Chapter 111

Differential Inequalities and Uniqueness

The most important techniques in the theory of differential equations
involve the *“integration” of differential inequalities. The first part of this
chapter deals with basic results of this type which will be used throughout
the book. In the second part of this chapter immediate applications are
given, including the derivation of some uniqueness theorems.

In this chapter u, v, U, V are scalars; , , f, g are d-dimensional vectors.

1. Gronwall’s Inequality

One of the simplest and most useful results involving an integral
inequality is the following.

Theorem 1.1. Ler u(t), 1v(t) be non-negative, continuous functions on
[a, b]; C = 0 a constant; and

t
(1.1 (n=C +f v(s)u(s) ds fora <t =<5
Then
t
(1.2) iH=C expf u(s) ds fora = t = b;

in particular, if C = 0, then v(t) = 0.

For a generalization, see Corollary 4.4.

Proof. Case (i), C > 0. Let V(#) denote the right side of (1.1), so that
v() Z V@), V) =2 C>0 on [a,bl. Also, V'(t) = u®v(t) = u(®)V(2).
Since ¥V > 0, V'/V Zu, and V(a) = C, an integration over [a, t] gives

t

V() = Cexp f u(s) ds. Thus (1.2) follows from v(z) < ¥(¢).

Case (ii), C = 0. If (1.1) holds with C = 0, then Case (i) implies (1.2)
for every C > 0. The desired result follows by letting C tend to 0.

Exercise 1.1. Show that Theorem 1.1 implies the uniqueness assertion
of Theorem II 1.1.

24
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2. Maximal and Minimal Solutions

Let U(r,u) be a continuous function on a plane (s, u)-set E. By a
maximal solution u = °(t) of

Q.1 W = Ul u),  u(ty) = u

is meant a solution of (2.1) on a maximal interval of existence such that
if u(¢) is any solution of (2.1), then

22 u(t) = u%r)

holds on the common interval of existence of u, u®. A minimal solution
is similarly defined.

Lemma 2.1. Let U(t, u) be continuous on a rectangle R:ty St S tq + a,
ly — %ol S b; let (U, u)l EM and « = min (a,b/M). Then (2.1) has
a solution u = u%(t) on [ty, ty + «] with the property that every solution
u=u(t)yof u' = U(t, u), u(ty) = u, satisfies (2.2) on [ty, t, + al.

In view of the proof of the Extension TheoremII 3.1, this lemma implies
existence theorems for maximal and minimal solutions (which will be
stated only for an open set E):

Theorem 2.1. Let U(t, u) be continuous on an open set E and (ty, uy) € E.
Then (2.1) has a maximal and a minimal solution.

Proof of Lemma 2.1. Let 0 < o' < «. Then, by Theorem II 2.1,

(2.3) W =Uluw + Un,  u(ty) = u,

has a solution ¥ = u,(t) on an interval [t,, t, + «] if n is sufficiently large.
By Theorem I 2.4, there is a sequence n(l) < n(2) < - - - such that

(2.4) u0(0) = 1im u (1)

exists uniformly on [z, , + «'] and is a solution of (2.1).
It will be verified that (2.2) holds on [z, t, + «']. To this end, it is
sufficient to verify

@25 u(t) S u,(1) o [t 1+ o]

for all large fixed n. If (2.5) does not hold, there isa t =1, 1, < t; <
to + o' such that u(t;) > u,(r,). Hence there is a largest #, on [ty 1;),
where u(ty) = u,(t,), so that u(t) > u,(t) on (t,, 1;]. But (2.3) implies that
u,'(tz) = u'(ty) + 1/n, so that u,(t) > u(t) for t(> t,) near t,. This con-
tradication proves (2.5). Since &’ < « is arbitrary, the lemma follows.

Remark. The uniqueness of the solution ¥ = #°(t) shows that u, (1) —
u°(t) uniformly on [t,, t, + 2] as n — o0 continuously.
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3. Right Derivatives

The following simple lemmas will be needed subsequently.
Lemma 3.1. Let wu(t)e Ca, b]. Then |u(t)| has a right derivative
Dy |u(t)| for a £ t < b, where

G.1)  Dg |u(®)| = lim i(|u(t + )| — |u@®)])  as 0 < h—0,

and Dy, |u(t)| = u'(t) sgn u(t) if u(t) # 0 and Dgu(t) = |u'(t)| if u(t) = 0.
In particular, | Dy |u(®)| | = |'(1)].

The assertion concerning Dy |u(¢)| is clear if u(t) ¢ 0. The case when
u(t) = 0 follows from u(t + 4) = h@/'(t) + o(1)) as h—0, so that
|u(t + )| = A(j' (D] + o(1)) as 0 < & — 0.

Lemma 3.2. Let y = y(r) € Ca, b]. Then |y(t)| has a right derivative
Dy |y(®)| and |Dp [y(®)| | = y'()| for a =t < b.

Since |y(¢#)| = max (|¥*(¢)], . . . , |[¥*(?)|), there are indices k such that
|¥*(#)| = |y(¢)|. In the following, k denotes any such index. By the last
lemma, |y*(¢)| has a right derivative, so that

[yt + D) = [y + h(Dg ly*O] + o(1))  as0 < h—0.

For small 4 > 0, |y(t + h)| = max, |[y*(¢ + h)|, so that by taking the
max, in the last formula line,

[yt + B)| = ly(1)] + h(max, D [yN)| + o(1))  as 0<h—0.

Thus Dy, |y(¢)| exists and is max, Dy, [¢*(t)|. Since |Dy [y*(1)| | = [¥*' (1) =
|#'(¢)], Lemma 3.2 follows.

Exercise 3.1. Show that Lemma 3.2 is correct if |y| is replaced by the
Euclidean length of y.

4. Differential Inequalities

The next theorem concerns the integration of a differential inequality.
It is one of the results which is used most often in the theory of differential
equations.

Theorem 4.1. Let U(t, u) be continuous on an open (t, u)-set E and
u = u°(t) the maximal solution of (2.1). Let v(t) be a continuous function on
[to, to + al satisfying the conditions v(ty) = u,, (¢, v(¢)) € E, and v(t) has
a right derivative Dypo(t) on ty < t < to + a such that

4.1) Dpu(r) = U, 1))
Then, on a common interval of existence of u%(t) and v(t),
4.2) () = u(p).

Remark 1. If the inequality (4.1) is reversed and u(t,) = u,, then the
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conclusion (4.2) must be replaced by v(¢) = (), where u = u(r) is the
minimal solution of (2.1). Correspondingly, if in Theorem 4.1 the function
v(¢) is continuous on an interval f{, — a =t < ¢, with a left derivative
D,u(r) on (ty — a, ty] satisfying Dyv(t) = U(t, v(t)) and v(ty) = u,, then
again (4.2) must be replaced by v(r) = wuy(2).

Remark 2. 1t will be clear from the proof that Theorem 4.1 holds if
the “right derivative” Dp is replaced by the “upper right derivative”
where the latter is defined by replacing “lim’ by *“lim sup’” in (3.1).

