
9
Stability by solution
perturbation: Mathieu’s
equation

Stability or instability of nonlinear systems can often be tested by an approximate procedure
which leads to a linear equation describing the growth of the difference between the test solution
and its neighbours. By Theorem 8.9 the stability or instability of the original system resolves
itself into the question of the boundedness or otherwise of the solutions of the linear equation.
This ‘variational equation’ often turns out to have a periodic coefficient (Mathieu’s equation)
and the properties of such equations are derived in this chapter. The fact that the solutions to
be tested are themselves usually known only approximately can also be assimilated into this
theory.

9.1 The stability of forced oscillations by solution perturbation

Consider the general n-dimensional autonomous system

ẋ = f (x, t). (9.1)

The stability of a solution x∗(t) can be reduced to consideration of the zero solution of a related
system. Let x(t) be any other solution, and write

x(t) = x∗(t)+ ξ(t). (9.2)

Then ξ(t) represents a perturbation, or disturbance, of the original solution: it seems reasonable
to see what happens to ξ(t), since the question of stability is whether such (small) disturbances
grow or not. Equation (9.1) can be written in the form

ẋ∗ + ξ̇ = f (x∗, t)+ {f (x∗ + ξ , t)− f (x∗, t)}.

Since x∗ satisfies (9.1), this becomes

ξ̇ = f (x∗ + ξ , t)− f (x∗, t) = h(ξ , t), (9.3)

say, since x∗(t) is assumed known. By (9.2), the stability properties of x∗(t) are the same as
those of the zero solution of (9.3), ξ(t) ≡ 0.

The right-hand side of (9.3) may have a linear approximation for small ξ , in which case

ξ̇ = h(ξ , t) ≈ A(t)ξ̇ . (9.4)
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Here, A(t)=J (0, t), where J (ξ , t) is the Jacobian matrix (see also Section 8.9) of first partial
derivatives given by

J [ξ , t] =
[
∂hi(ξ , t)

∂ξj

]
(i = 1, 2, . . . , n; j = 1, 2, . . . , n).

The properties of this linear system may correctly indicate that of the zero solution of the exact
system (9.3). The approximation (9.4) is called the first variational equation. This process is
not rigorous: it is generally necessary to invoke an approximation not only at the stage (9.4),
but also in representing x∗(t), which, of course, will not generally be known exactly.
We shall illustrate the procedure in the case of the two-dimensional forced, undamped

pendulum-type equation (a form of Duffing’s equation)

ẍ + x + εx3 = � cosωt . (9.5)

In order to match the notation of the theory of linear systems of Chapter 8 we will express it in
the form

ẋ =
[
ẋ

ẏ

]
=
[

y

−x − εx3 + � cosωt

]
. (9.6)

To obtain the variational equation define ξ = (ξ , η)T by

ξ = x − x∗, (9.7)

where

x∗ = (x∗, y∗)T

and x∗ is the solution to be tested. Substitution for x and y from (9.7) into (9.6) gives

ξ̇ + ẋ∗ = η + y∗,

η̇ + ẏ∗ = −ξ − x∗ − ε(ξ + x∗)3 + � cosωt .

By neglecting powers of ξ higher than the first, and using the fact that x∗, y∗ satisfy (9.6), the
system simplifies to

ξ̇ = η, η̇ = −ξ − 3εx∗2ξ , (9.8)

corresponding to (9.4).
From Section 7.2 we know that there are periodic solutions of (9.5) which are approximately

of the form

x = a cosωt ,

where possible real values of the amplitude a are given by the equation

3
4εa

3 − (ω2 − 1)a − � = 0. (9.9)
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We shall test the stability of one of these solutions by treating it as being sufficiently close to
the corresponding exact form of x∗ required by (9.8). By eliminating η between eqns (9.8) we
obtain

ξ̈ + (1+ 3εx∗2)ξ = 0.

When x∗ is replaced by its appropriate estimate, x∗ = a cosωt , with a given by (9.9), this
equation becomes

ξ̈ + (1+ 3
2εa

2 + 3
2εa

2 cos 2ωt)ξ = 0,

and we expect that the stability property of x∗ and ξ will be the same. The previous equation
can be reduced to a standard form

ξ ′′ + (α + β cos τ)ξ = 0 (9.10)

by the substitutions

τ = 2ωt , ξ ′ = dξ/dτ , α = (2+ 3εa2)/8ω2, β = 3εa2/8ω2. (9.11)

For general values of α and β equation (9.10) is known asMathieu’s equation. By Theorem 8.8
its solutions are stable for values of the parameters, α, β for which all its solutions are bounded.
We shall return to the special case under discussion at the end of Section 9.4 after studying the
stability of solutions of Mathieu’s general equation, to which problems of this kind may often
be reduced.
A pendulum suspended from a support vibrating vertically is a simple model which leads to

an equation with a periodic coefficient. Assuming that friction is negligible, consider a rigid
pendulum of length a with a bob of mass m suspended from a point which is constrained to
oscillate vertically with prescribed displacement ζ(t) as shown in Fig. 9.1.

Figure 9.1 Pendulum with vertical forcing: ζ(t) is the displacement of the support.



308 9 : Stability by solution perturbation: Mathieu’s equation

The kinetic energy T and potential energy V are given by

T = 1
2m[(ζ̇ − a sin θ θ̇)2 + a2 cos2 θ θ̇2],

V = −mg(ζ + a cos θ).

Lagranges’s equation of motion

d
dt

(
∂T
∂θ̇

)
− ∂T

∂θ
= −∂V

∂θ

becomes

aθ̈ + (g − ζ̈ ) sin θ = 0,

which, for oscillations of small amplitude, reduces to

aθ̈ + (g − ζ̈ )θ = 0.

As a standardized form for this equation we may write

ẍ + (α + p(t))x = 0.

When p(t) is periodic this equation is known as Hill’s equation. For the special case p(t) =
β cos t ,

ẍ + (α + β cos t)x = 0

which is Mathieu’s equation (9.10). This type of forced motion, in which p(t) acts as an energy
source, is an instance of parametric excitation.

Exercise 9.1
Show that the damped equation

ẍ + kẋ + (γ + β cos t)x = 0

can be transformed into aMathieu equation by the change of variable x = zeµt for a suitable
choice for µ.

9.2 Equations with periodic coefficients (Floquet theory)

Equation (9.10) is a particular example of an equation associatedwith the general n-dimensional
first-order system

ẋ = P (t)x, (9.12)

where P (t) is periodic with minimal period T ; that is, T is the smallest positive number for
which

P (t + T ) = P (t), −∞ < t <∞. (9.13)
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(P (t), of course, also has periods 2T , 3T , . . .) The solutions are not necessarily periodic, as can
be seen from the one-dimensional example

ẋ = P (t)x = (1+ sin t)x;

the coefficient P(t) has period 2π , but all solutions are given by

x = cet−cos t ,

where c is any constant, so only the solution x = 0 is periodic. Similarly, the system[
ẋ

ẏ

]
=
[

1 cos t
0 −1

] [
x

y

]

has no periodic solutions apart from the trivial case x = y = 0.
In the following discussions remember that the displayed solution vectors may consist of

complex solutions.

Theorem 9.1 (Floquet’s theorem) The regular system ẋ = P (t)x, where P is an n× n matrix
function with minimal period T , has at least one non-trivial solution x = χ(t) such that

χ(t + T ) = µχ(t), −∞ < t <∞, (9.14)

where µ is a constant.

