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CHAPTER XIX
MATHIEU FUNCTIONS

191. The differential equation of Mathieu.

The preceding five chapters have been occupied with the discussion of
functions which belong to what may be generally described as the hyper-
geometric type, and many simple properties of these functions are now well
known.

In the present chapter we enter upon a region of Analysis which lies
beyond this, and which is, as yet, only very imperfectly explored.

The functions which occur in Mathematical Physics and which come
next in order of complication to functions of hypergeometric type are
called Mathiew functions; these functions are also known as the jfunctions
associated with the elliptic cylinder. They arise from the equation of two-
dimensional wave motion, namely

oV +82V 10V

ox? aya c? ot? :
This partial differential equation occurs in the theory of the propagation of electro-
magnetic waves; if the electric vector in the wave-front is parallel to OZ and if £ denotes

the electric force, while (H,, H,, 0) are the components of magnetic force, Maxwell’s
fundamental equations are

\0E_0H, OH, oH,  _OE OH, 3E
ot ox oy’ ot gy’ ot oz’
¢ denoting the velocity of light ; and these equations give at once
13E_®*E *E
2wt
In the case of the scattering of waves, propagated parallel to OX, incident on an

elliptic cylinder for which OX and OY are axes of a principal section, the boundary
condition is that £ should vanish at the surface of the cylinder.

The same partial differential equation occurs in connegion with the vibrations of
a uniform plane membrane, the dependent variable being the displacement perpendicular
to the membrane ; if the membrane be in the shape of an ellipse with a rigid boundary,
the boundary condition is the same as in the electromagnetic problem just discussed.

The differential equation was discussed by Mathieu* in 1868 in connexion
with the problem of vibrations of an elliptic membrane in the following
manner :

* Journal de Math. (2), xm. (1868), p. 137.
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Suppose that the membrane, which is in the plane XOY when it is
in equilibrium, is vibrating with frequency p. Then, if we write
V=u(z, y)cos(pt+e),
the equation becomes
?.:71; + ‘% + E u=0.
Let the foci of the elliptic membrane be (£ h, 0, 0), and introduce new
real variables* £, 5 defined by the complex equation
« + 1y = hcosh (£ +1n),
so that & =hcosh £cosn, y=~hsinh Esing.
The curves, on which £ or 5 is constant, are evidently ellipses or hyper-
bolas confocal with the boundary; if we take £ >0 and — 7 <5<, to each
point (z, y, 0) of the plane corresponds one and only onet value of (£, #).

The differential equation for « transforms into}

aeu azu h’p“ . o
a-g’-}- 5?+7(cosh E—cos?n)u=0.

If we assume a solution of this equation of the form
u="F(&)G(n),
where the factors are functions of £ only and of % only respectively, we see

that
1 d'F(§)  kp } 1 d'G(n) hp }
fre e E ot =~ { “gr o
Since the left-hand side contains & but not #, while the right-hand side
contains 7 but not & F(§) and G () must be such that each side is a constant,
A, say, since £ and 7 are independent variables.

We thus arrive at the equations
ad*F(E)  (hp?
_?J'E’—+( B coshir~ 4) F(f)=0,
2
d’gﬂ&n) ( cp cos?n — A) G(n)=0.
By a slight change of independent variable in the former equation, we see
that both of these equations are linear differential equations, of the second
order, of the form

* The introduction of these variables is due to Lamé, who called £ the thermometric parameter.
They are more usually known as confocal coordinates. See Lamé, Sur les fonctions inverses des
transcendantes, 1¥< Legon.

t This may be seen most easily by considering the ellipses obtained by giving ¢ various
positive values. If the ellipse be drawn through a definite point (£, ) of the plane, 5 is the
eccentric angle of that point on the ellipse.

I A proof of this result, due to Lamé, is given in numerous text-books; see p. 401, footnote.
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where @ and ¢ are constants®. It is obvious that every point (infinity ex-
cepted) is a regular point of this equation.

This is the equation which is known as Mathieuw’s equation and, in certain
circumstances (§ 19'2), particular solutions of it are called Mathieu functions.

1911, The form of the solution of Mathieu’s equation.

In the physical problems which suggested Mathieu’s equation, the constant
@ is not given a priori, and we have to consider how it is to be determined.
It is obvious from physical considerations in the problem of the membrane
that u (z, y) is a one-valued function of position, and is consequently unaltered
by increasing n by 27 ; and the conditiont G (n + 27) = G () is sufficient to
determine a set of values of a in terms of ¢. And it will appear later (§§ 194,
19-41) that, when a has not one of these values, the equation

G (n+2m) =G (n)
1s no longer true.

When a is thus determined, ¢ (and thence p) is determined by the fact
that F (£) = 0 on the boundary; and so the periods of the free vibrations of
the membrane are obtained.

Other problems of Mathematical Physics which involve Mathieu functions in their
solution are (i) Tidal waves in a cylindrical vessel with an elliptic boundary, (ii) Certain
forms of steady vortex motion in an elliptic cylinder, (iii) The decay of magnetic force

in a metal cylinderf. The equation also occurs in a problem of Rigid Dynamics which
is of general interest§.

19:12. Hill's equation.

A differential equation, similar to Mathieu’s but of a more general nature,
arises in G. W. Hill’s| method of determining the motion of the Lunar
Perigee, and in Adams’Y determination of the motion of the Lunar Node.
Hill’s equation is

d*u 4
e + (9., +2 A 6, cos 2nz) u=0.

The theory of Hill’s equation is very similar to that of Mathieu’s (in spite
of the increase in generality due to the presence of the infinite series), so the
two equations will, to some extent, be considered together.

* Their actual values are a=4 - h?p?|(2¢?), ¢ =h?p?/(32¢?); the factor 16 is inserted to avoid
powers of 2 in the solution.

+ An elementary analogue of this result is that a solution of ?’—?—; +au=0 has period 2r if,
and only if, a is the square of an integer.

1 R. C. Maclaurin, Trans. Camb. Phil. Soc. xvir. p. 41.

§ A. W. Young, Proc. Edinburgh Math. Soc. xxx11. p. 81.

|| Acta Math. virt. (1886). Hill’s memoir was originally published in 1877 at Cambridge,
U.S.A.

9 Monthly Notices R.4.S. xxxvir. p. 43.
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In the astronomical applications 6,, 6,, ... are Anown constants, so the
problem of choosing them in such a way that the solution may be periodic
does not arise. The solution of Hill’s equation in the Lunar Theory is, in
fact, not periodic.

192, Pervodic solutions of Mathieu’s equation.

We have seen that in physical (as distinguished from astronomical)
problems the constant @ in Mathieu’s equation has to be chosen to be such
a function of ¢ that the equation possesses a periodic solution.

Let this solution be G (2); then G (2), in addition to being periodic, 1s an
integral function of z. Three possibilities arise as to the nature of (7 (z):
(1) G (2) may be an even function of 2z, (ii) G (z) may be an odd function of z,
(iii) G (z) may be neither even nor odd.