Proof of Theorem 4.1. It is sufficient to show that there existsa 6 > 0
such that (4.2) holds for [¢, ¢, + 6]. For if this is the case and «°(¢), v(¢)
are defined on [¢,, £, + ], it follows that the set of z-values where (4.2)
holds cannot have an upper bound different from f.

Let n > O be large and let 6 > 0 be chosen independent of n such that
(2.3) has a solution u = u,(t) on [ty t, + 6]. In view of the proof of
Lemma 2.1, it is sufficient to verify that v(r) =< u,(¢) on [, t, + 6], but
the proof of this is identical to the proof of (2.5) in § 2.

Corollary 4.1. Let v(t) be continuous on [a, b] and possess a right
derivative Dpu(t) < 0 on [a, b]. Then v(f) = v(a).

Corollary 4.2. Let U(t, u), u°(t) be as in Theorem 4.1. Let V(t, u) be
continuous on E and satisfy

4.3) Vi, u)y < UL, u).
Let v = v(t) be a solution of
(4.4) V=Wt o), vt = vl = uo)

on an interval [to, ty + al. Then (4.2) holds on any common interval of
existence of v(t) and u’(t) to the right of t = t,.

It is clear from Remark 2 that if v(¢) is extended to an interval to the
left of t = £,, then, on such an interval, (4.2) must be replaced by tv(f) =
uy(t) where uy(¢) is a minimal solution of (2.1) with u, = v(¢,).

Corollary 4.3. Let U(t,u) = 0, u°(t) be as in Theorem 4.1; u = ut)
the minimal solution of

4.5) W = —=U(t, u), u(ty) = u(Z 0).

Let y = y(t) be a C* vector-valued function on [t,, t, + o] such that u® <
|y(t0)| é Uy, (ta |y(t)|) € E and

(4.6) ly' () = U, ly())
on [t, ty + al. Then the first [second] of the two inequalities
4.7 u(t) = ly(0)| = u¥r)

holds on any common interval of existence of uy(t) and y [u%(t) and y].
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This is an immediate consequence of Theorem 4.1 and Remark |1
following it, since |y(f)| has a right derivative satisfying —]y'(£)| =
Dp|y(®)] = |y'(¢)| by Lemma 3.2. (In view of Exercise 3.1, this corollary
remains valid if |y| denotes the Euclidean norm.)

Exercise 4.1. (a) Let f(z, y) be continuous on the strip S:a = ¢ = b,
y arbitrary, and let f*(¢, 3%, . . . , ¥%) be nondecreasing with respect to each
of the components ¥, i 3 k, of y. Assume that the solution of the initial
value problem ¥’ = f(¢, y), ¥(a) = y, is unique for a fixed y,, and that this
solution ¥ = y(¢) exists on [a, b]. Let 2(¢t) = (2'(¢), . . ., 2%(t)) be contin-
uous on [a, b] such that 2(¢) has a right derivative for k=1,...,4d,
Za) S y.k and Dp(t) < f5(8, 2(r)) for a =<t =< b [or 2¥a) = y,* and
D) Z f¥(t, D) for a S 1 = b]. Then (1) < y*(t) [or 2(1) Z ¥4(1)]
for a £t < b. (This is applicable if g(¢, y) is continuous on S, 2(¢) is a
solution of 2’ = g(¢, 2) and 2%a) = o, g%, y) = f*(t, y) on S [or 2¥(a) =
Yo' g°(t, y) = f*(t, y) on S].) See Remark in Exercise 4.3.

(b) 1f, in part (a), all initial value problems associated with y’ = f(¢, ¥)
have unique solutions, f*(¢, ) is increasing with respect to y%, i # k and
k=1,...,d and 2i(a) <y, [or z/(a) > y,’] for at least one index j,
then 25(¢) < y,5(¢) [or 2%(t) > y (@) fora <t = b, k=1,...,d.

(o) 1f, in addition to the assumptions of (a), there is an index A such that
St y) is nondecreasing with respect to ¥, then y*(¢) — 2*(¢) is non-
decreasing [or nonincreasing] ona = ¢ < b.

(d) 1f the assumptions of (b) and (c) hold, then y,*(¢) — 2*(¢) is increasing
[or decreasing] ona = ¢ < b.

(e) Let u, U denote real-valued scalars and y = (¢, .. ., %) a real d-
dimensional vector. Let U(z, y) be continuous for a < ¢ < b and arbitrary
y such that solutions of u® = U(t, u, o', ..., u ) are uniquely deter-
mined by initial conditions and that U(z, 4!, ..., %% is nondecreasing
with respect to each of the firstd — | components 9/, j=1,...,d — 1,
of y. Let u,(¢), uy(t) be two solutions of u'® = U on [a, b] satisfying
u(a) £ uP@) for j=0,...,d—1. Then uP’(r) S uf(t) for j=
0,...,d—1 and a<t=<b; furthermore, ud’(t) — u{)(¢) is non-
decreasing for j=0,...,d —2anda =t <.

Exercise 4.2. Let f(1, y), g(t, y) be continuous on a strip, a < ¢ £ b,
and y arbitrary, such that f*(r, y) < g%t y) for k =1,...,d and that,
for each k= 1,...,d, either f¥¢t,y',...,y% or gt o', ..., 9% is
nondecreasing with respect to 4%, i %2 k. Ona <t S b, lety =y(r) be a
solution of ¥" = f(t, ¥), y(a) = y, and z = 2(¢) a solution of 2" = g(¢, 2),
2(a) = z,, where y* <z for k=1,...,d. Then yXr) <2¥) for
a<t=h

Exercise 4.3. Letf(¢, y) be continuousforfy St Sty + a, ly — yol =
b such that f*(s,y',...,%% is nondecreasing with respect to each ¥,
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i # k. Showthaty = f(¢, y), ¥(t,) = ¥, has a maximal [minimal] solution
y,(2) with the property that if ¥ = y(¢) is any other solution, then y*(¢) =
¥o5(8) [¥*(t) = y,*(¢)] holds on the common interval of existence. Remark:
The assumption in Exercise 4.1(g) that the solution of the initial value
problem ¥’ = f(¢, y), y(a) = ¥,, is unique can be dropped if y(¢) is replaced
by the maximal solution [or minimal solution] y,(¢).

Exercise 4.4. Let f(t, y), g(, y) be linear iny, say (¢, y) = Za,,(Ny’ +
f¥() and g¥(t, y) = Zb,()y’ + g¥(¢), where a,,(r), bi(1), f¥(), gX(r) are
continuous for a <t =<b. Let y(¢), z(r) be solutions of y' = f(z, y),
y(a) = yoand 2’ = g(¢, 2), 2(a) = z,, respectively. (These solutions exist on
[a, b]; cf. Corollary 5.1.) What conditions on a;(t), b(2), f*(9), g"(),
Yo» 2o imply that [2%(6)] S y*(*) on [a, bl fork =1,...,d?

Theorem 4.1 has an “integrated”’ analogue which, however, requires
the monotony of U with respect to u. This theorem is a generalization of
Theorem 1.1:

Corollary 4.4. Let U(t, u) be continuous and nondecreasing with respect
to u for ty <t =<ty + a, u arbitrary. Let the maximal solution u = u’(t)
of (2.1) exist on [to, to + al. On|[t,, t, + al, let v(t) be a continuous function

satisfying
4.8 () = v, +ftU(s, u(s)) ds,

where vy £ uy. Then v(t) < u®t) holds on [t,, t, + al.

