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is diagonal. Hint: Use the density of the diagonalizable matrices and the con-
tinuity of the eigenvalues of a matrix with respect to its components (see Ex-
ercises 2.66 and 8.1). (c) Prove that the origin is asymptotically stable for the
system ẋ = Ax + g(x) where

A :=

⎛
⎝−1 2 0

−2 −1 0
0 0 −3

⎞
⎠ , g(u, v, w) :=

⎛
⎝u2 + uv + v2 + wv2

w2 + uvw
w3

⎞
⎠

and construct the corresponding matrix B that solves Lyapunov’s equation.

Exercise 2.81. Suppose that f : R
n → R

n is conservative; that is, there is
some function g : R

n → R such that f(x) = grad g(x). Also, suppose that M
and Λ are symmetric positive definite n × n matrices. Consider the differential
equation

Mẍ + Λẋ + f(x) = 0, x ∈ R
n

and note that, in case M and Λ are diagonal, the differential equation can be
viewed as a model of n particles each moving according to Newton’s second law
in a conservative force field with viscous damping. (a) Prove that the function
V : R

n → R defined by

V (x, y) :=
1
2
〈My, y〉 +

∫ 1

0
〈f(sx), x〉 ds

decreases along orbits of the associated first-order system

ẋ = y, Mẏ = −Λy − f(x);

in fact, V̇ = −〈Λy, y〉. Conclude that the system has no periodic orbits. (b)
Prove that if f(0) = 0 and Df(0) is positive definite, then the system has an
asymptotically stable rest point at the origin. Prove this fact in two ways: using
the function V and by the method of linearization. Hint: To use the function V
see Exercise 1.171. To use the method of linearization, note that M is invertible,
compute the system matrix for the linearization in block form, suppose there is
an eigenvalue λ, and look for a corresponding eigenvector in block form, that is
the transpose of a vector (x, y). This leads to two equations corresponding to the
block components corresponding to x and y. Reduce to one equation for x and
then take the inner product with respect to x.

2.4 Floquet Theory

We will study linear systems of the form

ẋ = A(t)x, x ∈ R
n (2.27)

where t → A(t) is a T -periodic continuous matrix-valued function. The
main theorem in this section, Floquet’s theorem, gives a canonical form
for fundamental matrix solutions. This result will be used to show that
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there is a periodic time-dependent change of coordinates that transforms
system (2.27) into a homogeneous linear system with constant coefficients.

Floquet’s theorem is a corollary of the following result about the range
of the exponential map.

Theorem 2.82. If C is a nonsingular n×n matrix, then there is an n×n
matrix B (which may be complex) such that eB = C. If C is a nonsingular
real n × n matrix, then there is a real n × n matrix B such that eB = C2.

Proof. If S is a nonsingular n × n matrix such that S−1CS = J is in
Jordan canonical form, and if eK = J , then SeKS−1 = C. As a result,
eSKS−1

= C and B = SKS−1 is the desired matrix. Thus, it suffices to
consider the nonsingular matrix C or C2 to be a Jordan block.

For the first statement of the theorem, assume that C = λI + N where
N is nilpotent; that is, Nm = 0 for some integer m with 0 ≤ m < n.
Because C is nonsingular, λ �= 0 and we can write C = λ(I + (1/λ)N). A
computation using the series representation of the function t �→ ln(1 + t)
at t = 0 shows that, formally (that is, without regard to the convergence
of the series), if B = (lnλ)I + M where

M =
m−1∑
j=1

(−1)j+1

jλj
N j ,

then eB = C. But because N is nilpotent, the series are finite. Thus, the
formal series identity is an identity. This proves the first statement of the
theorem.

The Jordan blocks of C2 correspond to the Jordan blocks of C. The
blocks of C2 corresponding to real eigenvalues of C are all of the type
rI + N where r > 0 and N is real nilpotent. For a real matrix C all
the complex eigenvalues with nonzero imaginary parts occur in complex
conjugate pairs; therefore, the corresponding real Jordan blocks of C2 are
block diagonal or “block diagonal plus block nilpotent” with 2×2 diagonal
subblocks of the form (

α −β
β α

)
as in equation (2.10). Some of the corresponding real Jordan blocks for the
matrix C2 might have real eigenvalues, but these blocks are again all block
diagonal or “block diagonal plus block nilpotent” with 2 × 2 subblocks.

For the case where a block of C2 is rI + N where r > 0 and N is real
nilpotent a real “logarithm” is obtained by the matrix formula given above.
For block diagonal real Jordan block, write

R = r

(
cos θ − sin θ
sin θ cos θ

)
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where r > 0, and note that a real logarithm is given by

ln rI +
(

0 −θ
θ 0

)
.

Finally, for a “block diagonal plus block nilpotent” Jordan block, factor
the Jordan block as follows:

R(I + N )

where R is block diagonal with R along the diagonal and N has 2 × 2
blocks on its super diagonal all given by R−1. Note that we have already
obtained logarithms for each of these factors. Moreover, it is not difficult
to check that the two logarithms commute. Thus, a real logarithm of the
Jordan block is obtained as the sum of real logarithms of the factors. �

Theorem 2.82 can be proved without reference to the Jordan canonical
form (see [5]).

Theorem 2.83 (Floquet’s Theorem). If Φ(t) is a fundamental matrix
solution of the T -periodic system (2.27), then, for all t ∈ R,

Φ(t + T ) = Φ(t)Φ−1(0)Φ(T ).

In addition, there is a matrix B (which may be complex) such that

eTB = Φ−1(0)Φ(T )

and a T -periodic matrix function t �→ P (t) (which may be complex valued)
such that Φ(t) = P (t)etB for all t ∈ R. Also, there is a real matrix R and
a real 2T -periodic matrix function t → Q(t) such that Φ(t) = Q(t)etR for
all t ∈ R.

Proof. Since the function t �→ A(t) is periodic, it is defined for all t ∈ R.
Thus, by Theorem 2.4, all solutions of the system are defined for t ∈ R.

If Ψ(t) := Φ(t + T ), then Ψ(t) is a matrix solution. Indeed, we have that

Ψ̇(t) = Φ̇(t + T ) = A(t + T )Φ(t + T ) = A(t)Ψ(t),

as required.
Define

C := Φ−1(0)Φ(T ) = Φ−1(0)Ψ(0),

and note that C is nonsingular. The matrix function t �→ Φ(t)C is clearly
a matrix solution of the linear system with initial value Φ(0)C = Ψ(0). By
the uniqueness of solutions, Ψ(t) = Φ(t)C for all t ∈ R. In particular, we
have that

Φ(t + T ) = Φ(t)C = Φ(t)Φ−1(0)Φ(T ),
Φ(t + 2T ) = Φ((t + T ) + T ) = Φ(t + T )C = Φ(t)C2.
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Φ(T + τ)Φ−1(τ)v

v

t = τ t = τ + T

Figure 2.2: The figure depicts the geometry of the monodromy operator for
the system ẋ = A(t)x in the extended phase space. The vector v in R

n at
t = τ is advanced to the vector Φ(T + τ)Φ−1(τ)v at t = τ + T .

By Theorem 2.82, there is a matrix B, possibly complex, such that

eTB = C.

Also, there is a real matrix R such that

e2TR = C2.

If P (t) := Φ(t)e−tB and Q(t) := Φ(t)e−tR, then

P (t + T ) = Φ(t + T )e−TBe−tB = Φ(t)Ce−TBe−tB = Φ(t)e−tB = P (t),

Q(t + 2T ) = Φ(t + 2T )e−2TRe−tR = Φ(t)e−tR = Q(t).

Thus, we have P (t + T ) = P (t), Q(t + 2T ) = Q(t), and

Φ(t) = P (t)etB = Q(t)etR,

as required. �

The representation Φ(t) = P (t)etB in Floquet’s theorem is called a Flo-
quet normal form for the fundamental matrix Φ(t). We will use this normal
form to study the stability of the zero solution of periodic homogeneous lin-
ear systems.

Let us consider a fundamental matrix solution Φ(t) for the periodic sys-
tem (2.27) and a vector v ∈ R

n. The vector solution of the system starting
at time t = τ with initial condition x(τ) = v is given by

t �→ Φ(t)Φ−1(τ)v.
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If the initial vector is moved forward over one period of the system, then
we again obtain a vector in R

n given by Φ(T + τ)Φ−1(τ)v. The operator

v �→ Φ(T + τ)Φ−1(τ)v

is called a monodromy operator (see Figure 2.2). Moreover, if we view the
periodic differential equation (2.27) as the autonomous system

ẋ = A(ψ)x, ψ̇ = 1

on the phase cylinder R
n × T where ψ is an angular variable modulo T ,

then each monodromy operator is a (stroboscopic) Poincaré map for our
periodic system. For example, if τ = 0, then the Poincaré section is the fiber
R

n on the cylinder at ψ = 0. Of course, each fiber R
n at ψ = mT where

m is an integer is identified with the fiber at ψ = 0, and the corresponding
Poincaré map is given by

v �→ Φ(T )Φ−1(0)v.

The eigenvalues of a monodromy operator are called characteristic multi-
pliers of the corresponding time-periodic homogeneous system (2.27). The
next proposition states that characteristic multipliers are nonzero complex
numbers that are intrinsic to the periodic system—they do not depend on
the choice of the fundamental matrix or the initial time.

Proposition 2.84. The following statements are valid for the periodic lin-
ear homogeneous system (2.27).

(1) Every monodromy operator is invertible. Equivalently, every charac-
teristic multiplier is nonzero.

(2) All monodromy operators have the same eigenvalues. In particular,
there are exactly n characteristic multipliers, counting multiplicities.

Proof. The first statement of the proposition is obvious from the defini-
tions.

To prove statement (2), let us consider the principal fundamental matrix
Φ(t) at t = 0. If Ψ(t) is a fundamental matrix, then Ψ(t) = Φ(t)Ψ(0). Also,
by Floquet’s theorem,

Φ(t + T ) = Φ(t)Φ−1(0)Φ(T ) = Φ(t)Φ(T ).

Consider the monodromy operator M given by

v �→ Ψ(T + τ)Ψ−1(τ)v

and note that

Ψ(T + τ)Ψ−1(τ) = Φ(T + τ)Ψ(0)Ψ−1(0)Φ−1(τ)
= Φ(T + τ)Φ−1(τ)
= Φ(τ)Φ(T )Φ−1(τ).
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In particular, the eigenvalues of the operator Φ(T ) are the same as the
eigenvalues of the monodromy operator M. Thus, all monodromy operators
have the same eigenvalues. �

Because

Φ(t + T ) = Φ(t)Φ−1(0)Φ(T ),

some authors define characteristic multipliers to be the eigenvalues of the
matrices defined by Φ−1(0)Φ(T ) where Φ(t) is a fundamental matrix. Of
course, both definitions gives the same characteristic multipliers. To prove
this fact, let us consider the Floquet normal form Φ(t) = P (t)etB and note
that Φ(0) = P (0) = P (T ). Thus, we have that

Φ−1(0)Φ(T ) = eTB .