In case (iil), +{G(2)+ G (= 2)]
1s an even periodic solution and
3G () -G (-2)}

1s an odd periodic solution of Mathieu’s equation, these two solutions forming
a fundamental system. It is therefore sufficient to confine our attention to
periodic solutions of Mathieu’s equation which are either even or odd. These
solutions, and these only, will be called Mathieu functions.

It will be observed that, since the roots of the indicial equation at z=0 are 0 and 1,
two even (or two odd) periodic solutions of Mathieu’s equation cannot form a fundamental
system. But, so far, there seems to be no reason why Mathieu’s equation, for special
values of a and ¢, should not have one even and one odd periodic solution; for com-
paratively small values of | ¢| it can be seen [§ 19-3 example 2, (ii) and (iii)] that Mathieu’s
equation has two periodic solutions only in the trivial case in which ¢=0; the result that
there are never pairs of periodic solutions for larger values of |4 ! is a special case of a
theorem due to Hille, Proc. London Math. Soc. (2) XXI111. (1924), p. 224. Sce also Ince, L’roc.
Camb. Phil. Soc. xx1. (1922), p. 117.

19:21.  An wntegral equation satisfied by even Mathien functions*.

It will now be shewn that, if G (9) is any even Mathieu function, then
(< (n) satisfies the homogeneous integral equation

G (7)) =2\ [’: gkcosncosd (¥ (9) d@,

where k =4/(32¢g). This result is suggested by the solution of Laplace’s
equation given in § 183.

* This integral equation and the expansions of §19:3 were published by Whittaker, Proc.
Int. Congress of Math. 1912. The integral equation was known to him as early as 1904; see
Trans. Camb. Phil. Soc. xx1. (1912), p. 193.
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For, if 2 4ty ="Fhcosh (£+n) and if F(£) and G () are solutions of the
differential equations

(—i%%(gi) — (4 +m*h?cosh? §) F (€)= 0,

@ G(") + (4 + m2h? cos’n) G () =0,

then, by § 191, F (§) G(n) e™? i3 a particular solution of Laplace’s equation.
If this solution is a special case of the general solution

" J(hcosh Ecos ncos 8+ hsinh Esinnsin 6 + 1z, 6) d6,

given in § 18'3, it is natural to expect that*

S v, 0)=F(0)em ¢ (6),
where ¢ (6) is a function of @ to be determined. Thus

F (&) G (n) en = J’ " F(0) ¢ (6) exp {mh cosh £ cos 7 cos 6
+ mh sinh £ sin 7 sin 8 + miz} d6.

Since £ and 7 are independent, we may put £=0; and we are thus led to
consider the possibility of Mathieu’s equation possessing a solution of the
form

G (77) =_.fj" emhcos-qcoso ¢ (3) dg

1922, Proof that the even Mathieu functions satisfy the integral equation.

It is readily verified (§ 5:31) that, if ¢ (6) be analytic in the range (- ar, )
and if G () be defined by the equation

G (77) =f" emh cosncosd 4) (9) do’

then G (%) is an even periodic integral function of 5 and

a*G(n)
Cdp?

thtcos* n) G ()
= j" {m22 (sin® 7 cos® 6 + cos? ) — mh cos 7 cos  + A} emhcosncost & (9) df

= — \:{mh sin @ cos ne (0) + ¢' (0)} emh cosv;cost‘)},r

+ f"’ {d)/' (0) +(4 + m4h? cos? 6) ¢ (g)} gmhcosncosé 4@
on integrating by parts.

* The constant F (0) is inserted to simplify the algebra.
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19-22, 193] MATHIEU FUNCTIONS 409

But if ¢ (6) be a periodic function (with pertod 2m) such that
¢ (0) + (A +m*h*cos? 0) ¢ (6) =0,

both the integral and the integrated part vanish ; that is to say, G (7), defined
by the integral, is a periodic solution of Mathieu’s equation.

Consequently G (n) is an even periodic solution of Mathieu’s equation if
¢ () is a periodic solution of Mathieu’s equation formed with the same con-
stants ; and therefore ¢ (6) is a constant multiple of G (8); let it be AG (6).

[In the case when the Mathieu equation has two periodic solutions, if this case exist,
we have ¢ (0)=\G (6)+ G, (8) where G, (6) is an odd periodic function ; but

fﬂ emhcosncose Gl (6) do

vanishes, so the subsequent work is unaffected. ]

If we take a and q as the parameters of the Mathieu equation instead of
A and mh, it is obvious that mh = 4/(32¢) = k.

We have thus proved that, if G'() be an even periodic solution of
Mathieu’s equation, then

G(n)=7\fi ekcosncoseG(g) dg’

which is the result stated in § 19-21.

From § 11-23, it is known that this integral equation has a solution only
when X\ has one of the ‘ characteristic values.” It will be shewn in § 19-3 that
for such values of A, the integral equation affords a simple means of con-
structing the even Mathieu functions.

Ezample 1. Shew that the odd Mathieu functions satisfy the integral equation
G(.,)=x/” sin (k sin 5 sin 8) G (6) d8.

Example 2. Shew that both the even and the odd Mathieu functions satisfy the
integral equation

G(”>=)\/r eiksillnsine G(g) de.

Ezxample 3. Shew that when the eccentricity of the fundamental ellipse tends to zero,
the confluent form of the integral equation for the even Mathieu functions is

1

‘]1. (l‘)= m;‘ /i Gi'rcose cos né déf.

19'3. The construction of Mathiew functions.

We shall now make use of the integral equation of § 19-21 to construct
Mathieu functions; the canonical form of Mathieu’s equation will be taken as

2

d*u
dz?

+(a +16g cos 2z) u=0.
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410 THE TRANSCENDENTAL FUNCTIONS [cHAP. XI1X

In the special case when g is zero, the periodic solutions are obtained by
taking a = n? where n is any integer; the solutions are then
1, cosz cos2z, ...,
sinz, sin2z ....
The Mathieu functions, which reduce to these when ¢ — 0, will be called
ce, (2, q), ce(z,q) ce(z q), ...,
se, (2, q), ses(z, q), ....

To make the functions precise, we take the coefficients of cos nz and sin nz
in the respective Fourier series for ce,(z, ¢) and se, (2, ¢) to be unity. The
functions ce, (2, q), sex (2, q) will be called Mathieu functions of order n.

Let us now construct ce, (2, ).

Since ce, (2, 0)=1, we see that A = (27) as ¢-~ 0. Accordingly we
suppose that, for general values of g, the characteristic value of A which gives
rise to ce, (2, ¢) can be expanded in the form

Cma)'=14+aq+ a0+ ...,

and that ce (2, )=14+¢B(2) + @B (2) + ...,

where @, a,, ... are numerical constants and B, (z), B;(2), ... are periodic
functions of z which are independent of ¢ and which contain no constant
term.

