively compact.

d7r < o0, 37

E(T - )

(Hint: Since E' is complete, it suffices to show that T is totally bounded, i.e., for every
€ > 0 there exist finitely many points z1,...,z,;, € I’ such that T C U;Zl B(z;, €). This
follows easily from (36) and (37) by considering sufficiently small parametrization intervals
and using the fundamental theorem of calculus.)

7. Let E be a real Banach space, g € CI(E',R) and v € C'(E, E). Then v is called a
pseudo-gradient vector field (PGVF) for g if

lv@ll <2|Dg@)l| and {Dg(),v(x)) = | Dg(@)|*/2

forallz € F. If E=(E,(-| ) is a Hilbert space, then clearly v :=grad g is a PGVF for
g. PGVF’s play an important role in the calculus of variations in the large and nonlinear
functional analysis, where one tries to obtain statements about the existence and multiplicit
of critical points of g. :

Show that: If ¥*(z) is a positive semitrajectory of the flow induced by —v and if v*(z) has
finite length, then g has a critical point at the level « := inf g(y*(x)), i.e., g™ () N {z €
E | Dg(z) =0} = 0.

19. Linearizations

In this section we let (E,| - |) denote a finite dimensional Banach space, M an
open subset of E and f € CL(M, E).

The main goal is to study the flow ¢, induced by £, in the neighborhood of
a critical point g, in particular, in situations in which the principle of linearized
stability (theorem (15.6)) is not applicable. For reasons of simplicity, we only
consider the case when D f(zq) induces a hyperbolic linear flow. We will show
that locally, i.e., near g, the flow ¢ is flow equivalent to the linear flow etD./(@0),
that is to say, the structure of a saddle is preserved. In addition, we will derive
precise statements about the “stable and unstable manifolds” W, and Way.

et
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Let X and Y be either metric spaces or differentiable manifolds and assume
that ¢ : Q, — X and % : Qy — Y are flows on X and Y, respectively. We say

that @ at zg € X is (locally) Ck—ﬂow equivalent to 1 ar yy € Y, or for short:
olzg is CE-flow equivalent 1o Plyg, 0 < k < oo, if there exist neighborhoods U
and V' of zg and yy, respectively, such that the flow ¢ restricted to U is C*-flow
equivalent to the flow 4 restricted to V, for short: w|U and |V are C*-flow
equivalent.

In what follows, we always let ¢ : Q — M denote the flow induced by f on
M and, again, we write ¢ - z for p(t, ).

The first proposition shows that one can “straighten out the trajectories” in a
neighborhood of a regular point, i.e., a noncritical point. Here we have dimg(E) =
2dimg (E) whenever K = C (“decomposition into real and imaginary parts”).

(19.1) Propesition. Let zg.€ M be a regular point of @ and let v denote the flow

induced by the constant vecior field y — e; = (1,0,...,0) on R™, m = dimp(E),
that is to say,

YY) =y+ter, Vit,y) e RxR™.
Then |y and 1|0 are C'flow equivalent.
Progf. By decomposing f and z into real and imaginary parts, we may assume
that K= R. By means of a translation we can obtain zy = 0, and by introducing a
basis with first basis vector f(0), we may identify £ with R™ and f(0) with e;.

Then there exists some appropriate neighborhood U of 0 € R™ = R x R™! such
that the function h : U — R™, defined by

h(t,m) = (¢, (0,m),

is well-defined and of class C!.
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IRm—W h(t"n)
(om) | (tm) fom)

For all (s,n),(t,n) € U such that (s +¢,7) € U we then have

ho (e, (s,m) = h((s,m) +te)) = h(s +t,m)
= @(s+1,(0,7) = w(t, w(s, 0,m)) = ©(t, h(s,n),

that is, near 0 € R we have
hot=po(idxh). (1)

Since h|{0} x R = (o, tdgm-1) and D h(0) = D1¢(0,0) = f(0) = ey, it follows
that

Hence, by the inverse function theorem, h is a local Cl-diffeomorphism near 0
and therefore — because of (1) — a local C!-flow equivalence. m}

(19.2) Remarks. (a) It follows from the differentiability theorem (9.5) and the proof above
that plzg and 9|0 are C%-flow equivalent whenever f e CHM,E)1 <k < oo, and
K=R. :

(b) The proof above shows that ¢|zg and |0 are isockron flow equivalent, i.e., the time
variable is unchanged. O

The Linearization Theorem

We now turn to the main task of this section, the study of a flow in a neighborhood
of a hyperbolic critical point. Here the critical point zg of the flow induced by
f is called hyperbolic if on(Df(xg)) = 0, that is, if the linear flow e*Pf(z0) jg
hyperbolic.

There exists a close connection between flows and homeomorphisms. In fact,
according to theorem (10.14), (pt is a homeomorphism from € onto _; for all
t € R. In particular, for every linear flow et4 it follows that et4 € GL(E) for
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every t € R, that is, et is an automorphism on E. It is therefore reasonable (and
useful for applications) to consider the case of homeomorphisms first.

To motivate the next definition, we first prove the following special case of
the spectral mapping theorem (see, for example, Yosida [1]).