Also, by using the Floquet normal form,

Φ(T )Φ−1(0) = P (T )eTBΦ−1(0)
= Φ(0)eTBΦ−1(0)
= Φ(0)(Φ−1(0)Φ(T ))Φ−1(0),

and therefore Φ−1(0)Φ(T ) has the same eigenvalues as the monodromy
operator given by

v �→ Φ(T )Φ−1(0)v.

In particular, the traditional definition agrees with our geometrically mo-
tivated definition.

Returning to consideration of the Floquet normal form P (t)etB for the
fundamental matrix Φ(t) and the monodromy operator

v �→ Φ(T + τ)Φ−1(τ)v,

note that P (t) is invertible and

Φ(T + τ)Φ−1(τ) = P (τ)eTBP−1(τ).

Thus, the characteristic multipliers of the system are the eigenvalues of
eTB . A complex number µ is called a characteristic exponent (or a Floquet
exponent) of the system, if ρ is a characteristic multiplier and eµT = ρ.
Note that if eµT = ρ, then µ + 2πik/T is also a Floquet exponent for each
integer k. Thus, while there are exactly n characteristic multipliers for the
periodic linear system (2.27), there are infinitely many Floquet exponents.
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Exercise 2.85. Suppose that a : R → R is a T -periodic function. Find the
characteristic multiplier and a Floquet exponent of the T -periodic system ẋ =
a(t)x. Also, find the Floquet normal form for the principal fundamental matrix
solution of this system at t = t0.

Exercise 2.86. For the autonomous linear system ẋ = Ax a fundamental ma-
trix solution t �→ Φ(t) satisfies the identity Φ(T − t) = Φ(T )Φ−1(t). Show that,
in general, this identity does not hold for nonautonomous homogeneous linear
systems. Hint: Write down a Floquet normal form matrix Φ(t) = P (t)etB that
does not satisfy the identity and then show that it is the solution of a (periodic)
nonautonomous homogeneous linear system.

Exercise 2.87. Suppose as usual that A(t) is T -periodic and the Floquet nor-
mal form of a fundamental matrix solution of the system ẋ = A(t)x has the form
P (t)etB . (a) Prove that

tr B =
1
T

∫ T

0
tr A(t) dt.

Hint: Use Liouville’s formula 2.18. (b) By (a), the sum of the characteristic ex-
ponents is given by the right-hand side of the formula for the trace of B. Prove
that the product of the characteristic multipliers is given by exp(

∫ T

0 tr A(t) dt).

Let us suppose that a fundamental matrix for the system (2.27) is rep-
resented in Floquet normal form by P (t)etB . We have seen that the char-
acteristic multipliers of the system are the eigenvalues of eTB , but the
definition of the Floquet exponents does not mention the eigenvalues of
B. Are the eigenvalues of B Floquet exponents? This question is answered
affirmatively by the following general theorem about the exponential map.

Theorem 2.88. If A is an n×n matrix and if λ1, . . . , λn are the eigenval-
ues of A repeated according to their algebraic multiplicity, then λk

1 , . . . , λk
n

are the eigenvalues of Ak and eλ1 , . . . , eλn are the eigenvalues of eA.

Proof. We will prove the theorem by induction on the dimension n.
The theorem is clearly valid for 1 × 1 matrices. Suppose that it is true

for all (n − 1) × (n − 1) matrices. Define λ := λ1, and let v �= 0 denote a
corresponding eigenvector so that Av = λv. Also, let e1, . . . , en denote the
usual basis of C

n. There is a nonsingular n×n matrix S such that Sv = e1.
(Why?) Thus,

SAS−1e1 = λe1,

and it follows that the matrix SAS−1 has the block form

SAS−1 =
(

λ ∗
0 Ã

)
.

The matrix SAkS−1 has the same block form, only with the block di-
agonal elements λk and Ãk. Clearly the eigenvalues of this block matrix
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are λk together with the eigenvalues of Ãk. By induction, the eigenvalues
of Ãk are the kth powers of the eigenvalues of Ã. This proves the second
statement of the theorem.

Using the power series definition of exp, we see that eSAS−1
has block

form, with block diagonal elements eλ and eÃ. Clearly, the eigenvalues of
this block matrix are eλ together with the eigenvalues of eÃ. Again using
induction, it follows that the eigenvalues of eÃ are eλ2 , . . . , eλn . Thus, the
eigenvalues of eSAS−1

= SeAS−1 are eλ1 , . . . , eλn . �

Theorem 2.88 is an example of a spectral mapping theorem. If we let
σ(A) denote the spectrum of the matrix A, that is, the set of all λ ∈ C such
that λI − A is not invertible, then, for our finite dimensional matrix, σ(A)
coincides with the set of eigenvalues of A. Theorem 2.88 can be restated as
follows: eσ(A) = σ(eA).

The next result uses Floquet theory to show that the differential equa-
tion (2.27) is equivalent to a homogeneous linear system with constant
coefficients. This result demonstrates that the stability of the zero solution
can often be determined by the Floquet multipliers.

Theorem 2.89. If the principal fundamental matrix solution of the T -
periodic differential equation ẋ = A(t)x (system (2.27)) at t = 0 is given
by Q(t)etR where Q and R are real, then the time-dependent change of
coordinates x = Q(t)y transforms this system to the (real ) constant co-
efficient linear system ẏ = Ry. In particular, there is a time-dependent
(2T -periodic ) change of coordinates that transforms the T -periodic system
to a (real ) constant coefficient linear system.

(1) If the characteristic multipliers of the periodic system (2.27) all have
modulus less than one; equivalently, if all characteristic exponents
have negative real part, then the zero solution is asymptotically stable.

(2) If the characteristic multipliers of the periodic system (2.27) all have
modulus less than or equal to one; equivalently, if all characteristic
exponents have nonpositive real part, and if the algebraic multiplic-
ity equals the geometric multiplicity of each characteristic multiplier
with modulus one; equivalently, if the algebraic multiplicity equals the
geometric multiplicity of each characteristic exponent with real part
zero, then the zero solution is Lyapunov stable.

(3) If at least one characteristic multiplier of the periodic system (2.27)
has modulus greater than one; equivalently, if a characteristic expo-
nent has positive real part, then the zero solution is unstable.

Proof. We will prove the first statement of the theorem and part (1). The
proof of the remaining two parts is left as an exercise. For part (2), note
that since the differential equation is linear, the Lyapunov stability may
reasonably be determined from the eigenvalues of a linearization.
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By Floquet’s theorem, there is a real matrix R and a real 2T -periodic
matrix Q(t) such that the principal fundamental matrix solution Φ(t) of
the system at t = 0 is represented by

Φ(t) = Q(t)etR.

Also, there is a matrix B and a T -periodic matrix P such that

Φ(t) = P (t)etB .

The characteristic multipliers are the eigenvalues of eTB . Because Φ(0) is
the identity matrix, we have that

Φ(2T ) = e2TR = e2TB ,

and in particular
(eTB)2 = e2TR.

By Theorem 2.88, the eigenvalues of e2TR are the squares of the character-
istic multipliers. These all have modulus less than one. Thus, by another
application of Theorem 2.88, all eigenvalues of the real matrix R have neg-
ative real parts.

Consider the change of variables x = Q(t)y. Because

x(t) = Q(t)etRx(0)

and Q(t) is invertible, we have that y(t) = etRx(0); and therefore,

ẏ = Ry.

By our previous result about linearization (Lyapunov’s indirect method),
the zero solution of ẏ = Ry is asymptotically stable. In fact, by Theo-
rem 2.61, there are numbers λ > 0 and C > 0 such that

|y(t)| ≤ Ce−λt|y(0)|

for all t ≥ 0 and all y(0) ∈ R
n. Because Q is periodic, it is bounded.

Thus, by the relation x = Q(t)y, the zero solution of ẋ = A(t)x is also
asymptotically stable. �

While the stability theorem just presented is very elegant, in applied
problems it is usually impossible to compute the eigenvalues of eTB explic-
itly. In fact, because eTB = Φ(T ), it is not at all clear that the eigenvalues
can be found without solving the system, that is, without an explicit rep-
resentation of a fundamental matrix. Note, however, that we only have to
approximate finitely many numbers (the Floquet multipliers) to determine
the stability of the system. This fact is important! For example, the stability
can often be determined by applying a numerical method to approximate
the Floquet multipliers.
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Exercise 2.90. If the planar system u̇ = f(u) has a limit cycle, then it is
possible to find coordinates in a neighborhood of the limit cycle so that the
differential equation has the form

ρ̇ = h(ρ, ϕ)ρ, ϕ̇ = ω

where ω is a constant and for each ρ the function ϕ �→ h(ρ, ϕ) is 2π/ω-periodic.
Prove: If the partial derivative of h with respect to ρ is identically zero, then there
is a coordinate system such that the differential equation in the new coordinates
has the form

ṙ = cr, φ̇ = ω.

Hint: Use Exercise 2.85 and Theorem 2.89.

Exercise 2.91. View the damped periodically-forced Duffing equation ẍ+ ẋ−
x + x3 = ε sin ωt on the phase cylinder. The unperturbed system (ε = 0) has
a periodic orbit on the phase cylinder with period 2π/ω corresponding to its
rest point at the origin of the phase plane. Determine the Floquet multipliers
associated with this periodic orbit of the unperturbed system; that is, the Floquet
multipliers of the linearized system along the periodic orbit.