On substituting in the integral equation, we find that
A+ g+ ag®+...) {1 +¢B (2)+¢*3:(2) + ...}

=§17;f {1 4 4/(82¢).cos z cos 8 + 16¢ cos® zcos* 0 + ...}
x {1+¢B:(6)+¢*B.(6) +...} db.

Equating coefficients of successive powers of ¢ in this result and making

use of the fact that B,(z), B.(2), ... contain no constant term, we find in
succession

a, = 4, B (2) =4 cos 2z,
a, = 14, B (2) = 2 cos 4z,

and we thus obtain the following expansion :

7
ce(z,q)=1+ (4q—28q’+2—;92—9q’— ...)cos2z+<2q2— l—ggq‘—ﬁ- ...>c<>s4z

4 13 1
+(~gq”———§ T+ ) cost+<ﬁq —...)cosSz

+<§%3q5—...>cos 10z +...,

the terins not written down being O (¢°) as ¢ —~ 0.

910
The value of a is —32¢*+ 224¢* —%1)299"4- O (¢*); 1t will be obscrved

that the coefficient of cos 2z in the series for ce, (2, q) 18 — @/(8¢).
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19-31] MATHIEU FUNCTIONS 411

The Mathieu functions of higher order may be obtained in a similar
manner from the same integral equation and from the integral equation of
§ 1922 example 1. The consideration of the convergence of the series thus
obtained is postponed to § 19-61.

Ezxample 1. Obtain the following expansions®:

. _ @ 2r+lqr 2'+3)‘(31‘+4)q"+2 r+4}
(1) ceo(z,g)—l+rfl{r!r! TR 1) +0(q"*4)} cos 2rz,

. _ © qur 2r+qur+l
(i) cer(z g)=cosz+ 2 {(r+1)zr!"(r+1)z(r+1):

r=1
+ __ Tt +0 (q’+3)} cos (2r+1) 2
(r=1)! (r+2)! ’
grqr. 2r+1rqr+l
G T er D rrIn

2g"? r+3} i
+(r_]>:(r+2>!+0(q )} sin (2r+1) 2,

(ii1) 8¢ (z, q)=sinz+4 =
r=1

(iv) cex(z q)= {— 2q+4§Q ¢+0 (q5)} +cos 2z
® 2r+lqr Qr+1p (4"'1-2+ 222,-_{. 247) qr+2 s
+2 {r!(r+2)! T+ TOW )} cos (2r+2) 2,

r=1
where, in each case, the constant implied in the symbol O depends on » but not on z.
(Whittaker.)

Ezample 2. Shew that the values of a associated with (i) ce,(z, ¢), (ii) ce (2, ¢),
(iii) ¢, (z, @), (iv) cey (2, ¢) are respectively :

(i) -32¢2+224¢* - 2

10 ¢

2
2 o)

(i) 1-8g-8g2+8g7~ 5 g +0 (),
(iii) 1+Sq—892—8g3—-§q‘+0 (¢%),
(iv) 4+ %O ¢?— %—3—4 24+ 0(g°). (Mathieu.)

Ezxample 3. Shew that, if » be an integer,

Cean+1(2 @) =(—)" 8341 (244w, —¢).

19-31. The integral formulae for the Mathieu functions.

Since all the Mathieu functions satisfy a homogeneous integral equation
with a symmetrical nucleus (§ 19-22 example 3), it follows (§ 11'61) that

j" cem (2, 9) cen(2,9)dz=0 (m # n),
J"r sem (2, Q) s€n(2,q)d2=0 (m #n),

f" cem (2, q) sen(2,q)dz=0.

* The leading terms of these aeries, as given in example 4 at the end of the chapter (p. 427),
were obtained by Mathieu.
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Ezample 1. Obtain expansions of the form:

(i) ekcoszcoso___

’Eo Ancen (2, g) ceq (6, @),
(ii) cos (& sin zsin )= s Bicen (2, ¢) cen (6, 9),
n=0

(iii) sin (4 sin z sin §)= ; Cnse, (z, @) e (6, @),
=0
where £=,/(32¢). "

Ezample 2. Obtain the expansion
ei.zsin¢= s J" (Z) em'db
N==—00

as a confluent form of expansions (ii) and (iii) of example 1.

19-4. The nature of the solution of Mathiew’s general equation ; Floquet's
theory.

We shall now discuss the nature of the solution of Mathieu’s equation
when the parameter a is no longer restricted so as to give rise to periodic
solutions; this is the case which is of importance in astronomical problems, as
distinguished from other physical applications of the theory.

The method is applicable to any linear equation with periodic coefficients
which are one-valued functions of the independent variable; the nature of
the general solution of particular equations of this type has long been per-
ceived by astronomers, by inference from the circumstances in which the
equations arise. These inferences have been confirmed by the following
analytical investigation which was published in 1883 by Floquet*.

Let g (2), h(2) be a fundamental system of solutions of Mathieu’s equation
(or, indeed, of any linear equation in which the coefficients have period 2m);
then, if F'(z) be any other integral of such an equation, we must have

F (2) = 4g (2) + Bh (2),
where 4 and B are definite constants.

Since g (z + 27), h (2 + 27) are obviously solutions of the equationt, they
can be expressed in terms of the continuations of g (z) and k (z) by equations
of the type

gz +2m) =g (2) +ah(2), h(z+2m)=Ryg(2)+RB:h(2)
where a;, a,, B,, B; are definite constants; and then
F(z+2m)=(4a, + BB,) g (2) + (Aa, + BB,) h (2).

* Ann. de UEcole norm. sup. (2), x1m. (1883), p. 47. Floquet’s analysis is a natural sequel
to Picard’s theory of differential equations with doubly-periodic coefficients (§ 20-1), and to the
theory of the fundamental equation due to Fuchs and Hamburger.

+ These solutions may not be identical with g (z), h(z) respectively, as the solution of an
equation with periodic coefficients is not necessarily periodic. To take a simple case, u=¢?sin z

is a solution of % - (L+cotz)u=0.
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Consequently F(z + 2m)= kF (z), where k is a constant®, of A and B are
chosen so that
Aa,+ BB, =kA, Aa,+ BB,=kB.
These equations will have a solution, other than 4 =B =0, if, and
only if,
o —k, B
a , B.—k

and if k& be taken to be either root of this equation, the function ¥ (2) can be
constructed so as to be a solution of the differential equation such that
F(z+ 2m)=FkF (2).
Defining u by the equation k= e*™ and writing ¢ (2) for e #*F (2), we see
that

b(z+2m)=erM F (24 27) = ¢ (2).
Hence the differential equation has a particular solution of the form
e*? ¢ (2), where ¢ (2) s a periodic function with period 2.

We have seen that in physical problems, the parameters involved in the
differential equation have to be so chosen that k=1 is a root of the quadratic,
and a solution is periodic. In general, however, in astronomical problems, in
which the parameters are given, k# 1 and there 1s no periodic solution.