(19.3) Lemma. If A € L(E), then

o(e?y=e"@ = {* | A € o)}

Proof. Since o(A) := o(Ag), we may assume — by passing to the complexification —
that F/ is a complex Banach space. If A1,..., Ay denote the distinct eigenvalues of A,
we know from section 12 that £ has the direct sum decomposition F = E; @ --- @ E,
which reduces A as well as et. Hence it suffices to prove that cr(eAJ') = e47) where
Aj = A|E; for j=1,..., k. We may therefore assume (cf. section 12) that the following
holds: o(A) = {\} and A=A+ N for some nilpotent operator N € L(E). It follows that
there exists some z € £\ {0} such that Az = Az, i.e., Nz = 0. From this we deduce that

etz =erelVz =z,

that is, o(e!) D e, Conversely, if we have ey = iy for some u € Candy € E \{0},
then

m
1
_ AN, AN~ Lk
py=e‘e’y=e Zk!Ny» @)
k=0
Then there exists a smallest index ! such that 0 <[ <m and N’ l“y = 0. Applying Nt to
(2), we obtain
' Ny = AN
uN'y = e N'y.
Since N'y # 0, we have y = e, which implies that o(e) C (4, g

Assume now that A € L(F) and let A induce the hyperbolic linear flow
et that is, on(A) = o(A) NiR = Q. Tt then follows from lemma (19.3) that
o(e?)N'Sc = 0, where S¢ == {z € C | |z| = 1} denotes the unit circle in
the complex plane. In other words, e € GL(E) has no eigenvalues of norm
1. In general, if T has no eigenvalues of norm 1, i.e., if o(T) NS¢ = 0, the
automorphism T € GL(E) is called hyperbolic.

If T € GL(E) is hyperbolic, then

o(T) = 0o(T) U 06o(T),
where
oo(I) :=={A e a@) ||\ <1}
and
Ooo(T) ={X € (@) | |A>1}.
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If, again, we let m(A) denote the algebraic multiplicity of the eigenvalue A € o(T),
it follows — for the case IK = C — that

Ey:= 6P kerl(\-1)™V)

)\EO‘Q(T)
and
Ewi= P kel —T)™N
AET(T) )
are invariant subspaces of E which reduce T, that is,
E=Ey®FEyx and T=T)®Tc, 3)
and it also follows that
oIp) =0p(T) and 0(To) = Too(T). 4

If K =R, we apply this decomposition to the complexification and subsequently
restrict to the real subspaces, i.e.,

Ey=(FEc)NE and FEy = (Bo)eo N E,
as well as
To =Ty and Teo = (I0)oo|Foo-
Then one easily verifies that relations (3) and (4) also hold for the real case (cf.
the proof of theorem (13.4)).
The following lemma represents an analogue of lemma (13.1). To simplify the
formulation, we make use of the descriptive notation

le@l<a & [A<a, VXeo(A).
Other inequalities are to be interpreted analogously.

(19.4) Lemma. Let T' € GL(E) be hyperbolic and assume that for some o € Ry
we have

lo@)|<ea and |o(Too)™)| < a
Then there exists a Hilbert norm || - || on E such that
max{ [Toll, [|(Too) ™|} < o,

and so that Iy and B are orthogonal.

Proof. Since ||A¢| = ||A|| (cf. the proof of lemma (13.1)), we may, without loss
of generality, assume that IK = C. From the proof of lemma (13.1), we know that
Tp =D+ N for some nilpotent operator N € £(Ep) and some diagonal operator
D = diagfy,. .., 1] (with respect to some appropriate basis), where pq, ..., (g
are the eigenvalues of Tj, counted according to their multiplicity. In addition, we
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know that we can choose the basis such that the corresponding Euclidean norm
Il - llo on Ey satisfies

INflo < a—max{|ps] 5 =1,...,k}.
From this it immediately follows that
ITollo < I1Dllo + N1l < max{lu;| | 1< <k} + [N]o < o

Similarly, we find a Hilbert norm || - ||co for Eoo such that for the corresponding
operator norm we have ||75d||oc < . Then

2] = llzollj + llzcoll30, V& =20+ Too € Eo® Eoo = E,.

defines the desired Hilbert norm on £. ]

(19.5) Remark. If 7" € GL(E) is hyperbolic, then
loo(D)] < 1 < |oeo(T)]. 5)
Since for each B € GL(F) we trivially have

(B =[o(B)]" = {% [xe o(B)} ,

it follows from (4) and (5) that
lo@h| < 1.

Then lemma (19.4) implies the existence of some « < 1 and a norm || - || on E such that

[Tl €<l and [T <a<1.
From this it follows that for every = € Ey we have

Thy = (To)ka: —0 a k— o0

and for every y € Fo, we have

T‘ky = (TOO)‘]"’y —0 as k— oo

Analogous to the situation for linear flows, FEy is therefore called the stable and FEo, the
unstable subspace corresponding to 7" (or, more precisely: corresponding to the discrefe
flow induced by 7). m}

For a topological space X we set
BC(X,E) = B(X,E)yNnC(X, E),

where B(X, E) denotes the Banach space of all bounded maps « : X — & with
the sup-norm

[|lulloo = sup |u(z)|g-
zeX
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The theorem on the continuity of the limit function of a uniformly convergent
sequence of continuous functions implies that BC'(X, E) is a closed subspace of
B(X, E), and therefore BC(X, E) is itself a Banach space with respect to the
sup-norm, the space of bounded continuous functions (on X with values in F). If
X is compact, then, of course, BC(X, E) = C(X, F) and

lullco = ma futa)] = fjulc-

Moreover, it is also clear that if we replace the norm on E by an equivalent norm,
we obtain an equivalent norm on BC(X, E).

