PROOF OF HÖLDER-MAÑÉ THEOREM (following Robinson, p. 407)

Theorem. Let X be separable Hilbert space, $A \subset X$ a compact set with finite fractal dimension. Let $m \in \mathbb{N}$ be such that $m > 2d_f(A) + 1$. Then there exists a bounded linear map $L : X \to \mathbb{R}^m$ such that $L|_A$ is injective.

Proof. We will show that the set

$$\{L \in \mathcal{L}(X, \mathbb{R}^m); L|_A \text{ is not injective}\}$$

is first category, hence the set of injective projections is dense by Baire category theorem. Here $\mathcal{L}(X, \mathbb{R}^m)$ are bounded, linear maps $L: X \to \mathbb{R}^m$, i.e. a Banach space with the norm

$$||L||_{\mathcal{L}} = \sup\{|Lu|; \ x \in X, \ ||x|| \le 1\}.$$

STEP 1. Set

$$B = \left\{ u - v; \ u, v \in A \right\}.$$

It follows that B is compact and $d_f(B) \leq 2d_f(A) < m-1$. Observe that L is injective on A if and only if $Ly \neq 0$ for any nonzero $y \in B$.

STEP 2. Define the sets

$$B_r = \left\{ u \in B; \ |u| \ge 1/r \right\}$$
$$B_{r,j,n} = \left\{ u \in B_r; \ |(e_j, u)| \ge 1/n \right\}$$

with the indices $r, j, n \in \mathbb{N}$ and $\{e_j\}_j$ is the Hilbert basis of X. It is easy to verify that

$$\bigcup_{r} B_{r} = \bigcup_{r,j,n} B_{r,j,n} = \left\{ u \in B; \ u \neq 0 \right\}.$$

STEP 3. We further define

$$\mathcal{L}_{r,j,n} = \left\{ L \in \mathcal{L}(X, \mathbb{R}^m); \ Lu \neq 0 \text{ for } \forall u \in B_{r,j,n} \right\}$$

It follows from the above that

$$\bigcap_{r,j,n} \mathcal{L}_{r,j,n} = \left\{ L \in \mathcal{L}(X, \mathbb{R}^m); \quad Lu \neq 0 \text{ for } \forall u \in \bigcup_{r,j,n} B_{r,j,n} \right\}$$
$$= \left\{ L \in \mathcal{L}(X, \mathbb{R}^m); \quad Lu \neq 0 \text{ for } \forall u \in B, u \neq 0 \right\}$$
$$= \left\{ L \in \mathcal{L}(X, \mathbb{R}^m); \quad L \text{ is injective on } A \right\}.$$

Hence to finish the proof, we need to show that each of the sets $\mathcal{L}_{r,j,n}$ is open and dense in $\mathcal{L}(X, \mathbb{R}^m)$.

STEP 4. To show that $\mathcal{L}_{r,j,n}$ is open, fix $L \in \mathcal{L}_{r,j,n}$. We first note that |Lu| > 0, hence $|Lu| \ge \eta > 0$ on a compact set $B_{r,j,n}$. Further, let R > 0 be such that $|u| \le R$ for $\forall u \in B_{r,j,n}$. We claim that $\mathcal{L}_{r,j,n}$ contains ε -neighborhood of L, where $\varepsilon = \eta/2R$. Indeed, if $\|\tilde{L} - L\|_{\mathcal{L}} < \varepsilon$, then

$$|\tilde{L}u| \ge |Lu| - |(L - \tilde{L})u| \ge \eta - \varepsilon R > \varepsilon/2,$$

for any $u \in B_{r,j,n}$, hence $\tilde{L} \in \mathcal{L}_{r,j,n}$.

STEP 5. Key observation: for given $L_0 \in \mathcal{L}(X, \mathbb{R}^m)$ and $r \in \mathbb{N}$, there exists $z \in \mathbb{R}^m$, with |z| = 1 such that $L_0 u$ is NOT a non-zero multiple of z for any $u \in B_r$. In short

$$\{\lambda z; \ \lambda \in \mathbb{R} \setminus \{0\}\} \cap L_0 B_r = \emptyset \tag{1}$$

Geometrically: we can find z on the unit sphere such that the line passing through z never intersects L_0B_r with the exception of the origin. The argument (which we postpone to the next step) is based on the fact that the dimension of L_0B_r is strictly smaller than the dimension of the unit sphere. Once the key observation is proved, the density of $\mathcal{L}_{r,j,n}$ follows easily. Given L_0 and $\varepsilon > 0$, we define $L \in \mathcal{L}(X, \mathbb{R}^m)$ by

$$Lu = L_0 u + \varepsilon(u, e_j) z \,.$$

It is clear that $||L - L_0||_{\mathcal{L}} \leq \varepsilon$ and we claim that $L \in \mathcal{L}_{r,j,n}$. If not, there exists $u \in B_{r,j,n}$ such that Lu = 0, i.e.

$$L_0 y = -\varepsilon(u, e_j) z \,.$$

However, $(u, e_j) \neq 0$ as $u \in B_{r,j,n}$; this contradicts (1).

STEP 6. It remains to prove the "key observation" from previous step. This is equivalent to showing that

$$\phi(L_0 B_r \setminus \{0\}) \neq S_{m-1},$$

where S_m is the unit sphere

$$S_m = \left\{ z \in \mathbb{R}^m; \ |z| = 1 \right\}$$

and $\phi : \mathbb{R}^m \setminus \{0\} \to S_{m-1}$ is the "projection" $\phi : x \mapsto x/|x|$.

We set $M = L_0 B_r \setminus \{0\}$. Clearly $d_f(M) \leq d_f(B) < m - 1$. If ϕ would be Lipschitz (which is "almost true"), we would have $d_f(\phi(M)) < m - 1$, hence $\phi(M)$ cannot equal to S_{m-1} which has dimension m - 1.

However, ϕ is not Lipschitz close to the origin, and we have to elaborate here a bit. We set

$$M_k = \{x \in M; |x| \ge 1/k\}.$$

Clearly $\phi(M) = \phi(\bigcup_k M_k) = \bigcup_k \phi(M_k)$. Now ϕ is Lipschitz on M_k , and M_k is compact. Hence $\phi(M_k)$ is compact subset of S_{m-1} with $d_f(\phi(M_k)) < m - 1$. It follows that $\phi(M_k)$ has empty interior (with respect to S_{m-1}); hence $\phi(M) = \bigcup_k \phi(M_k)$ cannot fill S_m by Baire category theorem.

Remark. The end of the proof can simplified, using the properties of Hausdorff dimension d_h .

Indeed, $d_h(\phi(M_k)) \leq d_f(\phi(M_k)) \leq d_f(M)$. Hence, as d_h is countably subaditive (unlike d_f),

$$d_h(\phi(M)) = \sup_k d_h(\phi(M_k)) \le d_f(M) < m - 1.$$

Hence $\phi(M) \neq S_{m-1}$ as required.