In the particular case of Mathieu’s general equation or Hill’s equation, a
fundamental system of solutionst is then e*?¢(z), e7#? ¢ (—2z), since the
equation is unaltered by writing —z for z; so that the complete solution of
Mathieu’s general equation is then

u=ceep(2) + e (—2z),
where c¢,, ¢, are arbitrary constants, and u is a definite function of ¢ and ¢.
Example. Shew that the roots of the equation
a-k B } =0
ag , Bo-k

are independent of the particular pair of solutions, ¢ (z) and 4 (2), chosen.

19-41. Hill's method of solution.

Now that the general functional character of the solution of equations
with periodic coefficients has been found by Floquet’s theory, it might be
expected that the determination of an explicit expression for the solutions of
Mathieu’s and Hill’s equations would be a comparatively easy matter ; this
however is not the case. For example, in the particular case of Mathieu’s
general equation, a solution has to be obtained in the form

y=e“¢(2),

* The symbol k is used in this particular sense only in this section. It must not be confused
with the constant k of §19-21, which was associated with the parameter ¢ of Mathieu’s equation.
t The ratio of these solutions is not even periodic; still less is it a constant.
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where ¢ (2) is periddic and u is a function of the parameters a and g. The
crux of the problem is to determine u; when this is done, the determination
of ¢ (2) presents comparatively little difticulty.

The first successful method of attacking the problem was published by
Hill in the memoir cited in § 19:12; since the method for Hill’s equation is
no more difficult than for the special case of Mathieu’s general equation, we
shall discuss the case of Hill's equation, viz.

d*u

an T J(2)u=0,
where J () is an even function of z with period =. Two cases are of interest,
the analysis being the same in each:

(I) The astronomical case when z is real and, for real values of z, J (2)
can be expanded in the form

J (2) = 6,+ 26, cos 2z + 26, cos 42 + 205 cos 6z + ... ;

the coefficients 6, are known constants and § 6. converges absolutely.
n=0
(II) The case when z is a complex variable and J (z) is analytic in a
strip of the plane (containing the real axis), whose sides are parallel to the

real axis. The expansion of J(2) in the Fourier series 6, + 2 )3 0, cos 2nz
n=1

is then valid (§ 9'11) throughout the interior of the strip, and, as before,

6, converges absolutely.
n=0

Defining 6_, to be equal to 8,, we assume

@©
U = er? 2 b” emiz

n= 00
as'a solution of Hill's equation.
[In case (II) this is the solution analytic in the strip (§§ 10-2, 19-4); in case (I) it will
have to be shewn ultimately (see the note at the end of § 19-42) that the values of b,
which will be determined are such as to make 3 #2b, absolutely convergent, in order to

n=—aw

Jjustify the processes which we shall now carry out.]

On substitution in the equation, we find

§ (,u, + 2ni)abne(n+mi)z + ( § gneem'z) ( § b,,e‘“*””"‘) = (.

n=-om n= - Nn=—a0

Multiplying out the absolutely convergent series and equating coefficients
of powers of ™ to zero (§§ 9°6-9'632), we obtain the system of equations

(u+200F by + 3 Opbpm=0 (n=...,—-2-1,0,1,2, ..).

m= -
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19-42] MATHIEU FUNCTIONS 415

If we eliminate the coefficients b, determinantally (after dividing the
typical equation by 6,— 4n? to secure convergence) we obtain* Hill's deter-
minantal equation :

.................................................................................... =0.

(‘l’p+4)2—90 —01 —02 —83 —04

T4, &=, -6, L-4, 29,
-6 (p+2)-6, -6 =6, -8

22 -4, 22~ 6, 224, 22— 6, 2¢- 6,
=6, -6 (i#)z‘ 8y -6, -6,

-4, 0% -4, 02-9, 076, 024,
-6 =0, =6 (p—-27-6, -6,

22—00 22-6, 228, 22 -6, 22— 6,

6, — 06, —6, -8, (jp—4)-6,
-9, £-¢, 4£-64, -6, -9, "

We write A (iu) for the determinant, so the equation determining u is
A (ip)=0.

1942. The evaluation of Hull's determinant.

We shall .now obtain an extremely simple expression for Hill’s deter-
minant, namely

A (tu) = A (0) — sin? (3 wip) cosec® (3 /6,).
Adopting the notation of § 2'8, we write

A (iu) = [Am,n),

_ (i/l' - 2"’”’)2 - 00 - em—n

where Anmm =G, mn= a6, (m #n).

The determinant [ A, »] is only conditionally convergent, since the product
of the principal diagonal elements does not converge absolutely (§§ 2:81, 2-7).
We can, however, obtain an absolutely convergent determinant, A, (i), by
dividing the linear equations of § 1941 by 6, — (iu — 2n)* instead of dividing
by 6, — 4n®>. We write this determinant A, (i) in the form [B,, ], where

Bum=1 Bpn.= m (m # ).

The absolute convergence of X 6, secures the convergence of the deter-
n=0

minant [By, ], except when p has such a value that the denominator of one
of the expressions B, , vanishes.

* Since the coefficients b, are not all zero, we may obtain the infinite determinant as the

eliminant of the system of linear equations by multiplying these equations by suitably chosen
cofactors and adding up.
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From the definition of an infinite determinant (§ 2:8) it follows that

. . . 2 (0, - (tu— 27&)’}
A =A, 1 I {— =,
(“") (?’l“) pf; n=—p { 60 —_ 47"2
sin 4 (ip — 4/6,) sin ¥ (iu + V6,)
sin® (3 7 +/6,) )

Now, if the determinant A, (ix) be written out in full, it is easy to see
(1) that A, () is an even periodic function of u with period 2z, (ii) that A, (i)
is an analytic function (cf. §§ 2:81, 3-34, 5'3) of u (except at its obvious simple
poles), which tends to unity as the real part of u tends to + .

and so A () =—A4,(2p)

If now we choose the constant K so that the function D (u), defined by
the equation

D ()= A (i) — K {cot § (i + ¥/60) — cot (i — ¥/60)},
has no pole at the point u=146,, then, since D(u) is an even periodic
function of u, it follows that D (u) has no pole at any of the points

2n1 + 14/0,,
where n is any integer.
The function D (u) is therefore a periodic function of u (with period 27)
which has no poles, and which is obviously bounded as R (u) -+ . The

conditions postulated in Liouville’s theorem (§ 5'63) are satisfied, and so D (u)
is a constant; making u—>+ 0, we see that this constant is unity.

Therefore

A, (tp)=1+K {cot 7 (tu+ v8,) — cot 3w (tu— v/6,)},
and so

A (i) = — S0 AT e ;i;/f (ii‘i/”';:; G+ V00 4 9K cot (4 v/6l).