Let now F = E; @ E, be a direct sum decomposition of £ and assume that
the corresponding projections P; : E — E;, i = 1,2, satisfy [P} < 1,4 = 1,2.
Then every element u € B := BC(X, E) can be written uniquely in the form

u=Pu+DPu

and
Pue BO(X,E)=B;, i=1,2.

Moreover, we trivially have

|1 Pullp; = sup |Pru(@)| < Bl [lufloo < llulloo
X

for ¢ = 1,2. Consequently
(Pu)(z) = Pu(z), VzelX,
defines continuous projections P; : B — B;, 1 = 1,2, satisfying P + P, =idp,
i.e., we have:
B=B1®B,
and P, : B — B; are the corresponding projections. Finally, we set
l[ull g = max{[| Pull g, || vl B, }-
It follows from

1/Dl|ulloc = (1/DI[Pru+ Prulleo < 1/ Prufloo + | Prulloo]

(©
= (/D Pyl g, +[[P2ullg,] < llull 5 < llulleo

that || - || g is an equivalent norm on B.

What is still needed is an analogue of the concept of “flow equivalence” for
the case of homeomorphisms. So let X and Y be topological spaces and let
f:X — Xandg:Y — Y be homeomorphisms. Then a homeomorphism
h: X — Y is called a topological conjugacy from f to g if ho f =goh, thatis
to say, if the diagram
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commutes. If X and Y are differentiable manifolds (e.g., open subsets of Banach
spaces) and if f,g and h are Ck—diffeomorphisms, 1<k < o0, then h is called a
C’k-conjugacy. Lastly, f and g are said to be topologically (resp. C’k—)conjugate
if there exists a topological (resp. C’k—)conjugacy from f to g. This trivially
defines an equivalence relation in the class of all homeomorphisms (resp. CF-
diffeomorphisms).

After these preliminaries we now can prove the global Hartman linearization
theorem. i

(19.6) Proposition. If T € GL(FE) is hyperbolic and if g € BC(E,E) is a
uniformly Lipschitz continuous function with a sufficiently small Lipschitz constant,
then the maps T and T + g are topologically conjugate.

Proof. By lemma (19.4) and remark (19.5), there exists a Hilbert norm || - || on E
such that

max{||Tp|, |Toa ||} € < 1. %)

Since the passage to an equivalent norm on E implies that the Lipschitz constant
of g will be multiplied by a positive factor, we may assume that the norm || - || on
E satisfies

flg(@) - 9@l < Allz—9ll, Vz,y€E, ®
where 2\ < min{1 - o, ||77}|71}.

(i) First we show that 7'+ g € C(F, B) is a homeomorphism. Since for every
z € E the equation Tz + g(z) = z is equivalent to the fixed point equation

z=T Nz~ g@) = f.(z),

it follows that T" + g is bijective whenever f, : £ — F has a unique fixed point
2(z). That f, has a unique fixed point follows, however, from

Il £2@) = £ < T l9@w) - 9@ < NIT ™ fl= -y
<1/Dlz -yl
for all z,y € £ and the Banach fixed point theorem. From (9) we obtain

®
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|#(2) — (D] = || f(z(2) = fz@@)|
< || fa(@(2) = f2(@@D| + || F2(@(2) = fz@@)]]
< (1/)l|a(z) - 2@ + |7z - 2.

for all z, 2 € E (cf. problem 2 in section 7), hence [|2(z)—z(2)|| < 20T 2= 2]
Consequently z(-) = (T + ¢! : E — E is (uniformly) Lipschitz continuous.

(i) Let now h € BC(E,E) = B be a second function which is uniformly
Lipschitz continuous with Lipschitz constant A. Assume further that corresponding
to every pair (g, 2) of such functions there exists a unique H:=H(g,h) € C(E,E)
such that

H-ide B 10
and
T+g)oH=Ho(T+h). an
Then for a := H(g,0) we have
T+g)oa=aoT, ‘ (12)
and for b := H(0, g) we have
Tob=bo(T+g). (13)
Tt follows from (12) and (13) that
(T+g)ocaob=aoTob=acbo(T+g). (14)

Since a = id + u and b = id + v for some u,v € B, it follows that a o b=1id+w,
where w = v + 2.0 b € B. Based on the uniqueness of H, we thus obtain from
(14) that a o b = H(g,g) = id. Similarly it follows that b o a = id. Therefore a
is a homeomorphism from £ onto £, hence — by (12) —a topological conjugacy
from T +gtoT.

(iil) With H = id+w it remains to be shown that there exists a unique u € B such
that

(T+g)oGd+u)=Gd+u)o (T +h). (15)
Since, according to (i), 7+ h is a homeomorphism, (15) is equivalent to

id+u=T+g)o(id+u)o (T +h)"
= go(id+u)o(T+hy " +T@+hy +Tuo (T +h)".

Because id = (T + h) o (T + h)™}, the last equation is equivalent to

w=Tuo (T+h) ™" +Gu) = Fw),
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Gu)=god+u)yo(T+hy ' —ho(T+h)y" an

Clearly F maps the Banach space B into itself. It remains to show that F has a
unique fixed point in B.