Proof Let�(t)=[φij (t)] be a fundamental matrix for the system. Then �̇(t)=P (t)�(t). Since
P (t + T )=P (t), �(t + T ) satisfies the same equation, and by Theorem 8.5, det�(t + T ) 	=0,
so �(t + T ) is another fundamental matrix. The columns (solutions) in �(t + T ) are linear
combinations of those in �(t) by Theorem 8.4:

φij (t + T ) =
n∑

k=1
φik(t)ekj

for some constants ekj , so that

�(t + T ) = �(t)E, (9.15)

whereE = [ekj ].E is nonsingular, since det�(t+T ) = det�(t)det(E), and therefore det(E) 	=
0. The matrix E can be found from �(t0 + T ) = �(t0)E where t0 is a convenient value of t .
Thus

E = �−1(t0)�(t0 + T ).

Let µ be an eigenvalue of E:

det(E − µI ) = 0, (9.16)
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and let s be an eigenvector corresponding to µ:

(E − µI )s = 0. (9.17)

Consider the solution x = �(t)s = χ(t) (being a linear combination of the columns of �,χ
is a solution of (9.12)). Then

χ(t + T ) = �(t + T )s

= �(t)Es = �(t)µs (by (9.17))

= µχ(t). (by (9.14))
�

The eigenvalues µ of E are called characteristic numbers or multipliers of eqn (9.12) (not to
be confusedwith the eigenvalues ofP(t), whichwill usually be dependent on t). The importance
of this theorem is the possibility of a characteristic number with a special value implying the
existence of a periodic solution (though not necessarily of period T ).

Example 9.1 Find a fundamental matrix for the periodic differential equation

[
ẋ1
ẋ2

]
= P (t)x =

[
1 1
0 h(t)

] [
x1
x2

]
, (9.18)

where h(t) = (cos t + sin t)/(2+ sin t − cos t), and determine the characteristic numbers.
From (9.18),

(2+ sin t − cos t)ẋ2 = (cos t + sin t)x2,

which has the solution

x2 = b(2+ sin t − cos t)

where b is any constant. Then x1 satisfies

ẋ1 − x1 = x2 = b(2+ sin t − cos t)

and therefore

x1 = aet − b(2+ sin t).

where a is any constant. A fundamental matrix �(t) can be obtained by putting, say, a = 0, b = 1, and a = 1,
b = 0:

�(t) =
[ −2− sin t et

2+ sin t − cos t 0

]
.

The matrix P (t) has minimal period T = 2π , and E in (9.15) must satisfy �(t + 2π) = �(t)E for all t .
Therefore �(2π) = �(0)E and

E = �−1(0)�(2π) =
[
1 0
0 e2π

]
.
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The eigenvalues µ of E satisfy

∣∣∣∣1− µ 0
0 e2π − µ

∣∣∣∣ = 0,

so µ = 1 or e2π . From (9.14), since one eigenvalue is unity there exist solutions such that χ(t + 2π) = χ(t):
that is, solutions with period 2π . We have already found these: they correspond to a a = 0. �
Theorem 9.2 The constants µ in Theorem 9.1 are independent of the choice of �.

Proof Let �(t), �∗(t) be two fundamental matrices; then

�∗(t) = �(t)C, (9.19)

whereC is some constant, nonsingularmatrix (nonsingular since�(t) and�∗(t) are nonsingular
by Theorem 8.5). Let T be the minimal period of P (t). Then

�∗(t + T ) = �(t + T )C (by (9.19))

= �(t)EC (by (9.15))

= �∗(t)C−1EC (by (9.19))

= �∗(t)D,

say, where D = C−1EC and C is nonsingular. We may write

det(D − µI ) = det(C−1EC − µI ) = det[C−1(E − µI )C]
= det(C−1C)det(E − µI ) = det(E − µI )

(using the product rule for determinants). Since det(D − µI) is zero if and only if det(E − µI)

is zero, D and E have the same eigenvalues. �

We can therefore properly refer to ‘the characteristic numbers of the system’. Note that
when � is chosen as real E is real, and the characteristic equation for the numbers µ has
real coefficients. Therefore if µ (complex) is a characteristic number, then so is its complex
conjugate µ̄.

Definition 9.1 A solution of (9.12) satisfying (9.14) is called a normal solution.

Definition 9.2 (Characteristic exponent) Let µ be a characteristic number, real or complex,
of the system (9.12), corresponding to the minimal period T of P (t). Then ρ, defined by

eρT = µ (9.20)

is called a characteristic exponent of the system. Note that ρ is defined only to an additive
multiple of 2π i/T . It will be fixed by requiring −π < Im(ρT ) ≤ π , or by ρ = (1/T )Ln(µ),
where the principal value of the logarithm is taken.
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Theorem 9.3 Suppose that E of Theorem 9.1 has n distinct eigenvalues, µi , i = 1, 2, . . . , n.
Then (9.12) has n linearly independent normal solutions of the form

xi = pi (t)e
ρi t (9.21)

(ρi are the characteristic exponents corresponding to µi), where the pi (t) are vector functions
with period T .

Proof To each µi corresponds a solution xi (t) satisfying (9.14): xi (t + T ) = µixi (t) =
eρiT xi (t). Therefore, for every t ,

xi (t + T )e−ρi(t+T ) = xi (t)e−ρi t . (9.22)

Writing

pi (t) = e−ρi txi (t),

(9.22) implies that pi (t) has period T .
The linear independence of the xi (t) is implied by their method of construction in Theo-

rem 9.1: from (9.17), they are given by xi (t) = �(t)si ; si are the eigenvectors corresponding to
the different eigenvalues µi , and are therefore linearly independent. Since �(t) is non-singular
it follows that the xi (t) are also linearly independent. �

When the eigenvalues of E are not all distinct, the coefficients corresponding to the pi (t) are
more complicated.
Under the conditions of Theorem 9.3, periodic solutions of period T exist when E has an

eigenvalue

µ = 1.

The corresponding normal solutions have period T , the minimal period of P (t). This can be
seen from (9.14) or from the fact that the corresponding ρ is zero.
There are periodic solutions whenever E has an eigenvalue µ which is one of the mth roots

of unity:

µ = 11/m, m a positive integer. (9.23a)

In this case, from (9.14),

χ(t +mT ) = µχ{t + (m− 1)T } = · · · = µmχ(t) = χ(t), (9.23b)

so that χ(t) has period mT .

Example 9.2 Identify the periodic vectors pi (t) (see eqn (9.21)) in the solution of the periodic differential
equation in Example 9.1.

The characteristic numbers were shown to beµ1 = 1, µ2 = e2π . The corresponding characteristic exponents
(Definition 9.2) are ρ1 = 0, ρ2 = 1. From Example 9.1, a fundamental matrix is

�(t) =
[ −2− sin t et

2+ sin t − cos t 0

]
.
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From the columns we can identify the 2π -periodic vectors

p1(t) = a

[ −2− sin t
−2+ sin t − cos t

]
, p2(t) = b

[
1
0

]
,

where a and b are any constants. In terms of normal solutions

[
x1
x2

]
= a

[ −2− sin t
2+ sin t − cos t

]
e0 + b

[
1
0

]
et . �

In the preceding theory, det�(t) appeared repeatedly, where � is a fundamental matrix of
the regular system ẋ = A(t)x. This has a simple representation, as follows.