To determine K, put u=0; then
A(0)=1+2K cot (37 +/6,).
Hence, on subtraction,

AW =80 g i,

which is the result stated.

The roots of Hill's determinantal equation are therefore the roots of the
equation
sin? (4 mip)= A (0).sin? (4 /6,).
When p has thus been determined, the coefficients b, can be determined

in terms of b, and cofactors of A (ix); and the solution of Hill’s differential
equation is complete.
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[In case (I) of § 1941, the convergence of 2 | b, | follows from the rearrangement theorem

of §2-82; for 2n?|b,| is equal to | b | s | Cmol=|Co,0l, where C,, , is the cofactor of By, »
MmM=-o

in A; (#u); and 2| Cp, o] is the determinant obtained by replacing the elements of the row

through the origin by numbers whose moduli are bounded.]

It was shewn by Hill that, for the purposes of his astronomical problem, a remarkably
good approximation to the value of u could be obtained by considering only the three
central rows and columns of his determinant.

19'6. The Lindemann-Stieltjes’ theory of Mathiew's general equation.

Up to the present, Mathieu’s equation has been treated as a linear
differential equation with periodic coefficients. Some extremely interesting
properties of the equation have been obtained by Lindemann®* by the sub-
stitution {=cos’z, which transforms the equation into an equation with
rational coefficients, namely

d*u du
4{(1—§)d—t,+2(1 —2§)d—§ +(a—169+32¢5)u=0.

This equation, though it somewhat resembles the hypergeometric equation, is of higher
type than the equations dealt with in Chapters x1v and xvi, inasmuch as it has two
regular singularities at 0 and 1 and an irregular singularity at « ; whereas the three
singularities of the hypergeometric equation are all regular, while the equation for Wy , (2)
has one irregular singularity and only one regular singularity.

We shall now give a short account of Lindemann’s analysis, with some
modifications due to Stieltjes+-.

19'61. Lindemann’s form of Floquet's theorem.

Since Mathieu’s equation (in Lindemann’s form) has singularities at {=0
and ¢ =1, the exponents at each being 0, }, there exist solutions of the form

Yoo = 3 a.8m f,'/m=§i 2 ba
n=0 n=0

Yo= 20 a’'1=0r, ywm=Q1-ph 2 0 A-0)
n= n=
the first two series converge when | {|< 1, the last two when |1 -&|< 1.

When the ¢{-plane is cut along the real axis from 1 to + x and from
0 to — oo, the four functions defined by these series are one-valued in the
cut plane ; and so relations of the form

Yo = QYo + ,33/01. Yn = YYo t+ sy«n
will exist throughout the cut plane.
Now suppose that § describes a closed circuit round the origin, so that the
circuit crosses the cut from — o to 0; the analytic continuation of y, is

* Math. Ann. xx11. (1883), p. 117.

1 Astr. Nach. cix. (1884), cols. 145-152, 261-266. The analysis is very similar to that
employed by Hermite in his lectures at the Ecole Polytechnique in 1872-1873 [Oeuvres, mnu.
(Paris, 1912), pp. 118-122] in connexion with Lamé’s equation. See § 23:7.
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ayw — BYn (since y, is unaffected by the description of the circuit, but yy,
changes sign) and the continuation of y,, 18 yyew — 8yo ; and so Ay, + Byy,* will
be unaffected by the description of the circuit of

A (ayo + 18:901)2 + B (Yo + 83/01)2 A (ayo— BYa) + B (yYw — 83/01)2,
e if AaB + By8=0.

Also Ay, + By,?* obviously has not a branch-point at {=1, and so, if
Aaf + Byd =0, this function has no branch-points at 0 or 1, and, as it has no
other possible singularities in the finite part of the plane, it must be an
integral function of &

The two expressions
Aéyxo + iBéym Aiylo - ":Biyn
are consequently two solutions of Mathieu’s equation whose product is an
integral function of &

[This amounts to the fact (§ 19'4) that the product of e**¢ (z) and
e+ (—2) is a periodic tntegral function of z.]

1962. The determination of the integral function associated with Mathieu’s
general equation.
The integral function F(z)= Ay, + By,? just introduced, can be deter-
mined without difficulty ; for, if y,, and y,, are any solutions of
d*u du
Tt PO FE+e@u=0,

their squares (and consequently any linear combination of their squares)
satisfy the equation*

T3P TP O+ +2 PO
+20Q (O +2POQO]y=0;

in the case under consideration, this result reduces to

ca -2 sa - P

+(a—1—16q + 32¢¢) éf) +16¢F (£) =0.

Let the Maclaurin series for F(¢) be 3 c,{"; on substitution, we easily
n=0

obtain the recurrence formula for the coefficients c,, namely

Vn41Cns2 = UnCnir + Cn,y
where
_ (+1){(n+1)—a+16q} __n(r+1)@n+1)
- 16¢g (2n + 1) T 329 (2n —1)

* Appell, Comptes Rendus, xc1. (1880), pp. 211-214 ; cf. example 10, p. 298 supra.
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At first sight, it appears from the recurrence formula that ¢, and ¢; can
be chosen arbitrarily, and the remaining coefficients ¢, ¢;, ... calculated in
terms of them; but the third order equation has a singularity at {=1, and
the series thus obtained would have only unit radius of convergence. It is
necessary to choose the value of the ratio c¢,/c, so that the series may con-
verge for all values of &

The recurrence formula, when written in the form

Un+1
(enfCnsr) = Un + —7—
(Cns1/Cnsa)’
suggests the consideration of the infinite continued fraction
v v . v v
un + n+1 n+2 —_ llnl {u" + In+l n+m} .
Uppy FUnpa+ o0 s> Upgr + oo+ Unim

The continued fraction on the right can be written*
u K (n,n+ m)/K (n+ 1, n +m),

where K(n,n+m)=| 1 , vupfts, 0, s
—uzl, 1, Unpoftngy,  ceeeeeneinnen.
0 , —ul,, 1 ) eeerieerneeeens

-1
....................................... — Ui, 1

The limit of this, as m - o, is a convergent determinant of von Koch’s
type (by the example of § 2:82); and since

)
—* | ~0asn >,
r=n | UrUryy
it is easily seen that K (n, ) =1 asn—- .
. c u, K (n, o
Therefore, if n _ Y K(n )

e K(n+1 00)’
then c, satisfies the recurrence formula and, since ¢, ,/c, — 0 as n — o, the
resulting series for #' (§) is an integral function. From the recurrence formula
it is obvious that all the coefficients c, are finite, since they are finite when n

is sufficiently large. The construction of the integral function F({) has
therefore been effected.

1963. The solution of Mathiew's equation in terms of F ({).
If w, and w, be two particular solutions of
d*u du
dg +P(§')d—§+ Q&) u=0,
4
thent w,w, — wyw, = Cexp{~f P(C)d{},
0

* Bylvester, Phil. Mag. (4), v. (1853), p. 446 [Math. Papers, 1. p. 609].
t Abel, Journal fiir Math. 11. (1827), p. 22. Primes denote differentiations with regard to (.