Because F = Ey@® E and since Ey and Fo are orthogonal, it follows that for
the corresponding projections we have || Fy|l; || Pxoll < 1 (cf. the proof of theorem
(15.5)). The fixed point equation (16) is therefore equivalent to the system of
equations

Poyu=ToPyuo (T + by + PyG(u) =: Fy(w) (18)
Poott = TooPooti 0 (T + hY ! + Poo G(uw). (19)
Since equation (19) is transformed into the equivalent equation
Pyou = T;Pmu o(T+h)— T&}POOG(u) o (T +h) = Foo(u) (20)
by multiplying from the left by TO_O1 and from the right by T+ A, (16) is equivalent
to the system (18) and (20). )
By the considerations. preceding this proposition, the decomposition £ = Ey®
FE~ induces the decomposition B = By @ B and for the norm
llull g = max{|| Pyullco, | Pooulloo }
we have
A/Dlullco < flullp < llufloo, Vue B.
Hence
F=Fy+Fe
defines a map from B into itself such that the fixed point problem u = F(u) is
equivalent to the fixed point problem u = F'(w).
Foru,ne Bandz € E we set y == (T + h~Nz) and z = (T'+ h)(x), and so
by making use of (7) we obtain the estimates
[ Fou) () = Fow)(@)|| < al| Pou(y) — Pov)l| + lg(y + u@®)) — 9(y + v@))]|
< a||Py(w— v)loo + Allu—v]leo
and
| Foo(u)(@) — Foo (0)(@)|| € o] Poou(2) = Poov(2)|
+llg(z + u(@) - g(z +v(@)]|
< af|[Poo(t = v)|loo + Allu =|oo-
Therefore
| Fo(w) = Fo@)lloo < all P = )lloo + 2Allu—vll B
<(a+2W)||lu—vlp
and
| Foo(w) = Foo(@)]|oo < (o + 20)|lu—v]| B,
and so, since F(B) C By and Foo(B) € Beo, we deduce that
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[[F@) - FW)|g s (@+2N)||u-v|pg, Vu,veB.

The existence of a unique fixed point of F' now follows from the Banach fixed
point theorem and the fact that o +2X < 1. |

(19.7) Remarks. (a) The proof above shows that there exists a unique topological conjugacy
h from T to T'+ g which satisfies h— id € BC(E, E) (of course, if the Lipschitz constant
of g is sufficiently small).

b ge CkE,F), 1 £ k < 00, one would naturally expect the topological conjugacy
from 7'+ g to T' to have the corresponding differentiability properties, i.e., that '+ g and
T are C’k-conjugate. This, however, is in general not true. For further investigations along
these lines we refer to Hartman [1]. ]

We need the following simple lemma for the local version of the above lin-
earization theorem. :

(19.8) Lemma. Let F' be an arbitrary NVS and let o : F — B(0, ) denote the
radial retraction, that is,

y=d® if |z € o
ralz) = axf|z|, if |z] 2 e

Then T¢, is uniformly Lipschitz continuous with Lipschitz constant 2.
Proof. For |z| > a2 |y| we have

- - —1
Ira(z) ~ raly)| = |alz| lx—yl < ol 1|3:—y| + la|a:| y—y’

<z =yl + |z yl(lz] - @)
Slz—yl+|z] - |yl £ 2|z -yl

If |z| > @ and |y| > c, we obtain

[ra(@) = ra(®)] = [alal ™z - alyl My
< afel ™z~ | + alyl o - lyl”!|
< Jz=y|+ [lal - [yl <2}z 3l
This proves the lemma. |

After these preliminaries we can now easily prove the main result of this
section. To do this, we recall that E is a finite dimensional Banach space, that M
is open in E, and that f € CY(M, E).
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(19.9) Theorem (Grobman, Hartman). Let 2y be a hyperbolic critical point of .
Then |zg and e!PT@0|0 are isochronally flow equivalent.

Proof. (i) Since a translation is evidently an isochron flow equivalence, we may
assume, without loss of generality, that zp = 0. If A > 0 is arbitrary, there exists
some o > 0 so that | D f(z)— D f(0)| < A/2 for all z € B(0, ). It follows from the
mean value theorem that the function z — f(z) — D f(0)z is uniformly Lipschitz
continuous on B(0, o) with Lipschitz constant \/2. Employing the radial retraction
7o 1 E — B0, o), we now define g € BC(E, E) by

g=1f-Df0)]orq.

It follows from lemma (19.8) (and the proof of lemma (8.1 iii) that g is globally
Lipschitz continuous with Lipschitz constant A. Setting A := D f(0) € L(E), we
have :

(A+ 9B, @) = f|B(O, o). 21
If 9 denotes the flow on E, induced by A + g, then (21) shows that %) coincides

with ¢ on B(0, @) (cf. theorem (10.3) and remark (10.4 b)). It therefore suffices
to show that v and e*4 are isochronally flow equivalent. ‘

(ii) Because g is globally Lipschitz continuous, g — and therefore A+g — is linearly
bounded. Hence by proposition (7.8), ¢ is a global flow. Since & = Az + g(z),
we deduce from the variation of constants formula (cf. formula (5) in section 15)
that

t
Viz) = iz + /O et AT (2)dr, VteR. 22)

This implies that
1
i) — i) < etz —y| + / E AN (@) — 97 ()|dr
0

forall ¢ 20 and all z,y € E. After multiplying this inequality by et we may
apply Gronwall’s inequality (corollary (6.2)) and obtain

W@ - @) < [z -yl Vo ye B, t>0. (23)
Since g € BC(E, E), it follows from (22) that

t
! (@) - 2] < |lgllco I/ lt=rliAl g
' 0

for all t € R and and z € E, hence
Yt~ € BC(E,E), VteR.
Finally, it follows from (22) and (23) that
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t
| = @) — (@ — )| < / EIAIN YT () — T (@] dr
0

t
<Az —y|et‘A|/ M dr
0

= [z -yl - 1)
forall t=20and z, y € E.