Exercise 2.92. Consider the system of two coupled oscillators with periodic
parametric excitation

ẍ + (1 + a cos ωt)x = y − x, ÿ + (1 + a cos ωt)y = x − y

where a and ω are nonnegative parameters. (See Section 3.3 for a derivation of
the coupled oscillator model.) (a) Prove that if a = 0, then the zero solution
is Lyapunov stable. (b) Using a numerical method (or otherwise), determine the
Lyapunov stability of the zero solution for fixed but arbitrary values of the param-
eters. (c) What happens if viscous damping is introduced into the system? Hint:
A possible numerical experiment might be designed as follows. For each point in
a region of (ω, a)-space, mark the point green if the corresponding system has a
Lyapunov stable zero solution; otherwise, mark it red. To decide which regions
of parameter space might contain interesting phenomena, recall from your expe-
rience with second-order scalar differential equations with constant coefficients
(mathematical models of springs) that resonance is expected when the frequency
of the periodic excitation is rationally related to the natural frequency of the
system. Consider resonances between the frequency ω of the excitation and the
frequency of periodic motions of the system with a = 0, and explore the region
of parameter space near these parameter values. Although interesting behavior
does occur at resonances, this is not the whole story. Because the monodromy
matrix is symplectic (see [11, Sec. 42]), the characteristic multipliers have two
symmetries: If λ is a characteristic multiplier, then so is its complex conjugate
and its reciprocal. It follows that on the boundary between the stable and unsta-
ble regions a pair of characteristic exponents coalesce on the unit circle. Thus, it
is instructive to determine the values of ω, with a = 0, for those characteristic
multipliers that coalesce. These values of ω determine the points where unstable
regions have boundary points on the ω-axis.
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Is there a method to determine the characteristic exponents without find-
ing the solutions of the differential equation (2.27) explicitly? An example
of Lawrence Marcus and Hidehiko Yamabe shows no such method can be
constructed in any obvious way from the eigenvalues of A(t). Consider the
π-periodic system ẋ = A(t)x where

A(t) =

(
−1 + 3

2 cos2 t 1 − 3
2 sin t cos t

−1 − 3
2 sin t cos t −1 + 3

2 sin2 t

)
. (2.28)

It turns out that A(t) has the (time independent) eigenvalues 1
4 (−1±

√
7 i).

In particular, the real part of each eigenvalue is negative. On the other hand,

x(t) = et/2
(

− cos t
sin t

)
is a solution, and therefore the zero solution is unstable!

The situation is not hopeless. An important example (Hill’s equation)
where the stability of the zero solution of the differential equation (2.27)
can be determined in some cases is discussed in the next section.

Exercise 2.93. (a) Find the principal fundamental matrix solution Φ(t) at t =
0 for the Marcus–Yamabe system; its system matrix A(t) is given in display (2.28).
(b) Find the Floquet normal form for Φ(t) and its “real” Floquet normal form. (c)
Determine the characteristic multipliers for the system. (d) The matrix function
t �→ A(t) is isospectral. Find a matrix function t �→ M(t) such that (A(t), M(t))
is a Lax pair (see Exercise 2.55). Is every isospectral matrix function the first
component of a Lax pair?

The Floquet normal form can be used to obtain detailed information
about the solutions of the differential equation (2.27). For example, if we use
the fact that the Floquet normal form decomposes a fundamental matrix
into a periodic part and an exponential part, then it should be clear that
for some systems there are periodic solutions and for others there are no
nontrivial periodic solutions. It is also possible to have “quasi-periodic”
solutions. The next lemma will be used to prove these facts.

Lemma 2.94. If µ is a characteristic exponent for the homogeneous linear
T -periodic differential equation (2.27) and Φ(t) is the principal fundamental
matrix solution at t = 0, then Φ(t) has a Floquet normal form P (t)etB such
that µ is an eigenvalue of B.

Proof. Let P(t)etB be a Floquet normal form for Φ(t). By the definition
of characteristic exponents, there is a characteristic multiplier λ such that
λ = eµT , and, by Theorem 2.88, there is an eigenvalue ν of B such that
eνT = λ. Also, there is some integer k �= 0 such that ν = µ + 2πik/T .
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Define B := B − (2πik/T )I and P (t) = P(t)e(2πikt/T )I . Note that µ is
an eigenvalue of B, the function P is T -periodic, and

P (t)etB = P(t)etB.

It follows that Φ(t) = P (t)etB is a representation in Floquet normal form
where µ is an eigenvalue of B. �

A basic result that is used to classify the possible types of solutions that
can arise is the content of the following theorem.

Theorem 2.95. If λ is a characteristic multiplier of the homogeneous lin-
ear T -periodic differential equation (2.27) and eTµ = λ, then there is a
(possibly complex) nontrivial solution of the form

x(t) = eµtp(t)

where p is a T -periodic function. Moreover, for this solution x(t + T ) =
λx(t).

Proof. Consider the principal fundamental matrix solution Φ(t) at t = 0.
By Lemma 2.94, there is a Floquet normal form representation Φ(t) =
P (t)etB such that µ is an eigenvalue of B. Hence, there is a vector v �= 0
such that Bv = µv. Clearly, it follows that etBv = eµtv, and therefore the
solution x(t) := Φ(t)v is also represented in the form

x(t) = P (t)etBv = eµtP (t)v.

The solution required by the first statement of the theorem is obtained by
defining p(t) := P (t)v. The second statement of the theorem is proved as
follows:

x(t + T ) = eµ(t+T )p(t + T ) = eµT eµtp(t) = λx(t). �

Theorem 2.96. Suppose that λ1 and λ2 are characteristic multipliers of
the homogeneous linear T -periodic differential equation (2.27) and µ1 and
µ2 are characteristic exponents such that eTµ1 = λ1 and eTµ2 = λ2. If
λ1 �= λ2, then there are T -periodic functions p1 and p2 such that

x1(t) = eµ1tp1(t) and x2(t) = eµ2tp2(t)

are linearly independent solutions.

Proof. Let Φ(t) = P (t)etB (as in Lemma 2.94) be such that µ1 is an
eigenvalue of B. Also, let v1 be a nonzero eigenvector corresponding to the
eigenvalue µ1. Since λ2 is an eigenvalue of the monodromy matrix Φ(T ), by
Theorem 2.88 there is an eigenvalue µ of B such that eTµ = λ2 = eTµ2 . It
follows that there is an integer k such that µ2 = µ+2πik/T . Also, because
λ1 �= λ2, we have that µ �= µ1. Hence, if v2 is a nonzero eigenvector of



2.4 Floquet Theory 199

B corresponding to the eigenvalue µ, then the eigenvectors v1 and v2 are
linearly independent.

As in the proof of Theorem 2.95, there are solutions of the form

x1(t) = eµ1tP (t)v1, x2(t) = eµtP (t)v2.

Moreover, because x1(0) = v1 and x2(0) = v2, these solutions are linearly
independent. Finally, let us note that x2 can be written in the required
form

x2(t) =
(
eµte2πki/T

)(
e−2πki/T P (t)v2

)
. �

The T -periodic system (2.27) has the Floquet normal form

t �→ Q(t)etR

where Q is a real 2T -periodic function and R is real matrix. By Theo-
rem 2.37 and 2.89, all solutions of the system are represented as finite
sums of real solutions of the two types

q(t)r(t)eαt sin βt and q(t)r(t)eαt cos βt,

where q is 2T -periodic, r is a polynomial of degree at most n−1, and α+iβ
is an eigenvalue of R. We will use Theorem 2.95 to give a more detailed
description of the nature of these real solutions.

If the characteristic multiplier λ is a positive real number, then there is
a corresponding real characteristic exponent µ. In this case, if the periodic
function p in Theorem 2.95 is complex, then it can be represented as p =
r + is where both r and s are real T -periodic functions. Because our T -
periodic system is real, both the real and the imaginary parts of a solution
are themselves solutions. Hence, there is a real nontrivial solution of the
form x(t) = eµtr(t) or x(t) = eµts(t). Such a solution is periodic if and only
if λ = 1 or equivalently if µ = 0. On the other hand, if λ �= 1 or µ �= 0,
then the solution is unbounded either as t → ∞ or as t → −∞. If λ < 1
(equivalently, µ < 0), then the solution is asymptotic to the zero solution
as t → ∞. On the other hand, if λ > 1 (equivalently, µ > 0), then the
solution is unbounded as t → ∞.

If the characteristic multiplier λ is a negative real number, then µ can
be chosen to have the form ν + πi/T where ν is real and eTµ = λ. Hence,
if we again take p = r + is, then we have the solution

eµtp(t) = eνteπit/T (r(t) + is(t))

from which real nontrivial solutions are easily constructed. For example, if
the real part of the complex solution is nonzero, then the real solution has
the form

x(t) = eνt(r(t) cos(πt/T ) − s(t) sin(πt/T )).
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Such a solution is periodic if and only if λ = −1 or equivalently if ν = 0.
In this case the solution is 2T -periodic. If ν �= 0, then the solution is
unbounded. If ν < 0, then the solution is asymptotic to zero as t → ∞. On
the other hand, if ν > 0, then the solution is unbounded as t → ∞.

If λ is complex, then we have µ = α+ iβ and there is a solution given by

x(t) = eαt(cos βt + i sin βt)(r(t) + is(t)).

Thus, there are real solutions

x1(t) = eαt(r(t) cos βt − s(t) sinβt),
x2(t) = eαt(r(t) sinβt + s(t) cos βt).

If α �= 0, then both solutions are unbounded. But, if α < 0, then these
solutions are asymptotic to zero as t → ∞. On the other hand, if α > 0,
then these solutions are unbounded as t → ∞. If α = 0 and there are
relatively prime positive integers m and n such that 2πm/β = nT , then
the solution is nT -periodic. If no such integers exist, then the solution is
called quasi-periodic.

We will prove in Section 2.4.4 that the stability of a periodic orbit is de-
termined by the stability of the corresponding fixed point of a Poincaré map
defined on a Poincaré section that meets the periodic orbit. Generically, the
stability of the fixed point of the Poincaré map is determined by the eigen-
values of its derivative at the fixed point. For example, if the eigenvalues
of the derivative of the Poincaré map at the fixed point corresponding to
the periodic orbit are all inside the unit circle, then the periodic orbit is
asymptotically stable. It turns out that the eigenvalues of the derivative of
the Poincaré map are closely related to the characteristic multipliers of a
time-periodic system, namely, the variational equation along the periodic
orbit. We will have much more to say about the general case later. Here
we will illustrate the idea for an example where the Poincaré map is easy
to compute.

Suppose that

u̇ = f(u, t), u ∈ R
n (2.29)

is a smooth nonautonomous differential equation. If there is some T > 0
such that f(u, t + T ) = f(u, t) for all u ∈ R

n and all t ∈ R, then the
system (2.29) is called T -periodic.

The nonautonomous system (2.29) is made “artificially” autonomous by
the addition of a new equation as follows:

u̇ = f(u, ψ), ψ̇ = 1 (2.30)

where ψ may be viewed as an angular variable modulo T . In other words,
we can consider ψ + nT = ψ whenever n is an integer. The phase cylinder
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for system (2.30) is R
n×T, where T (topologically the unit circle) is defined

to be R modulo T . This autonomous system provides the correct geometry
with which to define a Poincaré map.