Definition 9.3 Let [φ1(t),φ2(t), . . . ,φn(t)] be a matrix whose columns are any solutions of
the n-dimensional system ẋ = A(t)x. Then

W(t) = det[φ1(t),φ2(t), . . . ,φn(t)] (9.24)

is called the Wronskian of this set of solutions, taken in order.

Theorem 9.4 For any t0, the Wronskian of ẋ = A(t)x is

W(t) = W(t0) exp
(∫ t

t0

tr{A(s)}ds
)
, (9.25)

where tr{A(s)} is the trace of A(s) (the sum of the elements of its principal diagonal).

Proof If the solutions are linearly dependent, W(t) ≡ 0 by Theorem 8.5, and the result is true
trivially.
If not, let �(t) be any fundamental matrix of solutions, with �(t) = [φij (t)]. Then dW/dt

is equal to the sum of n determinants 
k, k = 1, 2, . . . , n, where 
k is the same as det[φij (t)],
except for having φ̇kj (t), j = 1, 2, . . . , n in place of φkj (t) in its kth row. Consider one of the

k, say 
1:


1 =

∣∣∣∣∣∣∣∣
φ̇11 φ̇12 · · · φ̇1n
φ21 φ22 · · · φ2n
· · · · · · · · · · · ·
φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

n∑
m=1

a1mφm1

n∑
m=1

a1mφm2 · · ·
n∑

m=1
a1mφmn

φ21 φ22 · · · φ2n
· · · · · · · · · · · ·
φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣∣∣
(from eqn (8.14))

=
n∑

m=1
a1m

∣∣∣∣∣∣∣∣
φm1 φm2 · · · φmn

φ21 φ22 · · · φ2n
· · · · · · · · · · · ·
φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣∣
φ11 φ12 · · · φ1n
φ21 φ22 · · · φ2n
· · · · · · · · · · · ·
φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣
= a11W(t),
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since all the other determinants have repeated rows, and therefore vanish. In general 
k =
akkW(t). Therefore

dW(t)

dt
= tr{A(t)}W(t),

which is a differential equation for W having solution (9.25). �

For periodic systems we have the following result.

Theorem 9.5 For the system ẋ = P (t)x, where P (t) has minimal period T , let the
characteristic numbers of the system be µ1, µ2, . . . ,µn. Then

µ1µ2 . . . µn = exp
(∫ T

0
tr{P(s)}ds

)
,

a repeated characteristic number being counted according to its multiplicity.

Proof Let �(t) be the fundamental matrix of the system for which

�(0) = I . (9.26)

Then, (eqn (9.15)),

�(T ) = �(0)E = E, (9.27)

in the notation of Theorem 9.1. The characteristic numbers µi are the eigenvalues of E,
given by

det(E − µI ) = 0.

This is an nth-degree polynomial in µ, and the product of the roots is equal to the constant
term: that is, equal to the value taken when µ = 0. Thus, by (9.27),

µ1µ2 . . . µn = det(E) = det�(T ) = W(T ),

but by Theorem 9.4 with t0 = 0 and t = T ,

W(T ) = W(0)
∫ T

0
tr{P (s)}ds

and W(0) = 1 by (9.26). �

Example 9.3 Verify the formula in Theorem 9.5 for the product of the characteristic numbers of Example 9.1.

In Example 9.1, T = 2π and

P (t) =
[
1 1
0 (cos t + sin t)/(2+ sin t − cos t)

]
.
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Then ∫ 2π

0
tr{P (s)}ds =

∫ 2π

0

[
1+ cos s + sin s

2+ sin s − cos s

]
ds =

∫ 2π

0

[
1+ d(sin s − cos s)/ds

2+ sin s − cos s

]
ds

= [s + log(2+ sin s − cos s)]2π0 = 2π .

Therefore

exp

[∫ 2π

0
tr{P (s)}ds

]
= e2π = µ1µ2,

by Example 9.1. �

Exercise 9.2
Find the matrix E for the system[

ẋ1
ẋ2

]
=
[

1 cos t − 1
0 cos t

] [
x1
x2

]
,

and obtain its characteristic numbers. Verify the result in Theorem 9.5.

9.3 Mathieu’s equation arising from a Duffing equation

We now return to look in more detail at Mathieu’s equation (9.10)

ẍ + (α + β cos t)x = 0, (9.28)

As a first-order system it can be expressed as[
ẋ

ẏ

]
=
[

0 1
−α − β cos t 0

] [
x

y

]
, (9.29)

In the notation of the previous section,

P (t) =
[

0 1
−α − β cos t 0

]
. (9.30)

Clearly P (t) is periodic with minimal period 2π . The general structure of the solution is deter-
mined by Theorem 9.3, whilst the question of the stability of a solution can be decided, through
Theorem 8.9, by the boundedness or otherwise of the solution for given values of the parame-
ters α and β. We are not particularly interested in periodic solutions as such, though we shall
need them to settle the stability question.
From eqn (9.30),

tr{P (t)} = 0. (9.31)
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Therefore, by Theorem 9.5,

µ1µ2 = e0 = 1, (9.32)

where µ1, µ2 are the characteristic numbers of P (t). They are solutions of a quadratic
characteristic equation (9.16), with real coefficients, which by (9.16) has the form

µ2 − φ(α,β)µ+ 1 = 0.

where the value of φ, depending on E (eqn (9.27)) can, in principle, be found in a particular
case. The solutions µ are given by

µ1,µ2 = 1
2 [φ ±

√
(φ2 − 4)]. (9.33)

Although φ(α,β) is not specified explicitly, we can make the following deductions.

(i) φ >2. The characteristic numbers are real, different, and positive, and by (9.32), one of
them, say µ1, exceeds unity. The corresponding characteristic exponents (9.20) are real
and have the form ρ1= σ >0, ρ2= − σ <0. The general solution is therefore of the form
(Theorem 9.3)

x(t) = c1eσ tp1(t)+ c2e−σ tp2(t),

where c1, c2 are constants and p1, p2 have minimal period 2π . The parameter region
φ(α,β) > 2 therefore contains unbounded solutions, and is called an unstable parameter
region.

(ii) φ=2. Then µ1=µ2=1, ρ1= ρ2=0. By (9.21), there is one solution of period 2π on the
curves φ(α,β)=2. (The other solution is unbounded.)

(iii) −2 < φ < 2. The characteristic numbers are complex, and µ2 = µ̄1. Since also |µ1| =
|µ2| = 1, we must have ρ1 = iν, ρ2 = −iν, ν real. The general solution is of the form

x(t) = c1eiνtp1(t)+ c2e−iνtp2(t) (p1,p2 period 2π).

and all solutions in the parameter region −2<φ(α,β)<2 are bounded. This is called the
stable parameter region. The solutions are oscillatory, but not in general periodic, since
the two frequencies ν and 2π are present.

(iv) φ = −2. Then µ1 = µ2 = −1(ρ1 = ρ2 = 1
2 i), so by Theorem 9.1, eqn (9.14), there is

one solution with period 4π at every point on φ(α,β) = −2. (The other solution is in fact
unbounded.)

(v) φ < −2. Then µ1 and µ2 are real and negative. Since, also, µ1µ2 = 1, the general solution
is of the form

x(t) = c1e(σ+
1
2 i)tp1(t)+ c2e

(
−σ+ 1

2 i
)
t
p2(t),
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where σ >0 and p1, p2 have period 2π . For later purposes it is important to notice that
the solutions have the alternative form

c1eσ tq1(t)+ c2e−σ tq2(t), (9.34)

where q1, q2 have period 4π .