(iii) By assumption, 0 is a hyperbolic critical point and thus o(A) N R = 0. Tt
therefore follows from lemma (19.3) that T' := e is a hyperbolic automorphism on
E. Since A can be chosen arbitrarily small, it follows from (25) that the Lipschitz
constant of § := 1)1 — T can be made arbitrarily small. Because § € BC(E,E)
(cf. (24)), we may assume, by proposition (19.6), that 7" and Pl = T+ are
topologically conjugate. From remark (19.7 a) we also know that there exists a
unique topological conjugacy h from T to ! satisfying h —id € BC(E, E).
From hoT = 1! o h we deduce that for each ¢t € R we have

QPIO(’U)tOhOT-t):@/JtOwl0hoT~t=1/)tohoToT_t
=@lohoTHoT,

where Tt := ¢'A. Therefore 1t o h o T is also a topological conjugacy from T
to !. Because we have

WohoTh—id= (@t —THoho T 4+ Tt o (h—id)o T,

it follows from (24) that 9t o ho Tt —id € BC(E, E). Therefore ! oho Tt = h
and hence ¥ o h = ho et4 for all ¢ € R, that is to say, v and et are isochronally
flow equivalent. ]

Stable Manifolds

The preceding theorem states that in a neighborhood of a hyperbolic critical point
o, the phase portrait of ¢ has the same topological structure as the phase portrait
of the linearization in a neighborhood of 0. Analogous to the stable subspace Es
and unstable subspace , of a linear flow, one defines the stable manifold Ws(zo)
of p at xq and the unstable manifold W (zq) of ¢ at zo by

Welzg) ={z € E|t'(x)=c0 and ¢t-z — zg as t — oo}
and
Wy(zg) ={z € E |t (z)=-c0 and. t-z — zg as t — —oo},

respectively. Clearly 2y € Ws(zg) N Wy(zg). We will now show that in a
neighborhood of zg the sets Wi(xp) and Wy (zo) are indeed differentiable sub-
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manifolds of F which intersect transversely at xg, and that the tangent spaces
of Ws(zp) and Wy (zg) are translates of Es and Ey,, respectively, that is to say,
T Ws(zg) = 2o + Es and Ty Wey(zo) = 2o + By

In order to prove these facts, we again consider first homeomorphisms from £
onto itself. If » : £ — E is a homeomorphism such that A(0) = 0, then the set

Wo:={z€E|h" (=) —0 as n— oo}
is called the stable set of h at 0, where h™ denotes the nth iterate of h. Similarly,
we define the unstable set of h at 0 by
We ={z € E| (&) — 0 as n — oo},

where we have set A" := (h~1)". Evidently W, and W, change into each other
if we replace h by h~'. Hence it suffices to consider W.
Now let T € GL(E) be hyperbolic and let

E=FEy®Ex, T=1®1x
be the decomposition into the stable and unstable subspace, introduced a few pages

back.

(19.10) Proposition. Let g : E —. E be uniformly Lipschitz continuous and
assume that g(0) = 0. If the Lipschitz constant of g is sufficiently small, there
exists a unigue uniformly Lipschitz continuous function b : Ey — Eoo such that
the graph of h is the stable set Wy of T + h at 0. If in some neighborhood of 0,
g is of class Ok, 1 < k < oo, then so is the function h. In this case there exists a
neighborhood V of 0 in Ey such that

Wy ={(z,Mz) |z €V}
isa C’k-manifold, If, in addition, Dg(0) =0, then TOW(}/ = Ep.

Proof. Set
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By={u:N— E|uk)— 0as k — oo}
Then it is easily seen that By is a closed subspace of the Banach space of all
bounded sequences in E,(B(N, E), || - lco). Hence By itself is a Banach space

with respect to the sup-norm.
Let

Wo = {u € By | u(k) = (T + 9)*(z),k €N,z € E}.
Then clearly
Wo = {u(0) | v € Wo}.
Moreover, we have
weWy, & ulk+1l)=T+guk), VkeN

Using the canonical projections Py : E — Egy and Poo 1 E — Eco, the last
equation is equivalent to the system

Pyu(k + 1) = Ty Pyu(k) + Pog(u(k))
Poou(k + 1) = Too Pootlk) + Poog(u(k)),
and hence to the system
Pyu(k + 1) = Ty Pyu(k) + Pog(u(k))
Peoti(k) = Td Poou(k + 1) — T2 Poo g(u(k))
for all k € N. If for z € E and u € By we now set