For each ξ ∈ R
n, let t �→ u(t, ξ) denote the solution of the differential

equation (2.29) such that u(0, ξ) = ξ, and note that t �→ (u(t, ξ), t) is the
corresponding solution of the system (2.30). The set Σ := {(ξ, ψ) : ψ = 0}
is a Poincaré section, and the corresponding Poincaré map is given by
ξ �→ u(T, ξ).

If there is a point p ∈ R
n such that f(p, t) = 0 for all t ∈ R, then the

function t �→ (p, t), or equivalently t �→ (u(t, p), t), is a periodic solution of
the system (2.30) with period T . Moreover, let us note that u(T, p) = p.
Thus, the periodic solution corresponds to a fixed point of the Poincaré
map as it should.

The derivative of the Poincaré map at p is the linear transformation of
R

n given by the partial derivative uξ(T, p). Moreover, by differentiating
both the differential equation (2.29) and the initial condition u(0, ξ) = ξ
with respect to ξ, it is easy to see that the matrix function t �→ uξ(t, p)
is the principal fundamental matrix solution at t = 0 of the (T -periodic
linear) variational initial value problem

Ẇ = fu(u(t, p), t)W, W (0) = I. (2.31)

If the solution of system (2.31) is represented in the Floquet normal form
uξ(t, p) = P (t)etB , then the derivative of the Poincaré map is given by
uξ(T, p) = eTB . In particular, the characteristic multipliers of the vari-
ational equation (2.31) coincide with the eigenvalues of the derivative of
the Poincaré map. Thus, whenever the principle of linearized stability is
valid, the stability of the periodic orbit is determined by the characteristic
multipliers of the periodic variational equation (2.31).

As an example, consider the pendulum with oscillating support

θ̈ + (1 + a cos ωt) sin θ = 0.

The zero solution, given by θ(t) ≡ 0, corresponds to a 2π/ω-periodic so-
lution of the associated autonomous system. A calculation shows that the
variational equation along this periodic solution is equivalent to the second
order differential equation

ẍ + (1 + a cos ωt)x = 0,

called a Mathieu equation. The normal form for the Mathieu equation is

ẍ + (a − 2q cos 2t)x = 0,

where a and q are parameters.
Since, as we have just seen (see also Exercise 2.92), equations of Mathieu

type arise frequently in applications, the stability analysis of such equations
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is important (see, for example, [12], [18], [101], [127], [149], and [237]). In
Section 2.4.2 we will show how the stability of the zero solution of the
Mathieu equation, and, in turn, the stability of the zero solution of the
pendulum with oscillating support, is related in a delicate manner to the
amplitude a and the frequency ω of the periodic displacement.

Exercise 2.97. This is a continuation of Exercise 2.57. Suppose that v : R →
R

3 is a periodic function. Consider the differential equation

ẋ = v(t) × x

and discuss the stability of its periodic solutions.

Exercise 2.98. Determine the stability type of the periodic orbit discussed in
Exercise 2.91.

Exercise 2.99. (a) Prove that the system

ẋ = x − y − x(x2 + y2),

ẏ = x + y − y(x2 + y2),

ż = z + xz − z3

has periodic orbits. Hint: Change to cylindrical coordinates, show that the cylin-
der (with radius one whose axis of symmetry is the z-axis) is invariant, and recall
the analysis of equation (1.43). (b) Prove that there is a stable periodic orbit. (c)
The stable periodic orbit has three Floquet multipliers. Of course, one of them
is unity. Find (exactly) a vector v such that Φ(T )v = v, where T is the period of
the periodic orbit and Φ(t) is the principal fundamental matrix solution at t = 0
of the variational equation along the stable periodic solution. (d) Approximate
the remaining two multipliers. Note: It is possible to represent these multipliers
with integrals, but they are easier to approximate using a numerical method.

2.4.1 Lyapunov Exponents
An important generalization of Floquet exponents, called Lyapunov expo-
nents, are introduced in this section. This concept is used extensively in
the theory of dynamical systems (see, for example, [103], [144], [176], and
[233]).

Consider a (nonlinear) differential equation

u̇ = f(u), u ∈ R
n (2.32)

with flow ϕt. If ε ∈ R, ξ, v ∈ R
n, and η := ξ + εv, then the two solutions

t �→ ϕt(ξ), t �→ ϕt(ξ + εv)

start at points that are O(ε) close; that is, the absolute value of the differ-
ence of the two points in R

n is bounded by the usual norm of v times ε.
Moreover, by Taylor expansion at ε = 0, we have that

ϕt(ξ + εv) − ϕt(ξ) = εDϕt(ξ)v + O(ε2)
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where Dϕt(ξ) denotes the derivative of the function u �→ ϕt(u) evaluated at
u = ξ. Thus, the first order approximation of the difference of the solutions
at time t is εDϕt(ξ)v where t �→ Dϕt(ξ) is the principal fundamental matrix
solution at t = 0 of the linearized equation

Ẇ = Df(ϕt(ξ))W

along the solution of the original system (2.32) starting at ξ. To see this
fact, just note that

ϕ̇t(u) = f(ϕt(u))

and differentiate both sides of this identity with respect to u at u = ξ.
If we view v as a vector in the tangent space to R

n at ξ, denoted TξR
n,

then Dϕt(ξ)v is a vector in the tangent space Tϕt(ξ)R
n. For each such v,

if v �= 0, then it is natural to define a corresponding linear operator L,
from the linear subspace of TξR

n generated by v to the linear subspace
of Tϕt(ξ)R

n generated by Dϕt(ξ)v, defined by L(av) = Dϕt(ξ)av where
a ∈ R. Let us note that the norm of this operator measures the relative
“expansion” or “contraction” of the vector v; that is,

‖L‖ = sup
a
=0

|Dφt(ξ)av|
|av| =

|Dφt(ξ)v|
|v| .

Our two solutions can be expressed in integral form; that is,

ϕt(ξ) = ξ +
∫ t

0
f(ϕs(ξ)) ds,

ϕt(ξ + εv) = ξ + εv +
∫ t

0
f(ϕs(ξ + εv)) ds.

Hence, as long as we consider a finite time interval or a solution that is
contained in a compact subset of R

n, there is a Lipschitz constant Lip(f) >
0 for the function f , and we have the inequality

|ϕt(ξ + εv) − ϕt(ξ)| ≤ ε|v| + Lip(f)
∫ t

0
|ϕs(ξ + εv) − ϕs(ξ)| ds.

By Gronwall’s inequality, the separation distance between the solutions is
bounded by an exponential function of time. In fact, we have the estimate

|ϕt(ξ + εv) − ϕt(ξ)| ≤ ε|v|et Lip(f).

The above computation for the norm of L and the exponential bound for
the separation rate between two solutions motivates the following definition
(see [144]).
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Definition 2.100. Suppose that ξ ∈ R
n and the solution t �→ ϕt(ξ) of the

differential equation (2.32) is defined for all t ≥ 0. Also, let v ∈ R
n be a

nonzero vector. The Lyapunov exponent at ξ in the direction v for the flow
ϕt is defined to be

χ(p, v) := lim sup
t→∞

1
t

ln
( |Dφt(ξ)v|

|v|

)
.

As a simple example, let us consider the planar system

ẋ = −ax, ẏ = by

where a and b are positive parameters, and let us note that its flow is given
by

ϕt(x, y) = (e−atx, ebty).

By an easy computation using the definition of the Lyapunov exponents,
it follows that if v is given by v = (w, z) and z �= 0, then χ(ξ, v) = b. If
z = 0 and w �= 0, then χ(ξ, v) = −a. In particular, there are exactly two
Lyapunov exponents for this system. Of course, the Lyapunov exponents
in this case correspond to the eigenvalues of the system matrix.

Although our definition of Lyapunov exponents is for autonomous sys-
tems, it should be clear that since the definition only depends on the funda-
mental matrix solutions of the associated variational equations along orbits
of the system, we can define the same notion for solutions of abstract time-
dependent linear systems. Indeed, for a T -periodic linear system

u̇ = A(t)u, u ∈ R
n (2.33)

with principal fundamental matrix Φ(t) at t = 0, the Lyapunov exponent
defined with respect to the nonzero vector v ∈ R

n is

χ(v) := lim sup
t→∞

1
t

ln
( |Φ(t)v|

|v|

)
.

Proposition 2.101. If µ is a Floquet exponent of the system (2.33), then
the real part of µ is a Lyapunov exponent.

Proof. Let us suppose that the principal fundamental matrix Φ(t) is given
in Floquet normal form by

Φ(t) = P (t)etB .

If µ = a + bi is a Floquet exponent, then there is a corresponding vector
v such that eTBv = eµT v. Hence, using the Floquet normal form, we have
that

Φ(T )v = eµT v.
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If t ≥ 0, then there is a nonnegative integer n and a number r such that
0 ≤ r < T and

1
t

ln
( |Φ(t)v|

|v|

)
=

1
T

( nT

nT + r

)( 1
n

ln
( |P (nT + r)erBenµT v|

|v|

))
=

1
T

( nT

nT + r

)( 1
n

ln |enTa| +
1
n

ln
( |P (r)erBv|

|v|

))
.

Clearly, n → ∞ as t → ∞. Thus, it is easy to see that

lim
t→∞

1
T

( nT

nT + r

)( 1
n

ln |enTa| +
1
n

ln
( |P (r)erBv|

|v|

))
= a. �

Let us suppose that a differential equation has a compact invariant set
that contains an orbit whose closure is dense in the invariant set. Then,
the existence of a positive Lyapunov exponent for this orbit ensures that
nearby orbits tend to separate exponentially fast from the dense orbit. But,
since these orbits are confined to a compact invariant set, they must also
be bounded. This suggests that each small neighborhood in the invariant
set undergoes both stretching and folding as it evolves with the flow. The
subsequent kneading of the invariant set due to this stretching and fold-
ing would tend to mix the evolving neighborhoods so that they eventually
intertwine in a complicated manner. For this reason, the existence of a pos-
itive Lyapunov exponent is often taken as a signature of “chaos.” While
this criterion is not always valid, the underlying idea that the stretching im-
plied by a positive Lyapunov exponent is associated with complex motions
is important in the modern theory of dynamical systems.

Exercise 2.102. Show that if two points are on the same orbit, then the cor-
responding Lyapunov exponents are the same.

Exercise 2.103. Prove the “converse” of Proposition 2.101; that is, every Lya-
punov exponent for a time-periodic system is a Floquet exponent.

Exercise 2.104. If ẋ = f(x), determine the Lyapunov exponent χ(ξ, f(ξ)).