Proof. Let V(¢) be the right side of (4.8), so that v(r) = V(¢), and
V'(t) = U(t, v(¢)). By the monotony of U, V'(t) < U(s, V(t)). Hence
Theorem 4.1 implies that V(r) < u%(¢) on [t t, + a]; thus v() = u%(¢)
holds.

Exercise 4.5. State the analogue of Corollary 4.4 for the case that the
constant v, in (4.8) is replaced by a continuous function v,(t).

Exercise 4.6. Let y, f, z be d-dimensional vectors; f(¢, ) continuous
for ty <t <ty + a and y arbitrary such that f*(z, %', ..., %% is non-
decreasing with respect to each Y, j=1,...,d Let the maximal solu-
tion yo(t) of ¥' = f(, y), y(to) = y, exist on [ty, tp + a]; cf. Exercise 4.3.
Let 2(f) be a continuous vector-valued function such that 2%(¢) < y* +

t
ff"(s, z(s)) ds for ty £t <ty + a. Then 2%(t) = y*(¢) on [t,, t, + al.

ty
5. A Theorem of Wintner

Theorem 4.1 and its corollaries can be used to help find intervals of
existence of solutions of some differential equations.

Theorem 5.1. Let U(t, u) be continuous forty, <t <ty + a, u Z 0, and
let the maximal solution of (2.1), where u, = 0, exist on [t,, t, + al, e.g.,
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let U(t, u) = y(u), where p(u) is a positive, continuous function on u = 0
such that

G deulzp(u) = .

Let f(t, y) be continuous on the strip ty <t = t, + a, y arbitrary, and
satisfy

2 /e, 9l = UG, lyD-
Then the maximal interval of existence of solutions of
(3) y = 0y,  yt) =1y,

where |yo| = uy, is [ty, t, + al-

Remark 1. 1t is clear that (5.2) is only required for large |y|. Admis-
sible choices of y(u) are, for example, y(u) = Cu, Culogu, . .. for large
u and a constant C.

Proof. (5.2) implies the inequality (4.6) on any interval on which y(r)
exists. Hence, by Corollary 4.3, the second inequality in (4.7) holds on
such an interval and so the main assertion follows from Corollary II 3.1.

In order to complete the proof, it has to be shown that the function
U(t, u) = y(u) satisfies the condition that the maximal solution of

(5.4) wo=yp),  u(t) =u(Z0)

exists on [#,, f, + a] by virtue of (5.1). Since > 0, (5.4) implies that for

any solution u = u(t),
ult)

5.5) P f Wy i) = | dujy).

uo

Note that y > 0 implies that #'(f) > 0 and u(t) > 0 for t>t,. By
Corollary IT 3.1, the solution u(¢) can fail to exist on [ty, ¢, + a] only if it
exists on some interval [¢,, 0) and satisfies u(¢t)— o as t — & (< a). If
this is the case, however, t — d in (5.5) gives a contradiction for the left side
tends to 6 — ¢, and the right side to oo by (5.1). This completes the proof.

Remark 2. The type of argument in the proof of Theorem 5.1 supplies
a priori estimates for solutions y(¢) of (5.3). For example, if (u) is the same
as in the last part of Theorem 5.1, let

¥(u) =f ds/y(s) foru = u,
and let u = ®(v) be the function inverse to v = ¥'(u). Then |f(s, )| =
w(ly|) implies that a solution () of (5.3) satisfies

lyO = Ot — 1) forty =t =t + a;
ct. (5.5).
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Exercise 5.1. Let f(f, y) be continuous on the strip ¢, =t = ¢, + q,
y arbitrary. Let | f(¢, y)| = @(0)y(lyl), where @(r) = 0 is integrable on
[£0s o + a] and (u) is a positive continuous function on # = 0 satisfying
(5.1). Show that the assertion of Theorem 5.1 and an analogue of Remark
2 are valid.

Corollary 5.1. If A(Y) is a continuous d X d matrix function and g(t) a
continuous vector function for ty £ t < ty + a, then the (linear) initial value
problem

(5.6) y =A@y + g0,  ylt) =1y,

has a unique solution y = y(t), and y(t) existson ty, = t = t, + a.

This is a consequence of Theorem II 1.1 and Theorem 5.1 with the
choice of y(u) = C(1 + u) for some large C.

In a scalar case, Theorem 5.1 can be ‘“‘read backwards’:

Corollary 5.2. Let U(t, u), V(t, u) be continuous functions satisfying (4.3)
on ty <t =ty + a, u arbitrary. Let some solution v = v(t) of (4.4) on
[te, 8), 6 = ty + a, satisfy v(t) — o as t — 6. Then the maximal solution
u= u°(t) of (2.1) has a maximal interval of existence [a, w_), where w, =< 6,
and W(t) - o as t — w,.

6. Uniqueness Theorems

One of the principal uses of Theorem 4.1 and its corollaries is to obtain
uniqueness theorems. The following result is often called Kamke’s general
uniqueness theorem.

Theorem 6.1. Let f(t, y) be continuous on the parallelepzped Rity=t =
to+ a, [y —yol £ b. Let w(t,u) be a continuous (scalar) function on
Ryty <t =ty+ a, 0 = u =< 2b, with the properties that w(t,0) = 0 and
that the only solution u = u(t) of the differential equation

6.1 U = wl(t, u)

on any interval (ty, t, + €] satisfying

(6.2) u(f)—0 and t“—(’)——»o ast—to+ 0
_to

isu(t) = 0. For (¢, y1), (£, y2) € R with t > t,, let

(6.3) /(& y) — [yl = 0@, 3 — v
Then the initial value problem
(6.4) y=fty), ylt) =y

has at most one solution on any interval [t,, t, + €].
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In Theorem 6.1, we can also conclude uniqueness for initial value
problems y' = f(t, v), ¥(¢,) = y, for t; # t,. Theorem 6.1 remains valid
if Euclidean norms are employed.

Exercise 6.1. Show that Theorem 6.1 is false if (6.2) is replaced by
u@®), W(@)—>0ast—1t,+ 0.

Proof. The fact that
6.5 w0 =0 forty<t=Zty,+a
implies of course that u(r) = 0 is a solution of (6.1).

Suppose that, for some € > 0, (6.4) has two distinct solutions y = ¥,(¢),
Yo(t) on t, St <ty + e Let y(t) = yy(t) — y5(t). By decreasing e, if

necessary, it can be supposed that

u yto + €)% 0 and |y(t, + €| < 2b.
Also  y(t) =¥y'(5,) = 0. By (6.3),
ly'(O] = o, ly()) on (&t + €] Tt
follows from Corollary 4.3 (and the
Remark 1 following Theorem 4.1) that
if u = uy(¢) is the minimal solution of
the initial value problem u’ = w(¢, u),

u=ly(t)

u=uoft) u(to + € = ly(ty + €)|, where 0 <
ly(to + €)| < 2b, then
to bote t (6.6) y(D)] Z uo(t)
Figure 1. on any subinterval of (#,f, + €] on

which u(¢) exists; see Figure 1.