ToPyulk - 1) + Tl Poou(k + 1) + Pog(uk ~ 1))
Fr(w)(k) = T Poogu(k))  (26)
Poz + Tt (Poot(1) — Poog(u(0))), if k=0,

we see that z € By belongs to Wy if and only if u is a fixed point of F in Bp.
As in the proof of proposition (19.6), we may assume that

ITol, 1T <a<1, |Rl, |Psl<1
and that
lg(@) - 9| < Nz ~yl, Vaz,y€E, @n

where 2) < 1 — a. In addition, we may employ the equivalent norm [Jul|p :=
max{ || Pyt]|co, || Poc||eo } in Bp, for which we have

(1/Dlulloo < llull < Nlulloo,  Vu € Bo-
For z € E and u,v € By we then easily obtain the estimates
[ Fe(w) = Fe@)p < (@+2)]ju—v]p (28)

and
[Fp (k)| < (@ + Mutk — D] + ad|ulk)] + aluk + 1) 29
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for all £ > 1. Tt follows from (29) that F}; maps the Banach space By into itself,
and (28) shows that F; : By — By is a contraction with contraction constant
a+2A < 1, which is independent of € E. Therefore the Banach fixed point
theorem implies the existence of a unique fixed point uy of £y in By. From the
estimate

lluz —uyllp = | Fx(uz) — Fy(uy)liB
S| Fa(ug) = Fx(up)ll g + | Fu(uy) — Fy(ullp
< (a+ 20 |lug — uyll B + |Poz — Pyl
we deduce that
fluz —uyll g < |Pox — Poyl /(1 —a=22), Va,y € E.
‘We now set
h(z) = Poouz(0), Vz € Ey.

Because of (20), A is locally uniformly Lipschitz continuous and maps the space
Ej into Fo, and from (26) we read off the relation

Wo = {(z, h(z)) | € Eo} = graph(h).
We let S, S_y : By — B denote the “shift operators”
(S_ju)k) =u(k+1), VkeN,

and

sty = { o0 R

Clearly S_; and S are continuous and

ISl ISl <1
Finally, we define G : By — By by

Gu)(k) = g(u(k)), VkeN.

If for some /3 > 0 and some k € N* U {co} we have

g € C*Bg,0), B),
then one easily verifies that

G € C*(®B,0,0), Bo)
and (since Dg(0) = 0)

DG0)=0.
Using the “unit vector” eq = (1,0,...) € By, F; can be written in the form

Fy = (Poz)eg + ThPo(Si + G 0 Sp) + T5d Poo(S-1 = G).




FE
BT

268 Qualitative Theory

Setting

H{z,u) =u—Fgp(u)
it then follows from (32) that

H e CH(ExBp, (0, ), Bo)
and
D, H(0,0) = idp, — ToPoS1 — Toa PooS-1 = idp, — K.
With the aid of (31) we obtain the estimate
“I(”[:(Bo) Sa< 1>

from which it easily follows (by means of the Neumann series (e.g., Yosida [1m
that D, H(0,0) € GL(By) (cf. remark (25.6 a)). Because H(0,0) =0 and since
for each z € Ej, the element u, € By is the unique solution of the equation

H(z,u)=0,

it follows from the implicit function theorem (cf. Dicudonné [1]) that in some
neighborhood of z = 0, the function

Ey— By, =+ ug

is of class C'*. Therefore the function h : By — Eoo is — because the “evaluation
map” By — E, u — u(0), is clearly linear and continuous — a C*-function in
some neighborhood V' of 0. Therefore W/g/ is, as a graph of a C*-function, a
C*_manifold of dimension dimp(Fp). Since

Vaozr (z,h(z) e E
defines a parametrization on W, V' we know that
ToWy = im(idg,, Dh(0))

{(where we may assume, without loss of generality, that K = R). By differentiating
the identity H (z,uz) =0 at the point z = 0, it follows that

D{H(0,0) + Dy H(0,0)Dug = 0, (34)
where Dug € L(Eg, Bp) and
Dy H(0,0)¢ = «(Pobeg, VEEE.

We thus obtain PeoD(H(0,0)6 = 0, and from (33) and (34) we deduce (by
applying Poo to (34)) that

PooDug - T PooS_1 Dug = 0,
that is,
Pool(Dup)a)(k) = Tog Poo[(Dug)z)(k + 1)
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for all k € N and all z € Ey. From this it follows that

| Poo[(Dug)z)(k)| € el Poo Duol (i, B 1zl 2, VR EN,

and therefore

| Poo Duol| £y, B) < 2l Poo Duol| 2o, By
ie., PooDug = 0, since o < 1. Because
DR0)§ = Pool(Dup)¢)(0)
for all £ € By, we obtain DA(0) = 0 and hence the assertion. [}
Let zg be a critical point of the flow . If V is a neighborhood of zg, we
define the local stable and unstable manifolds of » at xy with respect to V by,

respectively,

WY (20) = {2 € Ws(zg) | t-z €V forall t=0}

WY (z0) = {z € Wulzo) | t-z €V forall t<0}.

As the adjoining figure shows,
it need not be true, in general,

“that WY (zg) = Ws(zg) NV or

WY (z0) = Wylz)NV.

After these preliminaries we can prove the announced theorem about the lo-
cal stable and unstable manifolds, which essentially goes back to Hadamard and
Perron.