- printed on 10/30/2021 4:34 AMvia UN VERZI TA KARLOVA. All use subject to https://ww. ebsco.conlterms-of-use



EBSCOhost -

420 THE TRANSCENDENTAL FUNCTIONS [cHAP. XIX

where C is a definite constant. Taking w, and w, to be those two solutions of
Mathieu’s general equation whose product is F ({), we have

v w ¢ w ,w _F()

w w, (1R FE) wm o w F()’
the latter following at once from the equation w,w, = F ({).

Solving these equations for w,’/w, and wy'/w,, and then integrating, we at
once get

) f_ar
w, = {F({)}*exp {%Cfo Cﬁ(l - C)iF(§)} ’

w =y PO exp {- 40 [ 1,
AR F ()
where vy,, v, are constants of integration; obviously no real generality is lost
by taking c,=q =y =1
From the former result we have, for small values of | ¢|,

w=1+Ct +}(a+C)E+ 0,
while, in the notation of § 19'51, we have a,/a,=— 4a + 8q.
Hence C*=16g—a—c,.
This equation determines C in terms of a, ¢ and c¢,, the value of ¢, being
K(1, o)+ {u,K(0, )}

Ezample 1. If the solutions of Mathiew’s equation be e**?¢(+z), where ¢ (2) is
periodic, shew that

T dz
=2 Fiom
Example 2. Shew that the zeros of F({) are all simple, unless C=0.
(Stieltjes.)
[If F(¢) could have a repeated zero, #; und w, would then have an essential singularity.]

19:6. A second method of constructing the Mathieu function.

So far, it has been assumed that all the vartous series of § 193 involved
in the expressions for cey (2, q) and sey (z, q) are convergent. It will now be
shewn that cey (2, q) and sey (2, ¢) are integral functions of z and that the
coefficients in their expansions as Fourier series are power series in q which
converge absolutely when |q | is sufficiently small®,

To obtain this result for the functions cey(z, ¢), we shall shew how to
determine a particular integral of the equation

%+(a+16q cos 2z) u =Y (a, g) cos Nz

* The essential part of this theorem is the proof of the convergence of the series which occur
in the coefficients; it is already known (§§ 10-2, 10-21) that solutions of Mathieu’s equation are

integral functions of z, and (in the case of periodic solutions) the existence of the Fourier
expansion follows froxa § 9-11.
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in the form of a Fourier series converging over the whole z-plane, where
¥ (@, q) is a function of the parameters a and q. The equation ¥ (a, ¢)=0
then determines a relation between a and ¢ which gives rise to a Mathieu
function. The reader who is acquainted with the method of Frobenius* as
applied to the solution of linear differential equations in power series will
recognise the resemblance of the following analysis to his work.

Write a = N? + 8p, where N is zero or a positive or negative integer.

Mathieu’s equation becomes

d__1_‘+Nﬂ =~ 8 (p + 2q cos 2z) u.

If p and ¢ are neglected, a solution of this equation is u =cos Nz = U, (2),
say.

To obtain a closer approximation, write — 8 (p + 2q cos 22) U, () as a sum
of cosines, i.e. in the form

—8{gcos (N —2)z+pcos Nz +gcos (N +2)z} =V,(2), say.
Then, instead of solving %’;g + N*u =V, (2), suppress the terms?t in V, (2)

which involve cos Nz; i.e. consider the function W, (2) where}
W,(2)=V,(z)+ 8pcos Nz.
A particular integral of

d*u

iz =+ Nu=W,(2)
is

u=2{ cos(N—-2)z+

l(lq—N) i-(T-q—-——_‘_N)cos(l‘:’+2)z}=Ux(3)r say.

Now express —8(p + 2qcos 22) U, (2) as a sum of cosines; calling this
sum V,(z), choose a, to be such a function of p and g that V;(z) +a;cos Nz
contains no term in cos Nz; and let V, (2) + a, cos Nz = W, (2).

(2 -+ Nu=W, (2),

and continue the process. Three sets of functions Uy, (2), Vi (2), W, (2)
are thus obtained, such that U, (z) and W,, (2) contain no term in cos Nz
when m # 0, and

Wi (2)=Van(z)+amcos Nz, V, (2)=—8(p+ 2qcos2z) U,_, (2),
d*Un,
PUn () | Wil ()= W 2,
where a,, is a function of p and ¢ but not of 2.

Solve the equation

* Journal ftir Math. rxxvi. (1873), pp. 214-224.
t+ The reason for this suppression is that the particular integral of dz—+N’u =008 Nz

contains non-periodic terms.
1 Unless N=1, in which case W,(z)=V,(z)+8 (p+q)cosz.
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It follows that

{di« } 3 U (z)-—mz_ W (2)

m=0

= '}L. Vm(z)+< i a,,.)cosNz
m=1

m=1

n—1
=—8(p+2qcos2z) £ Up,(2)+ ( g am) cos Nz.
m=0

m=1
Therefore, if U (2) = U m (2) be a uniformly convergent series of analytic
m=0

functions throughout a two-dimensional region in the z-plane, we have

§53)
U (2)
dr

where Y (a, q)= 3 O
m=1

+ (a + 16¢ cos 22z) U (2) =¥ (a, q) cos Nz,

It is obvious that, if « be so chosen that ¥ (a, ¢) =0, then U (z) reduces
to cex (2).

A similar process can obviously be carried out for the functions sey (2, q)
by making use of sines of multiples of 2.

1961. The convergence of the series defining Mathien functions.

We shall now examine the expansion of § 196 more closely, with a view to investigating
the convergence of the series involved.

When z > 1, we may obviously write
n n
U l2)= 2 *B,,co8(N-2r)z+ 2 a,,co8(N+2r)z
r=1 r=1
the asterisk denoting that the first summation ceases at the greatest value of r for which
r<aan.

2
Since {32+N} Ups1(2)=ap 41 cos Nz—8 (p+2q cos 22) U, (2),

it follows on equating coefficients of cos (& + 27) z on each side of the equationt that
ap1=8¢ (an,1 +8n, 1))
r(r+N)ani1,r=2 {pap,+q (@nr1tanra)}l  (r=1,2,..)
7(r=N)Bnss,r=2{PBnr+ g Bar-1+Burs)}  (r<AN).
These formulae hold universally with the following conventions? :
() a, ¢=B8,,=0 (=12 ..); a, =B, ,=0 (r>n),
(ii) By, s ¥n+1=By 3 ¥-1 when XN is even and r=4J,
(iii) 8, 4v+1)=Bn yv-1) When X is odd and r=3%(¥-1).
t When N=0 or 1 these equations must be modified by the suppression of all the coefficients
Bu, r-

+ The conventions (ii) and (iii) are due to the fact that cos z=cos (- z), cos 2z =cos ( - 22).
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The reader will easily obtain the following special formulae :
(I «=8p, (N#1); a=8(p+q), (N=1),

2. N! . n+1,m
(II) ﬂn.n‘*‘é%VThﬁ, (W%O), n"'"=.2(—n!)%’ (N=0).

(III) ay,rand B, . are homogeneous polynomials of degree » in p and g.