Exercise 2.105. How many Lyapunov exponents are associated with an orbit
of a differential equation in an n-dimensional phase space.

Exercise 2.106. Suppose that x is in the omega limit set of an orbit. Are the
Lyapunov exponents associated with x the same as those associated with the
original orbit?

Exercise 2.107. In all the examples in this section, the lim sup can be replaced
by lim. Are there examples where the superior limit is a finite number, but the
limit does not exist? This is (probably) a challenging exercise! For an answer
see [144] and [176].
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2.4.2 Hill’s Equation
A famous example where Floquet theory applies to give good stability
results is Hill’s equation,

ü + a(t)u = 0, a(t + T ) = a(t).

It was introduced by George W. Hill in his study of the motions of the moon.
Roughly speaking, the motion of the moon can be viewed as a harmonic
oscillator in a periodic gravitational field. But this model equation arises in
many areas of applied mathematics where the stability of periodic motions
is an issue. A prime example, mentioned in the previous section, is the
stability analysis of small oscillations of a pendulum whose length varies
with time.

If we define

x :=
(

u
u̇

)
,

then Hill’s equation is equivalent to the first order system ẋ = A(t)x where

A(t) =
(

0 1
−a(t) 0

)
.

We will apply linear systems theory, especially Floquet theory, to analyze
the stability of the zero solution of this linear T -periodic system.

The first step in the stability analysis is an application of Liouville’s
formula (2.18). In this regard, you may recall from your study of scalar
second order linear differential equations that if ü + p(t)u̇ + q(t)u = 0 and
the Wronskian of the two solutions u1 and u2 is defined by

W (t) := det
(

u1(t) u2(t)
u̇1(t) u̇2(t)

)
,

then

W (t) = W (0)e− ∫ t
0 p(s) ds. (2.34)

Note that for the equivalent first order system

ẋ =
(

0 1
−q(t) −p(t)

)
x = B(t)x

with fundamental matrix Ψ(t), formula (2.34) is a special case of Liouville’s
formula

det Ψ(t) = det Ψ(0)e
∫ t
0 tr B(s)ds.

At any rate, let us apply Liouville’s formula to the principal fundamental
matrix Φ(t) at t = 0 for Hill’s system to obtain the identity det Φ(t) ≡ 1.
Since the determinant of a matrix is the product of the eigenvalues of
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the matrix, we have an important fact: The product of the characteristic
multipliers of the monodromy matrix, Φ(T ), is 1.

Let the characteristic multipliers for Hill’s equation be denoted by λ1
and λ2 and note that they are roots of the characteristic equation

λ2 − (tr Φ(T ))λ + det Φ(T ) = 0.

For notational convenience let us set 2φ = tr Φ(T ) to obtain the equivalent
characteristic equation

λ2 − 2φλ + 1 = 0

whose solutions are given by

λ = φ ±
√

φ2 − 1.

There are several cases to consider depending on the value of φ.
Case 1: If φ > 1, then λ1 and λ2 are distinct positive real numbers such

that λ1λ2 = 1. Thus, we may assume that 0 < λ1 < 1 < λ2 with λ1 = 1/λ2
and there is a real number µ > 0 (a characteristic exponent) such that
eTµ = λ2 and e−Tµ = λ1. By Theorem 2.95 and Theorem 2.96, there is a
fundamental set of solutions of the form

e−µtp1(t), eµtp2(t)

where the real functions p1 and p2 are T -periodic. In this case, the zero
solution is unstable.

Case 2: If φ < −1, then λ1 and λ2 are both real and both negative. Also,
since λ1λ2 = 1, we may assume that λ1 < −1 < λ2 < 0 with λ1 = 1/λ2.
Thus, there is a real number µ > 0 (a characteristic exponent) such that
e2Tµ = λ2

1 and e−2Tµ = λ2
2. As in Case 1, there is a fundamental set of

solutions of the form

eµtq1(t), e−µtq2(t)

where the real functions q1 and q2 are 2T -periodic. Again, the zero solution
is unstable.

Case 3: If −1 < φ < 1, then λ1 and λ2 are complex conjugates each
with nonzero imaginary part. Since λ1λ̄1 = 1, we have that |λ1| = 1, and
therefore both characteristic multipliers lie on the unit circle in the complex
plane. Because both λ1 and λ2 have nonzero imaginary parts, one of these
characteristic multipliers, say λ1, lies in the upper half plane. Thus, there is
a real number θ with 0 < θT < π and eiθT = λ1. In fact, there is a solution
of the form eiθt(r(t)+ is(t)) with r and s both T -periodic functions. Hence,
there is a fundamental set of solutions of the form

r(t) cos θt − s(t) sin θt, r(t) sin θt + s(t) cos θt.

In particular, the zero solution is stable (see Exercise 2.113) but not asymp-
totically stable. Also, the solutions are periodic if and only if there are
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relatively prime positive integers m and n such that 2πm/θ = nT . If such
integers exist, all solutions have period nT . If not, then these solutions are
quasi-periodic.

We have just proved the following facts for Hill’s equation: Suppose that
Φ(t) is the principal fundamental matrix solution of Hill’s equation at t = 0.
If | tr Φ(T )| < 2, then the zero solution is stable. If | tr Φ(T )| > 2, then the
zero solution is unstable.

Case 4: If φ = 1, then λ1 = λ2 = 1. The nature of the solutions depends
on the canonical form of Φ(T ). If Φ(T ) is the identity, then e0 = Φ(T ) and
there is a Floquet normal form Φ(t) = P (t) where P (t) is T -periodic and
invertible. Thus, there is a fundamental set of periodic solutions and the
zero solution is stable. If Φ(T ) is not the identity, then there is a nonsingular
matrix C such that

CΦ(T )C−1 = I + N = eN

where N �= 0 is nilpotent. Thus, Φ(t) has a Floquet normal form Φ(t) =
P (t)etB where B := C−1( 1

T N)C. Because

etB = C−1(I +
t

T
N)C,

the matrix function t �→ etB is unbounded, and therefore the zero solution
is unstable.

Case 5: If φ = −1, then the situation is similar to Case 4, except the
fundamental matrix is represented by Q(t)etB where Q(t) is a 2T -periodic
matrix function.

By the results just presented, the stability of Hill’s equation is reduced,
in most cases, to a determination of the absolute value of the trace of
its principal fundamental matrix evaluated after one period. While this is
a useful fact, it leaves open an important question: Can the stability be
determined without imposing a condition on the solutions of the equation?
It turns out that in some special cases this is possible (see [149] and [237]).
A theorem of Lyapunov [144] in this direction follows.

Theorem 2.108. If a : R → R is a positive T -periodic function such that

T

∫ T

0
a(t) dt ≤ 4,

then all solutions of the Hill’s equation ẍ + a(t)x = 0 are bounded. In
particular, the trivial solution is stable.

The proof of Theorem 2.108 is outlined in Exercises 2.113 and 2.116.

Exercise 2.109. Consider the second order system

ü + u̇ + cos(t) u = 0.



2.4 Floquet Theory 209

Prove: (a) If ρ1 and ρ2 are the characteristic multipliers of the corresponding first
order system, then ρ1ρ2 = exp(−2π). (b) The Poincaré map for the system is
dissipative; that is, it contracts area.

Exercise 2.110. Prove: The equation

ü − (2 sin2 t)u̇ + (1 + sin 2t)u = 0.

does not have a fundamental set of periodic solutions. Does it have a nonzero
periodic solution? Is the zero solution stable?

Exercise 2.111. Discuss the stability of the trivial solution of the scalar time-
periodic system ẋ = (cos2 t)x.

Exercise 2.112. Prove: The zero solution is unstable for the system ẋ = A(t)x
where

A(t) :=
(

1/2 − cos t 12
147 3/2 + sin t

)
.

Exercise 2.113. Prove: If all solutions of the T -periodic system ẋ = A(t)x are
bounded, then the trivial solution is Lyapunov stable.

Exercise 2.114. For Hill’s equation with period T , if the absolute value of the
trace of Φ(T ), where Φ(t) is the principal fundamental matrix at t = 0, is strictly
less than two, show that there are no solutions of period T or 2T . On the other
hand, if the absolute value of the trace of Φ(T ) is two, show that there is such a
solution. Note that this property characterizes the boundary between the stable
and unstable solutions.

Exercise 2.115. Prove: If a(t) is an even T -periodic function, then Hill’s equa-
tion has a fundamental set of solutions such that one solution is even and one is
odd.

Exercise 2.116. Prove Theorem 2.108. Hint: If Hill’s equation has an un-
bounded solution, then there is a real solution t �→ x(t) and a real Floquet
multiplier such that x(t + T ) = λx(t). Define a new function t �→ u(t) by

u(t) :=
ẋ(t)
x(t)

,

and show that u is a solution of the Riccati equation

u̇ = −a(t) − u2.

Use the Riccati equation to prove that the solution x has at least one zero in the
interval [0, T ]. Also, show that x has two distinct zeros on some interval whose
length does not exceed T . Finally, use the following proposition to finish the
proof. If f is a smooth function on the finite interval [α, β] such that f(α) = 0,
f(β) = 0, and such that f is positive on the open interval (α, β), then

(β − α)
∫ β

α

|f ′′(t)|
f(t)

dt > 4.
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To prove this proposition, first suppose that f attains its maximum at γ and
show that

4
β − α

≤ 1
γ − α

+
1

β − γ
=

1
f(γ)

(f(γ) − f(α)
γ − α

− f(β) − f(γ)
β − γ

)
.

Then, use the mean value theorem and the fundamental theorem of calculus to
complete the proof.

Exercise 2.117. Prove: If t �→ a(t) is negative, then the Hill’s equation ẍ +
a(t)x = 0 has an unbounded solution. Hint: Multiply by x and integrate by parts.

2.4.3 Periodic Orbits of Linear Systems
In this section we will consider the existence and stability of periodic solu-
tions of the time-periodic system

ẋ = A(t)x + b(t), x ∈ R
n (2.35)

where t �→ A(t) is a T -periodic matrix function and t �→ b(t) is a T -periodic
vector function.

Theorem 2.118. If the number one is not a characteristic multiplier of
the T -periodic homogeneous system ẋ = A(t)x, then (2.35) has at least one
T -periodic solution.

Proof. Let us show first that if t �→ x(t) is a solution of system (2.35)
and x(0) = x(T ), then this solution is T -periodic. Define y(t) := x(t + T ).
Note that t �→ y(t) is a solution of (2.35) and y(0) = x(0). Thus, by the
uniqueness theorem x(t + T ) = x(t) for all t ∈ R.