(19.11) Theorem. Let M be open in the finite dimensional real Banach space I
and let f € CR(M, E) for some k € N* U {co}. Moreover, let zo be a hyperbolic
critical point of the flow @ induced by f. Then there exists a neighborhood V of
xg such that Wy (zo) and W, (zq) are Ck-manifolds. In addition, we have

TeoWY (o) = w0+ Bs  and Ty W (z0) = z0 + En,

where Eg and E, denote the stable and unstable subspaces of the linear flow
tD f(zo)
e .
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Proof. Without loss of generality we may assume that zp = 0. As in the proof of
theorem (19.9), we set

g =1f-DfO)]ora,
where 7o 1 E — B(0, @) denotes the radical retraction. Then g is uniformly
Lipschitz continuous, g(0) =0, Dg(0) =0 and g € C*(B(0, o), E). Moreover, by
a judicious choice of & > 0, the Lipschitz constant of g can be made arbitrarily
small. With A := Df(0) € L(E) we have

(A + 9)|B(0, @) = fIB(O, o).

Hence the global flow 7 induced by A + g agrees with the flow ¢ induced by f
on B0, o). ‘

We now set T := e, Then T is a hyperbolic automorphism and, as in the proof
of theorem (19.9), it follows that § := 4! — T is globally Lipschitz continuous,
where, by an appropriate choice of a, the Lipschitz constant of § can be made
arbitrarily small (cf. (25)). It also follows from theorem (10.3) that in some
neighborhood of 0, § is a C* _function. Evidently §(0) = 0, and since theorem
(9.2) implies that Dp3(-,0) is the solution of the linearized VP

s=[A+Dg(t, 0]z, 2(0) = idg,

it follows from (t,0) = 0 and Dg(0) = O that Dy9(¢,0) = etA, therefore
Dg(0) = 0. It follows that T" and § satisfy the assumptions of proposition (19.10).
Therefore the stable set Wy of 1! = T + § can be represented as the graph of a
globally Lipschitz continuous function h : fg — Feo. Moreover, there exists a
neighborhood Vj of 0 in Ej such that » € C*(V, Eco) and so that

Wg/o ={(z,h(z) € E|z €V}

is a C*-manifold and TyW,? = Eg = Es.

We now assert that Wy = W(0), where W5(0) is the stable manifold of ¥ at
the point 0. Since lim; o0 ¥t(z) = 0 implies wk(m) — 0 as k — o0, it follows
that Ws(0) € Wy. To prove the reverse inclusion, we first note that for every
€ > 0 there exists some § > 0 such that

lt@)| <e forall |t|<1land |z]<é. (35)

For otherwise there would exist some € > 0 and a sequence (g, zj) in [-1,1]X E
such that z;, — 0 and |1)*(z})| > e. By taking an appropriate subsequence, we
may assume that t; — ¢ € [-1,1], from which we deduce [t(0)] = €, which
contradicts (-,0) = 0.

Let € > 0 now be arbitrary and assume that

1/1k(x) —0 as k — oo.
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Then there exists some k(¢) € N so that |1/)k' ()| £ 6 for all k> k(e), where 6§ >0
is chosen as in (35). For ¢ 2 k(e) and k := {t] it follows from (35) that

[t @) = [Pk @) <,

ie., W'(z) — 0 as ¢ — oo and therefore Wy € Ws(0).
It follows from the proof of proposition (19.10) that h(z) = Peou,(0) for all
z € Ey, where the function

E—')B()a yHuya

is continuous, vanishes at y = 0, and satisfies uy(k) = (I'+ g)k(y) = z/)k(y) for all
k € N. Hence for every € > 0 there exists some § > 0 such that

{(z,h(@)) | |z| < 6} C {y € Wo | "] < e, VE €N}

As in the proof of the inclusion Wy C WS(O), it follows from (35) that — for a
given € > 0 — the number 6 > 0 can be chosen such that

{(z, b)) | |z <8} C{y € Wo | [W* ()| < e, VE20}.
Because Wy = WS(O), there exist neighborhoods of 0, V in £ and V CV,in Ey,
such that Wg/ c WSV (0). Since the flows agree in a neighborhood of 0, we can
choose V' so small that W) (0) = WY (0). In particular, we have WY (0) C W.
And since Wy is the graph of a function defined on Ey, we have WSV ) C W(}/O
for some sufficiently small neighborhood V' of 0. Therefore WSV (0) is a C*-

manifold and TwOWSV (0) = Es. The assertion about WJL/ (0) now follows by
“reversing the time.” m}

(19.12) Remarks. (a) The fact that E is finite dimensional was only used in the proofs of
lemmas (19.3) and (19.4). By Dunford’s operational calculus (e.g., Dunford-Schwartz [1],
Yosida [1]) lemma (19.3) also holds for an arbitrary Banach space £. And in this case
T € GL(E) is also called hyperbolic if G(T)DS,]C = {) (that is to say, if the whole spectrum
of T is a positive distance away from the unit circle in the complex plane). With the aid of
the Dunford calculus, one then, again, shows that we have the decomposition 2 = Fg® Feo
and T = Ty ® Teo, and that the following holds: o(Tp) = oo(T) = o(T) N Bc(0, 1) and
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(Too) = 0oo(T) = (T \ o(Tp). Using spectral theory, one can also show that there
exists an equivalent norm || - || on B (but in general no Hilbert norm) satisfying

max{||Tol|, |7 I} S @< 1.