From (i) to (v) it can be seen that certain curves, of the form

φ(α,β) = ±2,
separate parameter regions where unbounded solutions exist (|φ(α,β)|>2) from regions where
all solutions are bounded (|φ(α,β)|<2) (Fig. 9.2). We do not specify the function φ(α,β)
explicitly, but we do know that these are also the curves on which periodic solutions, period
2π or 4π , occur. Therefore, if we can establish, by any method, the parameter values for which
such periodic solutions can occur, then we have also found the boundaries between the stable
and unstable region by Theorem 8.8. These boundaries are called transition curves.

Figure 9.2

First, we find what parameter values α, β give periodic solutions of period 2π . Represent
such a solution by the complex Fourier series

x(t) =
∞∑

n=−∞
cneint .

We now adopt the following formal procedure which assumes convergence where necessary.
Substitute the series into Mathieu’s equation

ẍ + (α + β cos t)x = 0

replacing cos t by 1
2 (e

it + e−it ). The result is

−
∞∑

n=−∞
cnn

2eint +
[
α + 1

2β(e
it + e−it )

] ∞∑
n=−∞

cneint = 0.
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which becomes after re-ordering the summation,

∞∑
n=−∞

[βcn+1 + 2(α − n2)cn + βcn−1]eint = 0.

This equation can only be satisfied for all t if the coefficients of eint are all zero, that is if

βcn+1 + 2(α − n2)cn + βcn−1 = 0, n = 0,±1,±2, . . . .
Assume that α 	= n2, and express this equation in the form

γncn+1 + cn + γncn−1 = 0, where γn = β

2(α − n2)
, (n = 0,±1,±2, . . .), (9.35)

but observe that γ−n = γn. The infinite set of homogeneous linear equations in (9.35) for the
sequence {cn} has nonzero solutions if the infinite determinant (Whittaker and Watson, 1962),
known as a Hill determinant, formed by their coefficients is zero, namely if∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · · · · · · · ·
· · · γ1 1 γ1 0 0 · · ·
· · · 0 γ0 1 γ0 0 · · ·
· · · 0 0 γ1 1 γ1 · · ·
· · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣
= 0. (9.36)

The condition that γn = O(n−2) (from (9.35)) ensures the convergence of the determinant. This
equation is equivalent to φ(α,β) = 2 (see Section 9.3(ii)).
The determinant in (9.36) is tridiagonal (zero elements everywhere except on the leading

diagonal and the diagonals immediately above and below it), and a recurrence relation can be
established for n× n approximations. Let

Dm,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 γm 0 0 · · · · · · · · · · · · · · · · · · · · ·
γm−1 1 γm−1 0 · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · 0 γ0 1 γ0 0 · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · 0 γn−1 1 γn−1
· · · · · · · · · · · · · · · · · · · · · 0 0 γn 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (9.37)

Dm,n is a determinant with m+ n+ 1 rows and columns. Expansion by the first row leads to

Dm,n = Dm−1,n − γmγm−1Dm−2,n.

Note that Dm,n = Dn,m. Let En = Dn,n, Pn = Dn−1,n and Qn = Dn−2,n. Put m = n, n+ 1, n+ 2
successively in (9.37) resulting in

En = Pn − γn γn−1Qn, (9.38)

Pn+1 = En − γn+1 γnPn, (9.39)

Qn+2 = Pn+1 − γn+2 γn+1En. (9.40)
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Eliminate Qn between (9.38) and (9.40), so that

En+2 = Pn+2 − γn+2 γn+1Pn+1 + γ 2
n+2 γ

2
n+1En. (9.41)

Now eliminate En between (9.39) and (9.41), so that

2γn+1 γn+2Pn+1 = En+1 − En+2 + γ 2
n+1 γ

2
n+2En.

Finally substitute this formula for Pn back into (9.39) to obtain the following third-order
difference equation

En+2 = (1− γn+1 γn+2)En+1 − γn+1 γn+2(1− γn+1 γn+2)En + γ 2
n γ

3
n+1 γn+2En−1,

for n ≥ 1. In order to solve this difference equation we require E0, E1 and E2, which are
given by

E0 = 1, E1 =
∣∣∣∣∣∣

1 γ1 0
γ0 1 γ0
0 γ0 1

∣∣∣∣∣∣ = 1− 2γ0γ1,

E2 =

∣∣∣∣∣∣∣∣∣∣

1 γ2 0 0 0
γ1 1 γ1 0 0
0 γ0 1 γ0 0
0 0 γ1 1 γ1
0 0 0 γ2 1

∣∣∣∣∣∣∣∣∣∣
= (γ1γ2 − 1)(γ1γ2 − 1+ 2γ0γ1).

The sequence of determinants {En} is said to converge if there exists a number E such that

lim
n→∞En = E.

It can be shown (see Whittaker and Watson (1962), Section 2.8) that En converges if the sum
of the non-diagonal elements converges absolutely. The sum is

2γ0 + 4
∞∑
i=1

γi ,

which is absolutely convergent since |γn| = O(n−2) as n→∞.
Given β we solve the equations Ei = 0 for α for i increasing from 1 until α is obtained to

the required accuracy. However there can be convergence problems if α is close to 1, 22, 32, . . ..
To avoid this numerical problem rescale the rows in E to eliminate the denominators α − n2.
Hence we consider instead the zeros of (we need not consider E0)

H1(α,β) =
∣∣∣∣∣∣
2(α − 12) β 0

β 2α β

0 β 2(α − 12)

∣∣∣∣∣∣ = 23α(α − 12)2E1,
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H2(α,β) =

∣∣∣∣∣∣∣∣∣∣

2(α − 22) β 0 0 0
β 2(α − 12) β 0 0
0 β 2α β 0
0 0 β 2(α − 12) β

0 0 0 β 2(α − 22)

∣∣∣∣∣∣∣∣∣∣
= 25α(α − 12)2(α − 22)2E2,

and so on. The evaluations of the first three determinants lead to

H1(α,β) = 4(α − 1)(−2α + 2α2 − β2),

H2(α,β) = 2(16− 20α + 4α2 − β2)(16α − 20α2 + 4α3 + 8β2 − 3αβ2),

H3(α,β) = 8(−72+ 98α − 28α2 + 2α3 + 5β2 − αβ2)

(−288α + 392α2 − 112α3 + 8α4 − 144β2 + 72αβ2 − 8α2β2 + β4),

(computer software is needed to expand and factorize these determinants). It can be seen from
the determinants Hi(α, 0) that Hi(α, 0) = 0 if αj = j2 for j ≤ i. These are the critical values
on the α axis shown in Fig. 9.3.
The table shows the solutions of the equations Hi(α,β) = 0 for i = 1, 2, 3 for values of

β = 0, 0.4, 0.8, 1.2. As the order of the determinant is increased an increasing number of
solutions for α for fixed β appear. The results of a more comprehensive computation are shown

–

–

–

–

Figure 9.3 Stability diagram for Mathieu’s equation ẍ + (α + β cos t)x = 0.
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in Fig. 9.3. The dashed curves show the parameter values of α and β on which 2π -periodic
solutions of the Mathieu equation exist. The curves are symmetric about the α axis, one passes
through the origin, and the others have cusps at α = 1, 4, 9, . . ..