If Φ(t) is the principal fundamental matrix solution of the homogeneous
system at t = 0, then, by the variation of parameters formula,

x(T ) = Φ(T )x(0) + Φ(T )
∫ T

0
Φ−1(s)b(s) ds.

Therefore, x(T ) = x(0) if and only if

(I − Φ(T ))x(0) = Φ(T )
∫ T

0
Φ−1(s)b(s) ds.

This equation for x(0) has a solution whenever the number one is not an
eigenvalue of Φ(T ). (Note that the map x(0) �→ x(T ) is the Poincaré map.
Thus, our periodic solution corresponds to a fixed point of the Poincaré
map).

By Floquet’s theorem, there is a matrix B such that the monodromy
matrix is given by

Φ(T ) = eTB .

In other words, by the hypothesis, the number one is not an eigenvalue of
Φ(T ). �
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Corollary 2.119. If A(t) = A, a constant matrix such that A is infinites-
imally hyperbolic (no eigenvalues on the imaginary axis), then the differ-
ential equation (2.35) has at least one T -periodic solution.

Proof. The monodromy matrix eTA does not have 1 as an eigenvalue. �

Exercise 2.120. Discuss the uniqueness of the T -periodic solutions of the sys-
tem (2.35). Also, using Theorem 2.89, discuss the stability of the T -periodic
solutions.

In system (2.35) if b = 0, then the trivial solution is a T -periodic solution.
The next theorem states a general sufficient condition for the existence of
a T -periodic solution.

Theorem 2.121. If the T -periodic system (2.35) has a bounded solution,
then it has a T -periodic solution.

Proof. Consider the principal fundamental matrix solution Φ(t) at t = 0 of
the homogeneous system corresponding to the differential equation (2.35).
By the variation of parameters formula, we have the equation

x(T ) = Φ(T )x(0) + Φ(T )
∫ T

0
Φ−1(s)b(s) ds.

Also, by Theorem 2.82, there is a constant matrix B such that Φ(T ) = eTB .
Thus, the stroboscopic Poincaré map P is given by

P (ξ) := Φ(T )ξ + Φ(T )
∫ T

0
Φ−1(s)b(s) ds

= eTB
(
ξ +

∫ T

0
Φ−1(s)b(s) ds

)
.

If the solution with initial condition x(0) = ξ0 is bounded, then the
sequence {P j(ξ0)}∞

j=0 is bounded. Also, P is an affine map; that is, P (ξ) =
Lξ + y where L = eTB = Φ(T ) is a real invertible linear map and y is an
element of R

n.
Note that if there is a point x ∈ R

n such that P (x) = x, then the
system (2.35) has a periodic orbit. Thus, if we assume that there are no
periodic orbits, then the equation

(I − L)ξ = y

has no solution ξ. In other words, y is not in the range R of the operator
I − L.
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There is some vector v ∈ R
n such that v is orthogonal to R and the

inner product 〈v, y〉 does not vanish. Moreover, because v is orthogonal to
the range, we have

〈(I − L)ξ, v〉 = 0

for each ξ ∈ R
n, and therefore

〈ξ, v〉 = 〈Lξ, v〉. (2.36)

Using the representation P (ξ) = Lξ + y and an induction argument, it
is easy to prove that if j is a nonnegative integer, then P j(ξ0) = Ljξ0 +∑j−1

k=0 Lky. By taking the inner product with v and repeatedly applying
the reduction formula (2.36), we have

〈P j(ξ0), v〉 = 〈ξ0, v〉 + (j − 1)〈y, v〉.

Moreover, because 〈v, y〉 �= 0, it follows immediately that

lim
j→∞

〈P j(ξ0), v〉 = ∞,

and therefore the sequence {P j(ξ0)}∞
j=0 is unbounded, in contradiction. �

2.4.4 Stability of Periodic Orbits
Consider a (nonlinear) autonomous system of differential equations on R

n

given by u̇ = f(u) with a periodic orbit Γ. Also, for each ξ ∈ R
n, define

the vector function t �→ u(t, ξ) to be the solution of this system with the
initial condition u(0, ξ) = ξ.

If p ∈ Γ and Σ′ ⊂ R
n is a section transverse to f(p) at p, then, as a

corollary of the implicit function theorem, there is an open set Σ ⊆ Σ′ and
a function T : Σ → R, the time of first return to Σ′, such that for each
σ ∈ Σ, we have u(T (σ), σ) ∈ Σ′. The map P, given by σ �→ u(T (σ), σ), is
the Poincaré map corresponding to the Poincaré section Σ.

The Poincaré map is defined only on Σ, a manifold contained in R
n. It

is convenient to avoid choosing local coordinates on Σ. Thus, we will view
the elements in Σ also as points in the ambient space R

n. In particular, if
v ∈ R

n is tangent to Σ at p, then the derivative of P in the direction v is
given by

DP(p)v = (dT (p)v)f(p) + uξ(T (p), p)v. (2.37)

The next proposition relates the spectrum of DP(p) to the Floquet multi-
pliers of the first variational equation

Ẇ = Df(u(t, p))W.
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Proposition 2.122. If Γ is a periodic orbit and p ∈ Γ, then the union of
the set of eigenvalues of the derivative of a Poincaré map at p ∈ Γ and the
singleton set {1} is the same as the set of characteristic multipliers of the
first variational equation along Γ. In particular, zero is not an eigenvalue.

Proof. Recall that t �→ uξ(t, ξ) is the principal fundamental matrix solu-
tion at t = 0 of the first variational equation and, since

d

dt
f(u(t, ξ)) = Df(u(t, ξ)ut(t, ξ) = Df(u(t, ξ)f(u(t, ξ)),

the vector function t �→ f(u(t, ξ)) is the solution of the variational equation
with the initial condition W (0) = f(ξ). In particular,

uξ(T (p), p)f(p) = f(u(T (p), p)) = f(p),

and therefore f(p) is an eigenvector of the linear transformation uξ(T (p), p)
with eigenvalue the number one.

Since Σ is transverse to f(p), there is a basis of R
n of the form

f(p), s1, . . . , sn−1

with si tangent to Σ at p for each i = 1, . . . , n − 1. It follows that the
matrix uξ(T (p), p) has block form, relative to this basis, given by(

1 a
0 b

)
where a is 1 × (n − 1) and b is (n − 1) × (n − 1). Moreover, each v ∈ R

n

that is tangent to Σ at p has block form (the transpose of) (0, vΣ). As a
result, we have the equality

uξ(T (p), p)v =
(

1 a
0 b

)(
0
vΣ

)
.

The range of DP(p) is tangent to Σ at p. Thus, using equation (2.37)
and the block form of uξ(T (p), p), it follows that

DP(p)v =
(

dT (p)v + avΣ
bvΣ

)
=

(
0

bvΣ

)
.

In other words, the derivative of the Poincaré map may be identified with
b and the differential of the return time map with −a. In particular, the
eigenvalues of the derivative of the Poincaré map coincide with the eigen-
values of b. �

Exercise 2.123. Prove that the characteristic multipliers of the first varia-
tional equation along a periodic orbit do not depend on the choice of p ∈ Γ.
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Most of the rest of this section is devoted to a proof of the following
fundamental theorem.

Theorem 2.124. Suppose that Γ is a periodic orbit for the autonomous
differential equation u̇ = f(u) and P is a corresponding Poincaré map
defined on a Poincaré section Σ such that p ∈ Γ ∩ Σ. If the eigenvalues of
the derivative DP(p) are inside the unit circle in the complex plane, then
Γ is asymptotically stable.

There are several possible proofs of this theorem. The approach used
here is adapted from [123].

To give a complete proof of Theorem 2.124, we will require several pre-
liminary results. Our first objective is to show that the point p is an asymp-
totically stable fixed point of the dynamical system defined by the Poincaré
map on Σ.

Let us begin with a useful simple replacement of the Jordan normal form
theorem that is adequate for our purposes here (see [129]).

Proposition 2.125. An n × n (possibly complex) matrix A is similar to
an upper triangular matrix whose diagonal elements are the eigenvalues of
A.

Proof. Let v be a nonzero eigenvector of A corresponding to the eigenvalue
λ. The vector v can be completed to a basis of C

n that defines a matrix
Q partitioned by the corresponding column vectors Q := [v, y1, . . . , yn−1].
Moreover, Q is invertible and

[Q−1v, Q−1y1, . . . , Q−1yn−1] = [e1, . . . , en]

where e1, . . . , en denote the usual basis elements.
Note that

Q−1AQ = Q−1[λv, Ay1, . . . , Ayn−1]
= [λe1, Q

−1Ay1, . . . , Q−1Ayn−1].

In other words, the matrix Q−1AQ is given in block form by

Q−1AQ =
(

λ ∗
0 Ã

)
where Ã is an (n−1)×(n−1) matrix. In particular, this proves the theorem
for all 2 × 2 matrices.

By induction, there is an (n − 1) × (n − 1) matrix R̃ such that R̃−1ÃR̃
is upper triangular. The matrix (QR)−1AQR where

R =
(

1 0
0 R̃

)
is an upper triangular matrix with the eigenvalues of A as its diagonal
elements, as required. �
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Let ρ(A) denote the spectral radius of A, that is, the maximum modulus
of the eigenvalues of A.

Proposition 2.126. Suppose that A is an n × n matrix. If ε > 0, then
there is a norm on C

n such that ‖A‖ε < ρ(A) + ε. If A is a real matrix,
then the restriction of the “ε-norm” to R

n is a norm on R
n with the same

property.

Proof. The following proof is adapted from [129]. By Proposition 2.125,
there is a matrix Q such that

QAQ−1 = D + N

where D is diagonal with the eigenvalues of A as its diagonal elements, and
N is upper triangular with each of its diagonal elements equal to zero.

Let µ > 0, and define a new diagonal matrix S with diagonal elements

1, µ−1, µ−2, . . . , µ1−n.

A computation shows that

S(D + N)S−1 = D + SNS−1.

Also, it is easy to show—by writing out the formulas for the components—
that every element of the matrix SNS−1 is O(µ).

Define a norm on C
n, by the formula

|v|µ := |SQv| = 〈SQv, SQv〉

where the angle brackets on the right hand side denote the usual Euclidean
inner product on C

n. It is easy to verify that this procedure indeed defines
a norm on C

n that depends on the parameter µ.
Post multiplication by SQ of both sides of the equation

SQAQ−1S−1 = D + SNS−1

yields the formula

SQA = (D + SNS−1)SQ.

Using this last identity we have that

|Av|2µ = |SQAv|2 = |(D + SNS−1)SQv|2.