By the proofs of the Extension Theorem II 3.1 and Lemma 2.1, u,(¢) can
be extended, as the minimal solution, to the left until (¢, uy(z)) approaches
arbitrarily close to a point of dR, for some t-values. During the extension
(6.6) holds, so that (¢, u°(¢)) comes arbitrarily close to some point (4, 0) €
OR, for certain t-values, where 8 = ¢,. If > t,, then (6.5) shows that
uy(t) has an extension over (¢,, t, + €] with uy(t) = 0 for (¢,, 8]. Thus,
in any case, the left maximum interval of existence of uy(¢) is (¢, £, + €.
It follows from (6.5) and (6.6) that uy(r) — 0 and wuy(¢)/(t — t,) — 0 as
t—t, + 0. By the assumption concerning (6.1), uy(¢) = 0. Since this
contradicts uy(t, + €) = |y(t, + €)| # 0, the theorem follows.

Corollary 6.1 (Nagumo’s Criterion). If ty = 0, then w(t,u) = uft is
admissible in Theorem 6.1 (i.e., the conclusion of Theorem 6.1 holds if
(6.3) is replaced by

©67) v — £, g < 2= 2

— %o
for (¢, y,), (¢, y2) € R with t > tg).
Exercise 6.2. The function w(¢, u) = uft in Corollary 6.1 cannot be
replaced by w(t, u) = Cu/t for any constant C > 1. Show that if C > 1,
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then there exist continuous real-valued functions f(f,y) on 0 S ¢ =<1,
ly| = 1 with the properties that

17 (t, y1) — F(&: 92| = for r > 0,

Cly, — ysl
t
but that ¥" = f(¢, ¥), ¥(0) = 0 has more than one solution.
Corollary 6.2 (Osgood’s Criterion). If t, = 0, then w(t, u) = @()p(u)
is admissible in Theorem 6.1 if (t) = O is continuous for 0 < t < a; p(u)

is continuous for u Z 0 and p(0) = 0, w(u) > 0 ifu > 0; andf o(t) dr <
ooj dulp(u) =

Actually, the continuity condition on ¢(¢) in this corollary can be
weakened. The analogous uniqueness theorem can be proved directly if
@(¢) is only assumed to be integrable over 0 < ¢t < a.

Exercise 6.3 [Generalization of Corollaries 6.1 and (6.2)]. Let ¢, = 0.
(@) If ¢(¢) = 0 is continuous for 0 < ¢ =< a, show that w(t, u) = ¢(t)u

is admissible in Theorem 6.1 if and only if lim inf l:faq(s) ds + log t} <
ast — +0. (b) Let ¢(¢r) = Obecontinuous for0 < ; < a; w(u) continuous
for0 £u=2b, p(0)=0,pu) >0for0 <u=bh, andf dufyp(u) = .
Show that w(z, u) = @(t)p(w) is admissible in Theorem 6+.(1) if, for every
C > 0, limsup t—l(D(C +fa<p(s) ds) > 0 ast—0, where u = ®(v) is the

function inverse to W'(u) = f dsp(s).

Exercise 6.4. Let yp(u) be continuous for |u| < 1, p(0) = 0. Show that
the initial value problem u' = p(u), u(0) =0 has a unique solution
u(t) = 0 unless there exists an €, 0 < € < I, such that either p(u) 2 0
for 0 < u = e and 1/p(u) is (Lebesgue) integrable over [0, €] or p(u) < 0
for —e £ u = 0 and 1/y() is (Lebesgue) integrable over [—e, 0].

Exercise 6.5. Let f, w be as in Theorem 6.1. Show that there exists
a function wy(¢, u) which is continuous on the closure of R,, is nondecreas-
ing with respect to u for fixed ¢, and satisfies the conditions on w(¢, u);
thus w2, 0) = 0; the only solution of u’ = wy(t, u) and u(z)) = 0 on any
interval £y, £ + €]l is u(t) = 0; and | f (£, y1) — f(&, ¥2)| = 0o(t, Y1 — ¥al)-
(Note that, since w, is continuous on the closure of R,, any solution of
u' = wy(t, u) on (t, t, + €] satisfying (6.2) is necessarily continuously
differentiable and is the usual type of solution on [t, #, + €].)

Exercise 6.6. (a) Let ¢, . . ., €;_, be non-negative constants such that
6+ - +e,=1. Let Ult,y)= U(t, v, ...,y%) be a real-valued
continuous function on R0t =<a and |[¢| b for k=1,...,d
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d
suchthat |U(t, y) — Ut 4| £ 3 €o(d — k + DI @FD |y k — o4 if
k

=1
t > 0. Show that the dth order (scalar) equation ‘¥ = U(t,u, v/, .. .,
u'%-1)) has at most one solution (on any interval 0 = ¢ < € < a) satisfying
given initial conditions u(0) = ug, 4" = uy, ..., u1(0) = ulf 1, where
U Uy, -« ., 49D are d given numbers on the range |u| < b. (b) Note that
part (a) remains correct if the constants €, ..., ¢;_, are replaced by
continuous non-negative functions ey(t), ..., €;_y(¢) such that €y (¢) +
et g =1

Exercise 6.7. (a) Let f(z, y) be continuous for R:0 < <aq, [y = b.
On Ry:0 < 1 =< a, |u] = 2b, let wy(t, u), wyt, u) be continuous non-nega-
tive functions which are nondecreasing in u for fixed ¢, satisfy w,(¢t, 0) = 0,
and

I f(ty) —f(t )l S ot |y —wal)  forj=1,2.

Let there exist continuous non-negative functions a(¢), f(r) for0 =t < a
satisfying a(0) = f(0) = 0, f(¢) > 0 for 0 < ¢ < a, and a(s)/f(¢) — O as
t — 0. Suppose that each solution u(t) of ¥’ = w,(¢, u) for small ¢+ > 0 with
the property that u(f) — 0 as ¢ — O satisfies u(t) =< a(¢) on its interval of
existence. Finally, suppose that the only solution of v = w(¢, v) for small
t > 0 satisfying o(£)/8(f) = 0 as ¢ — 0 is o(t) = 0. Then the initial value
problem y" = f(z, ), ¥(0) = 0 has exactly one solution. (b) Prove that
oy(t, u) = Cu*, wy(t, u) = kujt are admissible if k>0, 0 <1< 1,
k(1 — 2) < 1 witha@®) = C(1 — D)rO=18(1) = ¢*,

The following involves a ‘“one-sided inequality”” and gives “one-sided
uniqueness.”

Theorem 6.2 Let f(t, y) be continuous forty, < t Sty + a, ly — yo = b.

Considering y, f to be Euclidean vectors, suppose that

(6.8) ey —fEy)]l =) S0

for tySt=tyt+aand |y, — y| b, i =1,2, where the dot denotes
scalar multiplication. Then (6.4) has at most one solution on any interval
[t £y + €], € > O.