H1(α,β) = 0 H2(α,β) = 0 H3(α,β) = 0

β = 0 α = 0 α = 0 α = 0
α = 1 α = 1 α = 1

α = 4 α = 4
α = 9

β = 0.4 α = −0.074 α = −0.075 α = −0.075
α = 1.000 α = 0.987 α = 0.987
α = 1.074 α = 1.062 α = 1.062

α = 4.013 α = 4.005
α = 4.013 α = 4.005

β = 0.8 α = −0.255 α = −0.261 α = −0.261
α = 1.000 α = 0.948 α = 0.947
α = 1.256 α = 1.208 α = 1.207

α = 4.052 α = 4.021
α = 4.053 α = 4.022

β = 1.2 α = −0.485 α = −0.505 α = −0.505
α = 1.000 α = 0.884 α = 0.883
α = 1.485 α = 1.383 α = 1.381

α = 4.116 α = 4.046
α = 4.122 α = 4.052

For the 4π periodic solutions, let

x(t) =
∞∑

n=−∞
dne

1
2 int .

As in the previous case substitute x(t) into eqn (9.28) and equate to zero the coefficients of e
1
2 int

so that

1
2βdn+2 + (α − 1

4n
2)dn + 1

2dn−1 = 0, (n = 0, 1, 2 . . .).

This set of equations split into two independent sets for {dn}. If n is even then the equations
reproduce those of (9.35) for the 2π period solutions. Therefore we need only consider solutions
for n odd, and can put d2m = 0 for all m. For n odd, the set of equations have a nontrivial
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solutions if, and only if,∣∣∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · δ2 1 δ2 0 0 0 · · ·
· · · 0 δ1 1 δ1 0 0 · · ·
· · · 0 0 δ1 1 δ1 0 · · ·
· · · 0 0 0 δ2 1 δ2 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where

δ1 = β

2(α − 1
41

2)
, δ2 = β

2(α − 1
43

2)
,

δm = β

2[α − 1
4 (2m− 1)2] , m = 1, 2, . . . ,

provided α 	= 1
4 (2m−1)2. The numerical relation between α and β can be computed by taking

finite approximations to the infinite determinant. The transition curves corresponding to the
4π periodic solutions are shown in Fig. 9.3. The curves pass through the critical points β = 0,
α = 1

4 (2m− 1)2, (m = 1, 2, 3, . . .).

Exercise 9.3
For the 4π-periodic solutions of Mathieu’s equation, let

G1(α,β) =
∣∣∣∣ 2(α − 1

4 ) β

β 2(α − 1
4 )

∣∣∣∣ ,

G2(α,β) =

∣∣∣∣∣∣∣∣
2(α − 9

4 ) β 0 0
β 2(α − 1

4 ) β 0
0 β 2(α − 1

4 ) β

0 0 β 2(α − 9
4 )

∣∣∣∣∣∣∣∣
.

Obtain the relations between β and α in the first two approximations to the zeros of
G1(α,β) = 0 and G2(α,β) = 0.

9.4 Transition curves for Mathieu’s equation by perturbation

For small values of |β| a perturbation method can be used to establish the transition curves. In
the equation

ẍ + (α + β cos t)x = 0, (9.42)
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suppose that the transition curves are given by

α = α(β) = α0 + βα1 + β2α2 · · · , (9.43)

and that the corresponding solutions have the form

x(t) = x0(t)+ βx1(t)+ β2x2(t)+ · · · , (9.44)

where x0, x1, . . . all have either minimal period 2π or 4π .
When (9.43) and (9.44) are substituted into (9.42) and the coefficients of powers of β are

equated to zero in the usual perturbation way, we have

ẍ0 + α0x0 = 0, (9.45a)

ẍ1 + α0x1 = −(α1 + cos t)x0, (9.45b)

ẍ2 + α0x2 = −α2x0 − (α1 + cos t)x1, (9.45c)

ẍ3 + α0x3 = −α3x0 − α2x1 − (α1 + cos t)x2, (9.45d)

and so on.
From the analysis in the Section 9.3, we are searching for solutions with minimum period

2π if α0 = n2, n − 0, 1, 2, . . ., and for solutions of minimum period 4π if α0 = (n + 1
2 )

2,
n = 0, 1, 2, . . .. Both cases can be covered by defining α0 = 1

4n
2, n = 0, 1, 2, . . . We consider

the cases n = 0 and n = 1.
(i) n = 0. In this case α0 = 0 so that ẍ0 = 0. The periodic solution of (9.45a) is x0 = a0,

where we assume that a0 is any nonzero constant. Equation (9.45b) becomes

ẍ1 = −(α1 + cos t)a0,

which has periodic solutions only if α1 = 0. We need only choose the particular solution

x1 = a0 cos t .

(inclusion of complementary solutions does not add generality since further arbitrary constants
can be amalgamated). Equation (9.45c) becomes

ẍ2 = −a0α2 − 1
2a0 − a0 cos2 t = −a0α2 − 1

2a0 − 1
2a0 cos 2t ,

which generates a periodic solution of 2π (and π) only if α2 + 1
2a0 = 0, that is, if α2 = −1

2a0.
Therefore choose

x2 = 1
8a0 cos 2t .

From (9.45d),

ẍ3 = −α3x0 − α2a0 cos t − 1
8a0 cos t cos 2t

= a0[−α3 − (α2 + 1
16 ) cos t − 1

16 cos 3t].
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Solutions will only be periodic if α3 = 0. Therefore, for small |β|,

α = −1
2β

2 +O(β4),

which is a parabolic approximation to the curve through the origin in the α,β shown in Fig. 9.3.
The corresponding 2π periodic solution is

x = a0[1+ β cos t + 1
8β

2 cos 2t] +O(β3).

(ii) n = 1. In this case α0 = 1
4 , and x0 = a0 cos 1

2 t + b0 sin 1
2 t . Equation (9.45b) becomes

ẍ1 + 1
4x1 = −(α1 + cos t)(a0 cos 1

2 t + b0 sin 1
2 t)

= −a0(α1+ 1
2 ) cos

1
2 t − b0(α1− 1

2 ) sin
1
2 t−1

2a0 cos
3
2 t − 1

2b0 sin
3
2 t (9.46)

There are periodic solutions of period 4π only if either b0 = 0, α1 = −1
2 , or a0 = 0, α1 = 1

2 .
Here are two cases to consider.
(a) b0 = 0, α1 = −1

2 . It follows that the particular solution of (9.46) is x1 = 1
4a0 cos

3
2 t .

Equation (9.45c) for x2 is

ẍ2 + 1
4x2 = −(α2 + 1

8 )a0 cos
1
2 t + 1

8a0 cos
3
2 t − 1

8a0 cos
5
2 t .

Secular terms can be eliminated by putting α2 = −1
8 . Hence one transition curve through α = 1

4 ,
β = 0 is

α = 1
4 − 1

2β − 1
8β

2 +O(β3). (9.47)

(b) a0 = 0, α1 = 1
2 . From (9.46), x1 = 1

4b0 sin
3
2 t . Equation (9.445c) becomes

ẍ2 + 1
4x2 = −(α2 + 1

8 )b0 sin
1
2 t − 1

8b0 sin
3
2 t − 1

8b0 sin
5
2 t .