Let us define w := SQv and then expand the last norm into inner products
to obtain

|Av|2µ = 〈Dw, Dw〉 + 〈SNS−1w, Dw〉
+〈Dw, SNS−1w〉 + 〈SNS−1w, SNS−1w〉.
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A direct estimate of the first inner product together with an application
of the Schwarz inequality to each of the other inner products yields the
following estimate:

|Av|2µ ≤ (ρ2(A) + O(µ))|w|2.

Moreover, we have that |v|µ = |w|. In particular, if |v|µ = 1 then |w| = 1,
and it follows that

‖A‖2
µ ≤ ρ2(A) + O(µ).

Thus, if µ > 0 is sufficiently small, then ‖A‖µ < ρ(A) + ε, as required. �

Corollary 2.127. If all the eigenvalues of the n × n matrix A are inside
the unit circle in the complex plane, then there is an “adapted norm” and a
number λ, with 0 < λ < 1, such that |Av|a < λ|v|a for all vectors v, real or
complex. In particular A is a contraction with respect to the adapted norm.
Moreover, for each norm on R

n or C
n, there is a positive number C such

that |Anv| ≤ Cλn|v| for all nonnegative integers n.

Proof. Under the hypothesis, we have ρ(A) < 1; thus, there is a number
λ such that ρ(A) < λ < 1. Using Proposition 2.126, there is an adapted
norm so that ‖A‖a < λ. This proves the first part of the corollary. To
prove the second part, recall that all norms on a finite dimensional space
are equivalent. In particular, there are positive numbers C1 and C2 such
that

C1|v| ≤ |v|a ≤ C2|v|

for all vectors v. Thus, we have

C1|Anv| ≤ |Anv|a ≤ |A|na |v|a ≤ C2λ
n|v|.

After dividing both sides of the last inequality by C1 > 0, we obtain the
desired estimate. �

We are now ready to return to the dynamics of the Poincaré map P
defined above. Recall that Γ is a periodic orbit for the differential equation
u̇ = f(u) and P : Σ → Σ′ is defined by P(σ) = u(T (σ), σ) where T is the
return time function. Also, we have that p ∈ Γ ∩ Σ.

Lemma 2.128. Suppose that V ⊆ R
n is an open set with compact closure

V̄ such that Γ ⊂ V and V̄ is contained in the domain of the function f . If
t∗ ≥ 0, then there is an open set W ⊆ V that contains Γ and is such that,
for each point ξ ∈ W , the solution t �→ u(t, ξ) is defined and stays in V on
the interval 0 ≤ t ≤ t∗. Moreover, if ξ and ν are both in W and 0 ≤ t ≤ t∗,
then there is a number L > 0 such that

|u(t, ξ) − u(t, ν)| < |ξ − ν|eLt∗ .
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Proof. Note that V̄ is a compact subset of the domain of the function
f . By Lemma 2.75, f is globally Lipschitz on V with a Lipschitz constant
L > 0. Also, there is a minimum positive distance m from the boundary of
V to Γ.

An easy application of Gronwall’s inequality can be used to show that if
ξ, ν ∈ V , then

|u(t, ξ) − u(t, ν)| ≤ |ξ − ν|eLt (2.38)

for all t such that both solutions are defined on the interval [0, t].
Define the set

Wq := {ξ ∈ R
n : |ξ − q|eLt∗ < m}

and note that Wq is open. If ξ ∈ Wq, then

|ξ − q| < me−Lt∗ < m.

Thus, it follows that Wq ⊆ V .
Using the extension theorem (Theorem 1.263), it follows that if ξ ∈ Wq,

then the interval of existence of the solution t �→ u(t, ξ) can be extended as
long as the orbit stays in the compact set V̄ . The point q is on the periodic
orbit Γ. Thus, the solution t → u(t, q) is defined for all t ≥ 0. Using the
definition of Wq and an application of the inequality (2.38) to the solutions
starting at ξ and q, it follows that the solution t �→ u(t, ξ) is defined and
stays in V on the interval 0 ≤ t ≤ t∗.

The union W :=
⋃

q∈Γ Wq is an open set in V containing Γ with the
property that all solutions starting in W remain in V at least on the time
interval 0 ≤ t ≤ t∗. �

Define the distance of a point q ∈ R
n to a set S ⊆ R

n by

dist(q, S) = inf
x∈S

|q − x|

where the norm on the right hand side is the usual Euclidean norm. Simi-
larly, the (minimum) distance between two sets is defined as

dist(A, B) = inf{|a − b| : a ∈ A, b ∈ B}.

(Warning: dist is not a metric.)

Proposition 2.129. If σ ∈ Σ and if limn→∞ Pn(σ) = p, then

lim
t→∞ dist(u(t, σ), Γ) = 0.

Proof. Let ε > 0 be given and let Σ0 be an open subset of Σ such that
p ∈ Σ0 and such that Σ̄0, the closure of Σ0, is a compact subset of Σ. The
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return time map T is continuous; hence, it is uniformly bounded on the set
Σ̄0, that is,

sup{T (η) : η ∈ Σ̄0} = T ∗ < ∞.

Let V be an open subset of R
n with compact closure V̄ such that Γ ⊂ V

and V̄ is contained in the domain of f . By Lemma 2.128, there is an open
set W ⊆ V such that Γ ⊂ W and such that, for each ξ ∈ W , the solution
starting at ξ remains in V on the interval 0 ≤ s ≤ T ∗.

Choose δ > 0 so small that the set

Σδ := {η ∈ Σ : |η − p| < δ}

is contained in W ∩ Σ0, and such that

|η − p|eLT ∗
< min{m, ε}

for all η ∈ Σδ. By Lemma 2.128, if η ∈ Σδ, then, for 0 ≤ s ≤ T ∗, we have
that

|u(s, η) − u(s, p)| < ε.

By the hypothesis, there is some integer N > 0 such that Pn(σ) ∈ Σδ

whenever n ≥ N .
Using the group property of the flow, let us note that

Pn(σ) = u(
n−1∑
j=0

T (Pj(σ)), σ).

Moreover, if t ≥
∑N−1

j=0 T (Pj(σ)), then there is some integer n ≥ N and
some number s such that 0 ≤ s ≤ T ∗ and

t =
n−1∑
j=0

T (Pj(σ)) + s.

For this t, we have Pn(σ) ∈ Σδ and

dist(u(t, σ), Γ) = min
q∈Γ

|u(t, σ) − q|

≤ |u(t, σ) − u(s, p)|

= |u(s, u(
n−1∑
j=0

T (Pj(σ)), σ)) − u(s, p)|

= |u(s, Pn(σ)) − u(s, p)|.

It follows that dist(u(t, σ), Γ) < ε whenever t ≥
∑N−1

j=0 T (Pj(σ)). In other
words,

lim
t→∞ dist(u(t, σ), Γ) = 0,

as required. �
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We are now ready for the proof of Theorem 2.124.

Proof. Suppose that V is a neighborhood of Γ. We must prove that there is
a neighborhood U of Γ such that U ⊆ V with the additional property that
every solution of u̇ = f(u) that starts in U stays in V and is asymptotic to
Γ.

We may as well assume that V has compact closure V̄ and V̄ is contained
in the domain of f . Then, by Lemma 2.128, there is an open set W that
contains Γ and is contained in the closure of V with the additional property
that every solution starting in W exists and stay in V on the time interval
0 ≤ t ≤ 2τ where τ := T (p) is the period of Γ.

Also, let us assume without loss of generality that our Poincaré section
Σ is a subset of a hyperplane Σ′ and that the coordinates on Σ′ are chosen
so that p lies at the origin. By our hypothesis, the linear transformation
DP(0) : Σ′ → Σ′ has its spectrum inside the unit circle in the complex
plane. Thus, by Corollary 2.127, there is an adapted norm on Σ′ and a
number λ with 0 < λ < 1 such that ‖DP(0)‖ < λ.

Using the continuity of the map σ → DP(σ), the return time map, and
the adapted norm, there is an open ball Σ0 ⊆ Σ centered at the origin
such that Σ0 ⊂ W , the return time map T restricted to Σ0 is bounded by
2τ , and ‖DP(σ)‖ < λ whenever σ ∈ Σ0. Moreover, using the mean value
theorem, it follows that

|P(σ)| = |P(σ) − P(0)| < λ|σ|,

whenever σ ∈ Σ0. In particular, if σ ∈ Σ0, then P(σ) ∈ Σ0.
Let us show that all solutions starting in Σ0 are defined for all positive

time. To see this, consider σ ∈ Σ0 and note that, by our construction, the
solution t �→ u(t, σ) is defined for 0 ≤ t ≤ T (σ) because T (σ) < 2τ . We
also have that u(T (σ), σ) = P(σ) ∈ Σ0. Thus, the solution t �→ u(t, σ)
can be extended beyond the time T (σ) by applying the same reasoning
to the solution t → u(t, P(σ)) = u(t + u(Tσ), σ)). This procedure can be
extended indefinitely, and thus the solution t → u(t, σ) can be extended
for all positive time.

Define U := {u(t, σ) : σ ∈ Σ0 and t > 0}. Clearly, Γ ⊂ U and also every
solution that starts in U stays in U for all t ≥ 0. We will show that U is
open. To prove this fact, let ξ := u(t, σ) ∈ U with σ ∈ Σ0. If we consider the
restriction of the flow given by u : (0,∞) × Σ0 → U , then, using the same
idea as in the proof of the rectification lemma (Lemma 1.120), it is easy to
see that the derivative Du(t, σ) is invertible. Thus, by the inverse function
theorem (Theorem 1.121), there is an open set in U at ξ diffeomorphic to
a product neighborhood of (t, σ) in (0,∞) × Σ0. Thus, U is open.
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To show that U ⊆ V , let ξ := u(t, σ) ∈ U with σ ∈ Σ0. There is some
integer n ≥ 0 and some number s such that

t =
n−1∑
j=0

T (Pj(σ)) + s

where 0 ≤ s < T (Pn(σ)) < 2τ . In particular, we have that ξ = u(s,Pn(σ)).
But since 0 ≤ s < 2τ and Pn(σ) ∈ W it follows that ξ ∈ V .

Finally, for this same ξ ∈ U , we have as an immediate consequence of
Proposition 2.129 that limt→∞ dist(u(t, Pn(ξ)),Γ) = 0. Moreover, for each
t ≥ 0, we also have that

dist(u(t, ξ), Γ) = dist(u(t, u(s,Pn(ξ))),Γ) = dist(u(s + t, Pn(ξ)),Γ).