When it is desired to obtain uniqueness theorems for intervals [z, — e, £,].
it is necessary to assume the reverse inequality in (6.8).

Corollary 6.3. Let U(t,u) be a continuous real-valued function for
ty =2t =ty + a, |u— ug| = b which is nonincreasing with respect to u
(for fixed t). Then the initial value problem v’ = U(t, u), u(ty) = u,y has at
most one solution on any interval [, t; + €], € > 0.

Proof of Theorem 6.2. Let y = y,(2), y,(f) be solutions of (6.4) on
[t o + €].  Let 8() = llyot) — (DI = (y: — %) - (¥ —y,) be the
square of the Euclidean length of ,(#) — »,(¢), so that é(z,) = 0, 6(¢) = 0.
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But () =2(y, — %) W — %) <0 by (6.8). Hence () =0 on
[#0» to + €] as was to be proved.

Exercise 6.8 (One-sided Generalization of Nagumo’s Criterion and of
Theorem 6.2). Theorem 6.2 remains valid if condition (6.8) is relaxed to

1ty %2) — 6 9] - (v — g0y < 2=l

t—t,
forty, <t=t,+ a.

7. van Kampen’s Unigueness Theorem

In the following uniqueness theorem, conditions are imposed on a
family of solutions rather than on f(¢, ¥) in

a.n Y=ty ylt) =1

Theorem 7.1. Let f(t, y) be continuous on a parallelepiped R:ty = t =
to+a,ly —yo| = b. Let there exist a functionn(t, t, y,) onty = t, 4 =
to + a, [ — yol = B(< b) with the properties (i) that, for a fixed (t;, y1),
y = n(t, 4, yy) is a solution of

7.2 Y =1ty., yt)=uy;

(ii) that n(t, t,, y1) is uniformly Lipschitz continuous with respect to y,;
finally, (iii) that no two solution arcs y = n(t, ty, 11), ¥ = 1(t, s, Ys) pass
through the same point (t,y) unless (¢, t;, y,) = 1(t, t5, yo) for t0 =t=
to +a. Then y = n(t, ty, yy) is the only solution of (1.1) for ty =t, =
to+ a lyy — Yol = B.

Exercise 7.1. Show that the existence of a continuous #%(s, t;, ¥;)
satisfying (i) and (iii) [but not (ii)] does not imply the uniqueness of the
solution of (7.1).

Exercise 7.2. When f(t,y) is uniformly Lipschitz continuous with
respect to ¥, it can be shown that a function y = %(t, t,, ¥,) satisfying the
conditions of the theorem exists (for small 8 > 0); e.g., cf. Exercise IT 1.2.
Show that the converse is not correct, i.e., the existence of #(¢, f1, ¥,)
satisfying (i)—(iii) does not imply that f(z, y) is uniformly Lipschitz con-
tinuous with respect to y (for y near y,).

Proof. Let y(r) be any solution of (7.1). It will be shown that y(¢) =
y(t, t,, 4o) for small ¢ — ¢, = 0.

Condition (ii) means that there exists a constant K such that

(7.3) [79(t, ty, y1) — (2, 1, ¥ = K|y, — el

for ty=<t ty, Sty +aand |y, —yo| = B, ly. — %l = B.
Let | f(t,y)] = M on R. Then any solution y = y(r) of (7.1) satisfies
[y(1) — yol < M(t — t0) S 3B if 1o = ¢ < 1, + B/2M. Thus n(s, s, y(5)) is
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defined and |n(t, s, y(s) — y() S Mt~ s| S 3 if 1,51 sS 1o+
B/2M. Hence

(7.4) It s, 9N —9l =B fty=t,s St +y,

where y = min (g, §/2M). Condition (iii) means that any point on any
of the arcs y = (¢, t,, ¥,) can be used to determine this arc. Thus (7.3),

/y =2t ty, yo)

ofs)y=nfts, y(s))

F/

y= 7)/’: ty y/tl)}

o(ty)~ars)

/y=y/t)

Bt 5 ys)) —yrty)

(tos Yo/

-~

to s t, :
Figure 2. The case d = dim y is 1.
with ¥, = y(¢,) and y, = 9(¢,, s, y(s)), implies that

(7.5 In(e, 11, y(11)) — 12, s, YD = Kly(t) — n(ty, 5, y())|
ifty =<t t,s =ty + y; cf. Figure 2.

Let ¢ be fixedonty =t < t, + . It will be shown that
(1.6) (6) = (¢, £, Yo) — Y1) = 0.
To this end, put
A ols) =t b,y — (55, y(s)  foriy, S s S 1(ShH+y)
so that o(fy) = 0 and o(t) = 7(¢). Then (7.5) and (7.7) imply that
(7.8) lo(ty) — o(s)l = Kly(t) — n(ts, s, y())I.
Since y = (¢, 5, y(s)) is a solution of ¥’ = f through the point (s, y(s)),
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it is seen that #(ty, 5, Y(5)) = ¥(s) + (¢ — ) [f(s, 4(5)) + o(1)] as £; —s.
Also, y(t) = y(s) + (¢, — 5) [f(s, y(s)) + o(1)] as £, —s. Hence (7.8)
gives a(t)) — o(s) = Ko(1) |t; — 5| as t; —s; i.e., do/ds exists and is O.
Thus o(s) is the constant o(fy) = 0 for £, =5 = ¢. In particular, 7(¢) =
o(t) satisfies (7.6), as was to be proved.

Exercise 1.3 (One-sided Analogue of Theorem 7.1). Let f(t,y) be
continuouson R:ty St =ty + a, |y — yo| £ b. Let there exist a function
Nt t,y) on fp St =t + a, |y — Yol = B(< b) with the proper-
ties (i) that, for fixed (¢,, ¥,), ¥y = n(t, 1, ;) is a solution of (7.2) and (ii)
that there exists a constant K such that formax (¢, 8,) S t* =t < ¢, + a.

In(ta tla yl) - ')7(t, t2, yZ)I é K |"7(t*, tl’ yl) - 77(t*, t2, y2)|'

Then y = #(t, t;, ¥,) is the only solution of (7.2) for sufficiently small
intervals [t;, t; + €], € > 0, to the right of #; (but not necessarily to the
left of £,).

8. Egress Points and Lyapunov Functions

Let f(#, y) be continuous on an open (f, y)-set 2 and let £, be an open
subset of Q. Let 9Q, and Q, denote the boundary and closure of Q,,
respectively. A point (¢, ¥o) € 0Q, N Q is called an egress point [or an
ingress point] of Q, with respect to the system

8.1) y =fty)

if, for every solution y = y(¢) of (8.1) satisfying y(¢,) = yo; there exists an
€ > O such that (¢, y(2)) € Qg for ¢, — e < t < ty[orforty < t <ty + €l.
If, in addition, (¢, y(z)) ¢ Q for t, < t < ty+ € [or forty — € < t < t,]
for a small € > 0, then (f, ¥,) is called a strict egress point [or strict
ingress point]. A point (, ¥o) € 082y N Q will be referred to as a nonegress
point if it is not an egress point.