If % an,=4, % B.,=B,,
n=r n=r
we have V(a, ¢)=8p+8g(4d:+B)) (N#1),
r(r+N)A,=2{pAd,+q (Aro1+Ar 1)} i (A),
P(r=N) By=2 {pB,4q (BrosF Bry 1)} coeoreorereeeeereeenns (B),

where 4y=B,=1 and B, is subject to conventions due to (ii) and (iii) above.
Now write w,=—-q {r(r+N)-2p}7, w/=—¢{r(r—-N)-2p}~L
The result of eliminating 4;, 4, ... 4,_;, 4,,4, ... from the set of equations (A) is
ArBo=(=) w10...w By,
where 4, is the infinite determinant of von Koch’s type (§ 2:82)
A=| 1, wyy,, O, 0, .. !
Wy y 9, 1, w4, o,
0, Wy 1, w43

...........................................

The determinant converges absolutely (§ 2:82 example) if no denominator vanishes ;
and A,+1 as 7o (cf. § 1952). If p and ¢ be given such values that A,#0,
2p s r(r+N), where r=1, 2, 3, ..., the series

S (=) wwy... w,Ap 09~  COS (N +2r) 2
r=1
represents an integral function of 2.
In like manner B, Dy=(-)"wy w; ... w, D,, where D, is the finite determinant
1 ’ qu-ly 0 IR K]
Wiy 1, Wi
the: last row being 0, 0, ... O, 2w’w, lor0, O, ...0, “”}(N—l)’ 1+'d§(1v—1) according as
X is even or odd.
The series = U, (2) is therefore
n=0

co8s Nz+48¢~1 = (=) ww;...w,Apco8 (N+2r)z
=1
T r<iN
+D,71 2 (=) ww ...w D,cos(N=-2r)z,

r=1
these series converging uniformly in any bounded domain of values of z, so that term-by-
term differentiations are permissible.

Further, the condition ¥ (¢, ¢)=0 is equivalent to
ALY wy’ Dy
r=q ( 4 + D, > ’
ie. P8 Dy—gq (w; 8y Do+ wy' Dy Ag)=0.

If we multiply by
@ 2p r<iN 2
1 {1-—,} 1 {1-H},
r=1 r(r+ )| =1 r(r=.y)
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the expression on the left becomes an integral function of both p and ¢, ¥ (a, ¢), say ; the
terms of ¥ (a, ¢), which are of lowest degrees in p and ¢, are respectively p and
e - v
CAR VA Gy o | I
1 2% (N?+8p, g)

Now expand oy f 7 N’f— ) % P9 dp
in ascending powers of ¢ (cf. § 7'31), the contour being a small circle in the p-plane, with
centre at the origin, and | ¢ | being so small that ¥ (N2+8p, ¢) has only one zero inside the
contour. Then it follows, just as in § 7:31, that, for sufficiently small values of |g|,
we may expand p as a power series in ¢ commencing® with a term in ¢?; and if | ¢|
be sufficiently small D, and A, will not vanish, since both are equal to 1 when ¢=0.

On substituting for p in terms of ¢ throughout the series for U (z), we see that the
series involved in cey (z, ¢) are absolutely convergent when | ¢ | is sufficiently small.

The series involved in sey (2, ¢) may obviously be investigated in a similar manner.

197, The method of change of parameter+t.

The methods of Hill and of Lindemann-Stieltjes are effective in determining g, but
only after elaborate analysis. Such analysis is inevitable, as u is by no means a simple
function of ¢; this may be seen by giving ¢ an assigned real value and making a vary
from — o to +o ; then u alternates between real and complex values, the changes taking
place when, with the Hill-Mathieu notation, A (0) sin? (4 4/a) passes through the values
0 and 1; the complicated nature of this condition is due to the fact that A(0) is an
elaborate expression involving both a and g¢.

It is, however, possible to express u and a in terms of ¢ and of a new parameter 7, and
the results are very well adapted for purposes of numerical computation when | ¢| is small.

The introduction of the parameter o is suggested by the series for ce; (2, ¢) and 26, (z, q)
given in § 19-3 example 1; a consideration of these series leads us to investigate the
potentialities of a solution of Mathieu’s general equation in the form y=¢*# ¢ (z), where

¢ (2)=8in (2—0c)+a3cos (32— o)+ b3 8in (32— o) + a5 cos (52— o) + bs8in (52— 0) + ...,
the parameter o being rendered definite by the fact that no term in cos (2 —¢) is to appear
in ¢ (z); the special functions se, (z, ¢), ¢ (2, ¢) are the cases of this solution in which
o i8 0 or 3.

On substituting this expression in Mathieu’s equation, the reader will have no difficulty

in obtaining the following approximations, valid for § small values of ¢ and real values
of o:

p =4g sin 20 — 12¢3 sin 20 — 12¢*s8in 40+ 0 (¢%),
a =1+8qcos 20+ (- 16+8 cos 4¢) ¢ — 8¢3 vos 20 + (2§42 — 88 cos 40) ¢* + O (¢°),
ag =342 sin 20 + 393 sin 40 +( — 2§+ 8in 20 4+ 9 8in 60) ¢* + 0 (¢°),
by =g +q?cos 20+ (— A4 +5 cos4o) ¢+ (— Tk cos 20+ 7 cos 60) ¢*+ 0 (¢°),
a5 =31 g% sin 20 + 44 ¢* sin 40 + 0 (¢°),
bs =3¢+ 4¢3 cos 20+ ( — 1552 +§% cos 4o) ¢* + O (¢°),
a; ={fs¢*8in20+0(g5), br=5¢°+ 1 ¢* cos 20+ 0 (¢%),
a=0(¢%), bo=1d5q'+0(¢°»
the constants involved in the various functions O (¢°) depending on o.

* If N=1 this result has to be modified, since there is an additional term g on the right and
the term ¢3/(N - 1) does not appear.

+ Whittaker, Proc. Edinburgh Math. Soc. xxx11. (1914), pp. 75-80.

+ They have been applied to Hill's problem by Ince, Monthly Notices of the R. 4. S. Lxxv.
(1915), pp. 436-448.

§ The parameters ¢ and o are to be regarded as fundamental in this analysis, instead of
a and q as hitherto.
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The domains of values of ¢ and o for which these series converge have not yet been
determined *.