Secular terms can be eliminated by putting α2 = −1
8 . Therefore the other transition curve is

given by

α = 1
4 + 1

2β − 1
8β

2 +O(β3). (9.48)

The transition curves given by (9.47) and (9.48) approximate to the computed curves through
α = 1

4 , β = 0 shown in Fig. 9.3.
The same perturbationmethod can be applied to approximate to the transition curves through

α = 1, 94 , 4,
25
4 . . . . Amore extensive investigation of perturbationmethods applied toMathieu’s

equation is given by Nayfeh and Mook (1979, Chapter 5).
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9.5 Mathieu’s damped equation arising from a Duffing equation

As we saw in Section 9.1, the variational equation for the undamped forced, pendulum
is Mathieu’s equation (9.10) or (9.28). With dissipation included, the Duffing equation in
standardized form is

ẍ + kẋ + x + εx3 = � cosωt . (9.49)

In Chapter 7 we also showed that this equation has periodic solutions which are approximately
of the form a cosωt + b sinωt where r = √(a2 + b2) satisfies

{
(ω2 − 1− 3

4εr
2)2 + ω2k2

}
r2 = �2, (9.50)

which reduces to eqn (7.23) if ε replaces β in the earlier notation. Following the notation and
procedure of Section 9.1, write (9.49) as the first-order system

ẋ =
[
ẋ

ẏ

]
=
[

y

−ky − x − εx3 + � cosωt

]
(9.51)

and put (approximately)

x∗ = a cosωt + b sinωt , y∗ = −aω sinωt + bω cosωt .

The variations ξ = x − x∗ and η = y − y∗ satisfy

ξ̇ + ẋ∗ = η + y∗,

η̇ + ẏ∗ = −k(η + y∗)− (ξ + x∗)− ε(ξ + x∗)3 + � cosωt .

By using (9.51) and retaining only the first powers of ξ and ηwe obtain corresponding linearized
equations

ξ̇ = η, η̇ = −kη − ξ − 3εx∗2ξ .

Elimination of η leads to the second-order equation

ξ̈ + kξ̇ + (1+ 3εx∗2)ξ = 0.

By substituting for x∗ its approximate form a cosωt + b sinωt we obtain

ξ̈ + kξ̇ +
{
1+ 3

2εr
2 + 3

2εr
2 cos(2ωt + 2c)

}
ξ = 0, (9.52)

where r, c are defined by

a cosωt + b sinωt = r cos(ωt + c).
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We can reduce the eqn (9.52) to ‘standard’ form by putting

τ = 2ωt + 2γ , ξ ′ ≡ dξ
dτ

,

κ = k

2ω
= κ1ε, ν = 2+ 3εr2

8ω2 = ν0 + εν1, β = 3εr2

8ω2 = β1ε,

say, so that

ξ ′′ + κξ ′ + (ν + β cos τ)ξ = 0, (9.53)

This is known as Mathieu’s equation with damping.
We assume that 0 < ε  1, k = O(ε) and ω ≈ 1 = 1 + O(ε) (near resonance). For near

resonance ν = 1
4 +O(ε). Let η = ξ ′ in (9.53). Then the corresponding first-order system is

ζ ′ =
[

ξ ′
η′
]
=
[

0 1
−ν − β cos τ −κ

] [
ξ

η

]
= P (τ )ζ , (9.54)

say. The characteristic numbers of P (τ ) satisfy (see Theorem 9.5)

µ1µ2 = exp

[∫ 2π

0
tr{P (τ )}dτ

]
= exp

[
−
∫ 2π

0
κdτ

]
= e−2πκ .

The numbers µ1 and µ2 are solutions of a characteristic equation of the form

µ2 − φ(ν,β, κ)µ+ e−2πκ = 0. (9.55)

The two solutions are

µ1,µ2 = 1
2 [φ ±

√{φ2 − 4e−2πκ}]. (9.56)

For distinct values of µ1 and µ2, (9.54) has 2 linearly independent solutions of the form (see
Theorem 9.3)

ζ i = pi (τ )eρiτ (i = 1, 2),

where e2ρiπ = µi , (i = 1, 2) and pi are functions of period 2π .
From (9.55), the general solution for ξ , the first component of ζ , is given by

ξ = c1q1(τ )eρ1τ + c2q2(τ )eρ2τ , (9.57)

where c1, c2 are constants and q1(τ ), q2(τ ) have minimum period 2π : η can then be found
from η′ = ξ . The stability or otherwise of the periodic solution of (9.53) will be determined by
the behaviour of ξ in (9.57). If the solution for ξ is damped then we can infer its stability. The
characteristic exponents may be complex, so that the limit ξ → 0 as τ →∞ will occur if both
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Figure 9.4 The boundaries of the shaded region are φ = 2λ, φ = 1+ λ2, and φ− 2λ, φ = −1− λ2, where λ = e−πκ .

Re(ρ1)<0 and Re(ρ2)<0. This is equivalent to |µ1|<1 and |µ2|<1. There are three cases to
consider.

• φ2>4e−2πκ . µ1 and µ2 are both real and positive, or both real and negative according to
the sign of φ: in both cases µ2<µ1. If they are both positive, then the periodic solution is
stable if

µ1 = 1
2 [φ +

√
(φ2 − 4e−2πκ)] < 1, or, φ < 1+ e−2πκ . (9.58)

For κ > 0, this lower bound is always greater than 2e−πκ . The shaded region in φ > 0 in
Fig. 9.4 shows the stability domain. Similarly if φ < −2e−πκ , then the stability boundaries
are φ = −2e−πκ and φ = −1− e−2πκ , which are also shown in Fig. 9.4.
• φ2 = 4e−2πκ . In this case µ1 = µ2 = 1

2φ = ±e−πκ = µ, say. If µ = e−πκ , then ρ = −1
2κ, and

if µ = −e−πκ , then Re(ρ) = −1
2κ. In both cases the solution is stable, also shown shaded in

Fig. 9.4.
• φ2<4e−2πκ . µ1 and µ2 are complex conjugates given by 1

2 (φ± iθ), where θ =√[4e−2πκ − φ2]. The system is therefore stable if |φ| < 2.

As in Section 9.5, we can search for periodic solutions of periods 2π and 4π by using Fourier
series. Let

ξ(τ ) =
∞∑

n=−∞
cneinτ .

Substitute this series into (9.50) so that

∞∑
n=−∞

[βcn+1 + 2{ν − n2 + iκn}cn + βcn−1]einτ = 0.
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where we have used cos τ = 1
2 (e

iτ + e−iτ ). These equations will only be satisfied for all τ if

βcn+1 + 2{ν − n2 + iκn}cn + βcn−1 = 0, n = 0,±1,±2, . . . . (9.59)

Let

γn = β

2(ν − n2 + iκn)
, (9.60)

and express eqns (9.59) in the form

γn+1cn+1 + cn + γn−1cn−1 = 0. (9.61)

There are non-zero solutions for the sequence {cn} if, and only if the infinite determinant is
zero, that is, ∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · · · · · · · ·
· · · γ1 1 γ1 0 0 · · ·
· · · 0 γ0 1 γ0 0 · · ·
· · · 0 0 γ−1 1 γ−1 · · ·
· · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣
= 0,

or ∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · · · · · · · ·
· · · γ1 1 γ1 0 0 · · ·
· · · 0 γ0 1 γ0 0 · · ·
· · · 0 0 γ 1 1 γ 1 · · ·
· · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣
= 0,

since γ−n = γ n (n = 1, 2, . . .), the conjugate of γn. We can approximate to the determinant by
choosing a finite number of rows. Let

E1 =
∣∣∣∣∣∣

1 γ1 0
γ0 1 γ0
0 γ 1 1

∣∣∣∣∣∣ = 1− β2(ν − 1)
2ν[(ν − 1)2 + κ2] .

With ν = 1
4 +O(ε),

E1 = 1+ 8
3β2ε

2 + o(ε2).