Lemma 8.1. Let f(t, y) be continuous on an open set € and Q4 an open
subset of Q such that 0Qy N Q is either empty or consists of nonegress
points. Let y(t) be a solution of (8.1) satisfying (1° y(1°)) € L, for some
1. Then (t, y(t)) € Qo on a right maximal interval of existence [t° w.).

If the conclusion is false, there is a least value £o(> ¢9) of ¢, where
(1o, Y(1p)) € 082y M Q. But then (¢, y(¢,)) is an egress point, which contra-
dicts the assumption and proves the lemma.

Let u(f, y) be a real-valued function defined in a vicinity of a point
(ty. 1) € Q. Let y(¢) be a solution of (8.1) satisfying y(¢,) = y,. If u(s, y(r))
is differentiable at ¢ = ¢,, this derivative is called the trajectory derivative
of u at (t,, y,) along y = y(¢t) and is denoted by u(t,, ;). When u(¢, y) has
continuous partial derivatives, its trajectory derivative exists and can be
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calculated without finding solutions of (8.1). In fact,

(8.2 u(t, y) = ou/ot + (grad u) - (¢, ),

where the dot denotes scalar multiplication and grad u = (du/dy%, . ..,
0u/0y®) is the gradient of u with respect to y.

Let (2, 4o) € 0Qy N Q and let u(t, y) be a function of class C! on a
neighborhood N of (fy, yo) in Q such that (¢, ¥) € Q, N N if and only if
u(t,y) < 0. Then a necessary condition for (¢,, ¥,) to be an egress point
is that u(ty, y,) = 0 and a sufficient condition for (z,, y,) to be a strict
egress point is that u(f, y,) > 0. Further, a sufficient condition for
(%0, o) to be a nonegress point is that u(f, y) < 0 for (¢, y) € Q.

When the system under consideration

(8.3 y =1,

is autonomous (i.e., when the right side does not depend on ¢), definitions
are similar. For example, let f(¥) be continuous on an open y-set Q, €,
an open subset of , and y, € 0, N Q. The point y, is called an egress
point of Q, with respect to (8.3) if, for every solution y(¢) of (8.3) satisfying
y(0) = y,, there exists an € > 0 such that () € Q, for —e <t < 0. If,
in addition, y(¢) ¢ Q, for 0 < ¢ < € for some € > 0, then y, is called a
strict egress point. A lemma analogous to Lemma 8.1 is clearly valid here.

For an application of these notions, consider a function f(y) defined
on an open set containing ¥ = 0. A function V(y) defined on a neighbor-
hood of y = 0 is called a Lyapunov function if (i) it has continuous partial
derivatives; (ii) V(y) = 0 according as |y| = 0; and (iii) the trajectory
derivative of V satisfies V(y) < 0. ,

Theorem 8.1. Let f(y) be continuous on an open set containing y = 0,
f(©) = 0, and let there exist a Lyapunov function V(y). Then the solution

= 0 of (8.3) is stable (in the sense of Lyapunov).

Lyapunov stability of the solution y = 0 means that if € > 0 is arbitrary,
then there exists a 6, > 0 such that if |y,| < &, then a solution y(f) of
(8.3) satisfying the initial condition y(0) = y, exists and satisfies |y(¢)| < €
for t =z 0. If in addition, y(¢) — O as ¢t — oo, then the solution y = 0 of
(8.3) is called asymprotically stable (in the sense of Lyapunov). Roughly
speaking, Lyapunov stability of ¥ = 0 means that if a solution y(¢) starts
near y = O it remains near y = 0 in the future (¢ Z 0); and Lyapunov
asymptotic stability of y = 0 means that, in addition, y(+) —0 as £ — co.

Proof. Let ¢ > O beany number such that the set |[y| < eis in the open
set on which fand V are defined. For any # > 0, let () be chosen so
that 0 < 8(7) < eand V(y) < 7 if |ly| < 8(x).

Reference to Figure 3 will clarify the following arguments. Since V(y)
is continuous and positive on |y| = ¢, there is an # = 5, > 0 such that
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V(y) > n for ly| = e. Let Q, be the openset {y:|y| < ¢, V(y) < n}. The
boundary 9, is contained in the set {y:|y| < €, ¥(y) = #}. The function
u(y) = V(y) — n satisfies u(y) < 0 at a point ¥, |y| < ¢, if and only if
y €Q,. Clearly # = ¥ < 0. Hence, no point of 8, is an egress point.
Consequently, by the analogue of Lemma 8.1, a solution y(¢) of (8.3)
satisfying (0) € Q, remains in , on its right maximal interval of existence
[0, »,). Since Q, is contained in the sphere |y| < € in Q, it follows that
w, = oo; Corollary IT 3.2.

lyl=¢ where V>ny

082y, where V=7
Iyl =8,

Figure 3.

Finally, put 6, = é(n.) > 0, so that V(y) <7 if |y| < §, < €. Thus
l#(0)| < 6, implies that y(0) € Q,, hence y(¢) exists and y(t) € Q, for ¢t = 0.
In particular, |y(¢)| < e for £ Z 0. This proves the theorem.

Exercise 8.1. Let f(y) be continuous on an open set containing y = 0
and let f(0) = 0. Let (8.3) possess a continuous first integral V(y) [i.e., a
function which is constant along solutions y = y(f) of (8.3)] such that
V(y) has a strict extremum (maximum or minimum) at y = 0. Then the
solution ¥y = 0 of (8.3) is stable,

Theorem 8.2. If, in Theorem 8.1, V(y) < 0 according as |y| = O, then
the solutiony = 0 of (8.3) is asymptotically stable (in the sense of Lyapunov).

Proof. Use the notation of the last proof. Let y(#) be a solution of
(8.3) with [y(0)| < .. Since ¥V < 0, it follows that F(y(¢)) is nonincreasing
and tends monotonically to a limit, say ¢ = 0, as £ — .

Suppose first that ¢ = 0. Then y(f)—0 as t— oo. For otherwise,
there is an €, > 0 such that ¢y = |y(¢)| = e for certain large f-values. But
there exists a constant m, > 0 such that V(y) > m, for ¢, < |y| < €; thus
V(y(1)) > my > O for certain large r-values. This is impossible; hence,
#(it)—0ast — oo,

Suppose, if possible, that ¢ > 0, so that 0 < ¢ < 5 and V(y) < }c if
vl < d(3¢) < e. Hence |y(1)| = d(3c) for large ¢. But the assumption on
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¥ implies that there exists an m > Osuch that V(y) £ —m < 0if é(}¢) <
|yl = e. In particular, V(y(t)) £ —m < 0, for all large ¢. This is impos-
sible. Hence ¢ = 0 and y(t) - 0 as ¢ — oco. This proves the theorem.

A result analogous to Theorem 8.1 in which the conclusion is that the
solution ¥ = 0 is not stable is given by the following:

Exercise 8.2. Let f(y) be continuous on an open set £ containing
y¥ = 0 and let f(0) = 0. Let there exist a function V(y) on E satisfying
V(0) = 0, having continuous partial derivatives and a trajectory derivative
such that V(y) < 0 according as |y| = 0 on £. Let V(y) assume negative
values for some y arbitrarily near y = 0. Then the solution y = 0 is not
(Lyapunov) stable.