It follows that limt→∞ dist(u(t, ξ), Γ) = 0, as required. �

A useful application of our results can be made for a periodic orbit Γ
of a differential equation defined on the plane. In fact, there are exactly
two characteristic multipliers of the first variational equation along Γ. Since
one of these characteristic multipliers must be the number one, the product
of the characteristic multipliers is the eigenvalue of the derivative of every
Poincaré map defined on a section transverse to Γ. Because the determinant
of a matrix is the product of its eigenvalues, an application of Liouville’s
formula proves the following proposition.

Proposition 2.130. If Γ is a periodic orbit of period ν of the autonomous
differential equation u̇ = f(u) on the plane, and if P is a Poincaré map
defined at p ∈ Γ, then, using the notation of this section, the eigenvalue λΓ
of the derivative of P at p is given by

λΓ = detuξ(T (p), p) = e
∫ ν
0 div f(u(t,p)) dt.

In particular, if λΓ < 1 then Γ is asymptotically stable, whereas if λΓ > 1
then Γ is unstable.

The flow near an attracting limit cycle is very well understood. A next
proposition states that the orbits of points in the basin of attraction of the
limit cycle are “asymptotically periodic.”

Proposition 2.131. Suppose that Γ is an asymptotically stable periodic
orbit with period T . There is a neighborhood V of Γ such that if ξ ∈ V ,
then limt→∞ |u(t + T, ξ) − u(t, ξ)| = 0 where | | is an arbitrary norm on
R

n. (In this case, the point ξ is said to have asymptotic period T .)

Proof. By Lemma 2.128, there is an open set W such that Γ ⊂ W and
the function ξ �→ u(T, ξ) is defined for each ξ ∈ W . Using the continuity of
this function, there is a number δ > 0 such that δ < ε/2 and

|u(T, ξ) − u(T, η)| <
ε

2
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whenever ξ, η ∈ W and |ξ − η| < δ.
By the hypothesis, there is a number T ∗ so large that dist(u(t, ξ), Γ) < δ

whenever t ≥ T ∗. In particular, for each t ≥ T ∗, there is some q ∈ Γ such
that |u(t, ξ) − q| < δ. Using this fact and the group property of the flow,
we have that

|u(t + T, ξ) − u(t, ξ)| ≤ |u(T, u(t, ξ)) − u(T, q)| + |q − u(t, ξ)|
≤ ε

2
+ δ < ε

whenever t ≥ T ∗. Thus, limt→∞ |u(t + T, ξ) − u(t, ξ)| = 0, as required. �

A periodic orbit can be asymptotically stable without being hyperbolic.
In fact, it is easy to construct a limit cycle in the plane that is asymp-
totically stable whose Floquet multiplier is the number one. By the last
proposition, points in the basin of attraction of such an attracting limit
cycle have asymptotic periods equal to the period of the limit cycle. But,
if the periodic orbit is hyperbolic, then a stronger result is true: Not only
does each point in the basin of attraction have an asymptotic period, each
such point has an asymptotic phase. This is the content of the next result.

Theorem 2.132. If Γ is an attracting hyperbolic periodic orbit, then there
is a neighborhood V of Γ such that for each ξ ∈ V there is some q ∈ Γ such
that limt→∞ |u(t, ξ)−u(t, q)| = 0. (In this case, ξ is said to have asymptotic
phase q.)

Proof. Let Σ be a Poincaré section at p ∈ Γ with compact closure, return
map P, and return-time map T . Without loss of generality, we will assume
that for each σ ∈ Σ we have (1) limn→∞ Pn(σ) = p, (2) T (σ) < 2T (p), and
(3) ‖DT (σ)‖ < 2‖DT (p)‖.

By the hyperbolicity hypothesis, the spectrum of DP(p) is inside the unit
circle; therefore, there are numbers C and λ such that C > 0, 0 < λ < 1
and

|p − Pn(σ)| < Cλn‖p − σ‖.

Let

K :=
2C‖DT (p)‖

1 − λ
sup
σ∈Σ̄

‖p − σ‖ + 3T (p).

Using the implicit function theorem, it is easy to construct a neighbor-
hood V of Γ such that for each ξ ∈ V , there is a number tξ ≥ 0 with
σξ := u(tξ, ξ) ∈ Σ. Moreover, using Lemma 2.128, we can choose V such
that every solution with initial point in V is defined at least on the time
interval −K ≤ t ≤ K. Indeed, by the asymptotic stability of Γ, there is a
neighborhood V of Γ such that every solution starting in V is defined for
all positive time. If we redefine V to be the image of V under the flow for
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time K, then every solution starting in V is defined at least on the time
interval −K ≤ t ≤ K.

We will show that if σξ ∈ Σ, then there is a point qξ ∈ Γ such that

lim
t→∞ |u(t, σξ) − u(t, qξ)| = 0.

Using this fact, it follows that if r := u(−tξ, qξ), then

lim
t→∞ |u(t, ξ) − u(t, r)| = lim

t→∞ |u(t − tξ, u(tξ, ξ)) − u(t − tξ, qξ)|

= lim
t→∞ |u(t − tξ, σξ) − u(t − tξ, qξ)| = 0.

Thus, it suffices to prove the theorem for a point σ ∈ Σ.
Given σ ∈ Σ, define

sn := nT (p) −
n−1∑
j=0

T (Pj(σ)).

Note that

(n + 1)T (p) − nT (p) = T (Pn(σ)) + sn+1 − sn,

and, as a result,

|sn+1 − sn| = |T (p) − T (Pn(σ))| ≤ 2‖DT (p)‖‖p − Pn(σ)‖.

Hence,

|sn+1 − sn| < 2‖DT (p)‖C‖p − σ‖λn

whenever n ≥ 0.
Because sn = s1 +

∑n−1
j=1 (sj+1 − sj) and

n−1∑
j=1

|sj+1 − sj | < 2C‖DT (p)‖‖p − σ‖
n−1∑
j=1

λj < 2C‖DT (p)‖‖p − σ‖
1 − λ

,

the series
∑∞

j=1(sj+1 − sj) is absolutely convergent—its absolute partial
sums form an increasing sequence that is bounded above. Thus, in fact,
there is a number s such that limn→∞ sn = s. Also, the sequence {sn}∞

n=1
is uniformly bounded; that is,

|sn| ≤ |s1| + 2C‖DT (p)‖‖p − σ‖
1 − λ

≤ K.

Hence, the absolute value of its limit |s| is bounded by the same quantity.
Let ε > 0 be given. By the compactness of its domain, the function

u : [−K, K] × Σ̄ → R
n
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is uniformly continuous. In particular, there is a number δ > 0 such that if
(t1, σ1) and (t2, σ2) are both in the domain and if |t1 − t2| + |σ1 − σ2| < δ,
then

|u(t1, σ1) − u(t2, σ2)| < ε.

In view of the equality,

u(nT (p), σ) = u(sn,Pn(σ)),

which follows from the definition of sn, we have

|u(nT (p), σ) − u(s, p)| = |u(sn,Pn(σ)) − u(s, p)|.

Since for sufficiently large n,

|sn − s| + |Pn(σ) − p| < ε,

it follows that

lim
n→∞ |u(nT (p), σ) − u(s, p)| = 0.

Also, for each t ≥ 0, there is an integer n ≥ 0 and a number s(t) such that
0 ≤ s(t) < T (p) and t = nT (p)+s(t). Using this fact, we have the equation

|u(t, σ) − u(t, u(s, p))| = |u(s(t), u(nT (p), σ)) − u(s(t), u(nT (p), u(s, p))|.

Also, because q := u(s, p) ∈ Γ and Lemma 2.128, there is a constant L > 0
such that

|u(t, σ) − u(t, q)| = |u(s(t), u(nT (p), σ)) − u(s(t), q))|
≤ |u(nT (p), σ) − q|eLT (p).

By passing to the limit as n → ∞, we obtain the desired result. �

Necessary and sufficient conditions for the existence of asymptotic phase
are known (see [47, 77]). An alternate proof of Theorem 2.132 is given
in [47].

Exercise 2.133. Find a periodic solution of the system

ẋ = x − y − x(x2 + y2),

ẏ = x + y − y(x2 + y2),

ż = −z,

and determine its stability type. In particular, compute the Floquet multipliers
for the monodromy matrix associated with the periodic orbit [128, p. 120].
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Exercise 2.134. (a) Find an example of a planar system with a limit cycle
such that some nearby solutions do not have an asymptotic phase. (b) Contrast
and compare the asymptotic phase concept for the following planar systems that
are defined in the punctured plane in polar coordinates:

1. ṙ = r(1 − r), θ̇ = r,

2. ṙ = r(1 − r)2, θ̇ = r,

3. ṙ = r(1 − r)n, θ̇ = r.

Exercise 2.135. Suppose that v �= 0 is an eigenvector for the monodromy
operator with associated eigenvalue λΓ as in Proposition 2.130. If λΓ �= 1, then
v and f(p) are independent vectors that form a basis for R

2. The monodromy
operator expressed in this basis is diagonal. (a) Express the operators a and b
defined in the proof of Proposition 2.122 in this basis. (b) What can you say
about the derivative of the transit time map along a section that is tangent to v
at p?

Exercise 2.136. This exercise is adapted from [235]. Suppose that f : R
2 → R

is a smooth function and A := {(x, y) ∈ R
2 : f(x, y) = 0} is a regular level set of

f . (a) Prove that each bounded component of A is an attracting hyperbolic limit
cycle for the differential equation

ẋ = −fy − ffx, ẏ = fx − ffy.

(b) Prove that the bounded components of A are the only periodic orbits of the
system. (c) Draw and explain the phase portrait of the system for the case where

f(x, y) = ((x − ε)2 + y2 − 1)(x2 + y2 − 9).

Exercise 2.137. Consider an attracting hyperbolic periodic orbit Γ for an au-
tonomous system u̇ = f(u) with flow ϕt, and for each point p ∈ Γ, let Γp denote
the set of all points in the phase space with asymptotic phase p. (a) Construct
Γp for each p on the limit cycle in the planar system

ẋ = −y + x(1 − x2 − y2), ẏ = x + y(1 − x2 − y2).

(b) Repeat the construction for the planar systems of Exercise 2.134. (c) Prove
that F :=

⋃
p∈Γ Γp is an invariant foliation of the phase space in a neighborhood

U of Γ. Let us take this to mean that every point in U is in one of the sets in the
union F and the following invariance property is satisfied: If ξ ∈ Γp and s ∈ R,
then ϕs(ξ) ∈ Γϕs(p). The second condition states that the flow moves fibers of
the foliation (Γp is the fiber over p) to fibers of the foliation. (d) Are the fibers
of the foliation smooth manifolds?