Hence E1 cannot be zero for ε small. The implication is that there are no 2π periodic solutions
in the variable τ .
To search for 4π periodic solutions, let

ξ =
∞∑

n=−∞
dne

1
2 inτ .
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Substitution of this series into (9.50) leads to

∞∑
n=−∞

[βdn+2 + 2{ν − 1
4n

2 + 1
2 iκn}dn + βdn−2]e1

2 inτ = 0.

These equations will only be satisfied for all τ if

βdn+2 + 2{ν − 1
4n

2 + 1
2 iκn}dn + βdn−2 = 0. (9.62)

As in Section 9.3 there are two independent sets of equations for n even and for n odd. The
even case duplicates the previous case for 2π periodic solutions so that we need not consider
it. For the case of n odd, let

δm = β

2[ν − 1
4 (2m− 1)2 + 1

2 (2m− 1)iκ] (m ≥ 1)

Elimination of {dn} in (9.62) results in the infinite determinant equation∣∣∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · δ2 1 δ2 0 0 0 · · ·
· · · 0 δ1 1 δ1 0 0 · · ·
· · · 0 0 δ1 1 δ1 0 · · ·
· · · 0 0 0 δ2 1 δ2 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where δm is the conjugate of δm. The value of this determinant can be approximated by

G1 =
∣∣∣∣ 1 δ1
δ1 1

∣∣∣∣ = 1− δ1δ1 = 1− β2
1

4ν21 + κ21

+O(ε).

To lowest order, G1 = 0 if

1− β2
1

4ν21 + κ21

= 0, or ν1 = ±1
2
√
(β2

1 − κ21 ).

Therefore the stability boundaries are given by

ν = 1
4 ± 1

2ε
√
(β2

1 − κ21 )+O(ε)

Note that if κ1=0 (no damping), then the stability boundaries given by (9.45) can be
recovered. Note also that κ1<β1 is required. Using the stability boundaries, the periodic
solution of the Duffing equation is stable in the domain defined by

ν < 1
4 − 1

2ε
√
(β2

1 − κ21 ), or ν > 1
4 + 1

2ε
√
(β2

1 − κ21 ),

or

(ν − 1
4 )

2 > 1
4ε

2(β2
1 − κ21 ).
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Figure 9.5 The stability for the damped Duffing equation with εκ1 = 0.3 and ω ≈ 1.

A typical stability domain is shown in Fig. 9.5 for εκ1 = 0.3 in the neighbourhood of resonance
near ω = 1. In terms of the original variables, the condition becomes(

2+ 3εr2

8ω2 − 1
4

)2
− 1

4

⎡
⎣(3εr2

8ω2

)2
− k2

4ω2

⎤
⎦ > 0,

or

(1− ω2)2 + 3ε(1− ω2)r2 + 27
16ε

2r4 + k2ω2 > 0. (9.63)

Since the solutions of the dampedMathieu equation tend to zero in the stable region, asymptotic
stability is predicted, confirming the analysis of Chapter 7.
We can also confirm the remark made in Section 5.5 (vi): that stability is to be expected when

d(�2)

d(r2)
> 0, (9.64)

that is, when an increase or decrease in magnitude of � results in an increase or decrease
respectively in the amplitude. From (9.51) it is easy to verify that d(�2)/d(r2) is equal to the
expression on the left of (9.63), and the speculation is therefore confirmed.
In general, when periodic solutions of the original equation are expected the reduced equa-

tion (9.4) is the more complicated Hill type (see Problem 9.11). The stability regions for this
equation and examples of the corresponding stability estimatesmay be found inHayashi (1964).

Problems

9.1 The system

ẋ1 = (− sin 2t)x1 + (cos 2t − 1)x2, ẋ2 = (cos 2t + 1)x1 + (sin 2t)x2
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has a fundamental matrix of normal solutions:[
et (cos t − sin t) e−t (cos t + sin t)
et (cos t + sin t) e−t (− cos t + sin t)

]
.

Obtain the corresponding E matrix (Theorem 9.1), the characteristic numbers, and the characteristic
exponents.

9.2 Let the system ẋ = P (t)x have a matrix of coefficients P with minimal period T (and therefore also
with periods 2T , 3T , . . .). Follow the argument of Theorem 9.1, using period mT ,m > 1, to show that
�(t + mT ) = �(t)Em. Assuming that if the eigenvalues of E are µi , then those of Em are µm

i
, discuss

possible periodic solutions.

9.3 Obtain Wronskians for the following linear systems:
(i) ẋ1 = x1 sin t + x2 cos t , ẋ2 = −x1 cos t + x2 sin t ,

(ii) ẋ1 = f (t)x2, ẋ2 = g(t)x1.

9.4 By substituting x = c + a cos t + b sin t into Mathieu’s equation

ẍ + (α + β cos t)x = 0,

obtain by harmonic balance an approximation to the transition curve near α = 0, β = 0, (compare with
Section 9.4).

By substituting x = c + a cos 1
2 t + b sin 1

2 t , find the transition curves near α = 1
4 , β = 0.

9.5 Figure 9.6 represents a particle of mass m attached to two identical linear elastic strings of stiffness λ and
natural length l. The ends of the strings pass through frictionless guides A and B at a distance 2L, l <L,
apart. The particle is set into lateral motion at the mid-point, and symmetrical displacements a+ b cosωt ,
a >b, are imposed on the ends of the string. Show that, for xL,

ẍ +
(
2λ(L− l + a)

mL
+ 2λb

mL
cosωt

)
x = 0.

Figure 9.6

Analyse the motion in terms of suitable parameters, using the information of Sections 9.3 and 9.4 on the
growth or decay, periodicity and near periodicity of the solutions of Mathieu’s equation in the regions of
its parameter plane.

9.6 A pendulum with a light, rigid suspension is placed upside-down on end, and the point of suspension is
caused to oscillate vertically with displacement y upwards given by y = ε cosωt , ε  1. Show that the
equation of motion is

θ̈ +
(
−g

a
− 1

a
ÿ

)
sin θ = 0,

where a is the length of the pendulum, g is gravitational acceleration, and θ the inclination to the vertical.
Linearize the equation for small amplitudes and show that the vertical position is stable (that is, the
motion of the pendulum restricts itself to the neighbourhood of the vertical: it does not topple over)
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provided ε2ω2/(2ag)>1. For further discussion of the inverted pendulum and its stability see Acheson
(1997).

9.7 Let �(t) = (φij (t)), i, j = 1, 2, be the fundamental matrix for the system ẋ1 = x2, ẋ2 = −(α + β cos t)x1,
satisfying �(0) = I (Mathieu’s equation). Show that the characteristic numbers µ satisfy the equation

µ2 − µ{φ11(2π)+ φ22(2π)} + 1 = 0.

9.8 In Section 9.3, for the transition curves of Mathieu’s equation for solutions period 2π , let Dm,n be the
tridiagonal determinant given by

Dm,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 γm 0
γm−1 1 γm−1

· · ·
γ0 1 γ0

· · ·
γn−1 1 γn−1
0 γn 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for m ≥ 0, n ≥ 0. Show that

Dm,n = Dm−1,n − γmγm−1Dm−2,n.

Let En = Dn,n and verify that

E0 = 1, E1 = 1− 2γ0γ1, E2 = (1− γ1γ2)
2 − 2γ0γ1(1− γ1γ2).

Prove that, for n ≥ 1,

En+2 = (1− γn+1γn+2)En+1 − γn+1γn+2(1− γn+1γn+2)En

+ γ 2
n γ

3
n+1γn+2En−1.