Theorems 8.1 and 8.2 have analogues for nonautonomous systems
which depend on a suitable modification of the definition of Lyapunov
function: Let f(¢, y) be continuous for ¢t Z 7, |y| = b and satisfy

8.4) f(£,0)=0 fortr=T.

A function V(t, y) defined for t = T, |y| < b is called a Lyapunov function
if () V(¢, y) has continuous partial derivatives; (ii) V(t,0) =0fort = T
and there exists a continuous function W(y) on |y| = b such that W(y) = 0
according as jy| = 0, and V(t,y) = W(y) for t = T, (iii) the trajectory
derivative of V satisfies V(¢, y) < 0.

Theorem 8.3. Ler f(t, y) be continuous for t = T, |y| £ b and satisfy
(84). Ler there exist a Lyapunov function V(t,y). Then the solution
y = 0 of (8.1) is uniformly stable (in the sense of Lyapunov).

Here, Lyapunov stability means that if € > 0 is arbitrary, then there
exists a 6, > O and a ¢, Z Tsuch that if y(¢) is a solution of (8.1) satisfying
ly(t9)| < 8, for some 1° = ¢, then y(r) exists and |y(r)| < e for all £ = ¢,
If, in addition, y(t)—~0 as t— oo, then the solution y = 0 is called
Lyapunov asymptotically stable. The modifier “uniform” for “stability”
or “‘asymptotic stability’”” means that ¢, can be chosen to be T for all
e>0.

Theorem 8.4. Let f(t,y), V(t,y) be as in Theorem 8.3. In addition,
assume that there exists a continuous W\(y) for ly| = b such that Wi(y) = 0
according as |y| = 0 and that V(t, y) < — Wy(y) for t = T. Then the solu-
tiony = 0 of (8.1) is uniformly asymptotic stable (in the sense of Lyapunov).

Exercise 8.3. (a) Prove Theorem 8.3. (b) Prove Theorem 8.4

9. Successive Approximations

The proof of Theorem II 1.1 suggests the question as to whether or not
a solution of

(91) y, =f(t, y)’ y(to) =Y
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can always be obtained as the limit of the sequence (or a subsequence) of
the successive approximations defined in § IT 1. That the answer is in the
negative is shown by the following example for a scalar initial value
problem

(9.2) u' = UL, u), u(0) =0,

where U(¢, u) will be defined for # = 0 and all u.
Consider the approximations u,(¢) = 0 and

u,1(1) =fot U(s, u,(s)) ds if n=0.

Let U(z, 0) = 2¢, hence u,(t) = t%; put U(t, t3) = —2¢, hence uy(t) = —1r2.
Finally, put U(s, —¢%) = 2t, so that uy(¢t) = t%. Then u,,(t) = —¢2 for
n>0 and wuy,,,(t) = ¢ for n = 0. It only remains to complete the
definition of U(¢, u) as a continuous function to obtain the desired example.

One possible completion of this definition is to let U(s, u) = 2¢ if
u=0, Utu= —2tif uzrt? and to be a linear function of u when
0 =u=1r%t>0 fixed. In this way, we obtain an example in which
U(t, u) is nonincreasing with respect to u (for fixed ¢+ = 0). In this case, the
solution of (9.2) is unique (Corollary 6.3) although no subsequence of the
successive approximations converge to a solution.

It turns out, however, that if the solutions of (9.1) are unique by virtue
of Theorem 6.1, then successive approximations converge to a solution.

Theorem 9.1. Let R, Ry, f, w be as in Theorem 6.1. Let |f(t,y)] = M
on R and o = min (a, b/M). Then the functions y,(t) = Y,

93) vo() = %o + f s vl ds a1,

are defined and converge uniformly on [to, to + o] to the solution y = y(t)
of (9.1).

Proof. By Exercise 6.5, it can be supposed that (¢, u) is continuous
on the closure of R, and is nondecreasing with respect to u for fixed ¢.

The sequence of approximations (9.3) are uniformly bounded and equi-
continuous on [f, fy + a] and hence possesses uniformly convergent
subsequences. If it is known that y (¢) — y,_,(¢) -~ 0 as n — oo, then
(9.3) implies that the limit of any such subsequence is the unique solution
y(t) of (9.1). It then follows that the full sequence y,, ¥,, . . . converges
uniformly to y(¢); cf. Remark 2 following Theorem I 2.3. Thus, in order
to prove Theorem 9.1, it suffices to verify that A(¢) = 0, where

(9.4) A(t) = lim sup |y,(t) — ¥, as n — 0.
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Since | f| < M on R,
|yn(t1) - yn—l(tl)l § |yn(t2) - yn—l(t2)| +2M |t1 - t2|'

The right side is at most A(t;) + € + 2M |t; — ¢t,| for large n if € > 0.
Hence A(t)) < A(ty) + € +2M |t; — t,|. Since € > 0 is arbitrary and
f, ¢, can be interchanged, |A(f)) — A(ty)| < 2M |t, — t,|. In particular,
A(¢) is continuous for £, < ¢ < £, + .

By the relation (9.3),

Yontlt) — 1(8) = f LG5, 2(8) — (5, ¥na(9)] ds.
Hence, by (6.3),

t

Vo) — 0] < f 05, 19:() — Yna(5)]) ds.

For a fixed ¢ on the range 1, < ¢ = ¢, + «, there is a sequence of integers

n(l) < n(2) < ...such that |y, (t) — ¥, ()| > A(¢) as n = n(k) — oo and

that A,(s) = lim |y,(s) — ¥,1(s)| exists uniformly on f{, £ s <1t + a as
= n(k) — o. Thus,

a0 = f " s, A(s)) ds.

Since A,(s) = lim sup |y, (s) — ¥,1(s)] = A(s) and w(¢, ¥) is monotone in
u,

A1) §ft w(s, A(s)) ds.

By Corollary 4.4, A(f) =< uy(t), where uy(r) is the maximal solution of
u' = o, u), u(t,) = 0.

Since this initial value problem has the unique solution uy(f) =0, it
follows that A(¢) = 0. This proves the theorem.

Exercise 9.1. Show that under the conditions of Exercise 6.7(a), the
successive approximations y,(¢) = 0 and (9.3), where f, = 0 and y, = 0,
converge uniformly on 0 <t £ min (a, b/M) to the solution of y’ =
St ), y(0) = 0.

Exercise 9.2. For two vectors, y = (¢, ...,¥% and 2 = (2, .. ., 29),
use the notationy Z zif y* = Z*fork=1,...,d. Letf=(f%...,f9
and y = (y', ..., 9%. Assume that f(s,y) is continuous on R:0 =
t=<a, |yl =b and that f(t,y,) = f(t,y) if y, <y, (a) Define two
sequences of successive approximations ¥, (£),#,,(f),...on0 =t < a =
min (a, b/ M), where y,, (f) = £M(1, ..., )tand

t
yni(t) =f0f(s> yn—li(s)) ds fOI' h= l, 2, LR Y
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Show that g, () 2y, ()=... andy, () =<y, (1) =... and that
both sequences converge uniformly to solutions of y' = f(z, y), ¥(0) = 0.
(b) Show that y,,(#) can be replaced by continuous functions
Yo (H)on 0 =t £ « satisfying |y, (¢)] = b and

t t
Yo (1) éfof (5, 90+ (5)) ds, Yo-(2) éfof (5 Yo-(5)) ds

(e.g., ¥o_(t) = y, is admissible if f(z, y,) = 0).