If the solution thus obtained be called A (2, o, @), then A (2, 0, ¢) and A (7, —a, ¢) form
a fundamental system of solutions of Mathieu’s general equation if . +0.
Ezample 1. Shew that, if ¢=7x0'5 and ¢ =001, then
am1124,841,4 ..., p=ix0046,9935...;
shew also that, if ¢=7 and ¢=0-01, then
a=1321,169,3..., p=:ix0'145,027,6....
Exzample 2. Obtain the equations
p=4q s8in 20 — 4gas,
a=1+8¢ cos 20 — p3 —8qbs,
expressing p and a in finite terms as functions of g, o, ag and bs.
Ezample 3. Obtain the recurrence formulae
{—4n (n+1)+8¢ cos 20 —8qbs + 8¢ (2n+1) (a5 — 8in 20)} 23 4 1+ 8¢ (22n—1+ 22w +3) =0,
where 23, , | denotes bon .1 +igy 41 OF by, .1 —1dgy 4 1, according as the upper or lower sign is
taken.
19-8. The asymptotic solution of Mathiew'’s equation.

1f in Mathieu’s equation

d?u 1
bl iy 2 =
“+(a+2k cos2z)u 0

we write £ sin z=¢, we get
(@ -1 T+ g+ E- 2 =0,
where M2=a + k3.
This equation has an irregular singularity at infinity. From its resemblance to Bessel’s

equation, we are led to write u=¢* ¢ ¥», and substitute

v=1+(ar/f)+(as/E}) +...
in the resulting equation for v; we then find that

= -4 G- H+4), ay=-§ (G- H+8) (- M2+ B)+ 1,
the general coefficient being given by the recurrence formula
2 (r+1)ap1={} - M2+ E2+r (r+ 1)} +(2r 1) ik2a,_ — (2 - 2r+§) Fa,_,.

The two series

i€ -4 o, % T 1 6 P S 3

et (145 +&.,+...), e <1 2+ 3 )

are formal solutions of Mathieu’s equation, reducing to the well-known asymptotic
solutions of Bessel’s equation (§ 17°5) when £—+0. The complete formulae which connect
them with the solutions e*¥? ¢ (+z) have not yet been published, though some steps
towards obtaining them have been made by Dougall, Proc. Edinburgh Math. Soc. xxx1v.
(1916), pp. 176-196.

* It seems highly probable that, if |¢| is sufficiently small, the series converge for all real
values of ¢, and also for complex values of s for which | I ()| is sufficiently small. It may be
noticed that, when ¢ is real, real and purely imaginary values of ¢ correspond respectively
to real and purely imaginary values of u.
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MISCELLANEOUS EXAMPLES.
1. Shew that, if £=./(32¢),

2meeo (2, §)=ceo (0, q) f ’_'" cos (k sin zsin 6) e, (6, g) dé.
2. Shew that the even Mathieu functions satisfy the integral equation
G(z)-)«f;.fo{ilc (cos 2+ cos )} G (8) dé.
3. Shew that the equation
(az’+c)%;—‘+2az ‘;—Z+()\’cz’+m) u=0

(where a, ¢, A, m are constants) is satisfied by
u= [y (s) ds
taken round an appropriate contour, provided that » (s) satisfies

diy (s) dv (s)

(M2+) —>—+2as + (A%s¥+m) v (8)=0,

which is the same as the equatiou for u.

Derive the integral equations satisfied by the Mathieu functions as particular cases of
this result.

* A complete bibliography is giver by Humbert, Fonctions de Mathieu et fonctions de Lamé
(Paris, 1926).
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4. Shew that, if powers of ¢ above the fourth are neglected, then

cey (2, g)=cos z+q cos 3z+¢% (} cos 5z — cos 3z)

+¢3 ({5 €08 72— 4 cos 52+ 3} cos 3z)

+¢* (13 €08 92— ¢ cos Tz+} cos 5z + Xt cos 3z),
se, (2, ¢)=sinz+ ¢ sin 3z + ¢% ( sin 5z + sin 32)

+ ¢ (f sin 7z + § 8in 52+ sin 32)

+¢* (73 sin 92+ 5 sin T2+ } sin 5z — Xt sin 3z),
cey (2, ¢)=cos 2z+¢ (§ cos 4z - 2) + } g% cos 62

+¢% (% cos 8z + 47 cos 42+ 4L)

+ ¢* (5} cos 10z + %93 cos 62).
?(zho i (Mathieu.)

5. Shew that
cey (2, g)=co8 3z+q (— cos z+4 cos bz)
+¢? (cos 245 €08 72) +¢3 ( — 4 cos 2+ 5 cos 5z + &5 cos 92) + O (¢*),
and that, in the case of this function

a=9+4¢?—8¢3+ 0 (¢*).
-5 7 (Mathieu.)

6. Shew that, if y (2) be a Mathieu function, then a second solution of the corresponding
differential equation is

v@ [y
Shew that a second solution* of the equation for ce, (7, ¢) is
2cey (2, ¢) —4g sin 2z 3¢%sin 42— ....
7. If y (2) be a solution of Mathieu’s general equation, shew that

. {y(+2m)+y(z-2m)}/y(2)
is constant.

8. Express the Mathieu functions as series of Bessel functions in which the coefficients
are multiples of the coefficients in the Fourier series for the Mathieu functions.

[Substitute the Fourier series under the integral sign in the integral equations of
§ 19-22.]

9. Shew that the confluent form of the equations for ce, (z, ¢) and se, (z, ), when the
eccentricity of the fundamental ellipse tends to zero, is, in each case, the equation satisfied
by J, (tk cos 2).

10. Obtain the parabolic cylinder functions of Chapter xvr as confluent forms of the
Mathieu functions, by making the eccentricity of the fundamental ellipse tend to unity.

11. Shew that ce, (2, ¢) can be expanded in series of the form

@ @
2 Apcos™z or 3 B, cos?m*tlz
m=0 m=0

according as n is even or odd; and that these series converge when | cosz| < 1.

* This solution is called in, (z, q) ; the second solutions of the equations satisfied by Mathien
functions have been investigated by Ince, Proc. Edinburgh Math. Soc. xxxur, (1915), pp. 2-15.
See also § 19-2,
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12. With the notation of example 11, shew that, if
ceu (2, )= / " ket s, (4, 9) d,

then ), is given by one or other of the series

® 2m ® (2m+1)!
A=tk 2 g A BN g T 1) P

provided that these series converge.

13. Shew that the differential equation satisfied by the product of any two solutions
of Bessel’s equation for functiouns of order » is

9(9-2n) (9+2n) u+4422 (341) u=0,

where 3 denotes 2 ‘—i-
dz

Shew that one solution of this equation is an integral function of z; and thence, by the
methods of §§ 19:-6-19-53, obtain the Bessel functions, discussing particularly the case in

which » is an integer.

14. Shew that an approximate solution of the equation

%‘+(A +A38inh?2) ¥ =0

is = C (cosech z)} sin (¥ cosh z+¢),

where C and e are constants of integration ; it is to be assumed that £ is large, 4 is not
very large and z is not small.
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