Then proposition (19.6), theorem (19.9), proposition (19.10) and theorem (19.11) remain
correct with these modifications also when dim(E) = oo (we merely have to replace the
inequality [[ull < llulloo by |ull 5 < Bllullco, where 8 = max{||Foll, | Peoll})-

(b) The theorem of Grobman and Hartman can also be expressed in the following manner:
Tf 2 is a hyperbolic critical point of the vector field f € C L(M, E), then there exists a
homeomorphism ~ : U — V, from some neighborhood U of g onto some neighborhood
V of 0, satisfying h(zp) = 0 and such that the solutions of the differential equation

z = f(z)
in U are mapped homeomorphically by y = h{z) onto the solutions of the linear differential
equation

y=Ay
in V, where A := D f(zg). Naturally, the inevitable question about what happens if zg is
a nonhyperbolic critical point now arises. In this case there exists a decomposition

E=E,®E;,, A=A,®A,
such that
o(Ap) = on(4) = c(A) NiR
and
o(Ap) = a(A) \ on(A).

In other words: Ap, induces a hyperbolic linear flow on E,. In this case one can “partially
linearize,” i.e., there exists a homeomorphism h, from a neighborhood U of @ onto a
neighborhood V of 0 satisfying h(zg) = 0, and a function g € CY(V, E™) such that the
solutions of the differential equation

= f(z)
in U are mapped homeomorphically by y = h(z) onto the solutions of the differential
equation
Un = Anyn + 9Yn, Yn)
Un = ArYh,
where ¢ = (Yn, Yp) € V. One can show, furthermore, that there exists a neighborhood Vi

of 0 in F,, and a function G € C'(Vy, Ey) satisfying G(0) =0 and DG(0) = 0, and such
that for every solution v in Vj of the equation

(36

¥ = Anv + g, G,

the function ¢ — (v(£), G(u(t))) is a solution of the “full” system (36). Therefore the
graph of G is a C'manifold which has the space Ej as tangent space at the point 0.
This manifold Z — the center manifold — is characterized by requiring that it contain all

pee 5
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solutions of (36) with bounded projections yp, in Ej. For proofs and further investigations
in this direction we refer to the literature (e.g., Palmer {1 — 3], Abraham-Robbin [1],
Marsden-McCracken [1], Knobloch-Kappel [1]).

(c) If g is a hyperbolic critical point of the flow induced by fe ckM , ), one can show
that W(xg) and Wy, (o) are immersed C*-manifolds, that is to say, there exist C*-atlases
for Wy(zg) and Wy (xo) such that the inclusion maps We(zg) — E and Wy(zo) — F
are immersions (L.e., at every point the tangent maps are injective) (see, for example, Irwin
[1]). In general, however, Wy(xo) and Wi, (zo) are not embedded submanifolds of F, as
the following figure shows.

(d) A point z € M is called heteroclinic if © € Wa(zo) N Wy(z1), where z and z; are
distinct hyperbolic critical points. A point y € M is called homoclinic if y € Ws(zg) N
Wi(zo). In these cases we also say that y(z) is a heteroclinic and that () is a homoclinic
orbit. The phase portrait of a flow is in general extremely complicated (see, for example,
the figures in Abraham-Marsden [1]) and even in relatively easy cases, one is very remote
from a complete description. [}
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Problems

In what follows we always assume that f € C1(R,R) and
fO)=j1)=0,

and we consider the simple reaction-diffusion ecjuation

du

at
In many cases (e.g., chemistry or biology), so-called traveling waves are of interest, that
is, solutions of (37) which have the form

2
- g—;— = f(v). (37

v, z) =ulz +ct), (¢,z)€RXR,

so that © € C%(R,R) and ¢ # 0, and such that the limits

u(Eoo) = ¢ ]iIB u(€)

exist. Here a traveling wave is said to be of wave front type if

0usl and u(-00)=0, wulcx)=1,

and it is called a soliton if

wz0, u=0 and u(-oo)=ul(oo)=0.

1. Clarify these concepts geometrically.

2. Show that traveling waves of wave front type can be characterized as the heteroclinic
orbits of the system

T=y

g =Ccy- f(x)y
which lie in [0, 1] x R and connect the critical points (0,0) and (1,0). The solitons corre-
spond to the homoclinic orbits in Ry x R of the critical point (0,0).

(38)

3. Show that the heteroclinic orbits, which correspond to solutions of the wave front type,
lie completely in (0, 1) x (0, o0). In the special case when

Jw) = ku(l —w),

where k > 0 is some constant, (37) is called Fisher's equation, named after R.A. Fisher
who suggested and analyzed it in 1937 as a model in genetics.

4. Show that for every ¢ > 2+/k, Fisher’s equation has a unique traveling wave of wave
front type.

5. Show (in the general case) that if f/(0) > 0, then (37) has no solitons.

< —
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6. .Let M be open in R? and let g € C1(M,R?). Furthermore, let zy € M be a critical
point of g such that O is a spiral point of the linearized equation § = Dg(zg)y. By
introducing polar coordinates, show that g is also a “spiral” for the nonlinear equation
t = g(x), i.e., show that, in a neighborhood of zg, the orbits have the same structure as
the orbits of e?P9(0); They either spiral toward the point g or away from it.

7. Make use of problem 6 to show that if <4 #'(0), then (37) has no solutions of wave
front type.