Exercise 9.3. (a) Using the notation ¥ = z introduced in Exercise 9.2,
let f(¢, ¥) be continuous for t = 0 and all y and satisfy f(z, ) = f(¢, ¥2)
if y, S y,. Let y(¢) be a solution of ¥y’ = —f(t, y) satisfying y(r) = »(0)
for t 2 0; cf, e.g, §XIV2. Consider the successive approximations

Yo(8), ¥1(t), . . . defined by yo(2) = y(0), y,(r) = y(0) —fotf (5, Yua(5)) ds

forn=1,2,.... Letz,(¢)denote the “error” z,(t) = y,(¢t) — y(¢). Show
that (—1)"2,(t) = Oforn =0, 1,...and (—1)"2,'(tf) = Oforn=1,2, ...
and r = 0. (Convergence of the successive approximations is not asserted.)

(b) Let E,(t) = > (—1)™r™/m! be the nth partial sum of the MacLaurin
0

Mt
series for e~%. Show that (—1)"(E,(t) —e H =0 forn=0,1,... and
t = 0.

Exercise 9.4. Let U(t, u) be real-valued and continuous for ¢ = 0 and
arbitrary # and U(¢, ) nondecreasing with respect to u for fixed ¢. Let
ug, Uy be fixed numbers and u(¢) a solution of ¥’ = —U(t, u). Define
successive approximations for u(f) by putting uy(t) = u, + u,'t and

u(£) = uyt) —ft(t — S)U(s, u,_4(s)) ds forn=1,2,....

Then uy(t), uy(t), . . . are defined for ¢+ = 0. (a) Suppose that u(r) satisfies
u(t) = uy + uy't onits right maximal interval of existence [0, w,). Show that
w. = o and that the “error” vn(t) = u,(t) — u(r) satisfies (—1)"v,(f) =
0, (=D™,’(t)= 0 for n=1,2,... and t = 0. (Convergence of the

successive approx1matlons is not asserted.) (b) Let C,(t) = z (—1)mezmf
(2m)! and S,(t) = Z (= D™2™1/(2m + 1)! be the nth partlal sums of
=0

the Maclaurin serles for cos ¢ and sin ¢, respectively. Show that (—1)"
[C.(#) —cost] = 0 and (—1)" [S,(¢) —sint] =0 forn=0,1,... and
t = 0. (c) Let U(s, w) = gq(t)u, where g(t) = 0 is continuous and non-
decreasing for t Z 0. Using Theorem XIV 3.1, and the remarks following
it, show that (a) is applicable if 4, = 0 and u," = 0 [i.e., show that u(t) <
uy + uy't for t = 0).
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Notes

SECTION 1. Theorem 1.1 goes back essentially to Peano [1]. A special case was
stated and proved by Gronwall [1]; a slightly more general form of the theorem (which
is contained in Corollary 4.4) is given by Reid [, p. 290]. The proof in the text is that
of Titchmarsh [1, pp. 97-98].

SECTION 2. Maximal and minimal solutions were considered by Peano [1]; see
Perron [4].

secTIoN 4. Differential inequalities of the type (4.1) occur in the work of Peano [1]
and of Perron [4]. Theorem 4.1 and its proof are taken from Kamke [I] and are
essentially due to Peano. Exercises 4.2 and 4.3 are results of Kamke [2]; see Wazewski
[7]. A special case of Corollary 4.4 is given by Bihari [1]. Exercise 4.6 is a result of
Opial [1].

SECTION 5. Results of the type in Theorem 5.1 and Exercise 5.1 were first given by
Wintner [1], [4].

SECTION 6. Theorem 6.1 is due to Kamke [1]. An earlier version, in which it is
assumed that w(?, «) is continuous also for ¢ = 0, was given by Perron [6]. (Exercise
6.5, due to Olech [2], shows that, in a certain sense, Perron’s theorem is not less general
than Kamke’s.) For the case d = 1, earlier results of the type of Perron’s were given
by Bompiani [1] and Iyanaga [1]. For Exercise 6.1, see Szarski [1]. For Corollary 6.1,
see Nagumo [1]; a less sharp form was first proved by Rosenblatt [1] with (¢, u) = Cu/t
and 0 < C < 1. An example of the type required in Exercise 6.2 was given by Perron
[8]. For Corollary 6.2, see Osgood [1]. For Exercise 6.3(a), see Lévy [l, pp. 46-47].
For Exercise 6.4, see Wallach [1]. For Exercise 6.5, see Olech [2]. For a particular case
of Exercise 6.6, see Wintner [22]. For Exercise 6.8, part (a), see F. Brauer [1], who
generalized the result of part (b) due to Krasnosel'skii and S. G. Krein [1].

For other uniqueness theorems related to those of this section, see F. Brauer and
S. Sternberg [1]. These involve estimates for a function V(z, [yx(t) — y:(r)}) instead of
|1t} — ya(2)]. For earlier references on the subject of uniqueness theorems, see Miiller
[3] and Kamke [4, pp. 2 and 33].

SecTION 7. Theorem 7.1 is a result of van Kampen [2].

SECTION 8. The terminology “egress point” and “ingress point” is that of Wazewski
[5). Exercise 8.1 is due to Dirichlet [1]; it was first given by Lagrange [1, pp. 36—44]
under the assumption that V(y) is analytic and that the Hessian matrix (82V/dy* dy?)
of ¥ at y = 0 is definite. This result is the forerunner of Lyapunov’s Theorem 8.1.
Theorems 8.1 and 8.2, Exercise 8.2, and Theorems 8.3 and 8.4 are due to Lyapunov [2]
(and constitute the basis for his “direct” or “second” method); cf. LaSalle and
Lefschetz [1]. For references and recent developments on this subject, see W. Hahn [1],
Antosiewicz [1], Massera [2], and Krasovskil [4].

secTIoN 9. The example of nonconvergent successive approximations is due to
Miiller [1]. Theorem 9.1, as stated, is due to Olech [2] and avoids an assumption of
monotony on w(t, u) occurring in earlier versions of this result. Earlier versions and
special cases are to be found in Rosenblatt [1], van Kampen [3] (cf. also Haviland [1]),
Dieudonné [1], Wintner [2], LaSalle [1], Coddington and Levinson [1], Viswanatham
[1], and WaZzewski [8]. The reduction of the proof of Theorem 9.1 to the verification
that A(z) = 0 is due to Dieudonné (and independently to Wintner) and is used by the
authors following them. Exercise 9.1 is a result of F. Brauer [1] and generalizes
Luxemburg [1]. Exercise 9.2(q) is due to Miiller [1]; cf. LaSalle [1] for part (). For
Exercise 9.3(a), ¢f. Hartman and Wintner [16]. For Exercise 9.4, cf. Wintner [16].