9.9 In eqn (9.38), for the transition curves of Mathieu’s equation for solutions of period 4π , let

Fm,n =

∣∣∣∣∣∣∣∣∣∣

1 δm
δm−1 1 δm−1

· · ·
δn−1 1 δn−1

δn 1

∣∣∣∣∣∣∣∣∣∣
.

Show as in the previous problem that Gn = Fn,n satisfies the same recurrence relation as En for n ≥ 2 (see
Problem 9.8). Verify that

G1 = 1− δ21,

G2 = (1− δ1δ2)
2 − δ21,

G3 = (1− δ1δ2 − δ2δ3)
2 − δ21(1− δ2δ3)

2.

9.10 Show, by the perturbation method, that the transition curves for Mathieu’s equation

ẍ + (α + β cos t)x = 0,

near α=1, β =0, are given approximately by α=1+ 1
12β

2, α=1− 5
12β

2.
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9.11 Consider Hill’s equation ẍ + f (t)x = 0, where f has period 2π , and

f (t) = α +
∞∑
r=1

βr cos rt

is its Fourier expansion, with α≈ 1
4 and |βr |1, r =1, 2, . . . . Assume an approximate solution eσ t q(t),

where σ is real and q has period 4π as in (9.34). Show that

q̈ + 2σ q̇ +
⎛
⎝σ2 + α +

∞∑
r=1

βr cos rt

⎞
⎠ q = 0.

Take q ≈ sin(12 t+γ ) as the approximate form for q and match terms in sin 1
2 t , cos

1
2 t , on the assumption

that these terms dominate. Deduce that

σ2 = −(α + 1
4 )+ 1

2
√
(4α + β21 )

and that the transition curves near α = 1
4 are given by α = 1

4 ± 1
2β1. (βn is similarly the dominant

coefficient for transition curves near α = 1
4n

2, n ≥ 1.)

9.12 Obtain, as in Section 9.4, the boundary of the stable region in the neighbourhood of ν=1, β =0 for
Mathieu’s equation with damping,

ẍ + κẋ + (ν + β cos t)x = 0,

where κ = O(β2).

9.13 Solve Meissner’s equation

ẍ + (α + βf (t))x = 0

where f (t) = 1, 0 ≤ t < π ; f (t) = −1, π ≤ t < 2π and f (t + 2π) = f (t) for all t . Find the conditions
on α, β, for periodic solutions by putting x(0)= x(2π), ẋ(0)= ẋ(2π) and by making x and ẋ continuous
at t =π . Find a determinant equation for α and β.

9.14 By using the harmonic balance method of Chapter 4, show that the van der Pol equation with parametric
excitation,

ẍ + ε(x2 − 1)ẋ + (1+ β cos t)x = 0

has a 2π -periodic solution with approximately the same amplitude as the unforced van der Pol equation.

9.15 The male population M and female population F for a bird community have a constant death rate k and
a variable birth rate µ(t) which has period T , so that

Ṁ = −kM + µ(t)F , Ḟ = −kF + µ(t)F .

The births are seasonal, with rate

µ(t) =
{
δ, 0 < t ≤ ε;

0, ε < t ≤ T .

Show that periodic solutions of period T exist for M and F if kT = δε.

9.16 A pendulum bob is suspended by a light rod of length a, and the support is constrained to move vertically
with displacement ζ(t). Show (by using the Lagrange’s equation method or otherwise) that the equation
of motion is

aθ̈ + (g + ζ̈ (t)) sin θ = 0,
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where θ is the angle of inclination to the downward vertical. Examine the stablity of the motion for the
case when ζ(t) = c sinωt , on the assumption that it is permissible to put sin θ ≈ θ .

9.17 A pendulum, with bob of mass m and rigid suspension of length a, hangs from a support which is
constrained to move with vertical and horizontal displacements ζ(t) and η(t) respectively. Show that the
inclination θ of the pendulum satisfies the equation

aθ̈ + (g + ζ̈ ) sin θ + η̈ cos θ = 0.

Let ζ = A sinωt and η = B sin 2ωt , where ω = √(g/a). Show that after linearizing this equation for
small amplitudes, the resulting equation has a solution

θ = −(8B/A) cosωt .

Determine the stability of this solution.

9.18 The equation

ẍ + (14 − 2εb cos2 1
2 t)x + εx3 = 0

has the exact solution x∗(t) = √(2b) cos 1
2 t . Show that the solution is stable by constructing the

variational equation.

9.19 Consider the equation ẍ + (α + β cos t)x=0, where |β|1 and α = 1
4 + βc. In the unstable region near

α = 1
4 (Section 9.4) this equation has solutions of the form c1eσ t q1(t)+ c2e−σ t q2(t), where σ is real,

σ > 0 and q1, q2 have period 4π . Construct the equation for q1, q2, and show that σ ≈ ±β√(14 − c2).

9.20 By using the method of Section 9.5 show that a solution of the equation

ẍ + ε(x2 − 1)ẋ + x = � cosωt

where |ε|1, ω=1+ εω1, of the form x∗ = r0 cos(ωt +α) (α constant) is asymptotically stable when

4ω2
1 + 3

16 r
4
0 − r20 + 1 < 0.

(Use the result of Problem 9.19.)

9.21 The equation

ẍ + αx + εx3 = εγ cosωt

has the exact subharmonic solution

x = (4γ )1/3 cos 1
3ωt ,

when

ω2 = 9
(
α + 3

41/3
εγ 2/3

)
.

If 0 < ε  1, show that the solution is stable.

9.22 Analyse the stability of the equation

ẍ + εxẋ2 + x = � cosωt

for small ε: assume � = εγ . (First find approximate solutions of the form a cosωt + b cosωt by the
harmonic balance method of Chapter 4, then perturb the solution by the method of Section 9.4.)

9.23 The equation ẍ + x + εx3 = � cosωt(ε1) has an approximate solution x∗(t) = a cosωt where
(eqn (7.10)) 3

4εa
3 − (ω2 − 1)a − �= 0: Show that the first variational equation (Section 9.4) is

ξ + {1+ 3εx∗2(t)}ξ = 0. Reduce this to Mathieu’s equation and find conditions for stability of x∗(t) if
� = εγ .
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9.24 The equation ẍ + x − 1
6x

3 = 0 has an approximate solution a cosωt where ω2 = 1 − 1
8a

2, a1
(Example 4.10). Use the method of Section 9.4 to show that the solution is unstable.

9.25 Show that a fundamental matrix of the differential equation

ẋ = A(t)x,
where

A(t) =
[

β cos2 t − sin2 t 1− (1+ β) sin t cos t
−1− (1+ β) sin t cos t −1+ (1+ β) sin2 t

]

is

�(t) =
[
eβt cos t e−t sin t
−eβt sin t e−t cos t

]
.

Find the characteristic multipliers of the system. For what value of β will periodic solutions exist?
Find the eigenvalues of A(t) and show that they are independent of t . Show that for 0 < β < 1 the

eigenvalues have negative real parts. What does this problem indicate about the relationship between the
eigenvalues of a linear system with a variable coefficients and the stability of the zero solution?

9.26 Find a fundamental matrix for the system

ẋ = A(t)x,
where

A(t) =
[

sin t 1
− cos t + cos2 t − sin t

]
.

Show that the characteristic multipliers of the system are µ1 = e2π and µ2 = e−2π . By integration
confirm that

exp

(∫ 2π

0
tr{A(s)}ds

)
= µ1µ2 = 1.


